REFERÊNCIAS BIBLIOGRÁFICAS

ANP, 2000, **Agência Nacional do Petróleo - Portaria nº. 009 de 21 de Janeiro de 2000**. Último acesso ao site em 12 de Julho de 2006. Disponível na Internet: <u>http://nxt.anp.gov.br/NXT/gateway.dll/leg/folder portarias anp/portarias anp tec/2000/janeiro/pa</u> <u>np%209%20-%202000.xml?f=templates\$fn=default.htm&sync=1&vid=anp:10.1048/enu</u>

ANTUNES, P.T.S., 2003, Modelagem Numérica Tridimensional Visando o Estudo de Tensões na Bacia do Recôncavo via Método dos Elementos Finitos, Tese de Doutorado, Programa de Pós-Graduação em Engenharia Civil, UFRJ, Rio de Janeiro, Brasil.

ARPS, J.J. & ROBERTS, T.G., 1958, Economics of drilling for Cretaceous oil on east flank of Denver Julesburg basin, American Association of Petroleum Geologists Bulletin 42(11), 2549-66.

BENTLEY, R.W., 2002, **Oil Forecasts, Past and Present**, International Workshop on Oil Depletion, Uppsala, Sweden, May 23-24, 2002. Último acesso ao *site* em 05 de Maio de 2005. Disponível na Internet: http://www4.tsl.uu.se/isv/IWOOD2002/ppt/UppsalaRB.doc

BP, 2004, **Statistical review of world energy june 2004**. Último acesso ao *site* em 25 de Maio de 2005. Disponível na Internet: <u>http://www.zawya.com/oilgas/</u>

BROCK, W., DECHERT, W.D., SCHEINKMAN, J., 1987, A Test for Independence Based on the Correlation Dimension, Econometric Reviews, 15 (3), 197-235. BROCK, W., HSIEH, D., LEBARON, B., 1991, Non Linear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence, Cambridge, MA: MIT Press.

CAMPBELL, C.J., 1997, **The Coming Oil Crisis**. Multi-Science Publishing Company and Petroconsultants.

DEFFEYES, K.S., 2001, **Hubbert's Peak**. The impending world oil shortage. Princeton University Press.

DREW, L.J., 1990, **Oil and Gas Forecasting** – Reflections of a Petroleum Geologist. New York, Oxford University Press.

ECONOMIDES, M.J., 2004, Is There an Impending World Oil Shortage?, World Energy, Vol. 7, nº 4, pp. 126-129.

FIGUEIREDO, A.M., 1995, Geologia das Bacias Brasileiras *in*: VIRO, E.J., 1995, Avaliação de Formações no Brasil, Schlumberger, Rio de Janeiro.

FRYER, M.J. & GREENMAN, J.V., 1990, Estimating the Oil Reserve Base in the UK Continental Shelf, J. Opl. Res. Soc., Vol. 41, n°.8, pp. 725-733.

GAZOLA, L.M. & CARATORI, P.M., 2003, O Poder da Estatística BDS em modelos de volatilidade estocástica: uma investigação utilizando simulação de Monte Carlo, Trabalho de Fim de Curso, Departamento de Engenharia Elétrica, PUC/Rio.

HUBBERT, M.K., 1956, Nuclear energy and the fossil fuels, American Petroleum Institute Drilling and Production Practice, Proceedings of Spring Meeting, San Antonio, pp. 7-25; also Shell Development Company Publication 95, June 1956. KNORING, L.D., CHILLINGAR, G.V., GORFUNKEL, M.V., 1999, Strategies for Optimizing Petroleum Exploration. Gulf Publishing Company.

MALTHUS, T., 1798, **An Essay on the Principle of Population**, London, J. Johnson, First edition.

MEISNER, J. & DEMIRMEN, F., 1981, *The Creaming Method: A Bayesian Procedure to Forecast Future Oil and Gas Discoveries in Mature Exploration Provinces*, J. R. Statist. Soc., 144, Part 1, pp. 1-31.

MMS - Minerals Management Service, 2002, "Reserve History for Proved

Fields - Gulf of Mexico Outer Continental Shelf, December 31, 2002. Último acesso ao *site* em 24 de Junho de 2006. Disponível na Internet:

http://www.gomr.mms.gov/homepg/offshore/fldresv/2002-HIST.pdf

PETROBRAS, 2005, **História – Setor Petróleo**. Último acesso ao *site* em 30 de Maio de 2005. Disponível na Internet:

http://www2.petrobras.com.br/portal/Petrobras.htm

ROSA, S.E.S. & GOMES, G.L., 2004, **O Pico de Hubbert e o Futuro da Produção Mundial de Petróleo**. Revista do BNDES, Rio de Janeiro, Dezembro, Vol. 11, nº. 22, pp. 21-49.

SILVA, R.R., 1983, **Contribuição à Avaliação Probabilística de Potencial Petrolífero**. Dissertação de Mestrado, Instituto de Matemática, Universidade Federal do Rio de Janeiro (UFRJ).

SPE - Society of Petroleum Engineers. **Petroleum resources classification system and definitions**. Último acesso ao *site* em 30 de Maio de 2005. Disponível na Internet: <u>http://www.spe.org/spe/jsp/basic/0,,1104_12171,00.html</u> e http://www.spe.org/spe/jsp/basic/0,2396,1104_12169_0,00.html

THOMAS, J.E. Fundamentos de engenharia de petróleo. Rio de Janeiro: Interciência, 2001.

USGS, 1995, **1995 National Assessment of United States oil and gas resources:** U.S., by U.S. Geological Survey National Oil and Gas Resource Assessment Team – Geological Survey Circular 1118, 20 p.

USGS, 2000, United States Geological Survey World Petroleum Assessment 2000 – Description and Results, by United States Geological Survey World Energy Assessment Team – United States Geological Survey Digital Data Series DDS-60, version 1.1, 4 CD-ROM set.

USGS, 2003, United States Geological Survey, Assessment of Undiscovered Oil and Gas Resources of the San Joaquin Basin Province of California, USGS Fact Sheet FS-2004-3043. Último acesso ao *site* em 05 de Maio de 2005. Disponível na Internet: <u>http://energy.cr.usgs.gov/oilgas/noga/</u>

VERGARA, S. Projetos e Relatórios de Pesquisa em Administração. São Paulo: Atlas, 1997.

VERMA, M.K., ULMISHEK, G.F., GILBERSHTEIN, A.P., 2000, Oil and gas reserve growth-A model for the Volga-Ural Province, Russia, SPE 62616, presented at the 2000 SPE/AAPG Western Regional Meeting held in Long Beach, California, 19-23 June 2000.

VERMA, M.K. & ULMISHEK, G.F., 2003, Reserve growth in oil fields of West Siberian Basin, Russia, Natur. Resour. Resear., Vol.12, n°.2, p105-119.

VERMA, M.K., AHLBRANDT, T.S., AL-GAILANI, M., 2004, Petroleum reserves and undiscovered resources in the total petroleum systems of Iraq: reserve growth and production implications, GeoArabia, Vol. 9, n°.3, Gulf Petrolink, Bahrain.

VERMA, M.K. & HENRI, M.E., 2004, **Historial and potential reserve growth in oil and gas pools in Saskatchewan**, in Summary of Investigations 2004, Vol.1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-1, 20p. ARRINGTON, J.R., 1960, Size of crude reserve is key to evaluating exploration programs. Oil & Gas Journal, 58, n° 9, p. 130-134.

ATTANASI, E.D. & ROOT, D.H., 1994, The enigma of oil and gas growth. Amer Assoc. Petrol. Geol. Bull., v. 78, n° 3, p. 321-332.

ATTANASI, E.D., MAST, R.F., ROOT, D.H., 1999, **Oil, gas field growth** projections: wishful thinking or reality. Oil & Gas Journal, 97, nº 14, 79-81.

BUYALOV, N.I., KORNIYENKO, V.N., LAVRUSHKO, N.P., 1979, "Methodological Basics of the Forecast for a Quantity of the Discovered Oil and Gas", Sovetskaya Geologiya, nº 8: 3-13.

CROMWELL, J.B., LABYS, W.C. AND TERRAZA, M., 1994, "Univariate Tests for Time Series Models", SAGE University Papers, number 99.

DANESHY, A. & BATES, T., 2005, "*Technology's Value in the Upstream Oil and Gas Industry*", Journal of Petroleum Technology - JPT, Junho de 2005, pp. 24-26.

DE GROOT, M.H., 1970, "Optimal Statistical Decisions", Mc Graw-Hill.

DESTRO, N., 2002, "Falhas de Alívio e de Transferência: O Significado Tectônico e Econômico no Rifte do Recôncavo-Tucano-Jatobá, NE Brasil", Tese de Doutorado, Universidade Federal de Ouro Preto, 173 p.

FAROUQ, A., 1995, "Improved / enhanced oil recovery – what is the reality", Presented at the Regional Symposium on Improved Oil Recovery, Abu Dhabi, UAE, December 17-19, 7p.

GAVURA, V.E., ed., 1996, "Geology and production of the largest and unique oil and oil-gas fields of Russia", (Geologiya i razrabotka krupneyshikh i unikalnykh neftyanykh I neftegazovykh mestorozhdeniy Rossii), v. 2, West Siberia: Moscow, VNIIOENG, 350p. (in Russian).

HUBBERT, M.K., 1967, "Degree of Advancement of Petroleum Exploration in the United States", Bull. Am. Assoc. Petrol. Geol., 51/11: 2207-2227.

KLETT, T.R. & GAUTIER, D.L., 2003, "*Characteristics of reserve growth in oil fields of the North Sea Graben area*", 65th European Association of Geoscientists and Engineers Conference and Exhibition, 2-5 June, Stavanger, Norway, extended abstract and exhibitor's catalogue, 4p.

LORE, G.L., BROOKE, J.P., COOKE, D.W., KLAZYNSKI, R.J., OLSON, D.L., ROSS, K.M., 1996, "Summary of the 1995 assessment of the conventionally recoverable hydrocarbon resources of the Gulf of Mexico and Atlantic Shelf". Mineral Management Service, Outer Continental Shelf Rep. MMS 96-003, Appendix A, 4p.

MARSH, R.G., 1971, "*How much oil are we really finding*". Oil & Gas Journal, v. 69, nº 14, p. 100-104.

MCMICHAEL, C.L., 2001, "Guidelines for the evaluation of petroleum reserves and resources", Supplement to the SPE/WPC Petroleum Reserves Definition and the SPE/WPC/AAPG Petroleum Resources Definitions. Society of Petroleum Engineers.

MELO, L.C., 2004, "Modelagem da Evolução e Projeção do Volume de Óleo Recuperável Acumulado: Metodologia e Aplicação", Dissertação M.Sc.,
Programa de Engenharia de Produção, UFRJ, Rio de Janeiro, Brasil.

MENARD, H.W. & SHARMAN, G., 1975, "Scientific use of random drilling models", Science 190: 337-43.

MORITIS, G., 2000, "*EOR weathers low oil prices*", Oil and Gas Journal, v. 98, nº 12, p. 39-61.

Revista Amanhã, 2005, "A potência do petróleo verde", Agosto/Setembro de 2005, Número 213, Ano 19, pp. 72 a 74.

Revista Veja, 2003, "Suplemento Publicitário da Revista Veja – Petrobras 50 anos", Ano 36, Edição 1827, pp. 6 e 23.

ROOT, D.H., ATTANASI, E.D., MAST, R.F., GAUTIER, D.L., 1995, "Estimates of inferred reserves for the 1995 USGS National Oil and Gas Resources Assessment", U. S. Geol. Surv., Open File Rep. 95-75-L, 29p.

ROSE, R.E., 2004, "*Listening to the Whispers of History*", World Energy, Vol. 7, nº 4, pp. 135-139.

SCHMOKER, J.W. & ATTANASI, E.D., 1997, "*Reserve growth important to U.* S. gas supply", Oil Gas J., v. 95, nº 4, p. 95-96. SEM, T. & ELLERMAN, D., 1999, "North Sea reserve appreciation, production and depletion", Mass Inst. Tech., MIT-CEEPR 99-011 WP, 39p.

STALKUP, F.I., 1984, "*Miscible Displacement*", Society of Petroleum Engineers Monograph Series, Dallas, 204 p.

TABER, J.J., MARTIN, F.D., SERIGHT, R.S., 1996, "*EOR Screening Criteria Revisited*", SPE/DOE 35385, presented at the SPE/DOE 10th Symposium on Improved Oil Recovered held in Tulsa, Oklahoma, 21-24 April, p. 387-415.

URI, N.D., 1979, "New Look at U.S. Reserves Shows Higher Potential", World Oil, 188 (2): 61-66.

USGS, 1998, United States Geological Survey, "Arctic National Wildlife Refuge, 1002 Area, Petroleum Assessment, Including Economic Analysis", USGS Fact Sheet FS-0028–01. Último acesso ao site em 05 de Maio de 2005. Disponível na Internet: <u>http://pubs.usgs.gov/fs/fs-0028-01/fs-0028-01.htm</u>

YOUNGQUIST, W.L., 1997, "GeoDestinies—the inevitable control of Earth resources over nations and individuals", Portland, Oregon, National Book Company, 499 p.

WATKINS, G.C., 2000, "*Characteristics of North Sea oil reserves appreciation*", Mass Inst. Tech., MIT-CEEPR 2000-008 WP, 33p. As definições da classificação de recursos abaixo foram baseadas na página da Internet da SPE - *Society of Petroleum Engineers*. O eixo horizontal da Figura 104 representa a incerteza do volume calculado e o eixo vertical representa o grau de maturidade da acumulação.

Figura 1 - Sistema de Classificação de Recursos. Fonte: SPE.

Petróleo inicialmente *in-place*: é a quantidade total de petróleo inicialmente *in-place* estimada numa dada data a ser contida em acumulações conhecidas (recursos descobertos), mais a quantidade já produzida até esta data, mais as quantidades estimadas em acumulações não conhecidas (recursos não descobertos). Conseqüentemente, o petróleo inicialmente *in-place* pode ser subdividido em dois grupos: recursos descobertos e em recursos não descobertos.

As quantidades totais de petróleo inicialmente *in-place* englobam porções potencialmente recuperáveis e irrecuperáveis. Estas proporções mudarão, podendo uma parte da porção irrecuperável tornar-se recuperável no futuro de acordo com circunstâncias comerciais, desenvolvimentos tecnológicos e disponibilidade de dados.

Petróleo não descoberto inicialmente *in-place*: é a quantidade de petróleo estimada numa determinada data a ser contida em acumulações ainda a serem descobertas. McMichael, 2001 (apud Verma & Henri, 2004) define recursos não descobertos como sendo hidrocarbonetos potenciais que ainda não foram comprovados através da perfuração e testes de produção.

Recursos Prospectivos: parte potencialmente recuperável do petróleo ainda não descoberto inicialmente *in-place*.

Petróleo descoberto inicialmente *in-place*: é a quantidade de petróleo estimada numa dada data a ser contida em acumulações conhecidas (recursos descobertos), mais a quantidade já produzida até esta data. O petróleo descoberto inicialmente *in-place* pode ser subdividido em duas categorias: comercial e sub-comercial. Sua parte potencialmente recuperável pode ainda ser classificada como reservas e recursos contingentes.

Recursos contingentes: quantidades potencialmente recuperáveis e estimadas de acumulações conhecidas que não cumprem os requisitos de comercialidade numa dada data devem ser classificadas como Recursos Contingentes. Entretanto, é reconhecida alguma ambigüidade entre as definições de recursos contingentes e reservas não provadas. É recomendado que, se o grau de comprometimento não é tal que a acumulação seja desenvolvida e colocada em produção dentro de um prazo razoável, então os volumes recuperáveis devem classificados como recursos contingentes. Englobam, por exemplo, acumulações onde a recuperação depende do desenvolvimento de novas tecnologias.

Os recursos contingentes e os recursos prospectivos são ainda categorizados com valores "baixo", "melhor" e "alto". Para melhor entendimento, considere uma acumulação que não seja comercial atualmente devido à falta de mercado. Os volumes recuperáveis são classificados como recursos contingentes e subdivididos nas categorias "baixo", "melhor" e "alto". Uma vez que o mercado seja desenvolvido, as acumulações que eram classificadas como recursos contingentes passam para a categoria acima (Reservas). Além disso, espera-se que os valores das reservas provadas sejam relativamente próximos dos valores antes considerados "baixo".

Recuperação final estimada: definida pela SPE como sendo *Estimated Ultimate Recovery* (EUR), é um termo que pode ser aplicado a acumulações em qualquer *status*/maturidade (descobertas ou não). É a quantidade de petróleo estimada numa determinada data que pode ser ' das acumulações, acrescida da quantidade já produzida anteriormente.

Reservas: segundo a ANP (2000), reservas são recursos descobertos de petróleo e gás natural comercialmente recuperáveis a partir de uma determinada data em diante. Como a estimativa de reservas sempre envolve incertezas quanto às informações geológicas, de engenharia e econômicas, esses recursos podem ser classificados como provados, prováveis e possíveis.

Reservas Prováveis: reservas de petróleo e gás natural cuja análise dos dados geológicos e de engenharia indica uma maior incerteza na sua recuperação quando comparada com a estimativa de reservas provadas. Podem incluir:

- Reservas previstas de serem provadas através da perfuração de poços, porém localizadas onde não exista um controle geológico de sub-superfície adequado para classificá-las como provadas;
- Reservas em formações que devem ser produtoras com base em suas características de perfis, mas que não têm dados de testemunhos ou testes de poços, bem como correlação com reservatórios provados na área;
- Incremento de reservas que poderiam ser classificadas como provadas devido a adensamento de malha de perfuração se espaçamento mais refinado estivesse sido aprovado pela ANP, na data da estimativa;
- Reservas relativas a métodos de recuperação suplementar de comprovada aplicação comercial quando:
 - 1. projeto ou o piloto estiver planejado, mas não em operação;
 - as características geológicas e hidrodinâmicas dos reservatórios são favoráveis à aplicação comercial do método em questão.
- Reservas de uma área da formação que deve estar separada da porção provada devido a falhamento e a interpretação geológica indica ser essa área estruturalmente mais alta que a provada;

- Reservas atribuídas a trabalhos futuros de restauração, tratamento ou re-tratamento de poços, mudança de equipamentos, ou outros procedimentos mecânicos, onde essas técnicas não tenham sido testadas com sucesso em poços que apresentem comportamento similar em reservatórios análogos;
- Reservas que excedam àquelas classificadas como provadas quando se utiliza uma interpretação alternativa de desempenho ou de dados volumétricos.

Reservas Possíveis: reservas de petróleo e gás natural cuja análise dos dados geológicos e de engenharia indica uma maior incerteza na sua recuperação quando comparada com a estimativa de reservas prováveis. Podem incluir:

- Reservas além do limite do provável, quando o controle geológico de sub-superfície for inadequado para classificá-las como prováveis;
- Reservas em formações que podem ser portadoras de hidrocarbonetos, baseadas nas características de perfis e análise de testemunhos, mas onde existam incertezas elevadas quanto a sua capacidade de produzir com vazões comerciais;
- Incremento de reservas atribuído a adensamento de malha de perfuração, porém sujeito a incertezas técnicas;
- Reservas relativas a métodos de recuperação suplementar quando:
 - 1. projeto ou o piloto estiver planejado, porém não em operação;
 - 2. as características geológicas e hidrodinâmicas dos reservatórios são tais que exista uma razoável dúvida de que o projeto será comercial.
- Reservas de uma área da formação que parecem estar separadas da porção provada devido a falhamento e a interpretação geológica indica ser esta área estruturalmente mais baixa que a provada;
- Recursos descobertos onde as avaliações de projeto indiquem alto risco econômico, principalmente devido à insuficiência de mercado;

APÊNDICE B: DEMONSTRAÇÃO DAS FÓRMULAS DE

KNORING ET AL. (1999)

Modelo 01:

A partir da equação diferencial logística (Equação 81), Knoring *et al.* (1999) desenvolvem equações para encontrar: i) os equivalentes contínuo e discreto; ii) o ponto de inflexão.

$$\frac{r}{R} = k - \varepsilon.R \tag{1}$$

Onde, $r = \frac{dR}{dt}$ é o Acúmulo Instantâneo. Assim sendo, tem-se:

$$\frac{1}{R}\frac{dR}{dt} = k - \varepsilon R$$

$$\frac{dR}{dt} - kR = -\varepsilon R^{2}$$
(2)

Sabe-se que uma equação diferencial linear de 1^a ordem segue a forma:

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{3}$$

Entretanto, pode-se observar na Equação 82 a existência de um termo não linear (\mathbb{R}^2). Por esta razão, a Equação 82 segue o formato de uma equação diferencial não-linear de 1^a ordem. Tal função conhecida como Bernoulli segue a forma:

$$\frac{dy}{dx} + P(x)y = Q(x) y^{2}$$
Termo
Não-Linear
(4)

As equações no formato acima têm uma característica importante. Podem ser facilmente reduzidas para equações diferenciais lineares de 1^a ordem. Primeiramente, dividem-se ambos os lados da Equação 82 por R².

$$\frac{1}{R^2}\frac{dR}{dt} - k\frac{1}{R} = -\varepsilon$$
 (5)

A seguir, chama-se
$$u = \frac{1}{R}$$
. Conseqüentemente, $\frac{du}{dR} = -R^{-2}$ e

 $\frac{du}{dt} = \frac{du}{dR}\frac{dR}{dt} = -\frac{1}{R^2}\frac{dR}{dt}$. Dessa forma, consegue-se reduzir a Equação 82 para a

seguinte equação diferencial linear de 1ª ordem:

$$-\frac{du}{dt} - ku = -\varepsilon \tag{6}$$

Multiplicando ambos os lados por $e^{\int kdt}$, tem-se:

$$e^{kt} \frac{du}{dt} + k \left(\frac{1}{R}\right) e^{kt} = \varepsilon e^{kt}$$
$$\frac{d}{dt} \left(ue^{kt}\right) = \varepsilon e^{kt}$$
$$ue^{kt} = \int \varepsilon e^{kt} dt$$
$$ue^{kt} = \varepsilon \frac{1}{k} e^{kt} + c$$
$$u = \frac{\varepsilon}{k} + \frac{c}{e^{kt}}$$
$$R(t) = \frac{1}{\frac{\varepsilon}{k} + \frac{c}{e^{kt}}}$$

Em t = 0, então:

$$R_0 = \frac{1}{\frac{\varepsilon}{k} + c} \qquad \qquad c = \frac{1}{R_0} - \frac{\varepsilon}{k}$$

$$R(t) = \frac{1}{\frac{\varepsilon}{k} + \left(\frac{1}{R_0} - \frac{\varepsilon}{k}\right)}e^{-kt}$$

Multiplicando-se o numerador e denominador por $\frac{k}{\varepsilon}$, temos:

$$R(t) = \frac{\frac{k}{\varepsilon}}{1 + \left(\frac{k}{\varepsilon R_0} - 1\right)}e^{-kt}$$

Em t = ∞ , então:

$$\lim_{t \to \infty} R(t) = \frac{k}{\varepsilon} = A \text{ (Assintota)}$$

$$R(t) = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)e^{-kt}} \tag{7}$$

A equação acima é chamada Função Logística e é o equivalente continuo da Equação 81. (Equação 2-3 proposta por Knoring *et al.*, 1999). O equivalente discreto é determinado considerando $a = 1 - e^{-kt}$, $A = \frac{a}{b}$ e $\Delta t = 1$. Dessa forma, tem-se:

$$R(t) = \frac{A}{1 + \frac{A}{R_0}e^{-kt} - e^{-kt}}$$
$$R_1 = \frac{1}{\frac{a}{A} + \frac{1}{R_0}e^{-k}} = \frac{1}{b + \frac{e^{-k}}{R_0}} = \frac{1}{\frac{bR_0 + e^{-k}}{R_0}}$$
$$R_1 = \frac{R_0}{bR_0 + e^{-k}} = \frac{R_0}{(1 - 1) + bR_0 + e^{-k}} = \frac{R_0}{1 - a + bR_0}$$

Finalmente, o equivalente discreto é fornecido pela Equação 88 (Equação 2-2 proposta por Knoring *et al.*, 1999). Além disso, a Equação 89 mostra que o Acúmulo de Reservas Relativo $\frac{\Delta R}{R_{i+1}}$ (Função Seleção de Condições) decresce linearmente com o aumento em R_t.

$$R_{i+1} = \frac{R_i}{1 - a + bR_i}$$

$$\frac{R_i}{R_{i+1}} = 1 - a + bR_i$$
(8)

$$1 - \frac{R_i}{R_{i+1}} = a - bR_i$$

$$\frac{R_{i+1} - R_i}{R_{i+1}} = a - bR_i$$

$$\frac{\Delta R}{R_{i+1}} = a - bR_i$$
(9)

A seguir, calcula-se ainda o ponto de inflexão da curva R(t). Para calcular o ponto de inflexão, deve-se igualar a segunda derivada da função R(t)=0. Este ponto representa a mudança de concavidade da curva R(t) conforme ilustrado na Figura 08.

Da Equação 87, temos:

$$R(t) = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)e^{-kt}}$$

$$R(t) = \frac{A}{1 + Be^{-kt}}, \text{ onde } B = \left(\frac{A}{R_0} - 1\right)$$

$$R'(t) = \frac{u(t)}{v(t)} = \frac{u'(t)v(t) - u(t)v'(t)}{v^2}$$

$$R''(t) = \frac{ABke^{-kt}}{(1 + Be^{-kt})^2}$$

$$R''(t) = \frac{\left[-ABk^2e^{-kt}(1 + Be^{-kt})^2\right] - \left\{ABke^{-kt}\left[2\left(1 + Be^{-kt}\right)\left(-kBe^{-kt}\right)\right]\right\}}{\left[1 + Be^{-kt}\right]^4} = 0$$

$$R''(t) = \frac{-ABk^2e^{-kt}(1 + Be^{-kt}) + 2AB^2k^2e^{(-kt)^2}}{\left[1 + Be^{-kt}\right]^3} = 0$$

$$ABk^2e^{-kt}\left(1 + Be^{-kt}\right) = 2AB^2k^2e^{(-kt)^2}$$

$$(1 + Be^{-kt}) = 2Be^{-kt}$$

$$1 = e^{-kt}(2B - B) = Be^{-kt}$$

$$\ln\left(\frac{1}{B}\right) = -kt$$

$$t_{INFL} = -\frac{1}{k}\ln\left(\frac{1}{B}\right) = \frac{1}{k}\ln(B)$$

$$t_{INFL} = \frac{1}{k}\ln\left(\frac{A}{R_0} - 1\right)$$
(10)

A Equação 90 mostra o tempo em que irá ocorrer o acréscimo de reservas máximo e representa a Equação 2-5 proposta por Knoring *et al.* (1999). O valor do volume recuperável neste instante será dado por:

$$R_{INFL} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)} e^{-kt_{INFL}} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)} e^{-k\left[\frac{1}{k}\ln\left(\frac{A}{R_0} - 1\right)\right]} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)} e^{\ln\left(\frac{A}{R_0} - 1\right)^{-1}}$$

$$R_{INFL} = \frac{A}{1 + \left(\frac{A}{R_0} - 1\right)\left(\frac{A}{R_0} - 1\right)^{-1}} = \frac{A}{1 + 1}$$

$$R_{INFL} = \frac{A}{2}$$
(11)

Modelo 02:

A partir da equação diferencial (Equação 92), calcula-se o equivalente contínuo do Modelo 02.

$$\frac{r}{R} = \varepsilon \, e^{-kt} \tag{12}$$

Onde, $r = \frac{dR}{dt}$ é o Acúmulo Instantâneo. Assim sendo, tem-se:

$$\frac{1}{R}\frac{dR}{dt} = \varepsilon e^{-kt}$$
$$\int \frac{1}{R} dR = \int \varepsilon e^{-kt} dt$$
$$\ln R = \int \varepsilon e^{-kt} dt$$

Chamando u = -kt, du = -kdt, então:

$$\ln R = -\frac{\varepsilon}{k} \int e^u du$$

Se $m = \frac{\varepsilon}{k}$,

$$\ln R = -me^{-kt} + c$$
$$R = e^{-me^{-kt}}e^{c}$$

Logo, se $A = e^{c}$ (assíntota), então:

$$R(t) = Ae^{-me^{-kt}} \tag{13}$$

A equação acima é chamada Função Gomperz e é o equivalente continuo da Equação 92. (Equação 2-14 proposta por Knoring *et al.*, 1999). O ponto de inflexão da curva R(t) é calculado igualando-se a segunda derivada da função R(t)=0.

$$R = Ae^{-me^{-kt}} = Ae^{-mu(t)}, onde \ u = e^{-kt}$$

$$R'(t) = -mAe^{-mu(t)}(-k)u(t)$$

$$R'(t) = (mkAe^{-kt})e^{-me^{-kt}}$$

$$R''(t) = (-mk^{2}Ae^{-kt})e^{-me^{-kt}} + mkAe^{-kt}(-me^{-me^{-kt}})(-ke^{-kt}) = 0$$

$$(mk^{2}Ae^{-kt})e^{-me^{-kt}} = m^{2}k^{2}A(e^{-kt})^{2}(e^{-me^{-kt}})$$

$$1 = m(e^{-kt}) \Rightarrow \ln\left(\frac{1}{m}\right) = -kt$$

$$t_{INFL} = \frac{1}{k}\ln(m)$$
(14)

A Equação 94 mostra o tempo em que irá ocorrer o acréscimo de reservas máximo e representa a Equação 2-15 proposta por Knoring *et al.* (1999). O valor do volume recuperável neste instante será dado por:

$$R_{INFL} = Ae^{-me^{-kt_{INFL}}} = Ae^{-me^{-k_{k}^{1}\ln(m)}} = Ae^{-me^{-\ln(m)}}$$
$$R_{INFL} = Ae^{-me^{\ln(\frac{1}{m})}} = Ae^{-m(\frac{1}{m})} = Ae^{-1}$$
$$R_{INFL} = \frac{A}{e}$$
(15)

Modelo 03:

O Modelo 03 é criado a partir de modificações no Modelo 01. A Equação 89 mostra que o Acúmulo de Reservas Relativo do Modelo 01 decresce linearmente com o aumento em R_t . Entretanto, Knoring *et al.* (1999) criam um terceiro modelo assumindo que seja linear o logaritmo do Acúmulo de Reservas Relativo. Dessa forma,

$$Ln\left(\frac{\Delta R}{R_{i+1}}\right) = a - bR_i \tag{16}$$

Logo,

$$\frac{\Delta R}{R_{i+1}} = s.e^{-bR_i} \tag{17}$$

Conforme visto nos Modelos 01 e 02, a determinação do equivalente contínuo é essencial para o cálculo do ponto de inflexão $(2^a \text{ derivada da função } R(t) = 0)$. Porém, não existe o equivalente contínuo para os Modelos 03, 05, 06, 07 e 09.

Então, como os autores calcularam o ponto de inflexão dos modelos que não apresentam uma função contínua R(t)? Novamente, os autores não demonstraram o cálculo destas equações. Simplesmente apresentaram a fórmula sem sequer comentar o caminho de como chegar lá.

Após várias tentativas, descobriu-se que, diferentemente dos dois primeiros modelos, os pontos de inflexão dos Modelos 03, 05, 06, 07 e 09 são calculados assumindo-se o Acréscimo Instantâneo $r = \frac{dR}{dt}$ (1^a derivada) igual ao Acréscimo de Reserva $\Delta R = R_{t+1} - R_t$. Então, para o Modelo 03, temos:

$$\frac{\Delta R}{R_{t+1}} = s \cdot e^{-bR_t}$$
1ª derivada:
$$\Delta R = r = R_{INFL} \left(s \cdot e^{-bR_{INFL}} \right)$$

2^a derivada:

$$r' = \left[R_{INFL}\left(s.e^{-bR_{INFL}}\right)\left(-b\right)\right] + \left[\left(s.e^{-bR_{INFL}}\right)\right] = 0$$

$$\left(s.e^{-bR_{INFL}}\right)\left[-bR_{INFL}+1\right] = 0 \Longrightarrow -bR_{INFL}+1 = 0$$

$$R_{INFL} = \frac{1}{b}$$
(18)

Modelo 04:

O Modelo 04 é também considerado um desenvolvimento do Modelo 01. Ao invés de considerar um decréscimo linear conforme visto na Equação 81, Knoring *et al.* (1999) consideram um comportamento não-linear baseando-se na seguinte equação diferencial:

$$\frac{r}{R} = k - \varepsilon . R^{\frac{1}{b}}$$
(19)

Onde, $r = \frac{dR}{dt}$ é o Acúmulo Instantâneo. Assim sendo, tem-se:

$$\frac{1}{R}\frac{dR}{dt} = k - \varepsilon R^{\frac{1}{b}}$$
$$\frac{dR}{dt} - kR = -\varepsilon R^{\left(\frac{1}{b}+1\right)}$$

Que é uma equação diferencial não-linear devido à existência do termo $R^{\left(\frac{1}{b}+1\right)}$. Dividindo-se ambos os lados por $R^{\left(\frac{b+1}{b}\right)}$, temos:

$$\frac{1}{R^{\left(\frac{b+1}{b}\right)}}\frac{dR}{dt} - \frac{kR}{R^{\left(\frac{b+1}{b}\right)}} = -\varepsilon$$
$$\frac{1}{R^{\left(\frac{b+1}{b}\right)}}\frac{dR}{dt} - k\left(\frac{1}{R^{\frac{1}{b}}}\right) = -\varepsilon$$

Substituindo-se $u = R^{-\frac{1}{b}}$, então:

$$\frac{du}{dR} = -\frac{1}{b}R^{-\frac{1}{b}-1} = -\frac{1}{b}R^{-\left(\frac{1}{b}+1\right)}$$
$$\frac{du}{dt} = \frac{du}{dR}\frac{dR}{dt} = -\frac{1}{b}R^{-\left(\frac{1}{b}+1\right)}\frac{dR}{dt}$$
$$-b\frac{du}{dt} - ku = -\varepsilon$$
$$\frac{du}{dt} + \frac{k}{b}u = \frac{\varepsilon}{b}$$

Multiplicando ambos os lados por $e^{\int \frac{k}{b} dt}$, tem-se:

$$e^{\left(\frac{kt}{b}\right)}\frac{du}{dt} + \frac{k}{b}ue^{\left(\frac{kt}{b}\right)} = \frac{\varepsilon}{b}e^{\left(\frac{kt}{b}\right)}$$
$$\frac{d}{dt}\left(ue^{\frac{kt}{b}}\right) = \frac{\varepsilon}{b}e^{\frac{kt}{b}}$$
$$ue^{\left(\frac{kt}{b}\right)} = \int \frac{\varepsilon}{b}e^{\left(\frac{kt}{b}\right)}dt$$

Chamando $z = \frac{kt}{b}$, então:

$$\frac{dz}{dt} = \frac{k}{b}$$
$$ue^{z} = \int \frac{\varepsilon}{b} e^{z} \left(\frac{b}{k}\right) dz$$
$$ue^{z} = \frac{\varepsilon}{k} e^{z} + c$$
$$ue^{\left(\frac{kt}{b}\right)} = \frac{\varepsilon}{k} e^{\left(\frac{kt}{b}\right)} + c$$
$$\frac{1}{R^{\frac{1}{b}}} e^{\left(\frac{kt}{b}\right)} = \frac{\varepsilon}{k} e^{\left(\frac{kt}{b}\right)} + c$$

$$R^{\frac{1}{b}} = \frac{1}{\frac{\varepsilon}{k} + \frac{c}{e^{\left(\frac{kt}{b}\right)}}}$$

$$R = \left(\frac{1}{\frac{\varepsilon}{k} + ce^{\left(\frac{-kt}{b}\right)}}\right)^{b}$$

$$R = \left(\frac{\frac{k}{\varepsilon}}{1 + c\frac{k}{\varepsilon}e^{\left(\frac{-kt}{b}\right)}}\right)^{b}$$
(20)

Para t = 0, temos:

$$R_{0} = \left(\frac{\frac{k}{\varepsilon}}{1 + \frac{ck}{\varepsilon}}\right)^{b}$$
$$\left(1 + \frac{ck}{\varepsilon}\right)R_{0}^{\left(\frac{1}{b}\right)} = \frac{k}{\varepsilon}$$
$$c = \frac{\left(\frac{k}{\varepsilon} - R_{0}^{\left(\frac{1}{b}\right)}\right)\varepsilon}{kR_{0}^{\left(\frac{1}{b}\right)}}$$
$$c = \frac{1}{R_{0}^{\left(\frac{1}{b}\right)}} - \frac{\varepsilon}{k}$$

Para t = ∞ , temos:

$$\lim_{t \to \infty} R(t) = \left(\frac{k}{\varepsilon}\right)^b = A \text{ (Assintota)}$$

Substituindo-se os valores "A" e "c" na Equação 100, temos:

A equação acima é o equivalente contínuo da Equação 99. (Equação 2-34 proposta por Knoring *et al.*, 1999). O equivalente discreto e o Acúmulo de Reservas Relativo são determinados considerando $c = 1 - e^{-\frac{k}{b}}$, $A = \left(\frac{c}{a}\right)^{b}$ e $\Delta t = 1$. Dessa forma, temos:

$$R_{t+1} = \frac{\frac{R_t}{a^b}}{\left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right) - \left(\frac{c}{a}\right)\right\}^b} = \frac{\frac{R_t}{a^b}}{\left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right)(1-c)\right\}^b}$$

$$\frac{R_t}{R_{t+1}} = \frac{R_t \left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right)(1-c)\right\}^b}{\frac{R_t}{a^b}} = a^b \left\{R_t^{\frac{1}{b}} + \left(\frac{1}{a}\right)(1-c)\right\}^b$$

$$\frac{R_t}{R_{t+1}} = \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$1 - \frac{R_t}{R_{t+1}} = 1 - \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$\frac{R_{t+1} - R_t}{R_{t+1}} = 1 - \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$\frac{AR_t}{R_{t+1}} = 1 - \left\{aR_t^{\frac{1}{b}} + 1-c\right\}^b$$

$$(22)$$

A equação acima representa o Acúmulo de Reservas Relativo. Diferentemente do Modelo 01, a equação acima mostra que o Acúmulo de Reservas Relativo $\frac{\Delta R}{R_{i+1}}$ (Função Seleção de Condições) não decresce linearmente com o aumento em R_t. De posse desta equação, pode-se ainda determinar o equivalente discreto.

$$\frac{\Delta R}{R_{t+1}} = 1 - \left\{ 1 - c + a R_t^{\frac{1}{b}} \right\}^b$$

$$1 - \frac{R_t}{R_{t+1}} = 1 - \left\{ 1 - c + a R_t^{\frac{1}{b}} \right\}^b$$

$$R_{t+1} = \frac{R_t}{\left\{ 1 - c + a R_t^{\frac{1}{b}} \right\}^b} \quad (\text{Equivalente Discreto}) \quad (23)$$

A seguir, calcula-se ainda o ponto de inflexão da curva R(t). Da Equação 101, temos:

$$\begin{split} R(t) &= \frac{A}{\left\{1 + \left[\left(\frac{A}{R_{0}}\right)^{\frac{1}{b}} - 1\right]e^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b}{b}}} \\ \text{Chamando } z &= \left[\left(\frac{A}{R_{0}}\right)^{\frac{1}{b}} - 1\right], \text{ então:} \\ R(t) &= \frac{A}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b}{b}}} \\ R^{*}(t) &= \frac{-Ab\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b-1}{2}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{2b}{b}}} = \frac{Akze^{\left(\frac{-k}{b}\right)}\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{b-1}{b}}}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{2b}{b}}} \\ R^{*}(t) &= \frac{\left[Akze^{\left(\frac{-k}{b}\right)}\left[(b - 1)\left(1 + ze^{\left(\frac{-k}{b}\right)}\right]^{\frac{2b}{b}} - \left(-\frac{kz}{b}\right)e^{\left(\frac{-k}{b}\right)}\right] + \left[\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}} - \left\{1 + ze^{\left(\frac{-k}{b}\right)}\right]\right]\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b}{b}}}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{4b}{b}}} \\ &= \frac{\left[\left(Akze^{\left(\frac{-k}{b}\right)}\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}}\right] - \left(2b\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b-1}{b}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)\right]\right]}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{4b}{b}}} \\ &= \frac{\left[\left(Akze^{\left(\frac{-k}{b}\right)}\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}}\right]\left(2b\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b-1}{b}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)\right)\right]}{\left\{1 + ze^{\left(\frac{-k}{b}\right)}\right\}^{\frac{4b}{b}}} \\ &= \frac{\left[\left(Akze^{\left(\frac{-k}{b}\right)}\left(b - 1\right)\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{b-1}{b}}\right]\left(2b\left(1 + ze^{\left(\frac{-k}{b}\right)}\right)^{\frac{2b-1}{b}} ze^{\left(\frac{-k}{b}\right)}\left(-\frac{k}{b}\right)\right]\right]} \\ &= 0 \end{split}$$

$$\begin{split} R^{*}(t) = \begin{cases} \left[\frac{-Ak^{2}z^{2}}{b} (b-1)e^{\left(\frac{-2k}{b}\right)} \left(1 + ze^{\left(\frac{-k}{b}\right)} \right)^{b-2} \right] = \left[\left(1 + ze^{\left(\frac{-k}{b}\right)} \right)^{b-1} \frac{Ak^{2}z}{b} e^{\left(\frac{-k}{b}\right)} \right]^{b} \\ R^{*}(t) = \left[\frac{Ak^{2}z}{b} e^{\left(\frac{-2k}{b}\right)} \left(1 + ze^{\left(\frac{-k}{b}\right)} \right)^{b-2} \right] \left\{ -z(b-1)e^{\left(\frac{-k}{b}\right)} - \left(1 + ze^{\left(\frac{-k}{b}\right)} \right) + 2zbe^{\left(\frac{-k}{b}\right)} \right\} = 0 \\ -z(b-1)e^{\left(\frac{-k}{b}\right)} - \left(1 + ze^{\left(\frac{-k}{b}\right)} \right) + 2zbe^{\left(\frac{-k}{b}\right)} \right\} = 0 \\ (-zb+z)e^{\left(\frac{-k}{b}\right)} - 1 - ze^{\left(\frac{-k}{b}\right)} + 2b\left(ze^{\left(\frac{-k}{b}\right)} \right) = 0 \\ -zbe^{\left(\frac{-k}{b}\right)} - 1 - zbze^{\left(\frac{-k}{b}\right)} = 0 \\ -zbe^{\left(\frac{-k}{b}\right)} - 1 + 2bze^{\left(\frac{-k}{b}\right)} = 0 \\ -zbe^{\left(\frac{-k}{b}\right)} - 1 + 2bze^{\left(\frac{-k}{b}\right)} = 0 \\ e^{\left(\frac{-k}{b}\right)} = 1 \\ \frac{-kt}{b} = Ln\left(\frac{1}{bz}\right) \\ t_{INFL} = -\frac{b}{k}Ln\left(\frac{1}{bz}\right) = Ln(bz)^{b'k} \end{split}$$

$$(24)$$

A Equação 104 mostra o tempo em que irá ocorrer o acréscimo de reservas máximo e representa a Equação 2-38 proposta por Knoring *et al.* (1999). O valor do volume recuperável neste instante será dado por:

$$R_{INFL} = \frac{A}{\left\{1 + ze^{\left(\frac{-kt}{b}\right)}\right\}^{b}} = \frac{A}{\left\{1 + ze^{\left(\frac{-k}{b}\right)\left(Ln(bz)^{\frac{1}{b}}\right)}\right\}^{b}} = \frac{A}{\left\{1 + ze^{\left(\frac{-kt}{b}\right)\left(Ln(bz)^{\frac{1}{b}}\right)}\right\}^{b}} = \frac{A}{\left\{1 + ze^{\left(\frac{-kt}{b}\right)\left(\frac{1}{b}\right)^{-1}\right\}^{b}}}$$

- 206 -

$$R_{INFL} = \frac{A}{\left\{1 + \frac{1}{b}\right\}^{b}}$$
(25)

Modelo 05:

Assim como o Modelo 03, o Modelo 05 é criado a partir de modificações no Modelo 01. Conforme a Equação 106, assume-se um Acúmulo de Reservas Relativo não-linear com o aumento em R_t.

$$\frac{\Delta R}{R_{i+1}} = c - aR_i^b \tag{26}$$

Assim como o Modelo 03, o ponto de inflexão do Modelo 05 é calculado assumindo-se o AcréscimoInstantâneo $r = \frac{dR}{dt}$ (1^a derivada) igual ao Acréscimo de Reserva $\Delta R = R_{t+1} - R_t$.

$$\frac{\Delta R}{R_{i+1}} = c - aR_t^b$$
1ª derivada:
$$\Delta R = r = R_{INFL} \left(c - aR_{INFL}^b \right) \Longrightarrow \left[cR_{INFL} \right] - \left[\left(aR_{INFL}^{b+1} \right) \right] = 0$$

2^a derivada:

$$r' = c - a(b+1)R^b_{INFL} = 0$$

$$c = a(b+1)R_{INFL}^{b} \Longrightarrow \frac{c}{a(b+1)} = R_{INFL}^{b}$$

$$R_{INFL} = \left(\frac{c}{a(b+1)}\right)^{\frac{1}{b}}$$
(27)

Modelo 06:

O Modelo 06 é definido pelo declínio logarítmico do Acúmulo de Reservas Relativo com o aumento em R_t .

$$\frac{\Delta R}{R_{i+1}} = b Ln \left(\frac{A}{R_i}\right)$$
(28)

A seguir, determina-se o ponto de inflexão do Modelo 06:

1^a derivada: $\Delta R = r = R_{INFL} \left[b Ln \left(\frac{A}{R_{INFL}} \right) \right] = b R_{INFL} Ln \left(\frac{A}{R_{INFL}} \right)$

2^a derivada:
$$r' = \left[bR_{INFL} \left(\frac{1}{\frac{A}{R_{INFL}}} \right) \left(\frac{-A}{R_{INFL}^2} \right) \right] + \left[bLn \left(\frac{A}{R_{INFL}} \right) \right] = 0$$

$$-b + \left[bLn \left(\frac{A}{R_{INFL}} \right) \right] = 0 \Rightarrow Ln \left(\frac{A}{R_{INFL}} \right) = 1 \Rightarrow \frac{A}{R_{INFL}} = e^1$$
$$R_{INFL} = \frac{A}{e^1}$$
(29)

Modelo 07:

No Modelo 07, o Acúmulo de Reservas Relativo decresce exponencialmente com a variável independente sendo o grau de imaturidade dos recursos $\left(\frac{A-R_t}{A}\right)$.

$$\frac{\Delta R}{R_{t+1}} = a \left(\frac{A - R_t}{A}\right)^b \tag{30}$$

A seguir, determina-se o ponto de inflexão do Modelo 07:

1^a derivada:
$$\Delta R = r = R_{INFL} \left[a \left(\frac{A - R_{INFL}}{A} \right)^b \right] = a R_{INFL} \left(\frac{A - R_{INFL}}{A} \right)^b$$
2^a derivada:
$$r' = \left[a R_{INFL} b \left(\frac{A - R_{INFL}}{A} \right)^{b-1} \left(\frac{-1}{A} \right) \right] + \left[a \left(\frac{A - R_{INFL}}{A} \right)^b \right] = 0$$

$$\left(\frac{A - R_{INFL}}{A} \right) = R_{INFL} b \left(\frac{1}{A} \right) \Rightarrow 1 - \left(\frac{R_{INFL}}{A} \right) = R_{INFL} b \left(\frac{1}{A} \right) \Rightarrow A - R_{INFL} = R_{INFL} b$$

$$R_{INFL} = \frac{A}{b+1}$$
(31)

Modelo 08:

O Modelo 08 também se baseia no grau de imaturidade dos recursos $\left(\frac{A-R_t}{A}\right)$ como variável independente. Entretanto, diferentemente do modelo anterior, o Acúmulo de Reservas Relativo segue uma função exponencial (base e).

$$\frac{\Delta R}{R_{t+1}} = c e^{p\left(\frac{A-R_t}{A}\right)} - c$$

Chamando-se $b = \frac{p}{A}$; a = p + Ln(c), então:

$$\frac{\Delta R}{R_{t+1}} = c \left[e^{p - \frac{pR_t}{A}} - 1 \right] = c \left[e^{p - bR_t} - 1 \right] = c \left[e^{a - Ln(c) - bR_t} - 1 \right]$$

$$\frac{\Delta R}{R_{t+1}} = c \Big[e^{a - Ln(c) - bR_t} - 1 \Big] = c \Big[e^{a - bR_t} \cdot e^{-Ln(c)} - 1 \Big] = c \Big[\frac{e^{a - bR_t}}{c} - 1 \Big]$$

Logo,

$$\frac{\Delta R}{R_{t+1}} = e^{a - bR_t} - c \tag{32}$$

Que é a equação do Acúmulo de Reservas Relativo referente ao Modelo 08. Pode-se observar que esta equação equivale a Equação 97 (Modelo 03) com uma Assíntota "c".

Modelo 09:

O Modelo 09 pode ser visto como uma variação do Modelo 08. No Modelo 08, a cota " cR_{t+1} " é pequena no início e aumenta com o crescimento em R_{t+1} . Entretanto, no Modelo 09, $c\frac{R_{t+1}}{R_t}$ tem comportamento oposto. É grande no início e aproximadamente igual a constante "c" no final do processo exploratório.

$$\frac{\Delta R}{R_{t+1}} = e^{a - bR_t} - \frac{c}{R_t}$$
(33)

A seguir, determina-se o ponto de inflexão do Modelo 09:

1^a derivada:
$$\Delta R = r = R_{INFL} \left[e^{a - bR_{INFL}} - \frac{c}{R_{INFL}} \right] = R_{INFL} e^{a - bR_{INFL}} - c$$

2^a derivada:
$$r' = [R_{INFL}e^{a-bR_{INFL}}(-b)] + [e^{a-bR_{INFL}}] = 0 \Longrightarrow 1 = R_{INFL}(b)$$

$$R_{INFL} = \frac{1}{b} \tag{34}$$

Com relação aos Modelos citados no item 3.5.3, evolução com o volume de perfuração (L), temos:

Modelo L_1:

 $k(L) = \frac{a}{\ln L} \tag{35}$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} \frac{a}{\ln L} dL}$$
$$u = \ln L \Longrightarrow du = \frac{1}{L} dL$$
$$R(L) = \mu e^{a \int \frac{1}{u} du} = \mu e^{a \ln u} = \mu u^{a}$$
$$R(L) = \mu (\ln L)^{a}$$
(36)

Para o cálculo do ponto de inflexão deve-se igualar a segunda derivada da função R(L)=0. Assim sendo, temos:

$$R'(L) = \mu a (\ln L)^{a-1} \frac{1}{L}$$

$$R''(L) = \frac{u(L)}{v(L)} = \frac{u'(L)v(L) - u(L)v'(L)}{v^{2}(L)}$$

$$R''(L) = \mu a \left[\frac{(a-1)(\ln L)^{a-2} \frac{1}{L} L - (\ln L)^{a-1}}{L^{2}} \right] = 0$$

$$R''(L) = \mu a \left[\frac{(a-1) - (\ln L)}{L^{2}} \right] (\ln L)^{a-2} = 0$$

$$(a-1) - (\ln L) = 0 \Rightarrow a - 1 = \ln L$$

$$L_{INFL} = e^{(a-1)}$$

$$R_{INFL} = \mu (\ln L_{INFL})^{a} = \mu (\ln e^{a-1})^{a}$$
(37)

$$R_{INFL} = \mu (a-1)^a \tag{38}$$

As Equações 117 e 118 mostram, respectivamente, quando irá ocorrer o acréscimo de reservas máximo e o valor do volume recuperável neste instante. Os autores calculam ainda a Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$.

$$R(L) = \mu (\ln L)^{a}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a (\ln L_{INFL})^{a-1} \frac{1}{L_{INFL}}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a (\ln e^{a-1})^{a-1} \frac{1}{e^{a-1}}$$

$$\max \frac{dR}{dL} = \mu a (\ln e^{a-1})^{a-1} e^{(a-1)^{-1}}$$

$$\max \frac{dR}{dL} = \mu a (\ln e^{a-1})^{a-1} e^{1-a}$$

$$\max \frac{dR}{dL} = \mu a (a-1)^{a-1} e^{1-a}$$
(39)

Modelo L_2:

$$k(L) = aL^{-b} \tag{40}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} aL^{-b} dL}$$

$$R(L) = \mu e^{a \int \frac{1}{L^{b+1}} dL} = \mu e^{a \int L^{-(b+1)} dL} = \mu e^{\frac{aL^{-b}}{-b}}$$

$$R(L) = \mu e^{\frac{-a}{b}L^{-b}}$$
(41)

O ponto de inflexão é dado pela equação:

$$R'(L) = \mu e^{\frac{-a}{b}L^{-b}} a L^{-b-1}$$
$$R''(L) = \mu \left[\left(a L^{-(b+1)} e^{\frac{-a}{b}L^{-b}} a L^{-b-1} \right) + \left(e^{\frac{-a}{b}L^{-b}} a (-b-1)L^{-b-2} \right) \right] = 0$$
$$\left[\left(a L^{-b-1} \right) - (b+1)L^{-1} \right] = 0$$

)

$$(a L^{-b}) = (b+1)$$

$$L^{-b} = \frac{(b+1)}{a}$$

$$L_{INFL} = \left(\frac{b+1}{a}\right)^{-\frac{1}{b}}$$

$$(42)$$

$$R_{INFL} = \mu e^{\frac{-a}{b}L_{NFL}^{-b}} = \mu e^{\frac{-a(b+1)}{b}}$$

$$R_{INFL} = \mu e^{-\frac{a(b+1)}{b}}$$

$$(43)$$
A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu e^{\frac{-a}{b}L^{-b}}$$

$$u = \frac{-a}{b}L^{-b} \Rightarrow \frac{du}{dL} = aL^{-(b+1)}$$

$$R(L) = \mu e^{u}$$

$$\frac{dR}{dL} = \frac{dR}{du}\frac{du}{dL} = \mu e^{u}aL^{-(b+1)} = \mu e^{\frac{-a}{b}L^{-b}}aL^{-(b+1)}$$

$$\max \frac{dR}{dL} = R^{i}(L_{DNFL}) = \mu e^{\frac{-a}{b}L_{NFL}^{-b}}aL_{INFL}^{-(b+1)}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\frac{-a}{b}\left(\frac{b+1}{a}\right)^{-\frac{1}{b}(-b)}} a\left(\frac{b+1}{a}\right)^{-\frac{1}{b}(-b-1)}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{-\left(\frac{b+1}{b}\right)} a \left(\frac{b+1}{a}\right)^{\frac{(b+1)}{b}} = \mu e^{-\left(\frac{b+1}{b}\right)} a \left(\frac{b+1}{a}\right) \left(\frac{b+1}{a}\right)^{\frac{1}{b}}$$
$$\max \frac{dR}{dL} = \mu e^{-\left(\frac{b+1}{b}\right)} \left(\frac{b+1}{a}\right)^{\frac{1}{b}} (b+1)$$
(44)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = \mu e^{-\left(\frac{b+1}{b}\right)} \left(\frac{b+1}{a}\right)^{\frac{1}{2}} (b+1).$$

Modelo L_4:

$$k(L) = a - bL \tag{45}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L}(a-bL)dL}$$
$$R(L) = \mu e^{\int \frac{a}{L}(-b)dL} = \mu e^{aLn(L)-bL}$$
$$R(L) = \mu L^a e^{-bL}$$
(46)

O ponto de inflexão é dado pela equação:

$$R'(L) = \mu \left[\left(aL^{a^{-1}}e^{-bL} \right) + \left(-bL^{a}e^{-bL} \right) \right]$$

$$R''(L) = \mu \left[\left(-abL^{a^{-1}}e^{-bL} \right) + \left(a(a-1)L^{a^{-2}}e^{-bL} \right) + \left(-abL^{a^{-1}}e^{-bL} \right) + \left(-b(-b)L^{a}e^{-bL} \right) \right] = 0$$

$$R''(L) = \mu e^{-bL}L^{a^{-2}} \left[\left(-2abL \right) + \left(a(a-1) \right) + \left(b^{2}L^{2} \right) \right] = 0$$

$$\left[\left(-2abL \right) + \left(a(a-1) \right) + \left(b^{2}L^{2} \right) \right] = 0$$

Chamando bL = z, então:

$$z^{2} - 2az + a(a - 1) = 0$$

$$\Delta = 4a, \ z = a - \sqrt{a}$$

$$L_{INFL} = \frac{z}{b} = \frac{a}{b} - \frac{a^{\frac{1}{2}}}{b}$$

$$L_{INFL} = \frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)$$

$$R_{INFL} = \mu \left[\frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)\right]^{a} e^{-b\frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)}$$

$$R_{INFL} = \mu \left[\frac{a}{b} \left(1 - a^{\frac{-1}{2}}\right)\right]^{a} e^{-a \left(1 - a^{\frac{-1}{2}}\right)}$$

$$(47)$$

$$(47)$$

$$(47)$$

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$R_{INFL} = \mu \left[\frac{a}{b} \left(1 - a^{\frac{1}{2}} \right) \right]^a e^{-a \left(1 - a^{\frac{-1}{2}} \right)}$$

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu L^a e^{-bL}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[\left(a \left(\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right) \right)^{a-1} e^{-b\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right)} \right) + \left(-b \left(\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right) \right)^{a} e^{-b\frac{a}{b} \left(1 - a^{\frac{-1}{2}} \right)} \right) \right] \right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{-a\left(1-a^{\frac{1}{2}}\right)} \left[\frac{a}{b}\left(1-a^{\frac{-1}{2}}\right)\right]^{a-1} \left[a-a\left(1-a^{\frac{-1}{2}}\right)\right]$$
$$\max \frac{dR}{dL} = \mu e^{-a\left(1-a^{\frac{-1}{2}}\right)} \left[\frac{a}{b}\left(1-a^{\frac{-1}{2}}\right)\right]^{a-1} \left(a^{\frac{1}{2}}\right)$$
(49)

Modelo L_5:

$$k(L) = c - aL^b \tag{50}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L}(c-aL^{b})dL}$$

$$R(L) = \mu e^{\int \frac{c}{L}dL - \int \frac{aL^{b}dL}{L}} = \mu e^{c\ln L - a\int L^{b-1}dL}$$

$$R(L) = \mu e^{\left[c\ln L\right] - \frac{aL^{b}}{b}} = \mu L^{c} e^{-\frac{aL^{b}}{b}}$$

$$R(L) = \mu L^{c} e^{\frac{-a}{b}L^{b}}$$
(51)

O ponto de inflexão é dado pela equação:

$$R'(L) = \mu \left[\left(c \, L^{c-1} e^{\frac{-a}{b} L^{b}} \right) + \left(L^{c} e^{\frac{-a}{b} L^{b}} - \frac{a}{b} b L^{b-1} \right) \right] = \mu \left\{ e^{\frac{-a}{b} L^{b}} \left[c L^{c-1} - a L^{b+c-1} \right] \right\}$$

$$R^{"}(L) = \mu \left\{ e^{\frac{-a}{b}L^{b}} \left[c(c-1)L^{c-2} - a(b+c-1)L^{b+c-2} \right] + \left[cL^{c-1} - aL^{b+c-1} \right] e^{\frac{-a}{b}L^{b}} - \frac{a}{b}bL^{b-1} \right\} = 0$$
$$\left[c(c-1)L^{c-2} - a(b+c-1)L^{b+c-2} \right] + \left[\left(cL^{c-1} - aL^{b+c-1} \right) \left(- aL^{b-1} \right) \right] = 0$$
$$\left[c(c-1) - a(b+c-1)L^{b} - \left(acL^{b} \right) + a^{2}L^{2b} \right] = 0$$

Chamando $-aL^b = z$, então:

$$\begin{bmatrix} c(c-1) + z(b+c-1) + (zc) + z^2 \end{bmatrix} = 0$$

$$z^2 + z(b+2c-1) + c(c-1) = 0$$

$$\Delta = (b-1)^2 + 4c(b-1) + 4c$$

$$z = \frac{-(b+2c-1) \pm \sqrt{(b-1)^2 + 4c(b-1) + 4c}}{2}$$

$$z = \frac{-b-2c+1 \pm \sqrt{b^2 - 2b + 1 + 4cb}}{2}$$

$$L_{INFL} = \left(\frac{-z}{a}\right)^{\frac{1}{b}} = \left(\frac{b+2c-1 \pm \sqrt{b^2 - 2b + 1 + 4cb}}{2a}\right)^{\frac{1}{b}}$$
(52)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring et al. (1999): $L_{INFL} = \frac{1}{2a} \left(b + 2c - 1 \pm \sqrt{b^2 - 2b + 1 + 4cb} \right)^{\frac{1}{b}}$.

$$R_{INFL} = \mu L_{INFL}^{c} e^{\frac{-a}{b} L_{INFL}^{b}}$$
(53)

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu L^{c} e^{\frac{-a}{b}L^{b}}$$
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[\left(e^{\frac{-a}{b}L^{b}} cL^{c-1} \right) + \left(L^{c} e^{\frac{-a}{b}L^{b}} - \frac{a}{b} bL^{b-1} \right) \right]$$
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\frac{-a}{b}L^{b}} \left[(cL^{c-1}) + (-aL^{c+b-1}) \right] = \mu e^{\frac{-a}{b}L^{b}} \left[c - aL^{b} \right] L^{c-1}$$
- 215 -

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu L_{INFL}^{c-1} e^{\frac{-a}{b} L_{INFL}^{b}} \left[c - a L_{INFL}^{b} \right]$$
(54)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu L_{INFL}^{c-1} e^{\frac{-a}{b} L_{INFL}^{b} \left[c - a L_{INFL}^{b}\right]}.$$

Modelo L_6:

$$k(L) = a \tag{55}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L}(a)dL} = \mu e^{a\ln L}$$
$$R(L) = \mu L^a$$
(56)

Este modelo não apresenta ponto de inflexão.

Modelo L_7:

$$k(L) = ae^{-bL}L \tag{57}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} a e^{-bL} L dL} = \mu e^{\int a e^{-bL} dL}$$
$$R(L) = \mu e^{\left(\frac{-a}{b}\right) e^{-bL}}$$
(58)

O ponto de inflexão é dado pela equação:

$$u(L) = \left(\frac{-a}{b}\right)e^{-bL}$$
$$\frac{du}{dL} = \left(\frac{-a}{b}\right)e^{-bL}(-b) = ae^{-bL}$$
$$R'(L) = \mu e^{\left(\frac{-a}{b}\right)e^{-bL}}ae^{-bL} = \mu a\left(e^{-bL}\right)e^{\left(\frac{-a}{b}\right)e^{-bL}}$$
$$R''(L) = \mu a\left\{\left[\left(e^{-bL}\right)e^{\left(\frac{-a}{b}\right)e^{-bL}}ae^{-bL}\right] + \left[e^{\left(\frac{-a}{b}\right)e^{-bL}}\left(e^{-bL}\right)(-b)\right]\right\} = 0$$

$$R^{"}(L) = \mu a e^{-bL} e^{\left(\frac{-a}{b}\right)e^{-bL}} \left[a\left(e^{-bL}\right) - b\right] = 0$$

$$\left[ae^{-bL}\right] - b = 0 \Rightarrow ae^{-bL} = b \Rightarrow -bL = Ln\left(\frac{b}{a}\right)$$

$$L_{INFL} = -\frac{Ln\left(\frac{b}{a}\right)}{b}$$

$$(59)$$

$$R_{INFL} = \mu e^{\left(\frac{-a}{b}\right)e^{-bL_{INFL}}} = \mu e^{\left(\frac{-a}{b}\right)e^{-b\left(\frac{Ln\left(\frac{b}{a}\right)}{b}\right)}} = \mu e^{\left(\frac{-a}{b}\right)e^{Ln\left(\frac{b}{a}\right)}} = \mu e^{\left(\frac{-a}{b}\right)\left(\frac{b}{a}\right)}$$

$$R_{INFL} = \mu e^{-1} \tag{60}$$

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$R(L) = \mu e^{\left(\frac{-a}{b}\right)e^{-bL}}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[e^{\left(\frac{-a}{b}\right)e^{-bL_{INFL}}} ae^{-bL_{INFL}}\right] = \mu a \left[\left(e^{-bL_{INFL}}\right)e^{\left(\frac{-a}{b}\right)e^{-bL_{INFL}}}\right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a \left[\left(e^{-b\left(\frac{Ln\left(\frac{b}{a}\right)}{b}\right)}\right)e^{\left(\frac{-a}{b}\right)e^{-b\left(\frac{-Ln\left(\frac{b}{a}\right)}{b}\right)}}\right] = \mu a \left[\left(e^{Ln\left(\frac{b}{a}\right)}\right)e^{\left(\frac{-a}{b}\right)e^{Ln\left(\frac{b}{a}\right)}}\right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu a \left(\frac{b}{a}\right)e^{\left(\frac{-a}{b}\right)\left(\frac{b}{a}\right)} = \mu b e^{-1}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu b e^{-1}$$

$$(61)$$

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{-1} \left(\frac{a^2}{b}\right).$$

Modelo L_8:

$$k(L) = (a - bL)L \tag{62}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} (a-bL)LdL} = \mu e^{\int (a-bL)dL} = \mu e^{aL - \frac{bL^2}{2}}$$
$$R(L) = \mu e^{L\left(a - \frac{bL}{2}\right)}$$
(63)

O ponto de inflexão é dado pela equação:

$$R^{i}(L) = \mu e^{\left[aL - \frac{bL^{2}}{2}\right]} (a - bL)$$

$$R^{i}(L) = \mu \left\{ \left[e^{\left[aL - \frac{bL^{2}}{2}\right]} (-b) \right] + \left[e^{\left[aL - \frac{bL^{2}}{2}\right]} (a - bL)(a - bL) \right] \right\} = 0$$

$$(a - bL)(a - bL) - b = 0 \Rightarrow (a - bL)^{2} - b = 0$$

$$bL = t \Rightarrow t^{2} - 2at + a^{2} - b = 0$$

$$\Delta = 4a^{2} - 4(a^{2} - b) \Rightarrow \Delta = 4a^{2} - 4a^{2} + 4b \Rightarrow \Delta = 4b$$

$$t = \frac{2a \pm \sqrt{4b}}{2} \Rightarrow t = a \pm \sqrt{b} \Rightarrow bL = a \pm \sqrt{b}$$

$$L_{INFL} = \frac{a}{b} - b^{-\frac{1}{2}} \qquad (64)$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - \left(\frac{1}{b}\right)^{\frac{1}{2}}\right] - \frac{1}{2}b\left[\frac{a}{b} - \left(\frac{1}{b}\right)^{\frac{1}{2}}\right]^{\frac{2}{2}}}$$

$$\left(\frac{1}{b}\right)^{\frac{1}{2}} = t \Rightarrow R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b} - t\right]^{-\frac{1}{2}}} R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b} - t\right]^{\frac{1}{2}}} = \mu e^{\left[\frac{a^{2}}{b} - t\right]^{\frac{1}{2}}}$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}} - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}} - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}}} = \mu e^{\left[\frac{a^{2}}{b} - t\right]^{\frac{1}{2}}}$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b\left[\frac{a}{b}\right]^{\frac{1}{2}} - \frac{a}{b}} = \mu e^{\left[\frac{a^{2}}{b} - t\right]^{\frac{1}{2}}} = \mu e^{\left[\frac{a^{2}}{b} - \frac{a}{b}\right]}$$

$$R_{INFL} = \mu e^{a\left[\frac{a}{b} - t\right] - \frac{1}{2}b^{2}} = \mu e^{\left[\frac{a^{2}}{b} - \frac{a}{b}\right]}$$

$$R_{INFL} = \mu e^{\frac{1}{2b} \left[a^2 - b \right]}$$
(65)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring et al. (1999): $R_{INFL} = \mu e^{\frac{1}{2b} \left[a^2 - b\right]_{2b}^2}$.

A Eficiência Máxima do processo $\left(\max \frac{dR}{dL}\right)$ é dada pela equação:

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\left(aL_{INFL} - \frac{bL_{INFL}^2}{2}\right)} (a - bL_{INFL})$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu e^{\left[a\left(\frac{a}{b}-b^{-\frac{1}{2}}\right)-\frac{b\left(\frac{a}{b}-b^{-\frac{1}{2}}\right)^{2}}{2}\right]} \left[a - b\left(\frac{a}{b}-b^{-\frac{1}{2}}\right)\right]$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left[a - b \left(\frac{a}{b} - b^{-\frac{1}{2}} \right) \right] e^{\left[\frac{a^2}{b} - a \left(\frac{1}{b} \right)^{\frac{1}{2}} - b \left(\frac{a^2}{b^2} - 2 \left(\frac{a}{b} \right) \left(\frac{1}{b} \right)^{\frac{1}{2}} + \left(\frac{1}{b} \right)^{\frac{1}{2}} \right) \right]}$$
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu b^{\frac{1}{2}} e^{\frac{1}{2b} \left[2a^2 - 2a \left(\frac{1}{b} \right)^{\frac{1}{2}} - a^2 + 2a \left(\frac{1}{b} \right)^{-\frac{1}{2}} - b \right]}$$

$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left(b^{\frac{1}{2}}\right) e^{\frac{1}{2b}\left[a^2 - b\right]}$$
(66)

Que é diferente da fórmula que consta na Tabela 4.1 proposta por Knoring

et al. (1999):
$$\max \frac{dR}{dL} = R'(L_{INFL}) = \mu \left(b^{1/2} \right) e^{\frac{1}{2b} \left(a^2 - b \right) / (2b)}$$

Modelo L_9:

$$k(L) = a + bL \tag{67}$$

Logo,

$$R(L) = \mu e^{\int k(L) \frac{dL}{L}} = \mu e^{\int \frac{1}{L} (a+bL) dL} = \mu e^{aLn(L)+bL} = \mu e^{Ln(L)^{a}+bL}$$
$$R(L) = \mu (L)^{a} e^{bL}$$
(68)

APÊNDICE C: METODOLOGIA USGS PARA VOLUMES NÃO DESCOBERTOS

A USGS (2000) fornece estimativas das quantidades de óleo, gás e gás natural líquido em regiões fora dos EUA que tem potencial de ser adicionado às reservas nos próximos 30 anos (1995 a 2025).

Ao contrário dos demais estudos aqui apresentados, onde os dados são analisados estatisticamente, as avaliações são baseadas em extensos estudos geológicos. A USGS contou com a presença de mais de 40 geocientistas durante o período de cinco anos (de 1995 a 2000) para a realização deste trabalho.

O modelo de avaliação utilizado pela USGS foi batizado "Seventh Approximation" e tem como precedente o modelo de avaliação de acumulações não descobertas – USGS (1995) – que utiliza plays como sendo o nível básico de avaliação.

Ao contrário, a "Seventh Approximation" é conduzida em subdivisões do "Total Petroleum System" (TPS) chamadas "Assessment Units" (AU) como sendo o nível básico de avaliação. Assim sendo, tanto os formulários para coleta de dados quanto os resultados da avaliação e as previsões do número e tamanho dos campos não descobertos são preenchidos ao nível de AU ao invés de TPS.

I. Definições segundo a USGS (2000):

- ⇒ TPS: são os elementos essenciais (rocha de origem, rocha reservatório, etc.), processos de geração e migração, como também todo o petróleo geneticamente relacionado cuja proveniência está relacionada com a mesma rocha de origem. O conceito de TPS presume que existe caminho de migração, seja no presente ou no passado, conectando as rochas de origem com as acumulações;
- ⇒ AU: é o volume de rocha dentro do TPS que engloba campos suficientemente homogêneos em termos de geologia, estratégia de exploração e de risco. Os campos dentro de uma AU devem constituir uma população suficientemente homogênea para que a metodologia de avaliação de recursos seja aplicável.

Para a USGS (2000) um AU é considerado "*estabelecido*" se contiver mais de que 13 campos descobertos, "*fronteira*", se contiver entre 1-13 campos descobertos e, "*hipotético*", caso ainda não tenha nenhum campo descoberto. Além disso, códigos numéricos de oito dígitos identificam cada AU's. O primeiro dígito indica a região, os próximos três dígitos a província, os dois seguintes representam o TPS, e os dois dígitos finais representam o AU. Por exemplo:

Região	3
Província Geológica	3162
Total Petroleum System (TPS)	316205
Assessment Unit (AU)	31620504

II. Horizonte de previsão:

Segundo a USGS (2000), horizontes de previsão entre 5-10 anos são curtos para avaliações baseadas geologicamente. Para tal horizonte de previsão, a projeção estatística de tendências de dados históricos é a melhor aproximação. Por outro lado, o horizonte de previsão acima de 50 anos parece ser longo quando aplicado às indústrias altamente influenciadas pela tecnologia, como o caso da indústria de petróleo. Assim sendo, para a avaliação do petróleo mundial (USGS, 2000), um horizonte de previsão de 30 anos foi adotado por representar um equilíbrio entre fatores tais como confiabilidade da avaliação, necessidade de um planejamento a longo prazo e relevância para a condição humana.

Dentro de um determinado prazo, o acesso a uma AU pode ser inviabilizado por diversos motivos, como por exemplo: i) razões políticas (ex.: áreas sensíveis ecologicamente); ii) razões físicas (ex.: profundidade de lâmina d'água). Devido ao fato de que as acumulações possam estar indisponíveis para a sociedade, a "*Seventh Approximation*" atribui, para cada AU, probabilidades de acesso durante o horizonte de previsão.

III. Aproximação Probabilística:

Parâmetros numéricos que constituem o conjunto de dados da "Seventh Approximation" são representados através de distribuições de probabilidade ao

Valores mínimo (F100), máximo (F0), e mediana (F50) são fornecidos para todos os parâmetros representados por distribuições de probabilidade. Estes valores não são especificamente atrelados a uma distribuição de probabilidade particular (ex.: lognormal). A escolha de tipo da distribuição de probabilidade na USGS (2000) é uma decisão operacional que não deve ser restringida.

As informações necessárias para a estimação de recursos não descobertos são fornecidas por geólogos que conhecem a região avaliada. Estas informações são fornecidas através de três formulários e devem ser preenchidos para cada AU pertencente ao TPS. A Bacia de Campos foi utilizada como exemplo para ilustrar estes três formulários (Figura 105).

	4415100					
Date:	<u>11/5/99</u>	28				
Assessment Geologist:	C.J. Schenk Control and South Amor	Number	e			
Region.	Campos Pasin	Number.	6035			
Priority or Boutigue	Priority	- Number.				
Total Petroleum System:	Lagoa Feia-Caranebus	Number	603501			
Assessment Unit:	Late Cretaceous-Tertian	Number:	60350101			
 Notes from Assessor 	MMS growth function. C	Sas fields an	e mainly sin	gle-well f	ields.	
19 19	CHARACTERISTICS	OF ASSES	SMENT UN	п		1
Oil (<20,000 cfg/bo overall)	or Gas (>20,000 cfg/bo ov	verall):	Oil			
		1999 (1997) - 199 7 -				
What is the minimum field s	ize? <u>6</u> r	mmboe grow	n (≥1mmbo	e)		
(the smallest field that has p	potential to be added to rese	rves in the r	iext 30 year	5)		
Number of discourses (C.1.)			01			
Established (>13 fields)	s exceeding minimum size:	13 fields)	OII:	40 Iunofination	Gas:	
Communed (~13 lields)	A Fronber (1-	is lieus)		ypoureuca	(no neus)	
Median size (grown) of disc	overed oil fields (mmboe)					
(areas) of a size	1st 3rd	60	2nd 3rd	201	3rd 3rd	271
Median size (grown) of disc	overed gas fields (bcfg):		1			
	1st 3rd	43	2nd 3rd	77	3rd 3rd	l
Assessment-Unit Probabi	lities:					
Attribute			<u> </u>	robability	of occurren	ice (0-1.0)
1. CHARGE: Adequate pet	roleum charge for an undisc	covered field	≥ minimum	1 size		1.0
2. ROCKS: Adequate resel	rvoirs, traps, and seals for a	n undiscove	red field <u>></u> h	ninimum s Id > minin	5IZE	1.0
2 TIMING OF GEOLOGIC	LVLNIK: Lawarable timuna	TOP TO UDDIE				
3. TIMING OF GEOLOGIC	EVENTS: Favorable timing	tor an undis	covered he	<u>∼</u> наза	num size	1.9
3. TIMING OF GEOLOGIC	EVENTS: Favorable timing	tor an undis		<u>~ 110100</u>	1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLO	EVENTS: Favorable timing	for an undis 1, 2, and 3)			1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLO 4. ACCESSIBILITY: Adeq	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor	for an undis 1, 2, and 3) ation for an	undiscovere	ed field	1.0	
 TIMING OF GEOLOGIC Assessment-Unit GEOLOG ACCESSIBILITY: Adeq ≥ minimum size 	EVENIS: Favorable timing GIC Probability (Product of uate location to allow explor	tor an undis 1, 2, and 3) ation for an	undiscovere	ed field	1.0	- 1.0
 TIMING OF GEOLOGIC Assessment-Unit GEOLOG ACCESSIBILITY: Adeq <u>≥</u> minimum size 	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor	tor an undis 1, 2, and 3) ation for an	undiscovere	ed field	<u>1.0</u>	- 1.0
3. TIMING OF GEOLOGIC Assessment-Unit GEOLO 4. ACCESSIBILITY: Adeq ≥minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor	tor an undis 1, 2, and 3) ation for an	undiscovere	ed field	<u>1.0</u>	- 1.0
 TIMING OF GEOLOGIC Assessment-Unit GEOLOG ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCO	for an undis 1, 2, and 3) ation for an	undiscovere DS	ed field	1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco	for an undis 1, 2, and 3) ation for an /ERED FIEL	undiscovere DS exist that ar	ed field e ≥ minin	<u>1.0</u>	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe	for an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unkno	undiscovered ner DS exist that ar wn values)	ed field e ≥ minin	1.0 	1.0
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields:	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe min. po. (20)	VERED FIEL vered fields d but unknov	DS exist that ar wn values)	ed field e ≥ minin 70	1.0 1.0	1.0
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe min. no. (>0) min. no. (>0)	tor an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m	undiscovered her DS exist that ar win values) redian no.	ed field e ≥ minim 72 12	1.0 1.0 num size?: 	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields: Gas fields:	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	For an undis 1, 2, and 3) ation for an VERED FIEL vered fields d but unknov 5 n 1 n	DS exist that ar wn values) redian no.	ed field ed field e ≥ minin 72 12	1.0 	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	r an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m 1 m d sizes (gro	undiscovered me DS exist that ar wn values) redian no wn) of the a	ed field e ≥ minin 72 12 above fiel	1.0 1.0 num size?: max no. max no.	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	Undiscovered here DS exist that ar win values) redian no win) of the a ered fields)	ed field ee ≥ minim 72 12 above fiel	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields: Gas fields: Size of Undiscovered Fiel	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no redian no wn) of the a	ed field e ≥ minin 72 12 above fiel	1.0 1.0 num size?: max no. ds?:	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size Number of Undiscovered Oil fields: Gas fields: Size of Undiscovered Fiel Oil in oil fields (mmbo)	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	In the second se	Undiscovered me DS exist that ar wn values) redian no wn) of the a ered fields) redian size	ed field e ≥ minin 72 12 sbove fiel 60	1.0 	
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	for an undis 1, 2, and 3) ation for an //ERED FIEL vered fields // d but unknov 5 m n d sizes (gro of undiscov 6 m 36 m	undiscovered ner DS exist that ar wn values) redian no wn) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 60 120		1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no tedian no wn) of the a ered fields) redian size	ed field e ≥ minim 72 12 above fiel 80 120	1.0 	1.0 100 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	for an undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m 1 m d sizes (gross of undiscov 6 m 36 m	undiscovered ner DS exist that ar win values) redian no win) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 120	1.0 	1.0 180 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no redian no wn) of the a ered fields) redian size	ed field e≥ minim 72 12 above fiel 60 120	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	Undiscovered the US exist that ar win values) redian no win) of the a ered fields) redian size	ed field e ≥ minim 72 12 above fiel 60 120	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscor (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no wn) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 60 120	1.0 	1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undiscov (uncertainty of fixe 	In the second se	undiscovere DS exist that ar wn values) redian no tedian no wn) of the a ered fields) redian size	ed field e ≥ minim 72 12 above fiel 80 120	1.0 num size?: max no. ds?: max. size max. size	1.0 1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	In the second se	undiscovered ner DS exist that ar wn values) redian no wedian no wedian size redian size	ed field e ≥ minim 72 12 sbove fiel 60 120	1.0 	1.0 1.0 160 36 4200 4800
3. TIMING OF GEOLOGIC Assessment-Unit GEOLOG 4. ACCESSIBILITY: Adeq ≥ minimum size	EVENTS: Favorable timing GIC Probability (Product of uate location to allow explor UNDISCOV Fields: How many undisco (uncertainty of fixe 	in undis 1, 2, and 3) ation for an /ERED FIEL vered fields d but unknow 5 m 1 m d sizes (gross of undiscov 6 m 36 m	undiscovered ner DS exist that ar win values) redian no edian no win) of the a ered fields) redian size	ed field e ≥ minin 72 12 above fiel 120	1.0 	1.0 1.0 180 36 4200 4800

Figura 105.a - Dados de entrada USGS (página 1).

AVEDACE DATION FO	D UNDIRCOVEDED FIELDR TO		OTO
AVERAGE RATIOS FO	R UNDISCOVERED FIELDS, 10	DASSESS COPRODU	CIS
(ur	certainty of fixed but unknown v	alues)	2017/2017
Oil Fields:	minimum	median	maximur
Gas/oil ratio (cfg/bo)		1000	1500
NGL/gas ratio (bngl/mmcfg)	<u>15</u>		45
Gas fields:	minimum	median	maximum
Liquids/gas ratio (bngl/mmcfg)		22	33
Oil/gas ratio (bo/mmcfg).			
0			
	243		
		19 Ni	
SELECTED A	NCILLARY DATA FOR UNDISC	OVERED FIELDS	
SELECTED A (variatio	NCILLARY DATA FOR UNDISC	OVERED FIELDS ered fields)	
SELECTED A (variation)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum	OVERED FIELDS ered fields) median	maximur
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10	OVERED FIELDS ered fields) median 24	maximun 32
SELECTED A (variation Oil Fields: API gravity (degrees). Sulfur content of oil (%)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2	OVERED FIELDS median 24 0.5	maximur 32 1.8
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees) Sulfur content of oil (%) Drilling Depth (m)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500	OVERED FIELDS ered fields) 24 0.5 7000	maximur 32 1.8 10000
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300	OVERED FIELDS ered fields) 24 0.5 7000 2500	maximun 32 1.8 10000 7500
<u>Oil Fields:</u> API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300	OVERED FIELDS ered fields) 24 0.5 7000 2500	maximun 32 1.8 10000 7500
SELECTED A (variation <u>Oil Fields:</u> API gravity (degrees) Sulfur content of oil (%) Drilling Depth (m) Depth (m) of water (if applicable) Gas Fields:	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 0.2 4500 300 minimum	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximun 32 1.8 10000 7500 maximun
SELECTED A (variation Oil Fields: API gravity (degrees) Sulfur content of oil (%) Drilling Depth (m) Depth (m) of water (if applicable) Gas Fields: Inert gas content (%)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300 minimum	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximur 32 1.8 10000 7500 maximur
SELECTED A (variation Oil Fields: API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable) Gas Fields: Inert gas content (%)CO2 content (%)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300 minimum	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximur 32 1.8 10000 7500 maximur
SELECTED A (variation (variation) Oil Fields: API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m) Depth (m) of water (if applicable). Depth (m) of water (if applicable). Gas Fields: Inert gas content (%). CO2 content (%). Hydrogen-sulfide content(%).	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 10 0.2 4500 300	OVERED FIELDS ered fields) 24 0.5 7000 2500 median	maximur 32 1.8 10000 7500 maximur
SELECTED A (variation (variation) Oil Fields: API gravity (degrees). Sulfur content of oil (%). Drilling Depth (m). Depth (m) of water (if applicable) Gas Fields: Inert gas content (%). Hydrogen-sulfide content(%). Drilling Depth (m)	NCILLARY DATA FOR UNDISC ons in the properties of undiscov minimum 0.2 4500 300 minimum 5000	OVERED FIELDS ered fields) 24 0.5 7000 2500 median 7500	maximur 32 1.8 10000 7500 maximur 13000

Page 2

U.S. GEOLOGICAL SURVEY WORLD PETROLEUM ASSESSMENT 2000— DESCRIPTION AND RESULTS U.S. Geological Servey World Energy Assessment Team

Figura 105.b - Dados de entrada USGS (página 2).

		Assessment Unit Late Cretaceous-	(name, no.) Tertiary Turbidites, 60	350101
ALLO TO COUN	CATION OF UNDISCOVER	RED RESOURCES IN PARCELS (uncertaint	THE ASSESSMENT U	NIT values)
1. Brazil	repres	ents <u>100</u> areal	% of the total assessm	ient unit
Oil in Oil Fields: Richness factor (unit) Volume % in parcel (;	ess multiplier): areal % x richness factor):.	minimum	median 	maximum
Portion of volume % t	that is offshore (0-100%)		100	2
Gas in Gas Fields: Richness factor (unit) Volume % in parcel (a Portion of volume % t	ess multiplier): areal % x richness factor):. that is offshore (0-100%)	minimum	median 100 100	maximum

Figura 105.c - Dados de entrada USGS (página 3).

Figura 2 - Formulários dos dados de entrada USGS. Fonte: USGS (2000). O campo "*Undiscovered Fields*", parte inferior da página 1, representa a parte central e mais importante da "Seventh Approximation", pois captura as suposições feitas pelo geólogo com relação ao número e tamanho dos campos não descobertos de tamanho maior ou igual ao tamanho mínimo escolhido. Estas suposições consideram percentis que representam valores mínimo (F100), mediano (F50), e máximo (F0) das distribuições de probabilidade.

Uma combinação de conhecimento geológico da AU, análise do histórico de exploração e descoberta, e o conhecimento e experiência do time de avaliação foram utilizados para fazer as estimativas finais do número e tamanhos de campos não descobertos.

Os tamanhos dos campos não descobertos em uma AU podem ser estimados através do conhecimento geológico e tendências observadas no histórico de descobertas. Distribuições do número e tamanhos de campos não descobertos mudam com o tempo na medida em que a AU é explorada.

Os tamanhos dos campos tendem a diminuir com o tempo, ou seja, os campos maiores são geralmente encontrados primeiro no histórico de exploração. Entretanto, campos grandes podem ser descobertos em estágio avançados caso novas áreas sejam abertas para a exploração ou sejam desenvolvidos novos conceitos de exploração. Diferente de Knoring *et al.* (1999), a possibilidade de ocorrência de novos conceitos de exploração, não consideradas no histórico de descobertas, é considerada pelo time de avaliação da USGS.

IV. Programas Computacionais:

Os programas utilizados pela USGS são chamados de EMCEE e Emc2. O EMCEE permite uma ampla variedade de distribuições para os dados de entrada, enquanto o Emc2 trabalha com um conjunto específico de distribuições. Ambos são executados como planilhas eletrônicas do Microsoft Excel e requerem o programa de simulação *Crystal Ball (Decisioneering, Inc.)*.

Recursos não descobertos são calculados através do método de simulação de Monte Carlo cujas distribuições de probabilidade são baseadas nos dados dos formulários apresentados. Assim sendo, EMCEE e Emc2 são utilizados para simular tamanhos e números de campos não descobertos. O programa sorteia valores destas distribuições e calcula a previsão dos recursos não descobertos. Repete-se este procedimento um número específico de vezes.

V. Distribuições de Probabilidade:

Distribuições triangulares, calculadas a partir dos percentis F100, F50, e F0, foram usadas para representar o número de campos não descobertos e as relações dos co-produtos. Uma distribuição triangular precisa somente dos valores destes percentis para ser determinada.

O valor esperado ou médio do número de campos não descobertos descrito pela distribuição triangular é computado como sendo ¹/₃ da soma dos valores mínimo, moda, e máximo. Define-se valor esperado incondicional como sendo o produto do número médio de campos não descobertos e do risco geológico. Seja x igual ao número de campos não descobertos, então o valor médio e o valor esperado incondicional podem ser calculados através da Equação 149.

$$E[x] = \frac{1}{\chi} = \frac{1}{3} (F100 + F0 + F50)$$

$$E[x] incondicional = \frac{1}{\chi} * risco_geológico$$
(69)

Distribuições lognormais foram utilizadas para representar os tamanhos de campos não descobertos. Distribuições do tamanho dos campos apresentam grande assimetria que não podem ser representadas pelas distribuições triangulares.

As distribuições lognormais foram calculadas a partir dos percentis F100, F50, e F0 com o valor máximo usado para truncar a distribuição lognormal (à direita) referente ao percentil 0,1 (F0,1). Além disso, a origem foi modificada no eixo horizontal para coincidir com o tamanho de campo mínimo. Esta nova distribuição foi chamada de "distribuição lognormal truncada modificada".

VI. Resultado Final:

Para este estudo, aproximadamente 32.000 campos foram alocados a províncias geológicas. A alocação contou ainda com a aplicação de um de sistema de informação geográfica (GIS) baseando-se na localização do centro dos campos.

A Figura 106 mostra que, excluindo os EUA, o volume médio dos recursos não descobertos é 649 bilhões de barris de óleo equivalente (BBOE). O valor médio do acréscimo devido aos campos descobertos (crescimento de reserva) é de 612 BBOE. A figura mostra ainda o intervalo de incerteza destas estimativas, as reservas remanescentes e a produção acumulada.

Figura 3 – Estimativa média dos volumes mundiais (BBOE). Fonte: USGS, 2000.

VII. Aplicação prática:

Verma *et al.* (2004) apresenta um estudo feito para prever recursos não descobertos no Iraque, segundo país mais rico em petróleo no Oriente Médio, cujas reservas provadas somaram 113 bilhões de barris de óleo (BBO) em Janeiro de 2003 e cujos recursos são estimados em 184 bilhões de barris de óleo (BBO), incluindo reservas de óleo e gás mais os recursos não descobertos. O Iraque encontra-se atrás somente da Arábia Saudita com 259 BBO de reservas provadas.

Verma chama de "reservas recuperáveis" o que chamamos de volume de óleo recuperável, ou seja, o somatório de reservas provadas mais a produção acumulada. Assim sendo, 88% das reservas recuperáveis do Iraque encontram-se distribuídas em 6 campos supergigantes (volume maior do que 5 BBO) e 11 campos gigantes (volume entre 1 e 5 BBO).

Para prever os recursos não descobertos do Iraque, foi utilizada a metodologia proposta pela USGS (2000) que considera os aspectos geológicos. No Iraque, encontram-se reservatórios em rochas Paleozóicas, Mesozóicas e

Cenozóicas, estando a principal fonte de recursos localizada na Zagros-Mesopotamian Cretaceous-Tertiary (Figura 107). O potencial destas rochas forma três "Total Petroleum Systems" - TPS (Paleozóico, Jurássico e Cretáceo/Terciário), conforme ilustrados na Figura 108.

Figura 4 - Sessão Estratigráfica na Península Arábica.

Fonte: Verma et al., 2004.

Figura 5 - Três TPS no Iraque. Fonte: Verma *et al.*, 2004.

Na Figura 108, o TPS 202301, paleozóico, é a região mais velha geologicamente e produz óleo leve (°API > 40). Já o TPS 203001, cretáceo/terciário, é o maior na USGS *World Petroleum Assessment* (2000). A Tabela 52 abaixo mostra os resultados das avaliações feitas para cada TPS e o potencial de recursos não descobertos no Iraque. O potencial estimado para os três TPS (paleozóico, jurássico e cretáceo/terciário) varia entre 14.2 e 84.0 BBO (média de 45.1 BBO).

TDS	Probabilidade					
11-3	95%	50%	5%			
202301.0	0.5	1.6	3.1			
202302.0	1.7	5.3	9.2			
203001.0	12.0	38.2	71.7			
Total (BBO)	14.2	45.1	84.0			

Tabela 1 - Estimativa de recursos não descobertos para o Iraque.

Fonte: o autor.

Outros trabalhos publicados pela USGS utilizando aspectos geológicos para a avaliação de recursos não descobertos podem ser encontrados nas páginas da Internet:

http://water.usgs.gov/wid/index-resources.html

http://water.usgs.gov/wid/index-resources.html.

Um exemplo destes trabalhos é o da Bacia *San Joaquin*, Província da Califórnia, USGS (2003). Para esta região, é estimado 393 milhões de barris de óleo (MMBO) a serem descobertos em dez unidades de avaliação dentro de cinco TPS. Dos cinco TPS, o TPS Mioceno é responsável por 83% (328 MMBO) do total a ser descoberto. Devido à estimativa de 3,5 bilhões de barris de óleo (BBO) que podem ser acrescentados às reservas através dos campos existentes, USGS indica que a maioria do óleo a ser produzido no futuro virá dos campos existentes ao invés das novas descobertas. A Figura 109 mostra os resultados estimados para a bacia.

Total Petroleum Systems (TPS)	Field	d Oil (MMBO)				Total undiscovered resources Gas (BCFG)				NGL (MMBNGL)			
and Assessment Units (AU)	type	F95	F50	F5	Mean	F95	F50	F5	Mean	F95	F50	F5	Mea
Winters-Domengine TPS		ar i	с	50	19. 	08				2	30 	9	
Northern Nonassociated Gas	Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AU	Gas					33.17	98.76	199.64	105.78	0.00	0.00	0.00	0.00
Eocene-Miocene Composite TPS													
Deep Fractured Pre-Monterey	Oil	1.16	3.82	21.25	6.60	2.58	9.43	53.75	16.49	0.14	0.55	3.23	0.99
AU	Gas		ļ			164.51	847.52	2,738.31	1,063.22	8.34	44.81	150.92	57.30
Eocene Composite TPS													
	Oil	10.84	41.45	96.52	46.03	25.53	100.69	254.07	115.31	1.14	4.70	12.85	5.54
Eocene West Side Fold Belt AU	Gas				-	8.84	29.43	114.10	41.38	0.77	2.78	11.13	3.97
North and East of Eocene West Side Fold Belt AU	Oil	2.77	10.59	27.77	12.33	2.32	9.30	26.07	11.10	0.06	0.23	0.70	0.29
	Gas	1			1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Miocene TPS													
Couthoost Stable Shalf All	Oil	5.41	21.39	50.08	23.78	2.43	10.65	29.98	12.67	0.09	0.42	1.24	0.51
Sourceast Stable Stiell MO	Gas					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Laurer Daharafiald Arab All	Oil	14.24	66.78	162.89	75.01	15.80	82.68	274.50	105.06	0.89	4.83	16.87	6.31
Lower bakersneid Arch AU	Gas					17.29	58.34	169.58	71.25	0.80	2.86	8.76	3.57
Miccopy West Side Fold Polt All	Oil	19.69	79.79	188.31	88.79	20.59	88.10	239.71	103.56	1.16	5.16	14.93	6.23
WIDCENE WEST SIDE FOID BEILAU	Gas		Ì			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
South of White Wolf Foult All	Oil	5.07	17.18	41.44	19.45	8.00	28.46	73.90	33.08	0.14	0.51	1.36	0.60
South of white woon Fault AO	Gas					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Central Basin Monterey	Oil	20.99	107.36	265.01	120.93	8.30	42.76	107.31	48.39	0.06	0.31	0.81	0.35
Diagenetic Traps AU	Gas					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Neogene Nonassociated Gas TPS		50						ñ.					9.
Neogene Nonassociated Gas	Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AU	Gas					11.83	27.30	49.81	28.62	0.00	0.00	0.00	0.00
Total Conventional		80.17	348.36	853.27	392.92	321.19	1,433.42	4,330.73	1,755.91	13.59	67.16	222.80	85.66

Figura 6 – Resultados estimados para a Bacia San Joaquin.

Fonte: USGS, 2003.

APÊNDICE D: APLICAÇÕES DE CRESCIMENTO DE RESERVAS

I. Aplicação prática Saskatchewan (Canadá)

Verma & Henri (2004) apresentam um estudo feito na região de Saskatchewan (Canadá), região escolhida pela falta de publicações de crescimento de reservas no Canadá e por apresentar longa série histórica (35 anos). Duas bacias contribuíram para as acumulações em Saskatchewan: as bacias de Williston e Alberta.

Embora possa ser positivo ou negativo, o crescimento de reservas é geralmente positivo, fornecendo meios para estimar as reservas futuras. Entretanto, sua avaliação é complexa, sendo afetada pela aplicação de métodos de recuperação secundária/terciária, por extensões das acumulações em campos descobertos e por leis e políticas locais que controlam a exploração. Neste estudo, além dos volumes recuperáveis, Verma investiga outras características, tais como tipo de óleo, tamanho e porosidade da acumulação.

Aproximadamente 51% dos 34 bilhões de barris de óleo (OIP) estão localizados em rochas "*Lower Cretaceous*". Estas rochas geralmente são rasas, produzem óleo pesado (<20°API), contribuindo para os baixos fatores de recuperação (aproximadamente 9%) se comparado com as rochas "*Lower Carboniferous*" e "Jurássica", com fatores de recuperação de 22% e 28%, respectivamente.

Para *Arrington modificado*, CGF's foram calculadas considerando os volumes recuperáveis de todos os campos descobertos. Em relação ao método de *crescimento do grupo*, considerou-se ainda que: i) todas as acumulações consideradas se estendam até o ano de 2001; ii) acumulações tenham pelo menos 10 anos de dados; iii) acumulações sejam agrupadas começando com a mesma data de referência que pode ser tanto o ano de descoberta, quanto o primeiro ano de produção.

Dados de acumulações apresentam diferentes datas de início e diferentes períodos (número de anos) são disponíveis para cada campo. Por esta razão,

grupos de campos com um período mínimo de crescimento de 10, 15, 20, 25, 30 e 35 anos foram formados.

Por exemplo, o grupo com pelo menos 10 anos de dados são os que tiveram suas reservas divulgadas antes de 1991 (dados até 2001). O grupo com pelo menos 15 anos de dados são os que tiveram suas reservas divulgadas antes de 1986 (dados até 2001) e, assim por diante, até chegar ao grupo com pelo menos 35 anos de dados.

Em seguida, Verma assume o resultado do grupo com o mínimo de 25 anos de dados históricos (154 *pools*) como sendo o mais representativo de toda a província. Este grupo apresenta um fator de crescimento acumulado igual a 3,27 (227%) para o período de 25 anos, isto é, crescimento equivalente a 4,9% ao ano.

Para o mesmo período de 25 anos, o maior crescimento foi atingido pelo método de *Arrington modificado*, CGF igual a 4,0 ou 300%, que representa um equivalente de 5,7% ao ano.

Com relação aos modelos de previsão, Verma testa três funções matemáticas: potência, recíproca e hiperbólica. Para o método de *crescimento do grupo*, utilizaram-se os dados do grupo com o mínimo de 25 anos de dados históricos (154 *pools*) e para o método de *Arrington modificado*, consideraram-se os volumes recuperáveis de todas as acumulações.

Para ambos os métodos, a função que melhor se ajustou foi a função potência. As equações, os valores do coeficiente de correlação (R^2) do gráfico do melhor ajuste são mostrados abaixo.

Arrington modificado:	$CGF = 0.989 (YSFP)^{0.4278}$	$R^2 = 0.956$
Crescimento do grupo:	$CGF = 1.0191(YSFP)^{0.3485}$	$R^2 = 0.938$

Onde YSFP = anos desde a primeira produção (years since first production).

Resultados mostram que para os próximos 5, 10 e 15 anos, a partir de 2001, reservas irão aumentar 0.4, 0.7 e 0.9 BBO de acordo com o método de *crescimento do grupo* e, 0.5, 0.8 e 1.2 BBO, assumindo o método de *Arrington Modificado*.

No meu ponto de vista, estes modelos mostram uma evolução da metodologia de Hubbert (1956), porém, com um leque de opções bastante limitado se comparado aos modelos matemáticos propostos por Knoring (1999), pois consideram somente três modelos (potência, *recíproca* e hiperbólica) com um número máximo de dois parâmetros.

II. Aplicação prática: Bacia Siberiana Ocidental

Verma & Ulmishek (2003) apresentam um estudo feito na bacia Siberiana Ocidental, região mais rica em petróleo da Rússia, e utiliza a mesma metodologia de crescimento de reservas. A região foi escolhida pela falta de publicações do crescimento de reservas em regiões fora dos EUA.

Segundo Verma & Ulmishek (2003), além de seus trabalhos aqui comentados, outros estudos de crescimento de reservas são: nos EUA (Marsh, 1971; Attanasi & Root, 1994; Root *et al.*, 1995; Lore *et al.*, 1996; Schmoker & Attanasi, 1997; Klett & Gautier, 2003); no Mar do Norte (Sem & Ellerman, 1999; Watkins, 2000).

A primeira descoberta de óleo ocorreu em 1960, rochas Jurássicas de Trekhozer, e o primeiro ano de produção em 1964. Durante esta década os dois principais campos (Samotlor e Fedorov) foram descobertos. Para este estudo foram utilizados dados dos 42 principais campos, representando 55% do total de reservas da bacia Siberiana Ocidental.

Pode-se observar na Tabela 53 que existe uma grande diferença entre os valores referentes ao ano de descoberta e ao primeiro ano de produção. Esta diferença é atribuída à intensa atividade exploratória entre a descoberta e o primeiro ano de produção.

Tabela 2 – Histórico de reservas totais na bacia Siberiana Ocidental, com relação à data de descobrimento e YSFP.

Vears since	Total r	eserves in mi fo	llion barrels r individual	Total reserves in million barrels since first production for individual set					
discovery/first prod.	42 Fields	37 Fields	32 Fields	24 Fields	14 Fields	42 Fields	30 Fields	23 Fields	9 Fields
0	6,888.1	5,904.0	5,240.2	3,993.2	3,113.4	48,027.1	37,574.2	30,797.8	17,038.2
1	17,381.0	14,091.0	12,464.3	9,557.1	7,268.6	59,878.4	48,082.6	40,136.7	23,271.0
2	26,964.3	22,093.5	19,400.3	15,708.4	11,694.4	64,741.8	51,976.9	43,537.9	25,736.9
3	38,057.6	32,005.1	28,748.7	24,124.8	16,588.5	70,552.8	57,467.0	48,830.3	29,429.5
4	47,643.6	39,804,4	35,756.7	30,249.4	20,380.0	74,604.6	60,761.4	52,112.6	32,529.2
5	55,637.8	47.652.5	43,270.0	37,345.5	25,785.3	77,294.4	63,581.4	54,963.9	33,760.0
6	61.385.6	53,217.6	48,561.3	42,229.3	28,605.7	76,849.3	62,880.3	55,142.9	34,140.7
7	68,788.5	60,056.8	55,524.8	48,873.9	32,049.8	77,530.0	63,493.5	55,828.3	34,358.7
8	72,857.9	63,905.4	59,151.0	52,122.2	35,093.6	75,459.0	61,391.2	53,664.9	32,204.4
9	76,488,6	67,500.4	62,930.2	55,491.6	36,338.8	76,076.8	61,626.3	54.312.7	32,812.1
10	76,512.0	67,523.8	63.082.1	55,854.5	36,895.2		61,950.7	54,637.5	32,946.9
11	77,058.9	68,003.7	63,455.7	55,998.1	37,253.6		64,951.7	57,644.6	35,768.8
12		65,390.1	60,797.3	53,762.9	34,853.6		65,499.6	58,962.8	37,094.5
13		66,157,7	61,564.9	54,262.2	35,194,4		65,419.3	59,455.5	37,153.5
14		66,788,1	61,844.8	54,405.5	35,341.8		65,614.5	59,599.3	37.257.3
15		68,578.0	64,435.1	57,307.1	38,194.6			58,461.1	37,537.1
16			65,046,1	57.807.7	38,654.5			58,042.2	37,496.8
17			65.027.2	57.765.5	38,786.4			58,058,5	37.451.9
18	1		66,561,4	59,264.7	38,930.9			58,707.5	38,804.6
19			66,883,2	59,586.1	39,117,5			58,601.1	38,880.5
20			65.017.2	58,587.2	39,243.1				39,215.0
21				57.078.1	39,292.5				39.322.5
22				58,221.0	40,734.0				39,554.7
23				58,714.8	41,161,4				38,251.1
24				59,420,4	41,610.3				37,888.6
25				59.572.4	41,656.3				37.607.7
26					41,264.0				
27					41,442.0				
28					41 763.9				
29					41,778.5				
30					41,918.9				
31					42 462 3				
32					42 853 0				

Fonte: Verma & Ulmishek, 2003.

Durante o período entre a descoberta do campo e a primeira produção, os acréscimos de reservas são incertos devido à falta de precisão no delineamento dos reservatórios. Por esta razão, Verma considera o crescimento de reservas baseado no primeiro ano de produção como sendo mais confiável. Sem & Ellerman, 1999 (apud Verma & Ulmishek, 2003), justificam o uso do primeiro ano de produção devido aos grandes investimentos iniciais necessários para desenvolver os campos do Mar do Norte.

Utilizando o primeiro ano de produção como referência, a Figura 110 mostra um rápido crescimento das reservas no início e, a seguir, permanece quase que constante. Este rápido crescimento inicial reflete a contínua exploração da bacia nos estágios iniciais onde os campos gigantes foram descobertos.

A segunda fase, que pode se estender por algumas décadas, deve-se principalmente à aplicação de técnicas IOR/EOR e extensões de acumulações nos campos descobertos na primeira fase. É relevante observar que este padrão é bem parecido com o da curva do Recôncavo (Figura 32).

Figura 7 - CGF vs. Anos desde a primeira produção na bacia Siberiana Ocidental. Fonte: Verma & Ulmishek, 2003.

Dessa forma, para os quatro grupos criados, os CGF's das curvas variam de 1,6 a 2,3 (60 a 130%). Pode-se observar ainda na Figura 110 uma queda no volume de reservas entre os anos 8 e 10, relacionados principalmente à revisão feita no campo de Samotlor, principal campo desta bacia.

Segundo Gavura, 1996 (apud Verma & Ulmishek, 2003), o resultado da revisão é devido às novas informações geológicas obtidas durante a exploração. Estas novas informações mostram que a espessura de alguns reservatórios é menor do que a estimada anteriormente, apresentam maior viscosidade e menor saturação de óleo.

Verma assume o resultado para o grupo com 23 campos como o mais representativo para toda a bacia, baseando-se no critério deste grupo apresentar mais de 50% do total de 42 campos e razoável tamanho do histórico de dados (19 anos).

Com relação aos modelos preditivos, Verma testa quatro funções matemáticas: exponencial, potência, recíproca e logarítmica. Novamente, a função potência foi a que melhor se ajustou ao conjunto de dados.

Entretanto, diferentemente do artigo anterior, Verma divide os dados em dois segmentos: o primeiro corresponde ao estágio de rápido crescimento durante

Todos os 19 anos - 1º ao 19º ano: $R^2 = 0.85$ Para o ajuste de 2 segmentos:

1° ao 4° ano:
$$CGF = 1.2823 (YSFP)^{0.1899}$$
5° ao 19° ano: $CGF = 1.5230 (YSFP)^{0.0833}$

Onde YSFP = anos desde a primeira produção (years since first production).

Figura 8 - CGF vs. YSFP - Siberiana Ocidental. Ajuste de curva para um e dois segmentos. Fonte: Verma & Ulmishek, 2003.

Situação similar a da Siberiana Ocidental ocorre na província Volga-Ural, também na Rússia (Verma *et al.*, 2000). Novamente, Verma utiliza um leque de opções bastante limitado e afirma que nenhuma equação apresentou ajuste satisfatório para os dados com rápido crescimento nos primeiros cinco anos seguido de um crescimento suave nos anos seguintes. Por esta razão, dividiram-se os dados em dois segmentos (1º ao 5º ano e do 6º em diante). A Figura 112 compara os resultados da província Volga-Ural com dados *onshore* e *offshore* dos EUA.

Figura 9 – CGF vs. YSFP a) Volga-Ural; b) Volga-Ural (sem Romashkino); c) ajuste "a"; d) ajuste "b"; e) EUA *onshore* (Attanasi *et al.*, 1999); f) Golfo do México (Lore *et al.*, 1996). Fonte: Verma *et al.*, 2000.

Novamente, Verma aqui considera uma região madura e bastante explorada, onde o crescimento de reservas geralmente ocorre devido às melhorias na tecnologia em **campos já descobertos**, não considerando a descoberta de novos campos, como acontece em algumas regiões do Brasil.

O crescimento de reservas é o principal componente do acréscimo de reservas em bacias maduras, tal como a maioria das bacias nos EUA. Entretanto, em bacias jovens, com programa exploratório ativo e intenso, a contribuição do crescimento de reservas é muito inferior se comparada com o acréscimo de reservas devido às novas descobertas.

PROPOSTOS

Função de Controle 1: $\varphi(R) = \exp(\alpha . R_t^{\beta})$

Modelo 1x1:

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . (a - b . R_t) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . (c(3) - c(4) . R_t) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = b$$

Modelo 1x2:

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . (1 - a . R_t^{\beta}) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . (1 - c(3) . R_t^{c(4)}) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = b$$

Modelo 1x3:

$$\Delta R = \left\{ e^{\alpha \cdot R_t^{\beta}} \right\} \cdot \left(e^{a - bR_t} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha \cdot R_t^{\beta}} \right\} \cdot e^a \cdot \left(e^{-bR_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{c(2) \cdot R_t^{c(3)} - c(4) \cdot R_t} \right\}$$

$$c(1) = \exp(a) \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = b$$

Modelo 1x4:

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . \left(1 - (1 - c + a R_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . \left(1 - (1 - c(3) + c(4) R_t^{\frac{1}{c(5)}})^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

$$\Delta R = \left\{ \exp(\alpha . R_t^{\beta}) . \left(c - a . R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \exp(c(1) . R_t^{c(2)}) . \left(c(3) - c(4) . R_t^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 1x6:

$$\Delta R = \left\{ \exp(\alpha \cdot R_t^{\beta}) \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \exp(c(1) \cdot R_t^{c(2)}) \cdot \left(c(3) \cdot Ln\left(\frac{c(4)}{R_t}\right) \right) \right\}$$

 $c(1) = \alpha$ $c(2) = \beta$ c(3) = b c(4) = A

Modelo 1x7:

$$\Delta R = \left\{ \exp(\alpha \cdot R_t^{\beta}) \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \exp(c(1) \cdot R_t^{c(2)}) \cdot \left(c(3) \left(1 - \frac{R_t}{c(4)} \right)^{c(5)} \right) \right\}$$
$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = A \qquad c(5) = b$$

Modelo 1x8:

$$\Delta R = \left\{ e^{\alpha \cdot R_{t}^{\beta}} \right) \cdot \left(e^{a - bR_{t}} - c \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ e^{a - bR_{t} + \alpha \cdot R_{t}^{\beta}} \right) - \left(c \cdot e^{\alpha \cdot R_{t}^{\beta}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ c(1) \cdot \left(e^{-c(2) \cdot R_{t} + c(3) \cdot R_{t}^{c(4)}} \right) - c(5) \cdot e^{\alpha \cdot R_{t}^{\beta}} \right\}$$

$$c(1) = \exp(a) \qquad c(2) = b \qquad c(3) = \alpha \qquad c(4) = \beta \qquad c(5) = c$$

Modelo 1x9:

$$\Delta R = \left\{ \left(e^{\alpha \cdot R_t^{\beta}} \right) \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{a - bR_t + \alpha \cdot R_t^{\beta}} \right) - \left(\frac{c}{R_t} \cdot e^{\alpha \cdot R_t^{\beta}} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{-c(2) \cdot R_t + c(3) \cdot R_t^{c(4)}} \right) - \left(\frac{c(5)}{R_t} \cdot e^{\alpha \cdot R_t^{\beta}} \right) \right\}$$

 $c(1) = \exp(a)$ c(2) = b $c(3) = \alpha$ $c(4) = \beta$ c(5) = c

Função de Controle 2: $\varphi(R) = e^{\alpha + \beta \cdot R_t}$

Modelo 2x1:

$$\Delta R = \{ e^{\alpha + \beta R_t} \} . (a - b . R_t) \}$$

$$\Delta R = \{ e^{\alpha} . (e^{\beta R_t}) . (a - b . R_t) \}$$

$$R_{t+1} = R_t + \{ c(1) . (e^{c(3) . R_t}) - (c(2) . R_t . e^{c(3) . R_t}) \}$$

$$R_{t+1} = R_t + \{ e^{c(3) . R_t} \} . (c(1) - c(2) . R_t) \}$$

 $c(1) = exp(\alpha) . a$ $c(2) = exp(\alpha) . b$ $c(3) = \beta$

Modelo 2x2:

$$\Delta R = \left\{ \left(e^{\alpha + \beta \cdot R_t} \right) \cdot \left(1 - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{c(3) \cdot R_t} \right) - c(2) \cdot \left(e^{c(3) \cdot R_t} \right) \cdot \left(R_t^{c(4)} \right) \right\}$$

$$c(1) = \exp(\alpha) \qquad c(2) = \exp(\alpha) \cdot a \qquad c(3) = \beta \qquad c(4) = b$$

Modelo 2x3:

$$\begin{split} \Delta R &= \left\{ \left(e^{\alpha + \beta \cdot R_t} \right) \cdot \left(e^{a - bR_t} \right) \right\} \\ \Delta R &= \left\{ e^{\alpha} \cdot \left(e^{\beta \cdot R_t} \right) \cdot e^a \cdot \left(e^{-bR_t} \right) \right\} \\ R_{t+1} &= R_t + \left\{ e^{\alpha} \cdot e^a \cdot \left(e^{\beta \cdot R_t - b \cdot R_t} \right) \right\} \\ R_{t+1} &= R_t + \left\{ c(1) \cdot \left(e^{c(2) \cdot R_t} \right) \right\} \end{split}$$

$$c(1) = \exp(\alpha) \cdot \exp(\alpha)$$
 $c(2) = \beta - b$

Modelo 2x4:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(1 - (1 - c + a R_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{c(2) \cdot R_t} \cdot \left(1 - (1 - c(3) + c(4) R_t^{\frac{1}{c(5)}})^{c(5)} \right) \right\}$$

$$c(1) = \exp(\alpha) \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 2x5:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(c - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{\alpha} \cdot e^{\beta \cdot R_t} \cdot \left(c - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{c(4) \cdot R_t} \cdot \left(c(3) - c(1) \cdot R_t^{c(2)} \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = b \qquad c(3) = \exp(\alpha) \cdot c \qquad c(4) = \beta$$

Modelo 2x6:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$\Delta R = \left\{ e^{\alpha} \cdot e^{\beta \cdot R_t} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot Ln\left(\frac{c(2)}{R_t}\right) \cdot e^{c(3) \cdot R_t} \right\}$$

 $c(1) = \exp(\alpha) \cdot b$ c(2) = A $c(3) = \beta$

Modelo 2x7:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_t} \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$\Delta R = \left\{ a \cdot e^{\alpha} \cdot e^{\beta \cdot R_t} \cdot \left(\frac{A - R_t}{A} \right)^b \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{c(2) \cdot R_t} \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$

$$\Delta R = \left\{ e^{\alpha + \beta . R_t} . \left(e^{a - bR_t} - c \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} . e^{\beta . R_t} . \left(e^a . e^{-bR_t} - c \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{\alpha} . e^{\beta . R_t} . e^a . e^{-bR_t} \right) - \left(c . e^{\alpha} . e^{\beta . R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) . e^{c(2) . R_t} \right) - \left(c(3) . e^{c(4) . R_t} \right) \right\}$$

$$c(1) = \exp(\alpha) . \exp(\alpha) \qquad c(2) = \beta - b \qquad c(3) = c . \exp(\alpha) \qquad c(4) = \beta$$

Modelo 2x9:

$$\Delta R = \left\{ e^{\alpha + \beta \cdot R_{l}} \cdot \left(e^{a - bR_{l}} - \frac{c}{R_{l}} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{\beta \cdot R_{l}} \cdot \left(e^{a} \cdot e^{-bR_{l}} - \frac{c}{R_{l}} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{\beta \cdot R_{l}} \cdot \left(e^{a} \cdot e^{-bR_{l}} - \frac{c}{R_{l}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(e^{\alpha} \cdot e^{\beta \cdot R_{l}} \cdot e^{a} \cdot e^{-bR_{l}} \right) - \left(\frac{c}{R_{l}} \cdot e^{\alpha} \cdot e^{\beta \cdot R_{l}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(c(1) \cdot e^{c(2) \cdot R_{l}} \right) - \left(\frac{c(3)}{R_{l}} \cdot e^{c(4) \cdot R_{l}} \right) \right\}$$

$$c(1) = \exp(a) \cdot \exp(\alpha) \qquad c(2) = \beta \cdot b \qquad c(3) = c \cdot \exp(\alpha) \qquad c(4) = \beta$$

Função de Controle 3: $\varphi(R) = \exp(\alpha + R_t^{\beta})$

Modelo 3x1:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(a - b \cdot R_t \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot \left(e^{R_t^{\beta}} \right) \cdot \left(a - b \cdot R_t \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{R_t^{c(2)}} \right) \cdot \left(c(1) - c(3) \cdot R_t \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = \exp(\alpha) \cdot b \qquad c(3) = \beta$$

Modelo 3x2:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(1 - a \cdot R_t^{b} \right) \right\}$$

$$\Delta R = \left\{ e^a \cdot \left(e^{R_t^{\beta}} \right) \cdot \left(1 - a \cdot R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{R_t^{c(3)}} \right) - c(2) \cdot \left(e^{R_t^{c(3)}} \right) \cdot \left(R_t^{c(4)} \right) \right\}$$

$$c(1) = \exp(\alpha) \qquad c(2) = \exp(\alpha) \cdot a \qquad c(3) = \beta \qquad c(4) = b$$

Modelo 3x3:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(e^{a - bR_t} \right) \right\}$$
$$\Delta R = \left\{ e^{\alpha} \cdot \left(e^{R_t^{\beta}} \right) \cdot e^a \cdot \left(e^{-bR_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ e^{\alpha} \cdot e^a \cdot \left(e^{R_t^{\beta} - b \cdot R_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot \left(e^{R_t^{c(2)} - c(3) \cdot R_t} \right) \right\}$$

 $c(1) = \exp(\alpha) . \exp(\alpha)$ $c(2) = \beta$ c(3) = b

Modelo 3x4:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(1 - \left(1 - c + a R_t^{\frac{1}{b}} \right)^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{R_t^{c(2)}} \cdot \left(1 - \left(1 - c(3) + c(4) R_t^{\frac{1}{c(5)}} \right)^{c(5)} \right) \right\}$$
(1)

$$c(1) = \exp(\alpha)$$
 $c(2) = \beta$ $c(3) = c$ $c(4) = a$ $c(5) = b$

Modelo 3x5:

$$\Delta R = \left\{ \left(e^{\alpha + R_t^{\beta}} \right) \cdot \left(c - a \cdot R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(c - a \cdot R_t^{b} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ e^{R_t^{C(4)}} \cdot \left(c(3) - c(1) \cdot R_t^{c(2)} \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = b \qquad c(3) = \exp(\alpha) \cdot c \qquad c(4) = \beta$$

Modelo 3x6:

$$\Delta R = \left\{ e^{\alpha + R_t^{\beta}} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$\Delta R = \left\{ e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot Ln\left(\frac{c(2)}{R_t}\right) \cdot e^{R_t^{c(3)}} \right\}$$

 $c(1) = \exp(\alpha) . b$ c(2) = A $c(3) = \beta$

Modelo 3x7:

$$\Delta R = \left\{ e^{\alpha + R_t^{\beta}} \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$\Delta R = \left\{ a \cdot e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(\frac{A - R_t}{A} \right)^b \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot e^{R_t^{c(2)}} \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$
$$c(1) = \exp(\alpha) \cdot a \qquad c(2) = \beta \qquad c(3) = A \qquad c(4) = b$$

Modelo 3x8:

$$\Delta R = \left\{ e^{\alpha + R_{t}^{\beta}} \cdot \left(e^{a - bR_{t}} - c \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{R_{t}^{\beta}} \cdot \left(e^{a} \cdot e^{-bR_{t}} - c \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(e^{\alpha} \cdot e^{R_{t}^{\beta}} \cdot e^{a} \cdot e^{-bR_{t}} \right) - \left(c \cdot e^{\alpha} \cdot e^{R_{t}^{\beta}} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(c(1) \cdot e^{R_{t}^{c(3)} - c(4) \cdot R_{t}} \right) - \left(c(2) \cdot e^{R_{t}^{c(3)}} \right) \right\}$$

 $c(1) = exp(\alpha) . exp(\alpha)$ $c(2) = exp(\alpha) . c$ $c(3) = \beta$ c(4) = b

Modelo 3x9:

$$\Delta R = \left\{ e^{\alpha + R_t^{\beta}} \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$\Delta R = \left\{ e^{\alpha} \cdot e^{R_t^{\beta}} \cdot \left(e^a \cdot e^{-bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(e^{\alpha} \cdot e^{R_t^{\beta}} \cdot e^a \cdot e^{-bR_t} \right) - \left(\frac{c}{R_t} \cdot e^{\alpha} \cdot e^{R_t^{\beta}} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) \cdot e^{R_t^{c(3)} - c(4) \cdot R_t} \right) - \left(\frac{c(2)}{R_t} \cdot e^{R_t^{c(3)}} \right) \right\}$$

$$c(1) = \exp(\alpha) \cdot \exp(\alpha) \qquad c(2) = \exp(\alpha) \cdot c \qquad c(3) = \beta \qquad c(4) = b$$

Função de Controle 4: $\varphi(R) = \alpha R_t^{\beta}$

Modelo 4x1:

$$\Delta R = \{ (\alpha . R_t^{\beta}) . (a - b . R_t) \}$$

$$R_{t+1} = R_t + \{ c(1) . R_t^{c(2)} - c(3) . R_t^{c(2)+1} \}$$

$$c(1) = \alpha . a \qquad c(2) = \beta \qquad c(3) = \alpha . b$$

Modelo 4x2:

$$\Delta R = \left\{ \alpha . R_t^{\beta} . \left(1 - a . R_t^{b} \right) \right\}$$

$$\Delta R = \left\{ \alpha . R_t^{\beta} - \alpha . R_t^{\beta} . a . R_t^{b} \right\}$$

$$\Delta R = \left\{ c(1) . R_t^{c(2)} - c(3) . R_t^{c(4)} \right\}$$

 $c(1) = \alpha$ $c(2) = \beta$ $c(3) = \alpha \cdot a$ $c(4) = b + \beta$

Modelo 4x3:

$$\Delta R = \left\{ \alpha . R_t^{\beta} . \left(e^{a - bR_t} \right) \right\}$$

$$\Delta R = \left\{ \alpha . R_t^{\beta} . e^a . \left(e^{-bR_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) . \left(R_t^{c(2)} e^{-c(3) . R_t} \right) \right\}$$

 $c(1) = \alpha \cdot exp(a)$ $c(2) = \beta$ c(3) = b

Modelo 4x4:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(1 - (1 - c + a R_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot \left(1 - (1 - c(3) + c(4) R_t^{\frac{1}{c(5)}})^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 4x5:

$$\Delta R = \left\{ \alpha . R_t^{\beta} . (c - a . R_t^{b}) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) . R_t^{c(2)} - c(3) . R_t^{c(4)} \right\}$$

$$c(1) = \alpha . c \qquad c(2) = \beta \qquad c(3) = \alpha . a \qquad c(4) = \beta + b$$

Modelo 4x6:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot Ln\left(\frac{c(3)}{R_t}\right) \right\}$$

$$c(1) = \alpha \cdot b$$
 $c(2) = \beta$ $c(3) = A$

Modelo 4x7:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$

 $c(1) = \alpha . a$ $c(2) = \beta$ c(3) = A c(4) = b

Modelo 4x8:

$$\begin{split} \Delta R &= \left\{ \alpha . R_t^{\beta} . \left(e^{a - bR_t} - c \right) \right\} \\ \Delta R &= \left\{ \alpha . R_t^{\beta} . \left(e^a . e^{-bR_t} - c \right) \right\} \\ R_{t+1} &= R_t + \left\{ \left(\alpha . R_t^{\beta} . e^a . e^{-bR_t} \right) - \left(c . \alpha . R_t^{\beta} \right) \right\} \\ R_{t+1} &= R_t + \left\{ \left(c(1) . R_t^{c(2)} . e^{-c(3) . R_t} \right) - \left(c(4) . R_t^{c(2)} \right) \right\} \end{split}$$

$$c(1) = \exp(a) \cdot \alpha$$
 $c(2) = \beta$ $c(3) = b$ $c(4) = c \cdot \alpha$

Modelo 4x9:

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$\Delta R = \left\{ \alpha \cdot R_t^{\beta} \cdot \left(e^a \cdot e^{-bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(\alpha \cdot R_t^{\beta} \cdot e^a \cdot e^{-bR_t} \right) - \left(\frac{c}{R_t} \cdot \alpha \cdot R_t^{\beta} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ c(1) \cdot R_t^{c(2)} \cdot e^{-c(3) \cdot R_t} \right\} - \left(c(4) \cdot R_t^{c(2)} \right) \right\}$$

$$c(1) = \exp(a) \cdot \alpha \qquad c(2) = \beta - 1 \qquad c(3) = b \qquad c(4) = c \cdot \alpha$$

Função de Controle 5: $\varphi(R) = \alpha + \beta . Ln(R_{,})$

Modelo 5x1:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (\alpha - b . R_t) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . R_t) + (c(3) . Ln(R_t)) - (c(4) . R_t . Ln(R_t)) \}$$

$$c(1) = \alpha . a \qquad c(2) = \alpha . b \qquad c(3) = \beta . a \qquad c(4) = \beta . b$$

$$c(1)$$
 $u \cdot u = c(2)$ $u \cdot b = c(3)$ $b \cdot u = c(1)$

Modelo 5x2:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (1 - a . R_t^b) \}$$

$$R_{t+1} = R_t + \{ (c(1) + c(2) . Ln(R_t)) . (1 - c(3) . R_t^{c(4)}) \}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = a \qquad c(4) = b$$

Modelo 5x3:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (e^{a - bR_t}) \}$$

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (e^a . e^{-bR_t}) \}$$

$$R_{t+1} = R_t + \{ c(1) . e^{-c(2)R_t} + c(3) . Ln(R_t) . e^{-c(2)R_t} \}$$

$$R_{t+1} = R_t + \{ [c1 + c(3) . Ln(R_t)] . [e^{-c(2)R_t}] \}$$

$$c(1) = \alpha . \exp(\alpha) \qquad c(2) = b \qquad c(3) = \beta . \exp(\alpha)$$

Modelo 5x4:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(1 - (1 - c + aR_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ (c(1) + c(2) . Ln(R_t)) \cdot \left(1 - (1 - c(3) + c(4) . R_t^{\frac{1}{b}c(5)})^{c(5)} \right) \right\}$$

$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = c \qquad c(4) = a \qquad c(5) = b$$

Modelo 5x5:

$$\Delta R = \{ (\alpha + \beta . Ln(R_t)) . (c - a . R_t^b) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . R_t^{c(3)}) + (c(4) . Ln(R_t)) - (c(5) . Ln(R_t) . R_t^{c(3)}) \}$$

$$c(1) = \alpha . c \qquad c(2) = \alpha . a \qquad c(3) = b \qquad c(4) = \beta . c \qquad c(5) = \beta . a$$

Modelo 5x6:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(b . Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(c(1) \cdot Ln\left(\frac{c(2)}{R_t}\right) \right) + \left(c(3) \cdot Ln(R_t) \cdot Ln\left(\frac{c(2)}{R_t}\right) \right) \right\}$$

$$c(1) = \alpha . b$$
 $c(2) = A$ $c(3) = \beta . b$

Modelo 5x7:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(c(1) + c(2) . Ln(R_t) \right) \cdot \left(1 - \frac{R_t}{c(3)} \right)^{c(4)} \right\}$$

 $c(1) = \alpha . a$ $c(2) = \beta . a$ c(3) = A c(4) = b

Modelo 5x8:

$$\Delta R = \left\{ (\alpha + \beta . Ln(R_t)) . (e^{a - bR_t} - c) \right\}$$

$$\Delta R = \left\{ (\alpha + \beta . Ln(R_t)) . (e^a . e^{-bR_t} - c) \right\}$$

$$R_{t+1} = R_t + \left\{ (c(1) . e^{-c(2)R_t}) - c(3) + (c(4) . Ln(R_t) . e^{-c(2)R_t}) - (c(5) . Ln(R_t)) \right\}$$

$$c(1) = \alpha .exp(a)$$
 $c(2) = b$ $c(3) = \alpha .c$ $c(4) = \beta .exp(a)$ $c(5) = \beta .c$

Modelo 5x9:

$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(e^{\alpha - bR_t} - \frac{c}{R_t} \right) \right\}$$
$$\Delta R = \left\{ \left(\alpha + \beta . Ln(R_t) \right) \cdot \left(e^{\alpha} . e^{-bR_t} - \frac{c}{R_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(c(1) + c(2) . Ln(R_t) \right) \cdot \left(c(3) . e^{-c(4)R_t} - \frac{c(5)}{R_t} \right) \right\}$$
$$c(1) = \alpha \qquad c(2) = \beta \qquad c(3) = \exp(\alpha) \qquad c(4) = b \qquad c(5) = c$$

Função de Controle 6: $\varphi(R) = \gamma - \alpha . e^{-\beta . R_t}$

Modelo 6x1:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (a - b . R_t) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . e^{-c(3) . R_t}) . (c(4) - c(5) . R_t) \}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = a \qquad c(5) = b$$

Modelo 6x2:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (1 - a . R_t^b) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . e^{-c(3) . R_t}) . (1 - c(4) . R_t^{c(5)}) \}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = a \qquad c(5) = b$$

Modelo 6x3:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (e^{a - b R_t}) \}$$

$$\Delta R = \{ (\gamma . e^a . e^{-b . R_t}) - (\alpha . e^a . e^{-b R_t} . e^{-\beta R_t}) \}$$

$$R_{t+1} = R_t + \{ (c(1) . e^{-c(2) . R_t}) - (c(3) . e^{-c(4) R_t}) \}$$

$$c(1) = \gamma . \exp(a) \qquad c(2) = b \qquad c(3) = \alpha . \exp(a) \qquad c(4) = b + \beta$$

Modelo 6x4:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_{t}} \right) \cdot \left(1 - (1 - c + a R_{t}^{\frac{1}{b}})^{b} \right) \right\}$$

$$R_{t+1} = R_{t} + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_{t}} \right) \cdot \left(1 - (1 - c(4) + c(5) R_{t}^{\frac{1}{c}(6)})^{c(6)} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = c \qquad c(5) = a \qquad c(6) = b$$

Modelo 6x5:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) . \left(c - a . R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_t} \right) . \left(c(4) - c(5) . R_t^{c(6)} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = c \qquad c(5) = a \qquad c(6) = b$$

Modelo 6x6:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) \cdot \left(b . Ln \left(\frac{A}{R_t} \right) \right) \right\}$$
$$\Delta R = \left\{ c(1) . Ln \left(\frac{c(2)}{R_t} \right) - c(3) . Ln \left(\frac{c(2)}{R_t} \right) . e^{-c(4) . R_t} \right\}$$
$$R_{t+1} = R_t + \left\{ \left[c(1) - c(3) . e^{-c(4) . R_t} \right] . Ln \left(\frac{c(2)}{R_t} \right) \right\}$$

 $c(1) = \gamma.b$ c(2) = A $c(3) = \alpha.b$ $c(4) = \beta$

Modelo 6x7:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) \left(a \left(1 - \frac{R_t}{A} \right)^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_t} \right) \left(1 - \frac{R_t}{c(4)} \right)^{c(5)} \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = A \qquad c(5) = b$$

Modelo 6x8:

$$\Delta R = \{ (\gamma - \alpha . e^{-\beta . R_t}) . (e^{a - b R_t} - c) \}$$

$$R_{t+1} = R_t + \{ (c(1) - c(2) . e^{-c(3) . R_t}) . (c(4) . e^{-c(5) R_t} - c(6)) \}$$
$$c(1) = \gamma$$
 $c(2) = \alpha$ $c(3) = \beta$ $c(4) = exp(a)$ $c(5) = b$ $c(6) = c$

Modelo 6x9:

$$\Delta R = \left\{ \left(\gamma - \alpha . e^{-\beta . R_t} \right) \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(c(1) - c(2) . e^{-c(3) . R_t} \right) \cdot \left(c(4) . e^{-c(5)R_t} - \frac{c(6)}{R_t} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \alpha \qquad c(3) = \beta \qquad c(4) = \exp(a) \qquad c(5) = b \qquad c(6) = c$$

Função de Controle 7: $\varphi(R) = \frac{c}{1 + e^{\alpha - \beta \cdot R_t}}$

Modelo 7x1:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot (a - b \cdot R_t) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) - c(2) \cdot R_t}{1 + c(3) \cdot e^{-c(4) \cdot R_t}} \right\}$$

$$c(1) = c \cdot a$$
 $c(2) = c \cdot b$ $c(3) = \alpha$ $c(4) = \beta$

Modelo 7x2:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(1 - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(\frac{c(1)}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right) \cdot \left(1 - c(4) \cdot R_t^{c(5)} \right) \right\}$$

$$c(1) = c \qquad c(2) = \exp(\alpha) \qquad c(3) = \beta \qquad c(4) = a \qquad c(5) = b$$

Modelo 7x3:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(e^{a - bR_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot e^{-c(2)R_t}}{1 + c(3) \cdot e^{-c(4) \cdot R_t}} \right\}$$

$$c(1) = c \cdot exp(a)$$
 $c(2) = b$ $c(3) = exp(a)$ $c(4) = \beta$

Modelo 7x4:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(1 - (1 - c + aR_t^{\frac{1}{b}})^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \left(\frac{c(1)}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right) \cdot \left(1 - (1 - c(4) + c(5)R_t^{\frac{1}{c(6)}})^{c(6)} \right) \right\}$$

$$c(1) = \gamma \qquad c(2) = \exp(\alpha) \qquad c(3) = \beta \qquad c(4) = c \qquad c(5) = a \qquad c(6) = b$$

Modelo 7x5:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(c - a \cdot R_t^b \right) \right\}$$

$$R_{t+1} = R_t + \left\{ \frac{c(1) - c(2) \cdot R_t^{c(3)}}{1 + c(4) \cdot e^{-c(5) \cdot R_t}} \right\}$$

$$c(1) = \gamma \cdot c \qquad c(2) = \gamma \cdot a \qquad c(3) = b \qquad c(4) = \exp(\alpha) \qquad c(5) = \beta$$

Modelo 7x6:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(b \cdot Ln\left(\frac{A}{R_t}\right) \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot Ln\left(\frac{c(4)}{R_t}\right)}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right\}$$

c(1) = b.c $c(2) = exp(\alpha)$ $c(3) = \beta$ c(4) = A

Modelo 7x7:

$$\Delta R = \left\{ \left(\frac{c}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(a \left(\frac{A - R_t}{A} \right)^b \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \left(\frac{c(1) \cdot \left(1 - \frac{R_t}{c(4)} \right)^{c(5)}}{1 + c(2) \cdot e^{-c(3) \cdot R_t}} \right) \right\}$$

$$c(1) = c$$
. a $c(2) = exp(\alpha)$ $c(3) = \beta$ $c(4) = A$ $c(5) = b$

Modelo 7x8:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(e^{a - bR_t} - c \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot e^{-c(2) \cdot R_t} - c(3)}{1 + c(4) \cdot e^{-c(5) \cdot R_t}} \right\}$$

 $c(1) = \gamma$. exp (a) c(2) = b c(3) = c $c(4) = exp(\alpha)$ $c(5) = \beta$

Modelo 7x9:

$$\Delta R = \left\{ \left(\frac{\gamma}{1 + e^{\alpha - \beta \cdot R_t}} \right) \cdot \left(e^{a - bR_t} - \frac{c}{R_t} \right) \right\}$$
$$R_{t+1} = R_t + \left\{ \frac{c(1) \cdot e^{-c(2) \cdot R_t} - \frac{c(3)}{R_t}}{1 + c(4) \cdot e^{-c(5) \cdot R_t}} \right\}$$

$$c(1) = \gamma$$
. exp (a) $c(2) = b$ $c(3) = c$ $c(4) = exp(\alpha)$ $c(5) = \beta$

APÊNDICE F: EQUAÇÕES NO FORMATO DO E-VIEWS 4.1

1x1 R=EXP(C(1)*(C2))*(C3)*C4(-1) 1x2 R=(EXP(C(1)*(-C2))*(C(3)*CX(-4)) 1x4 R=(EXP(C(1)*(-C2))*(C(3)*CX(-4)) 1x5 R=(EXP(C(1)*(-C2))*(C(3)*CA)+(-(4))) 1x6 R=(EXP(C(1)*(-C2))*(C(3)*(-(4)))+(-(5))*(-C(4))) 1x7 R=(EXP(C(1)*(-C2))*(C(3)*(-(4)))+(-(5))*(-C(4))) 1x8 R=(C(1)*EXP(-C(2)*+C(3)*(-C(4)))+(C(5))*EXP(C(3)*(-C(4)))) 1x9 R=(C(1)*EXP(-C(2)*+C(3)*(-C(4)))+(C(5))*EXP(C(3)*(-C(4)))) 2x1 R=(C(1)*EXP(-C(2)*(-C(4)))+(C(2))*EXP(C(3)*(-L(2)))) 2x2 R=(C(1)*EXP(-C(2))*(EXP(C(3)*(-1))) 2x3 R=(C(1)*EXP(C(2)))((-C(2))*(EXP(C(3)*(-1))) 2x4 R=(C(1)*EXP(C(2)))((-C(2))*EXP(C(3)*(-1))) 2x5 R=(C(3)*C(1)*(2)(-C(2))*(EXP(C(4)))) 2x6 R=(C(1)*EXP(C(2)))(C(3)*EXP(LC(2)))) 2x7 R=(EXP(C(2)))(C(3)*EXP(LC(2)))) 2x8 R=(C(1)*EXP(C(2)))(C(3)*EXP(LC(2)))) 2x9 R=(C(1)*EXP(LC(2)))(C(3)*EXP(LC(2)))) 3x4 R=(C(1)*EXP(LC(2)))(C(3)*EXP(LC(2)))) 3x4 R=(C(1)*EXP(LC(2)))(C(3)*EXP(LC(2)))) 3x5 R=(C(1)*EXP(LC(2)))(C(3)*EXP(LC(2)))) 3x6 R=(C(1)*EXP(LC(2)))(C(3)*EXP(LC(3))))	Modelo	Equação no E-Views
	1x1	R=(EXP(C(1)*L^C(2)))*(C(3)-C(4)*L)
	1x2	R=(EXP(C(1)*L^C(2)))*(1-C(3)*L^C(4))
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1x3	R=(EXP(C(1)*L^C(2)))*(C(3)*EXP(-C(4)*L))
155 R=[EXP[C(1]]L^C(2])]V(C(3)^C(4]L^C(4]L)) 1x7 R=[EXP[C(1]]L^C(2])V(C(3)^C(4]L)C(4]L)) 1x6 R=[C(1])EXP[-C(2]L+C(3])L^C(4]L)(C(5)LEXP(C(3)L)) 1x8 R=[C(1])EXP[-C(2]L+C(3]L^C(4]L)(C(5)LEXP(C(3)L)) 2x1 R=[C(1)PEXP[-C(2]L)(EXP[C(3)L)) 2x2 R=[C(1)PEXP[C(2]L)](L(1)PEXP[C(3)L)) 2x3 R=[C(1)PEXP[C(2]L)](L(1)PEXP[C(3)L)) 2x4 R=[C(1)PEXP[C(2]L)](L(1)PEXP[C(3)L)) 2x6 R=[C(1)PEXP[C(2]L)](L(1)PEXP[C(3)L)) 2x6 R=[C(1)PEXP[C(2]L)](C(3)LPEXP[C(3)L)) 2x6 R=[C(1)PEXP[C(2]L)](C(3)LPEXP[C(4)L)) 2x6 R=[C(1)PEXP[C(2]L)](C(3)LPEXP[C(4)L)) 2x6 R=[C(1)PEXP[C(2)L)](C(3)LPEXP[C(4)L)) 2x6 R=[C(1)PEXP[L^C(2)])(C(1)(L-[(2)]L^C(4)L)) 2x6 R=[C(1)PEXP[L^C(2)])(C(3)LPEXP[C(4)L)) 2x7 R=[C(1)PEXP[L^C(2)])(C(1)(L(-[(2)]LC(4)L))) 3x6 R=[C(1)PEXP[L^C(2)])(C(1)(L-[(2)]L(2)LPEXP[C(4)L))) 3x7 R=[C(1)PEXP[L^C(2)])(C(1)(L(-[(3)]L^C(4)L))) 3x6 R=[C(1)PEXP[L^C(2)])(C(1)(L(2)PEXP[L^C(2)]))) 3x6 R=[C(1)PEXP[L^C(2)])(C(1)(L)(C(2)PEXP[L^C(3)]))) 3x7 R=[C(1)PEXP[L^C(2)])(C(1)LPEXP[1x4	R=(EXP(C(1)*L^C(2)))*(1-(1-C(3)+C(4)*L^(1/C(5)))^C(5))
1%6 $R = (EXP[C(1)!L^{C}(2))!C(3)!L^{C}(3)!L^{C}(4)). 1%7 R = (C(1)!EXP[-C(2)!L^{+}C(3)!L^{+}C(4)).(C(5)!L^{+}XP[-C(3)!L^{+}C(4))). 1%8 R = (C(1)!EXP[-C(2)!L^{+}C(3)!L^{+}C(4)).(C(5)!L^{+}XP[-C(3)!L^{+}C(4))). 1%9 R = (C(1)!EXP[-C(2)!L^{+}C(3)!L^{+}C(4)].(C(1)!EXP[-C(3)!L)). 2x1 R = (C(1)!EXP[-C(2)!L).(1+(1-C(3)+EXP[-C(3)!L)). 2x3 R = (C(1)!EXP[-C(2)!L).(1+(1-C(3)+EXP[-C(3)!L)). 2x4 R = (C(1)!EXP[-C(2)!L).(1+(1-C(3)+EXP[-C(3)!L)). 2x5 R = (C(1)!EXP[-C(2)!L).(1+(2)!EXP[-C(3)!L)). 2x6 R = (C(1)!EXP[-C(2)!L).(C(3)!L)!EXP[-C(3)!L)). 2x6 R = (C(1)!EXP[-C(2)!L).(C(3)!L)!EXP[-C(3)!L). 2x6 R = (C(1)!EXP[-C(2)!L).(C(3)!L)!EXP[-C(4)!L). 3x1 R = (C(1)!EXP[-C(2)!L).(C(3)!L)!EXP[-C(4)!L). 3x4 R = (C(1)!EXP[L^{-}C(2)!L)!C(3)!L^{-}(2)!L^{-}C(4)!L). 3x6 R = (C(1)!EXP[L^{-}C(2)!)!C(2)!L^{-}EXP[L^{-}C(2)!L). 3x6 R = (C(1)!EXP[L^{-}C(2)!L)!EXP[-C(2)!L]. 3x6 R = (C(1)!EXP[L^{-}C(2)!L)!EXP[-C(2)!L]. 3x7 R = (C(1)!EXP[L^{-}C(2)!L)!EXP[-C(2)!L]. 3x6 R = (C(1)!EXP[L^{-}C(2)!L]!EXP[-L^{-}C(2)!L]. 3x6 R = (C(1)!EXP[L^{-}C(2)!L]!EXP[-L^{-}C(2)!$	1x5	R=(EXP(C(1)*L^C(2)))*(C(3)-C(4)*L^C(5))
hz7 R=[C(1)*L>(C(2))*(C(3)*(L)(C(5)*EXP(C(3)*L)C(4))) hz8 R=[C(1)*EXP[-C(2)*L-C(3)*(C(5)*EXP(C(3)*L)) hz8 R=[C(1)*EXP[-C(2)*L-C(4))*(C(5)*EXP(C(3)*L)) hz4 R=[C(1)*EXP[-C(2)*L)*(C(4))*(C(5))*EXP(C(3)*L)) hz4 R=[C(1)*EXP[-C(2)*L)*(1+(1+C(3)*C(4)*L)*(1+(C(5))*C(5))) hz4 R=[C(1)*EXP[-C(2)*L)*(1+(1+(2)*C(4)*L))*(C(5))*EXP(C(4)*L)) hz6 R=[C(1)*EXP[-C(2)*L)*(1+(1+L)C(3)*C(4)*L)) hz6 R=[C(1)*EXP[-C(2)*L)*(1+(1+L)C(3)*C(4)*L)) hz6 R=[C(1)*EXP[-C(2)*L)*(1+(1+L)C(3)*C(4)*L)) hz6 R=[C(1)*EXP[-C(2))*(1+(1+L)C(3)*C(4)) hz6 R=[C(1)*EXP[-C(2))*(1+(2)]*(1+(2))*(2)*(2)*(2) hz7 R=[C(1)*EXP[L^-C(2))*(1+(1+L)*(2))*(2)*(2) hz6 R=[C(1)*EXP[L^-C(2))*(1+(1+L)*(1)*(2))*(2)*(2) hz7 R=[C(1)*EXP[L^-C(2))*(2)*(1+(1+L)*(1)*(2))*(2)*(2) hz8 R=[C(1)*EXP[L^-C(2))*(2)*(2)*(2)*(2)*(2)*(2)*(2)*(2)*(2)	1x6	R=(EXP(C(1)*L^C(2)))*(C(3)*@LOG(C(4)/L))
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1x7	R=(EXP(C(1)*L^C(2)))*(C(3)*(1-(L/C(4)))^C(5))
1x9 R=(C(1)*EXP[-C(2)*L+C(3)*L/C(4))):(C(5)/L)*EXP[C(3)*L) 2x1 R=(C(1)*CZ[L)*(EXP[C(3)*L)) 2x2 R=(1-C(2)*L/C(4))*(C(1)*EXP[C(3)*L)) 2x3 R=(C(1)*EXP[C(2)*L)(1-L(-C(3)*C)) 2x4 R=(C(1)*EXP[C(2)*L)(1-L(-C(3)*C))+C(4)*L)) 2x5 R=(C(1)*CXP[C(2)*L))*(C(1)*CXP[C(4)*L)) 2x6 R=(C(1)*EXP[C(2)*L))*(C(1)*EXP[C(4)*L)) 2x6 R=(C(1)*EXP[C(2)*L))*(C(1)*EXP[C(4)*L)) 2x6 R=(C(1)*EXP[C(2)*L))*(C(3)*L*EXP[C(4)*L)) 2x6 R=(C(1)*EXP[C(2)*L))*(C(3)*L*EXP[C(4)*L)) 2x7 R=(C(1)*EXP[L^C(2))*(C(1)*L+C(2))*EXP[C(4)*L)) 3x1 R=(C(1)*EXP[L^C(2))*(C(1)*L)-(C(3)*L^C(4)) 3x2 R=(C(1)*EXP[L^C(2))*(C(1)*L)-(C(2)*L*EXP[L^C(2))) 3x4 R=(C(1)*EXP[L^C(2))*(C(1)*(1-C(3)*L^C(4))) 3x5 R=(C(1)*EXP[L^C(2))*(C(1)*L)-(C(2)*L^C(3)*L) 3x6 R=(C(1)*EXP[L^C(2))*(C(1)*L)-(C(2)*L*EXP[L^C(3))) 3x7 R=(EXP[L^C(2))*C(1)*(L^C(2))*CEXP[L^C(3)]) 3x8 R=(C(1)*C(2)*(C(3)*L^C(2)+1)) 4x4 R=(C(1)*C(2)*(C(3)*L^C(2)+L)-(C(3)*L) 4x1 R=(C(1)*C(2)*(C(3)*L^C(2)+1)) 4x6 R=(C(1)*C(2)*(C(3)*L)/(C(3)+L)/(C(4))) <th>1x8</th> <th>R=(C(1)*EXP(-C(2)*L+C(3)*L^C(4)))-(C(5)*EXP(C(3)*L^C(4)))</th>	1x8	R=(C(1)*EXP(-C(2)*L+C(3)*L^C(4)))-(C(5)*EXP(C(3)*L^C(4)))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1x9	R=(C(1)*EXP(-C(2)*L+C(3)*L^C(4)))-((C(5)/L)*EXP(C(3)*L^C(4)))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2x1	R=(C(1)-C(2)*L)*(EXP(C(3)*L))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2x2	R=(1-C(2)*L^C(4))*(C(1)*EXP(C(3)*L))
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2x3	R=(C(1)*EXP(C(2)*L))
$ \begin{array}{c c} 2x5 & R=[C(3)-C(1)^r(E)-C(2)^r(E)+C(4)^r(L)) \\ \hline 2x6 & R=(C(1)^r(Q)-OG(C(2)L))^r(E)+C(C(3)^rL)) \\ \hline 2x7 & R=(E)+C(2)^r(L)^r(C)^r(1)-C(2)^r(L)^r(L)^r(L)^r(L)^r(L)^r(L)^r(L)^r(L$	2x4	R=(C(1)*EXP(C(2)*L))*(1-(1-C(3)+C(4)*(L)*(1/C(5)))*C(5))
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2x5	$R=(C(3)-C(1)*L^{C}(2))*(EXP(C(4)*L))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2x6	$R = (C(1)^* (@LOG(C(2)/L))^* EXP(C(3)^*L))$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2x7	$R = (FXP(C(2)^*L))^*C(1)^*((1-(L/C(3)))^*C(4))$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2x8	R=(C(1)*EXP(C(2)*1))(C(3)*EXP(C(4)*1))
$\begin{array}{c c} 2.5. \\ (C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.2. R=(C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.3. R=(C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.3. R=(C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.5. R=(C(3)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.5. R=(C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.6. R=(C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.7. R=(EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2))) \\ (3.8. R=(C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(2)) \\ (3.8. R=(C(1)^{*} EXP[L^{C}(2)): (C(3)^{*} EXP[L^{C}(3))) \\ (3.8. R=(C(1)^{*} EXP[L^{C}(3)): (C(3)^{*} EXP[L^{C}(3))) \\ (3.8. R=(C(1)^$	2×9	$R = (C(1)^* E \times P(C(2)^* L) \setminus (C(3)^* L) \times P(C(4)^* L))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3×1	$P = (C(1)*E \times P(1 \wedge C(2))) (C(3)*1*E \times P(1 \wedge C(2)))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	312	P = (C(1) E X P(L C(2))) + (C(3) E E X P(L C(2))) $P = (C(1) E X P(L C(2))) + (C(3) E L C(4))$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3/2	$D = (C(1) E \times C(1) C(2)) (1 - C(3) E - C(4))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2×4	$R = (C(1) E X F ((E C(2)) - C(3) E))$ $D = (C(1)^* E X D ((AC(2)))^* (1 (1 C(2)) - C(4)^* (1 W(4) C(5))) (AC(5))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3/4	$R = (O(1) \in A \in (C(2))) (1 - (1 - O(3) + O(4)) (C) (1 + O(3)))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	387	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3X8	$R=(U(1)^{*}E \land P((L^{*}U(3))-U(4)^{*}L))-(U(2)^{*}E \land P((L^{*}U(3)))$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3X9	$R=(O(1)^{n}EAP((L^{n}O(3))+O(4)^{n}L)+((O(2)/L)^{n}EAP((L^{n}O(3)))$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4X1	$R=(U(1)^{n}L^{2}U(2))-(U(3)^{n}L^{2}(U(2)+1))$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4X2	R=(C(1)*L^C(2))-(C(3)*L^C(4))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4x3	R=(C(1)*L^C(2))*EXP(-C(3)*L)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4x4	R=(C(1)*L^C(2))*(1-(1-C(3)+C(4)*(L)*(1/C(5)))^C(5))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4x5	R=(L^C(1))*(C(2)-C(3)*L^C(4))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4x6	R=(C(1)*L^C(2))*@LOG(C(3)/L)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4x/	R=(C(1)*L^C(2))*((1-(L/C(3)))^C(4))
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4x8	R=(C(1)*(L^C(2))*EXP(-C(3)*L))-(C(4)*L^C(2))
$5x1$ $R=(C(1)+C(2)^*@LOG(L))^*([-C(3)-C(4)^*L)$ $5x2$ $R=(C(1)+C(2)^*@LOG(L))^*([-C(3)^*(L^C(4)))$ $5x3$ $R=(C(1)+C(2)^*@LOG(L))^*(EXP(-C(2)^*L))$ $5x4$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)-C(4)^*L^C(5))$ $5x5$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)-C(4)^*L^C(5))$ $5x6$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ $5x6$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ $5x7$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ $5x8$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ $5x9$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)-C(5))$ $6x1$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)^-C(5))$ $6x2$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)^-C(5))$ $6x3$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(1/C(6)))^-C(6))$ $6x4$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(C(6)))$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(C(6)))$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(C(6)))$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(C(6)))$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L)^*(2(4)))$ $6x6$ $R=(C(1)-$	4x9	R=(C(1)*(L*C(2))*EXP(-C(3)*L))-(C(4)*L*(C(2)-1))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5x1	R=(C(1)+C(2)*@LOG(L))*(C(3)-C(4)*L)
5x3 R=(C(1)+C(3)*@LOG(L))*(EXP(-C(2)*L)) 5x4 R=(C(1)+C(2)*(@LOG(L))*((-(3)+C(4)*L(-'(1/C(5))))*C(5)) 5x5 R=(C(1)+C(2)*@LOG(L))*(C(3)+C(4)*L^-((5)) 5x6 R=(C(1)*@LOG(C(2)/L))+(C(3)*@LOG(L)*(C(4))*(D-(5)) 5x7 R=(C(1)+C(2)*@LOG(L))*((-(3)*EXP(-C(4)*L)-C(5)) 5x8 R=(C(1)+C(2)*@LOG(L))*((-(3)*EXP(-C(4)*L)-C(5)) 5x9 R=(C(1)+C(2)*@LOG(L))*(C(3)*EXP(-C(4)*L)-C(5)) 6x1 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)*L^{-C(5)}) 6x2 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)*L^{-C(5)}) 6x3 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)*L^{-C(5)}) 6x4 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)*L^{-C(5)}) 6x5 R=(C(1)-C(2)*EXP(-C(3)*L))*(0-C(6)) 6x6 R=(C(1)-C(2)*EXP(-C(3)*L))*(0-C(6)(L)) 6x7 R=(C(1)-C(2)*EXP(-C(3)*L))*(0-C(6)(C(4)/L)) 6x8 R=(C(1)-C(2)*EXP(-C(3)*L))*(0-C(6)(C(4)/L)) 6x9 R=(C(1)-C(2)*EXP(-C(3)*L))*(-C(4)+C(5)*EXP(-C(6)*L)) 7x1 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)+C(5)*(L)/(1/C(6)))^{-C(6)}) 7x3 R=(C(1)*(1+C(2)*EXP(-C(3)*L)))*(1-C(4)*L^{-C(5)*L})) 7x4 R=(C(1)*(1+C(2)*EXP(-C(3)*L)))*(1+C(4)*EXP(-C(5)*L)) 7x6 R=(C(1)*(1+C(2)*L)/C(3))/(1+C(4)*EXP(-C(3)*L))) 7x7	5x2	R=(C(1)+C(2)*@LOG(L))*(1-C(3)*(L^C(4)))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5x3	R=(C(1)+C(3)*@LOG(L))*(EXP(-C(2)*L))
5x5 R=(C(1)+C(2)*@LOG(L))*(C(3)-C(4)*L^C(5)) 5x6 R=(C(1)*@LOG(C(2)/L))+(C(3)*@LOG(L)*@LOG(C(2)/L)) 5x7 R=(C(1)+C(2)*@LOG(L))*(1-(L/C(3))/C(4)) 5x8 R=(C(1)+C(2)*@LOG(L))*(C(3)*EXP(-C(4)*L)-C(5)) 5x9 R=(C(1)+C(2)*@LOG(L))*(C(3)*EXP(-C(4)*L)-C(5)/L)) 6x1 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)-C(5)*L) 6x2 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)-C(5)*L) 6x3 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)+C(5)*(L)^{+}(1/C(6))) 6x4 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)+C(5)*(L)^{+}(1/C(6))) 6x5 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(L/C(4))L) 6x6 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(L/C(4))L) 6x7 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(L/C(4))L)) 6x8 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(L/C(4))L)) 6x9 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)+C(5)*EXP(-C(6)*L)) 6x9 R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)+C(5)*EXP(-C(6)*L)) 7x1 R=(C(1)-C(2)*EXP(-C(3)*L)))*(1-C(4)+C(5)*EXP(-C(6)*L)) 7x3 R=(C(1)*C(2)*EXP(-C(3)*L)))*(1-C(4)+C(5)*(L)*(1)) 7x4 R=(C(1)*(L)/(1+C(2)*EXP(-C(3)*L)))*(1-C(4)*EXP(-C(5)*L)) 7x6 R=(C(1)*(1)*(1-(C(2)*L)-C(3))/(1+C(4)*EXP(-C(5)*L))) 7x7 R	5x4	R=(C(1)+C(2)*(@LOG(L)))*(1-(1-C(3)+C(4)*(L^(1/C(5))))^C(5))
5x6 $R=(C(1)^*@LOG(C(2)/L))+(C(3)^*@LOG(L)^*@LOG(C(2)/L))$ 5x7 $R=(C(1)+C(2)^*@LOG(L))^*((-(3)^*EXP(-C(4)^*L)-C(5))$ 5x8 $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ 5x9 $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ 6x1 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)^*(5)$ 6x2 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)^*(5)$ 6x3 $R=(C(1)^-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)^*(5)$ 6x4 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)^*(5)^*(1)^*(C(6)))$ 6x5 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-C(4)^*L)^*(1)^*(1)^*(6)))^*(C(6))$ 6x6 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^*(C(5)))$ 6x6 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^*(C(5)))$ 6x7 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^*(C(5)))$ 6x8 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(-C(4)+C(5)^*EXP(-C(6)^*L)))$ 6x9 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(C(4)^*L)^*(C(5)))$ 7x1 $R=(C(1)-C(2)^*EXP(-C(3)^*L)))^*(1-(C(4)^*L)^*(C(5)))$ 7x3 $R=(C(1)^*(L)^*(L)^*(L)^*(L)^*(L)^*(L)^*(L)^*(L$	5x5	R=(C(1)+C(2)*@LOG(L))*(C(3)-C(4)*L^C(5))
$5x7$ $R=(C(1)+C(2)^*@LOG(L))^*((1-(L/C(3)))^C(4))$ $5x8$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ $5x9$ $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5)/L))$ $6x1$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(4)^*L-C(5))$ $6x2$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(4)^*L-C(5))$ $6x3$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(4)^*L-C(5))$ $6x4$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(1-C(4)^*L-C(5)^*(L)^*(1/C(6))))^{-C(6)})$ $6x5$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(1/C(6)))^{-C(6)})$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(1/C(6)))^{-C(6)})$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^{-C(5)}$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^{-C(5)}$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^{-C(5)}$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^{-C(5)}$ $6x6$ $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(C(4)^*L)^{-C(6)})$ $6x7$ $R=(C(1)-C(2)^*EXP(-C(3)^*L)))^*(1-(C(4)^*L)^{-C(6)})$ $6x8$ $R=(C(1)-C(2)^*EXP(-C(3)^*L)))^*(1-(C(4)^*L)^{-C(6)})$ $6x9$ $R=(C(1)^*(L)^*(L)^*(L)^*(L)^*(L)^*(L)^*(L)^*(L$	5x6	R=(C(1)*@LOG(C(2)/L))+(C(3)*@LOG(L)*@LOG(C(2)/L))
5x8 $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5))$ 5x9 $R=(C(1)+C(2)^*@LOG(L))^*(C(3)^*EXP(-C(4)^*L)-C(5)/L)$ 6x1 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(4)^*L-C(5)/L)$ 6x2 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(4)^*L-C(5)/L)$ 6x3 $R=(C(1)^*EXP(-C(2)^*L))^*(C(4)^*L-C(5)/L)$ 6x4 $R=(C(1)^*EXP(-C(3)^*L))^*(1-(4)^*L-C(5)/(L)^*(1/C(6)))^*C(6))$ 6x5 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(1/C(6)))^*C(6))$ 6x6 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(C(4)-C(5)^*(L)^*(1/C(6)))^*C(6))$ 6x6 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(L/C(4)))^*(C(5))^*(L)^*(1/C(6)))^*(C(5))^*(L)^*(1/C(6)))^*(C(5))^*(L)^*(1/C(6)))^*(C(5))^*(L)^*(1/C(6)))^*(C(6))^*(L))$ 6x7 $R=(C(1)-C(2)^*EXP(-C(3)^*L))^*(1-(C(4)^*EXP(-C(6)^*L)))^*(1/C(6))^*(L))^*(1/C(6)))^*(C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6)))^*(C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6)))^*(C(6)))^*(C(6))^*(L))^*(1/C(6))^*(L))^*(1/C(6))^*(L))^*(L))^*(1/C(6))^*(L))^*(L))^*(1/C(6))^*(L))^*(L))^*(L)^*(L))^*(L))^*(L)^*(L$	5x7	R=(C(1)+C(2)*@LOG(L))*((1-(L/C(3)))^C(4))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5x8	R=(C(1)+C(2)*@LOG(L))*(C(3)*EXP(-C(4)*L)-C(5))
$\begin{array}{c c c c c c c c EXP(-C(3)^{t}L)^{*}(C(4)-C(5)^{t}L) \\ \hline 6x2 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(1-C(4)^{t}L^{C}(5)) \\ \hline 6x3 & R=(C(1)^{t}EXP(-C(2)^{t}L))^{*}(C(3)^{t}EXP(-C(4)^{t}L)) \\ \hline 6x4 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(1-(1-C(4)+C(5)^{t}L)^{*}(1/C(6)))^{C}(6)) \\ \hline 6x5 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(C(4)-C(5)^{t}(L)^{*}(C(6))) \\ \hline 6x6 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(C(4)-C(5)^{t}(L)^{*}(C(6))) \\ \hline 6x7 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(-C(4)+C(5)^{t}EXP(-C(6)^{t}L)) \\ \hline 6x8 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(-C(4)+C(5)^{t}EXP(-C(6)^{t}L)) \\ \hline 6x9 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(-C(4)+C(5)^{t}EXP(-C(6)^{t}L)) \\ \hline 7x1 & R=(C(1)-C(2)^{t}EXP(-C(3)^{t}L))^{*}(1-C(4)^{t}L^{C}(5)) \\ \hline 7x3 & R=(C(1)^{t}(1+C(2)^{t}EXP(-C(3)^{t}L)))^{*}(1-C(4)^{t}L^{C}(5)) \\ \hline 7x4 & R=(C(1)^{t}(1+C(2)^{t}EXP(-C(3)^{t}L)))^{*}(1-(1-C(4)^{t}EXP(-C(5)^{t}L)) \\ \hline 7x6 & R=(C(1)^{t}(2)^{t}L^{C}(3)L))^{*}(1+C(4)^{t}EXP(-C(3)^{t}L)) \\ \hline 7x7 & R=(C(1)^{t}(1-(L/C(4))L))^{*}(1+C(4)^{t}EXP(-C(3)^{t}L)) \\ \hline 7x8 & R=(C(1)^{t}EXP(-C(2)^{t}L)-C(3))^{*}(1+C(4)^{t}EXP(-C(5)^{t}L)) \\ \hline 7x9 & R=(C(1)^{t}EXP(-C(2)^{t}L)-C(3))^{*}(1+C(4)^{t}EXP(-C(5)^{t}L)) \\ \end{array}$	5x9	R=(C(1)+C(2)*@LOG(L))*(C(3)*EXP(-C(4)*L)-(C(5)/L))
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6x1	R=(C(1)-C(2)*EXP(-C(3)*L))*(C(4)-C(5)*L)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6x2	R=(C(1)-C(2)*EXP(-C(3)*L))*(1-C(4)*L^C(5))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6x3	R=(C(1)*EXP(-C(2)*L))-(C(3)*EXP(-C(4)*L))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6x4	R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(1-C(4)+C(5)*(L)^(1/C(6)))^C(6))
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6x5	R=(C(1)-C(2)*EXP(-C(3)*L))*(C(4)-C(5)*(L)^(C(6)))
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6x6	R=(C(1)-C(2)*EXP(-C(3)*L))*(@LOG(C(4)/L))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6x7	R=(C(1)-C(2)*EXP(-C(3)*L))*(1-(L/C(4)))^C(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6x8	R=(C(1)-C(2)*EXP(-C(3)*L))*(-C(4)+C(5)*EXP(-C(6)*L))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6x9	R=(C(1)-C(2)*EXP(-C(3)*L))*(-(C(4)/L)+C(5)*EXP(-C(6)*L))
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7x1	R=(C(1)-C(2)*L)/(1+C(3)*EXP(-C(4)*L))
$7x3$ $R=(C(1)^*EXP(-C(2)^*L))/(1+C(3)^*EXP(-C(4)^*L))$ $7x4$ $R=(C(1)/(1+C(2)^*EXP(-C(3)^*L)))^*(1-(1-C(4)+C(5)^*(L)^*(1/C(6)))^*C(6))$ $7x5$ $R=(C(1)-C(2)^*L^*C(3))/(1+C(4)^*EXP(-C(5)^*L))$ $7x6$ $R=(C(1)^*@LOG(C(4)/L))/(1+C(2)^*EXP(-C(3)^*L))$ $7x7$ $R=(C(1)^*(1-(L/C(4)))/(2(5))/(1+C(2)^*EXP(-C(3)^*L)))$ $7x8$ $R=(C(1)^*EXP(-C(2)^*L)-C(3))/(1+C(4)^*EXP(-C(5)^*L))$ $7x9$ $R=(C(1)^*EXP(-C(2)^*L)-C(3)/L))/(1+C(4)^*EXP(-C(5)^*L))$	7x2	R=(C(1)/(1+C(2)*EXP(-C(3)*L)))*(1-C(4)*L^C(5))
7x4 R=(C(1)/(1+C(2)*EXP(-C(3)*L)))*(1-(1-C(4)+C(5)*(L)^{(1/C(6))})*C(6)) 7x5 R=(C(1)-C(2)*L^C(3))/(1+C(4)*EXP(-C(5)*L)) 7x6 R=(C(1)*@LOG(C(4)/L))/(1+C(2)*EXP(-C(3)*L)) 7x7 R=(C(1)*(1-(L/C(4)))*C(5))/(1+C(2)*EXP(-C(3)*L)) 7x8 R=(C(1)*EXP(-C(2)*L)-C(3))/(1+C(4)*EXP(-C(5)*L)) 7x9 R=(C(1)*EXP(-C(2)*L)-C(3)/L))/(1+C(4)*EXP(-C(5)*L))	7x3	R=(C(1)*EXP(-C(2)*L))/(1+C(3)*EXP(-C(4)*L))
7x5 R=(C(1)-C(2)*L^C(3))/(1+C(4)*EXP(-C(5)*L)) 7x6 R=(C(1)*@LOG(C(4)/L))/(1+C(2)*EXP(-C(3)*L)) 7x7 R=(C(1)*(1-(L/C(4)))/(C(5))/(1+C(2)*EXP(-C(3)*L))) 7x8 R=(C(1)*EXP(-C(2)*L)-C(3))/(1+C(4)*EXP(-C(5)*L))) 7x9 R=(C(1)*EXP(-C(2)*L)-C(3)/L))/(1+C(4)*EXP(-C(5)*L)))	7x4	R=(C(1)/(1+C(2)*EXP(-C(3)*L)))*(1-(1-C(4)+C(5)*(L)^(1/C(6)))^C(6))
7x6 R=(C(1)*@LOG(C(4)/L))/(1+C(2)*EXP(-C(3)*L)) 7x7 R=(C(1)*(1-(L/C(4)))^C(5))/(1+C(2)*EXP(-C(3)*L)) 7x8 R=(C(1)*EXP(-C(2)*L)-C(3))/(1+C(4)*EXP(-C(5)*L)) 7x9 R=(C(1)*EXP(-C(2)*L)-C(3)/L))/(1+C(4)*EXP(-C(5)*L))	7x5	R=(C(1)-C(2)*L^C(3))/(1+C(4)*EXP(-C(5)*L))
7x7 R=(C(1)*(1-(L/C(4)))^C(5))/(1+C(2)*EXP(-C(3)*L)) 7x8 R=(C(1)*EXP(-C(2)*L)-C(3))/(1+C(4)*EXP(-C(5)*L)) 7x9 R=(C(1)*EXP(-C(2)*L)-C(3)/L))/(1+C(4)*EXP(-C(5)*L))	7x6	R=(C(1)*@LOG(C(4)/L))/(1+C(2)*EXP(-C(3)*L))
7x8 R=(C(1)*EXP(-C(2)*L)-C(3))/(1+C(4)*EXP(-C(5)*L)) 7x9 R=(C(1)*EXP(-C(2)*L)-(C(3)/L))/(1+C(4)*EXP(-C(5)*L))	7x7	R=(C(1)*(1-(L/C(4)))^C(5))/(1+C(2)*EXP(-C(3)*L))
7x9 R=(C(1)*EXP(-C(2)*L)-(C(3)/L))/(1+C(4)*EXP(-C(5)*L))	7x8	R=(C(1)*EXP(-C(2)*L)-C(3))/(1+C(4)*EXP(-C(5)*L))
	7x9	R=(C(1)*EXP(-C(2)*L)-(C(3)/L))/(1+C(4)*EXP(-C(5)*L))

APÊNDICE G: RESULTADOS DO TESTE BDS

O Apêndice G mostra o resultado do Teste BDS aplicado nos resíduos dos modelos analisados nos Capítulos 6. Para os conjuntos de dados testados, utilizouse m = 2, 3 e 4, ϵ = 0,5, 1,0, 1,5, 2,0 e 2,5 e 10.000 repetições para o *bootstrap*.

Metodologia I:

As Tabelas 54 a 57 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia do Recôncavo, do Rio Grande do Norte/Ceará, de Sergipe/Alagoas e do Golfo do México.

	Tabela 3 - Teste BDS -	Metodologia I	I – Bacia do	Recôncavo:	Resíduos do	Modelo Knoring	7
--	------------------------	---------------	--------------	------------	-------------	----------------	---

	Bootstrap Prob.								
٣	0,5	1,0	1,5	2,0	2,5				
2	0,1088	0,0456	0,0062	0,0322	0,0456				
3	0,0984	0,1010	0,0100	0,0512	0,0780				
4	0,1110	0,0766	0,0040	0,0132	0,0102				

Fonte: o autor.

Tabela 4 - Teste BDS - Metodologia I - Bacia do RN/CE: Resíduos do Modelo Knoring_8.

	Teste BDS - Residuo do Modelo Knoring 8							
	Bootstrap Prob.							
۳ ۳	0,5	1,0	1,5	2,0	2,5			
2	0,7584	0,7774	0,9218	0,5978	0,7194			
3	0,9144	0,5738	0,4330	0,8522	0,6130			
4	0,8978	0,4038	0,6802	0,9316	0,7712			

Fonte: o autor.

Tabela 5 - Teste BDS - Metodologia I - Bacia de SE/AL: Resíduos do Modelo Knoring_8.

T(Teste BDS - Resíduo do Modelo Knoring_8								
Bootstrap Prob.									
β m	0.5	1.0	1.5	2.0	2.5				
2	0.2904	0.2706	0.8334	0.5414	0.7606				
3	0.2556	0.5414	0.1788	0.5162	0.9030				
4	0.1874	0.1646	0.4606	0.6440	0.9458				

Fonte: o autor.

Tabela 6 - Teste BDS - Metodologia I - Golfo do México: Resíduos do Modelo Knoring 9.

E	BDS Test - Resíduo do Modelo Knoring_9								
Bootstrap Prob.									
» ۳	0,5	1,0	1,5	2,0	2,5				
2	0.6336	0.4338	0.4732	0.9416	0.7220				
3	0.8170	0.3694	0.0444	0.1230	0.0382				
4	0.4400	0.8202	0.1180	0.2350	0.1864				

Fonte: o autor.

As Tabelas 58 a 62 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia de Campos, do Recôncavo, do Rio Grande do Norte/Ceará, de Sergipe/Alagoas e do Golfo do México.

Tabela 7 - Teste BDS - Metodologia II - Bacia de Campos: Resíduos do Modelo 6x7.

	Teste BDS - Residuo do Modelo 6x7							
Bootstrap Prob.								
" Е	0,5	1,0	1,5	2,0	2,5			
2	0,3088	0,3516	0,4874	0,5236	0,8516			
3	0,0916	0,2840	0,4616	0,6138	0,7856			
4	0,0938	0,6416	0,4836	0,4000	0,6760			
n .								

Fonte: o autor.

Tabela 8 - Teste BDS - Metodologia II - Bacia do Recôncavo: Resíduos do Modelo 7x8.

	Teste BDS - Residuo do Modelo 7x8								
Bootstrap Prob.									
۴ m	0,5	1,0	1,5	2,0	2,5				
2	0.2138	0.1458	0.2442	0.5566	0.9838				
3	0.4388	0.3822	0.3240	0.9234	0.5688				
4	0.5252	0.3366	0.2746	0.9784	0.5706				

Fonte: o autor.

Tabela 9 - Teste BDS - Metodologia II - Bacia do RN/CE: Resíduos do Modelo 1x2.

	Teste BDS - Resíduo do Modelo 1×2								
	Bootstrap Prob.								
" Е	0,5	1,0	1,5	2,0	2,5				
2	0,7674	0,6964	0,4352	0,9110	0,7258				
3	0,3920	0,8746	0,2866	0,5800	0,6400				
4	0,3894	0,7300	0,4232	0,7650	0,7012				

Fonte: o autor.

 Tabela 10 - Teste BDS - Metodologia II - Bacia de SE/AL: Resíduos do Modelo 7x9.

 Teste BDS - Resíduo do Modelo 7x9

-								
Ľ	Bootstrap Prob.							
ľ	з / У	0.5	1.0	1.5	2.0	2.5		
ſ	2	0.8198	0.8686	0.2300	0.3258	0.6600		
I	3	0.7544	0.7130	0.0396	0.1176	0.5738		
Ľ	4	0.8936	0.4404	0.4020	0.5050	0.9002		

Fonte: o autor.

 Tabela 11 - Teste BDS – Metodologia II – Golfo do México: Resíduos do Modelo 7x8.

 BDS Test - Resíduo do Modelo 7x8.

BBS Test - Tresiddo do Modelo Txo								
Bootstrap Prob.								
з , ,	0,5	1,0	1,5	2,0	2,5			
2	0.6810	0.4504	0.9812	0.5728	0.7496			
3	0.5588	0.1516	0.7064	0.7724	0.4440			
4	0.3142	0.2338	0.7680	0.7406	0.3322			

Fonte: o autor.

Metodologia III

As Tabelas 63.a, 63.b e 63.c mostram, para as curvas-S definidas no item 6.1.3.1, os *p*-values do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia do Recôncavo.

Tabela 12 - Metodologia III - Recôncavo: Teste BDS nos resíduos dos três ajustes propostos.

Tabela 63-a: Modelo 7x2: 11 anos iniciais.

	Teste BDS - Resíduo do Modelo 7x2									
Bootstrap Prob.										
ω m	0,5	1,0	1,5	2,0	2,5					
2	0.6220	0.4797	0.9144	0.6220	0.6427					
3	0.7932	0.2985	0.6760	0.5462	0.5639					
4	0.8616	0.4816	0.8921	0.9180	0.7930					

Tabela 63-b: Modelo 6x9: anos 12 a 26.

Teste BDS - Resíduo do Modelo 6x9												
Bootstrap Prob.												
е С	ε 0,5 1,0 1,5 2,0 2,5											
2	0.5615	0.6352	0.9110	0.5082	0.6716							
3	0.4930	0.8206	0.9362	0.7488	0.7475							
4	0.3076	0.5759	0.8198	0.6864	0.6180							

Tabela 63-c: Modelo 1x2: anos 27 a 39.

Teste BDS - Resíduo do Modelo 1×2											
Bootstrap Prob.											
°,	^ε 0,5 1,0 1,5 2,0 2,5										
2	0.4470	0.1693	0.4022	0.3876	0.7113						
3	0.8202	0.0614	0.0784	0.0988 0.	0.1997						
4	0.7365	0.1087	0.0608	0.0904	0.0960						

Fonte: o autor.

Metodologia IV

As Tabelas 64 a 67 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia de Campos, do Recôncavo, do Rio Grande do Norte/Ceará e de Sergipe/Alagoas.

	Teste BDS - Residuo do Modelo L_9											
	Bootstrap Prob.											
	з ~	0.5	1.0	1.5	2.0	2.5						
I	2	0.0684	0.0860	0.9352	0.6096	0.4468						
	3	0.0762	0.0216	0.4600	0.9216	0.6636						
	4	0.0642	0.0098	0.2392	0.7448	0.5314						

 Tabela 13 - Teste BDS - Metodologia IV - Bacia de Campos: Resíduos do Modelo L_9.

Fonte: o autor.

Tabela 14 - Teste BDS - Metodologia IV - Bacia do Recôncavo: Resíduos do Modelo L_2.

Teste BDS - Resíduo do Modelo L_2											
Bootstrap Prob.											
μ Έ	m ^ε 0.5 1.0 1.5 2.0 2.5										
2	0.0006	0.0016	0.0094	0.0090	0.1244						
3	0.0006	0.0006	0.0018	0.0048	0.1614						
4	0.0014	0.0002	0.0004	0.0016	0.1778						

Fonte: o autor.

Tabela 15 - Teste BDS - Metodologia IV - Bacia do RN/CE: Resíduos do Modelo L_9.

Teste BDS - Resíduo do Modelo L_9										
Bootstrap Prob.										
β	0.5	1.0	1.5	2.0	2.5					
2	0.0832	0.0054	0.0144	0.0714	0.2279					
3	0.7438 0.0218 0.0580 0.4582 0.448									
4	0.8476	0.0888	0.0550	0.3596	0.4263					

Fonte: o autor.

Tabela 16 - Teste BDS - Metodologia IV - Bacia de SE/AL: Resíduos do Modelo L_9.

Teste BDS - Resíduo do Modelo L_9											
Bootstrap Prob.											
μ m	m ^ε 0.5 1.0 1.5 2.0 2.5										
2	0.0000	0.0000	0.0026	0.1414	0.4116						
3	0.0000	0.0000	0.0258	0.9926	0.1042						
4	0.0000	0.0000	0.0600	0.4146	0.1130						

Fonte: o autor.

Metodologia V

As Tabelas 68 a 71 mostram, respectivamente, os *p-values* do Teste BDS aplicado nos resíduos dos modelos que melhor se ajustaram aos dados da Bacia de Campos, do Recôncavo, do Rio Grande do Norte/Ceará e de Sergipe/Alagoas.

	Teste BDS - Resíduo do Modelo 1X8											
	Bootstrap Prob.											
ε 0,5 1,0 1,5 2,0 2,5												
ľ	2	0,3148	0,8344	0,7742	0,8340	0,5272						
	3	0,2030	0,4786	0,5302	0,8310	0,6406						
	4	0,2920	0,4632	0,4130	0,9056	0,7760						

Tabela 17 - Teste BDS – Metodologia V – Bacia de Campos: Resíduos do Modelo 1x8.

Fonte: o autor.

Tabela 18 - Teste BDS - Metodologia V - Bacia do Recôncavo: Resíduos do Modelo 7x3.

Teste BDS - Resíduo do Modelo 7x3												
Bootstrap Prob.												
» ۳	ε 0.5 1.0 1.5 2.0 2.5											
2	0.0004	0.0002	0.0026	0.0198	0.1336							
3	0.0010 0.0002 0.0004 0.0050 0.0											
4	0.0022 0.0000 0.0000 0.0010 0.0222											

Fonte: o autor.

Tabela 19 - Teste BDS - Metodologia V - Bacia do RN/CE: Resíduos do Modelo 1x8.

Teste BDS - Resíduo do Modelo 1X8											
Bootstrap Prob.											
٣	ε 0,5 1,0 1,5 2,0 2,5										
2	0,9714	0,0656	0,2376	0,4418	0,6664						
3	0,5982	0,0944	0,2186	0,3528	0,8668						
4	0,5330	0,1670	0,2680	0,2846	0,9922						

Fonte: o autor.

Tabela 20 - Teste BDS - Metodologia V - Bacia de SE/AL: Resíduos do Modelo 4x8.

Teste BDS - Resíduo do Modelo 4X8										
Bootstrap Prob.										
β m	0.5	1.0	1.5	2.0	2.5					
2	0.2424	0.2946	0.2072	0.5810	0.7456					
3	0.4498	0.1352	0.2620	0.6348	0.5700					
4	0.1254	0.0930	0.2186	0.7784	0.5132					

Fonte: o autor.

APÊNDICE H: ANÁLISE DOS DADOS DO RECÔNCAVO

ANO = 1964	Provada	Prod. Acum.	SOMA 1964	ANO = 1969	Provada	Prod. Acum.	SOMA 1969	Descobertas entre 1964 e 1969
AGUA GRANDE1964	21,107	19,060	40,167	AGUA GRANDE1969	11,686	29,350	41,036	
				ARACAS1969	11,146	1,770	12,916	12,916
ARATU1964	0,000	0,010	0,010	ARATU1969	0,000	0,010	0,010	
				BOM LUGAR1969	0,160	0,000	0,160	0,160
BREJ./CANABRAVA1964	0,200	0,050	0,250	BREJ./CANABRAVA1969	0,250	0,180	0,430	
BURACICA1964	12,766	2,720	15,486	BURACICA1969	25,480	7,960	33,440	
				CAMACARI1969	0,040	0,000	0,040	0,040
CANDEIAS1964	8,631	6,320	14,951	CANDEIAS1969	7,509	8,600	16,109	
CASSARONGONGO1964	0,777	0,200	0,977	CASSARONGONG01969	2,100	0,460	2,560	
DOM JOAO1964	35,060	3,200	38,260	DOM JOAO1969	33,263	6,700	39,963	
FZ. AZEVED01964	0,010	0,000	0,010	FZ. AZEVED01969	0,130	0,020	0,150	
				FZ.B.ESPERANCA1969	2,701	0,320	3,021	3,021
FZ.CARUACU1964	0,024	0,000	0,024	FZ.CARUACU1969	0,025	0,000	0,025	
FZ.IMBE1964	0,184	0,000	0,184	FZ.IMBE1969	1,661	0,430	2,091	
				FZ.ONCA1969	0,025	0,010	0,035	0,035
FZ.PANELAS1964	0,150	0,150	0,300	FZ.PANELAS1969	0,010	0,370	0,380	
				FZ.S.ESTEVA01969	0,480	0,020	0,500	0,500
GOM01964	0,050	0,000	0,050	GOM01969	0,050	0,000	0,050	
ITAPARICA1964	0,000	0,120	0,120	ITAPARICA1969	0,000	0,120	0,120	
JACUIPE1964	0,022	0,000	0,022	JACUIPE1969	0,022	0,000	0,022	
JIRIBATUBA1964	0,020	0,000	0,020	JIRIBATUBA1969	0,040	0,000	0,040	
	•			LAMARAO1969	0,037	0,000	0,037	0,037
				LG.DO PAULO1969	0,078	0,000	0,078	0,078
LOBATO1964	0,000	0,010	0,010	LOBATO1969	0,000	0,010	0,010	
				MALOMBE1969	0,060	0,000	0,060	0,060
MASSAPE1964	0,010	0,000	0,010	MASSAPE1969	7,265	0,120	7,385	
MASSUI1964	0,000	0,000	0,000	MASSUI1969	0,061	0,010	0,071	
MATA DE SAO JOAO1964	0,545	0,680	1,225	MATA DE SAO JOAO1969	0,230	0,850	1,080	
				MIRANGA1969	18,230	8,050	26,280	26,280
MORRO DO BARRO1964	0,012	0,000	0,012	MORRO DO BARRO1969	0,012	0,000	0,012	
PARAMIRIM1964	0,040	0,040	0,080	PARAMIRIM1969	0,020	0,060	0,080	
PEDRINHAS1964	0,000	0,060	0,060	PEDRINHAS1969	0,000	0,070	0,070	
POJUCA1964	0,280	0,050	0,330	POJUCA1969	0,260	0,070	0,330	
QUERERA1964	0,016	0,000	0,016	QUERERA1969	0,016	0,000	0,016	
				R.JOANES1969	0,013	0,000	0,013	0,013
ROCA GRANDE1964	0,004	0,000	0,004	ROCA GRANDE1969	0,004	0,000	0,004	
SANTANA1964	0,040	0,170	0,210	SANTANA1969	0,031	0,340	0,371	
SAO PEDRO1964	0,020	0,000	0,020	SAO PEDRO1969	0,010	0,010	0,020	
SAUIPE1964	0,060	0,000	0,060	SAUIPE1969	0,060	0,000	0,060	
				SESMARIA1969	0,020	0,000	0,020	0,020
SEMPRE VIVA1964	0,002	0,000	0,002					
SOCORRO1964	0,150	0,030	0,180	SOCORRO1969	0,190	0,030	0,220	
TAQUIPE1964	9,630	3,660	13,290	TAQUIPE1969	6,060	6,660	12,720	
				•				
Total	89,809	36,530	126.34	Total	129,43	72,60	202.03	Total = 43,16

ANO = 1981	Provada	Prod. Acum	SOMA	ANO = 1986	Provada	Prod. Acum	SOMA	Descobertas entre 1986 e 1981
AGUA GRANDE1981	2 352	41 133	43 485	AGUA GRANDE1986	3 598	43 192	46 790	chae 1500 e 1501
APRAIUS1981	2,002	0,062	0,091	APRAIUS1986	0,073	0,121	0,194	
ARACAS1981	8,093	14,202	22,295	ARACAS1986	7,040	16,947	23,987	
			0,000	ARACASLESTE1986	0,011	0,001	0,012	0,012
ARATU1981	0,005	0,009	0,014	ARATU1986	0,004	0,021	0,025	
AREA BAS-0371981	0,243	0,089	0,332	AREA BAS-0371986	0,150	0,142	0,292	0.043
BIRIBA1981	0.036	0.003	0.039	BIRIBA1986	0,035	0,007	0,043	0,043
BOM LUGAR1981	0,017	0,025	0,042	BOM LUGAR1986	0,001	0,028	0,029	
BREJ./CANABRAVA1981	0,227	0,476	0,703	BREJINHO1986	0,216	0,399	0,615	
BURACICA1981	14,920	18,787	33,707	BURACICA1986	14,015	21,164	35,179	
BURIZINHO1981	0,001	0,002	0,003	BURIZINHO1986	0,004	0,005	0,009	
CAMACARI1981	0,007	0,018	0,025	CAMACARI1986	0,011	0,022	0,033	
CAMPOS FEQUENOS1301	0,000	0,004	0,004	CANABRAVA1986	0,000	0,002	0,002	0.200
CANDEIAS1981	0,029	0,818	0,847	CANDEIAS1986	0,436	1,067	1,503	0,200
CANDEIAS1981	3,457	11,368	14,825	CANDEIAS1986	2,797	12,146	14,943	
				CARACATU1986	0,002	0,001	0,003	0,003
CASSARONGONGO1981	2,375	1,937	4,312	CASSARONGONGO1986	1,249	2,228	3,477	0.770
CONCEICAO1991	0.002	0.009	0.010	CONCEICA 01996	0,202	0,355	0,000	000,0
DOM JOAO MAR1981	11.864	10,000	22,786	DOM JOAO MAR1986	10,032	12,628	22 874	
DOM JOAO TERRA1981	0,901	2,855	3,756	DOM JOAO TERRA1986	1,840	3,181	5,021	
FZ. AZEVEDO1981	0,186	0,026	0,212	FZ. AZEVEDO1986	0,207	0,063	0,270	
				FZ.ALVORADA1986	0,974	0,384	1,358	1,358
			2.004	FZ.AZEVEDO OESTE1986	0,007	0,001	0,008	800,0
FZ.B.ESPERANCA1981	1,052	2,032	J,U84	FZ.B.ESPERANCA1986	2,927	2,364	5,291	3 779
				FZ.CARUACU1986	0,012	0,017	0.020	0.020
FZ.IMBE1981	1,827	1,804	3,631	FZ.IMBE1986	2,053	2,229	4,282	
				FZ.MAMOEIRO1986	0,006	0,016	0,022	0,022
FZ.ONCA1981	0,067	0,041	0,108	FZ.ONCA1986	0,082	0,058	0,140	
FZ.PANELAS1981	0,200	0,759	0,959	FZ.PANELAS1986	0,473	0,997	1,470	
FZ.S.ESTEVA01981	0,198	0,152	0,350	FZ.S.ESTEVA01986	0,048	0,351	0,399	0.013
GOM01981	0.190	0.312	0.502	GOMO1986	0,013	0,000	0,013	0,013
ITAPARICA1981	0,286	0,159	0,445	ITAPARICA1986	0,075	0,220	0,295	
			·	JACUMIRIM1986	0,006	0,003	0,009	0,009
JIRIBATUBA1981	0,056	0,024	0,080	JIRIBATUBA1986	0,056	0,024	0,080	
LAMARAO1981	0,012	0,003	0,015	LAMARAO1986	0,058	0,006	0,064	0.040
	0.007	0.004	0.000	LEODORIO1986	0,003	0,007	0,010	0,010
LG PALLO NORTE1981	0,055	0,034	0,003	LG PALLO NORTE1986	0,060	0,055	0,110	
LG PAULO SUL1981	0,004	0,000	0,002	LG.PAULO SUL1986	0,003	0,011	0,014	
				LG.VERDE1986	0,003	0,000	0,003	0,003
LOBATO1981	0,029	0,017	0,046	LOBATO1986	0,029	0,017	0,046	
MALOMBE1981	1,044	0,879	1,923	MALOMBE1986	0,825	1,060	1,885	
MANDACARU1981	0,014	0,005	0,019	MANDACARU1986	0,037	0,011	0,048	
MASSAPE1981	0,013	0,000	0,395	MASSAPE1986	0,015	0,000	0,414	
MASSUI1981	0,060	0,007	0,067	MASSUI1986	0,025	0,019	0,044	
MATA DE SAO JOAO1981	0,714	1,219	1,933	MATA DE SAO JOAO1986	0,805	1,392	2,197	
MIRANGA1981	6,175	24,492	30,667	MIRANGA1986	5,437	27,897	33,334	
MIRANGALESTE1981	0,004	0,002	0,006	MIRANGALESTE1986	0,002	0,006	0,008	
MIRANGANORTET961	0,324	0,677	1,001	MORRO DO BARRO1986	0,150	0,749	0,905	0.002
NORDESTE TAQUIPE1981	0.002	0.003	0.005	NORDESTE TAQUIPE1986	0.002	0,000	0.012	0,002
	. –			NORTE FZ.CARUACU1986	0,018	0,065	0,083	0,083
				NORTE ROSARIO1986	0,004	0,008	0,012	0,012
PARAMIRIM1981	0,002	0,076	0,078	PARAMIRIM1986	0,001	0,081	0,082	
PEDRINHAS1981	0,002	0,085	0,087	PEDRINHAS1986	0,005	0,000	U,UU5 D 121	
QUERERA1981	0,133	0,116	0,249	QUERERA1986	0,011	0,120	0,131	
	5,022	5,000	0,020	QUIAMBINA1986	0,003	0,004	0,007	0,007
				R.DA SERRA1986	0,078	0,112	0,190	0,190
				R.DO_BU/ITARIRI1986	1,776	0,148	1,924	1,924
R.DOS OVOS1981	0,159	0,176	0,335	R.DOS OVOS1986	0,400	0,282	0,682	0.000
R UNA1981	0.004	0.002	0.003	R INA1986	0,490	0,478	0,968	0,966
REMANSO1981	0,001	1 002	1 656	REMANSO1986	1 508	1 581	3 089	
	212.11	.,		RIACHO DA BARRA1986	0,920	1,417	2,337	2,337
		•		RIACHO OURICURI1986	0,127	0,111	0,238	0,238
RIACHO QUIRICO1981	0,001	0,002	0,003	RIACHO QUIRICO1986	0,001	0,002	0,003	
RIACHO SAO PEDRO1981	0,027	0,009	0,036	RIACHO SAO PEDRO1986	0,018	0,014	0,032	0.000
ROCA GRANDE1094	0.000	0.004	0.012	RIACHO SESMARIA1986	0,003	0,006	0,009	0,009
NOCH ORANDET801	0,009	0,004	0,013	SALGADO1986	0,007	0,006	0.003	0,003
SANTANA1981	0,197	0,763	0,960	SANTANA1986	0,203	0,866	1,069	
			·	SAO DOMINGOS1986	0,001	0,028	0,029	0,029
SAO PEDRO1981	0,021	0,052	0,073	SAO PEDRO1986	0,080	0,140	0,220	
SAUIPE1981	0,005	0,049	0,054	SAUIPE1986	0,003	0,075	0,078	
SEMPRE VIVA1981	0,002	0,001	0,003	SEMPRE VIVA1986	0,002	0,001	U,UU3 1 916	
SOCORRO1981	0,610	0,062	0,072	SOCORRO1986	0,916	0,400	0.127	
	5,000	5,007	U,122	SUBAUMA MIRIM1986	0,007	0,001	0,008	0,008
SUSSUARANA1981	0,014	0,010	0,024	SUSSUARANA1986	0,009	0,036	0,045	
TAQUIPE1981	1,340	11,830	13,170	TAQUIPE1986	2,016	13,118	15,134	
Total	60,739	150,029	210,77	Total	69,06	172,32	241,37	Total = 11,849

ANO = 1993	Provada	Prod. Acum	SOMA 1993	ANO = 2002	Provada	Prod. Acum	SOMA 2002	Descobertas entre 1993 e 2002	Variação dos Campos Existentes em 1993
AGUA GRANDE1993	2,353	45,216	47,569	AGUA GRANDE2002	2,134	47,825	49,959		2,390
APRAIUS1993 ARACAS1993	0,131	0,167	0,298	APRAIUS2002 ARACAS2002	0,017 3.087	0,189 21.853	0,206		-0,092 3.105
ARACASLESTE1993	0,001	0,001	0,002						-0,002
ARATU1993 AREA BAS-0371993	0,000	0,023	0,023	ARATU2002	0,000	0,027	0,027		-0.142
AREA BAS-0391993	0,000	0,000	0,000						0,000
AREA BAS-0481993 AREA BAS-0641993	0,000	0,000	0,000						0,000
AREA BAS-0971993	2,373	0,000	2,373						-2,373
ARRAIA1993	0.000	0.000	0.000	AREA BAS-1282002	0,083	0,000	0,083	0,083	0.220
BELA VISTA1993	0,000	0,000	0,099		0,220	0,000	0,220		-0,099
BIRIBA1993 BOM LUGAD1993	0,016	0,023	0,039	BIRIBA2002	0,041	0,027	0,068		0,029
BONSUCESSO1993	0,003	0,031	0,252	BONSUCESSO2002	0,467	0,342	0,809		0,557
BREJINHO1993	0,016	0,423	0,439	BREJINHO2002	0,000	0,486	0,486		0,047
BURIZINHO1993	0,000	23,523	0,005	BURACICA2002	5,651	20,717	32,300		-0,005
CAMACARI1993	0,000	0,023	0,023	CAMACARI2002	0,000	0,023	0,023		0,000
CANABRAVA1993	0,001	0,001	0,002	CANABRAVA2002	0,025	0,217	0,242		-0,002
CANDEIAS1993	2,626	14,491	17,117	CANDEIAS2002	4,290	16,263	20,553	0.001	3,436
CARACATU1993	0,000	0,001	0,001	CANTA GALUZUUZ	0,000	0,001	0,001	0,001	-0,001
			0.700	CARDEAL2002	0,013	0,009	0,022	0,022	
CASSARONGONGO1993 CEXIS1993	0,593	3,137	3,730	CASSARONGONGO2002	0,269	3,544	2,813		0.897
CID.ENTRE RIOS1993	0,483	0,076	0,559	CID.ENTRE RIOS2002	0,765	1,037	1,802		1,243
CONCEICAO1993	0,029	0,095	0,124	CONCEICAO2002 CURIO2002	0,007	0,035	0,042	0.022	-0,082
DIAS D'AVILA1993	0,001	0,000	0,001	DIAS D'AVILA2002	0,000	0,000	0,000	ar juranda	-0,001
DOM JOAO MAR1993	1,843	13,764 3.454	15,607 4,678	DOM JOAO MAR2002	0,000 94% ()	14,154 3.669	14,154 4 101		-1,453 -0.577
FZ. AZEVED01993	0,000	0,080	0,080	FZ. AZEVEDO2002	0,001	0,118	0,119		0,039
	1 349	2.080	3 309	FZ.AL.DAS PEDRAS2002	0,009	0,012	0,021	0,021	0,492
FZ AZEVEDO OESTE1993	0,014	0,014	0,028	TZ.ALYORADA2002	0,996	2,804	J,0UU		-0,028
FZ.B.ESP/SALGAD01993	0,809	3,066	3,875	FZ.B.ESP/SALGAD02002	0,737	3,721	4,458		0,583
FZ BELEM1993	3,985	2,873	0,000	FZ.BELEM2002	2,573	5,523 0,143	0,143		-0,067
FZ FLORESTA1993	0,000	0,000	0,000	F7 IN 40 F 2002			0.054		0,000
FZ.MAMOEIRO1993	0,824	2,792	3,616	FZ.IMBE2002	0,228	3,126	3,354		-0,262 -0,016
FZ ONCA1993	0,040	0,077	0,117	FZ.ONCA2002	0,006	0,087	0,093		-0,024
FZ PANELAS1993 FZ S.ESTEVA01993	0,176	1,134	1,310	FZ.PANELAS2002	0,059	1,216	1,275		-0,035
FZ SANTA ROSA1993	0,004	0,000	0,004	FZ SANTA ROSA2002	0,000	0,000	0,000		-0,004
FZ SAO PAULO1993	0,000	0,001	0,001	GOM02002	0.039	0.457	0.496		-0,001
	0,000	0,121		ILHA DE BIMBARRA2002	0,000	0,002	0,002	0,002	
ITAPARICA1993	0,162	0,232	0,394	ITAPARICA2002	0,000	0,234	0,234		-0,160
JACUMIRIM1993	0,000	0,003	0,003	3ACON 22002	0,005	0,013	0,022		-0,003
JIRIBATUBA1993	0,000	0,024	0,024		0.004	0.026	0.026		-0,024
LEODORIO1993	0,028	0,041	0,007	LEODORIO2002	0,002	0,035	0,038		0,004
LG.DO PAULO1993	0,149	0,075	0,224						-0,224
LG.PAULO SUL1993	0,063	0,134	0,011						-0,011
LG.VERDE1993	0,003	0,001	0,004	LG.VERDE2002	0,000	0,000	0,000		-0,004
MALOMBE1993	0,000	0,017	1,327	MALOMBE2002	0,141	1,353	1,494		-0,017 0,167
MANDACARU1993	0,001	0,019	0,020	MANDACARU2002	0,023	0,043	0.066		0,046
MASSAPE1993	0,000	0,000	0,000	MAPELE2002 MASSAPE2002	0,001 0,130	0,002	0,003		0,003
MASSUI1993	0,005	0,027	0,032	MASSUI2002	0,048	0,039	0,087		0,055
MATA/REMANSO1993	1.900	3,655	5.555	MATA DE SÃO JOÃO2002	0,163	1,721	1,884	1,884	-5.555
MIRANGA1993	4,354	31,109	35,463	MIRANGA2002	4,358	33,053	37,411		1,948
MIRANGALESTE1993 MIRANGANORTE1993	0,000	0,008	0,008	MIRANGALESTE2002 MIRANGANORTE2002	0,000	0,008	0,008		0,000
MORRO DO BARRO1993	0,000	0,000	0,000		5,195				0,000
NURTE FZ.CARUACU1993	0,144	0,307	0,451	NORTE FZ.CARUACU2002	0,056 0.002	0,388 0.089	0,444		-0,007 0,007
PEDRINHAS1993	0,002	0,002	0,004	PEDRINHAS2002	0,000	0,000	0,000		-0,004
POJUCA1993 POJUCANOPTE1993	0,005	0,132	0,137	POJUCA2002	0,009	0,131	0,140		0,003
QUERERA1993	0,018	0,000	0,013	QUERERA2002	0,000	0,000	0,000		-0,007
QUIAMBINA1993	0,000	0,006	0,006		0.044	0.101	0.445		-0,006
R.DO BU1993	1,736	0,130 1,433	3,169	R.DO BU2002	1,062	0,134 2,850	3,912		0,743
R.DOS OVOS1993	0,296	0,413	0,709	R.DOS OVOS2002	0,027	0,500	0,527		-0,182
R.JOANES1993	0,186	0,348	0,003	R.JOANES2002	0,516 0,000	0,604 0,000	0,000		-0,003
D DO IUGA1000				R.PIPIRI2002	0,000	0,011	0,011	0,011	4.075
R.SAUIPE1993	0,793	1,240	2,033 0.008	R.POJUCA2002 R.SAUIPE2002	1,439 0.006	1,869 0.010	3,308		1,275
R.SUBAUMA1993	0,006	0,002	0,008	R.SUBAUMA2002	0,000	0,036	0,036		0,028
R.UNA1993	0,000	0,002	0,002	REMANSO2002	0.278	2 451	2,729	2 729	-0,002
RIACHO DA BARRA1993	0,458	2,514	2,972	RIACHO DA BARRA2002	0,395	3,432	3,827		0,855
RIACHO OURICURI1993	0,402	0,264	0,666	RIACHO OURICURI2002	0,341	0,547	0,888		0,222
RIACHO SAO PEDRO1993	0,000	0,002	0,032	RIACHO SAO PEDRO2002	0,000	0,025	0,025		-0,002
RIACHO SESMARIA1993 SANTANA1993	0,000	0,007	0,007						-0,007
SAO DOMINGOS1993	0,062	0,918	0,360	SAO DOMINGOS2002	0,000	0,188	0,188		0,011
SAO PEDRO1993	0,232	0,238	0,470	SAO PEDRO2002	0,028	0,271	0,299		-0,171
GAUIPE 1993	0,099	0,088	0,198	SARDINHA2002	0,000	0,000	0,000	0,000	-0,198
SEMPRE VIVA1993	0,000	0,001	0,001				4 ~~~~		-0,001
SETE GALHOS1993	0,665	0,764	1,429	acamakiA2002	0,259	1,037	1,296		-U,133 0,000
SOCORRO1993	0,001	0,124	0,125	SOCORRO2002	0,003	0,137	0,140		0,015
SUCORROEXTENSA01993 SUBAUMA MIRIM1993	0,003	0,011	U,014 0.001	SUCURRUEXTENSA02002	0,000	0,004	U,004		-U,010 -0,001
SUSSUARANA1993	0,019	0,076	0,095	SUSSUARANA2002	0,004	0,047	0,051		-0.044
VALE DO QUIRICO1993	0,750	14,562 0,006	15,312 0.142	VALE DO QUIRICO2002	1,864 0,000	15,846 0.011	17,710		2,398
			4		5,000				
Total	40,401	200,734	241,14	Total	33,87	224,32	258,19	4,775	12,277