

Lucas Boabaid Ibrahim

Investigações numéricas e experimentais da mecânica dos aneurismas em tubos isotrópicos de borracha

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de concentração: Estruturas.

Orientadora: Djenane Cordeiro Pamplona

Rio de Janeiro, julho de 2006

Lucas Boabaid Ibrahim

Investigações numéricas e experimentais da mecânica dos aneurismas em tubos isotrópicos de borracha

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Djenane Cordeiro Pamplona

Orientadora - PUC-Rio

Aura Conci UFF

Ney Augusto Dumont PUC - Rio

Dra. Stefane Rodrigues Xavier Lopes

Paulo Batista Gonçalves PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de janeiro, 31 de julho de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Lucas Boabaid Ibrahim

Graduou-se Engenheiro Civil em Dezembro de 2003, pela Faculdade de Engenharia Industrial (FEI)

Ficha Catalográfica

Ibrahim, Lucas Boabaid

Investigações numéricas e experimentais da mecânica dos aneurismas em tubos isotrópicos de borracha / Lucas Boabaid Ibrahim ; orientadora: Djenane Cordeiro Pamplona. – Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2006.

95 f. : il. (col.) ; 30 cm

Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

Mestrado Engenharia Civil – Teses. 2.
 Aneurisma. 3. Elementos finitos. 4. Instabilidade. 5.
 Deformações finitas. I. Pamplona, Djenane Cordeiro. II.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Engenharia Civil. III. Título.

PUC-Rio - Certificação Digital Nº 0421259/CA

Aos meus pais, amigos e a todos que contribuíram na realização deste trabalho.

Agradecimentos

À PUC-Rio e aos professores do Departamento de Engenharia Civil.

A minha orientadora, pela convivência, disponibilidade, incentivo, paciência, pelos conhecimentos transmitidos durante este último ano.

À banca examinadora.

Aos meus colegas durante estes dois anos.

Aos funcionários do departamento de Engenharia Civil.

Resumo

Ibhahim, Lucas Boabaid; Pamplona, Djenaje Cordeiro. **Investigações numéricas e experimentais da mecânica dos aneurismas em tubos isotrópicos de borracha.** Rio de Janeiro, 2006. 95p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese tem por objetivo investigar numérica e experimentalmente a mecânica da formação dos aneurismas na aorta. A parte experimental foi realizada no Laboratório de Membranas e Biomembranas utilizando-se tubos cilíndricos de látex sob pressão hidrostática e tubos de silicone com geometria aproximada da aorta. Foi investigada a pressão necessária à formação dos aneurismas e o comportamento do material ensaiado. A parte numérica foi realizada por meio do método dos elementos finitos através do programa ABAQUS. Na análise numérica foi validada a análise experimental e realizados alguns estudos paramétricos.

Palavras-chave

aneurisma, elementos finitos, instabilidade, deformações finitas

Abstract

Ibhahim, Lucas Boabaid; Pamplona, Djenaje Cordeiro (Advisor). Numerical and experimental investigation of the mechanics of aneurysms in isotropic rubber tubes. Rio de Janeiro, 2006. 95p. M. Sc. Disseratation - Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

The objective of this work was to investigate numerical and experimentally the mechanics of aortic aneurisms. The experimental part was done in the Laboratory of Membranes and Biomenbranes using latex cylindrical tubes under hydrostatic pressure and rubber tubes with the approximate aortic geometry. The required pressure to formation of aneurisms was investigated as well the behavior of the material during the experiments. The numerical part was done with finite element method with the ABAQUS program. In the numerical analyses the experimental analyses was validated and some parametric studies was done.

Keywords

aneurysm, finite elements, instability, finite deformation

Sumário

1 Introdução	17
1.1. Objetivo da disertação	18
1.2. Organização do texto	18
2 Revisão bibliográfica	20
2.1. Aneurismas	20
2.2. Lei da circulação	20
2.3. Fluxo sangüineo	21
2.4. Artérias	21
2.5. Tipos de aneurismas	22
2.6. Causas dos aneurismas	23
2.7. Aorta	24
2.8. Composição da aorta	27
2.9. Maior incidência dos aneurismas	29
2.10. Modificações na espessura da parede arterial	29
2.11. Tratamento de aneurismas	30
2.12. Geometria e propriedades	31
3 Analise experimental	32
3.1. Aparatos utilizados na realização das experiências	32
3.2. Tubo de látex	34
3.2.1. Procedimento experimental	35
3.2.2. Resultados dos ensaios com tubos de látex	36
3.2.2.1 Estudo da influência da velocidade de aplicação da pressão	36
3.2.2.2 Ensaios sucessivos de tubos de latex	38
3.2.2.3 Ensaios sucessivos de tubos de látex com pré-condicionament	to 44
3.2.2.4 Comparação dos efeitos do pré-condicionamento em tubos de	
latex	50

3.3. Tubo de silicone	51
3.3.1. Escolha do material utilizado nos tubos de silicone	51
3.3.2. Ensaio de tração	53
3.3.3. Tubo de silicone	55
3.3.4. Descrição da experiência do tubo de silicone	55
3.3.5. Procedimento experimental	56
3.3.6. Investigação da pressão crítica em tubos de silicone	56
3.3.6.1. Descrição do ensaio	56
3.3.7. Ensaios realizados	57
4 Análise numérica	59
4.1. Análise numérica dos tubos de látex com diâmetro constante	61
4.1.1. Análise da pressão crítica	62
4.1.2. Análise do diâmetro do bulbo	62
4.1.3. Análise das tensões máximas na pressão crítica	63
4.1.4. Análise das tensões máximas na pressão final	64
4.1.5. Configuração inicial e final do tubo de látex estudado	65
4.1.6. Variação da constante elástica	66
4.2. Tubo de látex com diâmetro variável	68
4.2.1. Análise da pressão crítica	68
4.2.2. Análise do diâmetro do bulbo	69
4.2.3. Análise das tensões máximas na pressão crítica	70
4.2.4. Análise das tensões máximas na pressão final	71
4.2.5. Configuração inicial e final do tubo de látex estudado	72
4.2.6. Síndrome de Marfan	73
4.3. Análise numérica do tubo de silicone com a geometria da aorta	75
4.3.1. Ensaio de tração	76
4.3.2. Resultados	77
4.3.3. Análise da variação da espessura do tubo de silicone	78
4.4. Análise numérica da aorta	80
4.4.1. Síndrome de Marfan	81
4.5. Equação constitutiva proposta por Delfino	82
5 Comparação entre os resultados numéricos e experimentais	83

5.1. Tubos de látex	83
5.1.1. Dados do tubo de látex	83
5.1.2. Comparação entre os resultados da pressão crítica	83
5.1.3. Comparação entre os resultados do diâmetro do bulbo	84
5.2. Resultados dos tubos de silicone	85
5.2.1. Dados do tubo de silicone	85
5.2.2. Comparação entre os resultados da pressão crítica	85
6 Conclusões	87
6.1. Conclusões dos ensaios experimentais	87
6.2. Conclusões da análise numérica	88
6.3. Trabalhos futuros	88
7 Bibliografia	89
Apêndice 1 - Observações complementares sobre os ensaios em tubos	s de
látex	91

Lista de Figuras

níveis de tração

Figura 1.1 – Exemplo de aneurismas	17
Figura 2.1 – Representação da ruptura do aneurisma	22
Figura 2.2 – Representação da dissecção dos aneurismas	23
Figura 2.3 – Corte transversal do aneurisma de dissecção	23
Figura 2.4 – Exemplo de aneurisma	24
Figura 2.5 – Representação da aorta	25
Figura 2.6 – Representação da divisão da aorta	26
Figura 2.7 – Camadas arteriais	27
Figura 2.8 – Local da maior incidência dos aneurismas	29
Figura 2.9 – Espessura da parede arterial após a formação do aneurisma	30
Figura 2.10 – Reforço da parede arterial	30
Figura 3.1 – Suporte metálico	33
Figura 3.2 - Recipiente de acrílico contendo manômetro, entrada de ar pa	ra a
bomba e mangueira para a saída de água	33
Figura 3.3 - Aparelho desenvolvido para inserir ar, medir e controlar a pre	ssão
interna. Utilizado para pequenas pressões. (daPa).	34
Figura 3.4 – Etapa 3	35
Figura 3.5 – Etapa 4, simulação do aneurisma	35
Figura 3.6 – (a) início da experiência, (b) pressão crítica, (c) pressão final	38
Figura 3.7 – Pressões críticas em ensaios consecutivos com o mesmo tubo de l	átex
sem tração, $\lambda = 1,0$.	39
Figura 3.8 – (a) início da experiência, (b) pressão crítica, (c) pressão final	40
Figura 3.9 – Pressões críticas em ensaios consecutivos com o mesmo tubo de l	átex
com tração, $\lambda = 1, 1$	41
Figura 3.10 – (a) início da experiência, (b) pressão crítica, (c) pressão final	41
Figura 3.11 - Pressões críticas em ensaios consecutivos com o mesmo tubo de	
látex com tração, $\lambda = 1, 2$.	42
Figura 3.12 - Média das pressões críticas em ensaios sucessivos com difere	entes

43

Figura 3.13 - Pressões críticas em ensaios consecutivos com o mesmo tubo de
látex sem tração, $\lambda = 1,0$ 45
Figura 3.14 - Pressões críticas em ensaios consecutivos com o mesmo tubo de
látex com tração, $\lambda = 1,1$ 46
Figura 3.15 - Pressões críticas em ensaios consecutivos com o mesmo tubo de
látex com tração, $\lambda = 1,2$ 48
Figura 3.16 - Média das pressões críticas em ensaios sucessivos com diferentes
níveis de tração 49
Figura 3.17 - Média das pressões críticas dos ensaios sucessivos em tubos de látex
sem e com pré-condicionamento, sem tração 50
Figura 3.18 - Média das pressões críticas dos ensaios sucessivos em tubos de látex
sem e com pré-condicionamento, tração de 10%. 50
Figura 3.19 - Média das pressões críticas dos ensaios sucessivos em tubos de látex
sem e com pré-condicionamento, tração de 20%. 51
Figura 3.20 - Corpos de prova para determinação da concentração de catalisador
52
Figura 3.21 – Molde do corpo de prova53
Figura 3.22 - Confecção dos corpos de prova53
Figura 3.23 – Detalhe dos corpos de prova e do tubo de silicone54
Figura 3.24 – Ensaio de tração (imagem sem carregamento)54
Figura 3.25 – Ensaio de tração (imagem com carregamento)54
Figura 3.26 – Detalhes do molde de gesso utilizado para o modelo de silicone da
aorta 55
Figura 3.27 – seqüência da pressurização do tubo de silicone sem tração, $\lambda = 1,0$
57
Figura 3.28 – detalhe da variação da espessura no tubo de silicone 58
Figura 4.1 - Ensaio de tração para os tubos cilíndricos de látex utilizando-se
materiais Neo-Hookeano, Mooney-Rivlin e comparados ao ensaio
experimental. 60
Figura 4.2 – Análise da convergência para o tubo de látex 61
Figura 4.3 - Pressão crítica (MPa) para materiais Neo-Hookeano e Mooney-
Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2. 62

Figura 4.4 - Diâmetro máximo do bulbo (cm) para materiais Neo-Hookeano e

Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2.	53
Figura 4.5 - Tensão máxima do bulbo (MPa) para materiais Neo-Hookeano	e
Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2.	54
Figura 4.6 - Tensão máxima do bulbo (MPa) para materiais Neo-Hookeano	e
Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2.	55
Figura 4.7 – Configuração inicial e final do tubo de látex para uma tração de 109	%,
$\lambda = 10\%$	56
Figura 4.8 - Gráfico comparativo da influência da variação da constante elástic	ca
no valor da pressão crítica	57
Figura 4.9 - Pressão crítica (MPa) para tubo com diâmetro variável em materi	ial
Neo-Hookeano, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2.	59
Figura 4.10 - Diâmetro do bulbo (cm) para tubo com diâmetro variável e	m
material Neo-Hookeano e Mooney-Rivlin, com diferentes trações, $\lambda = 1$,	,0;
1,1 e 1,2.	70
Figura 4.11 – Tensão máxima (MPa) para tubo com diâmetro variável em materi	ial
Neo-Hookeano, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2	71
Figura 4.12 – Tensão máxima (MPa) para tubo com diâmetro variável em materi	ial
Neo-Hookeano, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2	72
Figura 4.13 - Configuração inicial e final do tubo de látex para um aumento o	do
diâmetro superior de 15% e tração de 10%, $\lambda = 1,1$.	73
Figura 4.14 - gráfico comparativo da influência da variação da constante elástic	ca
no valor da pressão crítica	74
Figura 4.15 – Análise da convergência para o tubo de silicone	75
Figura 4.16 - Média dos ensaios de tração dos corpos de prova utilizados para	۱a
caracterização do silicone utilizado na confecção dos tubos	76
Figura 4.17 – Configuração inicial e final do tubo de silicone para uma tração	de
$10\%, \lambda = 1, 1.$	77
Figura 4.18 - Configuração inicial e final do tubo de silicone com espessu	ira
constante de 5 mm e tração de 10%, $\lambda = 1,1$.	78
Figura 4.19 - Configuração inicial e final do tubo de silicone com espessu	ira
constante de 5 mm e tração de 10%, $\lambda = 1,1$.	79
Figura 4.20 - Configuração inicial e final do tubo de silicone com espessu	ira
proporcional ao raio e tração de 10%, $\lambda = 1,1$.	79

Figura 4.21 – Configuração inicial e final da geometria arterial e módulo	de
elasticidade da veia cava com tração de 10%, $\lambda = 1,1$.	81
Figura 4.22 - Gráfico comparativo da influência da variação do módulo	de
elasticidade no valor da pressão crítica	82
Figura 5.1 – Gráfico comparativo da pressão crítica numérica e experimental	84
Figura 5.2 – Comparação entre os diâmetros experimentais e numéricos	85
Figura 5.3 – Pressão crítica experimental e numérica para tubos de silicone	86

Lista de tabelas

Tabela 3.1 - Pressões críticas, finais e tempo decorrido em ensaios consecutivos
com o mesmo tubo de látex. 37
Tabela 3.2 - Pressões críticas e finais em ensaios consecutivos com o mesmo tubo
de látex sem tração, $\lambda = 1,0.$ 39
Tabela 3.3 - Pressões críticas e finais em ensaios consecutivos com o mesmo tubo
de látex com tração, $\lambda = 1,1$ 40
Tabela 3.4 - Pressões críticas e finais em ensaios consecutivos com o mesmo tubo
de látex com tração, $\lambda = 1,2.$ 42
Tabela 3.5 - Média das pressões críticas em ensaios sucessivos com diferentes
níveis de tração. 43
Tabela 3.6 - Pressões críticas e finais em ensaios consecutivos com o mesmo tubo
de látex sem tração, $\lambda = 1,0$ 44
Tabela 3.7 - Pressões críticas e finais em ensaios consecutivos com o mesmo tubo
de látex com tração, $\lambda = 1,1$ 46
Tabela 3.8 - Pressões críticas e finais em ensaios consecutivos com o mesmo tubo
de látex com tração, $\lambda = 1,2.$ 47
Tabela 3.9 - Média das pressões críticas em ensaios sucessivos com diferentes
níveis de tração. 49
Tabela 4.1 – Constantes Elásticas para o material dos tubos de látex60
Tabela 4.2 - Pressão crítica (MPa) para materiais Neo-Hookeano e Mooney-
Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2. 62
Tabela 4.3 - Diâmetro máximo do bulbo (cm) para materiais Neo-Hookeano e
Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2. 63
Tabela 4.4 - Tensão máxima do bulbo (MPa) para materiais Neo-Hookeano e
Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2. 64
Tabela 4.5 - Tensão máxima do bulbo (MPa) para materiais Neo-Hookeano e
Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2 65
Tabela 4.6 - Influência da variação da constante elástica no valor da pressão
crítica. 67

- Tabela 4.7 Pressão crítica (MPa) para tubo com diâmetro variável em material Neo-Hookeano e Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2. 68
- Tabela 4.8 Diâmetro do bulbo (cm) para tubo com diâmetro variável em material Neo-Hookeano e Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2.

Tabela 4.9 – Tensão máxima (MPa) para tubo com diâmetro variável em material Neo-Hookeano e Mooney-Rivlin, com diferentes trações, $\lambda = 1,0$; 1,1 e 1,2. 70

- Tabela 4.10 Tensão máxima (MPa) para tubo com diâmetro variável em material Neo-Hookeano e Mooney-Rivlin, com diferentes trações, λ = 1,0; 1,1 e 1,2.
 71
- Tabela 4.11 Influência da variação da constante elástica no valor da pressãocrítica.74
- Tabela 4.12 Pressão crítica encontrada utilizando-se o módulo de elasticidade daveia cava.80
- Tabela 4.13 Influência da variação do módulo de elasticidade no valor da
pressão crítica.81
- Tabela 5.1 Comparação da pressão crítica numérica e experimental83Tabela 5.2 Comparação entre os diâmetros experimentais e numéricos84
- Tabela 5.3 Pressão crítica experimental e numérica para tubos de silicone86