6 Desenvolvimento Experimental

O presente capítulo descreve, a seguir, o desenvolvimento experimental do trabalho estruturado segundo as 5 vertentes de análise desenvolvidas:

- Determinação da incerteza associada à medição de irradiância;
- Metodologias para medição de fontes luminosas;
- Considerações metrológicas sobre a medição de lâmpadas incandescentes e fluorescentes;
- Aplicabilidade da Lei do Quadrado para fontes pontuais (lâmpadas incandescentes) e para fontes extensas (lâmpadas fluorescentes);
- Intercomparação de métodos utilizados em normas nacionais e internacionais para se verificar e avaliar simuladores de luz do dia.

Anteriormente, entretanto, ao encaminhamento das diferentes vertentes de análise desenvolvidas, conceituam-se, a seguir, como fundamento básico para o encaminhamento e entendimento do presente capítulo, as seguintes definições internacionalmente consensadas (VIM, 2003):

Calibração: conjunto de operações que estabelece, sob condições especificadas, a relação entre os valores indicados por um instrumento de medição ou sistema de medição ou valores representados por uma medida materializada ou um material de referência, e os valores correspondentes das grandezas estabelecidos por padrões.

Repetitividade: grau de concordância entre os resultados de medições sucessivas de um mesmo mensurando, efetuadas sob as mesmas condições de medição.

Erro de medição: resultado de uma medição subtraído do valor verdadeiro do mensurando.

Deriva: variação lenta de uma característica metrológica de um instrumento de medição.

Medição: conjunto de operações que tem por objetivo determinar um valor de uma grandeza.

6.1.

Determinação da incerteza associada à medição de irradiância

Foram identificadas as fontes de incerteza e avaliadas as incertezas expandidas associadas às medições realizadas pelo espectroradiômetro utilizado, bem como aquelas associadas à fonte luminosa testada com base nas avaliações metrológicas desenvolvidas. A formulação matemática desenvolvida para se determinar a incerteza expandida associada ao processo de medição da irradiância encontra-se detalhado no capítulo 3 (item 3.9, Incerteza de Medição).

6.1.1. Incertezas associadas ao espectroradiômetro

As fontes de incerteza associadas ao espectroradiômetro utilizado foram identificadas e um procedimento de cálculo para determinar a incerteza expandida do mesmo foi desenvolvido. Cada uma desses diferentes fatores que afetam a incerteza de medição encontra-se caracterizado a seguir.

Caracterização do sistema espectroradiômetro

Instrumento de bancada, marca Optronic, modelo OL 750-D, SC-0195, acoplado a outros subsistemas, todos de fabricação Optronic consistindo de: (i) módulo de irradiância, utilizando monocromador duplo, modelo OL 750; (ii) detector de alta sensibilidade, modelo OL 750-HSD-301C; (iii) esfera de integração, modelo OL IS-670, e (iv) fonte de corrente DC, modelo OL 83A.

Como etapas do procedimento para se expressar as incertezas associadas ao espectroradiômetro, as seguintes análises metrológicas foram realizadas:

- verificação da capacidade do instrumento de repetir os resultados de medição em condições controladas;
- avaliação da proximidade dos resultados de medição de um padrão aos valores obtidos por um laboratório primário ou por um outro laboratório acreditado para o mesmo padrão;
- análise da estabilidade do ajuste da escala de irradiância espectral realizado no instrumento a ser avaliado, ou seja, por quanto tempo o instrumento pode ser utilizado sem haver a necessidade de um novo ajuste.

97

Padrão utilizado

Padrão de irradiância primário, modelo OL 200C, SC-0212, calibrado pela NRC (National Research Council), cujo certificado de calibração n° PAR-2003-2198, data de 11.07.2003. As incertezas associadas à calibração do padrão encontram-se reportadas na tabela 11.

Intervalo de comprimento de onda	Incerteza (%)
300nm a 340nm	20,00
350nm a 400nm	10,00
410nm a 690nm	4,00
700nm a 800nm	2,20

Tabela 11. Incertezas do padrão OL200C descritas no certificado de calibração (k=2)

Procedimento de calibração do espectroradiômetro

O erro de medição associado ao espectroradiômetro e a sua repetitividade foram determinados através de uma seqüência de 10 séries de medições simples realizadas entre 300nm a 800nm (intervalo de medição de 5nm), procedimento experimental que incluiu pelo menos uma recalibração antes de cada medição. Os valores de medição são emitidos na forma de valores de irradiância em cada comprimento de onda (W/cm²nm) e processados nas planilhas de cálculo que foram elaboradas para se determinar a incerteza associada à medição (tabelas 12 a 18). A deriva foi determinada através de séries de medições simples periódicas de 300nm a 800nm (intervalo de medição de 5nm), num total de 10 séries, todas referenciadas a uma única calibração inicial. Os valores de medição foram emitidos na forma de valores de irradiância em cada comprimento de onda (W/cm²nm) e então processados em uma planilha de cálculo elaborada para converter os resultados em valores triestímulos (tabela 19). Em seguida, esses valores foram organizados em gráficos e uma linha de tendência foi traçada para cada um (figura 54).

Determinação da incerteza expandida do espectroradiômetro

Os componentes da incerteza associada à medição que afetam a repetitividade originam-se das seguintes fontes: (i) repetitividade das medições, (ii) repetitividade das calibrações e (iii) variação da corrente. Já as fontes de incerteza de medição que caracterizam o erro de medição são: (i) incerteza do

padrão utilizado, (ii) repetitividade das medições, (iii) repetitividade das calibrações e (iv) variação da corrente.

	DI	ETERMINAÇÃO	DAINCERT	EZA DE	MEDICÃO		
		ER	RO DE MEDI	IÇÃO			
Símbolo	Fontes de Incerteza	Valor (xi) +/-	Distribuição	Divisor	Ci	ui +/- (%)	v _i ou v _{eff}
U1	U Padrão	Anexo 1	Normal	2,0	1	Anexo 1	8
U2	Repetitividade das calibrações	Anexo 1	Normal	raiz(10)	1	Anexo 1	9
U3	Repetitividade das medições	Anexo 1	Normal	raiz(10)	1	Anexo 1	9
U4	∨ariação de corrente (%)	0,0075	Normal	1	"Interpolação U corrente"	Anexo 1	8
Чc	Incerteza padrão combinada	u ₁ +u ₂ +u ₃ +u ₄				Anexo 1	
U	Incerteza expandida		95.45% k= 2 Anexo 1				
		R	EPETITIVIDA	DE			
Símbolo	Fontes de Incerteza	Valor (xi) +/-	Distribuição	Divisor	C,	ui +/- (%)	v _i ou v _{eff}
U2	Repetitividade das calibrações	Anexo 1	Normal	√10	1	Anexo 1	9
U3	Repetitividade das medições	Anexo 1	Normal	√10	1	Anexo 1	9
U4	∨ariação de corrente (%)	0,0075	Normal	1	"Interpolação U corrente"	Anexo 1	æ
Ц _с	Incerteza padrão combinada	u2+u3+u4	u2+u3+u4 Anexo 1				
U	Incerteza expandida	95.45% k= 2 Anexo 1					
Obs:	u da medição da distância Resolução	excluído, pois ins dilatação do tubo excluído, pois é i	ignificante, vide (20º-24ºC) insi	e "Tubo d gnificante Loaso do	e Aço" e, vide "Tubo de I OL 750 (10-6	e Aço"	

Tabela 12. Fontes de incerteza associadas ao espectroradiômetro

						MEDIÇÖ	ES COM	RECALIE	RAÇÃO					
	Unidade d	le mediçã	0	W/cm²nn	n									
Descrição do Padrão Utilizado Padrão de irradiância espectral OL 200C - SC-0212														
	Certificad	lo de Calib	гаção	Certifica	rtificado do OL 200C S/N-887 PAR-2003-2198 de11/07/2003									
	Valores	12	2ª	3*	42	52	62	72	82	92	10ª		Desvio	
(nm)	Nominais do Padrão	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Média	Padrão	Erro
300	1,85E-07	2,11E-07	1,87E-07	1,96E-07	1,90E-07	2,04E-07	1,86E-07	1,84E-07	1,90E-07	1,81E-07	1,80E-07	1,91E-07	9,79E-09	1,45E-09
305	2,33E-07	2,60E-07	2,35E-07	2,38E-07	2,36E-07	2,51E-07	2,34E-07	2,30E-07	2,34E-07	2,25E-07	2,28E-07	2,37E-07	1,04E-08	-1,39E-09
310	2,77E-07	2,97E-07	2,77E-07	2,75E-07	2,79E-07	2,85E-07	2,80E-07	2,77E-07	2,83E-07	2,71E-07	2,66E-07	2,79E-07	8,08E-09	-4,53E-09
315	3,21E-07	3,39E-07	3,20E-07	3,22E-07	3,28E-07	3,31E-07	3,20E-07	3,13E-07	3,26E-07	3,14E-07	3,07E-07	3,22E-07	9,18E-09	-6,25E-09
320	3,68E-07	3,85E-07	3,65E-07	3,60E-07	3,69E-07	3,73E-07	3,70E-07	3,65E-07	3,69E-07	3,64E-07	3,56E-07	3,68E-07	7,74E-09	-8,60E-09
325	4,24E-07	4,39E-07	4,18E-07	4,17E-07	4,27E-07	4,30E-07	4,24E-07	4,21E-07	4,27E-07	4,20E-07	4,12E-07	4,24E-07	7,58E-09	-9,67E-09
330	4,87E-07	5,04E-07	4,76E-07	4,73E-07	4,87E-07	4,90E-07	4,85E-07	4,85E-07	4,87E-07	4,84E-07	4,76E-07	4,85E-07	8,49E-09	-1,26E-08
335	5,56E-07	5,73E-07	5,39E-07	5,43E-07	5,57E-07	5,59E-07	5,52E-07	5,56E-07	5,57E-07	5,57E-07	5,43E-07	5,54E-07	9,69E-09	-1,39E-08
340	6,38E-07	6,55E-07	6,03E-07	6,20E-07	6,38E-07	6,37E-07	6,37E-07	6,37E-07	6,39E-07	6,42E-07	6,28E-07	6,34E-07	1,39E-08	-1,73E-08
345	7,44E-07	7,54E-07	6,97E-07	7,29E-07	7,45E-07	7,44E-07	7,42E-07	7,44E-07	7,45E-07	7,45E-07	7,33E-07	7,38E-07	1,57E-08	-2,10E-08
350	8,58E-07	8,62E-07	8,05E-07	8,33E-07	8,58E-07	8,58E-07	8,57E-07	8,57E-07	8,58E-07	8,51E-07	8,43E-07	8,48E-07	1,72E-08	-2,65E-08
355	9,66E-07	9,57E-07	9,07E-07	9,42E-07	9,66E-07	9,65E-07	9,64E-07	9,65E-07	9,64E-07	9,57E-07	9,51E-07	9,54E-07	1,79E-08	-3,07E-08
360	1,08E-06	1,06E-06	1,01E-06	1,06E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,07E-06	1,06E-06	1,07E-06	1,95E-08	-3,43E-08
365	1,21E-06	1,17E-06	1,14E-06	1,20E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,18E-06	1,19E-06	1,19E-06	2,28E-08	-4,09E-08
370	1,35E-06	1,32E-06	1,27E-06	1,34E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,31E-06	1,33E-06	1,33E-06	2,52E-08	-4,32E-08
375	1,51E-06	1,47E-06	1,42E-06	1,50E-06	1,51E-06	1,51E-06	1,51E-06	1,51E-06	1,51E-06	1,47E-06	1,48E-06	1,49E-06	2,87E-08	-4,80E-08
380	1,67E-06	1,63E-06	1,58E-06	1,67E-06	1,66E-06	1,67E-06	1,67E-06	1,67E-06	1,67E-06	1,62E-06	1,64E-06	1,65E-06	3,05E-08	-5,15E-08
385	1,83E-06	1,78E-06	1,73E-06	1,82E-06	1,83E-06	1,83E-06	1,83E-06	1,83E-06	1,83E-06	1,79E-06	1,80E-06	1,81E-06	3,20E-08	-5,44E-08
390	1,99E-06	1,94E-06	1,88E-06	1,96E-06	1,99E-06	1,99E-06	1,99E-06	1,99E-06	1,99E-06	1,96E-06	1,95E-06	1,96E-06	3,41E-08	-5,94E-08
395	2,17E-06	2,12E-06	2,06E-06	2,14E-06	2,17E-06	2,17E-06	2,17E-06	2,17E-06	2,17E-06	2,13E-06	2,13E-06	2,14E-06	3,55E-08	-6,25E-08

Tabela 13. Extrato da planilha de cálculo utilizada para se determinar a média, o desvio padrão e o erro de medição das medições de irradiância com recalibração (W/cm²nm)

Tabela 14. Extrato da planilha de cálculo utilizada para se determinar a média, o desvio padrão e o erro de medição das medições de irradiância sem recalibração (W/cm²nm)

						MEDIÇÔ	DES SEM	RECALIB	RAÇÃO					
	Unidade d	e mediçã	0	W/cm²nn	//cm²nm									
	Descrição	do Padrã	o Utilizado	Padrão d	adrão de irradiância espectral OL 200C - SC-0212									
	Certificado de Calibração Certificado do OL 200C S/N-887 PAR-2003-2198 de11/07/2003													
	Valores	12	28	38	42	52	67	72	82	Q2	102		Desvio	
(nm)	Nominais do Padrão	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Medição	Média	Padrão	Erro
300	1,85E-07	1,76E-07	1,78E-07	1,78E-07	1,72E-07	1,73E-07	1,83E-07	1,85E-07	1,88E-07	1,70E-07	1,82E-07	1,78E-07	5,71E-09	-1,08E-08
305	2,33E-07	2,28E-07	2,32E-07	2,29E-07	2,27E-07	2,25E-07	2,34E-07	2,36E-07	2,30E-07	2,25E-07	2,36E-07	2,30E-07	4,01E-09	-8,16E-09
310	2,77E-07	2,70E-07	2,73E-07	2,71E-07	2,70E-07	2,72E-07	2,75E-07	2,75E-07	2,75E-07	2,66E-07	2,75E-07	2,72E-07	3,02E-09	-1,10E-08
315	3,21E-07	3,16E-07	3,13E-07	3,15E-07	3,13E-07	3,15E-07	3,18E-07	3,16E-07	3,15E-07	3,12E-07	3,17E-07	3,15E-07	1,87E-09	-1,31E-08
320	3,68E-07	3,62E-07	3,63E-07	3,63E-07	3,61E-07	3,62E-07	3,65E-07	3,65E-07	3,64E-07	3,61E-07	3,63E-07	3,63E-07	1,42E-09	-1,32E-08
325	4,24E-07	4,20E-07	4,23E-07	4,22E-07	4,21E-07	4,22E-07	4,24E-07	4,23E-07	4,20E-07	4,20E-07	4,23E-07	4,22E-07	1,41E-09	-1,14E-08
330	4,87E-07	4,84E-07	4,87E-07	4,88E-07	4,85E-07	4,88E-07	4,88E-07	4,86E-07	4,88E-07	4,86E-07	4,86E-07	4,87E-07	1,38E-09	-1,08E-08
335	5,56E-07	5,54E-07	5,56E-07	5,55E-07	5,55E-07	5,55E-07	5,57E-07	5,55E-07	5,55E-07	5,54E-07	5,56E-07	5,55E-07	9,38E-10	-1,24E-08
340	6,38E-07	6,37E-07	6,37E-07	6,37E-07	6,37E-07	6,38E-07	6,38E-07	6,34E-07	6,37E-07	6,37E-07	6,38E-07	6,37E-07	1,17E-09	-1,41E-08
345	7,44E-07	7,44E-07	7,45E-07	7,45E-07	7,44E-07	7,45E-07	7,45E-07	7,44E-07	7,45E-07	7,45E-07	7,46E-07	7,45E-07	7,45E-10	-1,41E-08
350	8,58E-07	8,59E-07	8,60E-07	8,59E-07	8,60E-07	8,60E-07	8,60E-07	8,58E-07	8,60E-07	8,60E-07	8,61E-07	8,60E-07	7,95E-10	-1,53E-08
355	9,66E-07	9,65E-07	9,67E-07	9,67E-07	9,66E-07	9,66E-07	9,67E-07	9,67E-07	9,67E-07	9,68E-07	9,67E-07	9,67E-07	8,02E-10	-1,81E-08
360	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	9,03E-10	-2,03E-08
365	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,21E-06	1,30E-09	-2,21E-08
370	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,36E-06	1,35E-06	1,35E-06	1,36E-06	1,35E-06	3,33E-09	-2,30E-08
375	1,51E-06	1,51E-06	1,51E-06	1,51E-06	1,51E-06	1,50E-06	1,50E-06	1,51E-06	1,51E-06	1,50E-06	1,51E-06	1,51E-06	4,65E-09	-3,02E-08
380	1,67E-06	1,67E-06	1,67E-06	1,67E-06	1,67E-06	1,67E-06	1,67E-06	1,67E-06	1,67E-06	1,66E-06	1,68E-06	1,67E-06	4,10E-09	-2,93E-08
385	1,83E-06	1,83E-06	1,84E-06	1,83E-06	1,83E-06	1,83E-06	1,83E-06	1,84E-06	1,83E-06	1,84E-06	1,84E-06	1,83E-06	5,19E-09	-2,68E-08
390	1,99E-06	1,99E-06	1,99E-06	1,99E-06	1,99E-06	1,99E-06	1,99E-06	2,00E-06	1,99E-06	1,99E-06	2,01E-06	1,99E-06	5,40E-09	-3,06E-08
395	2,17E-06	2,17E-06	2,17E-06	2,17E-06	2,17E-06	2,17E-06	2,17E-06	2,18E-06	2,17E-06	2,17E-06	2,19E-06	2,17E-06	5,65E-09	-3,27E-08
400	2.37E-06	2.37E-06	2.37E-06	2.37E-06	2.37E-06	2.37E-06	2.37E-06	2.37E-06	2.37E-06	2.37E-06	2.38E-06	2.37E-06	4.59E-09	-3.61E-08

						CALIBR	ACÕES						
	Unidado de	medicão		M/eminm									
	Decerieão	e meulyau do Dodrão I	Hilizado	Podrão do	Vadrão de irradiância espectral OL 200C - SC 0212								
	Cartificanda	uu raulau i	ouiiizauo	Cartificanda	aul au us ini aulancia sepseu al VE 2005 - 35-0212								
	Certificaut	de Calibra	içau	Certificaut	ептісадо до VL 2000. 5/N-887 рак-2003-2198 де11/0//2003								
(1*	2ª	3*	4ª	5°	6ª	7ª	8ª	9ª	10ª	Mádia	Desvio	
(nm)	Calibração	Calibração	Calibração	Calibração	Calibração	Calibração	Calibração	Calibração	Calibração	Calibração	Media	Padrão	
300	1,39E+05	1,24E+05	1,21E+05	1,14E+05	1,23E+05	1,18E+05	1,13E+05	1,17E+05	1,16E+05	1,21E+05	1,21E+05	7,31E+03	
305	1,31E+05	1,19E+05	1,19E+05	1,13E+05	1,20E+05	1,17E+05	1,13E+05	1,13E+05	1,14E+05	1,17E+05	1,18E+05	5,18E+03	
310	1,14E+05	1,06E+05	1,06E+05	1,05E+05	1,07E+05	1,07E+05	1,03E+05	1,05E+05	1,04E+05	1,05E+05	1,06E+05	3,04E+03	
315	1,00E+05	9,34E+04	9,65E+04	9,54E+04	9,73E+04	9,54E+04	9,26E+04	9,51E+04	9,32E+04	9,29E+04	9,52E+04	2,30E+03	
320	8,89E+04	8,35E+04	8,57E+04	8,44E+04	8,54E+04	8,50E+04	8,34E+04	8,42E+04	8,37E+04	8,31E+04	8,47E+04	1,67E+03	
325	7,94E+04	7,43E+04	7,69E+04	7,63E+04	7,67E+04	7,63E+04	7,52E+04	7,58E+04	7,54E+04	7,49E+04	7,61E+04	1,39E+03	
330	7,18E+04	6,68E+04	6,95E+04	6,94E+04	6,95E+04	6,89E+04	6,87E+04	6,91E+04	6,84E+04	6,80E+04	6,90E+04	1,24E+03	
335	6,64E+04	6,15E+04	6,48E+04	6,46E+04	6,47E+04	6,41E+04	6,40E+04	6,43E+04	6,45E+04	6,30E+04	6,42E+04	1,24E+03	
340	6,31E+04	5,75E+04	6,16E+04	6,15E+04	6,15E+04	6,14E+04	6,12E+04	6,13E+04	6,14E+04	6,01E+04	6,11E+04	1,43E+03	
345	2,97E+04	2,72E+04	2,90E+04	2,93E+04	2,93E+04	2,93E+04	2,93E+04	2,93E+04	2,92E+04	2,87E+04	2,90E+04	6,88E+02	
350	2,78E+04	2,56E+04	2,71E+04	2,76E+04	2,76E+04	2,76E+04	2,76E+04	2,76E+04	2,75E+04	2,70E+04	2,73E+04	6,32E+02	
355	2,58E+04	2,41E+04	2,55E+04	2,59E+04	2,59E+04	2,59E+04	2,59E+04	2,59E+04	2,58E+04	2,54E+04	2,56E+04	5,47E+02	
360	2,41E+04	2,29E+04	2,44E+04	2,45E+04	2,45E+04	2,45E+04	2,45E+04	2,45E+04	2,45E+04	2,42E+04	2,43E+04	5,01E+02	
365	2,27E+04	2,18E+04	2,33E+04	2,34E+04	2,33E+04	2,33E+04	2,33E+04	2,33E+04	2,33E+04	2,29E+04	2,31E+04	4,78E+02	
370	2,15E+04	2,05E+04	2,20E+04	2,19E+04	2,19E+04	2,19E+04	2,19E+04	2,19E+04	2,19E+04	2,16E+04	2,17E+04	4,35E+02	
375	1,99E+04	1,92E+04	2,05E+04	2,04E+04	2,04E+04	2,04E+04	2,04E+04	2,04E+04	2,05E+04	2,00E+04	2,02E+04	4,08E+02	
380	1,82E+04	1,76E+04	1,89E+04	1,87E+04	1,88E+04	1,88E+04	1,87E+04	1,87E+04	1,88E+04	1,84E+04	1,86E+04	3,78E+02	
385	1,67E+04	1,62E+04	1,71E+04	1,71E+04	1,71E+04	1,71E+04	1,71E+04	1,71E+04	1,74E+04	1,68E+04	1,70E+04	3,44E+02	
390	1,55E+04	1,51E+04	1,58E+04	1,59E+04	1,59E+04	1,59E+04	1,59E+04	1,59E+04	1,63E+04	1,56E+04	1,58E+04	3,17E+02	
395	1,43E+04	1,40E+04	1,46E+04	1,47E+04	1,47E+04	1,47E+04	1,47E+04	1,47E+04	1,50E+04	1,44E+04	1,46E+04	2,78E+02	

Tabela 15. Extrato da planilha de cálculo utilizada para se determinar a média e o desvio padrão das calibrações realizadas

Tabela 16. Extrato da planilha de cálculo utilizada para converter valores expressos em %A (especificado no certificado de calibração da fonte de corrente DC) em valores expressos em % de irradiância

Conversão de % (A) para % (Irradiância)						
nm	%					
250	1,20%					
300	0,90%					
400	0,60%					
500	0,40%					
1000	0,35%					
1500	0,17%					
Dados especificados no ce ele	rtificado de calibração da fonte étrica:					
Incerteza de medição (A)	0,0012					
K	2					
Corrente(A)	8					
Incerteza (%) = ((0,0012 / 8) * 100 0,0075						
Fonte da Informação: Relatório de calibração da Optronic Laboratories, Inc. da Lâmpada de 1000W - OL200C S/N: 887 pág3.						

Tabela 17. Extrato da planilha de cálculo para se interpolar a incerteza de medição expressa %A (especificada no certificado de calibração da fonte de corrente) em valores expressos em % irradiância

	Interpolação para 0,1%(A)									
λ [nm]	índice	fração	valores interpolados	% de correção de irradiância						
300	2	0,00	0,90%	-2,37						
305	2	0,05	0,89%	-2,33						
310	2	0,10	0,87%	-2,29						
315	2	0,15	0,86%	-2,26						
320	2	0,20	0,84%	-2,22						
325	2	0,25	0,83%	-2,18						
330	2	0,30	0,81%	-2,14						
335	2	0,35	0,80%	-2,10						
340	2	0,40	0,78%	-2,06						
345	2	0,45	0,77%	-2,02						
350	2	0,50	0,75%	-1,98						
355	2	0,55	0,74%	-1,94						
360	2	0,60	0,72%	-1,90						
365	2	0,65	0,71%	-1,86						
370	2	0,70	0,69%	-1,82						
375	2	0,75	0,68%	-1,78						
380	2	0,80	0,66%	-1,74						
385	2	0,85	0,65%	-1,70						
390	2	0,90	0,63%	-1,66						
395	2	0,95	0,62%	-1,62						
400	3	0,00	0,60%	-1,58						
405	3	0,05	0,59%	-1,56						
410	3	0,10	0,58%	-1,53						

Tabela 18. Extrato da planilha de cálculo utilizada na determinação da incerteza de medição expandida do espectroradiômetro (repetitividade e erro de medição)

			INCERTEZ	A DE MEDIÇÃO (IRRA	DIÂNCIA)			
	U 1	u ₂	u ₃	\mathbf{u}_4				
(nm)	incerteza do	repetitividade	repetitividade	influência da variação	u _o Erro	U Erro	u _o Repetitividade	U Repetitividade
	paurao utilizado %	ua calibração	ua nieuiçao	de corrente %	(%)	(%)	(%)	(%)
300	10,00%	1,96%	1,66%	0,0675%	10,33%	20,65%	2,57%	5,14%
305	10,00%	1,42%	1,42%	0,0664%	10,20%	20,40%	2,01%	4,03%
310	10,00%	0,93%	0,94%	0,0653%	10,09%	20,17%	1,32%	2,64%
315	10,00%	0,78%	0,92%	0,0641%	10,07%	20,15%	1,21%	2,42%
320	10,00%	0,64%	0,68%	0,0630%	10,04%	20,09%	0,94%	1,87%
325	10,00%	0,59%	0,58%	0,0619%	10,03%	20,07%	0,83%	1,66%
330	10,00%	0,58%	0,57%	0,0608%	10,03%	20,07%	0,81%	1,63%
335	10,00%	0,62%	0,57%	0,0596%	10,04%	20,07%	0,84%	1,69%
340	10,00%	0,75%	0,71%	0,0585%	10,05%	20,11%	1,04%	2,07%
345	5,00%	0,76%	0,68%	0,0574%	5,10%	10,21%	1,03%	2,06%
350	5,00%	0,75%	0,65%	0,0563%	5,10%	10,20%	1,00%	1,99%
355	5,00%	0,69%	0,61%	0,0551%	5,08%	10,17%	0,92%	1,84%
360	5,00%	0,67%	0,59%	0,0540%	5,08%	10,16%	0,89%	1,78%
365	5,00%	0,67%	0,62%	0,0529%	5,08%	10,16%	0,91%	1,82%
370	5,00%	0,64%	0,61%	0,0518%	5,08%	10,16%	0,89%	1,78%
375	5,00%	0,65%	0,62%	0,0506%	5,08%	10,16%	0,90%	1,80%
380	5,00%	0,65%	0,60%	0,0495%	5,08%	10,16%	0,89%	1,77%
385	5,00%	0,65%	0,57%	0,0484%	5,07%	10,15%	0,87%	1,73%
390	5,00%	0,65%	0,56%	0,0473%	5,07%	10,15%	0,86%	1,71%
395	5,00%	0,61%	0,53%	0,0461%	5,07%	10,13%	0,81%	1,63%
400	5,00%	0,58%	0,50%	0,0450%	5,06%	10,12%	0,77%	1,53%
405	2,00%	0,56%	0,49%	0,0443%	2,13%	4,27%	0,75%	1,49%
410	2,00%	0,55%	0,47%	0,0435%	2,13%	4,25%	0,72%	1,45%

	CÁLCULO DE X Y Z:									
					Ме	dição 01				
	S(λ)	×10(λ)	y10(λ)	z10(λ)	100*S(λ)	S(λ) . y10 (λ) . 5nm	S(λ) normalizada :	x	Y	Z
300	1,72E-07	0	0	0	1,72E-05	0,00E+00	0,0125	0	0	0
305	2,23E-07	0	0	0	2,23E-05	0,00E+00	0,0162	0	0	0
310	2,64E-07	0	0	0	2,64E-05	0,00E+00	0,0191	0	0	0
315	3,09E-07	0	0	0	3,09E-05	0,00E+00	0,0224	0	0	0
320	3,54E-07	0	0	0	3,54E-05	0,00E+00	0,0257	0	0	0
325	4,11E-07	0	0	0	4,11E-05	0,00E+00	0,0298	0	0	0
330	4,74E-07	0	0	0	4,74E-05	0,00E+00	0,0344	0	0	0
335	5,42E-07	0	0	0	5,42E-05	0,00E+00	0,0394	0	0	0
340	6,24E-07	0	0	0	6,24E-05	0,00E+00	0,0453	0	0	0
345	7,29E-07	0	0	0	7,29E-05	0,00E+00	0,0529	0	0	0
350	8,42E-07	0	0	0	8,42E-05	0,00E+00	0,0611	0	0	0
355	9,46E-07	0	0	0	9,46E-05	0,00E+00	0,0687	0	0	0
360	1,06E-06	0	0	0	1,06E-04	0,00E+00	0,0769	0	0	0
365	1,19E-06	0	0	0	1,19E-04	0,00E+00	0,0862	0	0	0
370	1,33E-06	0	0	0	1,33E-04	0,00E+00	0,0962	0	0	0
375	1,48E-06	0	0	0	1,48E-04	0,00E+00	0,1076	0	0	0
380	1,64E-06	0,0002	0	0,0007	1,64E-04	0,00E+00	0,1191	0,00012	0	0,00042
385	1,80E-06	0,0007	0,0001	0,0029	1,80E-04	8,99E-10	0,1306	0,00046	6,5E-05	0,00189
390	1,96E-06	0,0024	0,0003	0,0105	1,96E-04	2,94E-09	0,1420	0,0017	0,00021	0,00746
395	2,13E-06	0,0072	0,0008	0,0323	2,13E-04	8,54E-09	0,1549	0,00558	0,00062	0,02502
400	2,33E-06	0,0191	0,002	0,0860	2,33E-04	2,33E-08	0,1693	0,01617	0,00169	0,07279
405	2,53E-06	0,0434	0,0045	0,1971	2,53E-04	5,69E-08	0,1836	0,03984	0,00413	0,18095
410	2,74E-06	0,0847	0,0088	0,3894	2,74E-04	1,20E-07	0,1987	0,08414	0,00874	0,38681

Tabela 19. Extrato da planilha de cálculo para conversão dos valores de irradiância em valores triestímulos

Figura 54. Representação gráficas valores dos triestímulos referente às 10 medições realizadas sem recalibração (deriva)

Incerteza expandida do espectroradiômetro

Após realizar a calibração do espectroradiômetro, os resultados foram implantados nas planilhas de cálculo anteriormente apresentadas, assim permitindo determinar as incertezas expandidas que são inerentes ao espectroradiômetro utilizado, conforme documentado nas tabelas 20 e 21.

Tabela 20. Expressão das incertezas	associadas à	medição dos	experimentos	para se
verificar a repetitividade				

Repetitividade com recalibração						
Intervalo de comprimento de onda	Incerteza (%)					
300nm a 340nm	5,14					
350nm a 400nm	1,99					
410nm a 690nm	2,18					
700nm a 800nm	1,40					

Tabela 21. Expressão das incertezas associadas à medição dos experimentos para se verificar o erro de medição

Erro de medição com recalibração						
Intervalo de comprimento de onda	Incerteza (%)					
300nm a 340nm	20,65					
350nm a 400nm	10,20					
410nm a 690nm	4,55					
700nm a 800nm	2,61					

Em conformidade ao Guia ISO GUM para expressão da incerteza de medição, todas as incertezas expandidas relatadas são baseadas em uma incerteza padrão combinada, multiplicada por um fator de abrangência k=2, estabelecido para um nível de confiança de aproximadamente 95%.

6.1.2.

Incertezas associadas ao padrão de irradiância (Work Lamp 01)

As fontes de incerteza associadas ao padrão de irradiância utilizado foram identificadas e um procedimento de cálculo foi desenvolvido para determinar a incerteza expandida associada às medições referenciadas ao referido padrão.

Calibração do padrão de irradiância

A calibração do padrão de irradiância estabelece novos valores nominais ao mesmo, tendo como base, os valores nominais de um padrão primário.

Padrão analisado

Padrão de irradiância espectral denominado como Work Lamp 01 SC-0214.

Padrão e equipamento utilizados

Padrão de irradiância primário, modelo OL 200C, SC-0212, calibrado pelo Instituto Canadense de Metrologia (NRC, National Research Council), cujo certificado de calibração n° PAR2003-2198 data de 11.07.2003. As incertezas associadas ao padrão estão reportadas na tabela 11. O equipamento utilizado para calibrar o padrão *Work Lamp 01* foi o espectroradiômetro da marca OPTRONIC, modelo OL750-D, SC-0195. As incertezas expandidas do mesmo encontram-se reportadas na tabela 22.

Tabela 22. Incertezas expandidas associadas ao erro de medição do espectroradiômetro OL 750D (k=2)

Intervalo de comprimento de onda	Incerteza (%)		
300nm a 340nm	20,65		
350nm a 400nm	10,20		
410nm a 690nm	4,55		
700nm a 800nm	2,61		

Procedimento de calibração do padrão de irradiância

O espectroradiômetro foi calibrado a partir de medições referenciadas ao padrão primário, assim estabelecendo a base para que 10 medições do padrão a ser calibrado fossem realizadas. Os valores de medição de 300nm a 800nm (intervalo de medição de 5nm) foram emitidos na forma de valores de irradiância

em cada comprimento de onda (W/cm²nm) e, depois, estes foram processados nas planilhas que foram elaboradas para determinar a incerteza de medição e também para obter os novos valores de irradiância deste padrão (média das 10 medições realizadas).

Determinação da incerteza de medição expandida atribuída ao padrão de irradiância

Os componentes da incerteza associada ao padrão de irradiância originam-se das seguintes fontes: (i) incerteza do equipamento utilizado, (ii) repetitividade das medições, (iii) variação da corrente e a (iv) incerteza do padrão utilizado para calibrar o equipamento antes de realizar as medições do padrão a ser calibrado. Nas tabelas 23 a 26, estão apresentadas as planilhas elaboradas para calcular a incerteza de medição.

	DETERMINAÇÃO DA INCERTEZA DE MEDIÇÃO								
Símbolo	Fontes de Incerteza	Valor (xi) +/-	Distribuição	Divisor	Gi	u _i +/- (%)	viou v _{eff}		
U1	U Erro de medição Espectroradiômetro	Anexo 1	Normal	2,0	1	Anexo 1	æ		
U ₂	Repetitividade das medições	Anexo 1	Normal	raiz(10)	1	Anexo 1	9		
U3	∨ariação de corrente (%)	0,0075	Normal	1	"Interpolação U corrente"	Anexo 1	æ		
U4	Incerteza do padrão utilizado %	Anexo 1	Normal	2	1	Anexo 1	æ		
Uc	Incerteza padrão combinada	u ₁ +u ₂ +u ₃ +u ₄				Anexo 1			
U	Incerteza expandida		95.45% k= 2 A						
Obs:	u da medição da distância	excluído, pois ins dilatação do tubo	excluído, pois insignificante, vide "Tubo de Aço" Jilatação do tubo (20º-24ºC) insignificante, vide "Tubo de Aço"						
	(Resoluçao	jexcluido, pois é i	nsignificante no) caso do	UL/50(10 ~)			

Tabela 23. Fontes de incerteza associadas ao padrão a ser calibrado

	MEDICŐES													
	Unidade de medicão W/cm²nm													
	Descrição	do Padrã	o Utilizado	Padrão d	le irradiâi	ncia espe	ctral OL 3	200C - SC	-0212					
	Certificad	o de Calib	ração	Certifica	do do OL	200C S/N	-887 PAR	2003-219	8 de11/07	/2003				
(nm)	Valores Nominais do Padrão	1ª Medição	2ª Medição	3ª Medição	4ª Medição	5ª Medição	6ª Medição	7ª Medição	8ª Medição	9ª Medição	10ª Medição	Média	Desvio Padrão	Erro
300	1,85E-07	1,83E-07	1,68E-07	1,83E-07	1,83E-07	1,83E-07	1,72E-07	1,73E-07	1,86E-07	1,83E-07	1,70E-07	1,78E-07	6,59E-09	-1,08E-08
305	2,33E-07	2,31E-07	2,16E-07	2,31E-07	2,28E-07	2,29E-07	2,21E-07	2,24E-07	2,30E-07	2,29E-07	2,20E-07	2,26E-07	5,12E-09	-1,23E-08
310	2,77E-07	2,75E-07	2,63E-07	2,73E-07	2,73E-07	2,71E-07	2,67E-07	2,68E-07	2,75E-07	2,72E-07	2,66E-07	2,70E-07	4,05E-09	-1,27E-08
315	3,21E-07	3,17E-07	3,04E-07	3,10E-07	3,16E-07	3,17E-07	3,10E-07	3,13E-07	3,17E-07	3,15E-07	3,12E-07	3,13E-07	4,10E-09	-1,48E-08
320	3,68E-07	3,65E-07	3,57E-07	3,67E-07	3,65E-07	3,65E-07	3,62E-07	3,65E-07	3,67E-07	3,67E-07	3,63E-07	3,64E-07	2,98E-09	-1,19E-08
325	4,24E-07	4,26E-07	4,20E-07	4,25E-07	4,27E-07	4,26E-07	4,24E-07	4,26E-07	4,29E-07	4,27E-07	4,23E-07	4,25E-07	2,49E-09	-7,85E-09
330	4,87E-07	4,90E-07	4,85E-07	4,89E-07	4,90E-07	4,88E-07	4,86E-07	4,90E-07	4,90E-07	4,89E-07	4,88E-07	4,89E-07	1,83E-09	-8,91E-09
335	5,56E-07	5,60E-07	5,55E-07	5,58E-07	5,59E-07	5,57E-07	5,58E-07	5,60E-07	5,62E-07	5,62E-07	5,61E-07	5,59E-07	2,26E-09	-8,53E-09
340	6,38E-07	6,41E-07	6,35E-07	6,37E-07	6,38E-07	6,37E-07	6,38E-07	6,41E-07	6,42E-07	6,43E-07	6,38E-07	6,39E-07	2,39E-09	-1,22E-08
345	7,44E-07	7,52E-07	7,47E-07	7,48E-07	7,50E-07	7,50E-07	7,50E-07	7,50E-07	7,51E-07	7,50E-07	7,50E-07	7,50E-07	1,36E-09	-8,92E-09
350	8,58E-07	8,65E-07	8,61E-07	8,63E-07	8,63E-07	8,63E-07	8,64E-07	8,65E-07	8,66E-07	8,65E-07	8,64E-07	8,64E-07	1,40E-09	-1,12E-08
355	9,66E-07	9,73E-07	9,69E-07	9,70E-07	9,70E-07	9,70E-07	9,71E-07	9,72E-07	9,74E-07	9,71E-07	9,71E-07	9,71E-07	1,41E-09	-1,37E-08
360	1,08E-06	1,09E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,08E-06	1,09E-06	1,09E-06	1,09E-06	1,09E-06	1,64E-09	-1,54E-08
365	1,21E-06	1,22E-06	1,21E-06	1,21E-06	1,22E-06	1,21E-06	1,22E-06	1,22E-06	1,22E-06	1,22E-06	1,22E-06	1,22E-06	2,58E-09	-1,48E-08
370	1,35E-06	1,36E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,35E-06	1,36E-06	1,35E-06	1,35E-06	1,35E-06	2,31E-09	-2,01E-08
375	1,51E-06	1,53E-06	1,52E-06	1,52E-06	1,52E-06	1,52E-06	1,51E-06	1,52E-06	1,52E-06	1,51E-06	1,51E-06	1,52E-06	5,34E-09	-1,38E-08
380	1,67E-06	1,66E-06	1,66E-06	1,67E-06	1,66E-06	1,66E-06	1,67E-06	1,67E-06	1,67E-06	1,66E-06	1,66E-06	1,66E-06	4,23E-09	-3,53E-08
385	1,83E-06	1,82E-06	1,82E-06	1,82E-06	1,82E-06	1,82E-06	1,82E-06	1,83E-06	1,83E-06	1,82E-06	1,82E-06	1,82E-06	3,37E-09	-3,38E-08
390	1,99E-06	1,97E-06	1,98E-06	1,98E-06	1,98E-06	1,98E-06	1,98E-06	1,98E-06	1,99E-06	1,98E-06	1,98E-06	1,98E-06	4,70E-09	-4,25E-08
395	2,17E-06	2,14E-06	2,16E-06	2,15E-06	2,14E-06	2,14E-06	4,52E-09	-6,53E-08						
400	2,37E-06	2,35E-06	2,36E-06	2,35E-06	2,35E-06	2,35E-06	3,55E-09	-5,86E-08						

Tabela 24. Extrato da planilha de cálculo utilizada para se determinar a média, o desvio padrão e o erro de medição das medições realizadas (W/cm²nm)

Tabela 25. Extrato da planilha de cálculo para a determinação da média das 10 medições realizadas (valores nominais do padrão calibrado)

Tabela 1 – Valores de Irradiâ	ncia		
Comprimento de Onda(nm)	VWcm ² nm	Comprimento de Onda(nm)	₩cm²nm
300	1,74E-07	550	1,12E-05
305	2,21E-07	555	1,16E-05
310	2,64E-07	560	1,19E-05
315	3,06E-07	565	1,23E-05
320	3,56E-07	570	1,26E-05
325	4,16E-07	575	1,30E-05
330	4,78E-07	580	1,33E-05
335	5,48E-07	585	1,37E-05
340	6,26E-07	590	1,41E-05
345	7,35E-07	595	1,44E-05
350	8,47E-07	600	1,47E-05
355	9,52E-07	605	1,51E-05
360	1,06E-06	610	1,53E-05
365	1,19E-06	615	1,56E-05
370	1,33E-06	620	1,58E-05
375	1,49E-06	625	1,63E-05
380	1,63E-06	630	1,66E-05
385	1,79E-06	635	1,68E-05
390	1,95E-06	640	1,70E-05
395	2,11E-06	645	1,73E-05
400	2,31E-06	650	1,76E-05
405	2,52E-06	655	1,79E-05
410	2,73E-06	660	1,81E-05

	INCERTEZA DE MEDIÇÃO (IRRADIÂNCIA)								
	u ₁ u ₂		u _s	U 4					
(nm)	uc Erro de medição Espectroradiômetro (%)	Repetitividade das medições	influência da variação de corrente %	incerteza do padrão utilizado %	uc (%)	U (%)			
300	10,33%	1,20%	0,07%	10,00%	14,42%	28,85%			
305	10,20%	0,73%	0,07%	10,00%	14,30%	28,61%			
310	10,09%	0,48%	0,07%	10,00%	14,21%	28,42%			
315	10,07%	0,42%	0,06%	10,00%	14,20%	28,40%			
320	10,04%	0,26%	0,06%	10,00%	14,18%	28,35%			
325	10,03%	0,19%	0,06%	10,00%	14,17%	28,34%			
330	10,03%	0,12%	0,06%	10,00%	14,17%	28,33%			
335	10,04%	0,13%	0,06%	10,00%	14,17%	28,34%			
340	10,05%	0,12%	0,06%	10,00%	14,18%	28,36%			
345	5,10%	0,06%	0,06%	5,00%	7,15%	14,29%			
350	5,10%	0,05%	0,06%	5,00%	7,14%	14,28%			
355	5,08%	0,05%	0,06%	5,00%	7,13%	14,26%			
360	5,08%	0,05%	0,05%	5,00%	7,13%	14,25%			
365	5,08%	0,07%	0,05%	5,00%	7,13%	14,26%			
370	5,08%	0,05%	0,05%	5,00%	7,13%	14,25%			
375	5,08%	0,11%	0,05%	5,00%	7,13%	14,26%			
380	5,08%	0,08%	0,05%	5,00%	7,13%	14,25%			
385	5,07%	0,06%	0,05%	5,00%	7,12%	14,25%			
390	5,07%	0,08%	0,05%	5,00%	7,12%	14,25%			
395	5,07%	0,07%	0,05%	5,00%	7,12%	14,24%			
400	5,06%	0,05%	0,05%	5,00%	7,11%	14,23%			

Tabela 26. Extrato da planilha de cálculo utilizada na determinação da incerteza de medição expandida do padrão de irradiância

Incerteza expandida do padrão de irradiância

As incertezas associadas ao padrão de irradiância *Work Lamp 01* estão documentadas na tabela 27.

Tabela 27. Incertezas expandidas associadas ao padrão de irradiância espectral *Work* Lamp 01

Intervalo de comprimento de onda	Incerteza (%)
300nm a 340nm	28,85
350nm a 400nm	14,28
410nm a 690nm	6,06
700nm a 800nm	3,41

Em conformidade ao Guia ISO GUM para expressão da incerteza de medição, todas as incertezas expandidas relatadas são baseadas em uma incerteza padrão combinada, multiplicada por um fator de abrangência k=2, estabelecido para um nível de confiança de aproximadamente 95%.

6.1.3.

Incertezas associadas a uma fonte luminosa

As fontes de incerteza associadas a uma determinada fonte luminosa foram identificadas e um procedimento de cálculo para determinar a incerteza expandida da mesma foi desenvolvido.

Fonte luminosa analisada

Foi determinada a incerteza de medição da lâmpada Philips TL-D 90 De Luxe Pro 36W/965 (Made in Holland).

Padrão e equipamento utilizados

Padrão de irradiância espectral denominado como *Work Lamp 01* SC-0214, cujas incertezas estão documentadas na tabela 27. O espectroradiômetro utilizado foi o da marca OPTRONIC, modelo OL750-D, SC-0195 e suas incertezas estão reportadas na tabela 22.

Procedimento de medição da fonte luminosa

O espectroradiômetro foi calibrado com o padrão *Work Lamp 01* e depois foram realizadas 10 medições da fonte luminosa. Os valores de medição de 300nm a 800nm (intervalo de medição de 5nm) foram emitidos na forma de valores de irradiância em cada comprimento de onda (W/cm²nm) e então processados nas planilhas que foram elaboradas para determinar a incerteza de medição e também para obter os valores de irradiância desta fonte luminosa (média das 10 medições realizadas).

Determinação da incerteza de medição expandida da fonte luminosa

Os componentes da incerteza associada à fonte luminosa analisada originam-se das seguintes fontes: (i) incerteza do equipamento utilizado, (ii) repetitividade das medições, (iii) variação da corrente e a (iv) incerteza do padrão utilizado. Nas tabelas 28 a 31, estão apresentadas as planilhas elaboradas para calcular a incerteza de medição associada a uma fonte luminosa.

	DETERMINAÇÃO DA INCERTEZA DE MEDIÇÃO											
Símbolo	Fontes de Incerteza	Valor (xi) +/-	Distribuição	Divisor	G	u _i +/- (%)	viouv _{eff}					
U1	U Erro de medição Espectroradiômetro	Anexo 1	Normal	2,0	1	Anexo 1	æ					
U ₂	Repetitividade das medições	Anexo 1	Normal	raiz(10)	1	Anexo 1	9					
U3	Variação de corrente (%)	0,0075	Normal	1	"Interpolação U corrente"	Anexo 1	æ					
U4	Incerteza do padrão utilizado %	Anexo 1	Normal	2	1	Anexo 1	æ					
Uc	Incerteza padrão combinada	u ₁ +u ₂ +u ₃ +u ₄				Anexo 1						
U	Incerteza expandida		95.45% k= 2 Anexo 1									
Obs:	u da medição da distância	excluído, pois ins dilatação do tubo	xcluído, pois insignificante, vide "Tubo de Aço" ilatação do tubo (20º-24ºC) insignificante, vide "Tubo de Aço"									
	Resolução	jexcluído, pois é i	nsignificante no) caso do	<u>_OL 750 (10 **</u>	cluido, pois é insignificante no caso do OL 750 (10 ⁻⁶)						

Tabela 28. Fontes	de incerteza	associadas à	fonte	luminosa	analisada
		abbooladab a	101110	anniooa	ananoudu

Tabela 29. Extrato da planilha de cálculo utilizada para se determinar a média, o desvio padrão e o erro de medição das medições realizadas (W/cm²nm)

	MEDIÇÖES													
	Unidade de medição W/cm²nm													
	Descrição	do Padrã	o Utilizado	Padrão d	Padrão de irradiância espectral Work Iamp 01 - SC-0214									
	Certificad	o de Calib	vração	Certificad 22/09/200	lo de Cali 5	bração for	necido pe	la UOC (U	nidade O	peraciona	al de Colo	rimetria),	, sob o nº	R-1177 de
(nm)	Valores Nominais do Padrão	1ª Medição	2ª Medição	3ª Medição	4ª Medição	5ª Medição	6ª Medição	7ª Medição	8ª Medição	9ª Medição	10ª Medição	Média	Desvio Padrão	Erro
300	1,74E-07	0,00E+00	3,50E-09	0,00E+00	2,04E-08	0,00E+00	0,00E+00	7,25E-09	1,63E-08	5,75E-09	6,13E-09	5,93E-09	7,01E-09	-1,68E-07
305	2,21E-07	0,00E+00	2,66E-09	4,60E-09	4,07E-08	1,11E-08	0,00E+00	1,79E-08	8,48E-09	0,00E+00	0,00E+00	8,55E-09	1,25E-08	-2,12E-07
310	2,64E-07	8,64E-09	4,10E-08	2,50E-08	4,51E-08	3,84E-08	3,43E-08	4,15E-08	4,78E-08	2,70E-08	2,62E-08	3,35E-08	1,16E-08	-2,32E-07
315	3,06E-07	9,05E-09	2,72E-08	3,68E-08	2,97E-08	3,58E-08	2,13E-08	4,93E-08	2,12E-08	3,82E-08	1,66E-08	2,85E-08	1,16E-08	-2,78E-07
320	3,56E-07	0,00E+00	1,13E-08	6,47E-09	2,30E-08	1,93E-08	1,20E-08	2,90E-08	1,45E-08	1,57E-08	5,36E-09	1,37E-08	8,46E-09	-3,43E-07
325	4,16E-07	0,00E+00	4,30E-09	9,64E-09	1,51E-08	9,26E-09	5,67E-09	7,14E-09	1,79E-08	9,97E-09	3,76E-09	8,27E-09	5,23E-09	-4,08E-07
330	4,78E-07	0,00E+00	7,31E-09	5,29E-09	1,37E-08	8,75E-09	4,76E-09	1,66E-08	7,26E-09	7,26E-09	4,04E-09	7,50E-09	4,66E-09	-4,71E-07
335	5,48E-07	0,00E+00	2,64E-09	4,12E-09	1,83E-08	8,69E-09	8,78E-09	1,12E-08	1,31E-08	6,49E-09	0,00E+00	7,34E-09	5,78E-09	-5,40E-07
340	6,26E-07	0,00E+00	7,50E-10	6,00E-09	1,39E-08	2,46E-09	0,00E+00	2,24E-08	7,00E-09	8,54E-09	3,63E-09	6,47E-09	6,96E-09	-6,19E-07
345	7,35E-07	1,01E-09	4,54E-09	4,98E-09	6,37E-09	2,85E-09	2,94E-09	3,64E-09	4,70E-09	2,85E-09	3,86E-10	3,43E-09	1,79E-09	-7,31E-07
350	8,47E-07	0,00E+00	3,67E-09	3,10E-09	5,66E-09	2,43E-09	4,18E-09	2,93E-09	5,72E-09	4,03E-09	1,46E-09	3,32E-09	1,73E-09	-8,44E-07
355	9,52E-07	0,00E+00	9,12E-10	3,66E-09	6,54E-09	1,21E-08	3,90E-09	3,92E-09	4,89E-09	4,13E-09	3,06E-09	4,31E-09	3,25E-09	-9,48E-07
360	1,06E-06	2,15E-08	2,47E-08	2,37E-08	2,51E-08	2,60E-08	2,30E-08	2,75E-08	2,75E-08	2,33E-08	2,55E-08	2,48E-08	1,90E-09	-1,04E-06
365	1,19E-06	2,69E-07	2,60E-07	2,30E-07	2,28E-07	2,52E-07	2,65E-07	2,51E-07	2,50E-07	2,65E-07	2,64E-07	2,53E-07	1,41E-08	-9,45E-07
370	1,33E-06	3,07E-08	3,09E-08	2,66E-08	3,08E-08	3,22E-08	3,04E-08	3,07E-08	3,37E-08	3,26E-08	3,23E-08	3,11E-08	1,88E-09	-1,30E-06
375	1,49E-06	7,85E-09	1,34E-08	1,04E-08	1,45E-08	1,25E-08	1,11E-08	1,12E-08	1,32E-08	1,29E-08	1,08E-08	1,18E-08	1,87E-09	-1,48E-06
380	1,63E-06	1,77E-08	2,17E-08	1,98E-08	2,09E-08	2,02E-08	1,98E-08	2,11E-08	2,03E-08	2,08E-08	1,98E-08	2,02E-08	1,08E-09	-1,61E-06
385	1,79E-06	1,88E-08	2,11E-08	1,99E-08	2,03E-08	2,22E-08	2,14E-08	2,13E-08	2,27E-08	2,02E-08	1,96E-08	2,07E-08	1,18E-09	-1,77E-06
390	1,95E-06	2,11E-08	2,19E-08	2,25E-08	2,48E-08	2,57E-08	2,43E-08	2,34E-08	2,33E-08	2,29E-08	2,38E-08	2,34E-08	1,33E-09	-1,92E-06

Tabala di Malana da basad	A							
labela 1 – Valores de Irradiancia								
<u>Comprimento de Onda(nm)</u>	W/cm²nm	Comprimento de Onda(nm)	W/cm²nm					
300 [5,78E-09]]		550	1,34E-06					
305	8,35E-09	555	4,41E-07					
310	3,27E-08	560	1,65E-07					
315	2,79E-08	565	1,18E-07					
320	1,34E-08	570	1,04E-07					
325	8,09E-09	575	1,86E-07					
330	7,34E-09	580	4,88E-07					
335	7,18E-09	585	6,80E-07					
340	6,34E-09	590	6,34E-07					
345	3,36E-09	595	4,27E-07					
350	3,25E-09	600	3,35E-07					
355	4,23E-09	605	2,27E-07					
360	2,43E-08	610	2,77E-06					
365	2,49E-07	615	1,19E-06					
370	3,05E-08	620	5,26E-07					
375	1,16E-08	625	5,52E-07					
380	1,99E-08	630	6,79E-07					
385	2,04E-08	635	1,99E-07					
390	2,30E-08	640	1,68E-07					
395	2,98E-08	645	1,59E-07					
400	8,91E-08	650	2,18E-07					
405	5,68E-07	655	1,28E-07					
410	1,45E-07	660	1,29E-07					
415	1,55E-07	665	1,33E-07					
420	2,21E-07	670	9,14E-08					

Tabela 30. Extrato da planilha de cálculo para a determinação da média das 10 medições realizadas (valores de irradiância de uma fonte luminosa testada)

Tabela 31. Extrato da planilha de cálculo utilizada na determinação da incerteza de medição expandida de uma fonte luminosa

	INCERTEZA DE MEDIÇÃO (IRRADIÂNCIA)								
	u1	u2	u _s	U 4		_			
(nm)	uc Erro de medição Espectroradiômetro (%)	Repetitividade das medições	influência da variação de corrente %	incerteza do padrão utilizado %	uc (%)	U (%)			
300	10,33%	38,30%	0,07%	14,42%	42,21%	84,42%			
305	10,20%	47,28%	0,07%	14,30%	50,44%	100,88%			
310	10,09%	11,22%	0,07%	14,21%	20,72%	41,45%			
315	10,07%	13,22%	0,06%	14,20%	21,86%	43,72%			
320	10,04%	20,02%	0,06%	14,18%	26,51%	53,02%			
325	10,03%	20,43%	0,06%	14,17%	26,81%	53,62%			
330	10,03%	20,07%	0,06%	14,17%	26,54%	53,08%			
335	10,04%	25,44%	0,06%	14,17%	30,80%	61,60%			
340	10,05%	34,75%	0,06%	14,18%	38,86%	77,72%			
345	5,10%	16,85%	0,06%	7,15%	19,00%	38,00%			
350	5,10%	16,83%	0,06%	7,14%	18,98%	37,97%			
355	5,08%	24,29%	0,06%	7,13%	25,83%	51,65%			
360	5,08%	2,48%	0,05%	7,13%	9,10%	18,19%			
365	5,08%	1,79%	0,05%	7,13%	8,94%	17,87%			
370	5,08%	1,94%	0,05%	7,13%	8,96%	17,93%			
375	5,08%	5,12%	0,05%	7,13%	10,14%	20,28%			
380	5,08%	1,71%	0,05%	7,13%	8,92%	17,83%			
385	5,07%	1,83%	0,05%	7,12%	8,94%	17,87%			
390	5,07%	1,83%	0,05%	7,12%	8,94%	17,87%			
395	5,07%	1,53%	0,05%	7,12%	8,87%	17,74%			
400	5,06%	1,56%	0,05%	7,11%	8,87%	17,73%			

Incerteza expandida da fonte luminosa

As incertezas da lâmpada Philips TL-D 90 De Luxe estão documentadas na tabela 32.

Intervalo de comprimento de onda	Incerteza (%)
360nm a 400nm	20,28
410nm a 550nm	8,23
560nm a 690nm	7,87
700nm a 800nm	13,39

Tabela 32. Incertezas expandidas associadas à lâmpada Philips TL-D 90 De Luxe

Em conformidade ao Guia ISO GUM para expressão da incerteza de medição, todas as incertezas expandidas relatadas são baseadas em uma incerteza padrão combinada, multiplicada por um fator de abrangência k=2, estabelecido para um nível de confiança de aproximadamente 95%.

6.2. Metodologias para medição da irradiância de fontes luminosas

Foram elaboradas metodologias para medição da irradiância das seguintes fontes luminosas: lâmpadas fluorescentes, incandescentes e pulsantes de xenônio.

6.2.1. Procedimento para medição da irradiância de lâmpadas incandescentes e fluorescentes

Foram elaborados procedimentos para medição da irradiância de lâmpadas fluorescentes e incadescentes.

Equipamentos utilizados

Dentre os equipamentos e sistemas de medição destacam-se: (i) combinação de fendas utilizada: 2,5mm, 5,0mm e 2,5mm, (ii) esfera de Integração OL IS-670, (iii) espectroradiômetro de bancada, marca OPTRONIC, modelo OL 750-D, (iv) lâmpada a ser testada, (v) lâmpada padrão de irradiância, (v) programa OL 750 Applications e (vi) termômetro digital.

Procedimento

A figura 55 ilustra o sistema de medição especificamente desenvolvido para a bancada de medição utilizada nas medições da irradiância (W/cm²nm).

Figura 55. Aparatus experimental utilizado nas medições espectroradiométricas de lâmpadas fluorescentes e incandescentes

Calibração

Depois de montado o sistema de medição, foi necessário calibrar o instrumento da seguinte forma:

- Para obter uma resolução espectral (HBW) de 5nm, conforme está descrito no manual do instrumento, foi utilizado a seguinte combinação de fendas: 2,5mm (entrada), 5,0mm (meio) e 2,5mm (saída).

- Em seguida, a lâmpada padrão de irradiância foi posicionada acima da abertura de entrada da esfera de integração com uma distância de 50cm;

- O arquivo que contém os valores nominais da lâmpada padrão foi utilizado como arquivo padrão (*.std) e o sistema foi calibrado, e um arquivo de calibração foi criado (*.cal), o qual foi utilizado para realizar as devidas medições.

Figura 56. Montagem do instrumento para calibração

Medição

As medições foram realizadas da seguinte forma:

- Todas as condições estabelecidas para realizar a calibração foram mantidas;

- A lâmpada padrão de irradiância foi retirada e a lâmpada a ser testada foi posicionada exatamente na mesma posição dela, ou seja, acima da abertura de entrada da esfera de integração com uma distância de 50cm;

- Foi utilizado o arquivo de calibração (*.cal) criado na calibração;
- As medições foram realizadas.

Análise de diferentes lâmpadas

Nas figuras 57 a 59, são apresentados os gráficos de algumas lâmpadas testadas, conforme o procedimento descrito. Na figura 57, a curva de distribuição espectral de potência da lâmpada fluorescente Sylvania SuperSave Cool White. Na figura 58, a curva da lâmpada incandescente Philips 90W. Na figura 59, a curva da lâmpada padrão *Work Lamp 01*.

114

Figura 57. Gráfico da distribuição espectral de potência de uma lâmpada fluorescente -Sylvania SuperSave Cool White

Figura 58. Gráfico da distribuição espectral de potência de uma lâmpada incandescente - Philips 90W 130V (Master Line)

Figura 59. Gráfico da distribuição espectral de potência de uma lâmpada padrão de irradiância de 1000W – *Work Lamp 01*

Para se determinar a repetitividade e o erro de medição das medições de irradiância das lâmpadas incandescentes, foram realizadas 10 medições da lâmpada padrão *Work Lamp 01*. Os resultados obtidos foram utilizados para calcular a repetititivade e o erro de medição, onde:

- Erro de Medição (%) = ((valor nominal média das 10 medições) / média das 10 medições) x 100
 - Repetitividade (%) = ((desvio padrão / média das 10 medições) / (10)^{1/2}) x 100

O gráfico da figura 60 apresenta as 10 curvas de distribuição espectral de potência obtidas e a curva com os valores nominais da mesma. O erro de medição e a repetitividade são apresentados na tabela 33.

Figura 60. Comparação entre as 10 medições realizadas da lâmpada padrão *Work Lamp* 01 e os seus valores nominais

Tabela	33.	Repetitividade	е	erro	de	medição	das	medições	realizadas	da	lâmpada
padrão	Wor	k Lamp 01									

Comprimento de Onda	Repetitividade	Erro de Medição
380nm-400nm	5,66%	0,59%
405nm-500nm	5,32%	1,29%
505nm-600nm	1,16%	0,24%
605nm-700nm	0,63%	0,10%
705nm-800nm	0,56%	0,11%

Observação: A repetitividade e o erro de medição da faixa de 300nm a 375nm não foram determinados pois a lâmpada analisada não apresenta energia significante nesta faixa.

Como não se havia valores nominais para calcular o erro de medição da lâmpada fluorescente, a lâmpada Philips TLD 36W/965 (Made in Holland) foi medida 10 vezes e somente a repetitividade foi determinada (tabela 34). As 10 curvas de distribuição espectral obtidas e a repetitividade podem ser vistas na figura 61.

Figura 61. Curvas de distribuição espectral obtidas da lâmpada Philips TLD 36W/965

|--|

Comprimento de Onda	Repetitividade
380nm-400nm	1,37%
405nm-500nm	0,49%
505nm-600nm	0,44%
605nm-700nm	0,42%
705nm-800nm	2,79%

Observação: A repetitividade e o erro de medição da faixa de 300nm a 375nm não foram determinados pois a lâmpada analisada não apresenta energia significante nesta faixa.

Análise do procedimento elaborado

O procedimento elaborado para medição da irradiância de lâmpadas fluorescentes e incadescentes pode ser utilizado, pois este atendeu plenamente as expectativas, apresentou uma repetitividade e um erro de medição aceitáveis.

6.2.2.

Procedimento para medição da irradiância de lâmpadas pulsantes de xenônio

Como não há até o presente momento uma metodologia para a realização de medições espectroradiométricas de lâmpadas de pulso (flash) usadas nos modernos espectrofotômetros, e no Brasil não há nenhum laboratório que realize essas medições, um dos objetivos principais dessa pesquisa foi de desenvolver um procedimento para tal fim.

Equipamentos utilizados

Dentre os equipamentos e sistemas de medição destacam-se: (i) combinação de fendas utilizada: 3,0mm (abertura), 5,0mm e 2,5mm, (ii) espectrofotômetro Minolta CM-3600d, (iii) espectrofotômetro Minolta CM-3720d, (iv) espectroradiômetro de bancada, marca OPTRONIC, modelo OL 750-D, (v) lâmpada padrão de irradiância, (vi) programa OL 750 Applications, (vii) telescópio OL 730-9 e (viii) termômetro digital.

Procedimento

Para o desenvolvimento do procedimento para medição da irradiância de lâmpadas pulsantes de xenônio, o espectrofotômetro utilizado para o teste foi o CM-3600d. Esse espectrofotômetro apresenta três flashes de uma única vez (um da lâmpada com UV, um do brilho e um da lâmpada sem UV). Para realizar as medições espectroradiométricas das lâmpadas pulsantes do espectrofotômetro 3600d incluindo a calibração necessária, foi utilizado um espectroradiômetro de bancada, marca OPTRONIC, modelo OL 750-D. E a combinação de fendas que foi utilizada foi a de 3,0mm (abertura) na entrada do monocromador, de 5,0mm no centro e a de 2,5mm na saída deste para obter um largura de banda espectral (HBW – half bandwidth) de aproximadamente 5nm. A montagem do sistema para realização das medições utilizando o telescópio OL730-9 pode ser vista na figura 62.

Figura 62. Aparatus experimental utilizado nas medições espectroradiométricas de lâmpadas pulsantes

Calibração

Depois da montagem do sistema, definido anteriormente, foi necessário calibrar esse sistema corretamente para que não ocorresse nenhum erro nas medições posteriores. Essa calibração ocorreu da seguinte forma:

1º) Foi definido o padrão de irradiância - OL-200C.

2º) Foi posicionado o padrão definido (lâmpada padrão) em frente e no centro da lente do telescópio a uma distância de aproximadamente de 1m, como pode ser visto na figura 63.

Figura 63. Posicionamento e distância da lâmpada padrão em relação à lente do telescópio

3º) Foi definida a melhor forma de sincronização do sistema para a calibração e para as medições espectroradiométricas.

Essa sincronização foi igual tanto para a calibração quanto para as medições. No programa utilizado da Optronic (OL750 Applications), são apresentadas diversas formas de sincronização para a realização das medições, e a que atendeu melhor às necessidades requeridas para a realização das medições espectroradiométricas foi a externa. A razão para essa escolha foi devido às medições espectroradiométricas de lâmpadas pulsantes que foram realizadas "manualmente", pois infelizmente ainda não se tem um cabo para ser conectado no espectrofotômetro e no espectroradiômetro, para que automaticamente o flash emitido pelo espectrofotômetro fosse capturado pelo espectroradiômetro. Dessa forma, a cada comprimento de onda foi necessário dar um clique no espectrofotômetro para disparar o flash e ao mesmo tempo no espectroradiômetro para capturar e registrar esse flash corretamente, por isso que essa forma, a de sincronização externa, foi a melhor no momento.

4º) Foi utilizado o arquivo padrão (S887.std) fornecido pelo próprio fabricante que continha os valores nominais do padrão utilizado.

 Foi definida a faixa de calibração de 300nm a 800nm com intervalo de medição de 5nm. Essa faixa e o intervalo de medição foram iguais para as medições seguintes.

6) Para não haver alterações nos resultados das medições, foi utilizado um termômetro para controlar a temperatura do ambiente; ou seja, ela permaneceu entre 24,5ºC a 25,5ºC.

 Foi realizada a calibração e foi obtido o arquivo de calibração necessário para realizar as medições seguintes.

Medição

Depois de realizada a calibração e obtido o arquivo de calibração, a lâmpada padrão (padrão de irradiância) foi retirada e a lâmpada pulsante do espectrofotômetro a ser testado foi posicionado no mesmo lugar desta em relação a lente do telescópio, como pode ser visto na figura 64. A seguir, todas medições foram realizadas utilizando o arquivo de calibração obtido anteriormente nas mesmas condições.

Figura 64. Posicionamento e distância do espectrofotômetro CM-3600d em relação à lente do telescópio

Como o espectrofotômetro CM-3600d (ver item 5.2.2) apresenta três flashes de uma única vez (um da lâmpada com UV, um do brilho e um da lâmpada sem UV), foi realizada 1 medição de cada flash, excluindo somente o 2º, pois este era do brilho e não importava no momento. Mas na verdade, esse espectrofotômetro apresenta 4 tipos de lâmpadas: uma de 100%UV, uma sem UV com filtro 400, uma sem UV com filtro 420 e uma do brilho. Então, antes de começar as medições foi necessário definir qual o tipo de lâmpada sem UV (400 ou 420) seria medida. Todas as medições foram realizadas com a maior abertura e com o componente especular SCI e SCE simultaneamente. A ordem das medições foi a seguinte:

- 1º) Uma medição do 1º flash 100% UV;
- 2º) Uma medição do 3º flash 0% UV 400;
- 3º) Uma medição do 3º flash 0% UV 420.

Análise das medições realizadas

Os resultados obtidos das medições realizadas podem ser vistos no gráfico da figura 65.

Figura 65. DEPs das lâmpadas pulsantes que se encontram no espectrofotômetro CM-3600d

Para verificar o erro de medição das medições de lâmpadas pulsantes de xenônio, medições foram realizadas no espectrofotômetro CM-3720d, o qual apresenta somente um único flash (ver item 3.1.2.1). Os procedimentos de calibração e medição foram os mesmos utilizados para o CM-3600d, sendo que este foi retirado da posição que se encontrava, e o CM-3720d foi posicionado em seu lugar.

As medições foram realizadas da seguinte forma:

- 3 medições com o filtro UV na posição 0% (figura 66);
- 3 medições com o filtro UV na posição 100% (figura 67);
- 1 medição com o filtro UV na posição 50% (figura 68).

Depois de realizadas todas as medições, o 50% UV calculado foi obtido a partir da combinação dos valores médios encontrados das medições com o filtro UV nas posições 0% e na 100%, conforme pode ser visto na figura 68. Em seguida, o erro de medição foi calculado com a comparação entre os valores medidos e os calculados com o filtro UV na posição 50%, através da seguinte fórmula: {[(valor medido – valor calculado)/valor calculado]*100}.

Os resultados encontrados são apresentados nas figuras 66, 67 e 68 e na tabela 35.

Figura 66. Medições realizadas do espectrofotômetro 3720d com o filtro de UV na posição 0%

Figura 67. Medições realizadas do espectrofotômetro 3720d com o filtro de UV na posição 100%

Figura 68. Comparação entre 50%UV medido e 50%UV calculado

Tabela 35. Erro de medição das medições realizadas da lâmpada pulsante do espectrofotômetro CM-3720d

Comprimento de Onda	Erro de Medição
380nm-400nm	3,36%
405nm-500nm	0,11%
505nm-600nm	-0,29%
605nm-700nm	0,79%
705nm-800nm	1,43%

Análise do procedimento elaborado

Com base nos resultados obtidos pode-se concluir que o procedimento elaborado para medir fontes pulsantes de espectrofotômetros pode ser utilizado, pois o mesmo foi validado através da comparação entre a curva medida e a calculada com 50%UV (figura 68), as quais não tiveram diferenças significativas entre si e também o erro de medição das medições foi muito pequeno, com isso pode-se concluir que os resultados atenderam plenamente as expectativas.

6.3.

Considerações metrológicas sobre a medição da irradiância de lâmpadas incandescentes e fluorescentes

Na literatura, somente algumas publicações sobre avaliação de lâmpadas divulgam as condições de medição de irradiância. Umas realizam essa avaliação sob condições padronizadas e outras sob não-padronizadas, ou seja, não seguem as recomendações da CIE, onde o intervalo de medição e a largura de banda são de 5nm. Por isso, foi analisada a influência do intervalo de medição e da largura da banda espectral para medição da irradiância de lâmpadas incandescentes e fluorescentes.

Procedimento

Dois tipos de lâmpadas foram testadas, as quais apresentavam distribuições espectrais de potência totalmente diferentes. As especificações destas eram:

- Fluorescente Lâmpada Philips TLD 36 W/965 Made in Holland-Incandescente;
- Lâmpada padrão de trabalho Work Lamp 01, SC-0214 rastreável ao padrão de irradiância primário OL 200C, SC-0212, calibrado pelo NRC (National Research Council). As condições de medição estão reportadas na tabela 36.

Condições de medição		Fenda de entrada (mm)	Fenda do meio (mm)	Fenda de saída (mm)	Resolução Espectral (nm)	Interv. de medição (nm)
	1ª condição	0,25	1,25	0,25	0,50	0,50
Diferentes resoluções	2ª condição	0,50	1,25	0,50	1,00	1,00
espectrais e	3ª condição	1,25	2,50	1,25	2,50	2,50
intervalos de medição	4ª condição	2,50	5,00	2,50	5,00	5,00
	5ª condição	5,00	5,00	5,00	10,00	10,00
Diferentes	1ª condição	2,50	5,00	2,50	5,00	0,50
intervalos de medição	2ª condição	2,50	5,00	2,50	5,00	1,00
com	3ª condição	2,50	5,00	2,50	5,00	2,50
resolução	4ª condição	2,50	5,00	2,50	5,00	5,00
5nm	5ª condição	2,50	5,00	2,50	5,00	10,00

Tabela 36. Condições de medição estabelecidas para verificar o efeito da largura de banda e do intervalo de medição

Diferentes	1ª condição	0,25	1,25	0,25	0,50	5,00
resoluções espectrais	2ª condição	0,50	1,25	0,50	1,00	5,00
com	3ª condição	1,25	2,50	1,25	2,50	5,00
intervalo de medicão de	4ª condição	2,50	5,00	2,50	5,00	5,00
5nm	5ª condição	5,00	5,00	5,00	10,00	5,00

Para cada lâmpada foram realizadas 3 medições em cada condição apresentada acima (tabela 36) e foi efetuada o cálculo da média das medições.

O equipamento utilizado para realizar as medições de irradiância foi o espectroradiômetro da marca OPTRONIC, modelo OL750-D, SC-0195 certificado de calibração fornecido pela UOC (Unidade Operacional de Colorimetria), sob o n° R-1176 de 21/09/2005. Os dados foram obtidos no programa de espectroradiometria denominado OL750 Spectroradiometric Applications.

A montagem do sistema de medição utilizado para realizar as devidas medições foi detector, monocromador, cabo óptico e esfera de integração. Esse sistema foi calibrado para cada condição estabelecida (combinação de fendas e intervalo de medição) com a lâmpada padrão *Work Lamp 01*, SC-0214 certificado de calibração fornecido pela UOC (Unidade Operacional de Colorimetria), sob o n° R-1177 de 22/09/2005 rastreável ao padrão de irradiância primário OL 200C, SC-0212, com certificado de calibração fornecido pela NRC (National Research Council), sob o n° PAR-2003-2198 de 11/07/2003. Como a faixa de medição do arquivo padrão era de 300nm a 800nm e com intervalo de medição de 5nm, para se obter os arquivos padrões com intervalos de 0,50nm, 1,00nm, 2,50nm e 10,0nm foi utilizado o próprio programa para interpolar os valores do arquivo padrão.

A interpolação realizada pelo programa, segundo o Manual da Optronic OL Series, é calculada utilizando a Fórmula de Lagrange para 4 pares de dados consecutivos (equação 61).

$$D(\lambda) = \sum_{k=1}^{4} \left[\pi (x - x_i)^4 / (x_k - x_i) \right] * E(\lambda)$$
 eq. (61)

Nesta equação,

x = o comprimento de onda a ser interpolado;

 x_i , $x_k = 4$ comprimentos de onda consecutivos cujo os valores já são dados no arquivo de dados tal que $x_1 < x_2 < x < x_3 < x_4$.

Se W(1) $\leq x \leq$ W(2) onde W(1) e W(2) forem os dois primeiros comprimentos de onda do arquivo de dados, então:

 $x_1 = W(1) \le x \le x_2 = W(2) \le x_3 \le x_4.$

Se $W(M-1) \le x \le W(M)$ onde W(M-1) e W(M) forem os últimos dois comprimentos de onda do arquivo de dados, então:

 $x_1 < x_2 < x_3 = W(M-1) \leq x \leq x_4 \leq W(M).$

 $E(\lambda)$ = valores dos dados espectrais para comprimento de onda x_k.

Depois de cada calibração realizada, as medições de irradiância para cada lâmpada testada foram realizadas conforme as especificações determinadas na calibração.

A temperatura ambiente de $25^{\circ}C \pm 0.5^{\circ}C$ durante as medições realizadas foi controlada por um termômetro DIGI-SENSE nº de série G96009086, CT 22.408, SC-0043, com certificado de calibração sob o nº 0345-2/04 de 10/11/2004, fornecido pelo ITUC, RBC (Rede Brasileira de Calibração) - Laboratório de calibração acreditado pelo CGCRE/INMETRO sob o nº 016.

Os resultados das medições realizadas com a lâmpada padrão *Work Lamp 01* estão apresentados nas tabelas 37, 38 e 39, e nas figuras 69, 70 e 71. E os das medições realizadas com a lâmpada fluorescente Philips TLD 36W/965 estão apresentados nas tabelas 41, 42 e 43, e nas figuras 72, 73 e 74.

Diferentes resoluções espectrais e intervalos de medição								
Resolução esp	ectral (nm):	0,50 1,00 2,50 5,00		5,00	10,00			
Intervalo de medição (nm):		0,50 1,00 2,50 5,00		5,00	10,00			
Valores	х	0,0014	0,0014	0,0014	0,0014	0,0014		
	Y	0,0013	0,0013	0,0013	0,0012	0,0013		
	Z	0,0005	0,0005	0,0005	0,0005	0,0005		
LICS 1976	u'	0,2473	0,2472	0,2472	0,2470	0,2470		
003 1970	v'	0,5194	0,5195	0,5194	0,5191	0,5192		
CIE 1031	x	0,4303	0,4303	0,4301	0,4295	0,4295		
CIE 1931	у	0,4017	0,4018	0,4016	0,4012	0,4013		
Temperatura Correlata (K)		3096,2	3097,1	3097,8	3106,3	3106,6		
IRC		100	100	100	100	100		

Tabela 37.	Resultados da	as medições	realizadas	da lâmpada	padrão	de irradiância	Work
Lamp 01 n	as condições c	le diferentes	resoluções	espectrais e	interval	os de medição)

Figura 69. Gráfico das distribuições espectrais de potência da lâmpada padrão de irradiância *Work Lamp 01* nas condições de diferentes resoluções espectrais e intervalos de medição

Tabela 38. Resultados das medições realizadas da lâmpada padrão de irradiância Wa	ork
Lamp 01 nas condições de diferentes intervalos de medição com resolução espectral	de
5nm	

Diferentes intervales de modição com resolução consetval de Enm									
Dile	Diferentes intervalos de medição com resolução espectral de shm								
Resolução esp	ectral (nm):	5,00	5,00	5,00	5,00	5,00			
Intervalo de mo	edição (nm):	0,50	0,50 1,00 2,50		5,00	10,00			
	х	0,0014	0,0014	0,0014	0,0014	0,0014			
Valores Triestímulos	Y	0,0013	0,0013	0,0013	0,0013	0,0013			
	Z	0,0005	0,0005	0,0005	0,0005	0,0005			
LICS 1976	u'	0,2470	0,2476	0,2473	0,2470	0,2469			
003 1970	V'	0,5191	0,5190	0,5191	0,5192	0,5192			
CIE 1931	x	0,4294	0,4301	0,4299	0,4295	0,4294			
	У	0,4012	0,4007	0,4011	0,4013	0,4014			
Temperatura Correlata (K)		3107,0	3090,7	3097,6	3106,0	3108,9			
IRC)	100	100	100	100	100			

Figura 70. Gráfico das distribuições espectrais de potência da lâmpada padrão de irradiância *Work Lamp 01* nas condições de diferentes intervalos de medição com resolução espectral de 5nm

Tabela 39. Resultados das medições realizadas da lâmpada padrão de irradiância *Work Lamp 01* nas condições de diferentes resoluções espectrais com intervalo de medição de 5nm

Diferentes resoluções espectrais com intervalo de medição de 5nm							
Resolução espectral (nm):		0,50	1,00	2,50	5,00	10,00	
Intervalo de medição (nm):		5,00	5,00	5,00	5,00	5,00	
	Х	0,0013	0,0014	0,0014	0,0014	0,0014	
Valores Triestímulos	Y	0,0013	0,0013	0,0013	0,0013	0,0013	
	Z	0,0005	0,0005	0,0005	0,0005	0,0005	
	u'	0,2474	0,2472	0,2471	0,2475	0,2470	
003 1976	v'	0,5197	0,5193	0,5195	0,5193	0,5192	
	х	0,4306	0,4299	0,4301	0,4303	0,4295	
CIE 1931	У	0,4021	0,4014	0,4018	0,4013	0,4012	
Temperatura Correlata (K)		3092,7	3099,7	3099,3	3092,1	3105,1	
IR	С	100	100	100	100	100	

Figura 71. Gráfico das distribuições espectrais de potência da lâmpada padrão de irradiância *Work Lamp 01* nas condições de diferentes resoluções espectrais com intervalo de medição de 5nm

131

A repetitividade e o erro de medição em termos de temperatura correlata de cor e índice de reprodução de cor derivados das medições da lâmpada padrão em irradiância *Work Lamp 01* foram obtidos da seguinte forma:

- Erro de Medição (%) = ((valor nominal média das medições) / média das medições) x 100
- Repetitividade (%) = (desvio padrão / média das medições) x 100

Os resultados em termos de repetitividade e erro de medição podem ser vistos na tabela 40.

Tabela 40. Repetitividade e erro de medição das medições realizadas da lâmpada padrão em irradiância *Work Lamp 01* em termos de temperatura correlata de cor e índice de reprodução de cor

Repetit Erro de	tividade e e Medição	Diferentes resoluções espectrais e intervalos de medição	Diferentes intervalos de medição com resolução espectral de 5nm	Diferentes resoluções espectrais com intervalo de medição de 5nm		
Temperatura Correlata de	Repetitividade	0,17%	0,25%	0,18%		
Cor	Erro de medição	0,18%	0,14%	0,28%		
Índice de Reprodução	Repetitividade	0,00%				
de Cor	Erro de medição		0,00%			

	Diferentes	resoluções	espectrais e	intervalos d	le medição	
Resolução esp	ectral (nm):	0,50	1,00 2,50		5,00	10,00
Intervalo de mo	edição (nm):	0,50	1,00	2,50	5,00	10,00
	х	0,000041	0,000049	0,000051	0,000048	0,000047
Valores Triestímulos	Y	0,000044	0,000051	0,000052	0,000049	0,000049
	Z	0,000051	0,000057	0,000060	0,000058	0,000051
	u'	0,1940	0,2007	0,2005	0,1997	0,2020
003 1970	V'	0,4627	0,4657	0,4645	0,4615	0,4709
	x	0,3031	0,3141	0,3127	0,3092	0,3202
CIE 1931	У	0,3213	0,3238	0,3220	0,3175	0,3317
Temperatura C	Correlata (K)	7144,5	6469,4	6560,1	6815,3	6095,9
IRC)	96	96	95	95	95
	MI_vis	1,4412	1,2947	1,1073	0,8193	0,5460
CIE 51	MI_uv	2,7258	3,1880	4,7060	4,6687	4,0838
	Classif.	DE	DE	DE	CE	CE

Tabela 41. Resultados das medições realizadas da lâmpada fluorescente Philips TLD 36W/ 965 nas condições de diferentes resoluções espectrais e intervalos de medição

Figura 72. Gráfico das distribuições espectrais de potência da lâmpada fluorescente Philips TLD 36W/ 965 nas condições de diferentes resoluções espectrais e intervalos de medição

Tabela 42. Resultados das medições realizadas da lâmpada fluorescente Philips TLD 36W/ 965 nas condições de diferentes intervalos de medição com resolução espectral de 5nm

Difer	Diferentes intervalos de medição com resolução espectral de 5nm										
Resolução esp	ectral (nm):	5,00	5,00	5,00	5,00	5,00					
Intervalo de me	edição (nm):	0,50	1,00 2,50 5,00		5,00	10,00					
	х	0,000046	0,000048	0,000049	0,000049	0,000045					
Valores Triestímulos	Y	0,000048	0,000049	0,000051	0,000050	0,000047					
	Z	0,000054	0,000057	0,000058	0,000059	0,000046					
	u'	0,1998	0,2002	0,2000	0,1996	0,2035					
003 1976	v'	0,4653	0,4632	0,4645	0,4614	0,4751					
	х	0,3125	0,3112	0,3121	0,3089	0,3260					
	У	0,3234	0,3200	0,3221	0,3174	0,3382					
Temperatura C	Correlata (K)	6561,5	6666,8	6599,1	6833,7	5797,2					
IRC)	96	95	96	95	92					
	MI_vis	0,8238	0,8458	0,7891	0,8346	0,7408					
CIE 51	MI_uv	4,2769	4,2071	4,4728	4,6894	3,8679					
	Classif.	CE	CE	CE	CE	CE					

Figura 73. Gráfico das distribuições espectrais de potência da lâmpada fluorescente Philips TLD 36W/ 965 nas condições de diferentes intervalos de medição com resolução espectral de 5nm

Tabela 43. Resultados das medições realizadas da lâmpada fluorescente Philips TLD 36W/ 965 nas condições de diferentes resoluções espectrais com intervalo de medição de 5nm

Difere	entes resolu	uções espec	trais com in	itervalo de n	nedição de	ōnm
Resolução esp	ectral (nm):	0,50	1,00 2,50 5,00		5,00	10,00
Intervalo de me	edição (nm):	5,00	5,00	5,00	5,00	5,00
	х	0,000049	0,000045	0,000048	0,000048	0,000047
Valores Triestímulos	Y	0,000050	0,000046	0,000049	0,000050	0,000049
	Z	0,000060	0,000057	0,000060	0,000058	0,000054
1105 1076	u'	0,2007	0,2018	0,1997	0,1993	0,2003
003 1970	v'	0,4598	0,4567	0,4580	0,4618	0,4655
	х	0,3089	0,3076	0,3062	0,3090	0,3133
	У	0,3145	0,3094	0,3121	0,3182	0,3236
Temperatura C	Correlata (K)	6864,9	7015,5	7071,7	6822,4	6514,3
IRC)	92	91	93	95	96
	MI_vis	0,8612	1,0915	1,0419	0,8118	0,5454
CIE 51	MI_uv	2,8252	2,3624	4,4371	4,6559	4,4989
	Classif.	CE	DE	DE	CE	CE

Figura 74. Gráfico das distribuições espectrais de potência da lâmpada fluorescente Philips TLD 36W/ 965 nas condições de diferentes resoluções espectrais com intervalo de medição de 5nm

A repetitividade e o erro de medição em termos de temperatura correlata de cor, índice de reprodução de cor e índices de metameria derivados das medições da lâmpada fluorescente Philips TLD 36W/965 foram obtidos da seguinte forma:

- Erro de Medição (%) = ((valor nominal média das medições) / média das medições) x 100
- Repetitividade (%) = (desvio padrão / média das medições) x 100

Neste caso, como não se tem valores nominais da lâmpada fluorescente Philips TLD 36W/ 965, o padrão estabelecido foi a medição realizada da lâmpada fluorescente na condição com resolução espectral e intervalo de medição de 5nm. Os resultados obtidos podem ser vistos na tabela 44.

Tabela 44. Repetitividade e erro de medição das medições realizadas da lâmpada fluorescente Philips TLD 36 W/965 em termos de temperatura correlata de cor, índice de reprodução de cor e índices de metameria

Denetit	i idada a	Diferentes resolu-	Diferentes intervalos de	Diferentes reso-
Erro de	e Medição	ções espectrais e intervalos de medição	medição com resolução espectral de 5nm	luções espectrais com intervalo de medição de 5nm
Temperatura Correlata de	Repetitividade	5,92%	6,19%	3,18%
Cor	Erro de Medição	3,00%	5,27%	-0,52%
Índice de	Repetitividade	0,57%	1,73%	2,22%
de Cor	Erro de Medição	-0,42%	0,21%	1,71%
ML vis	Repetitividade	34,71%	5,28%	24,87
WII_VI3	Erro de medição	-21,35%	3,44%	-6,73%
ML uv	Repetitividade	22,93%	7,14%	28,66%
	Erro de medição	20,50%	8,98%	23,96%

Análise dos resultados

Analisando todos os resultados obtidos, pode-se concluir que para medições de lâmpadas incandescentes ou de tungstênio, mudanças na resolução espectral e/ou no intervalo de medição não têm um efeito significativo em termos de valores triestímulos (X, Y, Z), coordenadas de cromaticidade (x, y), coordenadas u' e v', temperatura de cor correlata e índice de reprodução de cor (IRC), conforme podem ser vistos nas tabelas 37, 38 e 39. O mesmo acontece para a distribuição espectral de potência (figuras 69, 70 e 71).

No caso de lâmpadas fluorescentes, isso não ocorre, pois, como pode ser visto neste capítulo, as diferenças obtidas com variações de resolução espectral e/ou intervalo de medição são bem maiores do que a incerteza de repetitividade: a temperatura correlata de cor varia muito, o índice de reprodução de cor varia um pouco e os índices de metameria (CIE 51.2) variam bastante, conforme podem ser vistos nas tabelas 41, 42 e 43. Enfim, a resolução espectral e o intervalo de medição influenciam significamente nos resultados. Por este motivo, é preciso manter as recomendações da CIE, pois esta definiu qual é a melhor resolução espectral e intervalo de medição para medições de irradiância de fontes luminosas. Ela apresenta tabelas com intervalo de medição de 5nm e resolução espectral de 5nm, logo, todas as medições espectroradiométricas serão realizadas com esses parâmetros de medição definidos.

6.4. Aplicabilidade da Lei do Quadrado para fontes pontuais (lâmpadas incandescentes) e para fontes extensas (lâmpadas fluorescentes)

Objetivo

Verificar a validade da lei do quadrado no caso de fontes pontuais (lâmpadas incandescentes) e fontes extensas (lâmpadas fluorescentes).

A Lei do Quadrado

Existe uma lei chamada "Lei do inverso do quadrado da distância (Inverse Square Law)" que relaciona a intensidade luminosa e a distância da fonte (figura 75). Esta lei só é válida se a direção do raio de luz incidente for perpendicular a superfície, característica inerente a fontes pontuais. A equação 62 representa esta lei.

$$E = I / r^2$$
 eq. (62)

Nesta equação,

E = iluminância,

I = intensidade luminosa que pode ser em irradiância (W/cm²nm) ou radiância (W/cm² sr nm),

R = distância da fonte.

Figura 75. Lei do inverso do quadrado da distância

Esta lei é utilizada para a transposição dos valores de iluminância, ou de irradiância em cada comprimento quando se deseja determinar o valor da mesma em um ponto diferente do ponto medido (figura 76), conforme equações 63 e 64.

$$E_1 = I_1 / r_1^2$$
 eq. (63)

$$E_2 = I_2 / r_2^2$$
 eq. (64)

A relação entre duas iluminâncias $E_1 e E_2$ é igual a equação 65. (I_1 / I_2^2)= (r_2^2 / r_1^2) eq. (65)

Figura 76. Aplicação da lei do inverso do quadrado da distância

Para verificar a validade dessa lei, medições de irradiância foram realizadas com uma fonte pontual (incandescente) e uma extensa (fluorescente).

Calibração

A montagem do sistema de medição incluiu um detector, monocromador, cabo óptico e esfera de integração. Para obter a resolução espectral (HBW) de 5nm foi utilizado a seguinte combinação de fendas no monocromador: 2,5mm (entrada), 5,0mm (meio) e 2,5mm (saída).

A lâmpada padrão de irradiância foi posicionada acima da abertura de entrada da esfera de integração com uma distância de 50 cm.

O arquivo que contém os valores nominais da lâmpada padrão foi utilizado como arquivo padrão e o sistema foi calibrado, e um arquivo de calibração foi criado, o qual foi utilizado para realizar as medições.

Medição

As medições foram realizadas da seguinte forma:

- A lâmpada padrão de irradiância foi retirada;

- Foi utilizado o arquivo de calibração criado na calibração;

 - A lâmpada a ser testada foi posicionada acima da abertura de entrada da esfera de integração com uma distância de 50cm e medições foram realizadas. Depois, essa distância foi ajustada para 30cm e medições foram realizadas com essa nova distância.

As fontes testadas foram uma fonte pontual (incandescente) e uma fonte extensa (fluorescente); com as seguintes especificações:

- Fluorescente - Lâmpada Philips TLD 36 W/965 Made in Holland

Incandescente – Lâmpada padrão de trabalho - Work Lamp 01, SC-0214
rastreável ao padrão de irradiância primário OL 200C, SC-0212, calibrado pelo
pelo NRC (National Research Council).

Para cada lâmpada foram realizadas 6 medições: 3 medições acima da abertura de entrada da esfera de integração com uma distância de 50cm e 3 com 30cm.

Os resultados das medições foram organizados numa planilha no Excel e a Lei do Inverso do Quadrado da Distância foi aplicada da seguinte forma:

A equação apresentada no quadro 38 foi utilizada.

Nesta equação,

I₁ = média das 3 medições em irradiância realizadas na distância de 30cm (W/cm²nm);

 $r_1 = 30 cm;$

 I_2 = os resultados de 30cm (W/cm²nm) que serão convertidos para 50cm, conforme a lei;

 $r_2 = 50 cm.$

Depois de aplicada a lei para as duas fontes testadas, os valores de 30cm que foram convertidos para 50cm foram comparados com os medidos a 50cm (figura 79). Nas figuras 77 e 78, estão apresentados os resultados encontrados das lâmpadas testadas.

Figura 77. Gráfico das distribuições espectrais de potência medida e calculada da lâmpada Work Lamp (fonte pontual)

Figura 78. Gráfico das distribuições espectrais de potência medida e calculada da lâmpada fluorescente (fonte extensa)

Figura 79. Gráfico das distribuições espectrais normalizadas de potência medida e calculada da lâmpada fluorescente (fonte extensa)

		С	urvas de	distribuição	espectra	I		
		Lâmpada Work	a Padrão Lamp	Lâmpada Fluorescente				
				Medi	da	Calcul	ada	
		Medida	Calculada	Não	Normali-	Não	Normali-	
				normalizada	zada	normalizada	zada	
Valores	Х	1,36E-03	1,41E-03	4,94E-05	87,27	3,25E-05	87,25	
Triestímulos	Υ	1,28E-03	1,32E-03	5,14E-05	90,73	3,38E-05	90,78	
	Z	5,27E-04	5,45E-04	5,87E-05	103,72	3,82E-05	102,60	
	u'	0,2457	0,2469	0,1984	0,1984	0,1987	0,1987	
003 1976	v'	0,5204	0,5200	0,4641	0,4641	0,4651	0,4651	
	х	0,4296	0,4306	0,3098	0,3098	0,3109	0,3109	
CIE 1931	у	0,4043	0,4031	0,3221	0,3221	0,3235	0,3235	
Temperatur Correlata (H	a ()	3130	3102	6733	6733	6652	6652	
IRC		99	100	96	96	96	96	

Tabela 45. Resultados das medições realizadas em termos de valores triestímulos, UCS 1976, CIE 1931, temperatura correlata e IRC

Análise dos resultados

Através dos resultados encontrados, foi possível comprovar a validade da aplicação da lei do inverso do quadrado da distância (Inverse Square Law), apenas para fontes pontuais. Quando se utiliza esta para fontes extensas, há uma diferença significativa entre os resultados medidos e calculados de acordo com a lei, isso ocorre pois a direção do raio de luz incidente não é perpendicular a superfície. Porém, utilizando os valores normalizados, os quais são usados nos cálculos de TC e IRC, as diferenças de distância são desconsideradas pois os valores são relativos, e com isso, a Lei do Inverso do Quadrado da Distância não precisaria ser aplicada.

6.5. Intercomparação de métodos utilizados em normas nacionais e internacionais para se verificar e avaliar simuladores de luz do dia

Aplicação dos diferentes métodos para classificar simuladores da luz dia, os quais foram apresentados no item 4.1. Foram utilizados os valores de medição de irradiância de alguns simuladores de luz do dia D65 e de alguns que se encontram na literatura.

Procedimento

Os métodos que foram aplicados são: o CIE 51.2, BS950 Parte1, SCF e JIS Z 8717. As etapas para testar alguns simuladores de luz do dia e para comparar os diferentes métodos de avaliação entre si foram:

- Seleção dos simuladores para serem testados;
- Obtenção dos valores de irradiância e das curvas de distribuições espectrais dos simuladores selecionados;
- Elaboração de planilhas no Excel para calcular cada método;
- Avaliação dos simuladores conforme os métodos;
- Comparação dos métodos entre si através dos resultados obtidos.

Seleção dos simuladores de luz do dia

Os simuladores que foram testados foram:

- PHILIPS Fluotone Extra Luz do Dia 20W
- Sylvania SuperSave Cool White
- Sylvania Luz do Dia Plus
- OSRAM Fluorescente Luz do Dia Especial 20 W
- BIOLUX 1100 lm L18W/72-965
- GRETAG MACBETH 6500K F40T12/65
- Philips 36W 965
- Philips TL-D / 965 36W

As distribuições espectrais dos simuladores que se encontram na literatura ou até mesmo que foram obtidas em outros laboratórios também foram avaliadas, conforme os métodos aplicados. Os simuladores foram:

- Fonte especificada na norma JIS Z 8716 (1991);
- Fonte de xenônio especificada na norma JIS Z 8902 (1984);
- Cabine de Luz SpectraLight: lâmpada Gretag Macbeth com lâmpada UV extra;

- Cabine de Luz VeriVide 2001: lâmpada fluorescente;
- Cabine de Luz GTI: lâmpada fluorescente;
- Espectrofotômetro CM 3600d: 2 lâmpadas de xenônio uma com filtro UV e a outra sem;
- Espectrofotômetro CM 3720d: 1 lâmpada de xenônio pulsante mais filtro UV ajustável;
- Espectrofotômetro CE 3100: 1 lâmpada de xenônio pulsante mais filtro UV ajustável.

Obtenção das curvas de distribuição espectral de potência

Depois de ter selecionado os simuladores de luz do dia, foram feitas medições dos mesmos no espectroradiômetro e as curvas de distribuição espectral foram obtidas.

Na figura 80, estão apresentadas todas as curvas de distribuição espectral (DEP) dos simuladores medidos e a do padrão CIE D65.

Figura 80. DEPs dos simuladores de luz do dia testados e do iluminante padrão D65 da CIE

Na figura 81, estão apresentadas todas as curvas de distribuição espectral de potência (DEP) dos simuladores encontrados na literatura ou medidos em outros laboratórios.

Figura 81. DEPs dos simuladores encontrados na literatura ou medidos em outros laboratórios

Elaboração de planilhas

Foram elaboradas planilhas no Excel para calcular os métodos, conforme estão descritos nas respectivas normas (tabelas 46, 47, 48, 49 e 50).

	BS 950 : Part1								
Valores do Simulador	Valores do Simulador (normalizados a 560nm):	(nm)	Simulador Luz do Dia	У2	D65*y ₂	(D65*y2)/Somatório * 100 lúmens			
0,03	0,03	300	0,03	0,00E+00	0,00E+00	0,00E+00			
1,66	1,66	305	1,66	0,00E+00	0,00E+00	0,00E+00			
3,29	3,29	310	3,29	0,00E+00	0,00E+00	0,00E+00			
11,77	11,77	315	11,77	0,00E+00	0,00E+00	0,00E+00			
20,24	20,24	320	20,24	0,00E+00	0,00E+00	0,00E+00			
28,64	28,64	325	28,64	0,00E+00	0,00E+00	0,00E+00			
37,05	37,05	330	37,05	0,00E+00	0,00E+00	0,00E+00			
38,50	38,50	335	38,50	0,00E+00	0,00E+00	0,00E+00			
39,95	39,95	340	39,95	0,00E+00	0,00E+00	0,00E+00			
42,43	42,43	345	42,43	0,00E+00	0,00E+00	0,00E+00			
44,91	44,91	350	44,91	0,00E+00	0,00E+00	0,00E+00			
45,78	45,78	355	45,78	0,00E+00	0,00E+00	0,00E+00			
46,64	46,64	360	46,64	0,00E+00	0,00E+00	0,00E+00			
49,36	49,36	365	49,36	0,00E+00	0,00E+00	0,00E+00			
52,09	52,09	370	52,09	0,00E+00	0,00E+00	0,00E+00			
51,03	51,03	375	51,03	0,00E+00	0,00E+00	0,00E+00			
49,98	49,98	380	49,98	0,00E+00	0,00E+00	0,00E+00			
52,31	52,31	385	52,31	1,00E-04	5,23E-03	2,48E-04			
54,65	54,65	390	54,65	1,00E-04	5,47E-03	2,59E-04			
68,70	68,70	395	68,70	2,00E-04	1,37E-02	6,50E-04			
82,75	82,75	400	82,75	4,00E-04	3,31E-02	1,57E-03			
87,12	87,12	405	87,12	6,00E-04	5,23E-02	2,47E-03			

Tabela 46. Extrato da planilha de cálculo ilustrando os resultados obtidos pelo Método BS 950-Parte 1

Faixa UV									
Somatório de 300nm a 340nm	181,13	11,25	1						
Somatório de 340nm a 400nm	640,63	43,21	2						
	821,76	54,46							
Faixa Visível									
	100 lúmens								
Somatório de 400nm a 455nm	0,94	0,80	1						
Somatório de 455nm a 510nm	12,25	11,10	2						
Somatório de 510nm a 540nm	24,26	23,19	3						
Somatório de 540nm a 590nm	43,00	43,76	4						
Somatório de 590nm a 620nm	13,60	14,40	5						
Somatório de 620nm a 760nm	5,96	6,75	6						
	100,00	100,00							

Tabela 47. Resultados encontrados na planilha do Método BS 950 - Parte 1

Tabela 48. Extrato da planilha de cálculo ilustrando os resultados obtidos pelo Método SCF

	SCF										
SCF UV SCF VIS	7,55 12,93					SCFvi SCF u	s < 10.0 w < 15.0				
(nm)	Fonte	Fonte Normalizada	(nm)	Fonte(normalizada a 560 nm)	D65 CIE (normalizada a 560nm)	Fonte - Iluminante	(Fonte - Iluminante)²				
300	5,83E-10	12,79	300	12,79	0,03	12,76	162,74				
305	6,10E-10	13,38	305	13,38	1,66	11,72	137,34				
310	7,24E-10	15,89	310	15,89	3,29	12,60	158,86				
315	8,22E-10	18,05	315	18,05	11,77	6,28	39,39				
320	9,30E-10	20,41	320	20,41	20,24	0,17	0,03				
325	1,06E-09	23,17	325	23,17	28,64	-5,47	29,96				
330	1,21E-09	26,62	330	26,62	37,05	-10,43	108,76				
335	1,41E-09	30,94	335	30,94	38,50	-7,56	57,19				
340	1,56E-09	34,27	340	34,27	39,95	-5,68	32,27				
345	1,55E-09	34,06	345	34,06	42,43	-8,37	70,03				
350	1,74E-09	38,18	350	38,18	44,91	-6,73	45,29				
355	1,83E-09	40,25	355	40,25	45,78	-5,53	30,58				
360	1,99E-09	43,68	360	43,68	46,64	-2,96	8,74				
365	2.22E-09	48.67	365	48,67	49,36	-0,69	0,47				
370	2,36E-09	51,74	370	51,74	52,09	-0,35	0,12				
375	2,49E-09	54,74	375	54,74	51,03	3,71	13,77				
380	2,67E-09	58,62	380	58,62	49,98	8,64	74,56				
385	2,84E-09	62,30	385	62,30	52,31	9,99	99,82				
390	3,17E-09	69,65	390	69,65	54,65	15,00	225,05				
395	3,36E-09	73,73	395	73,73	68,70	5,03	25,33				

Tabela 49. Extrato da planilha de cálculo ilustrando os resultados obtidos pelo Método CIE 51.2

	CIE 51.2						
	Х	Y	Z	Х	У	u'	٧'
Medição :	94,8100	100,0000	107,3216	0,3138	0,3310	0,1979	0,4695
							_
Faixa	AE1	AE2	AE3	AE4	AES	MI_vis]
Visível	0,0004	0,0029	0,0009	0,0004	0,0039	0,0017]
Epiya LIV	ΔE1	AE2	AE3	MI_uv			
	0.0161	0.0132	0.0367	0.0220			

		JIS - J	apanese Industrial	Standard		
JIS Z 8717-1989					F	10,8
			-		F _{vis}	2,9
	(nm)	SIMULADOR:	ILUMINANTE D65			
	300	4,82E-03	0,0003			
	305	2,09E-02	0,0166			
	310	7,08E-02	0,0329			
	315	6,30E-02	0,1177			
	320	1,89E-02	0,2024			
	325	8,62E-03	0,2864			
	330	1,40E-02	0,3705			
	335	1,96E-02	0,385			
	340	1,21E-02	0,3995			
	345	1,17E-02	0,4243			
	350	1,63E-02	0,4491			
	355	2,78E-02	0,4578			
	360	8,10E-02	0,4664			
	365	5,35E-01	0,4936			
	370	1,13E-01	0,5209			
	375	8,88E-02	0,5103			
	380	1,12E-01	0,4998			
	385	1,39E-01	0,5231			
	390	1,73E-01	0,5465			
	395	2,18E-01	0.687			

Tabela 50. Extrato da planilha de cálculo ilustrando os resultados obtidos pelo Método JIS Z 8717

Avaliação dos simuladores de luz do dia

Depois da elaboração das planilhas, cada simulador foi avaliado. Os resultados encontrados podem ser vistos tabelas 51 e 52.

Mét	odos	L1	L2	L3	L4	L5	L6	L7	L8
015	MIvis	1,96	2,26	1,96	1,90	0,77	1,01	0,72	0,77
51.2	MI _{UV}	5,16	4,35	5,20	5,18	4,81	4,49	4,45	4,59
	Classif.	DE	EE	DE	DE	CE	DE	CE	CE
SCE	SCF _{UV}	34,90	33,40	34,84	34,78	32,19	23,13	31,24	31,78
SUP	SCF _{VIS}	51,53	55,45	51,78	50,57	78,56	51,78	56,70	72,62
JIS Z	F _{uv}	36,97	42,62	35,88	34,23	21,34	5,30	13,15	11,04
8717	F _{VIS}	22,36	30,47	21,38	19,84	5,01	5,19	3,74	3,18
BS 950 Parte 1	300-340	0,41	1,82	0,78	0,47	1,67	1,90	1,97	2,67
Faixa UV	340-400	4,99	7,41	4,91	5,20	10,42	22,37	15,79	17,09
	400- 455	0,59	0,51	0,60	0,62	0,75	1,00	0,84	0,86
	455- 510	6,51	5,04	6,61	6,96	11,85	9,76	11,17	11,87
BS 950 Parte 1	510- 540	14,86	12,72	15,11	15,39	17,57	22,18	19,65	19,87
Faixa VIS	540- 590	57,71	59,29	57,90	57,07	48,05	45,77	46,12	44,57
	590- 620	16,44	18,28	16,04	16,16	15,13	13,38	15,40	15,40
	620- 760	3,88	4,15	3,73	3,80	6,65	7,90	6,83	7,42
Aplicaç do Méto	ão do VIS	731	663	733	749	903	900	914	913
Hunt (Deméri	to) UV	712	739	716	713	748	792	770	784

Tabela 51. Tabela com os resultados de cada simulador testado

Legenda:

L1 - PHILIPS Fluotone - Extra Luz do Dia - 20W

L2 - Sylvania SuperSave Cool White

- L3 Sylvania Luz do Dia Plus
- L4 OSRAM Fluorescente Luz do Dia Especial 20 W
- L5 BIOLUX 1100 lm L18W/72-965
- L6 GRETAG MACBETH 6500K F40T12/65
- L7 Philips 36W 965
- L8- Philips TL-D / 965 36W

Métodos		L9	L10	L11	L12	L13	L14	L15	L16
CIE 51.2	MI_{VIS}	0,29	0,33	0,36	0,69	0,54	0,15	0,50	0,35
	MI_{UV}	0,44	1,34	0,79	1,10	2,18	0,36	1,60	0,15
	Classif.	BB	BD	BC	CD	CE	AB	BD	BA
SCF	SCF _{UV}	27,27	18.85	21.24	27.77	21.46	7.29	21.69	5.34
	SCF _{VIS}	50,26	10.83	12.89	37.62	59.37	9.21	18.98	11.12
JIS Z 8717	F_{UV}	1,09	7,33	4,95	4,56	2,63	1,88	12,21	4,44
	F _{VIS}	1,47	1,58	1,80	3,67	2,31	1,14	3,43	2,98
BS 950 Parte 1 Faixa UV	300-340	9,59	3,30	-0,24	11,35	9,32	12,99	22,54	11,12
	340-400	64,45	59,90	42,01	55,62	42,44	46,80	64,68	41,92
BS 950 Parte 1 Faixa VIS	400- 455	0,79	0,75	0,85	0,78	0,85	0,74	0,82	0,71
	455- 510	11,45	10,84	10,90	10,14	11,20	11,03	10,92	10,86
	510- 540	20,30	21,92	21,69	21,88	20,57	23,74	22,45	22,50
	540- 590	46,23	43,93	46,19	47,92	46,49	43,22	42,78	43,70
	590- 620	14,32	15,18	13,58	13,63	13,67	14,63	15,53	14,99
	620- 760	6,90	7,38	6,79	5,65	7,22	6,65	7,51	7,25
Aplicaç do Méto	ão do VIS	914	914	914	908	914	914	912	914
Hunt (Deméri	to) UV	893	692	690	692	692	914	694	692

Tabela 52. Tabela com os resultados de cada simulador encontrado na literatura ou medido em outros laboratórios

Legenda:

L9- Fonte especificada na norma JIS Z 8716 (1991);

L10- Fonte de xenônio especificada na norma JIS Z 8902 (1984);

L11- Cabine de Luz SpectraLight: lâmpada Gretag Macbeth com lâmpada UV extra;

L12- Cabine de Luz VeriVide 2001; lâmpada fluorescente;

L13- Cabine de Luz GTI: lâmpada fluorescente

L14- Espectrofotômetro CM 3600d: 2 lâmpadas de xenônio - uma com filtro UV e a outra sem;

L15- Espectrofotômetro CM 3720d: 1 lâmpada de xenônio pulsante mais filtro UV ajustável;

L16- Espectrofotômetro CE 3100: 1 lâmpada de xenônio pulsante mais filtro UV ajustável.

Comparação entre os diferentes métodos

Os métodos foram comparados entre si e depois linhas de tendência do tipo linear e polinomial de 2ª ordem foram adicionadas para se determinar a correlação entre os métodos. A seguir, são apresentados todos os gráficos com as comparações realizadas entre os métodos. No caso das linhas com intercessão na origem, os valores de R² não puderam ser calculados pelo Excel em função dos problemas, conhecidos, do próprio programa (Pottel, 2006).

Método CIE 51.2 x SCF

Nas figuras 82 e 84, estão apresentadas as comparações entre os métodos CIE 51.2 e SCF, na faixa visível e na ultravioleta, respectivamente. Após a comparação entre os dois métodos, foram traçadas linhas de tendência, linear e polinomial, para verificar se há ou não correlação entre os métodos, conforme podem ser vistas nas figuras 83 e 85.

Figura 82. Comparação entre SCF_{VIS} e MI_{VIS}

Figura 83. Correlação entre SCF_{VIS} e $MI_{VIS}\,$ linear (azul) e polinomial de 2ª ordem (vermelho)

Figura 84. Comparação entre SCF_{UV} e MI_{UV}

Figura 85. Correlação entre $SCF_{UV}\,$ e MI_{UV} linear (azul) e polinomial de 2ª ordem (vermelho)

Analisando os gráficos das figuras 82, 83, 84 e 85, pode-se concluir que não há correlação entre os métodos CIE51.2 e SCF.

Método CIE 51.2 x JIS Z 8717

Nas figuras 86 e 88, estão apresentadas as comparações entre os métodos CIE 51.2 e JIS Z 8717, na faixa visível e na ultravioleta, respectivamente. Após a comparação entre os dois métodos, foram traçadas linhas de tendência, linear e polinomial, para verificar se há ou não correlação entre os métodos, conforme podem ser vistas nas figuras 87 e 89.

Figura 86. Comparação entre F_{VIS} (JIS Z 8717) e MI_{VIS}

Figura 87. Correlação entre F_{VIS} (JIS Z 8717) e MI_{VIS} linear (azul) e polinomial de 2ª ordem (vermelho)

Figura 88. Comparação entre F_{UV} (JIS Z 8717) e MI_{UV}

Figura 89. Correlação entre F_{UV} (JIS Z 8717) e MI_{UV} linear (azul) e polinomial de 2ª ordem (vermelho)

Analisando os gráficos das figuras 86, 87, 88 e 89, pode-se concluir que há correlação muito boa entre os métodos CIE51.2 e JIS Z 8717 na faixa visível e correlação muito fraca na faixa ultravioleta.

Método CIE 51.2 x BS950

Nas figuras 90 e 92, estão apresentadas as comparações entre os métodos CIE 51.2 e BS950, na faixa visível e na ultravioleta, respectivamente. Após a comparação entre os dois métodos, foram traçadas linhas de tendência, linear e polinomial, para verificar se há ou não correlação entre os métodos, conforme podem ser vistas nas figuras 91 e 93.

Figura 90. Comparação entre BS_{VIS} e MI_{VIS}

Figura 91. Correlação entre $\mathsf{BS}_{\mathsf{VIS}}$ e $\mathsf{MI}_{\mathsf{VIS}}$ linear (azul) e polinomial de 2ª ordem (vermelho)

Figura 92. Comparação entre BS_{UV} e MI_{UV}

Figura 93. Correlação entre BS_{UV} e MI_{UV} linear (azul) e polinomial de 2ª ordem (vermelho)

Analisando os gráficos das figuras 90, 91, 92 e 93, pode-se concluir que há correlação muito boa entre os métodos CIE51.2 e BS950 na faixa visível e correlação muito fraca na faixa ultravioleta.

BS950 x SCF

Nas figuras 94 e 96, estão apresentadas as comparações entre os métodos BS950 e SCF, na faixa visível e na ultravioleta, respectivamente. Após a comparação entre os dois métodos, foram traçadas linhas de tendência, linear e polinomial, para verificar se há ou não correlação entre os métodos, conforme podem ser vistas nas figuras 95 e 97.

Figura 94. Comparação entre SCF_{VIS} e BS_{VIS}

Figura 95. Correlação entre SCF_{VIS} e BS_{VIS} linear (azul) e polinomial de 2ª ordem (vermelho)

Figura 96. Comparação entre SCF_{UV} e BS_{UV}

Figura 97. Correlação entre SCF $_{\text{UV}}$ e BS $_{\text{UV}}$ linear (azul) e polinomial de 2ª ordem (vermelho)

Conforme apresentado nos gráficos SCF x BS950 (figuras 94, 95, 96 e 97), pode-se concluir que não há correlação entre os dois métodos.

BS950 x JIS Z 8717

Nas figuras 98 e 100, estão apresentadas as comparações entre os métodos BS950 e JIS Z 8717, na faixa visível e na ultravioleta, respectivamente. Após a comparação entre os dois métodos, foram traçadas linhas de tendência, linear e polinomial, para verificar se há ou não correlação entre os métodos, conforme podem ser vistas nas figuras 99 e 101.

Figura 98. Comparação entre F_{VIS} (JIS Z 8717) e BS_{VIS}

Figura 99. Correlação entre F_{VIS} (JIS Z 8717) e BS $_{VIS}$ linear (azul) e polinomial de 2ª ordem (vermelho)

Figura 100. Comparação entre F_{UV} (JIS Z 8717) e BS_{UV}

Figura 101. Correlação entre $F_{UV}~(JIS~Z~8717)~e~BS_{UV}$ linear (azul) e polinomial de 2ª ordem (vermelho)

Analisando os gráficos das figuras 98, 99, 100 e 101, pode-se concluir que há correlação muito boa entre os métodos JIS Z 8717 e BS950 na faixa visível, e correlação muito fraca na faixa ultravioleta.

SCF x JIS Z 8717

Nas figuras 102 e 104, estão apresentadas as comparações entre os métodos SCF e JIS Z 8717, na faixa visível e na ultravioleta, respectivamente. Após a comparação entre os dois métodos, foram traçadas linhas de tendência, linear e polinomial, para verificar se há ou não correlação entre os métodos, conforme podem ser vistas nas figuras 103 e 105.

Figura 102. Comparação entre F_{VIS} (JIS Z 8717) e SCF_{VIS}

Figura 103. Correlação entre F_{VIS} (JIS Z 8717) e SCF $_{VIS}$ linear (azul) e polinomial de 2ª ordem (vermelho)

Figura 104. Comparação entre F_{UV} (JIS Z 8717) e SC F_{UV}

Figura 105. Correlação entre F_{UV} (JIS Z 8717) e SCF $_{UV}$ linear (azul) e polinomial de 2ª ordem (vermelho)

Analisando os gráficos JIS Z 8717 x SCF (figuras 102, 103, 104 e 105), pode-se concluir que não há correlação entre os dois métodos.