Resultados

5

5.1. Introdução

O objetivo deste capítulo é apresentar os resultados de diversas simulações feitas no decorrer do projeto. Tais simulações têm o objetivo de testar os algoritmos presentes no capítulo anterior e verificar se eles se aplicam ao problema prático de calibragem do TA-40.

As simulações aqui feitas procuram obter resultados dos algoritmos aplicados em conjunto para o funcionamento do TA-40.

5.2. Simulação Cinemática

Nesta seção, serão expostos duas simulações. A primeira testa a cinemática direta e inversa, utilizando os parâmetros de Denavit-Hartenberg. A segunda testa a matriz jacobiana de identificação, analisando sua capacidade de encontrar erros presentes nas juntas do manipulador.

5.2.1

Cinemática Direta-Inversa

Esta simulação tem como objetivo testar principalmente a cinemática inversa.

O procedimento para esta simulação é o de utilizar os parâmetros de Denavit-Hartenberg presentes na Tabela 1 de forma a calcular as seis matrizes de transformação homogêneas A_i . A partir destas matrizes e dos ângulos das seis juntas, θ , utilizando a Equação 2.3.1 calcula-se a posição e orientação da extremidade com relação à base do manipulador, $T_6^0(\theta)$.

Com posse do algoritmo de cálculo da cinemática inversa, calculado na seção 4.5, calcula-se os ângulos das seis juntas a partir da posição da extremidade calculada pela cinemática direta. Os ângulos obtidos pela cinemática inversa deve ser igual ao utilizado na cinemática direta. A simulação é feita com diversos ângulos dentro da área de trabalho o manipulador, de forma a buscar falhas no cálculo da cinemática inversa.

A Tabela 2 mostra o resultado da simulação para nove ângulos obtidos aleatoriamente. O erro máximo encontrado entre os ângulos utilizados e os ângulos calculados pela cinemática inversa em 500 rodadas de simulação foi inferior a 0.3 graus.

Angulos das Juntas(graus) Posição da Extremidade (mm)					Angulo Obtido das Juntas (graus)					Diferença dos ângulos (graus)										
81	82	83	84	65	66	Х	Y	Z	61	82	83	64	85	86	e1	e2	පෙ	e4	භි	e6
17	19	- 59	51	28	167	1888	436	289	17	19	59	51	28	167	0	0	0	0	0	0
45	52	16	81	64	10	1298	830	467	45	52	16	81	64	10	0	0	0	0	0	0
15	-3	-11	9	128	0	1167	272	-659	15	-3	-11	9	128	0	0	0	0	0	0	0
26	30	21	47	60	43	1662	553	87	26	- 30	21	47	60	-43	0	0	0	0	0	0
0	90	-90	0	- 90	0	663	0	6	0	90	-90	0	- 90	0	0	0	0	0	0	0
6	72	- 39	21	- 55	2	1061	12	1503	6	72	39	21	- 55	2	0	0	0	0	0	0
24	63	33	8	- 86	10	1084	432	1292	24	63	33	8	86	10	0	0	0	0	0	0
57	26	44	25	71	19	1081	1417	488	57	26	44	25	71	19	0	0	0	0	0	0
63	15	-54	26	- 33	17	955	1704	176	63	15	54	26	33	17	0	0	0	0	0	C

Tabela 2: Resultados da simulação de cinemática direta-inversa

5.2.2

Jacobiana de Identificação

Esta simulação tem como objetivo testar a matriz Jacobiana de Identificação calculada na seção 4.4, que pode ser encontrada algebricamente no Apêndice A. A matriz Jacobiana de Identificação, *Je*, é utilizada para calcular os erros presentes no manipulador. O procedimento desta simulação é criar 42 erros randômicos, inserir no cálculo da extremidade do manipulador, e utilizar a jacobiana para obter os erros criados.

Inicialmente, criam-se os erros generalizados ε_{xi} , ε_{yi} , ε_{zi} , ε_{pi} , ε_{si} , ε_{ri} , para i=0...6, sendo criados 42 erros. Estes erros são criados aleatoriamente, com valores na ordem de milimetros e mili-radianos Os erros generalizados $\varepsilon_{z,(i-1)}$ e $\varepsilon_{r,(i-1)}$, para i=1..6, são eliminados, e seus valores são incorporados aos parâmetros de erro independentes $\varepsilon_{y,i}^*$, $\varepsilon_{z,i}^*$, $\varepsilon_{s,i}^*$ e $\varepsilon_{r,i}^*$.

Calcula-se a partir dos erros generalizados e do ângulo das juntas a posição da extremidade do manipulador (Eq. 2.4.1). Calcula-se também a posição ideal, sem erros, utilizando-se apenas a cinemática direta e a posição das juntas. A diferença entre a posição real e ideal é calculada, ΔX .

Utilizando-se a Equação 2.4.5 calculam-se os erros generalizados a partir de ΔX e da pseudo-inversa do Jacobiano de Identificação. Os erros calculados devem ser os mesmos erros utilizados. A Tabela 3 apresenta os erros estimados (E_estim), os erros utilizados (E_real) e a diferença entre eles em uma simulação. Em 500 simulações, o maior erro obtido foi da ordem de 10⁻¹³, demonstrando que o cálculo está adequado.

Erro	Erros Reais	Erros Estimados	Diferença
	(E real)	(E estim)	(E real-E estim)
Ex0	0,000875	0,000875	2,93E-18
Ey0	0,000835	0,000835	3,03E-16
Es0	1,54E-05	1,54E-05	-1,89E-18
Ep0	9,79E-06	9,79E-06	3,85E-19
Ex1	0,000616	0,000616	2,77E-15
Ey1	0,000995	0,000995	1,50E-16
Es1	2,03E-05	2,03E-05	-3,69E-18
Ep1	1,25E-05	1,25E-05	2,02E-19
Ex2	0,000515	0,000515	-1,96E-15
Ey2	0,007311	0,007311	-2,32E-15
Es2	1,43E-05	1,43E-05	2,27E-18
Ep2	1,03E-05	1,03E-05	-1,30E-19
Ex3	0,00013	0,00013	1,78E-13
Ey3	0,000875	0,000875	1,09E-13
Es3	2,61E-05	2,61E-05	-1,24E-16
Ep3	9,80E-06	9,80E-06	8,92E-17
Ex4	0,000455	0,000455	-7,16E-14
Ey4	0,002819	0,002819	-6,90E-17
Es4	8,97E-07	8,97E-07	3,72E-17
Ep4	1,72E-05	1,72E-05	8,61E-17
Ex5	0,008772	0,008772	2,27E-14
Ep5	-2,32E-06	-2,32E-06	-3,66E-17
Ex6	0,000542	0,000542	2,07E-16
Ey6	6,86E-06	6,86E-06	4,38E-16
Ez6	0,001104	0,001104	1,47E-15

Tabela 3: Resultados da simulação com a Jacobiana de Identificação

Simulações em Visão

O algoritmo de triangulação já foi utilizado em diversos trabalhos e é relativamente confiável quando os pontos utilizados são bem correlacionados. O algoritmo SIFT é adequado para a obtenção de pontos estáveis, e, em conjunto com RANSAC e a transformada Hough, é uma ferramenta robusta para correlacionar pontos. São formuladas a seguir três simulações: a primeira para testar o algoritmo de triangulação dentro de distâncias pertencentes à aplicação, a segunda para testar diferentes resoluções, e a última para testar se o algoritmo permite realmente encontrar posições de pontos na imagem em relação à base do manipulador.

5.3.1 Triangulação em Distâncias

O manipulador TA-40 pode alcançar uma distância máxima de dois metros da base. Assim, foi testada a capacidade do algoritmo de triangulação para calcular posições de objetos em imagens cuja distância para a câmera fosse de até dois metros.

De forma semelhante ao realizado para as simulações de cinemática, primeiramente foi criado um conjunto de pontos a distâncias conhecidas da câmera esquerda (P_R) . O algoritmo foi testado para dez distâncias distintas, variando entre 50 milímetros e 2 metros no eixo Z. Para cada distância, foram criados n pontos com valores nos eixos X e Y variando aleatoriamente, mas sempre possíveis de ser visualizados em ambas as câmeras.

Criados os pontos, foi utilizada a Equação 3.2.9 para se obter a posição em que cada ponto se encontra no quadro da imagem. O parâmetro z da Equação 3.2.9 foi igual à distância do conjunto de pontos à câmera esquerda no eixo Z. A Matriz de Projeção Perspectiva (M) foi calculada com os parâmetros intrínsecos obtidos na calibração (Apêndice B) e com parâmetros extrínsecos conforme a Equação 5.3.1 (câmeras afastadas em cinquenta milímetros no eixo X e paralelas entre si).

	_ [1	0	0	50		Eq. 5.3.1
$\begin{vmatrix} R & i \\ 0 & 1 \end{vmatrix}$	$\begin{bmatrix} t \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 0	0 1	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$		
L° .		0	0	1		

Uma vez determinados os pontos no plano da imagem, eles são utilizados no processo de triangulação. São utilizados os mesmos parâmetros intrínsecos e extrínsecos para obtenção de um conjunto de pontos calculados no espaço tridimensional em relação à câmera esquerda (P_P). Uma medida de erro (P_E) para cada distância (d) é obtida calculando-se a distância euclideana entre os vetores P_R e P_P , para cada ponto, e em seguida calculando-se o erro médio quadrático:

$$P_E(d) = \sqrt{\sum_{i=1}^{n} P_R(i,d)^2 - P_P(i,d)^2} / n$$
 Eq. 5.3.2

A Figuras 35 mostra uma representação da simulação para uma distância. A tabela 4 mostra os resultados das simulações.

Figura 35: Esquema do algoritmo para uma distância fixa, z.

Tabela 4: Resultados da simulação de triangulação em distâncias

Distancia(mm)	P _E (mm)	Erro Máximo
100,0	3,86	3,93
150,0	6,64	5,92
200,0	6,84	11,65
300,0	18,03	22,83
500,0	32,67	43,63
800,0	48,41	67,41
1000,0	57,66	68,12
1300,0	98,56	102,293
1600,0	121,86	142,36
2000,0	203,02	319,30

Percebe-se que o erro aumenta com a distância das esferas à câmera, como esperado. Porém espera-se que o manipulador, uma vez acoplado na sua área de trabalho, deva estar a uma distância entre sua extremidade e os objetos a serem movidos muito inferior a dois metros, com erros na ordem de centímetros. A Figura 36 mostra os erros médios quadráticos em diversas distâncias de acordo com o eixo.

Figura 36: Simulação de triangulação em função de distância de objetos à câmera.

5.3.2 Triangulação em Função da Resolução

O algoritmo SIFT é mais rápido de ser processado se a imagem tiver dimensões menores, porém isto provoca uma redução da resolução, o que interfere na triangulação. Para testar esta interferência, foi feito a mesma simulação anterior com diversas resoluções de câmeras. Tendo sido feitas 500 simulações para cada resolução, com câmeras distanciadas em 100 milímetros, a Tabela 4 mostra os resultados para algumas distâncias.

Tabela 5: Medida de erro de triangulação a partir da resolução e distância da câmera (erros em milímetros).

Resolução/Distância(mm)	1000	1500	2000
320x240	17,8	41,3	73,5
405x254	15,0	32,9	62,9
640x480	8,0	18,2	32,4
811x508	7,6	18,4	31,3

A simulação comprovou que o algoritmo de triangulação possui erros maiores quanto maior a distância, mas também que este erro aumenta em

resoluções menores. No entanto uma resolução de 640x480 pode ser suficiente para oferecer ao algoritmo erros pequenos, trazendo o benefício de uma maior rapidez na computação.

5.3.3

Simulação de Calibração da Base

A última simulação testa o posicionamento do manipulador em relação aos objetos vistos pela câmera. Nesta simulação, foi criada uma réplica do manipulador em ambiente virtual e adicionadas em posições fixas de sua extremidade duas câmeras virtuais calibradas. Em seguida, foram inseridas esferas de cores diferenciadas no ambiente virtual, com posições fixas. O sistema de coordenadas do mundo é fixado na base do manipulador, enquanto que as posições reais das esferas em relação a esta base são medidas. Em seguida, são obtidas imagens das esferas em diversas configurações do TA-40, feita a triangulação para calcular as posições das esferas em relação a câmera esquerda, e utilizada a Equação 4.6.2 para obter tais posições em relação à base do manipulador.

É utilizada a Equação 5.3.1 para calcular o erro médio quadrático da posição real de cada esfera, com relação à calculada. Os resultados estão na Tabela 5, enquanto que as Figuras 37, 38 e 39 mostram imagens capturadas em posições distintas do manipulador.

Figura 37: Visões da simulação de calibração da base, com manipulador configurado com θ_1 =26°, θ_2 =30°, θ_3 =20°, θ_4 =47°, θ_5 =60°, θ_6 =43°.

Figura 38: Visões de simulação de calibração da base, com manipulador configurado com θ_1 =15°, θ_2 =-3°, θ_3 =-10°, θ_4 =10°, θ_5 =128°, θ_6 =0°.

Figura 39: Visões de simulação de calibração da base, com manipulador configurado com $\theta_1=0^\circ$, $\theta_2=90^\circ$, $\theta_3=-90^\circ$, $\theta_4=0^\circ$, $\theta_5=90^\circ$, $\theta_6=0^\circ$.

Tabela 6: Resultados da	i simulação d	le Calibração da	Base
-------------------------	---------------	------------------	------

Angulo das Juntas (º)						Posicao d	Erro (mm)		
θ1	θ2	θ3	64	θ5	86	Х	Y	Z	
16,9	18,5	58,7	51,2	27,6	167,3	187,6	37,7	36,8	12,4
44,6	51,8	15,9	81,4	64	10	132,8	92,3	44,4	29,4
15,3	-3	-10,7	9,4	128,2	0	120,9	27,3	-74,9	13,2
25,9	29,7	20,5	47,4	60	-42,6	167,2	53,7	-1,1	12,6