3 Funções Altura

Reproduziremos abaixo como Thurston definiu funções altura para uma superfície quadriculada S conexa e simplesmente conexa com bordo em [5].

Seja $\mathcal{V}_{\mathcal{S}}$ o conjunto de vértices dos quadrados de S e $\mathcal{V}_{\partial \mathcal{S}} \neq \emptyset$ é o subconjunto de vértices do bordo de S. Considere um vértice arbitrário porém fixo $v_b \in \mathcal{V}_{\partial \mathcal{S}}$ como o vértice base. Para uma cobertura $t \in T_S$ construa a função altura $\theta : \mathcal{V}_{\mathcal{S}} \longrightarrow \mathbb{Z}$ como se segue:

- (a) $\theta(v_b) = 0;$
- (b) se um quadrado branco (resp. preto) está à esquerda da aresta orientada v_0v_1 não coberta por um dominó de t então $\theta(v_1) \theta(v_0) = 1$ (resp.-1).

A Fig. 3.1 é um exemplo de uma cobertura de dominó e a função altura correspondente.

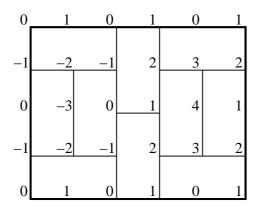


Figure 3.1: Uma função altura.

Claramente, as regras para a construção de θ são consistentes quando θ é construído ao longo do caminho que cerca um dominó. Esta consistência local, junto com o fato que S é conexo e simplesmente conexo , garantem a unicidade e a consistência global de θ . Note que todas as funções altura coincidem no bordo e que alterando o vértice base altera θ por uma constante inteira aditiva. Funções altura admitem a característica intrínseca que se segue (para uma prova e algumas aplicações, consulte [4]).

Proposição 3.1 Seja S uma superfície quadriculada conexa e simplesmente conexa com um vértice base $v_b \in \mathcal{V}_{\partial S}$, e seja $\theta : \mathcal{V}_S \longrightarrow \mathbb{Z}$. Então θ é a função altura de alguma cobertura t (relativo ao ponto base v_b) se e somente se as sequintes condições são válidas:

- (a) $\theta(v_b) = 0$;
- (b) se a aresta orientada v_0v_1 está no bordo de S e um quadrado branco (resp. preto) está à sua esquerda então $\theta(v_1) \theta(v_0) = 1$ (resp. -1);
- (c) se a aresta orientada v_0v_1 está no interior de S e um quadrado branco (resp. preto) está à sua esquerda então $\theta(v_1) \theta(v_0) = 1$ ou -3 (resp. -1 ou 3).

Todas as funções altura θ com ponto base v_b é igual a zero em v_b . Pela característica local das funções altura, dado um ponto $v \in \mathcal{V}_{\mathcal{S}}$ distando ℓ (medido através de arestas) de v_b , $|\theta(v)| \leq 3\ell$. Assim, mesmo para uma superfície infinita quadriculada conexa e simplesmente conexa, as funções altura são localmente limitadas no sentido que dado algum subconjunto X finito de $\mathcal{V}_{\mathcal{S}}$ as restrições de todas as funções altura de X são limitadas por uma constante C_X . Em particular, o máximo e o mínimo de algum conjunto (finito ou infinito) de funções altura é bem definido e, de novo pela característica local, é uma função altura.

Se o disco quadriculado com buracos D não é simplesmente conexo, não é necessário que a construção da função altura como acima seja consistente globalmente. Segue abaixo um exemplo de como esta dificuldade foi apresentada em [4].

A Fig. 3.2(a) mostra um disco com dois buracos. Marque cortes através de uma das arestas de cada buraco até a borda, como indicado. Devido aos buracos, é necesário fazer um shift aditivo apropriado como indicado na Fig. 3.2(a). Como esses shifts são obtidos? Basta contar dentro de cada buraco o número de quadrados brancos (n_b) e de quadrados pretos (n_p) . O valor do shift é $4 | (n_b) - (n_p)|$.

A função altura de uma cobertura t é definida como foi feito para as funções altura: quando ando ao longo de uma aresta com um quadrado branco (resp. preto) à sua esquerda é adicionado (resp. subtraído) 1 do valor do vértice de partida da aresta, para assim obter o valor do vértice de chegada da aresta. E quando ando ao longo de uma aresta marcada por um corte, basta fazer o shift aditivo $4 |(n_b) - (n_p)|$.

A Fig. 3.2(b) mostra um exemplo de uma cobertura e sua função altura; a Fig. 3.2(c) mostra como escrever a mesma função altura (em $4\mathbb{Z}$), com cortes diferentes. A grande diferença entre valores de vértices vizinhos em

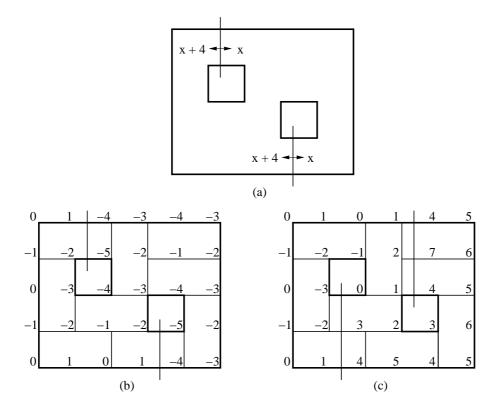


Figure 3.2: A mesma função altura para cortes diferentes.

lados opostos de um corte não corresponde a um salto da função altura, isso se deve ao shift aditivo.

Considere agora coberturas de uma faixa quadriculada com buracos infinita $D^{\infty} = ...\Delta_{-1}\Delta_0\Delta_1...$ Os cortes ξ_{n+1}^i , i>1 em Δ_{n+1} são obtidos a partir dos cortes ξ_n^i , i>1 por translação. As funções altura correspondentes são $\theta: \mathcal{V}_{D^{\infty}} \longrightarrow \mathbb{Z}$. Por conveniência, assuma que o ponto base v_b pertence a borda externa de D^{∞} .

Lema 2 Para um vértice referente fixo v_r na borda interna de D^{∞} , $\theta(v_r) = 4\phi(t; \xi_{\frac{1}{2}}) + c$ para todas as coberturas t de D^{∞} e alguma constante inteira c.

Demonstração:

Se o vértice base v_b e o vértice referente v_r são os dois extremos de $\xi_{\frac{1}{2}}$ então $\theta(v_r)$ pode ser calculado de $\theta(v_b)=0$ usando a definição da função altura seguindo $\xi_{\frac{1}{2}}$. Mais precisamente, desde que não se trespasse um corte, se v_i e v_{i+1} são os vértices consecutivos em $\xi_{\frac{1}{2}}$ então $\theta(v_{i+1})-\theta(v_i)$ é igual a:

- 3 (resp. -3) se um dominó cruza $\xi_{\frac{1}{2}}$ no sentido anti-horário (resp. horário) a aresta v_iv_{i+1} ;
- 1 (resp. -1) se nenhum dominó cruza $\xi_{\frac{1}{2}}$ em $v_i v_{i+1}$ e o quadrado à esquerda de $v_i v_{i+1}$ é branco (resp. preto).

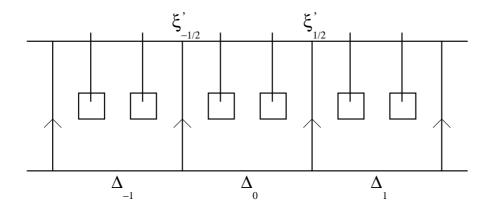


Figure 3.3: Cortes obtidos por translação

Sejam n_3, n_{-3}, n_1 e n_{-1} o número de arestas em $\xi_{\frac{1}{2}}$ em cada situação acima.

Claramente,

$$\theta(v_r) = -3n_{-3} - n_{-1} + n_1 + 3n_3 = (n_1 + n_{-3} - n_{-1} - n_{-3}) + 4(n_3 - n_{-3}).$$

Pela definição, $\phi(t;\xi_{\frac{1}{2}})=n_3-n_{-3}$ (cruzam $\xi_{\frac{1}{2}}$). Mas n_1+n_{-3} (resp. $n_{-1}+n_3$) é o número de arestas no corte com um quadrado branco (resp. preto) à sua esquerda e portanto $c=n_1+n_{-3}-n_{-1}-n_3$ não depende da cobertura t.

No caso geral quando v_b ou v_r não são extremos de $\xi_{\frac{1}{2}}$, considere as variações de θ ao longo de trechos da borda com extremos em v_b ou v_r que são novamente independentes da cobertura. \square

Note que uma função altura θ correspondente a uma cobertura periódica de D^{∞} normalmente não satisfaz $(\theta \circ \tau)(v) = \theta(v)$, onde τ é uma translação, mas em vez disso satisfaz $(\theta \circ \tau)(v) = \theta(v) + c'$ para alguma constante inteira c', c' depende apenas de D e não da cobertura t. Com um pouco de abuso, as funções altura deste tipo são também chamadas de periódicas. Considere $\theta_{f,max}$ (resp. $\theta_{f,min}$) o máximo (resp. mínimo) de todas as funções altura com um fluxo f dado. Estes extremos das funções altura são periódicos. De fato, o máximo de uma família de funções altura, também é uma função altura.

O resultado a seguir é uma aplicação das funções altura para coberturas de discos com buracos.

Teorema 3.2 Seja D um disco quadriculado com buracos e sejam f_{max} e f_{min} os valores máximo e mínimo do fluxo primário entre todas as coberturas de D relativos a um corte primário ξ' arbitrário. Então existem cortes primários ξ'_{max} e ξ'_{min} tal que nenhuma cobertura de fluxo f_{max} trespassa ξ'_{max} e nenhuma de fluxo f_{min} trespassa ξ'_{min} .

Como paredes no corolário 2.3, o não-ultrapasso de cortes acima permite, por um princípio multiplicativo, ser aplicado a contagem de coberturas de fluxo extremo. De fato, seja $a_k^{[n]}$ o número de coberturas de um espaço recoberto D^n com fluxo $k+f_{min}, k=0,...,f_{max}-f_{min}$; temos $a_{f_{max}-f_{min}}^{[n]}=(a_{f_{max}-f_{min}}^{[1]})^n$ e $a_0^{[n]}=(a_0^{[1]})^n$. Relações mais gerais sobre $a_k^{[n]}$ estão presentes na Proposição 5.2.

Demonstração:

Segue apenas a demonstração da existência de ξ'_{max} . É preciso encontrar um corte primário onde todas as funções altura com fluxo ξ'_{max} coincidem: isto acontece se e somente se $\theta_{f_{max},min}(v) = \theta_{f_{max},max}(v)$ para v no corte. Seja

$$X = \{ v \in \mathcal{V}_{D^{\infty}} | \theta_{f_{max}, min}(v) = \theta_{f_{max}, max}(v) \}$$

o conjunto de vértices onde todas as funções altura de fluxo f_{max} coincidem. Este conjunto contém a borda externa se v_b pertence a ele e, pelo lema anterior, também contém uma das bordas internas. Seja Y a componente conexa de X contendo a borda externa de D^{∞} (i.e., o subconjunto maximal de X contendo a borda externa e tal que se dois vértices $v_1, v_2 \in X$ são adjacentes e $v_1 \in Y$ então $v_2 \in Y$): devemos provar que Y também contém uma das bordas internas. Seja

$$\theta(v) = \begin{cases} \theta_{f_{max}, min}(v) &, v \in Y \\ \theta_{f_{max}, min}(v) + 4 &, v \in D^{\infty} - Y. \end{cases}$$

A função θ é uma função altura: os itens (a) e (b) da Proposição 3.1 são claramente satisfeitos. Já o item (c), se v_1 e v_2 são adjacentes e ambos pertencem a Y ou nenhum dos dois pertence a Y então $\theta(v_1) - \theta(v_2) = \theta_{f_{max},min}(v_1) - \theta_{f_{max},min}(v_2)$. Se $v_1 \in Y$ e $v_2 \notin Y$ então $v_2 \notin X$ e segue, da adjacência de v_1 e v_2 , $\theta_{f_{max},max}(v_2) - \theta_{f_{max},min}(v_2) = 4$ e assim $\theta(v_1) - \theta(v_2) = \theta_{f_{max},max}(v_1) - \theta_{f_{max},max}(v_2)$. Daí, em todos os casos $\theta(v_1) - \theta(v_2)$ coincide com a diferença em valores de v_1 e v_2 de ambos $\theta_{f_{max},min}$ ou $\theta_{f_{max},max}$, próprio das funções altura, mostrando que θ satisfaz (c). Se Y contém a borda interna então $\phi(\theta,\xi')=f_{max}$ mas por outro lado $\phi(\theta,\xi')=f_{max}+1$, contradizendo a maximalidade de f_{max} . \square