4 Aplicação ao Mercado Brasileiro

Neste capítulo foi realizada uma aplicação das metodologias STAR-Tree, Redes Neurais, ARMAX e Naive. O objetivo é prever os retornos um passo à frente para ativos da Bolsa de Valores de São Paulo e utilizálos para trading. Foram incluídas uma análise estatística, na qual pode-se visualizar o grau de ajuste dos modelos aos dados, e uma financeira, que inclui medidas que refletem o sucesso do modelo quando utilizado na prática. Num primeiro momento, os custos de transação não foram levados em consideração, sendo posteriormente desenvolvida uma análise mais realista incluindo-os. Por último, foi feito um estudo sobre a possibilidade de alavancagem da quantidade de capital a ser investido e seus resultados financeiros correspondentes.

A regra de decisão de negociação adotada foi definida a partir do sinal obtido do valor previsto. Caso a previsão do retorno fosse positiva, assumiase uma posição comprada e, caso contrário, permanecia-se fora do mercado ou vendia-se o ativo em posse. Na situação em que a série se encontrava numa tendência de alta ou de baixa, as posições compradas ou vendidas, respectivamente, mantiveram-se.

4.1 Dados Utilizados

Os ativos utilizados na análise estão apresentados na tabela (4.1). A escolha foi feita com base nos papéis que apresentam maior liquidez, ou seja, maior facilidade de troca de posição, e na tentativa de abordar o maior número possível de setores da economia.

As observações cobrem o período de 20/01/1999 a 30/12/2004 (1476 dados), sendo divididas em dois grupos: de 20/01/1999 a 30/12/2003 (1227 dados) para ajustar os modelos, e de 02/01/2004 a 30/12/2004 (249 dados) usado para a aplicação e teste dos mesmos, como pode ser visualizado na tabela (4.2).

	Tabela 4.1:	Ativos	
Ativo	Descrição	Tipo	Setor
bbdc4	$\operatorname{Bradesco}$	PN	Financeiro
brkm5	$\operatorname{Brasken}$	PNA	Petroquímico
csna3	Siderúrgica Nacional	ON	$\operatorname{Siderurgia}$
elet6	Eletrobrás	PNB	Energia Elétrica
ggbr4	Gerdau	PN	Siderurgia
klbn4	Klabin	PN	Papel e Celulose
petr4	Petrobrás	PN	Petróleo
tnlp4	Teleman	PN	Telecomunicações
tspp4	Telesp Celular	PN	Telecomunicações
vale 5	Vale do Rio Doce	PNA	Mineração

Tabela 4.2: Divisão da Série Temporal

Período	Observações	Começo	Fim
Treinamento (in-sample)	1227	20-jan-1999	$30-{ m dec}-2003$
Teste (out-of-sample)	249	02-jan- 2004	30-dec-2004
Total	1476	20-jan-1999	$30-{ m dec}-2004$

O conjunto de variáveis explanatórias é composto por:

- 10 primeiras defasagens da taxa de retorno dos ativos
- 10 primeiras defasagens da volatilidade durante o dia
- 10 primeiras defasagens da variação de volume entre dois dias consecutivos
- médias móveis de 10 e 20 dias dos retornos
- primeira defasagem do retorno de 10 índices financeiros

A seguir, apresenta-se uma descrição de cada tipo de variável.

Retorno

O cálculo dos retornos foi feito através da equação (4-1), sendo que os preços p_t e p_{t-1} são os valores médios durante o dia.

$$r_t = \ln\left(\frac{p_t}{p_{t-1}}\right) \tag{4-1}$$

Algumas estatísticas descritivas foram calculadas para estas séries de retornos e observou-se média próxima a zero, leve assimetria e excesso de curtose. O teste de Jarque-Bera com um nível de confiança de 99% comprova a não normalidade das séries. Estes resultados podem ser visualizados na tabela (4.3).

		Tabela 4.3:	Estatísticas	das Séries		
	Média	Variância	Assimetria	Curtose	JB	p-valor
bbdc4	0.0012	0.0005	0.16	4.76	196.16	0.00
brkm5	0.0023	0.0008	0.24	5.53	403.99	0.00
csna3	0.0022	0.0007	-0.06	5.51	386.33	0.00
elet6	0.0006	0.0008	-0.10	4.15	82.85	0.00
ggbr4	0.0023	0.0007	0.33	5.31	292.48	0.00
klbn4	0.0022	0.0008	0.50	6.59	847.25	0.00
petr4	0.0016	0.0004	0.14	4.92	229.89	0.00
tnlp4	0.0007	0.0006	0.03	4.06	68.10	0.00
tspp4	-0.0002	0.0011	-0.78	14.09	7684.00	0.00
vale 5	0.0016	0.0004	0.25	5.71	462.38	0.00

Volatilidade

A equação (4-2) apresenta a forma como foi obtida a volatilidade.

$$vol_t = \frac{max_t - min_t}{p_t} \tag{4-2}$$

onde \max_t é o valor máximo do preço do ativo no dia t e \min_t o valor mínimo.

Variação de Volume

A variação de volume é expressa pela equação (4-3).

$$q_t = \ln\left(\frac{t_t}{t_{t-1}}\right) \tag{4-3}$$

onde t_t é a quantidade de títulos negociados no dia t.

Médias Móveis

As médias móveis são consideradas um importante fator de demonstração da tendência do ativo. Através da equação (4-4), foram calculadas as médias móveis de 10 e 20 dias.

$$MM_T = \frac{r_{t-1} + r_{t-2} + \dots + r_{t-T}}{T}$$
 (4-4)

onde $r_{t-1}, r_{t-2}, \dots, r_{t-T}$ são os retornos do ativo e T é o período de tempo utilizado.

Índices Financeiros

A tabela (4.4) apresenta o conjunto de variáveis de índices incluídas na análise.

Tabela 4.4: Descrição dos Índices Financeiros

Descrição	Variável	Defasagem
Índice BOVESPA	IBOV	1
Índice S&P 500	S&P	1
Cotação do Dólar	DOL	1
Treasury 10 anos	T10	1
Título Público C–Bond	C_BOND	1
Spread entre o C–Bond e o T10	SOT	1
Valor do Barril de Petróleo(NY)	OIL	1
Swap360 (taxa de juros futuro)	SW360	1
Cesta de Commodities (Reuters)	CRY	1
Índice de Bolsas de Países Emergentes	BINDEXa	1

^aA equação de cálculo do índice BINDEX é dada por

$$BINDEX = \mathbf{P'I}$$

onde I=(MERVAL,RTSI,HSI,TWSE,MEXBOL)', sendo MERVAL o índice da Bolsa de Valores de Buenos Aires, RTSI da Russia, HSI de Hong Kong, TWSE de Taiwan e MEXBOL do México; e $P=(p_{MERVAL},p_{RTSI},p_{HSI},p_{TWSE},p_{MEXBOL})'$ é o vetor de pesos, sendo

$$p_k = \frac{\mu_k}{\sigma_k} \frac{\mu_k}{\sum_{i=1}^5 \mu_i}$$

onde μ_k é a média do k-ésimo índice e σ_k o desvio padrão.

4.2 Modelos Estimados - STAR-Tree

Os modelos STAR-Tree estimados para cada ativo são apresentados nas equações (4-5-4-14) e suas respectivas árvores binárias nas figuras (4.1-4.10). O erro padrão dos parâmetros lineares encontra-se entre parênteses logo abaixo dos mesmos. Para um intervalo de confiança de 95%, alguns parâmetros não se mostraram significantes, porém, como o propósito é apenas utilizar os modelos para previsão, seus valores serão mantidos. Além disso, ainda é apresentado o percentual de pertinência dos dados aos regimes.

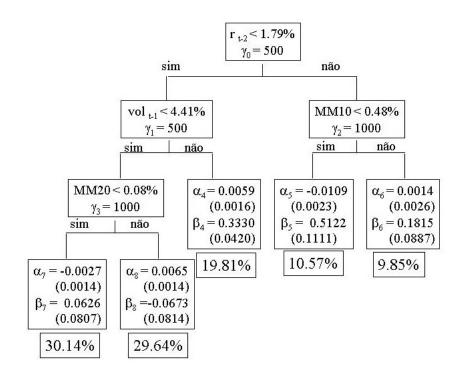


Figura 4.1: Árvore Ilustrativa do Ativo bbdc4

bbdc4

$$r_{t} = [((-0.0027 + 0.0626r_{t-1})G(MM20; 1000, 0.0008) + (0.0065 - 0.0673r_{t-1})(1 - G(MM20; 1000, 0.0008)))$$

$$G(vol_{t-1}; 500, 0.0441) + (0.0059 + 0.3330r_{t-1})$$

$$(1 - G(vol_{t-1}; 500, 0.0441))]G(ret_{t-2}; 500, 0.0179) + (4-5)$$

$$[(-0.0109 + 0.5122r_{t-1})G(MM10; 1000, 0.0048) + (0.0014 + 0.1815r_{t-1})(1 - G(MM10; 1000, 0.0048))]$$

$$(1 - G(ret_{t-2}; 500, 0.0179))$$

- Interpretação da figura (4.1): A previsão dada pelo modelo é feita com base, inicialmente, no retorno de 2 dias atrás. Caso este tenha sido superior a 1.79%, a previsão é obtida a partir do valor observado para a média móvel de 10 dias, substituindo-o no regime adequado. Caso contrário, deve-se analisar a volatilidade do dia anterior. Sendo ela inferior a 4.41%, a previsão será determinada pela média móvel de 20 dias, sendo superior, pelo regime correspondente.

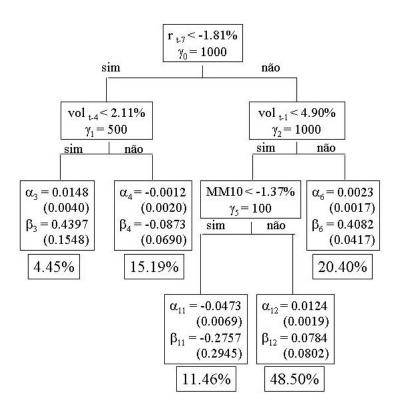


Figura 4.2: Árvore Ilustrativa do Ativo brkm5

brkm5

$$r_{t} = [(0.0148 + 0.4397r_{t-1})G(vol_{t-4}; 500, 0.0211) + (-0.0012 - 0.0873r_{t-1})$$

$$(1 - G(vol_{t-4}; 500, 0.0211))]G(r_{t-7}; 1000, -0.0181) +$$

$$[((-0.0473 - 0.2757r_{t-1})G(MM10; 100, -0.0137) +$$

$$(0.0124 + 0.0784r_{t-1})(1 - G(MM10; 100, -0.0137)))$$

$$G(vol_{t-1}; 1000, 0.0490) + (0.0023 + 0.4082r_{t-1})$$

$$(1 - G(vol_{t-1}; 1000, 0.0490))](1 - G(r_{t-7}; 1000, -0.0181))$$

$$(4-6)$$

- Interpretação da figura (4.2): A previsão dada pelo modelo é feita com base, inicialmente, no retorno de 7 dias atrás. Caso este tenha sido inferior a -1.81%, a previsão é obtida a partir do valor observado para a volatilidade de 4 dias atrás, substituindo-o no regime adequado. Caso contrário, deve-se analisar a volatilidade do dia anterior. Sendo ela inferior a 4.90%, a previsão será determinada pela média móvel de 10 dias, sendo superior, pelo regime correspondente.

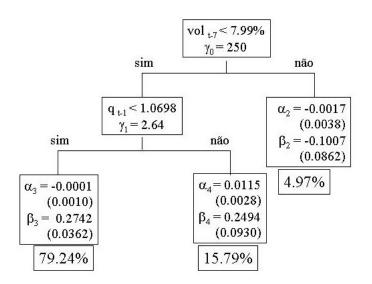


Figura 4.3: Árvore Ilustrativa do Ativo csna3

csna3

$$r_{t} = [(-0.0001 + 0.2742r_{t-1})G(q_{t-1}; 2.64, 1.0698) + (0.0115 + 0.2494r_{t-1})$$

$$(1 - G(q_{t-1}; 2.64, 1.0698))]G(vol_{t-7}; 250, 0.0799) +$$

$$(-0.0017 - 0.1007r_{t-1})(1 - G(vol_{t-7}; 250, 0.0799))$$

$$(4-7)$$

- Interpretação da figura (4.3): O modelo afirma que 7 dias após uma volatilidade inferior a 7.99%, a previsão é feita com base na variação de volume no dia anterior. Caso contrário, a previsão é obtida com a substituição direta no regime correspondente.

elet6

$$r_{t} = [((-0.0076 + 0.0502r_{t-1})G(MM10; 100, 0.0134) + (0.0593 + 0.4545r_{t-1})(1 - G(MM10; 100, 0.0134)))$$

$$G(S\&P_{t-1}; 100, -0.0099) + (-0.0074 + 0.1992r_{t-1})$$

$$(1 - G(S\&P_{t-1}; 100, -0.0099))]G(q_{t-1}; 2.008, 0.9151) + [((0.0219 - 1.1190r_{t-1})G(vol_{t-1}; 250, 0.0363) + (0.0478 + 0.0501r_{t-1})(1 - G(vol_{t-1}; 250, 0.0363)))$$

$$(1 - G(MM20; 250, -0.0016)) + (-0.0192 + 0.3762r_{t-1})$$

$$G(MM20; 250, -0.0016)](1 - G(q_{t-1}; 2.008, 0.9151))$$

– Interpretação da figura (4.4): A previsão dada pelo modelo é feita com base, inicialmente, na variação de volume de 1 dia atrás. Como o valor do parâmetro γ é pequeno, a transição é suave, ou seja, o

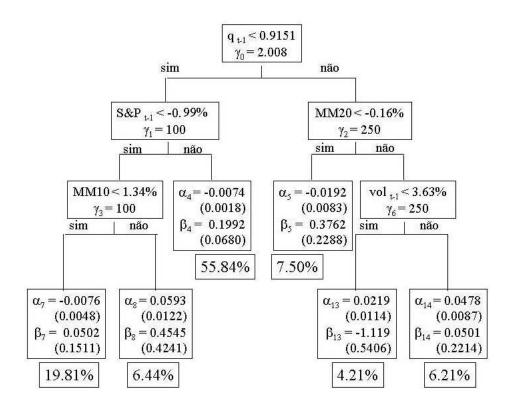


Figura 4.4: Árvore Ilustrativa do Ativo elet6

valor observado para a variável explicativa fará parte dos dois regimes resultantes da divisão do nó. Em seguida, deve-se analisar o retorno do índice S&P no dia anterior e a média móvel de 20 dias. Caso o primeiro seja inferior a -0.99%, é necessário observar a média móvel de 10 dias; caso contrário, substituí-lo no regime correspondente. E com relação a segunda, caso seja superior a -0.16%, analisar a volatilidade do dia anterior; caso contrário, substituí-la no regime adequado.

ggbr4

$$r_{t} = [(-0.0028 + 0.1997r_{t-1})G(MM20; 250, 0.0086) + (0.0137 + 0.1106r_{t-1})$$

$$(1 - G(MM20; 250, 0.0086))]G(vol_{t-1}; 750, 0.0658) +$$

$$[(-0.0188 + 1.0205r_{t-1})G(MM10; 100, -0.0125) +$$

$$(0.0277 - 0.0651r_{t-1})(1 - G(MM10; 100, -0.0125))]$$

$$(1 - G(vol_{t-1}; 750, 0.0658))$$

$$(4-9)$$

- Interpretação da figura (4.5): A previsão dada pelo modelo é feita com base, inicialmente, na volatilidade do dia anterior. Caso esta tenha sido inferior a 6.58%, a previsão é obtida a partir do valor observado para a média móvel de 20 dias, substituindo-o no regime adequado. Caso

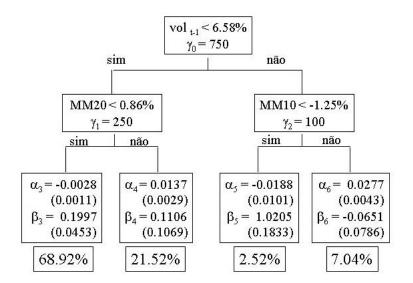


Figura 4.5: Árvore Ilustrativa do Ativo ggbr4

contrário, deve-se analisar a média móvel de 10 dias e, dependendo do valor observado, substituí-la no regime correspondente.

Interpretação da figura (4.6): A previsão dada pelo modelo é feita com base, inicialmente, na variação de volume de 2 dias atrás. Como o valor do parâmetro γ é pequeno, a transição é suave, ou seja, o valor observado para a variável explicativa fará parte dos dois regimes resultantes da divisão do nó. Em seguida, deve-se analisar a média móvel de 20 dias e a volatilidade do dia anterior. Caso esta seja inferior a 5.48%, a previsão será baseada na média móvel de 10 dias, caso contrário, na média móvel de 20 dias.

klbn4

$$r_{t} = [(-0.0189 - 0.1786r_{t-1})G(MM20; 250, -0.0006) + (0.0115 - 0.5747r_{t-1})(1 - G(MM20; 250, -0.0006))]$$

$$G(q_{t-2}; 2.5, -1.899) + [((-0.0484 - 0.4788r_{t-1})$$

$$G(MM10; 100, -0.0115) + (0.0146 + 0.0831r_{t-1})$$

$$(1 - G(MM10; 100, -0.0115)))G(vol_{t-1}; 250, 0.0549) + ((-0.0396 - 0.3903r_{t-1})G(MM20; 100, -0.0086) + (0.0246 + 0.3258r_{t-1})(1 - G(MM20; 100, -0.0086)))$$

$$(1 - G(vol_{t-1}; 250, 0.0549))](1 - G(q_{t-2}; 2.5, -1.899))$$

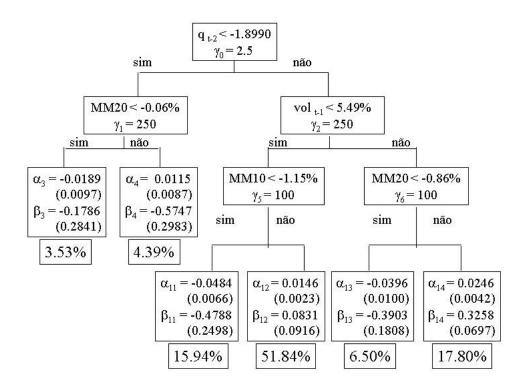


Figura 4.6: Árvore Ilustrativa do Ativo klbn4

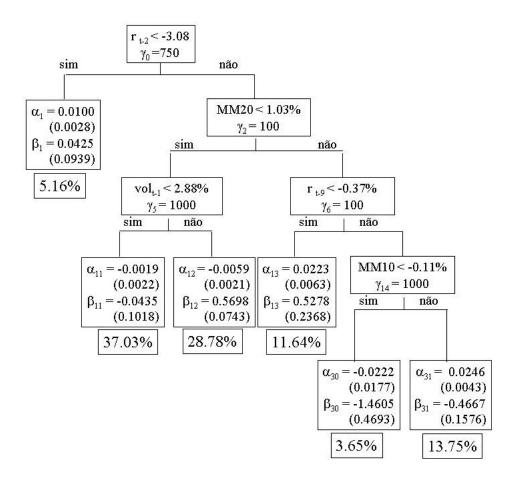


Figura 4.7: Árvore Ilustrativa do Ativo petr4

petr4

$$r_{t} = (0.01 + 0.0425r_{t-1})G(r_{t-2}; 750, -0.0308) + [((((-0.0222 - 1.4605r_{t-1})G(MM10; 1000, -0.0011) + (0.0246 - 0.4667r_{t-1})G(MM10; 1000, -0.0011) + (0.0246 - 0.4667r_{t-1})G(r_{t-9}; 100, -0.0037)) + (0.0223 + 0.5278r_{t-1})G(r_{t-9}; 100, -0.0037)) + (((-0.0019 - 0.0435r_{t-1})G(NM20; 100, 0.0103))) + (((-0.0019 - 0.0435r_{t-1})G(NN20; 100, 0.0288) + (-0.0059 + 0.5698r_{t-1})G(NN20; 100, 0.0103))] + ((-0.0019 - 0.0103)) + ((-0.0019 - 0.0103$$

- Interpretação da figura (4.7): A previsão dada pelo modelo é feita com base, inicialmente, no retorno de 2 dias atrás. Caso este tenha sido inferior a -3.08%, a previsão é obtida a partir do regime correspondente. Caso contrário, deve-se analisar a média móvel de 20 dias. Sendo ela inferior a 1.03%, a previsão será determinada pela volatilidade do dia anterior, sendo superior, é necessário visualizar o retorno de 9 dias atrás. Caso o retorno seja superior a -0.37%, a previsão será determinada pela média móvel de 10 dias; caso contrário, pelo regime correspondente.

tnlp4

$$\begin{split} r_t = & [(((-0.1445 - 0.0300r_{t-1})G(MM10; 50, -0.0134) + \\ & (0.0316 - 0.3969r_{t-1})(1 - G(MM10; 50, -0.0134)) \\ & G(MM20; 100, 0.0108)) + (0.0774 + 1.5658r_{t-1}) \\ & (1 - G(MM20; 100, 0.0108))G(S\&P_{t-1}; 75, -0.0166)) + \\ & (((0.0008 + 0.2269r_{t-1})G(IBOV_{t-1}; 100, 0.0111) + \\ & (-0.0175 + 0.3156r_{t-1})(1 - G(IBOV_{t-1}; 100, 0.0111))) \\ & (1 - G(S\&P_{t-1}; 75, -0.0166)))]G(C_Bond_{t-1}; 500, 0.0199) + \\ & (0.0058 - 0.0791r_{t-1})(1 - G(C_Bond_{t-1}; 500, 0.0199)) \end{split}$$

- Interpretação da figura (4.8): A previsão dada pelo modelo é feita com base, inicialmente, no retorno do C-Bond no dia anterior. Caso este tenha sido superior a 1.99%, a previsão é obtida a partir do regime correspondente. Caso contrário, deve-se analisar o retorno do S&P. Sendo ele superior a -1.66%, a previsão será determinada pelo retorno

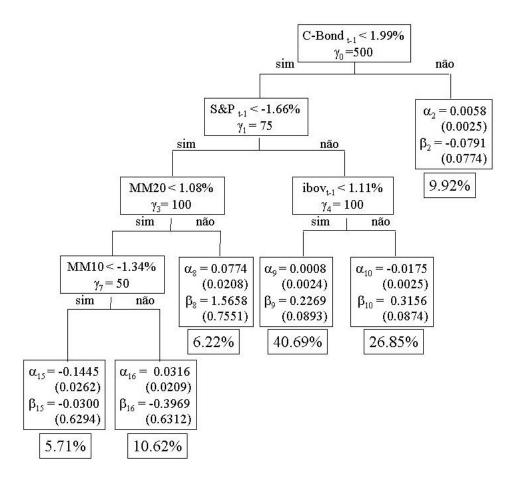


Figura 4.8: Árvore Ilustrativa do Ativo tnlp4

do IBOVESPA no dia anterior, sendo inferior, é necessário visualizar a média móvel de 20 dias. Caso seja inferior a 1.08%, a previsão será determinada pela média móvel de 10 dias; caso contrário, pelo regime correspondente.

tspp4

$$\begin{split} r_t = & [((-0.0596 - 0.6962r_{t-1})G(MM20; 75, 0.0137) + \\ & ((0.1531 - 0.1328r_{t-1})G(S\&P_{t-1}; 1000, 0) + (0.4869 - 8.5474r_{t-1}) \\ & (1 - G(S\&P_{t-1}; 1000, 0)))(1 - G(MM20; 75, 0.0137))) \\ & G(vol_{t-1}; 50, 0.0709) + (0.1022 + 0.5875r_{t-1}) \\ & (1 - G(vol_{t-1}; 50, 0.0709))]G(S\&P_{t-1}; 100, -0.0218) + \\ & [(-0.0085 + 0.1954r_{t-1})G(C_Bond_{t-1}; 1000, -0.0029) \\ & (-0.0092 + 0.5318r_{t-1})(1 - G(C_Bond_{t-1}; 1000, -0.0029))] \\ & (1 - G(S\&P_{t-1}; 100, -0.0218)) \end{split}$$

- Interpretação da figura (4.9): A previsão dada pelo modelo é feita com

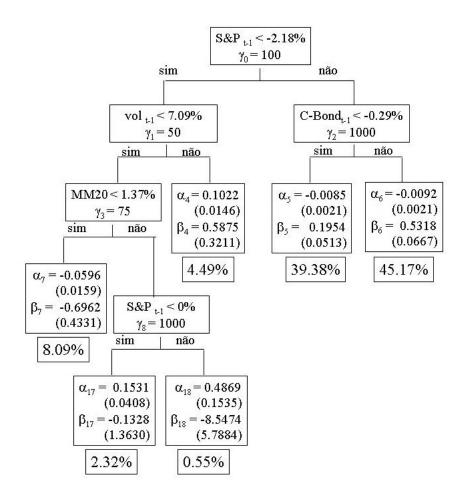


Figura 4.9: Árvore Ilustrativa do Ativo tspp4

base, inicialmente, no retorno do índice S&P do dia anterior. Caso este tenha sido superior a -2.18%, a previsão é obtida a partir do valor observado para o retorno do C-Bond de 1 dia atrás, substituindo-o no regime adequado. Caso contrário, deve-se analisar a volatilidade do dia anterior. Sendo ela superior a 7.09%, a previsão será determinada pelo regime correspondente. Caso contrário, é necessário obter a média móvel de 20 dias. Sendo ela superior a 1.37%, a previsão será obtida a partir do valor observado para o retorno do S&P, sendo inferior, pelo regime correspondente.

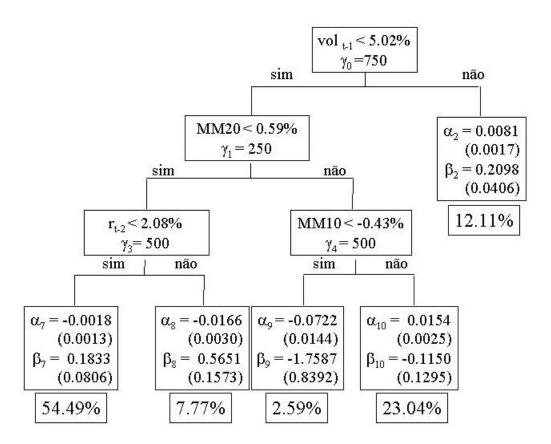


Figura 4.10: Árvore Ilustrativa do Ativo vale5

vale5

$$r_{t} = [((-0.0018 + 0.1833r_{t-1})G(r_{t-2}; 500, 0.0208) + (-0.0166 + 0.5651r_{t-1})$$

$$(1 - G(r_{t-2}; 500, 0.0208)))G(MM20; 250, 0.0059) +$$

$$((-0.0722 - 1.7587r_{t-1})G(MM10; 500, -0.0043) +$$

$$((0.0154 - 0.1150r_{t-1})(1 - G(MM10; 500, -0.0043))))$$

$$(1 - G(MM20; 250, 0.0059))]G(vol_{t-1}; 750, 0.0502) +$$

$$(0.0081 + 0.2098r_{t-1})(1 - G(vol_{t-1}; 750, 0.0502))$$

$$(4-14)$$

- Interpretação da figura (4.10): A previsão dada pelo modelo é feita com base, inicialmente, na volatilidade do dia anterior. Caso esta tenha sido superior a 5.02%, a previsão é obtida a partir do regime correspondente. Caso contrário, deve-se analisar a média móvel de 20 dias. Sendo ela inferior a 0.59%, a previsão será determinada pelo retorno de 2 dias atrás, sendo superior, pela média móvel de 10 dias.

Análise dos Resíduos

Algumas estatísticas dos resíduos dos modelos estimados estão apresentadas na tabela (4.5). Pode ser visto que os resíduos apresentam leve assimetria e excesso de curtose. A hipótese de normalidade é rejeitada fortemente pelo teste de Jarque-Bera(JB). Este comportamento já era esperado e pode ser justificado pela presença de *outliers* e pelo fato do modelo não conseguir capturar a volatilidade intrínseca à série.

Tabela 4.5: Estatística dos Resíduos - Treinamento							
	Modelo	Média	Var	Assim	Curt	JB	P-val
	Star-RC	-4.04E-04	4.83E-04	0.2505	5.22	208.45	0.00
$\rm bbdc4$	$\operatorname{Star-MM}$	-5.50E- 03	5.22E-04	0.2842	5.05	182.29	0.00
	Star-ARC	-1.93E-05	6.65E-04	0.3378	4.57	116.97	0.00
	Star-RC	-3.43E-04	6.14E-04	0.0685	4.20	58.58	0.00
brkm5	$\operatorname{Star-MM}$	-1.42E-02	7.13E-04	0.1719	4.39	82.23	0.00
	$\operatorname{Star-ARC}$	1.38E-04	7.26E-04	0.3080	5.15	201.02	0.00
	Star-RC	3.30 E-05	6.73E-04	0.0965	4.81	132.78	0.00
$\operatorname{csna3}$	$\operatorname{Star-MM}$	$3.90\mathrm{E}\text{-}03$	7.63E-04	0.0507	4.83	135.03	0.00
	$\operatorname{Star-ARC}$	2.85E-04	6.46E-04	0.0671	4.75	124.19	0.00
	Star-RC	1.29E-04	6.63E-04	0.1593	4.31	72.69	0.00
elet6	$\operatorname{Star-MM}$	7.80 E-03	7.19E-04	0.1587	4.12	54.55	0.00
	Star-ARC	1.32E-04	6.31E-04	0.1823	4.14	57.59	0.00
	Star-RC	-1.60E-04	5.48E-04	-0.0355	3.89	31.72	0.00
ggbr4	$\operatorname{Star-MM}$	3.95 E-03	5.77E-04	0.0435	4.26	64.26	0.00
	Star-ARC	2.05E- 04	5.20E-04	-0.0325	3.89	31.42	0.00
	Star-RC	-2.59E-04	6.66E-04	-0.0895	4.22	61.16	0.00
klbn4	$\operatorname{Star-MM}$	2.01E-02	7.85E-04	-0.0327	4.32	69.46	0.00
	Star-ARC	1.01E-04	6.14E-04	-0.1413	3.92	36.67	0.00
	Star-RC	-2.04E-03	3.33E-04	0.0969	4.36	76.03	0.00
$\mathrm{petr}4$	$\operatorname{Star-MM}$	-9.19E-03	3.91E-04	-0.1401	4.40	81.25	0.00
	Star-ARC	3.33E-04	4.66E-04	-0.1597	5.29	216.16	0.00
	Star-RC	3.80E-03	5.53E-04	0.2606	4.27	75.28	0.00
$\operatorname{tnlp4}$	$\operatorname{Star-MM}$	-5.48E-03	6.52E-04	-0.1109	4.06	47.23	0.00
	Star-ARC	-1.54E-04	8.08E-04	0.0748	4.37	75.80	0.00
	Star-RC	1.37E-03	1.04E-03	-1.4088	17.56	8886.47	0.00
tspp4	$\operatorname{Star-MM}$	-1.03E-01	1.28E-03	-0.8587	12.84	4029.27	0.00
	Star-ARC	6.34E-04	1.24E-03	-0.7544	10.58	2418.32	0.00
	Star-RC	8.95E-04	2.72E-04	0.0760	4.87	141.13	0.00
vale 5	$\operatorname{Star-MM}$	-6.98E-03	3.04E-04	0.1361	4.67	114.95	0.00
	Star-ARC	-2.13E-04	3.71E-04	0.4096	5.18	218.76	0.00

4.3 Modelos Estimados - ARMAX

Os modelos ARMAX para cada ativo são apresentados na tabela (4.6). Pata todos os ativos, foi seguida a metodologia proposta na seção (3.2).

Tabela 4.6: Coeficientes estimados dos Modelos ARMAX

	Variável	Coeficiente	Erro Padrão	Estatística t	p-valor
	$S\&P_{t-1}$	-0.1494	0.0603	-2.4763	0.0134
	vol_{t-1}	0.0906	0.0392	2.3117	0.0210
	vol_{t-2}	-0.0779	0.0354	-2.1977	0.0282
bbdc4	MM10	0.7809	0.1251	6.2421	0.0000
	r_{t-1}	0.2656	0.0363	7.3133	0.0000
	ϵ_{t-2}	-0.1930	0.0353	-5.4606	0.0000
	ϵ_{t-3}	-0.1734	0.0335	-5.1773	0.0000
	vol_{t-1}	0.1350	0.0374	3.6120	0.0003
	vol_{t-3}	-0.1408	0.0289	-4.8701	0.0000
brkm5	MM10	0.6814	0.1249	5.4559	0.0000
	r_{t-1}	0.5658	0.0576	9.8177	0.0000
	ϵ_{t-1}	-0.4278	0.0684	-6.2590	0.0000
	vol_{t-1}	0.1016	0.0395	2.5706	0.0103
	vol_{t-2}	-0.0913	0.0344	-2.6548	0.0080
$\operatorname{csna3}$	MM10	0.9866	0.1078	9.1490	0.0000
	r_{t-1}	-0.4377	0.1118	-3.9143	0.0001
	ϵ_{t-2}	0.1383	0.0421	3.2877	0.0010
	ϵ_{t-1}	0.7047	0.1176	5.9909	0.0000
	vol_{t-1}	0.1134	0.0403	2.8113	0.0050
	vol_{t-3}	-0.0999	0.0377	-2.6499	0.0082
	DOL_{t-1}	0.2541	0.0693	3.6680	0.0003
${ m elet} 6$	MM10	0.5214	0.2280	2.2863	0.0224
	r_{t-1}	0.2501	0.0330	7.5863	0.0000
	r_{t-3}	-0.0663	0.0307	-2.1575	0.0312
	ϵ_{t-2}	-0.0806	0.0311	-2.5904	0.0097
	$IBOV_{t-1}$	-0.0860	0.0408	-2.1063	0.0354
	vol_{t-1}	0.0737	0.0240	3.0744	0.0022
ggbr4	r_{t-1}	0.9627	0.1786	5.3912	0.0000
	r_{t-2}	-0.2272	0.0448	-5.0756	0.0000
	ϵ_{t-1}	-0.7071	0.1799	-3.9308	0.0001
	vol_{t-1}	0.1002	0.0339	2.9541	0.0032
	vol_{t-2}	-0.0850	0.0310	-2.7400	0.0062
klbn4	$IBOV_{t-1}$	-0.1555	0.0519	-2.9970	0.0028
	MM10	0.5214	0.1140	4.5724	0.0000
	r_{t-1}	0.4073	0.0583	6.9916	0.0000
	ϵ_{t-1}	-0.3483	0.0790	-4.4081	0.0000
	MM10	0.8218	0.1858	4.4226	0.0000
petr4	$IBOV_{t-1}$	-0.1664	0.0414	-4.0166	0.0001
	ϵ_{t-1}	0.3312	0.0381	8.6831	0.0000
	ϵ_{t-2}	0.0763	0.0425	1.7981	0.0724
	$IBOV_{t-1}$	-0.2151	0.0441	-4.8778	0.0000
$\operatorname{tnlp4}$	r_{t-1}	-0.7985	0.1187	-6.7271	0.0000
1	ϵ_{t-1}	1.0623	0.1259	8.4382	0.0000

	3 1 0							
	Variável	Coeficiente	Erro Padrão	Estatística t	p-valor			
	ϵ_{t-2}	0.1917	0.0529	3.6206	0.0003			
	$S\&P_{t-1}$	-0.3276	0.0787	-4.1610	0.0000			
	$SW360_{t-1}$	0.1005	0.0443	2.2667	0.0236			
	MM10	0.7434	0.2648	2.8072	0.0051			
tspp4	r_{t-1}	1.4549	0.0966	15.0644	0.0000			
	r_{t-2}	-0.6390	0.1053	-6.0705	0.0000			
	ϵ_{t-1}	-1.2626	0.1102	-11.4552	0.0000			
	ϵ_{t-2}	0.3872	0.1441	2.6877	0.0073			
	vol_{t-1}	0.0997	0.0377	2.6420	0.0083			
	vol_{t-2}	-0.0616	0.0328	-1.8797	0.0604			
vale 5	$SW360_{t-1}$	0.1395	0.0416	3.3523	0.0008			
	MM10	0.2067	0.0947	2.1820	0.0293			
	r_{t-1}	0.2115	0.0430	4.9178	0.0000			
	ϵ_{t-2}	-0.0827	0.0389	-2.1248	0.0338			

Tabela 4.6 – Continuação da página anterior

4.4 Modelos Estimados - Redes Neurais

Duas das principais tarefas envolvidas na estimação de uma rede neural são a escolha do conjunto de variáveis de entrada e a quantidade de neurônios na camada oculta. A forma de obtenção de ambos está detalhada na seção (3.3). Abaixo estão representados os conjuntos de variáveis de entrada utilizados por cada rede.

- bbdc4 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, q_{t-1}, q_{t-2}, q_{t-3}, q_{t-4}, q_{t-5}, IBOV_{t-1}, S&P_{t-1}, DOL_{t-1}, C-BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}, MM10, MM20$
- brkm5 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, IBOV_{t-1}, DOL_{t-1}, C BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}$
- csna3 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, q_{t-1}, q_{t-2}, q_{t-3}, q_{t-4}, q_{t-5}, IBOV_{t-1}, DOL_{t-1}, C BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}, MM10, MM20$
- elet6 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, q_{t-1}, q_{t-2}, q_{t-3}, q_{t-4}, q_{t-5}, IBOV_{t-1}, S&P_{t-1}, DOL_{t-1}, C-BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}, MM10$
- ggbr4 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, q_{t-1}, q_{t-2}, q_{t-3}, q_{t-4}, q_{t-5}, IBOV_{t-1}, C-BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}, MM10$

- klbn4 $\rightarrow r_{t-1}$, r_{t-2} , r_{t-3} , r_{t-4} , r_{t-5} , vol_{t-1} , vol_{t-2} , vol_{t-3} , vol_{t-4} , vol_{t-5} , q_{t-1} , q_{t-2} , q_{t-3} , q_{t-4} , q_{t-5} , $IBOV_{t-1}$, DOL_{t-1} , $C-BOND_{t-1}$, $SW360_{t-1}$, $BINDEX_{t-1}$, MM10
- petr4 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, q_{t-1}, q_{t-2}, q_{t-3}, q_{t-4}, q_{t-5}, IBOV_{t-1}, S&P_{t-1}, C BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}, MM10, MM20$
- $\operatorname{tnlp4} \Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, IBOV_{t-1}, S&P_{t-1}, C BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}, MM10$
- tspp4 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, q_{t-1}, q_{t-2}, q_{t-3}, q_{t-4}, q_{t-5}, IBOV_{t-1}, S&P_{t-1}, C BOND_{t-1}, SW360_{t-1}, BINDEX_{t-1}, MM10$
- vale5 $\Rightarrow r_{t-1}, r_{t-2}, r_{t-3}, r_{t-4}, r_{t-5}, vol_{t-1}, vol_{t-2}, vol_{t-3}, vol_{t-4}, vol_{t-5}, q_{t-1}, q_{t-2}, q_{t-3}, q_{t-4}, q_{t-5}, IBOV_{t-1}, DOL_{t-1}, C BOND_{t-1}, SW360_{t-1}, CRY_{t-1}, BINDEX_{t-1}, MM10$

Devido à grande quantidade de parâmetros estimados para cada rede neural, apenas será possível disponibilizá-la em formato eletrônico (arquivo texto), presente no site da universidade.

4.5 Medidas e Avaliação dos Resultados

Medidas estatísticas e financeiras, presentes nas tabelas (4.7) e (4.8) respectivamente, foram aplicadas aos modelos ajustados. Deve-se dar maior importância aos resultados financeiros, pois é a partir deles que se visualiza o desempenho do modelo no caso de aplicação no mercado financeiro.

Tabela 4.7: Medidas Estatística	s para Avaliação dos Modelos
${f Medida}$	Descrição
Erro Absoluto Médio	$MAE = \frac{1}{T} \sum_{t=1}^{T} \tilde{y}_t - y_t $
Erro Percentual Absoluto Médio	$MAPE = \frac{100}{T} \sum_{t=1}^{T} \left \frac{\tilde{y}_t - y_t}{y_t} \right $
Raiz do Erro Quadrático Médio	$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (\tilde{y}_t - y_t)^2}$
Coeficiente de Desigualdade de Theil	$U = \sqrt{\frac{\sum_{i=1}^{n-1} \left(\frac{\bar{y}_{t+1} - y_{t+1}}{y_t}\right)^2}{\sum_{i=1}^{n-1} \left(\frac{y_{t+1} - y_t}{y_t}\right)^2}}$
Mudaças Corretas de Direção	$CDC = \frac{100}{T} \sum_{t=1}^{T} D_t$ $D_t = 1 \text{ se } \tilde{y}_t \times y_t > 0; \text{ c.c. } D_t = 0$

abela 4.8: Medidas Financ	ceiras para Avaliação dos Model
Medidas	Descrição
Retorno Médio	$\overline{R} = \frac{1}{NT} \sum_{i=1}^{NT} R_i$ $NT: \text{número de transações}$
Retorno Anualizado	$R^A = 252 \times \frac{1}{T} \sum_{i=1}^{NT} R_i$
Retorno Acumulado	$R^C = \sum_{i=1}^{NT} R_i$
Volatilidade Anualizada	$\sigma^A = \sqrt{252} \sqrt{\frac{1}{T-1} \sum_{i=1}^{NT} (R_i - \overline{R})^2}$
Índice Sharpe	$SR = \frac{R^A}{\sigma^A}$
% Negociações Vencedoras	$WT = \frac{\sum_{i=1}^{NT} PF_i}{NT}$ $PF_i = 1 \text{ se } R_i > 0; \text{ c.c. } PF_i = 0$

Tabela 4.8: Medidas Financeiras para Avaliação dos Modelos

Os resultados estatísticos obtidos para os 6 modelos são mostrados na tabela (4.9), sendo esta, para cada ativo, subdividida em duas metades: a superior é referente aos resultados na fase de treinamento e a inferior na fase de teste.

Tabela 4.9: Resultados Estatísticos - Treinamento e Teste

		ARMAX	Naive	RN	ARC	MM	RC
	MAE	0.016	0.022	0.012	0.019	0.018	0.017
	MAPE	145.285	273.417	149.898	140.818	163.886	133.702
	RMSE	0.022	0.030	0.015	0.026	0.024	0.023
	\mathbf{U}	1.063	1.000	0.877	0.976	1.099	1.049
bbdc4	CDC	63.295	56.199	74.959	50.410	53.344	61.582
	MAE	0.013	0.018	0.015	0.013	0.014	0.014
	MAPE	120.275	208.009	181.776	119.113	143.987	116.184
	RMSE	0.017	0.023	0.019	0.017	0.019	0.018
	\mathbf{U}	0.886	1.000	0.886	1.086	1.212	1.123
	CDC	62.903	59.677	60.887	56.225	51.210	54.435
	MAE	0.019	0.025	0.016	0.020	0.023	0.019
	MAPE	269.584	555.316	251.889	228.897	493.818	233.954
	RMSE	0.025	0.034	0.021	0.027	0.030	0.025
	\mathbf{U}	1.013	1.000	0.742	0.894	0.929	0.892
brkm5	CDC	60.311	56.792	66.612	57.992	52.373	59.574
	MAE	0.026	0.026	0.023	0.021	0.024	0.021
	MAPE	369.501	507.298	333.182	213.571	420.376	201.340
	RMSE	0.062	0.036	0.030	0.028	0.032	0.029
	\mathbf{U}	1.107	1.000	1.012	1.004	1.316	1.049
	CDC	57.661	55.242	56.048	57.831	56.048	54.032
	MAE	0.019	0.025	0.013	0.019	0.021	0.020
	MAPE	180.846	369.286	183.797	145.313	122.767	156.463
		Cont	inuação na	próxima p	óágina		
-							

Tabela 4.9 – Continuação da página anterior ARMAX ARCMMRCNaive RN0.0350.029 0.027 RMSE 0.0250.0170.025U 1.0041.000 0.5840.9951.0260.994CDC63.102 60.082csna376.24561.25443.26559.020 \mathbf{MAE} 0.017 0.0180.0190.0180.0220.019MAPE 136.391 179.383335.176249.184141.465128.056RMSE 0.0220.0300.0230.0240.0230.025U 0.8891.0000.6890.9860.9940.988CDC59.27459.27456.45259.83941.12959.274MAE0.0200.0260.0150.0200.0220.020MAPE 137.777336.675191.902150.805159.822 136.459RMSE0.0260.0340.0200.0250.0280.026U 0.9801.0000.7230.9690.9470.960CDC61.338 75.367 elet6 58.97264.78452.85562.643MAE0.0210.0280.0230.0210.0240.022MAPE 164.297435.144 326.139162.175162.975165.441 RMSE 0.0380.0300.0300.0290.0280.028U 0.988 1.000 1.186 1.0251.181 1.048 CDC60.081 62.903 58.06558.46861.84748.790 \mathbf{MAE} 0.0190.0240.0130.0170.0190.019MAPE 139.704 327.573162.151135.901 138.442 141.463 RMSE 0.0250.0330.0170.0230.0260.025U 0.9551.0000.7710.9731.0510.965ggbr4 CDC57.42356.11772.75761.39656.03658.075 \mathbf{MAE} 0.0180.0230.0190.0170.0180.018MAPE 117.062251.431 186.435116.508 109.838 116.382RMSE 0.0220.0300.0250.0220.0230.023U 1.0221.0000.9590.9811.0370.988CDC54.03255.64558.065 55.82352.41954.839MAE0.0200.0290.0140.0190.0290.020MAPE96.510 159.34683.32896.409156.25396.884RMSE 0.0280.0390.0250.0380.0280.019U 0.8901.000 0.7080.8651.182 0.883klbn4 CDC49.26537.25564.216 54.63040.44152.288 \mathbf{MAE} 0.0240.0210.0250.0140.0240.015MAPE 163.133 94.860 207.89482.711 175.372195.156RMSE 0.0640.0270.0590.018 0.0290.018U 2.7310.9872.8671.639 0.8500.842CDC51.21058.06543.54857.25857.43044.355MAE0.0150.0200.010 0.0160.018 0.015MAPE 195.634 371.144 297.258196.100 171.558 251.979RMSE 0.0200.0260.0130.0220.0230.019U 1.128 1.308 1.000 0.9902.1791.301 CDC

62.367

0.012

petr4

 \mathbf{MAE}

57.143

0.016

73.633

0.014

Continuação na próxima página...

56.352

0.011

52.490

0.015

63.429

0.013

Tabela 4.9 – Continuação da página anterior

		ARMAX		RN	ARC	MM	RC
	MAPE	179.013				420.114	
	m RMSE U	0.016	0.022	0.019	0.016	0.019	0.017
		1.167	1.000	0.876	0.987	1.188	0.978
	CDC	62.097	58.065	63.306	66.667	59.274	63.710
	MAE	0.019	0.026	0.014	0.022	0.021	0.019
	MAPE	154.486	383.435		194.958		172.052
	RMSE	0.025	0.034	0.018	0.028	0.027	0.025
	U	1.050	1.000	$\boldsymbol{0.825}$	1.118	1.019	1.044
$\operatorname{tnlp4}$	CDC	58.075	54.160	69.984	45.799	30,100	60.440
	MAE	0.015	0.019	0.016	0.014	0.016	0.015
	MAPE	138.265			151.816		
	RMSE	0.019	0.024	0.021	0.018	0.020	0.019
	U	0.916	1.000	0.809	1.025	0.874	1.004
	CDC	54.839	51.613	60.887	58.635	53.226	56.452
	MAE	0.022	0.031	0.016	0.025	0.103	0.023
	MAPE	135.854	305.659	151.901	155.076	1345.875	139.892
	RMSE	0.031	0.042	0.021	0.035	0.108	0.032
	U	0.904	1.000	0.753	1.109	2.995	0.967
tspp4	CDC	62.072	54.812	71.533	52.664	48.369	60.196
	MAE	0.020	0.027	0.023	0.020	0.102	0.021
	MAPE	108.741	233.986	201.023	104.750	1098.736	114.633
	RMSE	0.026	0.035	0.030	0.026	0.106	0.027
	\mathbf{U}	0.987	1.000	1.197	0.968	4.546	1.019
	CDC	62.500	59.677	59.274	60.643	45.968	57.661
	MAE	0.014	0.019	0.009	0.014	0.016	0.014
	MAPE	156.121	375.132	196.855	190.976	251.796	158.321
	RMSE	0.019	0.026	$\boldsymbol{0.012}$	0.019	0.021	0.019
	U	0.982	1.000	0.941	1.286	1.221	1.023
vale 5	CDC	59.299	55.220	74.715	54.816	53.915	60.522
	MAE	0.014	0.019	0.017	0.013	0.015	0.014
	MAPE	145.137	379.474	220.568	182.091	280.286	150.948
	RMSE	0.019	0.024	0.022	0.017	0.020	0.019
	U	0.972	1.000	1.760	1.128	1.077	1.115
	CDC	59.677	57.258	55.645	63.052	53.629	56.048

Para os resultados na fase de treinamento, a Rede Neural apresentou desempenho bastante superior em todos os ativos. Ela leva vantagem pela maior quantidade de parâmetros que está utilizando, o que possibilita um melhor ajuste aos dados usados no treinamento. As redes estimadas possuem, em média, 20 variáveis de entrada e 14 neurônios ocultos. Com isto, o total de termos é $(20 \times 14 + 14) + 15 = 309$.

Já o desempenho fora da amostra mostrou um resultado diferente. O destaque de performance foi o modelo STAR-ARC. A natureza adaptativa

deste modelo leva vantagem sobre os demais já que a janela de dados usada para estimar os termos varia junto com o tempo, fazendo com que apenas observações recentes (e mais relevantes) sirvam de base para a obtenção dos parâmetros. Os modelos ARMAX também se destacaram, principalmente na análise do RMSE. Já a Rede Neural não apresentou o mesmo rendimento estatístico obtido na fase de treinamento do modelo, sendo superada pelos modelos STAR-ARC e ARMAX em praticamente todos os ativos.

Os resultados financeiros estão apresentados na tabela (4.10). É válido lembrar que estas medidas fornecem uma estimativa real do rendimento e da volatilidade que seriam obtidos com a aplicação dos modelos no mercado financeiro.

Tabela 4.10: Resultados Financeiros - Teste

		ARMAX	Naive	RN	ARC	MM	RC
	Ret Med(%)	2.00	1.30	1.41	2.42	1.55	2.01
	Ret Anual(%)	95.45	64.64	77.38	59.05	36.20	59.17
	Ret Acum(%)	93.93	63.62	76.15	58.12	35.63	58.23
bbdc4	Volat Anual(%)	26.17	25.89	20.64	22.07	26.72	24.88
	Sharpe	3.65	2.50	3.75	2.68	1.35	2.38
	Num. Trade	47	49	54	24	23	29
	Win Trade(%)	68.09	51.02	68.52	75.00	47.83	68.97
	Ret Med(%)	4.14	1.72	1.85	3.47	5.49	1.29
	Ret Anual(%)	126.24	94.30	101.58	112.96	89.26	49.74
	Ret Acum(%)	124.24	92.81	99.97	111.17	87.84	48.95
brkm5	Volat Anual(%)	44.02	34.07	34.31	49.11	63.43	49.75
	Sharpe	2.87	2.77	2.96	2.30	1.41	1.00
	Num. Trade	30	54	54	32	16	38
	Win Trade(%)	60.00	46.30	61.11	62.50	43.75	57.89
	Ret Med(%)	2.21	1.21	1.45	1.86	-0.77	1.27
	Ret Anual(%)	89.84	61.69	71.97	73.56	-26.53	61.97
	Ret Acum(%)	88.41	60.71	70.83	72.39	-26.11	60.99
csna3	Volat Anual(%)	25.41	27.56	29.32	30.51	18.55	27.44
	Sharpe	3.54	2.24	2.45	2.41	-1.43	2.26
	Num. Trade	40	50	49	39	34	48
	Win $Trade(\%)$	65.00	44.00	57.14	58.97	47.06	45.83
	Ret Med(%)	1.46	0.88	1.75	2.28	1.42	0.82
	Ret Anual(%)	85.90	45.77	104.95	69.65	24.50	32.38
	$\mathrm{Ret}\ \mathrm{Acum}(\%)$	84.54	45.04	103.28	68.54	24.11	31.87
${\rm elet}6$	$Volat\ Anual(\%)$	33.33	33.16	42.83	33.35	11.91	30.69
	Sharpe	2.58	1.38	2.45	2.09	2.06	1.05
	Num. Trade	58	51	59	30	17	39
	Win $Trade(\%)$	60.34	41.18	57.63	73.33	76.47	61.54
	Ret Med(%)	1.08	1.33	1.30	1.97	1.21	1.75
	$\mathrm{Ret}\ \mathrm{Anual}(\%)$	69.36	73.04	72.71	66.19	55.31	67.75
	Co	ntinuação n	a próxin	na página.	• •		
					_	_	

Tabela 4.10 – Continuação da página anterior

	Tabela -	$\frac{1.10 - \text{Cont}}{\text{ARMAX}}$	Naive	RN	ARC	MM	RC
	Ret Acum(%)	68.25	71.88	71.56	65.14	54.43	66.67
ggbr4	Volat Anual(%)	30.76	27.25	29.10	32.12	18.10	30.92
00	Sharpe	2.26	2.68	2.50	2.06	3.06	2.19
	Num. Trade	63	54	55	33	45	38
	Win $Trade(\%)$	53.97	46.30	65.45	60.61	62.22	57.89
	Ret Med(%)	0.96	0.36	1.50	2.37	0.13	1.58
	Ret Anual(%)	55.57	23.70	76.22	67.40	6.63	46.66
	$\operatorname{Ret} \operatorname{Acum}(\%)$	54.69	23.32	75.01	66.33	6.53	45.92
klbn4	Volat Anual(%)	25.52	24.44	20.67	25.58	17.17	16.82
	Sharpe	2.18	0.97	3.69	2.64	0.39	2.77
	Num. Trade	57	65	50	28	52	29
	Win $Trade(\%)$	54.39	30.77	72.00	60.71	55.77	75.86
	Ret Med(%)	0.86	0.50	1.24	2.06	18.74	1.48
	Ret Anual(%)	52.71	26.38	67.95	68.99	19.04	46.77
	$\mathrm{Ret}\ \mathrm{Acum}(\%)$	51.87	25.96	66.87	67.89	18.74	46.02
$\mathrm{petr}4$	$Volat\ Anual(\%)$	22.64	22.59	18.54	24.01	0.00	25.83
	Sharpe	2.33	1.17	3.67	2.87	0.00	1.81
	Num. Trade	60	52	54	33	1	31
	Win $Trade(\%)$	63.33	46.15	64.81	66.67	100.00	61.29
	Ret Med(%)	0.21	0.46	1.27	1.39	-1.28	0.73
	Ret Anual(%)	18.30	28.26	55.43	50.91	-1.30	35.43
	$\mathrm{Ret}\ \mathrm{Acum}(\%)$	18.01	27.81	54.55	50.10	-1.28	34.86
$\operatorname{tnlp4}$	Volat~Anual(%)	23.31	19.16	20.38	20.33	0.00	19.98
	\mathbf{Sharpe}	0.78	1.47	2.72	2.50	Inf	1.77
	Num. Trade	87	60	43	36	1	48
	$\operatorname{Win} \operatorname{Trade}(\%)$	54.02	46.67	62.79	61.11	0.00	68.75
	Ret Med(%)	2.67	1.77	1.64	3.07	-2.07	1.79
	$\mathrm{Ret}\ \mathrm{Anual}(\%)$	114.12	88.20	88.41	96.67	-2.10	72.88
	$\mathrm{Ret}\ \mathrm{Acum}(\%)$	112.31	86.80	87.01	95.14	-2.07	71.72
tspp4	Volat~Anual(%)	34.26	31.66	34.42	31.57	0.00	22.12
	\mathbf{Sharpe}	3.33	2.79	2.57	3.06	Inf	3.30
	Num. Trade	42	49	53	31	1	40
	$\operatorname{Win}\operatorname{Trade}(\%)$	59.52	53.06	60.38	$\boldsymbol{64.52}$	0.00	60.00
	Ret Med(%)	1.01	1.01	0.83	2.33	2.44	1.70
	$\mathrm{Ret}\ \mathrm{Anual}(\%)$	59.58	54.51	45.80	82.80	19.85	50.20
	$\mathrm{Ret}\ \mathrm{Acum}(\%)$	58.63	53.64	45.07	81.48	19.54	49.41
vale 5	Volat~Anual(%)	26.69	21.00	20.61	21.18	54.43 18.10 3.06 45 62.22 0.13 6.63 6.53 17.17 0.39 52 55.77 18.74 19.04 18.74 0.00 0.00 1 100.00 -1.28 -1.30 -1.28 0.00 Inf 1 0.00 -2.07 -2.10 -2.07 0.00 Inf 1 0.00 2.44 19.85	22.32
	Sharpe	2.23	2.60	2.22	3.91	0.57	2.25
	Num. Trade	58	53	54	35	8	29
	$\operatorname{Win}\operatorname{Trade}(\%)$	53.45	47.17	61.11	65.71	50.00	62.07

As medidas de maior interesse aqui são o retorno anualizado, a volatilidade anualizada, que indica o grau de risco ao qual o investidor ficou exposto durante um ano, e o índice de sharpe, que apresenta a relação entre

o retorno percentual obtido por unidade percentual de volatilidade, sendo a medida mais importante no julgamento dos modelos. Para a primeira, o modelo ARMAX apresentou o melhor resultado, seguido pela Rede Neural. Já com relação à segunda, o modelo que mais se destacou foi a Rede Neural. E, quanto ao sharpe, mais uma vez a melhor performance foi da Rede Neural.

A figura (4.11) apresenta o retorno anualizado médio para cada modelo.

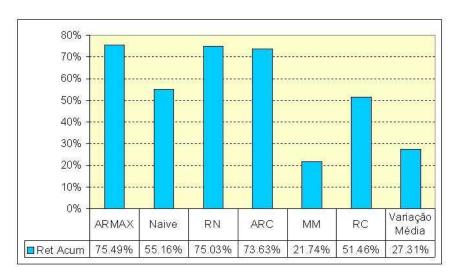


Figura 4.11: Gráfico do Retorno Anualizado Médio

A tabela (4.11) mostra os modelos de melhor desempenho em cada medida.

Tabela 4.11: Quantidade de ativos em que cada modelo é melhor que os demais

	RetMedio	RetAnual	Sharpe
ARMAX	2	4	3
Naive	0	1	0
RN	0	3	5
Star-ARC	8	2	1
$\operatorname{Star-MM}$	0	0	1
Star-RC	0	0	0
Total	10	10	10

4.5.1 Buy & Hold

Foi feita uma outra análise baseada no investidor que assume uma posição comprada no início do período de teste dos modelos, mantendo-a

até o final. Esta situação é chamada de Buy&Hold(B&H). A tabela (4.12) apresenta os retornos acumulados para cada ativo.

Tabela 4.12: Retorno Acumulado(%)

		10000 1.12	<u></u>	no modin	araao (70	<i>)</i>	
	В&Н	ARMAX	Naive	RN	ARC	MM	RC
bbdc4	31.19	93.93	63.62	76.15	58.12	35.63	58.23
brkm5	63.42	124.24	92.81	99.97	111.17	87.84	48.95
$\operatorname{csna3}$	32.31	88.41	60.71	70.83	72.39	-26.11	60.99
elet6	-5.32	84.54	45.04	103.28	68.54	24.11	31.87
ggbr4	50.63	68.25	71.88	71.56	65.14	54.43	66.67
klbn4	39.27	54.69	23.32	75.01	66.33	6.53	45.92
$\mathrm{petr}4$	27.82	51.87	25.96	66.87	67.89	18.74	46.02
$\operatorname{tnlp4}$	2.10	18.01	27.81	$\boldsymbol{54.55}$	50.10	-1.28	34.86
tspp4	3.01	112.31	86.80	87.01	95.14	-2.07	71.72
vale 5	28.69	58.63	53.64	45.07	81.48	19.54	49.41

Os modelos obtiveram performance bastante superior à apresentada por B&H. O principal motivo para isso pode ser atribuído ao fato de que, no período analisado, houve grande volatilidade, fazendo com que os ganhos dos investidores que se mantiveram posicionados sofressem variações, enquanto que, com a utilização dos modelos, o grau de exposição à volatilidade seria menor.

As figuras (4.12)–(4.21) apresentam gráficos comparativos entre a rendimento dos modelos de melhor performance: Rede Neural, ARMAX e STAR-ARC, e o B&H.

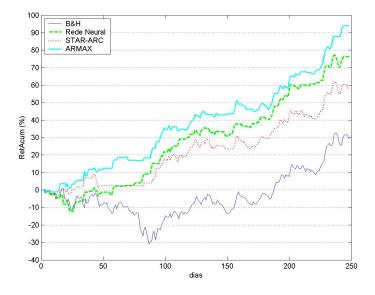


Figura 4.12: Gráfico bbdc4

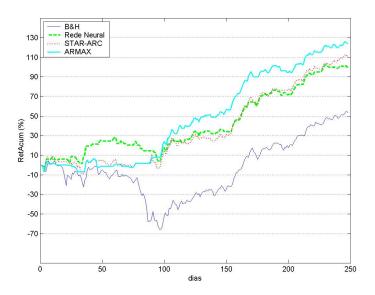


Figura 4.13: Gráfico brkm5

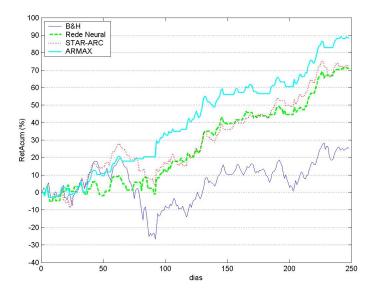


Figura 4.14: Gráfico csna3

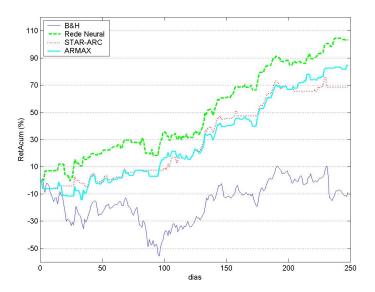


Figura 4.15: Gráfico elet6

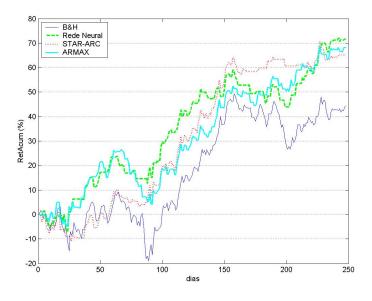


Figura 4.16: Gráfico ggbr4

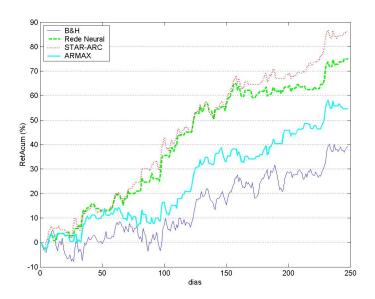


Figura 4.17: Gráfico klbn4

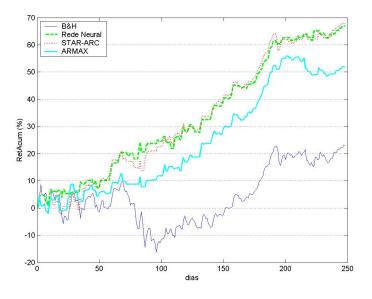


Figura 4.18: Gráfico petr4

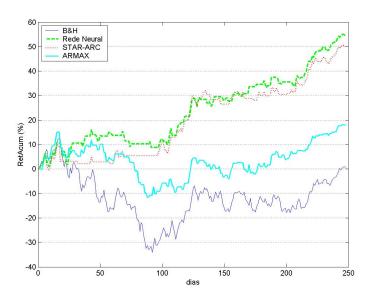


Figura 4.19: Gráfico tnlp4

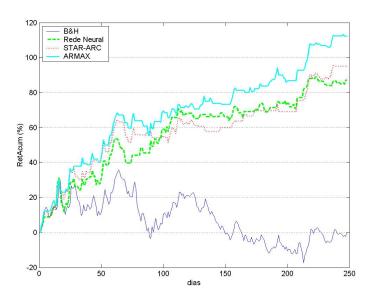


Figura 4.20: Gráfico tspp4

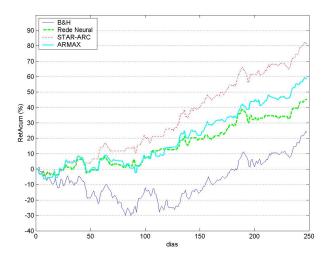


Figura 4.21: Gráfico vale5

4.5.2 Análise de Rentabilidade Incluindo Custos de Transação

Os custos de transação no mercado acionário brasileiro são feitos na forma de corretagem, pago às corretoras no momento da compra e da venda de ações, e emolumentos, pagos à BOVESPA e à CBLC (Companhia Brasileira de liquidação e Custódia) num total de 0,035% nas operações finais e 0,025% nas operações de day-trade. A corretagem pode ser cobrada de duas formas: seguindo uma tabela (4.13) de referência, previamente elaborada pela BOVESPA, ou pela forma de cobrança criada pela própria corretora. A primeira apresenta uma parte fixa e uma parte variável, dependente do volume a ser negociado, e a segunda, muitas vezes, se dá como um valor fixo, desembolsável pelo investidor, independente do volume. Uma prática comum existente no mercado é o desconto, dado pelas corretoras, de corretagem aos investidores que trocam de posição com freqüência.

Tabela 4.13: Tabela de Corretagem BOVES	Tabela 4.13:	Tabela	de Co	orretagem	BO	VESP
---	--------------	--------	-------	-----------	----	------

Valor	Acréscimo (%)	Acréscimo (R\$)
Até R\$135,07	-	R\$2.70
R\$135,08 a R\$498,62	2.00%	R\$0.00
R\$498,63 a R\$1.514,69	1.50%	R\$2.49
R\$1.514,70 a R\$3.029,38	1.00%	R\$10.06
acima de R\$3.029,39	0.50%	R\$25.21

Neste trabalho é considerada a corretagem com o valor de R\$20,00 (fonte: Ágora Corretora) por posição assumida. A tabela (4.14) mostra os retornos acumulados para o capital inicial de R\$5.000,00, R\$10.000,00, R\$50.000,00 e uma quantia muito superior a R\$50.000,00.

Tab			o Acumul	\ /				_
	Capital	В&Н	ARMAX	Naive	RN	ARC	MM	RC
	5,000	30.60	61.29	22.73	34.56	41.21	14.16	35.82
${ m bbdc4}$	10,000	30.89	78.94	45.25	57.50	50.02	25.47	47.65
	$50,\!000$	31.13	91.11	60.20	72.69	56.55	33.68	56.20
	»50,000	31.19	93.93	63.62	76.15	58.12	35.63	58.23
	5,000	63.00	105.67	55.21	63.35	87.01	73.73	8.22
brkm5	10,000	63.21	115.40	75.79	83.34	99.82	81.04	30.64
	50,000	63.38	122.55	89.65	96.88	109.00	86.52	45.55
	»50,000	63.42	124.26	92.84	100.00	111.17	87.84	48.95
	5,000	31.73	62.73	18.91	34.12	44.35	-65.59	20.66
$\operatorname{csna3}$	10,000	32.02	76.39	41.98	54.15	59.35	-43.91	42.84
	$50,\!000$	32.25	86.12	57.23	67.71	69.91	-29.42	57.61
	»50,000	32.31	88.41	60.71	70.83	72.39	-26.11	60.99
	5,000	-6.17	39.77	-2.26	68.42	45.93	10.79	-0.98
${ m elet}6$	10,000	-5.75	64.64	24.16	87.36	57.87	17.67	16.79
	50,000	-5.41	80.86	41.20	100.30	66.50	22.86	29.03
	»50,000	-5.32	84.54	45.04	103.28	68.54	24.11	31.87
	5,000	50.14	20.63	31.86	33.03	40.40	22.57	37.89
${ m ggbr}4$	10,000	50.39	47.25	53.86	54.14	53.53	39.77	53.31
	$50,\!000$	50.58	64.39	68.53	68.31	62.93	51.67	64.14
	»50,000	50.63	68.25	71.88	71.56	65.14	54.43	66.67
	5,000	30.60	61.29	22.73	34.56	41.21	14.16	35.82
klbn4	10,000	30.89	78.94	45.25	57.50	50.02	25.47	47.65
	$50,\!000$	31.13	91.11	60.20	72.69	56.55	33.68	56.20
	»50,000	31.19	93.93	63.62	76.15	58.12	35.63	58.23
	5,000	27.21	2.51	-24.71	28.39	44.93	18.00	20.60
$\mathrm{petr}4$	10,000	27.51	30.21	3.80	49.47	57.07	18.37	34.12
	50,000	27.76	47.90	21.90	63.63	65.82	18.66	43.75
	»50,000	27.82	51.87	25.96	66.87	67.89	18.74	46.02
	5,000	1.31	-95.17	-29.09	22.70	23.71	-2.09	-4.87
$\operatorname{tnlp4}$	10,000	1.70	-23.36	3.35	39.89	37.77	-1.68	16.96
	50,000	2.02	10.99	23.37	51.79	47.76	-1.36	31.53
	»50,000	2.10	18.01	27.81	54.55	50.10	-1.28	34.86
	5,000	2.23	93.06	60.33	59.09	78.86	-2.88	49.46
$\operatorname{tspp} 4$	10,000	2.62	103.15	74.44	74.02	87.33	-2.47	61.21
	50,000	2.93	110.54	84.45	84.54	93.62	-2.15	69.71
	»50,000	3.01	112.31	86.80	87.01	95.14	-2.07	71.72
	5,000	28.09	8.00	10.95	-2.08	56.26	11.61	26.03
vale 5	10,000	28.39	36.49	34.56	24.25	69.67	15.65	38.40
	50,000	28.63	54.58	50.11	41.24	79.23	18.77	47.30
	»50,000	28.69	58.63	53.64	45.07	81.48	19.54	49.41

O resultado da tabela (4.14) já era esperado. Os custos de transação assumem um papel importante enquanto o volume de dinheiro movimentado na negociação é baixo, porém tornam-se desprezíveis à medida que o mesmo aumenta.

4.5.3 Alavancagem

A alavancagem é usada como forma de aumentar os ganhos. Nesta situação, o investidor toma dinheiro emprestado a um custo pré-determinado e investe esta quantia juntamente com o seu capital já disponível.

O nível de alavancagem é determinado pelo risco que o investidor está disposto a correr. Para o seu cálculo, parte-se da equação do retorno geométrico a ser observado na presença de alavancagem.

$$r_{G_t} = \ln\left(\frac{V_t}{V_{t-1}}\right) = \ln\left(\frac{V_{t-1}(1+\alpha_t)e^{r_t} - (1+i)\alpha_t V_{t-1}}{V_{t-1}}\right)$$

$$r_{G_t} = \ln((1+\alpha_t)e^{r_t} - (1+i)\alpha_t)$$
(4-15)

onde r_{G_t} é o retorno geométrico no instante t com a presença de alavancagem de $\alpha\%$, V_t é o capital investido, i é a taxa de juros de 1 dia e r_t é o retorno observado.

Considerando o limite máximo de perda em λ , a probabilidade do retorno geométrico calculado segundo a equação (4-15) ser menor que a perda máxima estipulada com probabilidade p^* é dada por

$$P(r_{G_t} \le \lambda) \le p^* = P(\ln((1 + \alpha_t)e^{r_t} - (1 + i)\alpha_t)) \le \lambda) \le p^*$$

$$P\left(r_t \le \ln \frac{e^{\lambda} + \alpha_t(1 + i)}{1 + \alpha_t}\right) \le p^*$$
(4-16)

Assumindo que os retornos são provenientes de uma distribuição Normal $R_t \sim N(\hat{\mu_t}, \hat{\sigma_r})$, sendo $\hat{\sigma_r}$ o desvio padrão dos resíduos do modelo, a probabilidade definida na equação (4-16) é obtida através da padronização

de r_t . Com isso, chega-se a

$$P\left(\frac{r_t - E(r_t|r_{t-1}, r_{t-2}...)}{\hat{\sigma_r}} \le \frac{\ln\frac{e^{\lambda} + \alpha_t(1+i)}{1+\alpha_t} - E(r_t|r_{t-1}, r_{t-2}...)}{\hat{\sigma_r}}\right) \le p^*$$

$$\Phi\left(\frac{\ln\frac{e^{\lambda}+\alpha_t(1+i)}{1+\alpha_t} - E(r_t|r_{t-1}, r_{t-2}...)}{\hat{\sigma_r}}\right) \le p^*$$
(4-17)

Resolvendo a equação (4-17), obtém-se

$$x_t = \ln \frac{e^{\lambda} + \alpha_t (1+i)}{1 + \alpha_t} \tag{4-18}$$

onde x_t é o valor do inverso da Normal cumulativa com média $E(r_t|r_{t-1}, r_{t-2}...)$, desvio padrão $\hat{\sigma_r}$ e probabilidade p^* .

O valor alavancado α_t é obtido a partir do desenvolvimento de (4-18) e assume a forma

$$\alpha_t = \frac{e^{\lambda} - e^{x_t}}{e^{x_t} - i - 1} \tag{4-19}$$

A tabela (4.15) apresenta os retornos acumulados considerando ou não a possibilidade de alavancagem, o retorno B&H e os retornos máximo e mínimo observados nas transações com alavancagem. Os resultados da tabela (4.15) consideram a perda máxima em $\lambda = -3\%$ para uma probabilidade de $p^* = 1\%$, taxa de juros¹ i = 0,07% e alavancagem máxima de 100% do capital disponível.

A tabela (4.15) reafirma a superioridade da Rede Neural frente aos demais modelos, com praticamente todos os ativos demonstrando aumento substancial do retorno acumulado. Com isso, o retorno acumulado obtido a partir da Rede Neural passou a superar o dos demais modelos para algumas ações. Para o Naive, não se pode considerar a alavancagem uma alternativa de sucesso, pois em alguns ativos houve ganhos pequenos e até perdas. Para a família STAR e o ARMAX, a maioria das séries não apresentaram alteração quanto ao retorno acumulado, pois, para estes modelos, as previsões assumiram valores bastante inferiores ao desvio padrão estimado, não sendo suficiente para a geração de alavancagem positiva.

$$i = (1+ti)^{1/252} - 1$$

onde tj é a taxa de juros SELIC, que na ocasião das simulações valia 18% ao ano.

¹A taxa de juros diária foi calculada a partir de

Tabela 4.15: Retorno Acumulado (%) - Alavancagem

	Tabela 4		orno Acui		\ /		_	
		В&Н	ARMAX	Naive	RN	ARC	MM	RC
	$\operatorname{RetAlavanc}$	31.19	94.06	64.15	97.09	50.73	35.63	58.23
$\mathrm{bbdc4}$	$\operatorname{Ret} \operatorname{Acum}$	31.19	93.93	63.62	76.15	58.12	35.63	58.23
	MaxRetdia	5.16	5.16	4.77	9.26	5.16	5.16	5.16
	MinRetdia	-6.47	-2.83	-5.15	-7.46	-3.06	-5.67	-3.06
	$\operatorname{RetAlavanc}$	63.42	124.62	95.51	117.51	110.72	92.75	49.94
brkm5	$\operatorname{Ret} \operatorname{Acum}$	63.42	124.26	92.84	100.00	111.17	87.84	48.95
	MaxRetdia	10.10	9.54	11.18	12.51	9.54	9.54	7.38
	MinRetdia	-13.30	-6.69	-16.90	-6.32	-8.26	-12.36	-13.30
	RetAlavanc	32.31	88.41	62.72	78.39	72.39	-26.11	60.99
$\operatorname{csna3}$	$\operatorname{Ret} \operatorname{Acum}$	32.31	88.41	60.71	70.83	72.39	-26.11	60.99
	MaxRetdia	9.27	9.27	10.27	11.95	9.27	6.41	9.27
	MinRetdia	-7.35	-5.84	-7.35	-12.73	-7.35	-6.13	-7.35
	$\operatorname{RetAlavanc}$	-5.32	84.54	46.60	142.79	68.54	24.11	32.57
elet6	$\operatorname{Ret} \operatorname{Acum}$	-5.32	84.54	45.04	103.28	68.54	24.11	31.87
	MaxRetdia	7.07	7.07	12.72	11.38	6.88	6.88	6.88
	MinRetdia	-15.69	-7.07	-7.62	-7.49	-7.62	-3.68	-7.62
	RetAlavanc	50.63	68.25	73.95	104.38	63.81	54.43	66.67
ggbr4	$\operatorname{Ret} \operatorname{Acum}$	50.63	68.25	71.88	71.56	65.14	54.43	66.67
00	MaxRetdia	7.78	7.78	7.65	11.37	5.91	5.91	5.91
	MinRetdia	-7.23	-7.23	-7.23	-4.33	-7.23	-4.29	-7.23
	$\operatorname{RetAlavanc}$	39.20	51.86	23.37	85.86	81.27	0.00	82.43
klbn4	$\operatorname{Ret} \operatorname{Acum}$	39.20	54.65	23.29	74.97	86.17	0.00	82.43
	MaxRetdia	6.35	6.35	6.35	7.62	6.35	0.00	6.35
	MinRetdia	-4.40	-3.77	-4.40	-4.40	-3.77	0.00	-4.08
	RetAlavanc	27.82	51.48	27.29	95.19	57.90	18.74	46.19
petr4	$\operatorname{Ret} \operatorname{Acum}$	27.82	51.87	25.96	66.87	67.89	18.74	46.02
	MaxRetdia	4.90	4.64	7.06	6.93	4.08	4.54	4.54
	MinRetdia	-5.18	-5.18	-7.36	-4.41	-5.19	-5.18	-5.18
	$\operatorname{RetAlavanc}$	2.10	18.01	27.81	54.35	49.06	-1.28	34.86
$\operatorname{tnlp4}$	$\operatorname{Ret} \operatorname{Acum}$	2.10	18.01	27.81	54.55	50.10	-1.28	34.86
	MaxRetdia	4.13	4.13	3.70	4.20	3.70	4.13	4.13
	MinRetdia	-6.22	-6.22	-3.63	-4.60	-6.22	-6.22	-6.22
	$\operatorname{RetAlavanc}$	3.01	112.31	84.99	99.20	92.73	-21.17	71.72
$\operatorname{tspp} 4$	$\operatorname{Ret} \operatorname{Acum}$	3.01	112.31	86.80	87.01	95.14	-2.07	71.72
	MaxRetdia	11.20	11.20	11.20	11.20	11.20	11.20	11.20
	MinRetdia	-8.76	-6.86	-6.86	-14.31	-6.86	-18.43	-6.86
	$\operatorname{RetAlavanc}$	28.69	60.89	60.83	68.94	72.65	19.68	49.81
vale 5	$\operatorname{Ret}\operatorname{Acum}$	28.69	58.63	53.64	45.07	81.48	19.54	49.41
	MaxRetdia	4.93	6.94	8.44	7.91	4.61	5.00	5.32
	$\operatorname{MinRetdia}$	-5.45	-5.45	-4.68	-10.62	-5.02	-5.45	-5.45