2 Conceitos Gerais do Padrão MPEG-2

Para diminuir os requisitos de recursos para a transmissão e o armazenamento de sinais digitais de vídeo e áudio, vários padrões de codificação, compactação e compressão foram desenvolvidos. Visando estabelecer padrões internacionais para a representação e codificação de informações audiovisuais em formato digital com compressão, a ISO (*International Organization for Standardization*) e a IEC (*International Electrotecnical Commission*) estabeleceram o grupo de trabalho MPEG (*Motion Picture Coding Experts Group*), que iniciou seus trabalhos em maio de 1988. A família de padrões produzidos foi popularmente conhecida como padrões MPEG e inclui, entre outros, os conjuntos de padrões MPEG-1 e MPEG-2.

Este capítulo descreve os principais conceitos do padrão MPEG-2, salientando os parâmetros que são diretamente alterados pelas operações de ajuste elástico.

O padrão MPEG-2 foi iniciado em 1990, como uma evolução do MPEG-1, e publicado em 1995. O objetivo deste padrão é prover uma taxa de vídeo de 1,5 Mbps a 15 Mbps, adequados para sinais de televisão padrão (SDTV – *Standard Definition Television*) e taxas de 15 Mbps a 30 Mbps para sinais de televisão de alta definição (HDTV – *High Definition Television*). Para taxas inferiores a 3 Mbps, o padrão MPEG-1 pode apresentar maior eficiência que o MPEG-2.

O padrão MPEG-2 é descrito pelo conjunto de especificações ISO/IEC 13818, cujas principais estabelecem a forma de compressão para o fluxo multiplexado de sistemas (ISO, 2000a), para o vídeo (ISO, 2000b) e para o áudio (ISO, 1998). No âmbito do ITU-T (*International Telecommunication Union – Telecommunication Standardization Sector*), os padrões MPEG-2 *Systems* e MPEG-2 *Video* estão descritos nas recomendações H.222.0 (ITU, 2000a) e H.262 (ITU, 2000b), respectivamente.

2.1. O Fluxo MPEG-2 de Sistemas

A estrutura de um fluxo definida pelo padrão MPEG-2 pode ser visualizada na Figura 6 e está dividida em duas camadas: a camada de compressão e a camada de sistema. A camada de sistema, definida no padrão *MPEG-2 Systems*, é responsável pela divisão e encapsulamento de cada fluxo comprimido em pacotes; pela inserção de informações de sincronização entre fluxos de mídias diferentes; pela multiplexação dos fluxos encapsulados; e pelo transporte da informação de referência do relógio utilizado no codificador. A camada de compressão refere-se à codificação de cada um dos dados audiovisuais, conforme especificado nos padrões MPEG-2 Áudio e Vídeo.

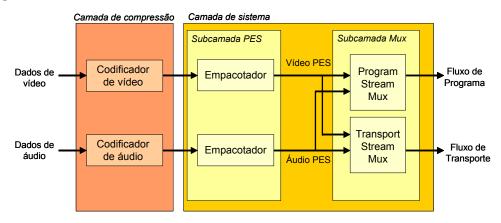


Figura 6: Estrutura do fluxo MPEG-2.

Os dados individuais de cada mídia, após sofrerem o processo de compressão, são denominados de fluxos elementares e são divididos em pacotes na subcamada PES (*Packetized Elementary Stream*). As principais funções desempenhadas pela subcamada PES são a identificação exclusiva de cada fluxo, realizada através do parâmetro *stream_ID*, e a sincronização intra e intermídia, discutida a seguir. Os dados empacotados, ou seja, os fluxos de áudio, vídeo ou dados PES, são enviados à subcamada de multiplexação, onde é inserida a informação de referência de relógio do codificador.

Dois formatos para o fluxo de sistema estão definidos: o Fluxo de Transporte (TS), que contém um ou mais programas e é apropriado para a transmissão e o armazenamento em ambientes ruidosos onde a ocorrência de erros é freqüente; e o Fluxo de Programa (PS), que contém apenas um programa e é adequado para uso em ambientes com baixas taxas de erros. Cada programa é

definido como um conjunto de fluxos elementares, vídeo, áudio e dados, por exemplo, que podem ou não ter algum relacionamento temporal entre si. A codificação dos elementos sincronizados entre si utiliza uma mesma base de tempo, ou referência de relógio.

A sincronização intra e intermídia é obtida através da inserção de marcas de tempo (*time stamps*), tanto nos fluxos PES quanto no fluxo de sistemas. A marca de tempo é uma amostra do contador da respectiva base de tempo, em um determinado instante. As marcas de tempo inseridas no fluxo de sistemas, na subcamada de multiplexação, permitem, ao decodificador, a recuperação da referência do relógio utilizado pelo codificador. Elas são denominadas de *System Clock Reference* (SCR) e *Program Clock Reference* (PCR) para os fluxos TS e PS, respectivamente, e são definidas em termos de um relógio de sistema comum denominado STC (*System Time Clock*). Os valores das marcas de tempo SCR e PCR significam o instante de tempo em que o último bit desses campos entra no decodificador. O intervalo de tempo máximo permitido entre o envio de duas marcas consecutivas é de 0,7s. O processo de geração e extração das marcas de tempo relativas ao SCR e PCR é ilustrado na Figura 7. O padrão MPEG não considera os efeitos introduzidos pela rede de comunicação.

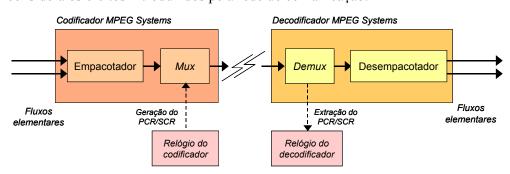


Figura 7: Sincronização entre o codificador e o decodificador.

Após o empacotamento dos respectivos dados em cada PES, alguns pacotes são escolhidos para transportar marcas de tempo. Dentre essas, dois tipos são definidos: o *Presentation Time Stamp* (PTS) e o *Decoding Time Stamp* (DTS). O PTS indica o instante de tempo em que a unidade de apresentação (figura, para o vídeo, e quadro, para o áudio) deve ser exibida. O DTS, presente apenas no fluxo de vídeo, indica o instante de tempo em que a unidade de apresentação deve ser entregue ao respectivo decodificador e é utilizado quando é necessária a reordenação de quadros, no decodificador.

2.2. O Fluxo MPEG-2 de Vídeo

O padrão MPEG-2 de vídeo utiliza algoritmos para eliminar ou reduzir a redundância temporal existente entre quadros consecutivos. As imagens de um vídeo são representadas por quadros de vídeo, os quais são representados por três matrizes retangulares de inteiros: uma matriz de luminância e duas matrizes de crominância. O termo quadro é utilizado tanto para imagens ainda não codificadas através do padrão MPEG-2 quanto para as imagens após a codificação. As informações de um quadro podem ser separadas em campos denominados *top field* e *bottom field*, compostos pelas linhas ímpares ou pares de cada matriz que compõe um quadro, respectivamente.

Uma figura codificada através do padrão MPEG-2 pode representar um quadro ou um campo codificado. Um sinal de vídeo que contenha figuras que representem campos é dito ser um vídeo entrelaçado. Se o fluxo de vídeo contiver apenas figuras que representem quadros, ele é dito ser progressivo.

A estrutura do fluxo codificado através do MPEG-2 de vídeo é hierárquica e contém seis camadas: sequência, grupo de figuras (GOP), figura, *slice*, macrobloco e bloco, conforme ilustrado na Figura 8.

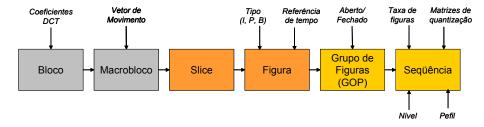


Figura 8: Estrutura do fluxo MPEG Vídeo.

2.2.1. Estruturas de um fluxo de vídeo MPEG-2

Um fluxo de vídeo é composto por um conjunto de seqüências, que são utilizadas para transportar informações sobre: as dimensões das figuras e a sua relação de aspecto; as taxas de quadro e de bit; e as matrizes de quantização utilizadas na codificação dos macroblocos, caso os valores-padrão não sejam utilizados. O parâmetro *progressive sequence*, presente no elemento *Sequence*

Extension, especifica o tipo de sinal de vídeo utilizado, ou seja, se o fluxo de vídeo contém quadros entrelaçados ou não.

A taxa de quadro é fixa, sendo determinada através dos parâmetros frame_rate_code, da estrutura Sequence Header e que indica o valor base (frame_rate_value) da taxa de quadros, e os parâmetros frame_rate_extension_n e frame_rate_extension_d, presentes na estrutura Sequence Extension. Ela é calculada conforme a equação abaixo:

(Eq. 1)
$$frame_rate = frame_rate_value * \left[\frac{frame_rate_extension_n + 1}{frame_rate_extension_d + 1} \right]$$

Através do parâmetro *frame_rate_code*, é possível escolher a taxa de quadros entre 8 valores pré-determinados. Os parâmetros *frame_rate_extension_n* e *frame_rate_extension_d* permitem que a taxa de quadros a ser utilizada seja diferente dos valores pré-determinados.

A camada grupo de figuras (GOP), representada pelo *GOP Header*, é uma estrutura opcional. Quando presente, informa o instante de tempo referente à primeira figura contida no GOP, de acordo com o valor do relógio de referência utilizado pelo codificador e é utilizado para prover acesso aleatório ao fluxo de vídeo. Um GOP também indica a dependência temporal entre figuras pertencentes a GOP diferentes. GOP fechados são aqueles formados apenas por figuras cujas referências localizam-se no próprio GOP. Em um GOP aberto, a decodificação de uma de suas figura pode requerer a decodificação anterior de uma figura localizada em outro GOP, ou seja, pode haver dependências entre GOP distintos.

A camada de figura especifica o tipo de predição utilizado na codificação de uma imagem e fornece a informação de temporização de cada figura. A quantidade de bits utilizada para a codificação de cada figura é variável e é influenciada pelo valor do *quantum* adotado no processo de quantização da imagem.

O método de predição interquadro por compensação de movimento, utilizado para reduzir a redundância temporal entre quadros consecutivos, realiza a comparação de cada macrobloco de uma figura com macroblocos pertencentes a figuras vizinhas. O macrobloco da figura vizinha, escolhida para servir de referência na operação de predição, será aquele que menos se diferenciar do macrobloco a ser codificado. Um vetor de movimento é definido para indicar a

diferença entre as localizações espaciais do macrobloco a ser codificado e o de referência, sendo transmitido junto ao macrobloco codificado. Cada macrobloco especifica sua posição em relação ao macrobloco anterior, a indicação do método de predição utilizado e quais os blocos de luminância e crominância estão codificados. Também contém um fator de escala para permitir o controle do *quantum* do processo de quantização.

A especificação da estrutura de uma figura, estabelecendo se esta representa um campo ou um quadro, é determinada, em um fluxo de vídeo codificado, através do parâmetro *picture_structure*, presente no elemento *Picture Coding Extension* que está contido em cada figura (elemento *Picture*). Para os propósitos desta dissertação, serão consideradas apenas as figuras que representam quadros. Os termos figura e quadro serão utilizados como sinônimos.

As imagens são codificadas em figuras do tipo I (*Intracoded*), P (*Predictive Coded*) ou B (*Bidirectional Predictive Coded*). Os quadros I são codificados utilizando-se informações contidas no próprio quadro original, ou seja, todos os macroblocos contidos nesses quadros indicam que não há dependência em relação a macroblocos de outras figuras. Os quadros P são codificados de forma preditiva em relação ao quadro I ou P anterior, ou seja, há ao menos um macrobloco contido no quadro que indica a dependência em relação a um macrobloco de outra figura. Por fim, os quadros B são codificados de forma preditiva em relação aos quadros I ou P, anteriores ou posteriores. Há, portanto, ao menos um macrobloco que indica dependência temporal a um quadro a ser apresentado posteriormente. Dessa forma, para a decodificação de um quadro B, é necessário que o quadro posterior, ao qual aquele se referencia, já tenha sido decodificado.

Cada figura codificada possui o parâmetro *temporal_reference* que funciona como um contador, módulo 1.024, o qual é incrementado a cada novo quadro e é utilizado para que o decodificador possa identificar eventuais perdas de quadros.

O parâmetro *vbv_delay*, contido no elemento *Picture Header*, indica o tempo que a figura deve permanecer no *buffer* de entrada do decodificador, exceto quando possui valor hexadecimal FFFF. Sua utilização é detalhada na Subseção 2.2.2, onde o funcionamento desse *buffer* é apresentado.

Dois outros parâmetros, contidos no elemento *Picture Coding Extension*, são importantes para o processo de decodificação: *repeat_first_field* e *top field first*. Em vídeos progressivos, eles indicam a quantidade de vezes que

uma figura deve ser apresentada, após sua decodificação. A relação entre esses parâmetros é mostrada na Tabela 1.

Tabela 1: Parâmetros repeat_first_field e top_field_first.

Parâmetros			Significado
progressive_sequence	repeat_first_field	top_field_firs	t
1	0	0	Quadro deve ser apresentado uma vez.
1	1	0	Quadro deve ser apresentado duas vezes.
1	1	1	Quadro deve ser apresentado três vezes.

A camada *slice* contém um conjunto de macroblocos, pertencentes a uma mesma linha da imagem codificada. No entanto, nem todos os macroblocos precisam ser inseridos no fluxo comprimido. Aqueles que não são codificados no fluxo comprimido são chamados de *skipped macroblocks*. Em seu cabeçalho, um *slice* especifica a linha de macroblocos a que se refere e o fator de escala utilizado na determinação dos coeficientes DCT.

Essa camada é especificada para facilitar o correto posicionamento espacial das amostras, no processo de exibição da imagem, em casos onde haja perda de dados. A perda de algumas amostras pode causar erro no posicionamento espacial das outras amostras pertencentes ao mesmo slice. Esse efeito, porém, não é cumulativo e os outros *slices* podem ser apresentados corretamente.

Um resumo das informações mais importantes definidas na sintaxe do padrão MPEG-2 de Vídeo e contidas em cada camada hierárquica pode ser visualizado na Tabela 2.

Tabela 2: Resumo da sintaxe das camadas do MPEG-2 de Vídeo.

Nome da Camada	Elementos da sintaxe		
Seqüência	Tamanho dos quadros		
	Taxa de quadros por segundo		
	Taxa de bits por segundo		
	Tamanho do buffer de entrada do decodificador		
	Parâmetros de codificação programáveis		
GOP	Unidade de acesso aleatório		
Figura	Informação de temporização (temporal_reference)		
rigura	Tipo de figura		
Slice	Informação de endereçamento em relação ao quadro		
Macrobloco	Modo de codificação		
	Vetores de movimento		
	Quantização		
Bloco	Coeficientes DCT		

Para facilitar a decodificação, a ordenação das figuras no fluxo transmitido, ou ordem de codificação, é diferente da ordem segundo a qual as figuras devem

ser exibidas, também chamada de ordem de apresentação. A Figura 9 exemplifica a disposição das figuras segundo as ordens de apresentação e de codificação.

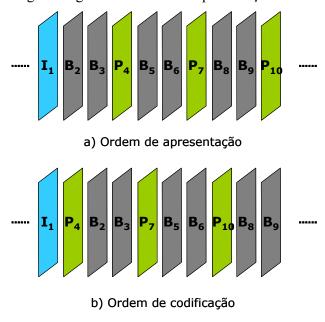


Figura 9: Ordenação de figuras.

A ordem de codificação garante que as figuras utilizadas como referência na codificação de outras figuras sejam sempre recebidas, pelo decodificador, antes da recepção das figuras que as utilizam como referência. A necessidade da modificação da ordem das figuras no processo de transmissão pode ser visualizada no exemplo acima. Caso o fluxo transmitido fosse composto conforme a ordem de apresentação, a decodificação das figuras B₂ e B₃ só poderiam ocorrer após a decodificação da figura P₄. Visto que o tipo de cada figura pode ser escolhido livremente pelo codificador, o intervalo de tempo entre a chegada de uma figura do tipo B e a recepção da próxima figura do tipo I ou P (necessária para a decodificação da figura B anterior) poderia ser arbitrariamente longo, dificultando o processo de decodificação.

Com a modificação da ordem das figuras, segundo a definição de ordem de codificação, há a garantia de que sempre que uma figura do tipo B for recebida no decodificador, as figuras I ou P utilizadas como referência no processo de codificação já terão sido recebidas e decodificadas.

2.2.2. Modelo de transmissão

O padrão define um modelo de transmissão de dados, representado na Figura 10, segundo o qual os efeitos decorrentes da rede de comunicação e do armazenamento dos dados são desconsiderados e a taxa de exibição de quadros, na saída do decodificador, é mantida constante. A taxa de produção de quadros na saída do codificador é aproximadamente constante, levando-se em consideração também os quadros configurados para serem exibidos mais de uma vez, através dos parâmetros *repeat_first_field* e *top_field_first*.

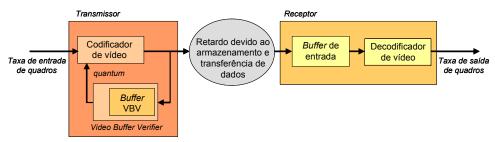


Figura 10: Transmissão no MPEG-2 Vídeo.

O tamanho do *buffer* de entrada do receptor é determinado pelo codificador e o tamanho dos vários quadros codificados deve ser escolhido de forma a que não haja, exceto em casos especiais, *underflow* nem *overflow* daquele *buffer*.

Para que o codificador mantenha o controle da ocupação do *buffer* de entrada do receptor, o modelo define um decodificador hipotético, denominado *Video Buffer Verifier* (VBV), o qual é conceitualmente conectado à saída do codificador. O VBV possui um *buffer* de entrada (*VBV buffer*) cuja ocupação deve corresponder à ocupação do *buffer* de entrada do receptor. Através do monitoramento do estado do *VBV buffer*, ou seja, sua ocupação em bits, o codificador altera o valor do *quantum* utilizado no processo de codificação, produzindo quadros de tamanhos maiores ou menores.

O tamanho B do *VBV buffer* deve ser igual ao do *buffer* de entrada do receptor e é indicado pelo codificador através do parâmetro *vbv_buffer_size* presente no cabeçalho de cada sequência do fluxo de vídeo.

2.2.2.1. Entrada de dados no VBV buffer

Duas formas mutuamente exclusivas são definidas para a entrada de dados no VBV buffer. Na primeira, representada esquematicamente na Figura 11, o parâmetro vbv_delay de todas as figuras possui o valor hexadecimal FFFF e os dados, enquanto o buffer não estiver cheio, sempre entram a uma taxa constante igual a $R_{m\acute{a}x}$, em bits por segundo. Os índices e e s indicam se a respectiva figura está entrando ou saindo do buffer, respectivamente. A Figura 11 considera que o quadro P_2 é configurado para ser apresentado duas vezes. Sempre que a ocupação do buffer atinge seu nível máximo, o codificador interrompe a geração de quadros, que é restabelecida apenas no momento em que há novamente espaço disponível no buffer.

O processo de decodificação se inicia apenas no momento em que o *buffer* apresenta-se cheio pela primeira vez e prossegue retirando quadros de acordo com a taxa de exibição de quadros.

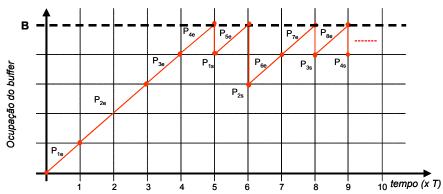


Figura 11: Ocupação do VBV buffer quando vbv delay é igual a FFFF.

A segunda forma, representada simplificadamente na Figura 12, permite o uso de taxa variável de bits para cada quadro. Nessa situação, o parâmetro *vbv_delay* possui valor hexadecimal diferente de FFFF e informa o tempo que a respectiva figura deve permanecer no *buffer*. Para manter a taxa de geração de quadros aproximadamente constante, a taxa de transmissão, em bits por segundo, deve satisfazer a seguinte equação (ITU, 2000b):

(Eq. 2)
$$R(n) = \frac{d_n^*}{(\tau(n) - \tau(n+1) + t(n+1) - t(n))}$$

Onde R(n) é a taxa de transmissão, em bits por segundo, da figura n; d_n^* é a quantidade de bits da figura n, incluindo os bits de todas as camadas seqüência e GOP até o início da próxima figura; $\tau(n)$ é o tempo que a figura n deve permanecer no *buffer*, informado pelo parâmetro vbv_delay da figura n e medido em segundos; e t(n) é o instante, medido em segundos, em que a figura n deve ser retirada do *buffer*. Os parâmetros d_n^* , $\tau(n)$ e t(n) são determinados pelo codificador para que a taxa de transmissão R(n) garanta que situações de *overflow* e *underflow* não ocorrem.

Para figuras cuja apresentação não deve ser repetida, a equação estabelece que a taxa, em bits por segundo, a ser utilizada para a codificação de uma figura, deve garantir que todos os seus dados entrem no *buffer* em um intervalo de tempo igual ao inverso da taxa de quadros do vídeo. Se a figura for configurada para ser exibida mais de uma vez, a taxa, em bits por segundo, deve garantir que o intervalo de tempo de entrada da figura no *buffer* seja igual ao número de vezes que a figura deve ser exibida, multiplicado pelo inverso da taxa de quadros.

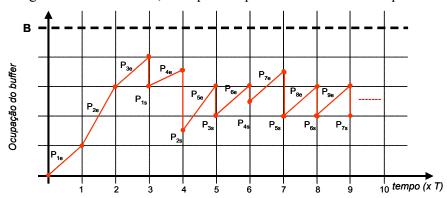


Figura 12: Ocupação do VBV buffer quando vbv_delay é diferente de FFFF.

O processo de decodificação de uma figura inicia-se quando o intervalo de tempo indicado pelo *vbv_delay* é decorrido. Nesse instante, a respectiva figura é retirada do *buffer*. No esquema mostrado na Figura 12, o *vbv_delay* de cada figura foi considerado igual a 3*T e nenhuma figura foi configurada para ser repetida.

2.2.2.2. Saída de dados do VBV buffer

Para a retirada de dados do *VBV buffer*, no caso de vídeos não entrelaçados, o decodificador examina o conteúdo do *buffer* a intervalos sucessivos, múltiplos do intervalo de tempo *T*, definido como o inverso da taxa de quadros. As regras que disciplinam o momento de exame do *buffer* dependem da existência de figuras do tipo B no fluxo, do tipo da última figura retirada do *buffer* e da indicação de repetição de exibição das figuras. Elas baseiam-se em que uma figura só deve ser retirada do *VBV buffer* quando for necessária sua decodificação, o que ocorre devido à necessidade de sua apresentação ou quando a figura foi utilizada como referência no processo de codificação preditiva da próxima figura a ser retirada do *buffer*. Essas regras podem ser resumidas nos seguintes critérios:

- I Para estruturas de següência que não contenham quadros do tipo B
- a) Se a última figura retirada do *buffer*, do tipo I ou P, tiver sido configurada para ser exibida uma, duas ou três vezes, a próxima figura deve ser retirada do *buffer* após o intervalo de tempo igual a T, 2*T ou 3*T, de acordo com o número de repetições solicitadas, respectivamente.
- II Para estruturas de següência que contenham quadros do tipo B
- a) Se a última figura retirada do *buffer* tiver sido do tipo B e configurada para ser exibida uma, duas ou três vezes, a próxima figura deve ser retirada do *buffer* após o intervalo de tempo igual a *T*, 2**T* ou 3**T*, de acordo com o número de repetições solicitadas, respectivamente.
- b) Se a última figura retirada do *buffer* tiver sido do tipo I ou P e a figura I ou P anteriormente recebida tiver sido configurada para ser exibida uma, duas ou três vezes, a próxima figura deve ser retirada do *buffer* após o intervalo de tempo igual a *T*, 2**T* ou 3**T*, de acordo com o número de repetições solicitadas, respectivamente..

2.2.3. Controle de ocupação do *buffer*

O gerenciamento da ocupação do *buffer* de entrada do receptor é realizado através da manipulação da quantidade de bits de cada figura, da taxa de bits do fluxo codificado e do tamanho do *buffer*, definido pelo codificador. O padrão MPEG-2 sugere a adoção do controle de taxa do modelo TM5 (*Test Model 5*), cujo objetivo é determinar, de forma adaptativa, o tipo de predição temporal para cada macrobloco, a matriz de quantização a ser aplicada e a taxa de transmissão, em bits por segundo, de cada figura, a fim de evitar situações de *overflow* e *underflow* do *buffer* do receptor. As operações são realizadas nas camadas GOP, de figura e de macrobloco, e são compostas por três atividades: a alocação de bits, o controle de taxa e a quantização adaptativa.

Na primeira etapa, um número fixo de bits é alocado para cada GOP, obtido através da taxa máxima de transmissão desejada, em bits por segundo, e o número de quadros contidos no GOP. Essa etapa é responsável pela estimativa do número de bits disponível para a codificação da próxima figura, sendo realizada, portanto, antes da codificação de cada quadro. Depois, à medida que cada figura é codificada, a ocupação do *buffer* é monitorada, realimentando o sistema e definindo um valor de referência do *quantum* a ser utilizado por cada macrobloco. Por último, a quantização adaptativa manipula o valor de referência de acordo com a atividade espacial em cada macrobloco para determinar o valor exato do *quantum* relativo à codificação do respectivo macrobloco.

Detalhando o algoritmo especificado pelo TM5, inicialmente, é calculado o total de bits que o GOP deve conter, de acordo com a taxa de bits desejada, a taxa de quadros e o número de quadros dos tipos I, P e B que ainda devem ser inseridos no GOP corrente, conforme a equação abaixo:

(Eq. 3)
$$R_{GOP} = (N_i + N_p + N_b) \times \left(\frac{bit_rate}{frame_rate}\right)$$

Em seguida, são determinadas as "medidas de complexidade globais" (global complexity measures), denominadas de X_i , X_p ou X_b , de acordo com o tipo de quadro, segundo as seguintes fórmulas:

$$X_i = S_i Q_i$$

(Eq. 4)
$$X_p = S_p Q_p$$

$$X_h = S_h Q_h$$

Onde S_i, S_p e S_b representam o número de bits, conforme seu tipo, e as variáveis Q_i, Q_p e Q_b são os parâmetros de quantização médios, calculados de acordo com a média dos valores de quantização utilizados durante a codificação de todos os macroblocos. Todos os parâmetros anteriores referem-se às últimas figuras codificadas, de acordo com o respectivo tipo. Os valores iniciais para os parâmetros de quantização médios são:

$$X_i = \frac{\left(160 \times bit_rate\right)}{115}$$

(Eq. 5)
$$X_p = \frac{(60 \times bit_rate)}{115}$$

$$X_b = \frac{\left(42 \times bit_rate\right)}{115}$$

A quantidade de bits $(T_i, T_p \ e \ T_b)$ a ser utilizada na codificação da próxima figura é determinada conforme as equações abaixo. Os parâmetros K_p e K_b são constantes cujos valores atribuídos são 1.0 e 1.4, respectivamente:

$$T_{i} = m \acute{a}x \left\{ \frac{R_{GOP}}{\left(1 + \frac{N_{p}X_{p}}{X_{i}X_{p}} + \frac{N_{b}X_{b}}{X_{i}K_{b}}\right)}, \frac{bit_rate}{8 \times picture_rate} \right\}$$

(Eq. 6)
$$T_p = m \acute{a}x \left\{ \frac{R_{GOP}}{\left(N_p + \frac{NbK_pX_b}{K_bX_p}\right)}, \frac{bit_rate}{8 \times picture_rate} \right\}$$

$$T_{b} = m\acute{a}x \left\{ \frac{R_{GOP}}{\left(N_{b} + \frac{N_{p}K_{b}X_{p}}{K_{p}X_{b}}\right)}, \frac{bit_rate}{8 \times picture_rate} \right\}$$

A segunda etapa refere-se ao controle da taxa e destina-se à obtenção do parâmetro de quantização Q_i referente ao macrobloco j, conforme a expressão:

(Eq. 7)
$$Q_j = \left(\frac{d_j \times 31}{2}\right) \left(\frac{picture_rate}{bit_rate}\right)$$

onde d_j representa o nível de ocupação do *buffer* virtual e é calculado, de acordo com o tipo de figura.

A terceira etapa determina o valor de cada elemento da matriz de quantização a ser utilizado, a partir da atividade espacial (*act*_j) calculada para cada macrobloco e o respectivo parâmetro de quantização Q_j. O modelo TM5 especifica que:

(Eq. 8)
$$act_i = 1 + min(vblk_1, vblk_2, \dots, vblk_8)$$

(Eq. 9)
$$vblk_n = \frac{1}{64} \times \sum_{k=1}^{64} (P_k^n - P_mean_n)^2$$

(Eq. 10)
$$P_{-mean_n} = \frac{1}{64} \times \sum_{k=1}^{64} P_k^n$$

O valor da atividade (act_j) é, então, normalizado, obtendo-se N_act_j e, finalmente, determinando-se o valor do *quantum* a ser aplicado ao respectivo macrobloco:

(Eq. 11)
$$mquant_i = Q_i \times N_a act_i$$

Além do modelo TM5 do MPEG, outros algoritmos para o controle da ocupação do *buffer* do receptor foram propostos, tais como: o algoritmo de alocação de bits proposto por Song e Chun (Song & Chun, 2003); o esquema de controle de taxa através de histogramas baseado em estimativas de taxa e distorção (*Rate-Distortion Estimation*) proposto por Hong *et al.* (Hong et al., 2003); e o algoritmo proposto por He e Mitra (He & Mitra, 2002), que adota um relacionamento linear entre a taxa de codificação de bits e o percentual de zeros nos coeficientes DCT.

2.2.3.1. Situações de overflow e underflow

A ocorrência de *overflow* ou *underflow* do *buffer* de entrada do receptor é gerada por problemas no processo de codificação, alterando a taxa de produção de quadros em relação à taxa nominal. A taxa de codificação de quadros pode sofrer variações devido aos métodos utilizados para o cálculo da quantidade de bits e da taxa de transmissão dos dados, como, por exemplo, o estabelecido pelo TM5. O processo de codificação é responsável por, mesmo havendo pequenos desvios da taxa instantânea de codificação de quadros em relação à taxa nominal, manter a ocupação do *buffer* dentro dos limites adequados, evitando o *overflow* ou *underflow*. Fatores externos ao padrão MPEG também podem causar perturbações no decodificador, tais como os decorrentes da rede de comunicação.

A situação de *underflow* ocorre se a taxa de quadros gerada na saída do codificador for inferior à taxa de quadros prevista para o fluxo de vídeo. Nessa situação, o decodificador consome quadros do *buffer* mais rapidamente do que novos quadros entram no mesmo. Se essa situação persistir por um tempo suficientemente grande, todos os quadros do *buffer* serão retirados e o decodificador não encontrará um novo quadro completo para ser apresentado.

A diminuição da taxa de codificação de quadros, mesmo que temporariamente, faz com que a ocupação do *buffer* diminua, em relação à curva de ocupação em que os quadros são gerados à taxa constante. Essa situação pode ser observada no esquema apresentado na Figura 13, em que o segundo gráfico é obtido quando o quadro P₄ é codificado utilizando uma taxa, em bits por segundo, inferior à necessária, dado a quantidade de bits do quadro. A linha cheia representa a curva de ocupação do *buffer*, enquanto que as linhas tracejadas são mostradas apenas para facilitar a visualização do tamanho de cada quadro. Cabe ao codificador perceber a diminuição momentânea da taxa de codificação de quadros e fazer a compensação nos quadros seguintes.

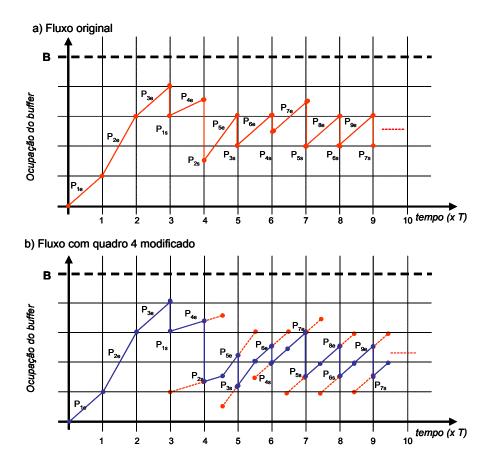


Figura 13: Efeito da diminuição da taxa de codificação de quadros.

O mesmo efeito é obtido se a rede de comunicação limitar a taxa de transferência dos dados em um valor menor que a máxima taxa, em bits por segundo, configurada nas figuras do fluxo de vídeo. Nessa situação, o codificador opera corretamente, mas a transmissão dos dados introduz a perturbação que pode causar o *underflow*.

O overflow ocorre quando a taxa de entrada de quadros no buffer é superior à taxa nominal de apresentação de quadros, por um tempo suficientemente grande. Os quadros se acumulam do buffer até que sua ocupação alcance o limite máximo. A partir desse momento, novos dados que cheguem ao buffer são descartados, gerando perda de quadros. Situações de overflow também podem acontecer se o algoritmo de alocação de bits, no processo de codificação, for inadequado e não limitar corretamente a quantidade de bits de cada figura. Essa condição é representada na Figura 14.

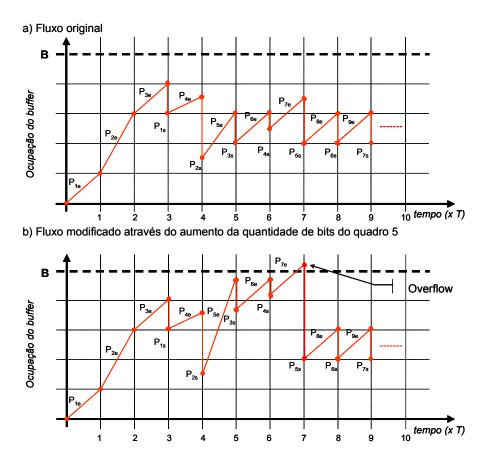


Figura 14: Overflow devido a erro na alocação de bits.

Situações de *overflow* e *underflow* também podem ser provocadas por falhas na rede de comunicação devido a perdas de pacotes, fazendo com que a seqüência de quadros que entrem no *buffer* seja diferente da gerada pelo codificador. A perda de quadros, no entanto, prejudica a correta operação do decodificador, pois, caso tenham sido perdidos quadros configurados para terem sua apresentação repetida, o decodificador não recebe essa informação, adiantando a exibição do quadro seguinte. O funcionamento é normalizado após o recebimento de um novo GOP, que provê informações temporais para o acesso aleatório do fluxo.