

Fernanda Otto Springer

Ensaios de arrancamento de grampos em solo residual de gnaisse

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientadores: Alberto Sampaio Ferraz Jardim Sayão Anna Laura Lopes da Silva Nunes

> Rio de Janeiro Janeiro de 2006

Fernanda Otto Springer

Ensaios de arrancamento de grampos em solo residual de gnaisse

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Alberto Sampaio Ferraz Jardim Sayão

Orientador PUC-Rio

Anna Laura Lopes da Silva Nunes Coppe/UFRJ

Ennio Marques Palmeira

UnB

Franklin dos Santos Antunes PUC-Rio

> Milton Assis Kanji USP

Sergio Augusto Barreto da Fontoura PUC-Rio

José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 27 de Janeiro de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Fernanda Otto Springer

Graduou-se em Engenharia Civil, com ênfase em Construção Civil, pela Universidade do Estado do Rio de Janeiro, em 1999. Ingressou no curso de mestrado em Geotecnia da PUC-Rio e desenvolveu uma dissertação sobre deformabilidade de estruturas grampeadas. Ingressou no curso de doutorado em Geotecnia em 2001, e atuou na área de geotecnia experimental, desenvolvendo pesquisa sobre ensaios de arrancamento de grampos. Até dezembro de 2005, publicou cinco artigos técnicos e participou de quatro congressos e simpósios em geotecnia.

Ficha Catalográfica

Springer, Fernanda Otto

Ensaios de arrancamento de grampos em solo residual de gnaisse / Fernanda Otto Springer ; orientadores: Alberto Sampaio Ferraz Jardim Sayão, Anna Laura Lopes da Silva Nunes. – Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2006.

310 f.: il.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

Engenharia Civil – Teses. 2. Solo grampeado. 3. Ensaio de arrancamento. 4. Instrumentação. 5. Exumação de grampo. 6. Solo Residual. I. Sayão, Alberto Sampaio Ferraz Jardim. II. Nunes, Anna Laura Lopes da Silva. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. VI. Título.

CDD: 624

Dedico esta Tese de Doutorado a Marcelo Teixeira Lopes, meu namorado, que durante

toda a pesquisa

me ofereceu:

Amor, amizade, acesso, admiração, afago, alegria, amparo, animação, apoio,

apreço, atenção, companhia, compreensão, confiança, conforto,

coragem, criatividade, cuidado, cumplicidade, dedicação,

defesa, empenho, entusiasmo, estímulo, felicidade,

fidelidade, força, generosidade, intensidade,

lealdade, motivação, prazer, proteção,

respeito, satisfação, trabalho,

tolerância, valorização.

Enfim,

TUDO

A você, o meu sincero OBRIGADO.

Agradecimentos

Agradeço,

Aos meus pais que são meus maiores incentivadores. Em especial ao meu pai que me ajudou com as revisões, tabelas e desenhos.

Ao meu namorado Marcelo pelos finais de semana em que me deixou estudar, pelo respeito às minhas necessidades, ao total apoio e incentivo ao meu crescimento profissional. Também devo agradecer, e muito, pelo seu envolvimento direto no projeto de instrumentação da obra do Museu 1. Ajudou a projetar dispositivos, instalar na obra e também por colar mais de 150 *strain gages*. Sua colaboração foi fundamental.

Aos meus sogros que me acolheram em sua casa por quase um ano, para que eu pudesse ficar perto dos locais de instrumentação e de realização dos ensaios de arrancamento.

Ao Professor Alberto Sayão pelos conhecimentos transmitidos, dedicação na orientação deste trabalho, confiança oferecida, respeito e amizade construída. Nos últimos meses sua contribuição tornou-se ainda mais valiosa, com inúmeras orientações sobre conteúdo e formatação.

À Professora Anna Laura Nunes. Sempre esteve presente no desenvolvimento de todo o trabalho, incentivando, trocando opiniões, ensinando. Trabalhou como uma parceira sem impor suas opiniões. Foi um imenso prazer trabalhar com ela, a quem admiro muito e tenho um carinho enorme.

Aos funcionários do galpão da SEEL, Alex, Wilson, Greice, Ludmila, Lassir, Henrique, Júlio e Arnô que sempre foram muito atenciosos comigo. E aos da obra, em especial ao Edinho, Liduíno e Paulo.

Ao Engenheiro Luiz Eduardo (SEEL), sempre tão educado procurando me atender da melhor forma possível.

Ao Dudu França (SEEL) pelo envolvimento nos ensaios de arrancamento. Virou até ilustração da tese por sua participação.

Ao Engenheiro Fernandinho (SEEL) por dividir o uso do macaco comigo.

Ao Engenheiro Paulo Henrique Dias, que foi parceiro, amigo, incentivador e crítico no desenvolvimento desta pesquisa. Agradeço também pelas fotos que me permitiu obter com sua câmera fotográfica.

À empresa SEEL e ao Engenheiro Fernando França pela iniciativa de ajudar no desenvolvimento desta pesquisa.

Aos meus novos amigos da Coppe, Alex e Marcelinho que me ajudaram

muito, em especial, com as exumações.

Ao André pelas vezes em que me ajudou nesta pesquisa.

Ao Tiago e ao Saré por compartilharem conhecimentos e pela amizade solidificada.

Aos funcionários do laboratório de geotecnia da PUC-Rio, Amaury e Josué pela dedicação.

Aos técnicos/engenheiros de instrumentação da Coppe, Hélcio, Luiz Mario e Ricardo Gil que me auxiliaram com o sitema de aquisição de dados.

Aos funcionários do DEC, Ana Roxo, Rita, Fátima, Lenílson e Cristiano, pelo apoio constante.

Ao CNPQ pelo apoio financeiro no desenvolvimento do doutorado.

A todos os demais colegas da PUC-Rio pela convivência amiga.

Resumo

Springer, Fernanda Otto; Sayão, Alberto Sampaio Ferraz Jardim; Nunes, Anna Laura Lopes da Silva. **Ensaios de arrancamento de grampos em solo residual de gnaisse.** Rio de Janeiro, 2005. 310p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A utilização de inclusões passivas para reforços de solos, comumente conhecida como solo grampeado, vem tendo aceitação crescente no meio geotécnico, em especial no sudeste do Brasil. Porém, esta técnica carece de estudos mais detalhados, em particular sobre a resistência ao arrancamento [q_s] e sobre a influência de parâmetros tais como o tempo de cura da calda de cimento, o número de injeções, a lavagem do furo e o tipo de solo. Assim, nesta pesquisa, estudou-se o comportamento tensão-deformação-resistência de grampos sob solicitação de arrancamento, em função do método de instalação. Foram considerados grampos com e sem pré-lavagem do furo, com uma ou duas injeções de nata de cimento, com três ou dez dias de cura. Os grampos foram executados em solo residual (maduro ou jovem) e em rocha alterada de gnaisse na cidade de Niterói, RJ. Esta pesquisa apresenta uma metodologia de instrumentação de grampos. O monitoramento deformações dos strain gages distribuídos ao longo do comprimento dos grampos forneceu ferramentas para se analisar os mecanismos de distribuição de carga e deformação dos grampos. Esta pesquisa propõe ainda uma metodologia a ser adotada em ensaios de arrancamento de grampos, enfocando-se os detalhes executivos. Alguns dos grampos ensaiados foram exumados e os resultados são apresentados, destacando-se os aspectos da superfície de arrancamento, a uniformidade do diâmetro, a presença de fissuras no grampo, e a litologia dos materiais encontrados ao longo do comprimento do grampo. Uma das principais conclusões é a de que o arrancamento de grampos re-injetados (bainha + 1 injeção) executados em solo residual maduro forneceu resistência ao arrancamento em média 37% superior à do grampo com 1 injeção (bainha).

Palavras-chave

Solo Grampeado; Ensaio de arrancamento; Instrumentação; Exumação de grampo; Solo residual.

Abstract

Springer, Fernanda Otto; Sayão, Alberto Sampaio Ferraz Jardim (Advisor); Nunes, Anna Laura Lopes da Silva (Advisor). **Pullout tests of nails in gneissic residual soil.** Rio de Janeiro, 2005. 310p. DSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The use of passive inclusions for soil reinforcement, commonly known as soil nail, has experienced an increasing acceptance in the geothecnical projects, especially in the southeast of Brazil. However, this technique still lacks more detailed studies regarding the influence of different installation methods on the pullout resistance [qs]. This research was focused on the study of stress-strainstrength behavior of nails under pullout loading, under different installation procedures. A comprehensive series of pullout tests was carried out on nails installed in holes with and without pre-washing procedures, with one or two consecutive pre-injection steps os cement mortar and with curing time of three or ten days. Test nails were installed in residual gneissic soils with different degrees of weathering along a profile in the same slope in the city of Niterói, Brazil. This methodology developed for the instrumentation of test nails is described in detail. Several strain gages were installed on the nails, for monitoring the strain distribution along the length of the nails. Some of the tested nails were exhumed and observed in detail. This investigation reveals the aspects of the soil-nail interface, with special attention to the uniformity in diameter to the presence of fissures along the nail, and the litology of materials found along the length of the nail. One of the main findings of this experimental investigation is that the re-injection of nails in residual soil resulted in an average increase of 37% of the pullout resistance q_s as compared to usual nails with no re-injection procedures. This research concludes with a proposal for a standard methodology to be adopted in nail's pullout tests.

Keywords

Soil nailing; Pullout test; Instrumentation; Nail's exhumation; Residual soil.

Sumário

1 INTRODUÇÃO	25
1.1. IMPORTÂNCIA DA PESQUISA	25
1.2. OBJETIVOS DA PESQUISA	26
1.3. Organização da Tese	27
2 SOLO GRAMPEADO	30
2.1. DESCRIÇÃO DA TÉCNICA	30
2.1.1. Execução do grampeamento	35
2.1.2. Grampo Injetado	35
2.1.3. Grampo Cravado	39
2.2. GEOMETRIA DO GRAMPO	40
2.3. Proteção da face da escavação	41
2.4. MEDIDAS PREVENTIVAS QUANTO À PRESENÇA DE ÁGUA	44
2.5. COMPARAÇÃO ENTRE TÉCNICAS DE ESTABILIZAÇÃO	47
2.5.1. Solo Grampeado e Cortina Ancorada	47
2.5.2. Solo Grampeado e Terra armada	48
2.6. VANTAGENS	50
2.7. LIMITAÇÕES	52
2.8. MODELOS DE ANÁLISE E MÉTODOS DE PROJETO	52
2.9. COMPORTAMENTO MECÂNICO DO GRAMPO	55
2.10. CORRELAÇÕES EMPÍRICAS	56
2.11. PESQUISAS SOBRE SOLO GRAMPEADO NO BRASIL	61
3 ENSAIOS DE RESISTÊNCIA E MECANISMOS DE RUPTURA	66
3.1. TIRANTES	66
3.1.1. Ruptura da barra do tirante	68
3.1.2. Ruptura do contato tirante-nata	71
3.1.3. Ruptura do contato nata-maciço	73
3.2. ESTACAS	77
3.2.1. Provas de cargas e instrumentação	77
3.2.2. Mecanismos de ruptura de estacas em rocha	80
4 ENSAIOS DE ARRANCAMENTO DE GRAMPOS	88
4.1. ENSAIO TÍPICO	88
4.2. ESQUEMA DE MONTAGEM	90
4.3. FATORES QUE INFLUENCIAM A RESISTÊNCIA AO ARRANGAMENTO	91

4.4. QUANTIDADE DE ENSAIOS	92
4.5. ACESSÓRIOS DE ENSAIO	94
4.6. COMPRIMENTO LIVRE E COMPRIMENTO INJETADO	95
4.7. METODOLOGIA DE CARREGAMENTO	96
4.8. Re-injeção de grampos	98
4.9. INTERPRETAÇÃO DE RESULTADOS	98
4.10. RESULTADOS DA LITERATURA	102
4.11. CONSIDERAÇÕES FINAIS	120
5 PROGRAMA EXPERIMENTAL	121
5.1. GEOLOGIA DAS ÁREAS DE ESTUDO	121
5.2. ENSAIOS DE LABORATÓRIO	126
5.3. ENSAIOS DE CAMPO	128
5.3.1. Influência do número de injeções	
5.3.2. Influência do tipo de injeção	
5.3.3. Influência do tempo de cura	
5.3.4. Influência do efeito da pré-lavagem	
5.4. METODOLOGIA DE EXECUÇÃO DOS ENSAIOS	132
5.5. INSTRUMENTAÇÃO DOS GRAMPOS	137
5.5.1. Materiais adotados	
5.5.2. Instalação dos strain gages	140
5.5.3. Leitura dos strain gages	149
5.5.4. Aquisição de dados	151
6 RESULTADOS DOS ENSAIOS DE ARRANCAMENTO	153
6.1. ENSAIO DE ARRANCAMENTO FV-01	153
6.2. ENSAIO DE ARRANCAMENTO FV-02	154
6.3. ENSAIO DE ARRANCAMENTO FV-03	155
6.4. ENSAIO DE ARRANCAMENTO M1-01	156
6.5. ENSAIO DE ARRANCAMENTO M1-02A	157
6.6. ENSAIO DE ARRANCAMENTO M1-02B	158
6.7. ENSAIO DE ARRANCAMENTO M1-03	160
6.8. Ensaios de arrancamento M1-04 e M1-05	161
6.9. Ensaio de arrancamento M1-06	163
6.10. ENSAIO DE ARRANCAMENTO M1-07	165
6.11. Ensaio de arrancamento M1-08	166
6.12. Ensaio de arrancamento M1-09	167
6.13. ENSAIO DE ARRANCAMENTO M1-10	168
6.14. Ensaios de arrancamento M1-11, M1-12, M1-13 e M	1-14169
6.15. Ensaio de arrancamento M1-15	174
6 16 ENGAGE DE ADDANGAMENTO M1 16 F M1 17	174

6.17. Ensaio de arrancamento M1-18	176
6.18. Ensaios de arrancamento M1-19A e M1-19B	178
6.19. Ensaio de arrancamento M1-20	180
6.20. Ensaios de arrancamento M2-01 e M2-02	181
7 EXUMAÇÃO DE GRAMPOS	184
7.1. OBRA FAGUNDES VARELA [FV]	184
7.2. OBRA MUSEU 1 [M1]	192
8 ANÁLISES DOS RESULTADOS	206
8.1. CALIBRAÇÕES DOS GRAMPOS INSTRUMENTADOS	206
8.2. Ensaios de laboratório	214
8.2.1. Amostras da obra Fagundes Varela	214
8.2.2. Amostras da obra Museu 1	217
8.2.3. Amostras da obra Museu 2	222
8.3. Ensaios de arrancamento	226
8.4. Análise dos fatores de influência	234
8.4.1. Influência da re-injeção (bainha + 1 injeção)	234
8.4.2. Influência do tipo de re-injeção (bainha + 1 injeção)	236
8.4.3. Influência da pré-lavagem do furo	238
8.4.4. Influência do tempo de cura da nata de cimento	241
8.5. CORRELAÇÕES EMPÍRICAS	244
9 CONCLUSÃO	250
9.1. CONCLUSÕES	250
9.2. RECOMENDAÇÕES PARA FUTURAS PESQUISAS	256
10 REFERÊNCIAS BIBLIOGRÁFICAS	258
11 APÊNDICE 1 – RESULTADOS DOS ENSAIOS DE ARRANCAMEN	TO 269
11.1. CURVAS CARGA X DESLOCAMENTO NA CABEÇA DO GRAMPO	269
11.2. GRÁFICOS DE DISTRIBUIÇÃO DE CARGA AO LONGO DO GRAMPO	283
12 APÊNDICE 2 – RESULTADOS DA CALIBRAÇÃO DAS BARRAS	300
12.1. Calibração 01 – Grampo M2-01	301
12.2. Calibração 02– Grampo M2-02	306

Lista de figuras

Figura 1 - Aplicações da técnica do solo grampeado (GeoRio, 1999)	31
Figura 2 - Etapas construtivas de muros de solo grampeado (adaptado de Clouterre, 1991) _	34
Figura 3 - Detalhes dos grampos injetados (adaptado de ABMS / ABEF, 1999)	37
Figura 4 – Tipos de cabeça de grampos	39
Figura 5 - Máquina ou bomba de projeção por via seca (GeoRio, 1999)	42
Figura 6 - Projetado via seca	43
Figura 7 - Projetado via úmida	43
Figura 8 - Detalhe do dreno profundo (ABMS / ABEF, 1999)	46
Figura 9 - Detalhe dos drenos tipo barbacã e de paramento (ABMS / ABEF, 1999)	46
Figura 10 - Mecanismos de transferência de carga (ABMS / ABEF, 1999)	47
Figura 11 - Deslocamentos horizontais de muros (Schlosser, 1983)	49
Figura 12 - Mobilização de esforços nos grampos nas zonas ativa e passiva	53
Figura 13 – Correlação q _s , p ₁ e N(SPT) (Bustamante e Doix, 1985)	57
Figura 14 – Correlação entre q_s e número de golpes N(SPT) (Ortigão e Palmeira, 1997)	58
Figura 15 – Tensão normal x Fator de carga (λ_l e λ_l^*) (Proto Silva, 2005)	60
Figura 16 – Tensão normal x Coeficiente de interface (α) (Proto Silva, 2005).	61
Figura 17 – Curva carga x deslocamento do ensaio de verificação de carga atuante	67
Figura 18 - Mecanismos de ruptura de ancoragens (adaptado de Benmokrane, 1986)	68
Figura 19 - Mecanismo de transferência de carga do tirante à nata (Hanna, 1982)	72
Figura 20 – Transferência de carga em estacas instrumentadas (Albuquerque, 2001)	79
Figura 21 – Bulbos do primeiro trecho da estaca Hélice Contínua (Albuquerque, 2001)	80
Figura 22 - Estaca embutida em rocha sob carregamento axial (Johnston e outros, 1987)	81
Figura 23 - Fraturas de tração nas raízes das asperezas (Hassam e O'Neil, 1997)	82
Figura 24 - Idealização dos estágios de transferência de carga (Hassam e O'Neil, 1997)	83
Figura 25 – Mecanismos de ruptura da adesão (Uijl e Bigaj, 1996)	85
Figura 26 - Tensões principais e superfícies de ruptura (Leonhardt e Mönning, 1973)	85
Figura 27 - Superfícies de ruptura próximo à ranhuras (Leonhardt e Mönning, 1973)	86
Figura 28 – Rugosidades dos modelos reduzidos estaca-rocha (Nunes e Castilhos, 2002).	87
Figura 29 – Modo de ruptura da estaca de fuste rugoso (Nunes e Castilhos, 2002).	87
Figura 30 – Tração no grampo (Ortigão e outros, 1993)	88
Figura 31 – Curva deslocamento x força de um ensaio de arrancamento (Clouterre, 1991)	
Figura 32 - Montagem do ensaio de arrancamento (adaptado de Lazart e outros, 2003)	91
Figura 33 – Ensaios de arrancamento de grampos preliminares (Clouterre, 1991)	95
Figura 34 – Curva típica de ensaio de arrancamento de grampo (Couto, 2002)	
Figura 35 - Critério de ruptura de arrancamento de grampos (Clouterre, 1991)	
Figura 36 - Lei de mobilização da resistência ao arrancamento (Frank e Zhao, 1982)	_100

Figura 37 - Distribuição de deformação em grampo longo de 12m (Clouterre, 1991)	_101
Figura 38 - Distribuição teórica de carga em grampo curto de 3m (Clouterre, 1991)	_101
Figura 39 - Distribuição teórica de carga em grampo longo de 12m (Clouterre, 1991).	_101
Figura 40 – Localização das obras Museu 1 e 2 (Morro do Palácio) e Fagundes Varela	_122
Figura 41 – Visão global das obras Museu 1 e 2	_123
Figura 42 – Mapeamento geológico-geotécnico do Museu 1 – Talude superior (adaptado de	
Gomes Silva, 2006)	_125
Figura 43 – Mapeamento geológico-geotécnico do Museu 1 – Talude inferior (adaptado de G	omes
Silva, 2006)	_126
Figura 44– Mapeamento geológico-geotécnico do Museu 2 (adaptado de Gomes Silva, 2006)	_126
Figura 45 – Localização dos ensaios de arrancamento executados nas 3 obras	_130
Figura 46 – Montagem do sistema de ensaio de arrancamento de grampo	_133
Figura 47 - Colocação de espuma na barra de aço para garantia do trecho livre	_134
Figura 48 - Suporte externo para apoio do extensômetro	_134
Figura 49 - Inserção dos componentes de um grampo tipo re-injetado no furo	_135
Figura 50 - Esquema da instrumentação da barra de aço e do grampo	_138
Figura 51 – Strain gage colável, modelo unidirecional simples de forma tradicional	_138
Figura 52 – Insumos e ferramentas da instrumentação	_140
Figura 53 – Marcação da distribuição dos strain gages ao longo da barra	_141
Figura 54 – Marcação do alinhamento das Barras CA50	_141
Figura 55 – Marcação do alinhamento nas barras INCO-13-D rosqueadas	_142
Figura 56 – Preparação da superfície por meio de usinagem das barras	_143
Figura 57 – Limpeza da superfície polida para recebimento do strain gage	_144
Figura 58 – Colagem da fita adesiva FK-1 alinhada ao eixo do strain gage	_144
Figura 59 – Colagem da fita adesiva à barra de aço	_144
Figura 60 – Retirada da fita adesiva FK-1	_145
Figura 61 – Colagem do terminal à barra de aço	_145
Figura 62 – Seleção e corte dos pares de fios de ligação dos strain gages	_146
Figura 63 – Soldagem dos fios dos strain gages aos terminais e ao cabo	_147
Figura 64 – Verificação do cabeamento do strain gage e da transmissão de sinal	_147
Figura 65 – Detalhe da araldite aplicada	_148
Figura 66 – Aplicação de Quilosa Sintex para proteção do strain gage e conexões	_149
Figura 67 - Esquema de ligação dos equipamentos para aquisição de dados	_152
Figura 68 – Sistema de montagem do ensaio de arrancamento FV-01	_153
Figura 69 – Curva Carga x Deslocamento do ensaio de arrancamento FV-01	_154
Figura 70 – Sistema de montagem dos ensaios de arrancamento FV-02	_155
Figura 71 – Curva Carga x Deslocamento do ensaio de arrancamento FV-02	_155
Figura 72 – Curva Carga x Deslocamento do ensaio de arrancamento FV-03	_156
Figura 73 – Curva Carga x Deslocamento do ensaio de arrancamento M1-01	_157
Figura 74 – Utilização de cunhas na montagem do ensajo M1-02A	157

Figura 75 – Curva Carga x Deslocamento do ensaio de arrancamento M1-02A	158
Figura 76 – Curva Carga x Deslocamento do ensaio de arrancamento M1-02B	159
Figura 77 – Distribuição de carga ao longo do grampo do ensaio M1-02B	160
Figura 78 – Luva presa à grade de reação no ensaio M1-03	161
Figura 79 – Curva Carga x Deslocamento do ensaio de arrancamento M1-03	161
Figura 80 – Curva Carga x Deslocamento do ensaio de arrancamento M1-04	162
Figura 81 – Curva Carga x Deslocamento do ensaio de arrancamento M1-05	162
Figura 82 – Distribuição de carga ao longo do grampo do ensaio M1-05	163
Figura 83 – Curva Carga x Deslocamento do ensaio de arrancamento M1-06	164
Figura 84 – Distribuição de carga ao longo do grampo do ensaio M1-06	164
Figura 85 – Curva Carga x Deslocamento do ensaio de arrancamento M1-07	165
Figura 86 – Distribuição de carga ao longo do grampo do ensaio M1-07	165
Figura 87 – Curva Carga x Deslocamento do ensaio de arrancamento M1-08	166
Figura 88 – Distribuição de carga ao longo do grampo do ensaio M1-08	166
Figura 89 – Curva Carga x Deslocamento do ensaio de arrancamento M1-09	167
Figura 90 – Distribuição de carga ao longo do grampo do ensaio M1-09	168
Figura 91 – Curva Carga x Deslocamento do ensaio de arrancamento M1-10	169
Figura 92 – Distribuição de carga ao longo do grampo do ensaio M1-10	169
Figura 93 – Curva Carga x Deslocamento do ensaio de arrancamento M1-11	170
Figura 94 – Curva Carga x Deslocamento do ensaio de arrancamento M1-12	171
Figura 95 – Distribuição de carga ao longo do grampo do ensaio M1-12	171
Figura 96 – Curva Carga x Deslocamento do ensaio de arrancamento M1-13	172
Figura 97 – Curva Carga x Deslocamento do ensaio de arrancamento M1-14	173
Figura 98 – Curva Carga x Deslocamento do ensaio de arrancamento M1-15	174
Figura 99 – Curva Carga x Deslocamento do ensaio de arrancamento M1-16	175
Figura 100 – Distribuição de carga ao longo do grampo do ensaio M1-16	175
Figura 101 – Curva Carga x Deslocamento do ensaio de arrancamento M1-17	176
Figura 102 – Curva Carga x Deslocamento do ensaio de arrancamento M1-18	177
Figura 103 – Distribuição de carga ao longo do grampo do ensaio M1-18	177
Figura 104 – Curva Carga x Deslocamento do ensaio de arrancamento M1-19A	178
Figura 105 – Distribuição de carga ao longo do grampo do ensaio M1-19A	178
Figura 106 – Curva Carga x Deslocamento do ensaio de arrancamento M1-19B	179
Figura 107 – Distribuição de carga ao longo do grampo do ensaio M1-19B	179
Figura 108 – Curva Carga x Deslocamento do ensaio de arrancamento M1-20	180
Figura 109 – Distribuição de carga ao longo do grampo do ensaio M1-20	180
Figura 110 – Cupinzeiro na região dos grampos M2-01 e M2-02 (Gomes Silva, 2006)	182
Figura 111 – Curva Carga x Deslocamento do ensaio de arrancamento M2-01	182
Figura 112 – Curva Carga x Deslocamento do ensaio de arrancamento M2-02	183
Figura 113 – Distribuição de carga ao longo do grampo do ensaio M2-01	183
Figura 114 – Distribuição de carga ao longo do grampo do ensaio M2-02	183

Figura 115 – Aspecto do grampo FV-03 apos o ensaio e a exumação	_183
Figura 116 – Curvas Carga x Deslocamento dos grampos exumados FV-02 e FV-03	_186
Figura 117 – Histogramas de distribuição granulométrica do solo do grampo FV-02	_188
Figura 118 – Histograma de distribuição granulométrica do solo do grampo FV-03	_188
Figura 119 – Aspecto dos bulbos e diâmetros dos grampos exumados (FV-02 e FV-03)	_189
Figura 120 – Aspecto da re-injeção e diâmetro do bulbo para o grampo FV-02	_191
Figura 121 – Aspecto da re-injeção e diâmetro do bulbo para o grampo FV-03	_191
Figura 122 – Fissuras transversais encontradas no grampo exumado FV-03	_191
Figura 123 – Fissuras transversais encontradas no grampo exumado FV-02	_192
Figura 124 - Curvas Carga x Deslocamento dos grampos exumados M1-19 e M1-20	_194
Figura 125 – Histograma de distribuição granulométrica do solo do grampo M1-19	_196
Figura 126 – Histograma de distribuição granulométrica do solo do grampo M1-20	_196
Figura 127 – Diâmetros ao longo dos grampos exumados M1-19 e M1-20	_197
Figura 128 – Ineficiência da espuma no preenchimento total do furo com nata	_198
Figura 129 – Evidências do arrancamento no contato barra/nata	_198
Figura 130 – Diâmetros ao longo dos grampos M1-19 e M1-20 – de 0 a 4m	_200
Figura 131 – Diâmetros ao longo dos grampos M1-19 e M1-20 – de 4 a 0m	_201
Figura 132 – Fraturas, bulbo e exsudação dos grampos M1-19 e M1-20 - fotos do topo	_202
Figura 133 –Fraturas, bulbo e exsudação dos grampos M1-19 e M1-20 - fotos da base	_203
Figura 134 - Ruptura no contato barra/nata para ranhuras pouco espaçadas	_204
Figura 135 – Detalhe da montagem do equipamento para calibração das barras de aço	_207
Figura 136 – Curvas de calibração da barra de aço instrumentada M2-01	_208
Figura 137 – Curvas de calibração da barra de aço instrumentada M2-02]	_209
Figura 138 - Curvas de Deformação x Carga da calibração da barra M2-01	_212
Figura 139 - Curvas de Deformação x Carga da calibração da barra M2-02	_213
Figura 140 – Distribuição granulométrica do solo da Fagundes Varela	_215
Figura 141 – Curvas do ensaio de cisalhamento direto – Solo da Fagundes Varela	_216
Figura 142 – Envoltórias de resistência do solo da Fagundes Varela	_217
Figura 143 – Envoltórias de resistência do solo do Museu 1	_218
Figura 144 – Distribuição granulométrica do solo do Museu 1	
Figura 145 – Curvas do ensaio de cisalhamento direto – Solo do Museu 1	_220
Figura 146 – Valores do coeficiente de rugosidade da junta - JRC (Barton e Choubey, 1977)	_222
Figura 147 – Curva granulométrica do solo do Museu 2	_223
Figura 148 – Cisalhamento direto do solo natural do Museu 2 (Proto Silva, 2005)	_224
Figura 149 – Cisalhamento direto do solo submerso do Museu 2 (Proto Silva, 2005)	_225
Figura 150 – Envoltórias de resistência do solo do Museu 2 (Proto Silva, 2005)	_226
Figura 151 – Fases de mobilização de resistência ao arrancamento em curva Carga x	
Deslocamento típica	_230
Figura 152 – Lei de mobilização da resistência ao arrancamento de grampos	_231
Figura 153 – Distribuição típica de carga ao longo do grampo (contato grampo-solo)	232

Figura 154 – Curva típica de Carga x Deslocamento de ensaio de arrancamento no contato	
barra-nata	_233
Figura 155 – Distribuição típica de carga ao longo do grampo (contato barra-nata)	_233
Figura 156 - Influência da re-injeção em ensaios de arrancamento de grampos em solo residua	al
maduro (Argila-arenosa marrom avermelhada) – Solo 3	_235
Figura 157 - Influência da re-injeção em ensaios de arrancamento de grampos em solo residua	al
jovem (silte areno-argiloso amarelo) – Solo 5	236
Figura 158 – Influência do tipo de re-injeção em ensaios de arrancamento de grampos em solo	9
residual jovem – Solo 2	_237
Figura 159 - Influência do tipo de re-injeção em ensaios de arrancamento de grampos em solo)
residual maduro (Argila-arenosa marrom avermelhada) – Solo 3	_237
Figura 160 - Influência do tipo de re-injeção em ensaios de arrancamento de grampos em rock	ha
alterada (argila-arenosa marrom avermelhada) – Solo 6	_238
Figura 161 - Influência da lavagem do furo em ensaios de arrancamento de grampos re-injetado	dos
em solo residual maduro (Argila-arenosa marrom avermelhada) – Solo 3	_240
Figura 162 - Influência da lavagem do furo em ensaios de arrancamento de grampos com bair	ıha
em solo residual maduro (Argila-arenosa marrom avermelhada e silte-argiloso branco) - Solo	4
	_240
Figura 163 - Influência da lavagem do furo em ensaios de arrancamento de grampos com bair	ıha
em solo residual maduro (Argila-arenosa marrom avermelhada e silto-argiloso branco) - Solo	4
	_241
Figura 164 - Influência do tempo de cura da nata de cimento em ensaios de arrancamento de	
grampos em solo residual maduro (Argila-arenosa marrom avermelhada) – Solo 3	_242
Figura 165 - Influência do tempo de cura da nata de cimento em ensaios de arrancamento de	
grampos em solo residual maduro (Argila-arenosa marrom avermelhada e silto-argiloso branc	co)
- Solo 4	_243
Figura 166 – Correlação entre qs e número de golpes N(SPT)	246
Figura 167 – Correlação entre qs e número de golpes N(SPT) para solo residual de gnaisse_	_247
Figura 168 – Curva Carga x Deslocamento do ensaio de arrancamento na FV-01	_270
Figura 169 – Curva Carga x Deslocamento do ensaio de arrancamento na FV-02	_270
Figura 170 – Curva Carga x Deslocamento do ensaio de arrancamento na FV-03	271
Figura 171 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-01	271
Figura 172 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-02A	_272
Figura 173 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-02B	_272
Figura 174 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-03	273
Figura 175 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-04	_273
Figura 176 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-05	_273
Figura 177 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-06	_274
Figura 178 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-07	_274
Figure 170 Curva Carea y Declaramento do angajo de arranoamento no M1 08	27

Figura 180 – Curva Carga x Deslocamento do ensato de arrancamento no M1-09	2/3
Figura 181 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-10	275
Figura 182 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-11	276
Figura 183 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-12	276
Figura 184 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-13	277
Figura 185 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-14	278
Figura 186 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-15	279
Figura 187 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-16	279
Figura 188 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-17	280
Figura 189 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-18	280
Figura 190 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-19A	281
Figura 191 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-19B	281
Figura 192 – Curva Carga x Deslocamento do ensaio de arrancamento no M1-20	281
Figura 193 – Curva Carga x Deslocamento do ensaio de arrancamento no M2-01	282
Figura 194 – Curva Carga x Deslocamento do ensaio de arrancamento no M2-02	282
Figura 195 – Distribuição de carga ao longo do grampo do ensaio M1-02A	284
Figura 196 – Distribuição de carga ao longo do grampo do ensaio M1-02B	285
Figura 197 – Distribuição de carga ao longo do grampo do ensaio M1-05	286
Figura 198 – Distribuição de carga ao longo do grampo do ensaio M1-06	287
Figura 199 – Distribuição de carga ao longo do grampo do ensaio M1-07	288
Figura 200 – Distribuição de carga ao longo do grampo do ensaio M1-08	289
Figura 201 – Distribuição de carga ao longo do grampo do ensaio M1-09	290
Figura 202 – Distribuição de carga ao longo do grampo do ensaio M1-10	291
Figura 203 – Distribuição de carga ao longo do grampo do ensaio M1-12	292
Figura 204 – Distribuição de carga ao longo do grampo do ensaio M1-16	293
Figura 205 – Distribuição de carga ao longo do grampo do ensaio M1-18	294
Figura 206 – Distribuição de carga ao longo do grampo do ensaio M1-19A	295
Figura 207 – Distribuição de carga ao longo do grampo do ensaio M1-19B	296
Figura 208 – Distribuição de carga ao longo do grampo do ensaio M1-20	297
Figura 209 – Distribuição de carga ao longo do grampo do ensaio M2-01	298
Figura 210 – Distribuição de carga ao longo do grampo do ensaio M2-02	299
Figura 211 – Curva de Deslocamento x Carga – M2-01	302
Figura 212 – Curva Deformação x Carga do Ajuste (carregamento preliminar) – M2-01	303
Figura 213 – Curva Deformação x Carga do Descarregamento – M2-01	304
Figura 214 – Curva Deformação x Carga do Carregamento – M2-01	305
Figura 215 – Curva de Deslocamento x Carga – M2-02	307
Figura 216 – Curva Deformação x Carga do Ajuste (carregamento preliminar) – M2-02	308
Figura 217 – Curva Deformação x Carga do Descarregamento – M2-02	309
Figura 218 Curva Deformação y Caraa do Carregamento M2 02	310

Lista de tabelas

Tabela 1 - Tipos de solos e alturas de escavação	32
Tabela 2 - Deslocamentos horizontais em muros de solo grampeado	33
Tabela 3 - Tipos de barras de aço (GeoRio, 1999)	36
Tabela 4 - Especificações de projeto com grampos injetados (adaptada de Ortigão,1997)	38
Tabela 5 - Estruturas com face vertical e topo horizontal (adaptado de Clouterre, 1991)	41
Tabela 6 - Métodos de análise e modelos de ruptura (adaptado de Ortigão e outros, 1993)	54
Tabela 7 – Características das barras de aço (adaptado de Littlejohn e Bruce, 1975)	69
Tabela 8 - Recomendações para tirantes (adaptado de Littlejohn e Bruce, 1975)	70
Tabela 9 - Aderência nata-maciço (adaptado de Littlejohn e Bruce, 1975)	76
Tabela 10 – Número mínimo de ensaios de arrancamento (Clouterre, 1991)	94
Tabela 11 – Características do solo grampeado - Morro da Formiga (Ortigão e outros, 1992)	104
Tabela 12 – Características do solo grampeado da Rua Atí (Feijó e Ehrlich, 2001)	105
Tabela 13 – Características do solo grampeado da Cardoso Júnior (Feijó e Ehrlich, 2001)	106
Tabela 14 – Características do solo grampeado da obra 130 (Pitta e outros, 2003)	107
Tabela 15 – Características do solo grampeado da obra 268 (Pitta e outros, 2003)	108
Tabela 16 – Características do solo grampeado da obra 479 (Pitta e outros, 2003)	109
Tabela 17 – Características do solo grampeado da obra 479 (Pitta e outros, 2003)	110
Tabela 18 – Características do solo grampeado da obra 490 (Pitta e outros, 2003)	111
Tabela 19 – Características do solo grampeado da obra 355/500 (Pitta e outros, 2003)	112
Tabela 20 – Características do solo grampeado (Azambuja e outros, 2003)	113
Tabela 21 – Características do solo grampeado (Soares e Gomes, 2003)	114
Tabela 22 – Características do solo grampeado (Moraes e Arduíno, 2003)	115
Tabela 23 – Características do solo grampeado (Alonso e Falcone, 2003)	116
Tabela 24 – Características do solo grampeado (Souza e outros, 2005)	117
Tabela 25 – Características do solo grampeado do Morro do Palácio (Proto Silva, 2005)	118
Tabela 26 – Características do solo grampeado do Morro do Palácio (Proto Silva, 2005)	119
Tabela 27 - Descontinuidades do maciço do Morro do Palácio (Gomes Silva, 2006)	124
Tabela 28 – Ensaios de laboratório realizados em cada tipo de solo	127
Tabela 29 – Características dos ensaios de arrancamento dos grampos	129
Tabela 30 – Ensaios para estudo da influência do número de injeções	131
Tabela 31 – Tipos de re-injeção	131
Tabela 32 – Ensaios para estudo da influência do tempo de cura da injeção	132
Tabela 33 – Ensaios para estudo da influência da lavagem do furo	132
Tabela 34 – Características do extensômetro elétrico	139
Tabela 35 – Características dos terminais coláveis de ligação	139
Tabela 36 - Deformação dos strain gages x carga nos grampos	151

Tabela 37 – Características dos grampos FV-02 e FV-03	186
Tabela 38 – Resultados dos ensaios de arrancamento dos grampos FV-02 e FV-03	186
Tabela 39 – Resultados dos ensaios de laboratório dos solos do grampo FV-02	187
Tabela 40 – Resultados dos ensaios de laboratório dos solos do grampo FV-03	187
Tabela 41 – Características dos grampos M1-19 e M1-20	193
Tabela 42 – Resultados dos ensaios de arrancamento dos grampos M1-19 e M1-20	193
Tabela 43 – Resultados dos ensaios de laboratório do grampo M1-19	195
Tabela 44 – Resultados dos ensaios de laboratório do grampo M1-20	195
Tabela 45 – Resistência à compressão uniaxial da nata de cimento (Magalhães, 2005)	205
Tabela 46 – Resultados das calibrações das barras 1 e 2	210
Tabela 47 – Resumo das características do solo do bloco proveniente da FV	214
Tabela 48 – Resumo das características do solo do bloco proveniente do Museu 1	218
Tabela 49 – Ensaios de Rampa (adaptado de Gomes Silva, 2006)	221
Tabela 50 – Resumo das características do solo do Museu 2 (Proto Silva, 2005)	223
Tabela 51 – Características dos ensaios de arrancamento dos grampos	227
Tabela 52 – Resultados dos ensaios de arrancamento dos grampos com 1 injeção	228
Tabela 53 – Resultados dos ensaios de arrancamento dos grampos com 2 injeções	228
Tabela 54 – Resultados médios de eficiência de 2 injeções com relação a grampos que receb	eram
apenas 1 injeção	228
Tabela 55 – Etapas dos ensaios de arrancamento dos grampos	230
Tabela 56 – Influência da re-injeção (bainha + 1 injeção) na resistência ao arrancamento	235
Tabela 57 – Influência do tipo de re-injeção (Bainha + 1 injeção)	238
Tabela 58 – Influência da lavagem do furo na resistência ao arrancamento	239
Tabela 59 – Influência do tempo de cura da nata na resistência ao arrancamento	242
Tabela 60 – Valores de N(SPT) referentes aos ensaios de arrancamento no Museu 1	245
Tabela 61 – Comparações entre os resultados experimentais e os obtidos pela relação de Pro	oto Silva
(2005)	249

Lista de símbolos

 α : Coeficiente de interface

a : Constante (entre 36 e 48)

Área da seção transversal da barra de aço na região de

colagem do strain gage

Fator de conversão da célula de carga igual a 1668,658

[kgf/V]

c' : Coesão do solo

 C_0 : Resistência à compressão uniaxial da nata

ca': Adesão da interface solo/nata de cimento

cc_{final}: Leitura final da célula de carga [V]

ccinicial : Leitura inicial da célula de carga [V]

c_{nat}: Coesão da amostra natural

c_{sub} : Coesão da amostra submersa

 δ : Deslocamento horizontal

d: Diâmetro da barra de aço

D: Diâmetro do furo de sondagem / Diâmetro da perfuração

δ σ_h : Acréscimo de tensão horizontal

 $\delta \, \sigma_v \, : \, Acréscimo de tensão vertical$

δ': Ângulo de atrito da interface solo/nata de cimento

Deslocamento axial do grampo durante o ensaio de ΔL :

arrancamento

É o deslocamento correspondente à máxima força de $\Delta L_{arrancamento}$

ensaio

Na hipótese de ocorrer fase de cisalhamento, corresponde $\Delta L_{cisalhamento}$:

ao maior deslocamento de ensaio

Variação de voltagem dos terminais da Ponte de

 ΔL_{Ponte} : Wheatstone

ΔR : Variação de resistência do extensômetro elétrico

ε: Deformação medida por strain gage

E: Módulo de elasticidade (Young) do aço

E_p: Eficiência da re-injeção no parâmetro P

Força axial aplicada à barra de aço durante o ensaio de

arrancamento

F: Carga de tração aplicada ao grampo

φ': Ângulo de atrito do solo

F_{max}: Máxima carga axial de tração cortante no grampo

Carga máxima axial desenvolvida durante o ensaio de

arrancamento

φ_{nat} : Ângulo de atrito da amostra natural

FS: Fator de sensibilidade ou GF (Gage Factor)

FS_{medido}: Fator de segurança medido

φ_{sub} : Ângulo de atrito da amostra submersa

FSúlt: Fator de segurança último

γ_{nat}: Peso específico da amostra natural

G_S: Densidade real dos grãos

H: Profundidade (altura) total de escavação

h: Profundidade da aspereza I : Espacamento da aspereza

IP: Índice de Plasticidade

Relação entre Carga de tração no grampo e deformação do

strain gage

k: Constante de correlação (F / ε)

k : Constante de correlação (E . A)

Coeficiente correspondente à inclinação inicial da curva de

deslocamento x força

L: Comprimento do grampo

 λ_1 : Fator de carga para solo residual jovem (areia-argilosa)

 λ_1^* : Fator de carga para solo residual maduro (argila-arenosa)

L_A: Comprimento de ancoragem ou do bulbo ancorado

Lancorado : Comprimento ancorado ou injetado do grampo

L_b: Comprimento do bulbo (zona passiva do grampo)

LL: Limite de Liquidez

LP: Limite de Plasticidade

Índice de resistência à penetração. Número de golpes do N-SPT:

ensaio SPT

P: Carga de tração a ser suportada pelo tirante

P: Carga de arrancamento

p₁: Pressão limite do pressiômetro Ménard

 $P_{_{1\ injeç\~ao}}$ Valor do parâmetro com uma única injeção

P_{2 injeções} Valor do parâmetro com duas injeções

q_s: Resistência ao arrancamento

Resistência ao arrancamento obtida por ensaios de **q**s (1) arrancamento

Resistência ao arrancamento calculada pela relação de **q**s (2) Proto Silva (2005)

Resistência ao arrancamento de grampo com 1 injeção Qs (1 injeção) :

(Bainha)

Resistência ao arrancamento de grampo com 2 injeções Qs (2 injeções) (Bainha + 1 injeção)

Resistência ao arrancamento com pré-lavagem do furo **q**s (com pré-lavagem) :

Resistência ao arrancamento de grampo com 10 dias de

Qs (cura 10 dias) : cura da nata de cimento

Resistência ao arrancamento de grampo com 3 dias de **q**s (cura 3 dias)

cura da nata de cimento

Resistência ao arrancamento de grampo re-injetado pela **q**s (re-injeção na boca)

boca do furo

Resistência ao arrancamento de grampo re-injetado ao **Q**s (re-injeção no

longo do comprimento comprimento)

 $q_{s \; (sem \; lavagem)}$: Resistência ao arrancamento sem lavagem do furo

Resistência ao arrancamento calculada a partir da hipótese

q_{s[calculado]}: de Brown (1970)

R: Resistência nominal do extensômetro elétrico

σ: Tensão aplicada na barra de aço

 $\sigma_{\textit{ensaio}}$: Tensão de ensaio

 σ_h : Tensão horizontal

S_{min}: Seção mínima do tirante

σ_n: Tensão normal aplicada ao grampo

 σ_r : Tensão de ruptura da barra do tirante

 σ_t : Tensão de trabalho ou admissível

 $\sigma_{
m últ}$: Tensão última

 σ_v : Tensão vertical

t : Tempo

τ: Tensão cisalhante

t₀ : Tempo inicial de cada etapa de carregamento

 τ_{adm} : Tensão de aderência admissível rocha-nata

 $\tau_{barra-nata}$: Tensão de aderência ou de cisalhamento barra-nata

T_{LE}: Carga limite estimada

τ_m : Tensão de aderência média

T_n: Carga axial de tração cortante no grampo

 $\tau_{\text{nata-macico}}$: Tensão de aderência no contato nata-maciço

. Tensão de aderência última no contato barra-nata para

^{tult} barras lisas

V : Voltagem de excitação da Ponte de Wheatstone

Lista de abreviaturas

3D : Tridimensional

ABEF : Associação brasileira de estruturas de fundações

ABNT : Associação brasileira de normas técnicas

CLOUTERRE: French National Project CLOUTERRE

COBRAE : Conferência brasileira sobre estabilidade de encostas

Coppe/UFRJ : Coordenação de programas de pós-graduação em engenharia

civil da UFRJ

CP-II-E-32RS : Cimento Portland do tipo (cimento composto com escória e

resistente aos sulfatos)

DIN: Norma alemã

F1: Família 1, ocasionalmente fraturado (<1 fratura por metro) F2: Família 2, pouco fraturado (de 1 a 5 fraturas por metro)

F3: Família 3, medianamente fraturado (de 6 a 10 fraturas por metro)

F4: Família 4, muito fraturado (de 11 a 20 fraturas por metro)

FLAC: Fast Lagrangian Analysis of Continua

FRP: Fiber reinforced plastics

FV: Obra da Rua Fagundes Varela

FV-01 : Ensaio de arrancamento 01 na obra Fagundes Varela FV-02 : Ensaio de arrancamento 02 na obra Fagundes Varela FV-03 : Ensaio de arrancamento 03 na obra Fagundes Varela

GeoRio : Fundação instituto de geotécnica do município do Rio de Janeiro IPT : Instituto de Pesquisas Tecnológicas do Estado de São Paulo

JRC : Coeficiente de rugosidade da rocha LVDT's : Medidores elétricos de deslocamento

M1: Obra do Museu 1

M1-01 : Ensaio de arrancamento 01 na obra Museu 1 M1-02 : Ensaio de arrancamento 02 na obra Museu 1

M1-03 : Ensaio de arrancamento 03 na obra Museu 1 M1-04 : Ensaio de arrancamento 04 na obra Museu 1

M1-05 : Ensaio de arrancamento 05 na obra Museu 1

M1-06 : Ensaio de arrancamento 06 na obra Museu 1

M1-07 : Ensaio de arrancamento 07 na obra Museu 1 M1-08 : Ensaio de arrancamento 08 na obra Museu 1

M1-09 : Ensaio de arrancamento 09 na obra Museu 1

M1-10 : Ensaio de arrancamento 10 na obra Museu 1

M1-11 : Ensaio de arrancamento 11 na obra Museu 1

M1-12 : Ensaio de arrancamento 12 na obra Museu 1 M1-13 : Ensaio de arrancamento 13 na obra Museu 1

M1-14 : Ensaio de arrancamento 14 na obra Museu 1

M1-15 : Ensaio de arrancamento 15 na obra Museu 1

M1-16 : Ensaio de arrancamento 16 na obra Museu 1

M1-17 : Ensaio de arrancamento 17 na obra Museu 1 M1-18 : Ensaio de arrancamento 18 na obra Museu 1

M1-19 : Ensaio de arrancamento 19 na obra Museu 1 M1-20 : Ensaio de arrancamento 20 na obra Museu 1

M2: Obra do Museu 2

M2-01 : Ensaio de arrancamento 01 na obra Museu 2 M2-02 : Ensaio de arrancamento 02 na obra Museu 2 MAC : Museu de Arte Contemporânea de Niterói

MIT: Diagrama Trilinear de Solos NA: Nível d'água estabelecido

Nat : Amostra de solo na umidade natural

NATM: New Austrian tunnelling method

NBR: Norma brasileira NE : Direção nordeste

PUC-Rio: Pontifícia Universidade Católica do Rio de Janeiro

R1: Rugosidade de fuste 1 R2: Rugosidade de fuste 2 R3: Rugosidade de fuste 3 R4: Rugosidade de fuste 4

SE: Direção sudeste

SEEL : Serviços especiais de engenharia Ltda

SEFE : Seminário de engenharia de fundações especiais e geotecnia Strain gage inicial ou zero, localizado a 0,5m a partir do início do SG 0 :

trecho injetado

SG1 : Strain gage 1, localizado a 1,0m do início do trecho injetado SG2: Strain gage 2, localizado a 1,5m do início do trecho injetado SG3: Strain gage 3, localizado a 2,0m do início do trecho injetado SG4: Strain gage 4, localizado a 2,5m do início do trecho injetado

Sindicato da indústria da construção civil do estado de São SINDUSCON: Paulo

Solo 1: Solo residual maduro vermelho

Solo 2 : Solo residual jovem

Solo 3 : Solo residual maduro (Argila-arenosa marrom avermelhada)

Solo residual maduro (Argila-arenosa marrom avermelhada e Solo 4: silto-argiloso branco)

Solo 5 : Solo residual jovem (silte areno-argiloso amarelo) Solo 6 : Rocha alterada (argila-arenosa marrom avermelhada) Solo 7: Solo residual maduro (silte areno-argiloso amarelo)

SPT: Standard penetration test

Strain gage inicial ou zero, localizado a 0,5m a partir do início do Strain gage 0:

trecho injetado

Strain gage 1 : Strain gage localizado a 1,0m a partir do início do trecho injetado Strain gage 2 : Strain gage localizado a 1,5m a partir do início do trecho injetado Strain gage 3 : Strain gage localizado a 2,0m a partir do início do trecho injetado Strain gage 4 : Strain gage localizado a 2,5m a partir do início do trecho injetado

Sub: Amostra de solo submerso

SUCS : Sistema unificado de classificação de solos

SW Direcão sudoeste

UnB: Universidade de Brasília USP: Universidade de São Paulo