

Victor Manuel Cardenas Tarazona

Escoamento de um Líquido Pseudoplástico em Espaço anular com Excentricidade Variável

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Márcio da Silveira Carvalho

Victor Manuel Cardenas Tarazona

Escoamento de um Líquido Pseudoplástico em Espaço anular com Excentricidade Variável

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Márcio da Silveira Carvalho Orientador Departamento de Engenharia Mecância – PUC - Rio

Prof. Luiz Fernando Alzuguir AzevedoDepartamento de Engenharia Mecância – PUC - Rio

Prof. Roney Leon Thompson Universidade Federal Fluminense

Prof. Jose Eugenio Leal Coordenador Setorial do Centro Técnico Científico – Puc-Rio

Rio de Janeiro, 21 de Dezembro de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Víctor Manuel Cardenas Tarazona

Graduo-se em Engenharia Mecânica na Universidade Gama Filho - Rio de Janeiro - Brasil

Ficha Catalográfica

Cardenas Tarazona, Victor Manuel

Escoamento de um líquido pseudoplástico em espaço anular com excentricidade variável / Victor Manuel Cárdenas Tarazona ; orientador: Márcio da Silveira Carvalho. – Rio de Janeiro : PUC, Departamento de Engenharia Mecânica, 2005.

116 f.: il.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui bibliografia.

1. Engenharia mecânica – Teses. 2. Escoamento em poço. 3. Teoria da lubrificação. 4. Excentricidade variável. 5. Líquido pseudoplástico. I. Carvalho, Márcio da Silveira. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Dedicatória

A minha Esposa Adriana, que me acompanhou, me deu força a cada passo da Tese; aos meus Pais (Victor e Flor de Maria) e irmãs (Gulianna e Valeria), que me deram o apoio para que este sonho se tornasse realidade, às minhas filhas (YIIa, Layca, Minie e Molly), que me alegram e me acompanharam naquelas noites intermináveis; a Sra. Ruth dos Remédios Branco de Moraes, motivo de dedicação, disciplina, organização, mãe da minha mulher, que lhe devo todo meu respeito, que em paz descanse.

Agradecimentos

Gostaria de agradecer a todas as pessoas que fizeram possível a elaboração deste trabalho, em especial:

A Márcio (Orientador), que teve dedicação, apoio e paciência a cada passo de Tese.

Aos meus colegas de pesquisa (grupo de Reologia) que me acompanharam, aconselharam e ajudaram no transcorrer da Tese.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio, tanto pelos momentos compartilhados, quanto pelos conselhos e dicas a nível acadêmico.

À CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Cardenas Tarazona, Victor Manuel. **ESCOAMENTO DE UM LÍQUIDO PSEUDOPLASTICO EM ESPAÇO ANULAR COM EXCENTRICIDADE VARIAVEL.** Rio de Janeiro, 2005. 116p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo de escoamentos em espaço anular é de fundamental importância para o entendimento e otimização do processo de perfuração de poços. A lama de perfuração deve possuir propriedades reológicas e termofísicas tais que garantam um bom desempenho no carreamento de cascalho, na lubrificação e refrigeração das brocas, na limpeza do poço, manutenção da pressão da coluna de líquido para equilibrar a pressão das formações atravessadas e estabilizar as paredes do poço. Uma análise completa desta situação é extremamente complexa; o cilindro interno (coluna) pode estar girando, a geometria da parede do poço não é um cilindro perfeito, o espaço anular é excêntrico e a excentricidade varia ao longo do poço. Além disto, lamas de perfuração possuem um comportamento pseudoplástico, isto é a viscosidade é função decrescente da taxa de deformação. Os modelos que levam em conta todos esses fatores são extremamente complexos e caros computacionalmente. Os modelos disponíveis na literatura utilizam hipóteses simplificadoras para tornar a análise menos complexa. Muitos trabalhos consideram a rotação do cilindro interno e o comportamento não Newtoniano, mas desprezam a variação da excentricidade ao longo do poço. Mesmo com esta simplificação, os modelos apresentados, que consistem na solução da equação bidimensional para determinar o campo de velocidade axial e tangencial do escoamento desenvolvido em um espaço anular, possuem alto custo computacional. O modelo apresentado neste trabalho leva em conta a variação da excentricidade ao longo do poço, bem como o comportamento pseudoplástico da lama e a rotação do cilindro interno. As equações que governam o problema foram simplificadas utilizando a teoria de lubrificação. As equações diferenciais

parciais que descrevem o perfil de velocidade e a pressão ao longo do poço foram resolvidas pelo método de diferenças finitas (diferenças centrais) e linearizadas pelo método de Newton. O modelo de lubrificação foi validado através da comparação dos resultados obtidos com trabalhos na literatura para escoamentos com excentricidade constante. Os resultados mostram o efeito da variação da excentricidade ao longo do poço, da rotação na coluna, das propriedades não Newtonianas no padrão do escoamento e no fator de atrito.

Palavras-chave

Escoamento em poço, Teoria da Lubrificação, Excentricidade variável; líquido pseudoplástico,

Abstract

Cardenas Tarazona, Victor Manuel. FLOW OF PSEUDOPLASTIC FLUID IN ANNULAR WITH VARIABLE ECCENTRICITY. Rio de Janeiro, 2005. 116p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Helical flow in annular space occurs in drilling operation of oil and gas wells. The correct prediction of the flow of the drilling mud in the annular space between the wellbore wall the the drill pipe is essential to determine the variation in the mud pressure within the wellbore, the frictional pressure drop and the efficiency of the transport of the rock drill cuttings. A complete analysis of this situation is extremely complex; the inner cylinder is usualy rotating, the wellbore wall will depart significantly from cylindrical, during driling operation the drill pipe is eccentric, and the eccentricity varies with position along the well. Moreover, drilling muds present pseudoplastic behavior, the viscosity is a strong function of the deformation rate. A complete analysis of this situation would require the solution of the three-dimensional momentum equation and would be computationally expensive and complex. Models available in the literature to study this situation do consider the rotation of the inner cylinder and the non Newtonian behavior of the liquid, but assume the position of the inner and outer cilinders fixed, i.e. they neglect the variation of the eccentricity along the length of the well, and assume the flow to be well developed. This approximation leads to a two-dimensional model to determine the three components of the velocity field in a cross-section of the annulus. The resulting differential equations have to be solved by some numerical method. The model presented in this work takes into account the variation of the eccentricity along the well; a more appropriate description of the geometric configuration of directional wells. As a consequence, the velocity field varies along the well length and the resulting flow model is three-dimensional. Lubrication theory is used to simplify the governing equations into a non-linear, two-dimensional Poisson Equation that describes the pressure field. Lubrication model was validated by comparing the predictions to reported results on fully developed flow on eccentric annular space. The results show the effect of varying eccentricity, non Newtonian behavior and inner cylinder rotation on the flow field and on the friction factor.

Keywords

Drilling mud flow, eccentric annular space, lubrication approximation

Sumário

1 Introdução 18		
1.1	Motivação	18
1.2	Descrição do Processo de Perfuração	19
1.2.1	Sistema de Circulação	21
1.2.1	.1 Lama de Perfuração	22
1.3	Revisão Bibliográfica	27
1.4	Objetivos do trabalho	33
1.5	Roteiro	34
2 N	Modelo Matemático	35
2.1	Equação da Conservação da Massa	35
2.2	Equação da Quantidade de Movimento	35
2.3	Equação Constitutiva para a Viscosidade	36
2.4	Geometria do Problema	37
2.5	Teoria da Lubrificação	40
3 N	Método de Solução	47
3.1	Técnicas numéricas	47
3.1.1	Método de Diferenças finitas	47
3.1.2	Método de Newton	50
3.1.3	Método de Integração – Regra do Trapézio	52
3.2	Passos para solução do problema	53
3.2.1	Passo 1 - calcular o campo de pressão	53
3.2.2	Passo 2- calcular os gradientes de pressão $\frac{\partial P}{\partial z}(\theta, z); \frac{\partial P}{\partial \theta}(\theta, z)$	54
3.2.3	Passo 3 – Calcular os perfis de velocidade	56
3.2.3	1.1 Discretização das Equações	58
3.2.4	Passo 4 – Calcular os Coeficientes C_0 , C_θ C_z	69
3.2.5	Passo 5 – Calcular o campo de pressão	70

3.2.5.1	Discretização da equação das Pressões	70
4 Res	ultados	76
4.1 T	este da Malha	76
4.2 V	alidação do Programa	77
4.2.1	Não – Newtoniano Concêntrico	78
4.2.2	Não – Newtoniano excêntrico	81
4.3 E	feito Não – Newtoniano para excentricidade constante	85
4.4 E	scoamento Não-Newtoniano com excentricidade Variável	90
5 Comentários Finais e Sugestões		
5.1 C	omentários Finais	113
5.2 S	ugestões	114
Referencias Bibliográficas		

Lista de figuras

Figura 1-1 – Escoamento do fluido de perfuração.	18
Figura 1-2 – Componentes básicos do sistema de Movimentação	21
Figura 1-3 – Sistema de Circulação da lama de perfuração.	22
Figura 1-4 – Fluído Selante,	24
Figura 1-5 – Classificação dos fluidos de perfuração.	25
Figura 1-6 – Esquema de Classificação dosas fluidos de perfuração	26
Figura 1-7 – Definição de comprimentos equivalentes para anulares	28
Figura 1-8 – Configuração geométrica de Luo e Pedem	30
Figura 1-9 – Perfil de velocidade no anular excêntrico	30
Figura 1-10 – Perfil de Velocidade no anular excêntrico	31
Figura 1-11– Perfil da Tensão Cisalhante em anular excêntrico	31
Figura 1-12 - Perfil da Tensão Cisalhante em anular excêntrico	32
Figura 1-13 – Perfil de Velocidade de Nouri e Whitelaw (1994)	33
Figura 2-1 – Gráfico representativo da Tensão Cisalhante	37
Figura 2-2 – Modelo Geométrico adotado, excentricidade senoidal	37
Figura 2-3 - Geometria do problema utilizada como ponto de partida	38
Figura 2-4 – Convenção de sinais para excentricidade linear	38
Figura 2-5- Geometria do sistema, duas excentricidades	39
Figura 3-1 – Malha unidimensional uniformemente espaçados	49
Figura 3-2 – Representação geométrica do método de Newton	50
Figura 3-3 - Representação geométrica do método de Newton	52
Figura 3-4 – Representação do canal para discretização	54
Figura 4-1- Comparação dos resultados experimentais de Nouri and Witelaw.	78
Figura 4-2- Comparação dos resultados experimentais de Nouri and Witelaw.	79
Figura 4-3 – Comparação dos resultados experimentais de Nouar	79
Figura 4-4 - Comparação dos resultados experimentais de Nouar	80
Figura 4-5 – Comparação dos resultados experimentais de Xixheng	80
Figura 4-6 – Comparação dos resultados analíticos de Escudier	81
Figura 4-7 – Comparação dos resultados de Escudier	82

Figura $4\text{-}8$ – Efeito do aumento da velocidade com aumento da excentricidade 83
Figura 4-9 – Variação do fRe com aumento do número de Taylor 84
Figura $4\text{-}10$ – Influencia da rotação em f Re para excentricidade constante 84
Figura 4-11 — Influencia da rotação em f Re para excentricidade constante 85
Figura 4-12 - Influencia da rotação em fRe para excentricidade constante 85
Figura 4-13 – Influencia da excentricidade em <i>fRe</i>
Figura 4-14 – Efeito da rotação para diferentes índices de potências 87
Figura 4-15 – Resultados de Lockett et al, Coronado e Carvalho
Figura $4-16$ – Taylor crítico $Ta*$ para vários índices de potência
Figura 4-17 – Influencia da rotação em fRe até o $Ta*$
Figura 4-18 – Influencia da excentricidade constante e rotação em f Re 90
Figura $4\text{-}19$ – Figura esquemática para o análise dos perfis de velocidade91
Figura 4-20 — Distribuição das velocidades axial e circunferêncial ($\epsilon=0,2$) 92
Figura 4-21 — Gradiente de pressão na seção para o escoamento Newtoniano93
Figura 4-22 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,\!0)93$
Figura 4-23 - Gradiente de pressão na seção para o escoamento Newtoniano94
Figura 4-24 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,5$)95
Figura 4-25 - Gradiente de pressão na seção para o escoamento Newtoniano95
Figura 4-26 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,3$)96
Figura 4-27 – Detalhe da combinação dos perfis de velocidade ($\epsilon=0,3$)96
Figura 4-28 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,3$)97
Figura 4-29 - Detalhe da combinação dos perfis de velocidade ($\epsilon=0,3$)97
Figura 4-30 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,1$)98
Figura 4-31 - Gradiente de pressão na seção para o escoamento Newtoniano98
Figura 4-32 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,1)99$
Figura 4-33 - Gradiente de pressão na seção para o escoamento Newtoniano99
Figura 4-34 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,1$) 100
Figura 4-35 - Detalhe da combinação dos perfis de velocidade ($\epsilon=0,1$) 100
Figura 4-36 - Distribuição das velocidades axial e circunferêncial $\ (\epsilon=0,4)102$
Figura 4-37 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,4$) 102
Figura 4-38 - Distribuição das velocidades axial e circunferêncial ($\epsilon=0,1$) 103
Figura 4-39 - Distribuição das velocidades axial e circunferêncial (s = 0.1) 103

Figura 4-40 – Distribuição de pressão ao longo do canal para o esc NN 104
Figura 4-41 - Distribuição de pressão ao longo do canal para o esc NN 104
Figura 4-42 - Distribuição das velocidades axial e circunferêncial e ($\epsilon=0,1$) 105
Figura 4-43 - Distribuição das velocidades axial e circunferêncial e $(\epsilon=0,1)105$
Figura 4-44 - Distribuição das velocidades axial e circunferêncial e ($\epsilon = 0,4$) 106
Figura 4-45 - Distribuição das velocidades axial e circunferêncial ($\epsilon = 0,4$) 106
Figura 4-46 - Distribuição de pressão ao longo do canal para o esc NN 107
Figura 4-47 – Distribuição da pressão local para diferentes valores de n 107
Figura 4-48 - Distribuição da pressão local para diferentes valores de n 108
Figura 4-49 – Variação do fRe para diferentes Taylor (<i>Ta</i>) e. <i>n</i>
Figura 4-50 – Comparativos do fRe vs n concêntrico
Figura 4-51 – Velocidades axial e circunferêncial excentricidade variável hel 110
Figura 4-52 - Distribuição da pressão para o esc com exc variável hel111
Figura 4-53 – Espessura do Canal adimensional (H) para o esc hel
Figura 4-54 – Comparativo do fRe vs n para a exc senoidal e hel112

Lista de tabelas

Tabela 4-1 – Tabela de resultados para o teste da malha.	77
Tabela 4-2 – Tabela de testes para análise do escoamento Newtoniano	92
Tabela 4-3 - Tabela de testes para análise do escoamento não-Newtoniano 1	01

Lista de Símbolos

z	coordenada na direção axial
R	coordenada na direção radial
θ	coordenada na direção circunferencial
ρ	massa específica (kg/m³)
η	índice de potência
m	índice de comportamento (Pa s $^{\eta}$)
$\stackrel{\dot{\gamma}}{=}$	Tensor Taxa de deformação
$\dot{\gamma}$	Intensidade de taxa de deformação
τ	Tensor das tensões viscosas
<u>T</u>	Tensor das tensões
и	velocidade axial (m/s)
w	velocidade circunferencial (m/s)
v	velocidade radial (m/s)
R_i	raio do cilindro interno – coluna de perfuração (m)
R_o	raio do cilindro externo – parede do poço (m)
R	raio externo do anular (m)
P_{ent}	pressão na entrada do poço (Pa)
P_{sai}	pressão na saída do poço (Pa)
L	comprimento do poço (m)
e_{xconst}	excentricidade constante no eixo horizontal (m)
e_{yconst}	excentricidade constante no eixo vertical (m)
A_{mplx}	amplitude da função senoidal da excentricidade no eixo horizontal (m)
A_{mply}	amplitude da função senoidal da excentricidade no eixo vertical (m)
\mathcal{E}_{X}	excentricidade ao longo do poço no eixo horizontal (m)
\mathcal{E}_y	excentricidade ao longo do poço no eixo vertical (m)
\mathcal{E}	resultante das duas excentricidades (m)
$arOlimin_i$	velocidade angular da coluna de perfuração (rad/s)
δ	Diferencia de raios $(R_o - R_i)$ (m)

 D_H Diâmetro hidráulico 2δ (m)

k razão de raios (R_i/R_o)

H espessura do canal

U velocidade característica do escoamento

 $V_{m\'edia}$ velocidade média do escoamento

 ξ taxa de velocidade $(\Omega_i R_i/U)$

 Re_o numero de Reynolds para o fluido Power – Law, quando $\Omega_i = 0$

Re número de Reynolds

 Ta_o Número de Taylor para o fluído Power-Law, quando U = 0

Ta Número de Taylor