

Omar Paranaiba Vilela Neto

Simulação e Síntese Automática de Circuitos de Autômatos Celulares com Pontos Quânticos Através de Técnicas Inteligentes

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

> Orientadores: Marco Aurélio C. Pacheco Carlos Roberto H. Barbosa

Rio de Janeiro, fevereiro de 2006

Omar Paranaiba Vilela Neto

Simulação e Síntese Automática de Circuitos de Autômatos Celulares com Pontos Quânticos Através de Técnicas Inteligentes

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Marco Aurélio C. Pacheco Orientador PUC-Rio

Carlos Roberto Hall Barbosa Orientador PUC-Rio

> Rodrigo Prioli PUC-Rio

Renato Portugal LNCC

Maurício Pamplona UFRJ

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 15 de fevereiro de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Omar Paranaiba Vilela Neto

Graduou-se em Engenharia de Computação na Pontifícia Universidade Católica do Rio de Janeiro em 2004.

Ficha Catalográfica

Vilela Neto, Omar Paranaíba

Simulação e síntese automática de circuitos de autômatos celulares com pontos quânticos através de técnicas inteligentes / Omar Paranaíba Vilela Neto ; orientadores: Marco Aurélio C. Pacheco, Carlos Roberto H. Barbosa. – Rio de Janeiro : PUC, Departamento de Engenharia Elétrica, 2006.

130 f. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

Engenharia elétrica – Teses. 2.
Nanotecnologia. 3. Nanoeletrônica. 4. Pontos Quânticos. 5.
Autômatos Celulares. 6. Rede Neurais. 7. Algoritmos
Genéticos. I. Pacheco, Marco Aurélio C. II. Barbosa, Carlos
Roberto H. III. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Engenharia Elétrica. IV. Título.

PUC-Rio - Certificação Digital Nº 0410263/CA

Aos meus pais Cora Alice e Paulo Antônio.

Agradecimentos

Ao CNPq pelo apoio financeiro

Aos meus orientadores Professores Marco Aurélio C. Pacheco e Carlos Roberto Hall Barbosa pelo apoio e parceria neste trabalho.

Aos demais professores pelos ensinamentos.

Aos amigos Juan Lazo Lazo, Yván Jesus Túpac Valdivia e André Vargas Abs da Cruz pelo apoio e comentários durante o desenvolvimento.

Aos amigos Leone Masiero e Richardson Sadoco pelo suporte e apoio.

Aos amigos e familiares que torceram por mim nestes dois anos.

Aos funcionários da oficina de manutenção do departamento de elétrica pela ajuda.

Aos amigos do ICA por seu contínuo apoio e colaboração.

À minha irmã, cunhado e sobrinho pelo apoio e confiança.

À Adrissa pelo amor, auxílio e paciência.

Resumo

Omar Paranaiba Vilela Neto. **Simulação e Síntese Automática de Circuitos de Autômatos Celulares com Pontos Quânticos Através de Técnicas Inteligentes.** Rio de Janeiro, 2006. 130p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação investiga e propõe um novo simulador de circuitos de Autômatos Celulares com Pontos Quânticos (QCA) e uma nova metodologia para a criação e otimização de circuitos lógicos, utilizando técnicas da inteligência computacional. Autômatos Celulares com Pontos Quânticos é uma nova tecnologia, na escala nanométrica, que tem chamado a atenção dos pesquisadores por ser uma alternativa à tecnologia CMOS, cujo limite físico de miniaturização será atingido nos próximos anos. QCA tem um grande potencial no desenvolvimento de circuitos com maior densidade espacial, maior velocidade, baixa dissipação e baixo consumo de energia. Ao contrário das tecnologias tradicionais, QCA não codifica a informação pelo fluxo de corrente elétrica, mas pela configuração das cargas elétricas no interior das células. A interação coulombiana entre as células garante o fluxo da informação. Apesar de simples, essas características fazem com que a arquitetura de circuitos de QCA se torne não trivial. Portanto, a criação de um simulador e de uma metodologia de elaboração e síntese automática de circuitos possibilitam aos cientistas uma melhor visualização de como esses dispositivos funcionam, acelerando o desenvolvimento desses sistemas na escala nanométrica. Para atingir o objetivo proposto, técnicas de inteligência computacional, tais como redes neurais do tipo Hopfield, para o desenvolvimento do simulador, e algoritmos genéticos, para a metodologia de criação e otimização dos circuitos, foram empregadas. Os resultados encontrados foram significativos, comprovando que as técnicas da inteligência computacional podem ser uma ferramenta estratégica para o rápido desenvolvimento da nanoeletrônica e da nanotecnologia em geral.

Palavras-chave

Nanotecnologia, Nanoeletrônica, Pontos Quânticos, Autômatos Celulares, Rede Neurais, Algoritmos Genéticos.

Abstract

Omar Paranaiba Vilela Neto. Simulation and Automatic Syntheses of Quantum Dots Cellular Automata circuits thought Intelligent Techniques. Rio de Janeiro, 2006. 130p. MSc. Dissertation – Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro.

This dissertation investigates and considers a new simulator of Quantum Dots Cellular Automata (QCA) Circuits and a new methodology for the synthesis and optimization of logical circuits, by means of Computational Intelligence. Quantum-dot Cellular Automata (QCA) is a new technology in the nanometric scale which has called attention from researchers as one alternative for the CMOS technology, which is reaching its physical limitation. QCA have a large potential in the development of circuits with high space density and low heat dissipation, and can allow the development of faster computers with lower power consumption. Differently from the conventional technologies, QCA do not codify information by means of electric current flow, but rather by the configuration of electrical charges in the interior of the cells. The Coulomb interaction between cells is responsible by the flow of information. Despite simple, these features become the design of logical devices into a non-trivial task. Therefore, the development of a simulator and a methodology of automatic synthesis of QCA circuits make possible to the scientist a better evaluation of how these circuits work, accelerating the development of these new systems in the nanometer scale. To reach the proposed target, Computational Intelligence techniques were used. The first results show that these techniques are capable of simulating efficiently and fast, synthesizing optimized circuits with a reduced number of cells. Such optimization reduces the possibility of failures and guarantees higher speed.

Keywords

Nanotechnology, Nanoelectronic, Quantum Dots, Cellular Automata, Neural Network, Genetic Algorithm.

Sumário

1 Introdução	17
1.1. Motivação	17
1.2. Objetivos	19
1.3. Descrição do Trabalho	19
1.4. Organização da Dissertação	20
2 Inteligência Computacional no Apoio à Nanotecnologia	22
2.1. Inteligência Computacional	23
2.1.1. Algoritmos Genéticos	23
2.1.2. Lógica Fuzzy	24
2.1.3. Redes Neurais	26
2.1.4. Sistemas Híbridos	26
2.2. Sistema de Apoio à Nanotecnologia	27
2 Autômatas Calulares com Dentes Ouôntises (OCA)	22
3 Automatos Celulares com Pontos Quanticos (QCA)	33
	33
3.2. Principios dos Dispositivos	33
3.3. Dispositivos Logicos Basicos	37
3.4. Celulas Rotacionadas e Circuitos em um Plano	39
3.5. Zonas de Clock	40
3.6. Circuitos Lógicos já Desenvolvidos	43
3.7. Alternativas de Fabricação	43
3.7.1. Ilhas de Metal	44
3.7.2. Semicondutor	44
3.7.3. Magnético	44
3.7.4. Molecular	45
4 Simulador de QCA	46
4.1. Introdução	46
4.2. Simuladores de QCA Já Existentes	46

4.3. Rede Neural do Tipo Hopfield	48
4.4. Considerações Sobre os Dispositivos Simulados	49
4.4.1. Raio de Vizinhança de uma Célula	50
4.4.2. Interação entre as Células	51
4.5. A Simulação	56
4.6. Resultados	59
4.6.1. Majority Gate	59
4.6.2. Circuito com ruído	61
5 Síntese Automática de Circuitos de QCA por Algoritmos Genéticos	64
5.1. Descrição do Problema	64
5.2. Representação dos Indivíduos	66
5.3. Avaliação dos Indivíduos	70
6 Estudos de Casos	72
6.1. Porta Lógica OU de 4 Entradas	72
6.2. Multiplexador	76
6.3. Ou-exclusivo	79
6.4. Somador Completo	82
6.4.1. Alternativa 1	83
6.4.2. Alternativa 2	85
7 Conclusões e Trabalhos Futuros	88
8 Referência Bibliográficas	91
Apêndice 1	97
Células Rotacionadas Lado a Lado	97
Uma Célula Convencional e uma Célula Rotacionada Lado a Lado	97
Células Convencionais Distanciadas de Meia Célula	98
Células Rotacionadas Distanciadas de Meia Célula	98
Uma Célula Convencional e uma Célula Rotacionada Distanciadas de	
Meia Célula	99

0410263/CA
۶
Digital I
ção
Certifica
ċ
C-Ri

Células Convencionais Distanciadas de Uma Célula	99
Células Rotacionadas Distanciadas de Uma Célula	100
Uma Célula Convencional e uma Célula Rotacionada Distanciadas de	9
Uma Célula	100
Células Convencionais em Diagonal	101
Células Rotacionadas em Diagonal	101
Uma Célula Convencional e uma Célula Rotacionada em Diagonal	102
Células Convencionais em Diagonal Distanciadas	102
Células Rotacionadas em Diagonal Distaciadas	103
Uma Célula Convencional e uma Célula Rotacionada em Diagonal	
Distanciadas	103
Células Convencionais em Meia Diagonal	104
Células Rotacionadas em Meia Diagonal	105
Uma Célula Convencional e uma Célula Rotacionada em Meia	
Diagonal	105
Células Convencionais em Meia Diagonal Distanciadas	106
Células Rotacionadas em Meia Diagonal Distanciada	107
Uma Célula Convencional e uma Célula Rotacionada em Meia	
Diagonal Distanciadas	107
Apêndice 2	109
Inversor	109
Dois Fios Cruzando em um Plano	110
Majority Gate Tradicional	111
Porta Lógica <i>E</i>	113
Majority Gate Alterado	113
Somador Completo	117
Apêndice 3	123
Porta OU de 4 entradas	123
Multiplexador	124
OU Exclusivo	126
Somador Completo – Alternativa 1	127
Somador Completo – Alternativa 2	128

Lista de figuras

Figura 1– Procedimento básico do algoritmo genético
Figura 2– Componentes de um Conjunto Fuzzy25
Figura 3- Diagrama de uma célula de QCA com quatro pontos quânticos em seus
dois possíveis estados de polarização34
Figura 4– Interação não-linear entre as células de QCA. A polarização da célula 2
é fixa e influencia a polarização da célula 134
Figura 5- Duas células lado a lado com polarizações semelhantes e com
polarizações opostas
Figura 6– Um fio de QCA
Figura 7– O inversor de QCA
Figura 8– O a distribuição de sinal em um circuito de QCA
Figura 9- O Majority Gate e como ele pode ser usado para implementar as portas
lógicas E e OU
Figura 10– Um fio de células rotacionadas
Figura 11- Interação coulombiana entre uma célula tradicional e uma
rotacionada
Figura 12- Cruzamento de informações em um plano
Figura 13– As quatro fases de <i>clock</i> em QCA41
Figura 14– <i>Majority Gate</i> incorreto
Figura 15– Majority Gate com as zonas de clock sincronizando a informação 42
Figura 16- Estrutura de uma rede neural do tipo Hopfield com conexões entre
todos os neurônios
Figura 17– Exemplo de <i>grade</i> para posicionamento de células50
Figura 18– O raio de vizinhança de uma célula de QCA do simulador50
Figura 19- Duas células lado a lado com a polarizações diferentes e polarizações
semelhantes
Figura 20- Como a posição da célula inverte o sinal da "kink energy" quando
uma célula convencional é vizinha de uma célula rotacionada56
Figura 21- O circuito do Majority Gate (os tons de cinza representam as

diferentes zonas de clock). E a topologia da rede neural de Hopfield que o Figura 23- O circuito do Majority Gate (os tons de cinza representam as diferentes zonas de clock). E a topologia da rede neural de Hopfield que o Figura 24- Resultado da simulação do majority gate para um conjunto de entradas......61 Figura 25– Arranjo de células com ruído. À direita o resultado da simulação, onde a cor vermelho representa a polarização -1 e a cor azul a polarização 1. Figura 26-- Arranjo de células sem ruído. À direita o resultado da simulação, onde a cor vermelho representa a polarização -1 e a cor azul a polarização 1. Figura 28– Grade de um circuito com duas entradas (cinza) e uma saída (preto). Os números indicam as posições (o ponto à esquerda e abaixo do número) Figura 30– Criação passo a passo da topologia do circuito de acordo com os Figura 31– Exemplo do problema de ótimo local quando a função de avaliação só Figura 33– Melhor circuito OU de quatro entradas evoluído pelo AG......74 Figura 36– Topologia do melhor multiplexador encontrado pelo AG, contendo 14 Figura 37 – Topologia do multiplexador sugerido por Lent, contendo 21 células. Figura 39– Topologia do melhor Ou-exclusivo encontrado pelo AG. Os tons de

cinza representam as zonas de <i>clock</i> 81
Figura 40– Topologia do Ou-exclusivo proposto na literatura81
Figura 41- Topologia do somador completo. Partes vermelhas e verdes serão
substituídas por partes menores
Figura 42– Topologia do novo circuito do somador completo
Figura 43– Média dos melhores indivíduos por geração86
Figura 44– Topologia do novo somador completo
Figura 45– Células rotacionadas lado a lado97
Figura 46– Uma célula convenciona e uma célula rotacionada lado a lado98
Figura 47– Células convencionais distanciadas de meia célula98
Figura 48– Células rotacionadas distanciadas de meia célula
Figura 49- Uma célula convenciona e uma célula rotacionada distanciadas de
meia célula99
Figura 50– Células convencionais distanciadas de uma célula99
Figura 51– Células rotacionadas distanciadas de uma célula
Figura 52- Uma célula convenciona e uma célula rotacionada distanciadas de
uma célula100
Figura 53– Células convencionais em diagonal101
Figura 54– Células rotacionadas em diagonal101
Figura 55– Uma célula convenciona e uma célula rotacionada em diagonal 102
Figura 56– Células convencionais em diagonal102
Figura 57– Células rotacionadas em diagonal distanciadas103
Figura 58- Uma célula convenciona e uma célula rotacionada em diagonal
distanciadas103
Figura 59- As posições das células com a "kink energy" positiva. Os quadrados
pontilhados indicam as posições onde a "kink energy" é negativa devido a
inversão de polarização104
Figura 60– Células convencionais em meia diagonal105
Figura 61– Células rotacionadas em meia diagonal105
Figura 62– Uma célula convenciona e uma célula rotacionada em meia diagonal
distanciadas106
Figura 63- As posições das células com a "kink energy" positiva. Os quadrados
pontilhados indicam as posições onde a "kink energy" é negativa devido a

inversão de polarização106
Figura 64– Células convencionais em meia diagonal distanciadas
Figura 65– Células rotacionadas em meia diagonal107
Figura 66- Uma célula convenciona e uma célula rotacionada em meia diagonal
distanciadas107
Figura 67- As posições das células com a "kink energy" negativa. Os quadrados
pontilhados indicam as posições onde a "kink energy" é positiva devido a
inversão de polarização108
Figura 68– Representação do inversor
Figura 69- As simulações do inversor para os dois valores de entrada possíveis.
Figura 70- Representação de um circuito com dois fios cruzando em um plano.
Figura 71- Simulação de dois fios cruzando em um plano. Todos os conjuntos de
entradas111
Figura 72- Representação de um majority gate111
Figura 73- Simulação de um majority gate. Todos os conjuntos de entradas112
Figura 74- Simulação de um majority gate. Todos os conjuntos de entradas113
Figura 75- Representação de um majority gate com as entradas partindo da
esquerda114
Figura 76- Simulação de um outro majority gate. Todos os conjuntos de
entradas115
Figura 77- Representação de um majority gate, com zonas de clock. Os sinais
fluem da esquerda para a direita115
Figura 78- Simulação passo a passo do majority gate com zonas de clock 117
Figura 79- Representação de um somador completo com três entradas117
Figura 80– Simulação passo a passo de um somador completo
Figura 81- Representação de um somador completo serial com duas entradas. 120
Figura 82– Simulação passo a passo de um somador completo serial122
Figura 83– Melhor circuito OU de quarto entradas evoluído pelo AG 123
Figura 84– Simulações da porta OU sintetizada124
Figura 85– Melhor Multiplexador sintetizado
Figura 86– Simulações do Multiplexador sintetizado

Figura 87- Topologia do melhor Ou-exclusivo encontrado pelo AG. O	Os tons de
cinza representam as zonas de <i>clock</i>	126
Figura 88– Simulações da porta OU-Exclusivo sintetizada	
Figura 89– Topologia do novo circuito do somador completo	127
Figura 90- Simulações do Somador completo 1 sintetizado	
Figura 91- Topologia do novo circuito do somador completo - alternati	va 2128
Figura 92- Simulações do Somador completo 1 sintetizado	

Lista de tabelas

abela 1- Trabalhos em nanotecnologia utilizando Inteligência Computaciona	
Tabela 2– Simuladores de QCA já desenvolvidos48	
Tabela 3– "Kink energy" para todas as possíveis posições que respeitem o raio de	
vizinhança definido55	
Tabela 4– O estado de polarização de cada célula, a cada passo da rede neural. 60	
Tabela 5– Comparação dos dados de 10 experimentos. 73	
Tabela 6– Comparação dos dados de 10 experimentos. 72	
Tabela 7– Comparação entre a busca aleatória e o AG.85	