6 Resposta do Sistema Não-Linear

As equações de movimento (4.12) apresentam não-linearidade geométrica e inercial em virtude do movimento do pêndulo. Ao considerar a não-linearidade, o sistema passa a não possuir uma solução fechada. Assim, deve-se procurar uma solução aproximada, que pode ser obtida, por exemplo, no domínio da freqüência. Isso permite uma análise da influência do grau de não-linearidade do sistema na resposta, bem como uma análise dos casos onde tornem-se necessários ajustes do absorsor pendular. Para isso, torna-se indispensável obter as equações que fornecem relações entre a freqüência de excitação, as amplitude de movimento de cada grau de liberdade e os ângulos de fase. A solução das equações de movimento não-lineares é encontrada através de uma forma simplificada, pelo método de Galerkin-Urabe. O estudo é similar ao de Pinheiro (1997).

6.1. Obtenção das Equações Algébricas Não-Lineares

O sistema oscilatório não-linear e não-autônomo descrito pelas equações diferenciais (4.12) distingue-se do linear por não prevalecer o princípio da superposição para o mesmo, o que gera uma certa dificuldade na resolução. Para encontrar uma solução harmônica aproximada para o sistema não-linear de equações diferenciais é utilizado o método Galerkin-Urabe, o qual transforma o sistema (4.12) em um sistema de equações algébricas não-lineares.

Considere que a solução do sistema de equações de movimento (4.12) submetido a uma excitação harmônica de freqüência ω_e é da forma

$$w = \overline{w}\cos(\omega_e t) \tag{6.1a}$$

$$\theta = \overline{\theta} \cos(\omega_e t + \varphi) \tag{6.1b}$$

onde φ é a defasagem entre a resposta da coluna e a do pêndulo, e considere também que há uma defasagem entre a força externa descrita por um ângulo de fase ψ . Assim a força pode ser escrita na forma:

$$F_o \operatorname{sen}(\omega_e t + \psi) = F_c \cos(\omega_e t) + F_s \operatorname{sen}(\omega_e t)$$
(6.2)

Substituindo-se as expressões (6.1) e (6.2) no sistema de equações de movimento (4.12), obtém-se o sistema de equações algébricas não-lineares.

$$\begin{cases} \overline{w} \Big[-\omega_e^{\ 2} (0.25A\rho L + m)\cos(\omega_e t) - \omega_e C \operatorname{sen}(\omega_e t) + \\ \left(\frac{3.09EI}{L^3} - 0.78Ag\rho \right) \cos(\omega_e t) \Big] - m l \omega_e^{\ 2} \theta \Big[\cos(\omega_e t + \varphi) \cos(\overline{\theta} \cos(\omega_e t + \varphi)) & (6.3a) \\ + \overline{\theta} \operatorname{sen}^{\ 2} (\omega_e t + \varphi) \operatorname{sen}(\overline{\theta} \cos(\omega_e t + \varphi)) \Big] = F_c \cos(\omega_e t) + F_s \operatorname{sen}(\omega_e t) \\ \overline{\theta} \Big[m l^2 \omega_e^{\ 2} \cos(\omega_e t + \varphi) + C_p \omega \operatorname{sen}(\omega_e t + \varphi) - K_p \cos(\omega_e t + \varphi) \Big] - m l \\ \left[g \operatorname{sen}(\overline{\theta} \cos(\omega_e t + \varphi)) - \omega^2 \overline{w} \cos(\omega_e t) \cos(\overline{\theta} \cos(\omega_e t + \varphi)) \Big] = 0 \end{cases}$$
(6.3b)

Observa-se que essas equações contêm funções trigonométricas cujos argumentos são outras funções trigonométricas. Então, ao empregar o método de Galerkin-Urabe, surgem integrais que não têm solução analítica. Perante isso, é utilizada a expansão de Jacobi de funções trigonométricas em series de funções de Bessel de primeira espécie (J_i), que são dadas por:

$$\cos(\overline{\theta}\cos(\delta)) = J_0(\overline{\theta}) + 2\sum_{1}^{\infty} (-1)^n J_{2n}(\overline{\theta})\cos(2n\delta)$$
(6.4a)

$$sen(\overline{\theta}\cos(\delta)) = -2\sum_{1}^{\infty} (-1)^{n} J_{2n-1}(\overline{\theta})\cos((2n-1)\delta)$$
(6.4b)

Tomando-se apenas o primeiro termo ou o primeiro harmônico da série, as equações perdem os termos em seno e co-seno de argumentos também trigonométricos, adquirindo a forma:

$$\cos(\overline{\theta}\cos(\omega_e t + \varphi)) = J_0(\overline{\theta}) - 2J_2(\overline{\theta})\cos(2(\omega_e t + \varphi))$$
(6.5a)

$$sen(\theta \cos(\omega_e t + \varphi)) = 2J_1(\theta)\cos(\omega_e t + \varphi)$$
(6.5b)

Substituindo-se as expressões (6.5) em (6.3), tem-se:

$$\begin{cases} \overline{w} \left[-\omega_{e}^{2} (0.25A\rho L + m)\cos(\omega_{e}t) - \omega_{e}C\operatorname{sen}(\omega_{e}t) + \left(\frac{3.09EI}{L^{3}} - 0.78Ag\rho \right) \cos(\omega_{e}t) \right] - ml\omega_{e}^{2}\theta \left\{ \cos(\omega_{e}t + \varphi) \left[J_{0}(\overline{\theta}) - \left(6.6a \right) \right] \right\} \\ 2J_{2}(\overline{\theta})\cos(2(\omega_{e}t + \varphi)) + \overline{\theta}\operatorname{sen}^{2}(\omega_{e}t + \varphi) \left[2J_{1}(\overline{\theta})\cos(\omega_{e}t + \varphi) \right] \\ F_{c}\cos(\omega_{e}t) + F_{s}\operatorname{sen}(\omega_{e}t) \\ \overline{\theta} \left[ml^{2}\omega_{e}^{2}\cos(\omega_{e}t + \varphi) + C_{p}\omega\operatorname{sen}(\omega_{e}t + \varphi) - K_{p}\cos(\omega_{e}t + \varphi) \right] - ml \\ \left\{ g \left[2J_{1}(\overline{\theta})\cos(\omega_{e}t + \varphi) \right] - \omega^{2}\overline{w}\cos(\omega_{e}t) \left[2J_{2}(\overline{\theta})\cos(2(\omega_{e}t + \varphi)) \right] \right\} = 0 \end{cases}$$

$$(6.6b)$$

Multiplicando cada uma das equações (6.6) pelas funções peso $\phi_1 = \cos(\omega_e t)$ e $\phi_2 = \sin(\omega_e t)$, e integrando cada uma das quatro equações resultantes de 0 a $2\pi/\omega$, obtém-se o sistema algébrico não-linear:

$$\begin{aligned} \zeta(-1-\mu+\left(\frac{\omega_{c}}{\omega_{e}}\right)^{2})-\mu\overline{\theta}\cos(\varphi)\left(J_{0}(\overline{\theta})-J_{2}(\overline{\theta})+\frac{\overline{\theta}}{2}J_{1}(\overline{\theta})\right) &= \\ \zeta_{s}\left(\frac{\omega_{c}}{\omega_{e}}\right)^{2}\cos(\psi) \\ -2\zeta\xi_{c}\frac{\omega_{c}}{\omega_{e}}+\mu\overline{\theta}sen(\varphi)\left(J_{0}(\overline{\theta})-J_{2}(\overline{\theta})+\frac{\overline{\theta}}{2}J_{1}(\overline{\theta})\right) &= \\ \zeta_{s}\left(\frac{\omega_{c}}{\omega_{e}}\right)^{2}sen(\psi) \\ -\mu\left(\overline{\theta}\cos(\varphi)-\zeta\left(\cos(2\varphi)J_{2}(\overline{\theta})-J_{0}(\overline{\theta})\right)\right)-2\mu\xi_{p}\frac{\omega_{p}}{\omega_{e}}\overline{\theta}sen(\varphi)+ \\ 2\mu\left(\frac{\omega_{p}}{\omega_{e}}\right)^{2}\cos(\varphi)J_{1}(\overline{\theta}) &= 0 \end{aligned}$$
(6.7c)
$$sen(\varphi)\mu\left(2\left(\frac{\omega_{p}}{\omega_{e}}\right)^{2}J_{1}(\overline{\theta})-\overline{\theta}\right)+\mu\zeta J_{2}(\overline{\theta})sen(2\varphi)+2\mu\frac{\omega_{p}}{\omega_{e}}\overline{\theta}\cos(\varphi) &= 0 \quad (6.7d) \end{aligned}$$

Esse sistema de equações não-lineares já está na sua forma adimensional. As equações foram adimensionalizadas através da metodologia empregada no item 4.4. As equações algébricas não-lineares possuem como variáveis, além da freqüência de excitação, ω_e , as amplitudes $\zeta \in \overline{\theta}$, e os ângulos de fase $\varphi \in \psi$.

Observa-se a não-linearidade nos termos trigonométricos e nos termos que contêm as funções de Bessel de primeira espécie, levando a um certo grau de dificuldade para sua resolução, nesse caso, deve-se utilizar um método iterativo. O método escolhido é o método iterativo de Newton-Raphson.

Antes da implementação do método de Newton-Rapshon é necessário definir as funções de Bessel, sendo essas funções obtidas a partir de:

$$J_n(\overline{\theta}) = \sum_{k=0}^{\infty} \frac{(-1)^k (\overline{\theta}/2)^{n+2k}}{k! \Gamma(k+n+1)}$$
(6.8)

onde, Γ é a função gama.

Assim, as funções de Bessel são obtidas a partir das séries:

$$J_{0}(\overline{\theta}) = 1 - \frac{\overline{\theta}^{2}}{2^{2}} + \frac{\overline{\theta}^{4}}{2^{2}4^{2}} - \frac{\overline{\theta}^{6}}{2^{2}4^{2}6^{2}} + \dots + \frac{\overline{\theta}^{20}}{2^{2}4^{2}6^{2}8^{2}10^{2}12^{2}14^{2}16^{2}18^{2}20^{2}}$$
(6.9a)

$$J_1(\overline{\theta}) = \frac{\overline{\theta}}{2} - \frac{\overline{\theta}^3}{2^2 4} + \frac{\overline{\theta}^5}{2^2 4^2 6} + \dots + \frac{\overline{\theta}^{21}}{2^2 4^2 6^2 8^2 10^2 12^2 14^2 16^2 18^2 20^2 22}$$
(6.9b)

$$J_{2}(\overline{\theta}) = \frac{2}{\overline{\theta}} J_{1}(\overline{\theta}) - J_{0}(\overline{\theta})$$
(6.9c)

6.2. Resultados Numéricos

Quando usa-se um absorsor não-linear, aumenta-se, em geral, a faixa de freqüência para a qual ele é eficiente. A não-linearidade faz com que as freqüências naturais do sistema sejam uma função de suas amplitudes de vibração. Ainda, elas aumentam ou diminuem, dependendo do tipo de não-linearidade.

Apresenta-se nesse item dois exemplos. O primeiro exemplo estudado é dado por Pinheiro (1997). O segundo exemplo refere-se à torre apresentada no capitulo 4. Mostra-se, também, a validação dos resultados do presente trabalho.

O primeiro exemplo refere-se ao modelo discreto apresentado na Figura 4.3. Partindo das equações de movimento (4.11) e aplicando a metodologia apresentada no item 6.1, chega-se ao mesmo sistema de equações algébricas nãolineares (6.7). Os principais parâmetros, os mesmos adotados por Pinheiro (1997), são:

- $\omega_c = 1.0$ rad/s, que representa o freqüência natural do sistema principal;
- $\xi_c = 0.7\%$, é a taxa de amortecimento da coluna;
- $\mu = 0.20$, relação de massas;
- F = 0.092, amplitude da força de excitação;
- $K_p = 0.0$, rigidez do absorsor pendular.

Para comparar os resultados obtidos nesse trabalho com os obtidos por Pinheiro (1997) deve-se considerar que:

$$\zeta_s = \frac{F}{\left(\omega_c \,/\,\omega_p\right)^2} \tag{6.10}$$

onde F_0 é a amplitude da força de excitação.

Inicialmente considera-se um caso onde a taxa de amortecimento do pêndulo é de 0.0%. A variação da amplitude da resposta permanente em função da razão ω_e / ω_c é mostrada na Figura 6.1 para o pêndulo e na Figura 6.2 para o sistema principal.

Figura 6.1: Variação de $\overline{\theta}$ para ω_p / ω_c =1.0, ξ_p =0.0%, μ =0.20 e F = 0.092.

Verifica-se a presença de uma não-linearidade do tipo "softening", isto é, um decréscimo da freqüência natural com a amplitude, levando a mudanças bruscas de amplitudes, tanto nas amplitudes dos deslocamentos angulares do pêndulo, apresentados na Figura 6.1, como nas amplitudes dos deslocamentos do sistema principal, apresentados na Figura 6.2. Convém ressaltar a influência da não-linearidade do pêndulo no comportamento do sistema principal.

Figura 6.2: Variação de ζ para ω_p / ω_c =1.0, ξ_p =0.0%, μ =0.20 e F = 0.092.

O regime não-linear de oscilações do pêndulo muda os parâmetros ótimos de ajuste quando comparados com a teoria linear, alterando assim os níveis de deslocamentos atingidos pela estrutura.

Nas Figuras 6.3 e 6.4 observa-se o comportamento dos ângulos de fase do pêndulo e da força.

Figura 6.3: Variação do ângulo de fase φ para ω_p / ω_c =1.0, ξ_p =0.0%, μ =0.20 e F = 0.092.

Figura 6.4: Variação do ângulo de fase ψ para ω_p / ω_c =1.0, ξ_p =0.0%, μ =0.20 e F = 0.092.

A seguir, é estudado um caso onde a taxa de amortecimento do pêndulo é de 26.23%. É bom ressaltar que essa taxa de amortecimento é dificilmente obtida em situações prática, mas foi adotada para demonstrar como o sistema comporta-se com uma taxa de amortecimento tão alta. Na Figura 6.5 compara-se o comportamento da resposta considerando o pêndulo amortecido com o não-amortecido.

Figura 6.5: Influência do amortecimento do pêndulo em $\overline{\theta}$ e ζ para ω_p / ω_c =1.0, μ =0.20 e F = 0.092.

Agora, é estudado o comportamento do sistema apresentado por Pinheiro (1997), que tem como parâmetros diferentes dos anteriores: $\omega_p / \omega_c = 0.833$, $\xi_p = 26.23\%$ e F = 0.041. Na Figura 6.6, apresenta-se o comportamento das amplitudes dos deslocamentos do absorsor pendular.

Figura 6.6: Variação de $\overline{\theta}$ para ω_p / ω_c =0.833, ξ_p =26.23%, μ =0.20 e F = 0.041.

Para ilustrar o comportamento das amplitudes de oscilação do pêndulo são apresentadas na Figura 6.7 as repostas no tempo no estado permanente para algumas relações de freqüências, obtidas a partir da integração numérica das equações diferenciais de movimento pelo método de Runge-Kutta de quarta ordem.

Figura 6.7: Variação do deslocamento angular $\overline{\theta}$ ao longo do tempo para ω_p / ω_c =0.833, ξ_p =26.23%, μ =0.20 e *F* = 0.041.

Verifica-se que os resultados obtidos no domínio da freqüência condizem com os resultados obtidos no domínio do tempo, comprovando a formulação adotada.

O comportamento das amplitudes dos deslocamentos do sistema principal é apresentado na Figura 6.8. Já os resultados obtidos por integração numérica para a resposta do sistema principal no regime permanente são mostrados na Figura 6.9.

Figura 6.8: Variação de ζ para ω_p / ω_c =0.833, ξ_p =26.23%, μ =0.20 e F = 0.041.

Figura 6.9: Variação do deslocamento $\zeta\,$ ao longo do tempo para $\,\omega_{_{p}}\,/\,\omega_{_{c}}\,$ =0.833,

 $[\]xi_p$ =26.23%, μ =0.20 e F = 0.041.

Observa-se que os resultados das amplitudes de deslocamentos do sistema principal obtidos no domínio da freqüência condizem com os resultados obtidos no domínio do tempo.

A variação dos ângulos de fase para esse caso é mostrada nas Figuras 6.10 e 6.11.

Figura 6.10: Variação do ângulo de fase φ para ω_p / ω_c =1.0, ξ_p =26.23%, μ =0.20 e F = 0.041.

Figura 6.11: Variação do ângulo de fase ψ para ω_p / ω_c =1.0, ξ_p =26.23%, μ =0.20 e F = 0.041.

Na Figura 6.12 apresentam-se os resultados obtidos por Pinheiro (1997).

Figura 6.12: Variação das amplitudes de deslocamento $\overline{\theta} \in \zeta \quad (\overline{x} / x_{est})$ para ω_p / ω_c =0.833, ξ_p =26.23%, μ =0.20 e F = 0.041 (Pinheiro, 1997).

Nota-se que os resultados obtidos usando a presente metodologia não concordam qualitativamente e quantitativamente com os obtidos por Pinheiro (1997), provavelmente porque naquele trabalho não foi considerado o efeito dos ângulos de fase do sistema.

Com isso, decidiu-se validar os resultados aqui obtidos usando-se o método aproximado de Galerkin-Urabe com as amplitudes máximas da resposta permanente obtidas por integração numérica das equações de movimento nãolineares. A comparação dos resultados é apresentada na Tabela 6.1, onde observase que os valores obtidos no domínio da freqüência e no domínio do tempo para a amplitudes máximas das respostas permanentes são compatíveis, mostrando assim a qualidade dos resultados do presente trabalho.

ω_{e} / ω_{c}	Domínio da Freqüência		Domínio do Tempo	
	Coluna	Pêndulo	Coluna	Pêndulo
0.1	1.012175	0.000420	1.012190	0.000419
0.2	1.050946	0.001813	1.050945	0.001812
0.3	1.124289	0.004658	1.124275	0.004656
0.4	1.250965	0.010135	1.250896	0.010135
0.5	1.475850	0.021212	1.475314	0.021211
0.6	1.915655	0.046191	1.914891	0.046199
0.7	2.781537	0.105330	2.778078	0.105285
0.8	3.225476	0.165431	3.220688	0.165259
0.9	2.958723	0.165201	2.959096	0.165187
1.0	3.165240	0.167297	3.163646	0.167103
1.1	3.033103	0.146905	3.027960	0.146605
1.2	2.214956	0.099134	2.212796	0.099052
1.3	1.534828	0.064243	1.533398	0.064201
1.4	1.147592	0.045693	1.113240	0.044118
1.5	0.894859	0.034185	0.850454	0.032237
1.6	0.676638	0.024720	0.676456	0.024710
1.7	0.610544	0.021957	0.554355	0.019651
1.8	0.489171	0.017035	0.464927	0.016077
1.9	0.435653	0.014933	0.396897	0.013446
2.0	0.379767	0.012788	0.343771	0.011440

Tabela 6.1: Comparação das amplitudes máximas obtidas no domínio da freqüência e no domínio do tempo para ω_p / ω_c =0.833, ξ_p =26.23%, μ =0.20 e F=0.041.

Os resultados considerando a influência da não-linearidade do pêndulo são comparados aos resultados obtidos com as equações linearizadas, apresentadas no Capítulo 4, na equação (4.15). Esses resultados, apresentados na Figura 6.13, mostram de forma clara a influência dos termos não-lineares nos resultados. Como esperado, está influência se faz sentir na região de ressonância do sistema acoplado.

A Figura 6.14 mostra uma comparação entre a resposta linear e não-linear, considerando para o pêndulo o valor do amortecimento ótimo deduzido na análise linear, Capítulo 4, equação (4.29) ($\xi_{pótimo} = 0.25$). Mesmo para este valor de amortecimento ainda se nota uma diferença razoável entre a resposta linear e não-linear.

6.2.2. Exemplo 2

O segundo exemplo analisado é o da torre analisada no Capitulo 4. Partindo das equações (4.12), aplicando a metodologia do item 6.1, chega-se ao sistema de equações algébricas não-lineares (6.7). Os principais parâmetros para essa análise são:

• $\omega_c = 1.255428$ rad/s, freqüência natural da coluna;

- $\omega_p = 1.278671$ rad/s, freqüência natural do pêndulo;
- $\xi_c = 0.7\%$, é a taxa de amortecimento da coluna;
- $\mu = 0.04$, relação de massas;
- $K_p = 0.0$, rigidez do absorsor pendular;
- $\zeta_s = 0.007$, amplitude da força de excitação.

Para estudar o comportamento das amplitudes de oscilação da coluna e do absorsor pendular é considerado inicialmente que o sistema possui uma taxa de amortecimento para o pêndulo de 0.0%. Nas Figuras 6.15 e 6.16 observa-se o comportamento das amplitudes do deslocamento angular do pêndulo e o respectivo diagrama de bifurcação do mapa de Poincaré associado a esse caso, respectivamente. O diagrama de bifurcação é obtido a partir da integração numérica das equações de movimento pelo método de Runge-Kutta de quarta ordem e usando o algoritmo da força bruta, como implementado por Del Prado (2001). Esse diagrama permite verificar a periodicidade e estabilidade das resposta obtidas pelo método de Galerkin-Urabe e, mais uma vez, comprovar a exatidão da presente formulação. Nota-se que o diagrama de bifurcação apresenta os mesmos saltos obtidos pela solução aproximada. Vale ressaltar que no diagrama de bifurcação não se tem o deslocamento máximo da resposta permanente, mas sim a coordenada $\overline{\theta}$ da seção de Poincaré.

Figura 6.15: Amplitudes de deslocamento angular $\overline{\theta}$ para $\omega_p / \omega_c = 1.018$, $\xi_p = 0.0\%$, $\mu = 0.04$ e $\zeta_s = 0.007$.

Figura 6.16: Diagrama de bifurcação do mapa de Poincaré. Variação da coordenada $\overline{\theta}$ para ω_p / ω_c =1.018, ξ_p =0.0%, μ =0.04 e ζ_s = 0.007.

Na Figura 6.17 observa-se o comportamento das amplitudes de deslocamento da coluna e na Figura 6.18 tem-se o correspondente diagrama de bifurcação.

Figura 6.17: Amplitudes de deslocamento ζ para ω_p / ω_c =1.018, ξ_p =0.0%, μ =0.04 e ζ_s = 0.007.

Figura 6.18: Diagrama de bifurcação do mapa de Poincaré. Variação da coordenada ζ para $\omega_p / \omega_c = 1.018$, $\xi_p = 0.0\%$, $\mu = 0.04$ e $\zeta_s = 0.007$.

Nota-se claramente a influência da não-linearidade do pêndulo na resposta do sistema. Verifica-se, novamente, a presença de uma não-linearidade do tipo "softening" levando a mudanças bruscas de amplitude em função de bifurcações tipo nó-sela ao longo das curvas de ressonância não-lineares.

A seguir, é estudado um caso em que o pêndulo possui uma taxa de amortecimento de 7.0%. Na Figura 6.19 mostra-se a variação da amplitude de oscilação do absorsor pendular em função da freqüência de excitação. Já na Figura 6.20 apresenta-se o respectivo diagrama de bifurcação, onde observa-se uma coerência entre os resultados obtidos pelas duas metodologias.

Figura 6.19: Amplitudes de deslocamento angular $\overline{\theta}$ para $\omega_p / \omega_c = 1.018$, $\xi_p = 7.0\%$, $\mu = 0.04$ e $\zeta_s = 0.007$.

Figura 6.20: Diagrama de bifurcação do mapa de Poincaré. Variação da coordenada $\overline{\theta}$ para $\omega_p / \omega_c = 1.018$, $\xi_p = 7.0\%$, $\mu = 0.04$ e $\zeta_s = 0.007$.

Observa-se nas Figuras 6.19 e 6.20 que, em virtude da taxa de amortecimento adotada para o pêndulo, as amplitudes de oscilação do pêndulo não apresentam as mudanças bruscas em seus valores, embora as não-linearidades continuem a ser importantes nas regiões de ressonância. Cabe lembrar que, apesar do aumento da taxa de amortecimento do pêndulo melhorar o comportamento do sistema na região de ressonância, ele é desfavorável durante o regime transiente, como observado no Capítulo 5.

Na Figura 6.21 mostra-se o comportamento das oscilações do pêndulo no regime permanente obtidas da integração no tempo das equações de movimento não-lineares. Nota-se que as amplitudes máximas das oscilações do absorsor pendular na resposta permanente condizem com os resultados obtidos no domínio da freqüência.

Figura 6.21: Variação do deslocamento angular $\overline{\theta}$ ao longo do tempo para $\omega_p / \omega_c = 1.018, \ \xi_p = 7.0\%, \ \mu = 0.04 \ \text{e} \ \zeta_s = 0.007.$

O comportamento das amplitudes de oscilação da coluna está apresentado na Figura 6.22 e na Figura 6.23. Observa-se um certo grau de não-linearidade na resposta, mostrando que essa não pode ser desconsiderada na análise desse problema.

Figura 6.22: Amplitude de deslocamento ζ para ω_p / ω_c =1.018, ξ_p =7.0%, μ =0.04 e ζ_s = 0.007.

Figura 6.23: Diagrama de bifurcação do mapa de Poincaré. Variação da coordenada ζ para $\omega_p / \omega_c =$ 1.018, $\xi_p =$ 7.0%, $\mu =$ 0.04 e $\zeta_s =$ 0.007.

A Figura 6.24 mostra a variação das amplitudes de oscilação da coluna no domínio do tempo, para diferentes valores da freqüências de excitação.

Figura 6.24: Variação do deslocamento ζ ao longo do tempo para ω_p / ω_c =1.018, ξ_p =7.0%, μ =0.04 e ζ_s = 0.007.

Para demonstrar, novamente a qualidade dos resultados dessa formulação, são comparados os resultados obtidos no domínio da freqüência, através do método de Galerkin-Urabe, com os resultados obtidos no domínio do tempo por integração numérica das equações de movimento não-lineares. A comparação é apresentada na Tabela 6.2.

ω_e / ω_c	Domínio da Freqüência		Domínio do Tempo	
	Coluna	Pêndulo	Coluna	Pêndulo
0.1	1.010513	0.000068	1.010527	0.000068
0.2	1.043471	0.000267	1.043471	0.000292
0.3	1.103671	0.000733	1.103659	0.000733
0.4	1.201266	0.001530	1.201236	0.001530
0.5	1.357067	0.003003	1.356995	0.003002
0.6	1.617784	0.005970	1.617578	0.005970
0.7	2.111663	0.013008	2.110726	0.013014
0.8	3.365384	0.036286	3.365164	0.036456
0.9	10.606079	0.231825	10.602437	0.231758
1.0	3.377611	0.160691	3.375527	0.160648
1.1	5.213058	0.184330	5.212735	0.184923
1.2	2.976019	0.068316	2.974934	0.068353
1.3	1.693551	0.029381	1.668746	0.029088
1.4	1.136327	0.016366	1.135094	0.016491
1.5	0.848269	0.010798	0.847921	0.010843
1.6	0.669031	0.007773	0.668673	0.007786
1.7	0.546784	0.005916	0.546592	0.005917
1.8	0.458293	0.004686	0.458182	0.004686
1.9	0.391477	0.003824	0.391406	0.003824
2.0	0.339403	0.003193	0.339355	0.003192

Tabela 6.2: Comparação das amplitudes máximas obtidas no domínio da freqüência e no domínio do tempo para ω_p / ω_c =1.018, ξ_p =7.0%, μ =0.04 e ζ_s = 0.007.

Verifica-se que os valores obtidos pelos dois métodos são compatíveis, mostrando assim, novamente, a qualidade dos resultados.

Observa-se nos exemplos apresentados anteriormente, a grande influência das não-linearidades do pêndulo na resposta da coluna, mostrando que essa não pode ser desprezada na análise do sistema. A não-linearidade pode inclusive gerar bifurcações que levam a mudanças bruscas da resposta do sistema, o que deve ser evitado. Mostrar-se, a seguir, o comportamento das amplitudes desse último exemplo quando a amplitude da força de excitação, ζ_s , muda gradativamente. Inicialmente, adota-se para o amortecimento do pêndulo 0.0%. Na Figura 6.25 observa-se o comportamento das amplitudes de deslocamento angular do pêndulo com a variação gradativa da amplitude da força de excitação. Já na Figura 6.26 mostra-se o comportamento das amplitudes de deslocamento da coluna.

Figura 6.25: Comportamento das amplitudes de deslocamento angular do pêndulo para diferentes valores de ζ_s e ω_p / ω_c =1.018, ξ_p =0.0% e μ =0.04.

Figura 6.26: Comportamento das amplitudes de deslocamento da coluna para diferentes valores de ζ_s e ω_p / ω_c =1.018, ξ_p =0.0% e μ =0.04.

Para comparação pode-se observar na Figura 6.27 o comportamento das amplitudes de deslocamento da coluna original.

Figura 6.27: Comportamento das amplitudes de deslocamento da coluna original para diferentes valores de ζ_s .

Adotando uma taxa de amortecimento para o absorsor pendular de 7.0%, tem-se que as amplitudes de deslocamento do sistema comportam-se como apresentado nas Figuras 6.28 e 6.29

Figura 6.28: Comportamento das amplitudes de deslocamento angular do pêndulo para diversos valores de ζ_s e ω_p / ω_c =1.018, ξ_p =7.0% e μ =0.04.

Figura 6.29: Comportamento das amplitudes de deslocamento da coluna para diversos valores de ζ_s e ω_p / ω_c =1.018, ξ_p =7.0% e μ =0.04.