5 Estudo Paramétrico do Sistema Coluna-Pêndulo

Um estudo paramétrico detalhado para investigar o desempenho do pêndulo absorsor na redução das amplitudes da coluna, bem como o comportamento do próprio pêndulo, é apresentado na seqüência. Utilizando as equações de estado (4.14), obtêm-se os deslocamentos, velocidades e/ou acelerações da coluna e do pêndulo absorsor por integração numérica, através do método de Runge-Kutta.

Inicialmente, é apresentado um estudo do comportamento das amplitudes do sistema com a variação da freqüência de excitação. Posteriormente, é mostrado um estudo de como o sistema se comporta alterando-se os parâmetros do pêndulo absorsor, tais como a freqüência natural, o amortecimento e a rigidez.

5.1. Influência da Freqüência da Excitação no Comportamento do Sistema

Partindo das equações de estado (4.14), são obtidas as respostas no tempo e os planos fase, bem como os diagramas de bifurcação através do método da força bruta e as seções de Poincaré para esses diagramas de bifurcação, dos quais podese compreender o funcionamento do pêndulo absorsor, para o sistema submetido a um carregamento harmônico senoidal.

Conhecendo a freqüência da coluna (ω_c) pode-se variar as freqüências da excitação (ω_e) e do pêndulo (ω_p) de modo que todos os casos possíveis em termos de relações de freqüências $(\omega_e / \omega_c, \omega_p / \omega_e = \omega_p / \omega_c)$ possam ocorrer, verificando, posteriormente, quais dessas relações promovem o controle de vibrações da coluna original.

A análise é referente ao exemplo do item 4.2, que possui os seguintes parâmetros:

- $\omega_c = 1.255428$ rad/s, que representa o freqüência natural da coluna;
- $\xi_c = 0.7\%$, é a taxa de amortecimento da coluna;

- $\xi_p = 0.0\%$, é a taxa de amortecimento do pêndulo absorsor;
- $\mu = 0.04$, relação de massas (representa 4.0% da massa modal);
- $\zeta_s = 0.007$, amplitude da força de excitação (adimensional);
- $K_p = 0.0$, rigidez do absorsor pendular.

Inicialmente, são apresentados os espectros de resposta das amplitudes de deslocamento da coluna e do pêndulo em função da freqüência de excitação, usando tanto a formulação linear como a não-linear. As Figuras 5.1, 5.2 e 5.3 mostram os espectros para os casos $\omega_p < \omega_c$, $\omega_p = \omega_c$, $\omega_p > \omega_c$, respectivamente.

Figura 5.1: Espectro de resposta de deslocamento do sistema para $\omega_p / \omega_c = 0.7965$.

Figura 5.2: Espectro de resposta de deslocamento do sistema para $\omega_{_{p}}$ / $\omega_{_{c}}$ = 1.00 .

Figura 5.3: Espectro de resposta de deslocamento do sistema para $\omega_p / \omega_c = 1.1151$.

Nesse conjunto de resultados tem-se o comportamento das amplitudes de deslocamento do sistema em relação a freqüência de excitação, donde observa-se os picos de ressonância para o sistema acoplado em três casos distintos. Embora apresentem as mesmas ressonâncias, a não-linearidade afeta de modo positivo as vibrações da torre, diminuindo as amplitudes de vibração na região mais crítica.

As Figuras 5.4, 5.5 e 5.6 apresentam uma comparação entre os espectros de resposta de deslocamento da coluna com absorsor e da coluna original, para os mesmos casos estudados anteriormente.

Figura 5.4: Espectro de resposta de deslocamento da coluna para $\omega_{_p}$ / $\omega_{_c}$ = 0.7965 .

Figura 5.5: Espectro de resposta de deslocamento da coluna para $\,\omega_{_{p}}\,/\,\omega_{_{c}}\,$ = 1.00 .

Figura 5.6: Espectro de resposta de deslocamento da coluna para ω_p / ω_c =1.1151.

Observa-se nesses resultados que o desempenho do absorsor pendular está intimamente ligado as relações de freqüências. No caso $\omega_p < \omega_c$ tem-se que o pico de ressonância da coluna original coincide com o segundo pico de ressonância do sistema acoplado, já para $\omega_p > \omega_c$ tem-se que o pico de ressonância da coluna original coincide com o primeiro pico do sistema acoplado, em ambos os casos o absorsor pendular é eficiente para uma pequena faixa de freqüências de excitação. Como esperado, no caso em que $\omega_p = \omega_c$ a eficiência

do absorsor pendular é maior, pois o pico de ressonância da coluna original está na região onde a coluna com absorsor atinge suas menores amplitudes.

Para melhor compreensão do funcionamento do absorsor pendular é apresentado no decorrer desse capítulo um estudo detalhado do comportamento do pêndulo bem como da coluna.

Na Figura 5.7 mostra-se o comportamento das amplitudes máximas de deslocamento da coluna no estado permanente para diferentes magnitudes da freqüência de excitação. Para referência, mostra-se também o valor do deslocamento da coluna original em comparação com a coluna com absorsor. Analisando esses resultados, conclui-se que quando $\omega_e < \omega_c$, se $\omega_p < \omega_e$ há uma redução na magnitude das oscilações, mas se $\omega_p > \omega_e$, não há redução, mas sim um aumento das amplitudes de vibração da coluna com absorsor. Já para $\omega_e > \omega_c$ há uma inversão desse comportamento, se $\omega_p < \omega_e$ não há redução, mas se $\omega_p > \omega_e$, há redução. Finalmente observa-se que, quando $\omega_e = \omega_c$, há sempre redução (Figura 5.7 (d)).

A Figura 5.8 apresenta os respectivos diagramas de bifurcação, que ilustram o comportamento da coluna com absorsor no estado permanente. Observando esses diagramas, conclui-se que para $\omega_e < \omega_c$ a maior não-linearidade da resposta ocorre na região em que $\omega_p \approx \omega_e$, com uma região de comportamento particularmente complexa quando $\omega_p < \omega_e$. Quando $\omega_e > \omega_c$ a resposta apresenta sempre o mesmo período da excitação (representada por um ponto na seção de Poincaré).

Já Figura 5.9 exemplifica o comportamento não-linear da coluna através das respostas no tempo (fase permanente), dos planos fase e das seções de Poincaré de pontos obtidos nos diagramas de bifurcação da Figura 5.8 para valores selecionados de ω_p e ω_e / ω_c .

Figura 5.7: Variação das amplitudes máximas de deslocamento da coluna original e com absorsor na resposta permanente.

Figura 5.8: Diagramas de bifurcação para o deslocamento da coluna na resposta permanente.

(f) $\omega_p = 0.6 \text{ rad/s e } \omega_e / \omega_c = 1.3541$

Figura 5.9: Resposta no tempo, plano fase e seção de Poincaré da resposta permanente da coluna.

0.015

0.01 0.005

-0.005

-0.01

-0.015

0.02

0.01

-0.01

ζ 0 τ

ζ 0 ł

(g) $\omega_{\scriptscriptstyle e} = 2.0\,{\rm rad/s}$ e $\,\omega_{\scriptscriptstyle e}\,/\,\omega_{\scriptscriptstyle c} = 1.5931$

Figura 5.10: Diagramas de bifurcação para o deslocamento angular do pêndulo na resposta permanente.

Figura 5.11: Resposta no tempo, plano fase e seção de Poincaré da resposta permanente do pêndulo.

A Figura 5.10 ilustra a variação do deslocamento angular do pêndulo através dos seus diagramas de bifurcação. É interessante notar que na região em torno de $\omega_p \approx (1/3)\omega_e$ há sempre a presença de soluções eminentemente não-lineares, possivelmente em virtude da presença de um sub-harmônico de ordem três.

Já o comportamento não-linear do pêndulo absorsor é apresentado na Figura 5.11, que mostra as respostas no tempo, planos fase e seções de Poincaré para os mesmos valores de ω_p e ω_e / ω_c estudados na Figura 5.10.

Os resultados demonstram que o sistema passivo de absorção pendular pode reduzir ou amplificar as amplitudes de deslocamento da coluna, conforme alteram-se as relações entre as freqüências natural da coluna, natural do pêndulo e da excitação.

5.2. Influência da Freqüência do Pêndulo no Comportamento do Sistema

Com base nas equações de estado (4.14), estuda-se a resposta do sistema, com a variação da relação ω_p / ω_c . São apresentadas as amplitudes máximas da reposta total como da permanente, tanto para a coluna quanto para o pêndulo. Também é mostrada a reposta permanente para diferentes valores de ω_p .

Os resultado foram obtidos com os parâmetros apresentados no item 5.1, considerando, agora, $\omega_e = \omega_c$. Na Figura 5.12 mostra-se a variação das amplitudes máximas de deslocamento, velocidade e aceleração da coluna e do pêndulo em função da relação ω_p / ω_c . Cabe ressaltar que, em todos os casos, a amplitude máxima ocorre nos instantes iniciais da resposta transiente. Para a coluna, como esperado, as menores amplitudes ocorrem para $\omega_p = \omega_c$. Entretanto, pode-se verificar que o pêndulo é eficiente para uma ampla faixa do parâmetro ω_p / ω_c , tanto na fase transiente quanto na permanente. Os valores máximos da resposta não controlada são dados para efeito de comparação na Tabela 5.1.

Figura 5.12: Amplitudes máximas da resposta total e permanente da coluna e do pêndulo.

Tabela 5.1: Valores máximos da resposta não controlada.

ζ (máximo)		$\zeta,_{\tau}$ (máximo)		ζ, _π (máximo)	
Total	Permanente	Total	Permanente	Total	Permanente
0.499999	0.499999	0.499999	0.499999	0.4999999	0.499999

A Figura 5.13 mostra o comportamento da resposta permanente no tempo das amplitudes da coluna e do absorsor pendular para três relações de ω_p / ω_c .

A estrutura é excitada por um carregamento harmônico senoidal dado, em sua forma adimensional, por:

Figura 5.13: Comportamento das amplitudes durante a resposta permanente.

Figura 5.14: Comportamento da força adimensional F.

Para $\omega_p < \omega_c$, a coluna está em fase com a força e o pêndulo encontra-se fora de fase (180°). Para $\omega_p > \omega_c$, a coluna e o pêndulo estão em fase e ambos encontram-se fora de fase com relação a excitação.

5.3. Influência das Condições Iniciais do Pêndulo Absorsor no Comportamento do Sistema

Para isso, buscou-se variar o parâmetro de entrada, que representa o deslocamento angular do pêndulo, de $-\pi/2$ até $\pi/2$, e observou-se o comportamento das amplitudes do sistema para diferentes tipos de excitação.

Os parâmetros do sistema são os mesmos utilizados no item 5.1, sendo que agora $\omega_e = \omega_c = \omega_p$, pois é onde o pêndulo apresenta seu melhor desempenho na redução das amplitudes da coluna.

5.3.1. Resposta do Sistema a um Carregamento Senoidal

Nessa análise são utilizadas as equações de estado (4.14). Na Figura 5.15 observa-se o comportamento das amplitudes máximas da coluna na resposta total. Independente das condições iniciais, há sempre redução dos valores máximas de deslocamento, velocidade e aceleração. A máxima redução ocorre para $\theta_0 = 0$.

Figura 5.15: Comportamento das amplitudes máximas da coluna na resposta total para um carregamento harmônico senoidal.

A Figura 5.16 apresenta o comportamento das amplitudes máximas da coluna na resposta permanente. Como esperado, as condições iniciais do pêndulo não interferem na redução na resposta permanente.

Figura 5.16: Comportamento das amplitudes máximas da coluna na resposta permanente para um carregamento harmônico senoidal.

Na Figura 5.17 ilustra-se a resposta no tempo da coluna sujeita a um carregamento harmônico senoidal, para alguns valores da condição inicial θ_0 .

Figura 5.17: Resposta da coluna no tempo para um carregamento harmônico senoidal.

As Figuras 5.18 e 5.19 ilustram, respectivamente, o comportamento das amplitudes máximas do pêndulo na resposta total e na reposta permanente para diferentes valores do deslocamento inicial do pêndulo, θ_0 .

Figura 5.18: Comportamento das amplitudes máximas do pêndulo na resposta total para um carregamento harmônico senoidal.

Figura 5.19: Comportamento das amplitudes máximas do pêndulo na resposta permanente para um carregamento harmônico senoidal.

Na Figura 5.20 pode-se observar a resposta no tempo do pêndulo para a coluna sujeita ao carregamento senoidal e diferentes valores de θ_0 . Observa-se que θ_0 influência de forma marcante a fase transiente.

Figura 5.20: Resposta do pêndulo no tempo para um carregamento harmônico senoidal.

5.3.2. Comportamento do Sistema sob um Pulso Senoidal

A Figura 5.21 ilustra o pulso senoidal.

Figura 5.21: Pulso senoidal.

O pulso senoidal atua na estrutura até o instante τ_1 , sendo τ_1 equivalente a um período do sistema, dado por 2π . As equações de estado utilizadas são as dadas pela expressão (4.14).

A Figura 5.22 representa o comportamento das amplitudes máximas da coluna para diferentes valores de condições iniciais do deslocamento angular do pêndulo.

Figura 5.22: Comportamento das amplitudes máximas da coluna para um pulso senoidal.

Na Figura 5.23 mostra-se o comportamento das amplitudes máximas de deslocamento angular do pêndulo absorsor quando a coluna está sujeita a um pulso senoidal, isso para diferentes valores das condições iniciais do pêndulo.

Figura 5.23: Comportamento das amplitudes máximas do pêndulo para um pulso senoidal.

Nessas condições a coluna com absorsor apresenta valores máximos superiores ao da coluna original sem absorsor. Verifica-se também que uma condição inicial não-nula piora o comportamento do sistema.

5.3.3. Comportamento do Sistema sob um Pulso Retangular

O pulso retangular é ilustrado na Figura 5.24.

Figura 5.24: Pulso retangular.

O pulso retangular atua até o instante τ_1 , duração de um período do sistema. Para esse caso as equações de estado (4.14) tomam a forma:

$$\dot{y}_1 = y_2$$
 (5.2a)

$$\dot{y}_{2} = \frac{\zeta_{s} - 2\xi_{s} \frac{\omega_{s}}{\omega_{e}} y_{2} - \left(\frac{\omega_{s}}{\omega_{e}}\right)^{2} y_{1} - \mu \dot{y}_{4} \cos(y_{3}) + \mu y_{4}^{2} \sin(y_{3})}{(1+\mu)}$$
(5.2b)

$$\dot{y}_3 = y_4$$
 (5.2c)

$$\dot{y}_4 = -2\xi_p \frac{\omega_p}{\omega_e} y_4 - \dot{y}_2 \cos(y_3) - \left(\frac{\omega_p}{\omega_e}\right)^2 \sin(y_3)$$
(5.2d)

Observa-se na Figura 5.25 o comportamento da coluna em função da condição inicial do pêndulo θ_0 . Sendo a força de pequena duração, o absorsor não consegue controlar as vibrações. Novamente θ_0 piora o comportamento do sistema.

Figura 5.25: Comportamento das amplitudes máximas da coluna para um pulso retangular.

5.3.4. Comportamento do Sistema para uma Velocidade Inicial

Para estudar o comportamento do sistema quando a estrutura é posta em movimento por uma velocidade inicial, ou seja, por exemplo uma rajada de vento, é necessário alterar-se o parâmetro de entrada que representa a velocidade inicial da coluna, sendo que esta assumiu a magnitude de 0.2.

Na Figura 5.26 mostra-se o comportamento das amplitudes máximas da coluna na resposta total conforme varia a condição inicial de deslocamento angular do absorsor pendular.

Figura 5.26: Comportamento das amplitudes máximas da coluna para uma velocidade inicial.

5.4. Influência do Amortecimento do Pêndulo no Comportamento do Sistema

Os parâmetros do sistema são os mesmos utilizados no item 5.1, sendo que nessa análise $\omega_e = \omega_c = \omega_p$. São utilizadas as equações de estado (4.14) e o sistema está sujeito a um carregamento harmônico senoidal.

A Figura 5.27 demonstra o comportamento das amplitudes de deslocamento da coluna na resposta transiente. Na seqüência, a Tabela 5.2 mostra as amplitudes máximas da coluna, para os mesmos casos apresentados na Figura 5.27. Os resultados indicam que o amortecimento do pêndulo, ξ_p , é desfavorável durante a resposta transiente do sistema.

Figura 5.27: Amplitudes de deslocamento da coluna na resposta transiente para diferentes valores de ξ_p .

Tabela 5.2: Amplitudes de deslocamento da coluna na resposta transiente para diferentes ξ_p .

ξ_p (%)	ζ (máximo)	ζ ,, (máximo)	$\zeta,_{\pi}$ (máximo)
0.0	0.033228	0.032752	0.033239
5.0	0.037015	0.036456	0.036381

Na Figura 5.28 apresenta-se o comportamento das amplitudes máximas da coluna e do pêndulo absorsor com a variação da taxa de amortecimento do pêndulo.

Figura 5.28: Influência da variação da taxa de amortecimento do pêndulo nas amplitudes máximas de resposta da coluna e do pêndulo.

Na medida em que aumenta a taxa de amortecimento do pêndulo absorsor, a sua eficiência diminui. Entretanto, os valores obtidos permanecem sempre abaixo dos valores máximos para a coluna sem absorsor. A presença do amortecimento provoca, por outro lado, um decréscimo nos valores máximos de deslocamento, velocidade e aceleração do pêndulo absorsor.

5.5. Influência de uma Mola com Rigidez Linear

Quando adiciona-se a rigidez do pêndulo ao sistema, altera-se automaticamente a freqüência natural do pêndulo, assim pode-se varia a rigidez do pêndulo de modo que a sua freqüência fique dentro de uma faixa de valores estabelecida, tornando o absorsor pendular mais eficiente, já que, com um ajuste na mola pode-se sintonizá-lo com mais facilidade. São adotados nessa análise os mesmos parâmetros do item 5.1, com $\omega_e = \omega_c = \omega_p$ e o sistema sendo excitado por um carregamento harmônico senoidal.

5.5.1. Variação da Rigidez Linear

São utilizadas as equações de estado (4.14), com a adição do termo que representa a rigidez do pêndulo. Considera-se que a freqüência natural do pêndulo pode variar de $0.90\omega_c$ até $1.10\omega_c$. Assim, é necessário que a freqüência inicial do pêndulo coincida com $0.90\omega_c$, sendo que nessa magnitude a rigidez linear da mola é nula, e, para que freqüência natural do pêndulo varie até $1.10\omega_c$, é necessário aumentar gradativamente a rigidez linear da mola. Isso pode ser obtido de diversas formas. Uma sugestão promissora encontrada na literatura recente é o uso de novos materiais cujas propriedades variam em função da temperatura ou de uma corrente elétrica. Para que o valor inicial de ω_p seja $0.90\omega_c$ deve-se adotar que o comprimento da haste do pêndulo é 7.68 m.

A Tabela 5.3 mostra a rigidez linear do pêndulo e a respectiva freqüência.

ω_p / ω_c	K_p (Nm)	
0.90	0.00	
0.92	151558.79	
0.94	306448.54	
0.96	464669.26	
0.98	626220.93	
1.00	791103.57	
1.02	959317.17	
1.04	1130861.74	
1.06	1305737.26	
1.08	1483943.75	
1.10	1665481.20	

Tabela 5.3: Variação da relação de freqüências com a variação da rigidez do pêndulo.

Na Figura 5.29 comparam-se os valores máximos da resposta total considerando o pêndulo sem a rigidez adicional da mola com aqueles obtidos variando-se a rigidez da mola entre os valores estabelecidos. Observa-se que o absorsor perde um pouco sua eficiência. Por outro lado diminuem bastante os valores máximos da resposta do pêndulo, tornando sua resposta praticamente linear.

Figura 5.29: Comportamento das amplitudes máximas do sistema na resposta total em função da variação de rigidez do pêndulo.

A Figura 5.30 mostra o comportamento das amplitudes máximas do sistema com a variação da rigidez na resposta permanente. Nota-se, novamente, uma queda na eficiência do absorsor em virtude de uma diminuição drástica de suas amplitudes de oscilação. Foi também analisado o comportamento do absorsor considerando um pêndulo invertido. Os resultados demonstraram que, tanto na

fase transiente quanto na permanente, os valores obtidos são bem superiores a aqueles alcançados com o pêndulo na posição original.

Figura 5.30: Comportamento das amplitudes máximas do sistema na resposta permanente em função da variação de rigidez do pêndulo.

5.5.2. Efeito de uma Mola Não-Linear

O objetivo é analisar a influência da não-linearidade da mola do dispositivo absorsor na resposta da coluna. Considerando uma mola com não-linearidade cúbica, as equações de movimento (4.12) tomam a forma:

$$\begin{cases} (0.25ML+m)\ddot{w} + C\dot{w} + \left(\frac{3.09EI}{L^3} - 0.78Mg\right)w + ml\ddot{\theta}\cos(\theta) - \\ ml\dot{\theta}^2\sin(\theta) = F_0\sin(\omega_e t) \end{cases}$$
(5.3a)

$$ml^{2}\ddot{\theta} + C_{p}\dot{\theta} - \alpha \frac{k_{nl}}{6}\theta^{3} + mglsen(\theta) + ml\ddot{w}\cos(\theta) = 0$$
(5.3b)

onde K_{nl} representa a rigidez não-linear do pêndulo.

Para ter uma noção da ordem de grandeza desse termo não-linear, expandiuse a função não-linear sen(θ) em séries de Taylor, obtendo-se o termo cúbico $(-\theta^3/6)$. Então, considera-se que a rigidez não-linear da mola é $K_{pnl} = -\alpha \frac{k_{nl}}{6} \theta^3$, sendo α um parâmetro de controle. Assim, as equações de estado são dadas, agora, por:

$$\dot{y}_{1} = y_{2} \quad (5.4a)$$

$$\dot{y}_{2} = \frac{\zeta_{s} \left(\frac{\omega_{s}}{\omega_{e}}\right)^{2} \operatorname{sen}(\tau) - 2\xi_{s} \frac{\omega_{s}}{\omega_{e}} y_{2} - \left(\frac{\omega_{s}}{\omega_{e}}\right)^{2} y_{1} - \mu \dot{y}_{4} \cos(y_{3}) + \mu y_{4}^{2} \operatorname{sen}(y_{3})}{(1+\mu)} \quad (5.4b)$$

$$\dot{y}_3 = y_4$$
 (5.4c)

$$\dot{y}_4 = -2\xi_p \frac{\omega_p}{\omega_e} y_4 + \frac{\alpha}{6} \left(\frac{\omega_p}{\omega_e}\right)^2 y_3^3 - \dot{y}_2 \cos(y_3) - \left(\frac{\omega_p}{\omega_e}\right)^2 \operatorname{sen}(y_3) \quad (5.4d)$$

Nas Tabelas 5.4 e 5.5 observar-se o comportamento das amplitudes máximas de deslocamento da coluna e do pêndulo, respectivamente, para a resposta total.

Tabela 5.4: Amplitudes máximas da coluna na resposta total com a variação de rigidez não-linear.

α	ζ (máximo)	ζ_{τ} , (máximo)	ζ, _π (máximo)
-1	0.033206	0.032740	0.033216
0	0.033235	0.032756	0.033244
1	0.033264	0.032772	0.033273

α	heta (máximo)	$\theta_{,_{\tau}}$ (máximo)	$\theta_{,\pi}$ (máximo)
-1	0.331020	0.332588	0.328784
0	0.333699	0.334775	0.331375
1	0.336410	0.336985	0.333998

Tabela 5.5: Amplitudes máximas do pêndulo na resposta total com a variação de rigidez não-linear.

Já nas Tabelas 5.6 e 5.7 são mostradas as amplitudes máximas da resposta da coluna e do pêndulo, respectivamente, durante a resposta permanente.

ζ (máximo) ζ_{τ} (máximo) $\zeta_{\tau\tau}$ (máximo) α -1 0.000701 0.000742 0.000635 0 0.000681 0.000727 0.000617 1 0.000661 0.000712 0.000602

Tabela 5.6: Amplitudes máximas da resposta da coluna na fase permanente em função da variação de rigidez não-linear

Tabela 5.7: Amplitudes máximas da resposta do pêndulo na fase permanente em função da variação de rigidez não-linear.

α	heta (máximo)	$\theta_{,_{\tau}}$ (máximo)	θ , _{π} (máximo)
-1	0.175638	0.175803	0.175310
0	0.176322	0.176489	0.175988
1	0.177022	0.177192	0.176683

A não-linearidade positiva (α =1) causa uma pequena perda de eficiência do absorsor. Cabe lembrar que, nesse caso, tem-se uma redução no grau de nãolinearidade do absorsor. Já uma não-linearidade negativa (α =-1) aumenta o grau de não-linearidade do sistema melhorando a eficiência do absorsor. Isso indica que a não-linearidade do absorsor têm um efeito positivo no comportamento do sistema, o que será analisado com mais profundidade no próximo capítulo.