3 Freqüências Naturais e Modos de Vibração da Coluna

Nesse capítulo é apresentada a solução analítica das equações lineares de movimento para se obter as freqüências naturais e os modos de vibração de alguns casos relevantes para esse trabalho.

São deduzidas as equações diferenciais parciais de movimento com as suas respectivas condições de contorno a partir do funcional de energia. Com isso, temse um problema de valor de contorno cuja solução analítica fornece uma família de autovalores e autovetores que são, respectivamente, as freqüências naturais e os modos de vibração. As equações diferenciais parciais de movimento com as suas respectivas condições de contorno são obtidas através do funcional de energia da coluna:

$$L_{g} = \int_{0}^{L} \frac{1}{2} M_{o} (1 + \eta x)^{n} \left(\frac{\partial w}{\partial t}\right)^{2} dx + \frac{1}{2} M_{c} \left(\frac{\partial w(L_{1})}{\partial t}\right)^{2} - \int_{0}^{L} \left(\frac{1}{2} E I_{o} (1 + \eta x)^{n+2} w^{2},_{xx} - \frac{1}{2} w^{2},_{x} \left(N_{o} (1 + \eta x)^{n+1}\right)\right) dx$$
(3.1)

Pode-se citar os trabalhos de Low (1998), Uscilowska & Kolodzeij (1998), Dwivedy & Kar (1999) e Ozkaya (2002) como sendo estudos detalhados, que permitem compreender o comportamento de colunas de seção constante. Já os trabalhos de Auciello (1995), Li *et al.* (1999), De Rosa & Maurizi (2005), Wu & Chen (2004) e Elishakoff & Johnson (2005) apresentam uma detalhada contribuição para o estudo e compreensão do comportamento de colunas com seção variável.

3.1. Coluna de Seção Constante sem Força Axial

Apresenta-se, nesse item, o comportamento de colunas de seção constante e descarregadas. Estas colunas são apresentadas na Figura 3.1.

(a) Coluna sem massa concentrada(b) Coluna com massa concentradaFigura 3.1: Coluna de seção constante sem força axial.

Inicialmente estuda-se a coluna mostrada na Figura 3.1 (a). Essa coluna já foi estudada por vários autores, entre eles, Meirovitch (1975) e Blevins (1979).

Partindo do funcional de energia da coluna, equação (3.1), desprezando a parcela referente ao carregamento axial e considerando que a coluna é de seção constante, tem-se a equação de movimento de uma coluna à flexão:

$$\left(\frac{\partial^4 w(x)}{\partial x^4}\right) + \frac{M}{EI} \left(\frac{\partial^2 w(t)}{\partial t^2}\right) = 0$$
(3.2)

Para determinar as freqüências naturais, pode-se escrever que o deslocamento transversal da coluna é dado, usando separação de variáveis, por:

$$w(x,t) = w(x)r(t) = w(x)e^{i\omega_c t}$$
(3.3)

Assim, a equação (3.2) toma a forma:

$$\left(\frac{d^4 w(x)}{dx^4}\right) - k^4 w(x) = 0$$
(3.4)

onde $k^4 = M\omega_c^2/EI$.

A solução da equação diferencial ordinária (3.4) é dada em termos de funções trigonométricas e hiperbólicas, por:

$$\phi(x) = C_1 \operatorname{sen}(k_j x) + C_2 \cos(k_j x) + C_3 \operatorname{senh}(k_j x) + C_4 \cosh(k_j x)$$
(3.5)

onde k_j são as raízes da equação característica $\lambda^4 + k_j^4 = 0$, sendo estas: $\lambda_{1,2} = \pm i k_j$ e $\lambda_{3,4} = \pm k_j$.

Tratando-se de uma coluna engastada e livre, tem-se que suas condições de contorno são:

$$\phi(0) = \phi'(0) = 0 \tag{3.6a}$$

$$\phi''(L) = \phi'''(L) = 0 \tag{3.6b}$$

Substituindo a solução geral da equação diferencial ordinária (3.5) nas condições de contorno (3.6), obtém-se o sistema:

$$\mathbf{FC} = \mathbf{0} \tag{3.7}$$

onde \mathbf{F} é a matriz dos coeficientes e \mathbf{C} o vetor das constantes a serem determinadas.

Considerando que a solução geral do problema (3.5) pode ser representada por:

$$\phi(x) = C_1 W_1(x) + C_2 W_2(x) + C_3 W_3(x) + C_4 W_4(x)$$
(3.8)

na qual as funções $W_j(x)(j = 1,2,3,4)$ são dadas pela expressão (3.5), tem-se que o sistema (3.7) apresenta a seguinte forma:

$$\begin{bmatrix} W_{1} & W_{2} & W_{3} & W_{4} \\ \frac{dW_{1}}{dx} & \frac{dW_{2}}{dx} & \frac{dW_{3}}{dx} & \frac{dW_{4}}{dx} \\ EI \frac{d^{2}W_{1}}{dx^{2}} & EI \frac{d^{2}W_{2}}{dx^{2}} & EI \frac{d^{2}W_{3}}{dx^{2}} & EI \frac{d^{2}W_{4}}{dx^{2}} \\ EI \frac{d^{3}W_{1}}{dx^{3}} & EI \frac{d^{3}W_{2}}{dx^{3}} & EI \frac{d^{3}W_{3}}{dx^{3}} & EI \frac{d^{3}W_{4}}{dx^{3}} \end{bmatrix} \begin{bmatrix} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \end{bmatrix} = \mathbf{0}$$
(3.9)

Para que o sistema homogêneo (3.7) apresente uma solução não-trivial é necessário que o determinante de \mathbf{F} seja igual a zero. A equação obtida a partir do determinante da matriz \mathbf{F} é chamada de equação característica e tem como incógnitas as freqüências naturais que são os autovalores da matriz. Fazendo as derivações necessárias tem-se que o determinante da matriz \mathbf{F} é dado por:

$$2 + 2\cos(\beta_i)\cosh(\beta_i) = 0 \tag{3.10}$$

onde $\beta_j = k_j L$ é o *j*-ésimo autovalor.

As raízes da expressão (3.10), fornecem as freqüências naturais da coluna. Na Tabela 3.1 é apresentada uma comparação das três primeiras raízes da equação (3.10) com os resultados encontrados na literatura.

Raízes	Meirovitch	Blevins (1979)	Presente
	(1975)		Trabalho
β_1	1.875	1.87510407	1.87510407
$oldsymbol{eta}_2$	4.694	4.69409113	4.69409113
$oldsymbol{eta}_3$	7.855	7.85475744	7.85475744

Tabela 3.1: Comparação dos resultados.

Com as raízes da expressão (3.10) obtidas, pode-se determinar as freqüências naturais da coluna, a partir da expressão:

$$\omega_{cj} = \left(\beta_j\right)^2 \sqrt{EI / ML^4} \tag{3.11}$$

Ao substituir os valores de β_i no sistema homogêneo (3.7), obtêm-se as constantes C_i e, conseqüentemente, os modos de vibração através da expressão (3.5). Os três primeiros modos da coluna engastada e livre são apresentados na Figura 3.2. Esses modos foram normalizados de tal forma que a amplitude máxima é unitária.

Figura 3.2: Modos de vibração da coluna.

Adicionando à coluna uma massa concentrada, tem-se o problema mostrado na Figura 3.1 (b). Nessa etapa, opta-se por dividir a coluna em dois segmentos, onde o primeiro segmento vai do engaste até a massa concentrada e o segundo segmento vai da massa concentrada até a extremidade livre. A equação diferencial de cada trecho é deduzida a partir do funcional (3.1). Assim, tem-se:

$$\left(\frac{\partial^4 w_1(x)}{\partial x^4}\right) + \frac{M}{EI} \left(\frac{\partial^2 w_1(t)}{\partial t^2}\right) = 0 \qquad 0 \le x \le L_1$$
(3.12)

$$\left(\frac{\partial^4 w_2(x)}{\partial x^4}\right) + \frac{M}{EI} \left(\frac{\partial^2 w_2(t)}{\partial t^2}\right) = 0 \qquad L_1 \le x \le L$$
(3.13)

Adotando a mesma metodologia empregada na solução da coluna apresentada na Figura 3.1 (a), tem-se que a solução geral das equações (3.12) e (3.13) são:

$$\phi_1(x) = C_1 \operatorname{sen}(k_i x) + C_2 \cos(k_i x) + C_3 \operatorname{senh}(k_i x) + C_4 \cosh(k_i x)$$
(3.14)

$$\phi_2(x) = C_5 \operatorname{sen}(k_i x) + C_6 \cos(k_i x) + C_7 \operatorname{senh}(k_i x) + C_8 \cosh(k_i x)$$
(3.15)

As condições de contorno são dadas, para esse caso, por:

$$\phi_1(0) = \phi_1'(0) = 0 \tag{3.16a}$$

$$\phi_2''(L) = \phi_2'''(L) = 0 \tag{3.16b}$$

Além das condições de contorno, são necessárias as condições de continuidade que podem ser deduzidas do funcional (3.1), sendo essas:

$$\phi_1(L_1) = \phi_2(L_1) \tag{3.17a}$$

$$\phi_1'(L_1) = \phi_2'(L_1) \tag{3.17b}$$

$$\phi_1''(L_1) = \phi_2''(L_1) \tag{3.17c}$$

$$\phi_1^{'''}(L_1) + L\alpha k^4 \phi_1(L_1) = \phi_2^{'''}(L_1)$$
(3.17d)

onde, $\alpha = M_c / M_t$ é a relação entre a massa concentrada e o massa total da coluna, $M_t = ML$. Na Figura 3.3 são apresentadas as parcelas da condição de continuidade do esforço cortante, equação (3.17d). Cabe ressaltar que não foi considerado o efeito de rotação da massa concentrada em (3.17c).

Figura 3.3: Parcelas da condição de continuidade do esforço cortante.

Substituindo as soluções do problema (3.14) e (3.15) nas condições de contorno (3.16) e nas condições de continuidade (3.17), obtêm-se novamente o sistema (3.7), FC = 0. A matriz **F**, nesse caso, tem dimensão 8x8 devido às quatro condições de contorno e às quatro condições de continuidade.

Escrevendo as soluções gerais do problema na forma:

$$\phi_1(x) = C_1 W_1(x) + C_2 W_2(x) + C_3 W_3(x) + C_4 W_4(x)$$
(3.18)

$$\phi_2(x) = C_5 W_5(x) + C_6 W_6(x) + C_7 W_7(x) + C_8 W_8(x)$$
(3.19)

onde $W_j(x)(j = 1,2,3,4,5,6,7,8)$, são dadas pelas expressões (3.14) e (3.15), tem-se que o sistema (3.7) toma a forma:

$$\begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} & F_{15} & F_{16} & F_{17} & F_{18} \\ F_{21} & F_{22} & F_{23} & F_{24} & F_{25} & F_{26} & F_{27} & F_{28} \\ F_{31} & F_{32} & F_{33} & F_{34} & F_{35} & F_{36} & F_{37} & F_{38} \\ F_{41} & F_{42} & F_{43} & F_{44} & F_{45} & F_{46} & F_{47} & F_{48} \\ F_{51} & F_{52} & F_{53} & F_{54} & F_{55} & F_{56} & F_{57} & F_{58} \\ F_{61} & F_{62} & F_{63} & F_{64} & F_{65} & F_{66} & F_{67} & F_{68} \\ F_{71} & F_{72} & F_{73} & F_{74} & F_{75} & F_{76} & F_{77} & F_{78} \\ F_{81} & F_{82} & F_{83} & F_{84} & F_{85} & F_{86} & F_{87} & F_{88} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7 \\ C_8 \end{bmatrix} = 0$$
(3.20)

Os termos da matriz F são:

$$F_{1i} = W_i$$
 $F_{1j} = 0$ (3.21a)

$$F_{2i} = \frac{dW_i}{dx}$$
 $F_{2j} = 0$ (3.21b)

$$F_{3i} = 0$$
 $F_{3j} = EI \frac{d^2 W_j}{dx^2}$ (3.21c)

$$F_{4i} = 0$$
 $F_{4j} = EI \frac{d^3 W_j}{dx^3}$ (3.21d)

$$F_{5i} = W_i$$
 $F_{5j} = -W_j$ (3.21e)

$$F_{6i} = \frac{dW_i}{dx} \qquad \qquad F_{6j} = -\frac{dW_j}{dx} \qquad (3.21f)$$

$$F_{7i} = EI \frac{d^2 W_i}{dx^2}$$
 $F_{7j} = -EI \frac{d^2 W_j}{dx^2}$ (3.21g)

$$F_{8i} = EI \frac{d^{3}W_{i}}{dx^{3}} + L\alpha k^{4}W_{i} \qquad F_{8j} = -EI \frac{d^{3}W_{j}}{dx^{3}} \qquad (3.21h)$$

com i = 1..4 e j = 5..8.

Igualando o determinante de **F** a zero, obtêm-se a equação característica em termos dos parâmetros β , $\upsilon \in \alpha$:

$$2 + \alpha\beta \cosh(\beta\nu)\operatorname{sen}(\beta)\operatorname{sen}(\beta\nu) + \alpha\beta \cosh(\beta\nu)\operatorname{sen}(\beta)\cos(\beta\nu)\cosh(\beta) - \alpha\beta \cosh(\beta\nu)\cosh(\beta)\operatorname{sen}(\beta\nu)\cosh(\beta) - \alpha\beta \cosh(\beta\nu)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta) - \alpha\beta \cosh(\beta\nu)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta)\operatorname{sen}(\beta) + \alpha\beta \operatorname{senh}(\beta\nu)\cos(\beta\nu)\operatorname{sen}(\beta)\operatorname{sen}(\beta) + \alpha\beta \operatorname{senh}(\beta\nu)\cos(\beta)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta) + \alpha\beta \operatorname{senh}(\beta\nu)\cos(\beta)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta) + \alpha\beta \operatorname{senh}(\beta\nu)\cos(\beta)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta) + \alpha\beta \operatorname{senh}(\beta\nu)\cos(\beta) + \alpha\beta \operatorname{senh}(\beta\nu)\operatorname{sen}(\beta\nu)\operatorname{sen}(\beta) + \alpha\beta \operatorname{senh}(\beta\nu)^{2}\operatorname{sen}(\beta)\operatorname{sen}(\beta\nu) + \alpha\beta \operatorname{senh}(\beta\nu)^{2}\operatorname{sen}(\beta)\cosh(\beta) + \alpha\beta \operatorname{senh}(\beta\nu) + 2\cos(\beta)\cosh(\beta\nu) + 2\cos(\beta)\cosh(\beta\nu) + 2\cos(\beta)\cosh(\beta\nu) + 2\cos(\beta)\cosh(\beta\nu) = 0$$
(3.22)

onde $v = L_1 / L$, é o parâmetro de posição da massa concentrada ao longo da coluna.

Com as raízes de (3.22), têm-se as freqüências naturais da coluna apresentada na Figura 3.1 (b) através da expressão (3.11) e conseqüentemente os modos de vibração a partir das funções (3.14) e (3.15).

3.1.1. Estudo das Freqüências Naturais

Nesse estudo buscou-se mostrar o comportamento das freqüências naturais, com a variação dos parâmetros v (posição da massa concentrada) e α (relação entre a massa concentrada e a massa da coluna). Os casos analisados são:

- $v = 0.0 \rightarrow$ Coluna sem massa concentrada;
- $v = 0.25 \rightarrow$ Massa concentrada a 0.25 do comprimento da coluna;
- $v = 0.50 \rightarrow$ Massa concentrada a 0.50 do comprimento da coluna;
- $v = 0.75 \rightarrow$ Massa concentrada a 0.75 do comprimento da coluna;
- $v = 1.00 \rightarrow$ Massa concentrada na ponta da coluna.

As freqüências naturais são obtidas através da equação (3.22), onde, para determinados valores de $v \in \alpha$, podem ser obtidas as raízes β_j . De posse dos β_j , calculam-se as freqüências a partir da expressão (3.11).

Com as três primeiras freqüências naturais obtidas para cada caso, partiu-se para a análise do comportamento das mesmas, onde estudaram-se as alterações

dos valores de β_j , ou seja, variações das freqüências naturais, com a mudança do parâmetro α na expressão geral das freqüências naturais (3.22). Adotou-se α variando de 0.01 a 100.

O comportamento da primeira freqüência natural com a variação de α e υ é apresentado na Figura 3.4.

Figura 3.4: Variação da primeira freqüência em função de α e υ .

Observa-se que o valor de β_j decresce conforme aumenta o valor da relação de massa, α , ou seja, M_c cresce. Esse decréscimo é mais acentuado para posições da massa concentrada próximas do topo da coluna. Com isso há uma redução marcante da freqüência natural, indicando que o sistema fica mais flexível quanto mais próxima da extremidade livre estiver a massa concentrada.

O comportamento da segunda freqüência natural é ilustrado na Figura 3.5. Na mesma observa-se que a segunda freqüência é bastante sensível à posição da massa. Para valores de α menores que três, a redução é maior quando a massa concentrada esta na metade da coluna. A partir desse ponto, a maior redução ocorre para v = 0.25. Nota-se ainda que, quando a massa está a um quarto da extremidade livre (v = 0.75), praticamente não há alteração no valor da freqüência, fato este explicado observando-se a Figura 3.9, que apresenta o comportamento do segundo modo de vibração de uma coluna engastada e livre. Como se observa, nesse caso, a massa concentrada coincide praticamente com a posição do nó.

Figura 3.5: Variação da segunda freqüência em função de α e v.

A Figura 3.6 mostra o comportamento da terceira freqüência natural com a variação do parâmetro α .

Figura 3.6: Variação da terceira freqüência em função de α e υ .

Nota-se na Figura 3.6 que também há redução da freqüência natural e ainda, quando a massa concentrada esta no meio da coluna não há variação dos valores, em comparação com uma coluna sem massa concentrada.

Pode-se observar na Figura 3.7, uma comparação entre as freqüências da coluna para uma relação de massas v = 1.

Figura 3.7: Comparação entre as três primeiras freqüências quando v = 1.

Nota-se que as freqüências são bem separadas para esse caso, sendo que o mesmo acontece para as demais relações de massas.

3.1.2. Estudo dos Modos de Vibração

Os modos de vibração são obtidos através da resolução do sistema (3.7), onde, uma vez obtidas as constantes C_j para cada β_j , pode-se desenhar os modos de vibração a partir das expressões (3.14) e (3.15) que descrevem as autofunções do problema.

Para essa análise é adotada a relação entre massas 1.0 ($\alpha = 1.0$). Então, pode-se encontrar os três primeiros modos de vibração normalizados para v igual a 0.00, 0.25, 0.50, 0.75, 1.00.

O comportamento do primeiro modo de vibração, normalizado, para diferentes valores de v, é apresentado na Figura 3.8.

Figura 3.8: Forma do primeiro modo de vibração variando-se v.

Observa-se que quase não há alteração na forma do primeiro modo de vibração para diferentes valores de v.

O segundo modo de vibração, normalizado, comporta-se como apresentado na Figura 3.9.

Figura 3.9: Forma do segundo modo de vibração variando-se v.

Pode-se observar que os modos têm amplitude máxima na extremidade livre, com exceção do modo para v = 1.0. Observa-se ainda que as configurações dos modos são parecidas, entretanto a posição do nó varia com a posição da massa ao longo da coluna. O comportamento do terceiro modo de vibração, normalizado, é apresentado na Figura 3.10.

Figura 3.10: Forma do terceiro modo de vibração variando-se υ .

Nota-se que há uma influência marcante da posição da massa na forma do terceiro modo de vibração.

Em resumo, pode-se afirmar que a massa concentrada tem pouca influência na forma do primeiro modo, mas sua influência cresce para os modos mais altos.

3.2. Coluna de Seção Variável com Força Axial

As colunas de seção variável estudadas estão expostas na Figura 3.11. Observa-se que as colunas possuem seção transversal variável e estão sob a ação de uma força axial devida à carga concentrada p no topo da torre e ao carregamento axial q_x (peso próprio).

(a) Coluna sem massa concentrada(b) Coluna com massa concentradaFigura 3.11: Coluna de seção variável com força axial.

A equação de movimento da coluna apresentada na Figura 3.11 (a) é deduzida a partir do funcional de energia da coluna (3.1), de onde se obtém a equação diferencial com coeficientes variáveis:

$$EI_{o} \frac{d^{2}}{dx^{2}} \left[(1+\eta x)^{n+2} \left(\frac{\partial^{2} w(x)}{\partial x^{2}} \right) \right] + N_{o} \frac{d}{dx} \left[(1+\eta x)^{n+1} \left(\frac{\partial w(x)}{\partial x} \right) \right] + M_{o} (1+\eta x)^{n} \left(\frac{\partial^{2} w(t)}{\partial t^{2}} \right) = 0$$
(3.23)

Adotando (3.3) como solução do problema, reduz-se (3.23) à equação diferencial ordinária de quarta ordem:

$$EI_{o}\left[(1+\eta x)^{2}\left(\frac{d^{4}w(x)}{dx^{4}}\right)+2(1+\eta x)(n+2)\eta\left(\frac{d^{3}w(x)}{dx^{3}}\right)+(n+2)(n+1)\eta^{2}\left(\frac{d^{2}w(x)}{dx^{2}}\right)\right]+N_{o}\left[(1+\eta x)\left(\frac{d^{2}w(x)}{dx^{2}}\right)+(n+1)\eta\left(\frac{dw(x)}{dx}\right)\right]-M_{o}\omega_{c}^{2}w(x)=0$$
(3.24)

Seguindo a metodologia apresentada por Li *et al.* (2000), tem-se que a solução geral da equação diferencial ordinária (3.24) é dada por:

$$\phi(x) = C_1 d_1^{-n} J_n(d_1) + C_2 d_1^{-n} Y_n(d_1) + C_3 d_2^{-n} I_n(d_2) + C_4 d_2^{-n} K_n(d_2)$$
(3.25)

na qual

$$d_{1} = \frac{2}{\eta} \sqrt{N_{e} + \sqrt{N_{e}^{2} + s^{4}}} \sqrt{1 + \eta x}$$
(3.26)

$$d_{2} = \frac{2}{\eta} \sqrt{N_{e} - \sqrt{N_{e}^{2} + s^{4}}} \sqrt{1 + \eta x}$$
(3.27)

onde $N_{e} = N_{o} / 2EI_{o}$ e $s^{4} = M_{o} \omega_{c}^{2} / EI_{o}$.

Os termos $J_n(d)$, $Y_n(d)$, $I_n(d)$ e $K_n(d)$ são funções de Bessel de primeiro, segundo, terceiro e quarto tipo, respectivamente.

Para a coluna apresentada na Figura 3.11 (a), as condições de contorno são dadas pelas expressões (3.6). Substituindo a expressão (3.25) nas condições de contorno (3.6), obtém-se, novamente, o sistema (3.7).

Admitindo que a solução geral do problema pode ser representada pela expressão (3.8), onde os $W_j(x)$ (j = 1,2,3,4) são dados pela expressão (3.25), temse que o sistema (3.7) toma a forma:

$$\begin{bmatrix} W_{1} & W_{2} & W_{3} & W_{4} \\ \frac{dW_{1}}{dx} & \frac{dW_{2}}{dx} & \frac{dW_{3}}{dx} & \frac{dW_{4}}{dx} \\ EI_{x}\frac{d^{2}W_{1}}{dx^{2}} + N_{x}W_{1} & EI_{x}\frac{d^{2}W_{2}}{dx^{2}} + N_{x}W_{2} & EI_{x}\frac{d^{2}W_{3}}{dx^{2}} + N_{x}W_{3} & EI_{x}\frac{d^{2}W_{4}}{dx^{2}} + N_{x}W_{4} \\ \frac{d}{dx}\left[EI_{x}\frac{d^{2}W_{1}}{dx^{2}} + N_{x}W\right] & \frac{d}{dx}\left[EI_{x}\frac{d^{2}W_{2}}{dx^{2}} + N_{x}W_{2}\right] & \frac{d}{dx}\left[EI_{x}\frac{d^{2}W_{3}}{dx^{2}} + N_{x}W\right] & \frac{d}{dx}\left[EI_{x}\frac{d^{2}W_{4}}{dx^{2}} + N_{x}W\right] & \frac{d}{dx}\left[EI_{x}\frac{d^{2}W_{4}}{dx^{2}$$

Para que o sistema (3.7), nesse caso, tenha solução não-trivial é necessário, novamente, que o determinante da matriz \mathbf{F} seja igual a zero. Assim tem-se que suas raízes fornecem as freqüências naturais através de (3.11) e, conseqüentemente, os seus modos de vibração através de (3.25).

Adicionando ao problema uma massa concentrada tem-se o problema representado pela Figura 3.11 (b), onde suas equações de movimento também são deduzidas através do funcional de energia da coluna (3.1).

$$EI_{o} \frac{d^{2}}{dx^{2}} \left[(1+\eta x)^{n+2} \left(\frac{\partial^{2} w_{1}(x)}{\partial x^{2}} \right) \right] + N_{o} \frac{d}{dx} \left[(1+\eta x)^{n+1} \left(\frac{\partial w_{1}(x)}{\partial x} \right) \right] +$$

$$M_{o} (1+\eta x)^{n} \left(\frac{\partial^{2} w_{1}(t)}{\partial t^{2}} \right) = 0$$

$$EI_{o} \frac{d^{2}}{dx^{2}} \left[(1+\eta x)^{n+2} \left(\frac{\partial^{2} w_{2}(x)}{\partial x^{2}} \right) \right] + N_{o} \frac{d}{dx} \left[(1+\eta x)^{n+1} \left(\frac{\partial w_{2}(x)}{\partial x} \right) \right] +$$

$$M_{o} (1+\eta x)^{n} \left(\frac{\partial^{2} w_{2}(t)}{\partial t^{2}} \right) = 0$$

$$(3.30)$$

Utilizando o mesmo processo empregado na coluna exposta na Figura 3.11 (a), chega-se à solução das equações (3.29) e (3.30), que são:

$$\phi_1(x) = C_1 d_1^{-n} J_n(d_1) + C_2 d_1^{-n} Y_n(d_1) + C_3 d_2^{-n} I_n(d_2) + C_4 d_2^{-n} K_n(d_2)$$
(3.31)

$$\phi_2(x) = C_5 d_1^{-n} J_n(d_1) + C_6 d_1^{-n} Y_n(d_1) + C_7 d_2^{-n} I_n(d_2) + C_8 d_2^{-n} K_n(d_2)$$
(3.32)

Como se trata de uma coluna engasta e livre com uma massa concentrada, tem-se que suas condições de contorno e suas condições de continuidade são dadas pelas expressões (3.16) e (3.17), respectivamente. Substituindo as expressões (3.31) e (3.32) em (3.16) e (3.17), obtém-se, novamente, o sistema (3.7), FC = 0.

Admitindo que as soluções gerais do problema possam ser expressas como as expressões (3.18) e (3.19), tem-se que o sistema (3.7) é dado pelo sistema (3.20) e os termos da matriz \mathbf{F} são:

$$F_{1i} = W_i$$
 $F_{1j} = 0$ (3.33a)

$$F_{2i} = \frac{dW_i}{dx}$$
 $F_{2j} = 0$ (3.33b)

$$F_{3i} = 0$$
 $F_{3j} = EI_x \frac{d^2 W_j}{dx^2} + N_x W_j$ (3.33c)

$$F_{4i} = 0$$
 $F_{4j} = \frac{d}{dx} \left[EI_x \frac{d^2 W_j}{dx^2} + N_x W_j \right]$ (3.33d)

$$F_{5i} = W_i$$
 $F_{5j} = -W_j$ (3.33e)

$$F_{6i} = \frac{dW_i}{dx} \qquad \qquad F_{6j} = -\frac{dW_j}{dx} \qquad (3.33f)$$

$$F_{7i} = EI_x \frac{d^2 W_i}{dx^2} + N_x W_i \qquad F_{7j} = -EI_x \frac{d^2 W_j}{dx^2} - N_x W_j \qquad (3.33g)$$

$$F_{8i} = \frac{d}{dx} \left[EI \frac{d^{3}W_{i}}{dx^{3}} + NW_{i} \right] + L\alpha k^{4}W_{i} \qquad F_{8j} = -\frac{d}{dx} \left[EI \frac{d^{3}W_{j}}{dx^{3}} + NW_{j} \right]$$
(3.33h)

onde i = 1..4 e j = 5..8.

Conseqüentemente, chega-se ao mesmo problema da coluna da Figura 3.11 (a), onde, novamente, o determinante da matriz \mathbf{F} , igualado a zero, fornece os autovalores a partir de (3.11) e os modos de vibração através das expressões (3.31) e (3.32).

3.2.1. Avaliação da Força Axial

Ao considerar a força axial agindo sobre a coluna é necessário saber como comporta-se a distribuição dessa força ao longo da mesma. Para os casos da Figura 3.11, tem-se que a força axial é dada pelo somatória da carga concentrada p e o carregamento axial q_x (peso próprio), como ilustrado na Figura 3.12.

Figura 3.12: Variação da força axial (Li et al., 2000).

Através da Figura 3.12 pode-se deduzir a função que descreve a variação da força axial agindo na coluna. Assim tem-se:

$$N_{x}(x) = p + q_{x}(L - x)$$
(3.34)

onde $q_x = M_x g$.

No Capítulo 2 desse estudo foi adotado que $N_x = N_o (1 + \eta x)^{n+1}$. Então, para correlacionar estas duas expressões e determinar N_o , é utilizado o processo apresentado por Li *et al.* (2000), onde este parâmetro pode ser determinado através da equivalência de momentos fletores na base da coluna.

$$\int_{0}^{L} N_{o} (1+\eta x)^{n+1} \phi(x) dx = \int_{0}^{L} [p+q_{x}(L-x)] \phi(x) dx$$
(3.35)

Para facilidade o processo, adota-se $\phi(x)$ como sendo o primeiro modo de vibração da coluna da Figura 3.11 (a) sem a consideração da força axial.

3.2.2. Exemplo Numérico

Os parâmetros do exemplo numérico estão apresentados na Figura 3.13.

Figura 3.13: Coluna do exemplo numérico.

Observa-se que esse exemplo trata de uma coluna com seção variável, tendo um comprimento total de 10 m, um diâmetro inferior de 1.00 m e um diâmetro superior de 0.80 m. Para representar a variação da seção transversal foram adotados os parâmetros $\eta = -0.021m^{-1}$ e n = 1.

Para obterem-se os parâmetros do problema, é necessário calcular os valores da área e do momento de inércia em x = 0.0. Esses valores são dados por:

$$A_0 = \pi e(d_{ext} - e) \tag{3.36}$$

$$I_0 = \frac{\pi}{64} (d_{ext}^4 - (d_{ext} - 2e)^4)$$
(3.37)

onde, e é a espessura da parede da coluna e d_{ext} é o diâmetro externo da seção.

Adotando $E = 2.1x10^{11} \text{ N/m}^2$, $\rho = 2125 \text{ Kg/m}^3$ e e = 5 cm, pode-se determinar a rigidez a flexão e a massa por unidade de comprimento da seção em x = 0.0, que são:

- $EI_0 = 35.450418 \times 10^8 \,\mathrm{Nm}^2;$
- $M_0 = A_0 \rho = 317.10451 \, \text{Kg/m}.$

68

3.2.2.1. Coluna sem o Efeito do Peso Próprio

Com os parâmetros definidos, tem-se que as três primeiras freqüências naturais da coluna, sem o efeito do peso próprio, são apresentadas na Tabela 3.2.

Tabela 3.2: Freqüências naturais da coluna sem o efeito do peso próprio (rad/s).

ω_1	ω_{2}	Ø ₃
120.82572142	687.037720005	1869.35950259

Os três primeiros modos de vibração para essa coluna são mostrados na Figura 3.14.

Figura 3.14: Modos de vibração da coluna sem o efeito do peso próprio.

3.2.2.2. Coluna com o Efeito do Peso Próprio

Para se obter as freqüências naturais e os modos de vibração considerando a carga distribuída é necessário calcular o valor de N_0 . A distribuição de carga axial é dada pela equação (3.34), sendo nesse caso p = 0.0. Conforme o método proposto, N_x é dado por $N_x = N_o (1 + \eta x)^{n+1}$, sendo N_0 determinado a partir da equação (3.35).

Para simplificar, é assumido que $\phi(x)$ tem a forma do primeiro modo de vibração da coluna da Figura 3.13 sem o efeito da carga axial (peso próprio). Assim obtém-se $N_0 = 10210.31196$ N. As três primeiras freqüências naturais estão apresentadas na Tabela 3.3. Nota-se que a influência do peso próprio é desprezível. Na verdade, está influência é pequena na maioria das torres esbeltas.

Tabela 3.3: Freqüências naturais da coluna com o efeito do peso próprio (rad/s).

ω_1	ω_2	Ø ₃
120.82310965	687.03331335	1869.35483997

Os três primeiros modos de vibração para essa coluna estão apresentados na Figura 3.15.

Figura 3.15: Modos de vibração da coluna com o efeito do peso próprio.