4 Inexistência de órbitas do tipo $\mathbb{T}^2 \times \mathbb{R}^2$

Para provar a inexistência de órbitas do tipo $\mathbb{T}^2 \times \mathbb{R}^2$ primeiro procederemos como no capítulo anterior, ou seja, começaremos supondo por absurdo que exista uma folha que possua um toro \mathbb{T}^2 mergulhado nela, i.e., tenha duas direções $\{v_1, v_2\}$ nas quais ela é compacta.

Denotemos por V o espaço bidimensional no espaço do cobrimento da folha, cujo levantamento forma a parte compacta da órbita. Após analisar como este espaço V pode interceptar os sub-espaços canônicos $\langle Y_1, Y_2 \rangle$ e $\langle Y_1, Y_2 \rangle$ conseguimos classificar os seguintes casos:

Primeiro caso: Se

 $dim\{V \cap \langle Y_1, Y_2 \rangle\} = 2 \quad e \quad dim\{V \cap \langle Y_3, Y_4 \rangle\} = 0$ então $\langle Y_1, Y_2 \rangle \subset V$ e podemos tomar $V_1 = Y_1$ e $V_2 = Y_2$.

Segundo caso: este caso é analogo ao primeiro. Se

$$\begin{split} \dim\{V \ \cap \ \langle Y_1, Y_2 \rangle\} &= 0 \quad e \quad \dim\{V \ \cap \ \langle Y_3, Y_4 \rangle\} &= 2 \\ \operatorname{ent} \tilde{a} o \ \langle Y_3, Y_4 \rangle \subset V \text{ e podemos tomar } \quad V_1 = Y_3 \quad e \quad V_2 = Y_4. \end{split}$$

Terceiro caso: o caso mais geral é quando $V \subset \{\langle Y_1, Y_2, Y_3, Y_4 \rangle\}$ então podemos tomar $V_1 = a_1Y_1 + a_2Y_2 + a_3Y_3 + a_4Y_4$ e $V_2 = b_1Y_1 + b_2Y_2 + b_3Y_3 + b_4Y_4$ onde os $a_i, b_i \in \{1, 2, 3, 4\}$ são números racionais com os vetores $(a_1, a_2), (b_3, b_4)$ não nulos.

O espaço V gerado pelos campos $\{V_1, V_2\}$, correspondentes aos vetores $\{v_1, v_2\}$ são as direções onde a folha é compacta. Notemos que a escolha dos campos V_i que geram V foram feitas segundo estas condições.

Repare que agora os campos $\{V_1, V_2\}$ nem sempre são combinações lineares das direções canônicas $\{Y_1, Y_2\}$ e $\{Y_3, Y_4\}$ respectivamente, (vide os dois primeiros casos e compare com os casos do capítulo anterior) mas o terceiro caso pode ser tratado como na demonstração do último capítulo devido a que temos as condições necessarias para chegar a uma contradição. Logo o problema atual seria o de analisar os dois primeiros casos. Analogamente, veremos que por propriedades topológicas vamos obter equações parecidas às anteriores e a partir destes dados, a órbita, que tem duas direções nas quais é compacta, deverá, ou se deslocar quase horizontalmente, i.e., movimentar-se na coordenada z_1 , ou quase verticalmente i.e., movimentarse na coordenada z_2 , em relação às funções que descrevem a holonomia nas direções não compactas. Assim restaram estas possibilidades a serem analisadas.

Devemos tomar em conta que ao falarmos de movimentos verticais (ou horizontais) não estamos nos referindo ao significado usual, i.e. o movimento vertical transversal à folha como o usado por N. Saldanha em (Sal). Estas deslocações são de fato com respeito ao plano $\{z_1, z_2\}$.

4.1 Holonomia de $\mathbb{T}^2\times\mathbb{R}^2$

Fixemos o ponto origem p pertencente a variedade M, seja F_p a órbita que passa por este ponto e $\mathbb{T}_0^2 \subset F_p$ o toro que contém o ponto p e está mergulhado na órbita F_p . Consideremos os vetores unitarios $\{v_1, v_2\}$ e suas respectivas curvas $\alpha_i(t) = tv_i$ que fazem parte do grupo fundamental de \mathbb{T}^4 e tal que seus respectivos levantamentos $\gamma_i(t)$ na órbita a partir do ponto psão fechadas. Seja $\{v_1, v_2, v_3, v_4\}$ uma base para \mathbb{R}^4 contendo os vetores anteriores e com a mesma condição de que cada um dos vetores seja combinação linear, com coeficientes racionais, dos vetores canônicos. Temos que as curvas $\alpha_i(t) = tv_i$ formam $\pi_1(\mathbb{T}^4)$.

Definição 4.1 Seja p o ponto origem $e F_p$ a órbita que contém este ponto ea qual é compacta no mínimo nas duas direções $\{v_1, v_2\}$.

Seja \mathbb{T}_0^2 o toro mergulhado na órbita F_p que contém o ponto p e que vem a ser o levantamento de $\mathbb{T}^2 \times 0 = \langle \{v_1, v_2\} \rangle \subset \mathbb{R}^4$. Para cada ponto $x = (y_1, y_2, 0, 0, z_1, z_2) \in \mathbb{T}_0^2$ definimos as curvas $\alpha_i(x)(t) = tv_i + \bar{x}; t \in [0, 1];$ i = 1, 2, 3, 4 em $\mathbb{T}^2 \times 0$, onde $\bar{x} = (y_1, y_2, 0, 0)$, e seu respectivo levantamento $\gamma_i(x)(t)$ em $\mathbb{T}_0^2 \subset F_p$.

Agora definamos a aplicação que descreve a holonomia da folha F_p para cada ponto $(y_1, y_2, 0, 0, z_1, z_2)$ de \mathbb{T}_0^2 . Com respeito a direção v_j ; j = 3, 4, tem-se:

$$\begin{aligned} f^j : & \mathbb{T}_0^2 & \longrightarrow & \mathbb{T}_{j-2}^2 \\ & x & \longmapsto f^j(x) = \gamma_j(x)(1) \end{aligned}$$

 \mathbb{T}_{j-2}^2 é o toro que também está mergulhado em F_p e que vem a ser o conjunto formado pelos pontos $\gamma_j(x)(1)$ para cada $x \in \mathbb{T}_0^2$

Em virtude de $\tilde{\theta}$ ser uma perturbação C^1 -próxima de θ_0 então os f^j ; j = 3, 4 são C^1 -próxima da identidade.

Definição 4.2 Para cada ponto em \mathbb{T}_0^2 se faz corresponder sua respectiva coordenada (z_1, z_2) da seguinte forma

$$\varphi: \qquad \mathbb{T}_0^2 \qquad \longrightarrow \operatorname{Proj}_{z_1, z_2}(\mathbb{T}_0^2)$$
$$(y_1, y_2, 0, 0, z_1, z_2) \qquad \longmapsto \qquad (z_1, z_2)$$

onde $\operatorname{Proj}_{z_1,z_2}(\mathbb{T}^2_0)$ denota a projeção do toro \mathbb{T}^2_0 no plano Z_1, Z_2 . Como definido, cada ponto $(y_1, y_2, 0, 0, z_1, z_2)$ pertençe a folha F_p .

Tomemos as curvas que fazem parte do grupo fundamental do toro $\pi_1(\mathbb{T}^4)$, denotadas por $\alpha_i(t) = tv_i$; $t \in [0,1]$ para i = 1,2; estas curvas estão direcionadas de tal forma que seus respectivos levantamentos na folha F_p a partir do ponto p são compactas, denotemos a tais levantamentos por

$$\gamma_i(t) = tV_i + \varphi(tV_i)$$

Agora se caminhamos pela folha nas direções não compactas $\{V_3, V_4\}$ chegaremos à formação de novas curvas

$$\tilde{\gamma}_i(t) = tVi + f^3(\varphi(tV_i))$$

 $\hat{\gamma}_i(t) = tVi + f^4(\varphi(tV_i))$

Tanto $\gamma_i, \tilde{\gamma}_i$ como $\hat{\gamma}_i$ são levantamentos de α_i em $\mathbb{T}_0^2, \mathbb{T}_1^2$ e \mathbb{T}_2^2 respectivamente.

Em virtude da órbita ser compacta nas duas direções acima então por propriedades topológicas podemos obter as seguintes igualdades em integrais análogas ao capítulo anterior:

$$0 = \int_0^1 [\tilde{\vartheta}(\tilde{\gamma}_i(t), \tilde{\gamma}'_i(t)) - \tilde{\vartheta}(\gamma_i(t), \gamma'_i(t))] dt \qquad \dots(1)$$

$$0 = \int_0^1 [\tilde{\vartheta}(\hat{\gamma}_i(t), \hat{\gamma}'_i(t)) - \tilde{\vartheta}(\gamma_i(t), \gamma'_i(t))] dt \qquad \dots (2)$$

Figura 4.1: Levantamentos dos α_i em F_p

E de (1) e (2) resulta (3):

$$0 = \int_0^1 [\tilde{\vartheta}(\hat{\gamma}_i(t), \hat{\gamma}'_i(t)) - \tilde{\vartheta}(\tilde{\gamma}_i(t), \tilde{\gamma}'_i(t))] dt \qquad \dots (3)$$

Estas igualdades para i = 1, 2. Agora se denotamos:

$$\begin{aligned} \varphi(tV_3) &= (z_{11}(t), z_{12}(t)) & \varphi(tV_4) = (z_{21}(t), z_{22}(t)) \\ f^3(\varphi(tV_1)) &= (\tilde{z}_{11}(t), \tilde{z}_{12}(t)) & f^3(\varphi(tV_2)) = (\tilde{z}_{21}(t), \tilde{z}_{22}(t)) \\ f^4(\varphi(tV_1)) &= (\hat{z}_{11}(t), \hat{z}_{12}(t)) & f^4(\varphi(tV_2)) = (\hat{z}_{21}(t), \hat{z}_{22}(t)) \end{aligned}$$

Temos os seguintes dados iniciais :

$$p_{0} = (z_{11}(0), z_{12}(0)) = (z_{11}(1), z_{12}(1)) = (z_{21}(0), z_{22}(0)) = (z_{21}(1), z_{22}(1))$$

$$p_{1} = (\tilde{z}_{11}(0), \tilde{z}_{12}(0)) = (\tilde{z}_{11}(1), \tilde{z}_{12}(1)) = (\tilde{z}_{21}(0), \tilde{z}_{22}(0)) = (\tilde{z}_{21}(1), \tilde{z}_{22}(1))$$

$$p_{2} = (\hat{z}_{11}(0), \hat{z}_{12}(0)) = (\hat{z}_{11}(1), \hat{z}_{12}(1)) = (\hat{z}_{21}(0), \hat{z}_{22}(0)) = (\hat{z}_{21}(1), \hat{z}_{22}(1))$$

e os vetores

$$w_{1} = p_{1} - p_{0}$$

$$w_{2} = p_{2} - p_{0}$$

$$w_{3} = p_{2} - p_{1} = w_{2} - w_{1}$$

Afirmação 4.3 As aplicações $f^3 e f^4$ definidas para uma vizinhança B_p de p, que descrevem a holonomia da órbita, ou se deslocam quase horizontalmente (no eixo z_1) ou quase verticalmente (no eixo z_2) simultâneamente.

Prova

Primeiro, como no capítulo anterior, analisemos a equação (1) (A análise da equação (2) é análoga).

Se $w_1 = (r_1, s_1)$ e $w_2 = (r_2, s_2)$ então por cálculos análogos feitos no capítulo anterior obtemos que para i = 1, 2:

$$\begin{split} 0 &= \int_{0}^{1} \left[\tilde{\vartheta}(\tilde{\gamma}_{i}(t),\tilde{\gamma}_{i}'(t)) - \tilde{\vartheta}(\gamma_{i}(t),\gamma_{i}'(t)) \right] dt \\ &= \int_{0}^{1} \left[\tilde{\vartheta}_{(tV_{i}+f_{(tV_{i})}^{3}(\varphi(tV_{i}))}(\tilde{\gamma}_{i}'(t)) - \tilde{\vartheta}_{(tV_{i}+\varphi(tV_{i}))}(\gamma_{i}'(t)) \right] dt \\ &= \int_{0}^{1} \left[\tilde{\vartheta}_{\tilde{\gamma}_{i}(t)}(\tilde{\gamma}_{i}'(t)) - \tilde{\vartheta}_{\gamma_{i}(t)}(\gamma_{i}'(t)) \right] dt \\ &= \int_{0}^{1} \left[D\tilde{\theta}_{\tilde{\gamma}_{i}(t)}^{-1}(\tilde{\gamma}_{i}'(t)) - D\tilde{\theta}_{\gamma_{i}(t)}^{-1}(\gamma_{i}'(t)) \right] dt \\ &= \int_{0}^{1} \left[D\tilde{\theta}_{\tilde{\gamma}_{i}(t)}^{-1} - D\tilde{\theta}_{\gamma_{i}(t)}^{-1} \right] (\tilde{\gamma}_{i}'(t)) dt + \int_{0}^{1} D\tilde{\theta}_{\gamma_{i}(t)}^{-1} \left(\tilde{\gamma}_{i}'(t) - \gamma_{i}'(t) \right) \right) dt \\ &= \int_{0}^{1} \int_{0}^{1} \left[D^{2}\tilde{\theta}_{(\tilde{\gamma}_{i}(t)+(1-\varsigma)\gamma_{i}(t))}^{-1} (\tilde{\gamma}_{i}(t) - \gamma_{i}(t)) \right] .(\gamma_{i}'(t)) d\varsigma dt \\ &+ \int_{0}^{1} D\tilde{\theta}_{\gamma_{i}(t)}^{-1} \left(\tilde{\gamma}_{i}'(t) - \gamma_{i}'(t) \right) \right) dt \\ &\simeq \int_{0}^{1} \int_{0}^{1} \left(D^{2}(\theta_{0})_{p}^{-1}(w_{1}) \right) .V_{i} d\varsigma dt + \int_{0}^{1} (D\theta_{0})_{p}^{-1} [0] dt \\ &= 2\pi \int_{0}^{1} \int_{0}^{1} \left(r_{1} \sin 2\pi z_{1} - r_{1} \cos 2\pi z_{1} & 0 & 0 \\ 0 & 0 & s_{1} \sin 2\pi z_{2} - s_{1} \cos 2\pi z_{2} \\ 0 & 0 & s_{1} \cos 2\pi z_{2} & s_{1} \sin 2\pi z_{2} \end{array} \right) V_{i} d\varsigma dt \\ &= 2\pi \int_{0}^{1} \int_{0}^{1} W_{i} d\varsigma dt \end{split}$$

Se os vetores na direção onde a folha é compacta fossem sempre da forma

$$V_1 = a_1Y_1 + a_2Y_2 + a_3Y_3 + a_4Y_4$$
$$V_2 = b_1Y_1 + b_2Y_2 + b_3Y_3 + b_4Y_4$$

com (a_1, a_2) e (b_3, b_4) sendo vetores não nulos, caimos no caso do capítulo anterior e assim chegamos a uma contradição com os mesmos argumentos usados no capítulo anterior. Mas há casos (os dois primeiros) em que os campos não têm necessariamente esta forma e estes são descritos a seguir:

(i) O primeiro caso quando

$$V_1 = aY_1$$
$$V_2 = bY_2$$

e o vetor $w_1 \simeq (0, s)$ que indica a diferença inicial de dislocamento das funções f_3 e f_4 nas direções V_3 e V_4 respectivamente.

(ii) O segundo caso quando

$$V_1 = aY_3$$
$$V_2 = bY_4$$

e o vetor $w_1 \simeq (r, 0)$ que indica a diferença inicial de dislocamento das funções f_3 e f_4 nas direções V_3 e V_4 respectivamente.

Em ambos os casos deve haver o mesmo tipo de deslocamento, ou seja, tanto f^3 como f^4 se trasladam quase horizontalmente (ie os vetores w_1 e w_2 são da forma $w_i \simeq (r, 0)$) ou quase verticalmente (os vetores w_1 e w_2 são da forma $w_i \simeq (0, s)$). Chegamos a estas conclusões analisando as equações (1) e (2) e, como consequência da terceira equação, análoga as anteriores, podemos concluir que w_3 também tem uma direção próxima as de w_1 e w_2 .

Figura 4.2: $w_i \simeq (r, 0)$ para i = 1, 2, 3

Dos casos a analisar vamos escolher o primeiro, i.e., quando f^3 e f^4 se deslocam quase verticalmente (eixo z_2). Para tal caso fixemos um ponto p e f^3, f^4 as funções que descrevem a holonomia da folha numa vizinhança do ponto, nas direções não compactas Y_3, Y_4 (tomadas por escolha) e onde f^1, f^2 são as funções que descrevem a holonomia da folha numa vizinhança do ponto p nas direções nas quais a órbita se torna compacta Y_1, Y_2 . Tanto f_3 como f^4 se deslocam pontualmente com vetor inicial quase vertical (ie. na direção da coordenada z_2 e infimamente na coordenada z_1 , tanto para f^3 como para f^4 simultâneamente).

A partir daqui em vez de denotar como f^3 , f^4 as funções que descrevem a holonomia da folha nas direções não compactas, passaremos a denotar estas por f_3 , f_4 , por absoluta conveniência.

Definição 4.4 Dados f_3, f_4 definamos o conjunto

$$C_p = \{ f_3^{k_3} \circ f_4^{k_4}(p) \in B_p/k_3, k_4 \in \mathbb{Z} \}$$

que descreve a órbita de p com respeito a f_3 e f_4 em B_p

Definição 4.5 Dizemos que uma curva em \mathbb{R}^2 é quase vertical se dados dois pontos p_1, p_2 da curva, o vetor que une p_1 a p_2 forma un ângulo $\rho(p_1, p_2)$ tal que $\rho(p_1, p_2) \in (\pi/4, 3\pi/4)$ ou $\rho(p_1, p_2) \in (-\pi/4, -3\pi/4)$

Afirmação 4.6 O conjunto C_p está contido numa curva topológica (não necessariamente suave) L que passa pelo ponto p e, graficamente, é quase vertical. Além disso a projeção deste conjunto sobre o eixo z_2 é injetivo.

Prova

Sejam $\{f_3, f_4\}$ os difeomorfismos suaves que definem a holonomia da folha F_p nas direções $\{Y_3, Y_4\}$ respectivamente, numa vizinhança B_p de p; ie, $f_j: B_p \to B'_p \subset B_p$; j = 3, 4.

Primeiro veremos que não existem dois pontos de C_p tais que estes tenham as duas z_2 -coordenadas iguais, ie que não existam $k_3, k_4, \tilde{k}_3, \tilde{k}_4 \in \mathbb{Z}$ tais que $\pi_2(f_3^{k_3} \circ f_4^{k_4}(p)) = \pi_2(f_3^{\tilde{k}_3} \circ f_4^{\tilde{k}_4}(p))$ em B_p . Mas isto se reduz a afirmar que não podemos ter $\pi_2(f_3(p)) = \pi_2(f_4(p))$ o que nos garante que C_p é homeomorfo a um conjunto contido no eixo z_2 .

De fato, se $\pi_2(f_3(p)) = \pi_2(f_4(p))$ então $w_3 = (r_3, 0)$ e vimos que pela equação integral (3) na afirmação não ocorre este caso.

Um outro caso é quando $f^3(p) = f^4(p)$ e aqui vamos ter que a folha se reduz a uma direção não compacta, caindo no caso anterior (capítulo 3) já analisado. Logo podemos dizer que \bar{C}_p esta contido numa curva unidimensional.

Observação 4.7 1.- Note aqui que nem para todo $k_3, k_4 \in \mathbb{Z}$ temos que $f_3^{k_3} \circ f_4^{k_4} \in B'_p$. Isto acontece porque B'_p é uma pequena vizinhança aberta de \mathbb{T}^2 .

Em virtude de $\tilde{\theta}$ ser uma C^1 -perturbação de θ_0 tanto f_3 como f_4 devem restringir seu deslocamento, em cada ponto, a uma determinada região \mathcal{R} esboçada na figura 4.3. Esta região descreve que para todo ponto $p \in B_p$ então $f^k(p) - p \in \mathcal{R}$. Gráficamente podemos ver que em geral se satisfaz

$$f_3^{k_3} \circ f_4^{k_4}(p) - p \in \mathcal{R} \quad ; \ \forall p \in C_p$$

sendo isto confirmado pela afirmação anterior.

Figura 4.3: Região \mathcal{R}

A escolha do caso nos dá a figura esboçada acima quando $w_i \simeq (0, r)$. Note que esta propriedade deve ser satisfeita para qualquer ponto da órbita, porém aqui a análise foi centrada no ponto p.

2.- No caso em que os pontos de C_p estão contidos numa curva unidimensional e sejam densos em relação a esta, então podemos deduzir que esta é esboçada sequencialmente como mostrada na figura 4.4 curva a partir do fato de que cada ponto de C_p limita-se a uma região \mathcal{R} e assim se formaram restrições sequênciais de \mathcal{R} como mostrada na figura, logo na região sombreada tende a ficar uma curva unidimensional não necessariamente suave e esta curva é exatamente \overline{C}_p . Porém nem sempre acontece este caso pois a projeção de C_p no eixo z_2 pode ter por fecho um conjunto de Cantor ou um outro conjunto fechado que não é um intervalo.

Figura 4.4: Região sequêncial

3.- Se observamos bem, f_3 e f_4 devem ser próximos das funções

 $\begin{aligned} \varphi_3(v) &= v + \alpha_3 e_2 \qquad onde \qquad \alpha_3, \alpha_4 \in \mathbb{R} \\ \varphi_4(v) &= v + \alpha_4 e_2 \qquad \qquad \alpha_3/\alpha_4 \notin \mathbb{Q} \end{aligned}$

Estamos colocando $\alpha_3/\alpha_4 \notin \mathbb{Q}$ uma vez que supondo o contrário, nos levaría a conclusão de que as órbitas são compactas e, portanto, não existiría folha da forma $\mathbb{T}^2 \times \mathbb{R}^2$.

4.2 Deduções e Projeções

Seja a ação $\tilde{\theta}$ uma C^1 -perturbação de θ_0 e F_p a órbita de $\tilde{\theta}$ que passa pelo ponto p pre-fixado. Consideremos esta ação restringida à folha F_p descrita da seguinte forma:

$$\tilde{\theta}_p: \mathbb{R}^4 \longrightarrow F_p \approx (\mathbb{T}^2 \times \mathbb{R}^2) \subseteq \mathbb{T}^4 \times B_0^2(\epsilon)$$

Supor que a folha tem duas direções compactas facilita a análise desta aplicação que simplesmente pode ser considerada como uma aplicação definida nas direções não compactas $\{Y_3, Y_4\}$. Esta nova aplicação vem a definir assim uma relação de equivalência da seguinte forma: dados dois pontosp, p' dizemos que estes pontos são equivalentes se satisfazem

$$p \sim p' \Leftrightarrow \tilde{\theta}((*,*,0,0),p) = p' \Leftrightarrow \tilde{\theta}_p(*,*,0,0) = p'$$

E denotaremos a nova aplicação por $\tilde{\psi}=\tilde{\theta}_p/_{\langle\{Y_3,Y_4\}\rangle}$

$$\tilde{\psi}: \mathbb{R}^2 \longrightarrow \mathbb{T}^2 \times B_0^2(\epsilon)$$

E se agora tomamos a projeção da folha F_p nas coordenadas $\{z_1, z_2\}$ ou seja a projeção da aplicação $\tilde{\psi}$ no plano $\{z_1, z_2\}$ e a qual denotamos por:

Figura 4.5: Aplicação $\tilde{\psi}_P$

$$\tilde{\psi}_P : \mathbb{R}^2 \longrightarrow B_0^2(\epsilon)$$

Podemos ver que o fecho de C_p também está contido na imagem de $\tilde{\psi}_p$, a qual é fechada(ie. $\bar{C}_p \subset Im\tilde{\psi}_p$).

A partir de agora em vez de trabalhar com a folha só analisaremos uma seção dela, definida da seguinte forma. Tome a superficie Σ definida pela

aplicação

$$\varpi : [0,1] \times [0,1] \longrightarrow \mathbb{T}^4$$

$$(s, t) \longmapsto \varpi(s,t) = sY_3 + tY_4$$

 Σ é um toro bi-dimensional em \mathbb{T}^4 . Levantemos este toro na órbita e o resultado será a seção S_1 com a qual vamos a trabalhar.

Esta também pode ser vista como a interseção da órbita com o espaço

$$\mathcal{D} = \{ (0, 0, y_3, y_4, z_1, z_2) \mid z_i, y_i \in [0, 1] \}$$

Assim, para o caso que estamos analisando, as órbitas de pontos próximos ao ponto p, projetadas sobre o plano $\{z_1, z_2\}$, estão contidas em curvas unidimensionais que gráficamente se vem como quase verticais.

Figura 4.6: Curvas quase verticais

Cada uma de estas curvas é topológicamente equivalente a uma reta, e C_p é um subconjunto desta curva. Por continuidade bastará analisar a dinâmica de uma delas (De fato, a análise é sobre os pontos do conjunto C_p que está contido na curva).

Em vez de estudar as aplicações f_3 , f_4 analisaremos as suas projeções sobre o eixo z_2 e para isto definiremos o conjunto $D_p = \pi_2(C_p)$ e as aplicações:

$$g_j: D_p \to D'_p$$
 $g_j(\pi_2(p)) = \pi_2(f_j(p)) ; j = 3, 4$

$$\begin{array}{c|c} \bar{C}_p \xrightarrow{f_j} \bar{C}'_p \\ \pi_2 & & & \\ \pi_2 & & & \\ D_p \xrightarrow{g_k} D'_p \end{array}$$

Em virtude do conjunto \bar{C}_p estar contido numa curva unidimensional e sua projeção sobre o eixo z_2 ser injetiva, podemos, neste caso, colocar a variável z_1 em função de z_2 . Nossa idéia é podermos considerar a ação como se esta fosse de codimensão 1 ou de \mathbb{R}^2 agindo numa variedade 3-dimensional de variaveis y_3, y_4, z_2 e, para tal caso, definimos a aplicação seguinte:

$$\kappa : \pi_2(C_p) \longrightarrow \pi_1(C_p)$$
$$z_2 \longmapsto \kappa(z_2) = z_1$$

onde $(z_1, z_2) \in C_p$.

Agora para definirmos o número de translação, as aplicações g_3, g_4 precisam ser crescentes ou decrescentes em $\pi_2(C_p)$ logo podemos afirmar o seguinte.

Afirmação 4.8 As aplicações g_3, g_4 definidas em $\pi_2(C_p)$ são crescentes (ou decrescentes).

Prova

Sejam os difeomorfismos locais $f_j : B_p \to B'_p \subset B_p$ e suas respectivas projeções g_j sobre o eixo z_2 para j : 3, 4; estas satisfazendo a igualdade $\pi_2 \circ f_j(p) = g_j \circ \pi_2(p)$. Denotemos por $p_2 = \pi_2(p)$. Primeiro provaremos que se

$$p_2 < g_3(p_2) < g_4(p_2)$$

então

$$g_4(p_2) < g_4 \circ g_3(p_2) < g_4^2(p_2)$$

O que de fato é o que nos interessa saber para, assim, podermos definir o número de translação. Agora podemos simplesmente provar que se $p_2 < g_3(p_2)$ então $g_4(p_2) < g_3 \circ g_4(p_2)$ pois a outra parte da desigualdade tem a mesma demonstração.

Vamos supor pelo absurdo que $g_4(p_2) \ge g_3 \circ g_4(p_2)$. Tomemos o vetor que une os pontos p e $f_3(p)$ e chamemos este de $v(p, f_3(p))$. Por resultados anteriores (argumento de C^1 aproximação), este deve formar um ângulo de quase $\pi/2$ com o eixo z_1 enquanto sua imagem $f_4(v(p, f_3(p))) = v(f_4(p), f_4 \circ$ $f_3(p))$ é um vetor que une os pontos $f_4(p)$ e $f_3 \circ f_4(p)$ formando um ângulo que se encontra entre 0 e $-1/2\pi$ com o eixo z_1 . Com isto, chegamos a uma contradição pois f_4 é um difeomorfismo C^1 -próximo da identidade.

E assim em geral para $p', p'' \in C_p \operatorname{com} \pi_2(p') < \pi_2(p'')$ então $\pi_2(f_j(p')) < \pi_2(f_j(p''))$ para j = 3, 4, aqui aplicamos o mesmo raciocinio dos vetores e a condição de C^1 -aproximação.

Portanto podemos afirmar que tanto f_3 como f_4 são crescentes (ou decrescentes) em C_p . Ou seja se $p', p'' \in D_p$ com p' < p'' então $g_j(p') < g_j(p'')$; j = 3, 4 concluindo assim a afirmação.

Vamos definir o número de translação que descreve a dinâmica de uma função com respeito à outra. Observe que o número de rotação é um caso particular do número de translação.

4.3 Número de Translação

Seja I un intervalo da reta e $g_1, g_2 : I \to I'$ funções próximas da identidade.

Definição 4.9 Número de translação relativo a duas funções Número de translação de g_2 com respeito a g_1 . Sejam as funções $g_1, g_2 e x_0 \in I$ assuma que

$$g_1^{-1}(x_0) < x_0 \le g_2(x_0) \le g_1(x_0)$$

Defina uma sequência de pontos começando por

$$a_0 = x_0$$

 $a_{n+1} = g_1^{-k(n)} \circ g_2(a_n)$

onde k(n) é o menor inteiro para o qual

$$x_0 \le g_1^{-k(n)} \circ g_2(a_n) < g_1(x_0)$$

Desde que $g_1(x_0) \leq g_1 \circ g_2(x_0) = g_2 \circ g_1(x_0) \leq g_1^2(x_0)$ e por construção, $x_0 \leq a_n < g_1(x_0)$, temos $x_0 \leq g_2(x_0) \leq g_2(a_n) < g_2 \circ g_1(x_0) \leq g_1^2(x_0)$ e portanto k(n) é 0 ou 1. Alem disso, k(n) = 1 se e somente se $x_0 \leq a_{n+1} < g_2(x_0)$.

Seja a sequência de funções definida da seguinte forma

$$G_0^{x_0} = id$$

$$G_{n+1}^{x_0} = g_1^{-k(n)} \circ g_2 \circ G_n^{x_0}$$

Esta composição faz sentido em um subintervalo de I para g_1 e g_2 . Seja $I_n = (g_1^{-n}(x_0), g_1^n(x_0))$. Vamos supor que $I_n \subset I$ é bem defininido para as funções g_1, g_2 para um n considerável. Tem-se $g_2(I_n) \subset I_{n+1}$.

43

Definamos a sequência $p: \mathbb{N} \to \mathbb{N}$ por

$$p(0) = 0$$

$$p(n+1) = p(n) + k(n)$$

logo definamos o número de translação como sendo o límite

$$\tau(g_2, g_1, x_0) = \lim_{n \to \infty} \frac{p(n)}{n}$$

Provaremos que este límite existe.

No caso em que $g_2^{-1}(x_0) < x_0 \leq g_1(x_0) \leq g_2(x_0)$ podemos fazer uma construção similar invertendo os papeis de g_1 e g_2 e podemos definir

$$\tau(g_2, g_1, x_0) = 1/(\tau(g_1, g_2, x_0))$$

Agora, se $g_1^{-1}(x_0) \le g_2(x_0) \le x_0 < g_1(x_0)$, definimos

$$au(g_2, g_1, x_0) = - au(g_2^{-1}, g_1, x_0)$$

Outros casos são similares.

Seja $P_{\mathcal{G}}$ o conjunto fechado de pontos fixos comuns a $g_1 \in g_2$. Em nosso caso $g_1 = g_4 \in g_2 = g_3$ e para o caso que estamos analisando, a projeção dos pontos de C_p se encontra na reta z_2 . Por suposição $P_{\mathcal{G}} = \emptyset$ uma vez que a órbita não é compacta nas duas direções descritas por $g_3 \in g_4$. Se tivessemos um ponto fixo com respeito a uma das funções cairíamos no caso em que a folha tem 3 direções compactas, que foi estudado no capítulo anterior. Agora mostraremos que o número de translação é bem definido para $p_2 \,\mathrm{em}\,\pi_2(C_p)$.

Lema 4.10 Seja $\pi_2(C_p)$ um conjunto onde estão definidos as funções g_3 e g_4 . Existe o número de translação $\tau(g_3, g_4, p_2)$ para $p_2 = \pi_2(p)$.

Prova

Primeiramente não está determinado o tipo de conjunto que é $\pi_2(\bar{C}_p)$, o qual pode ser todo um intervalo, pedaços de intervalo ou pontos que formam um conjunto de Cantor. Porém isto não será um empecilho para definir o número de traslação. Em $\pi_2(\bar{C}_p)$, as funçoes g_3 e g_4 estão definidas e são crescentes. O que queremos é que estas estejam definidas em um intervalo que contenha $\pi_2(\bar{C}_p)$ e se tornem contínuas.

Como primeiro passo, vamos prencher o intervalo todo tendo este os pontos extremos de $\pi_2(\bar{C}_p)$. As funções g_3 e g_4 serão prenchidas de forma linear, logo para dados 2 pontos x_1 e x_2 consecutivos de $\pi_2(\bar{C}_p)$ e onde não exista qualquer ponto entre eles, se $x \in (x_0, x_1)$ temos que

$$\breve{g}_i(x) = \breve{g}_i(x_0) + \frac{x - x_0}{x_1 - x_0} \Big(\breve{g}_i(x_1) - \breve{g}_i(x_0) \Big)$$

Figura 4.7: Continuidade de \breve{g}_j

Onde \check{g}_i é a função que restringida a $\pi_2(\bar{C}_p)$ é a função g_i e a qual é linear nos pontos complementares a \bar{C}_p . Prova-se que estas novas funções \check{g}_3 e \check{g}_4 comutam portanto satisfazem $h = [\check{g}_3, \check{g}_4] = Id$. Agora provaremos que o limite existe. Assuma que

$$\breve{g}_4^{-1}(x_0) < x_0 \le \breve{g}_3(x_0) \le \breve{g}_4(x_0)$$

E seja φ uma conjugação entre \breve{g}_4 e x + 1 daí resultam as aplicações

$$\widetilde{g}_4(x) = \varphi \circ \breve{g}_4 \circ \varphi^{-1}(x) = x + 1$$

$$\widetilde{g}_3(x) = \varphi \circ \breve{g}_3 \circ \varphi^{-1}(x)$$

A aplicação φ esta definida num dominio considerável e $\varphi(x_0) = 0$. Note que $\tilde{g}_3(x+1) = \tilde{g}_3(x)+1$ e em particular $\tilde{g}_3(1) = \tilde{g}_3(0)+1$. A definição de número de translação se aplica à restrição para o intervalo [0,1] de \tilde{g}_3 ; equivalentemente seja a aplicação \hat{g}_3 a única função de grau 1 coincidindo com \tilde{g}_3 no intervalo [0,1] temos que

$$\hat{g}_3(x) = \tilde{g}_3(x - \lfloor x \rfloor) + \lfloor x \rfloor$$

e os pontos a_n como construidos acima estão todos no intervalo $[x_0, \check{g}_4(x_0))$ e $\varphi(a_n)$ está sempre no intervalo [0,1]. A construção de $k(n), G_n$ e p(n) só considera valores de \check{g}_3 no intervalo $[x_0, \check{g}_4(x_0))$ ou equivalentemente, valores de \tilde{g}_4 no intervalo [0,1). Portanto não faz diferença se tomamos \tilde{g}_3 ou \hat{g}_3 e $\tau(g_3, g_4, p)$ é o número de translação usual de \hat{g}_3 .

4.4 Demonstração da Segunda Afirmação

Afirmação 4.11 Sejam as aplicações $f_1 e f_2$ definidas numa vizinhança do ponto p que descrevem a holonomia nas direções $Y_1 e Y_2$ onde a folha é compacta e sejam $r_1 e r_2 em \mathbb{Z}$ seus respectivos periodos. Todos os pontos da órbita são periódicos de periódo r_1 para $f_1 e r_2$ para f_2 .

Prova

Seja p um ponto pre-fixado, como a folha é compacta em f_1 e f_2 então existem $r_1, r_2 \in \mathbb{Z}$ tais que $f_1^{r_1}(p) = f_2^{r_2}(p) = p$. Seja p' um outro ponto da órbita então existe um $g \in G$ tal que $\theta(g, p') = \theta_g(p') = p$. Defina a aplicação

$$\hat{f}_i = \theta_g^{-1} \circ f_i \circ \theta_g$$

Esta é uma aplicação que descreve a holonomia numa vizinhança do pontop'na direção Y_i para i = 1, 2 e onde também resulta que $\hat{f}_1^{r_1}(p') = \hat{f}_2^{r_2}(p') = p'$, ie p' também tem periodo r_1, r_2 respectivamente.

De agora em diante tomaremos como base resultados obtidos por N. Saldanha (Sal), e feitas as devidas restrições para simplesmente analisar a ação como se \mathbb{R}^2 estivesse agindo em \mathbb{T}^4 (melhor dito na seção S_1); assim, evitaremos trabalhar com as coordenadas Y_1, Y_2 nas quais a folha é compacta e podemos tomar V_3, V_4 como os campos canônicos Y_3, Y_4 respectivamente.

Fixemos um ponto p da folha. Se f_3 , f_4 estão definidas numa vizinhança B_p de p e denotam os difeomorfismos que descrevem a holonomia da folha nas direções não compactas neste ponto então por resultados anteriores, chegamos que o conjunto $C_p = \{f_3^{k_3} \circ f_4^{k_4} \in B_p \mid k_3, k_4 \in \mathbb{Z}\}$ é unidimensional, no sentido que ele está contido numa curva topólogica unidimensional, e é injetivo com respeito ao eixo z_2 . Além disso as aplicações f_j ; j = 3, 4 são crescentes (ou decrescentes) em B_p em relação a sua segunda coordenada logo podemos dizer de que g_3 e g_4 são crescentes (ou decrescentes) em D_p .

Definição 4.12 Uma folheação \mathcal{F}_1 de M é dita aceitável se as suas folhas são sempre tranzversais aos planos formados pelos vetores z_1, z_2 . Uma ação é dita aceitável se a correspondente folheação é aceitável.

46

D

É claro que para qualquer \mathcal{F}_1 (respectivamente $\tilde{\theta}$) suficientemente C^0 próximo de \mathcal{F} (respectivamente θ) é aceitável. Uma perturbação aceitável $\tilde{\theta}$ de θ naturalmente define em cada ponto uma bijeção linear $\tilde{\vartheta} : H \to D$ a inversa da projeção de $\tilde{\theta}$ sobre H. É claro que para $\tilde{\theta} = \theta, \tilde{\vartheta}$ é dado (na base canônica) por $A(z_1, z_2)^{-1}$. Além disso, dado um caminho $\gamma : [a, b] \to H$ e um ponto $(\gamma(a), z_1^a, z_2^a)$ existe para um δ suficientemente pequeno, um único caminho $\tilde{\gamma} : [a, a+\delta) \to M \operatorname{com} \tilde{\gamma}(a) = (\gamma(a), z_1^a, z_2^a)$ cuja imagem está contida numa órbita de $\tilde{\theta}$. Dizemos que $\tilde{\gamma}$ é o levantamento de γ , em outras palavras, a imagem de $\tilde{\gamma}$ deve ficar dentro da mesma folha da folheação. A razão pela qual não podemos definir γ para todo o intervalo [a, b] é que podem cair pontos fora da variedade M se $|(z_1, z_2)|$ for muito grande.

Voltando a A por um momento, existe claramente um $r_1 > 0$ tal que a bola aberta de raio r_1 ao redor de $A(0,0)^{-1}$ consiste somente de matrizes inversíveis. Seja $\epsilon_1 > 0$, $\epsilon_1 \leq \epsilon$, tal que $|(z_1, z_2)| < \epsilon_1$ implica que $|(A(z_1, z_2))^{-1} - (A(0,0))^{-1}| < r_1/2.$

Definição 4.13 Dizemos que uma folheação aceitável \mathcal{F}_1 é boa se para todo γ de comprimento menor que 36 e $|(z_1^a), z_2^a)| < \epsilon/2$, γ pode ser levantado em todo seu dominio e a curva resultante está totalmente contida na região $|(z_1, z_2)| < \epsilon$.

Uma ação aceitável $\tilde{\theta}$ é boa se se satisfaz as condições seguintes:

- Se $|(z_1, z_2)| < \epsilon_1$ então $|\tilde{\vartheta}(y_1, ..., y_4, z_1, z_2) (A(0, 0))^{-1}| < r_1$
- Para todo γ de comprimento menor que 36 $e|(z_1^a, z_2^a)| < \epsilon_1/2, \gamma$ pode ser levantado em todo seu dominio e a curva resultante está inteiramente contida na região $|(z_1, z_2)| < \epsilon_1$

Definição 4.14 Dizemos que uma seção é boa se este faz parte de uma folheação boa.

Proposição 4.15 Seja S_1 uma boa perturbação da seção compacta S_0 tal que S_1 passa pelo ponto $p = (0, 0, y_3, y_4, z_1, z_2) \in M$ é não compacta. Então existe uma reta $H' \subset \mathbb{R}^2$ e uma aplicação natural

$$\Delta: H' \to \mathbb{T}^2$$

que leva o ponto (0,0,0,0) no ponto $(0,0,y_3,y_4)$ e podemos levantar esta globalmente para uma função

$$\hat{\Delta}: H' \to \mathbb{T}^4$$

de tal forma que (0, 0, 0, 0) é levado para p

- (i) Se H' é irracional (ou seja não admite uma equação com coeficientes racionais) então o fecho da imagem é um toro topológicoT₀ e sua projeção sobre T² é um homeomorfismo; T₀ está contido na união de seções não compactas.
- (ii) Se H' é racional então o supremo e o ínfimo da interseção da imagem com cada linha paralela ao eixo z₂ formam dois círculos suaves T₁⁺ e T₁⁻ (podendo ser identicas) contidas em seções não compactas e tal que suas projeções sobre H'/Z² ⊆ T² são difeomorfismos.

Além disso H' é invariante para qualquer outro ponto da mesma folha.

\mathbf{Prova}

Primeiro denotemos $\pi_2(p) = p_2$ e vamos a supor que se satisfaz:

$$g_4^{-1}(p_2) < p_2 \le g_3(p_2) \le g_4(p_2)$$

Outros casos são determinanados de maneira análoga como visto na seção "número de translação". Podemos definir a partir destes dados o número de translação de g_3 em relação a g_4 e denota-lo por $\tau(g_3, g_4, p) = h_3$. Agora se consideramos \hat{g}_j como o levantamento na reta de g_j temos que:

$$h_3 = 0 \iff g_3(z) = z$$
 para algum z
 $h_3 = 1 \iff g_3(z) = g_4(z)$ para algum z

Claramente o número de rotação de \hat{g}_4 é $h_4 = 1$ pela forma como este foi definido. Este número de rotação é invariante para qualquer ponto da seção S_1 da órbita F_p .

Figura 4.8: Conjugação de f_j

De fato, tomemos um ponto q da seção S^1 que se encontra na órbita F_p e um outro ponto q' da mesma seção, se este ponto se encontra no mesmo conjunto C_q então podemos encontrar um curva $\omega \, \text{em} \, \pi_1(\mathbb{T}^4)$, tal curva une os pontos origem e a projeção de q sobre \mathbb{T}^4 . Existe um difeomorfimo $\Gamma_{\omega} : C_q \to C_p$ tal que o ponto $\Gamma_{\omega}(q) \in \Gamma_{\omega}(q')$ são pontos iniciais do levantamento da curva ω e que satisfazem

$$\hat{f}_j(q) = \Gamma_{\omega^{-1}} \circ f_j \circ \Gamma_{\omega}(q)$$

E como funções conjugadas têm o mesmo número de translação concluímos no afirmado.

Agora se o outro ponto, que denotaremos este por q'', não se encontra no conjunto C_q , podemos tomar o ponto q' próximo a q'', sendo que q' se encontra neste conjunto C_q e para o qual existe uma curva λ na folha, unindo estes dois pontos. Tal curva determina que estes pontos têm holonomia conjugada, portanto tem o mesmo número de translação mas por argumento anterior, q e q' têm o mesmo número de translação então transitivamente q e q'' têm igual número de translação.

Agora definiremos um subconjunto aberto $N \subseteq \mathbb{T}^4$, onde acontecerá nossa construção.

Primeiro levantemos um plano $(12, 12)^4$ ao redor do ponto origem (0, 0, 0, 0). Agora tomemos a interseção deste levantamento com o conjunto

$$\mathcal{D} = \{ (0, 0, y_3, y_4, z_1, z_2) \mid y_i, z_i \in [0, 1] \}$$

O conjunto resultante está contido na seção S_1 . Seja N o conjunto de pontos da seção S_1 da forma $(0, 0, y_3, y_4, \kappa(z_2), z_2)$ tal que ainda encontram-se pontos do levantamento com coordenadas z_2 superiormente e inferiormente.

Definamos o conjunto

$$H' = \langle \{Y_3 - h_3 Y_4\} \rangle = \{t(0, 0, 1, -h_3) \mid t \in \mathbb{R}\} \qquad H' \perp (h_3, 1)$$

Como funções conjugadas têm o mesmo número de translação, esta retaH' é constante sobre a seção S_1 contida na órbita F_p .

Agora provaremos que o levantamento de H' esta contido em N. Defina

$$Q = \{(y_3, y_4) \mid -5 \le \sum_{i=1,2} h_{i+2} \lfloor y_{i+2} \rfloor \le 1\}$$

Figura 4.9: Região Q

subconjunto de \mathbb{R}^2 . Este conjunto é uma união de quadrados unitarios (definido pelo lattice \mathbb{Z}^2). Assim para mostrar que o levantamento de Q esta contido em N procederemos por indução sobre a distância do quadrado à origem. Por conexidade do conjunto Q, é suficiente provar que cada quadrado e seu consecutivo não saiam nem para cima nem para baixo de N com respeito à coordenada z_2 . Isto segue facilmente das propriedades de número de rotação.

Em detalhes, considere como \hat{g}_3 , \hat{g}_4 os levantamentos de g_3 , g_4 respectivamente para \mathbb{R} com $\hat{g}_4(t) = t + 1$, essas funções correspondem a os g_i levantados sobre um sistema de coordenadas fixo, mas diferente dos g_i e todos definidos na reta \mathbb{R} .

Por exemplo, queremos que o levantamento do quadrado de coordenadas

$$[(k_3 - 1, k_4 - 1), (k_3, k_4 - 1), (k_3 - 1, k_4), (k_3, k_4)]$$

onde k_3, k_4 são inteiros e (k_3, k_4) pertencendo a Q, esteja contido em N. Afirmamos que $-6 \leq \hat{g}_3^{k_3} \circ \hat{g}_4^{k_4}(0) \leq 6$. De fato, onde temos dois casos:

(i) Se h_3 é irracional então existe uma semi-conjugação Θ que satisfaz $\Theta(\hat{g}_j(p_2)) = \Theta(p_2) + h_j \log o$

$$\hat{g}_{3}^{k_{3}} \circ \hat{g}_{4}^{k_{4}}(p_{2}) = \hat{g}_{3}^{k_{3}}(p_{2}) + k_{4}$$

$$= \Theta^{-1} \circ \Theta \circ \hat{g}_{3}^{k_{3}}(p_{2}) + k_{4}$$

$$= \Theta(p_{2}) + k_{3}h_{3} + k_{4}h_{4} \in [-6, 6]$$

(ii) Se h₃ é racional então existem p, q ∈ Z₀⁺ tal que h₃ = p/q. Para k₃ Existem M₃, r₃ ∈ Z com 0 ≤ r₃ ≤ q tal que k₃ = qM₃ + r₃ logo

$$\hat{g}_{3}^{k_{3}} \circ \hat{g}_{4}^{k_{4}}(p_{2}) = \hat{g}_{3}^{k_{3}}(p_{2}) + k_{4}
= \hat{g}_{3}^{qM_{3}+r_{3}}(p_{2}) + k_{4}
= \hat{g}_{3}^{r_{3}}(p_{2}) + pM_{3} + k_{4}
= \hat{g}_{3}^{r_{3}}(p_{2}) - h_{3}r_{3} + k_{3}h_{3} + k_{4}h_{4} \in [-6, 6]$$

Devido ao fato da ordem de composição de funções pode ser permutada, expressões intermediarias também satisfazem as mesmas desigualdades, desde que os \hat{g}_i comutam. Isto mostra que o levantamento de Q está contido em N e como H' está contido em Q, então o levantamento de H' também está contido em N.

Consideremos o levantamento de H' em N e sua projeção sobre \mathbb{T}^2 . Temos agora dois casos:

(i) Primeiro caso, quando h_3 é irracional. Usando o teorema de Poincaré, existe uma semi-conjugação entre \hat{g}_3 e a correspondente rotação irracional. (esta conjugação pode não ser injetiva nem suave nem mesmo C^1). Levantando esta conjugação temos uma função crescente

$$\Theta: (g_4^{-1}(p_2), g_4(p_2)) \to (-1, 1)$$

satisfazendo

$$\Theta(\hat{g}_3(z_2)) = \Theta(z_2) + h_4$$

$$\Theta(\hat{g}_4(z_2)) = \Theta(z_2) + 1$$

(onde $z_2 = \pi_2(z_1, z_2)$) e em realidade temos que $\Theta(\hat{g}_i(z_2)) = \Theta(z_2) + h_i$; i = 3, 4. Assim podemos estender Θ para um dominio maior, digamos

$$((g_4^{-1})^{12}(p_2), g_4^{12}(p_2))$$

e com a ajuda de $\Theta,$ agora podemos definir um toro bidimensional contido em N .

Definamos a aplicação $\Phi : N \to \mathbb{R}$, uma função estrictamente crescente sobre linhas quase verticais (curvas quase paralelas ao eixo z_2). Considere $p = (0, 0, y_3, y_4, \kappa(z_2), z_2) \in N; 0 \leq y_i \leq 1$ e seja $\gamma : [0, 1] \to H$ a linha reta unindo os pontos $(0, 0, y_3, y_4)$ a (0, 0, 0, 0), Levante γ começando por pe chegando a um ponto da forma $(0, 0, 0, 0, \kappa(z'_2), z'_2)$. Defina

$$\Phi(0,0,y_3,y_4,\kappa(z_2),z_2) = \Theta(z_2') - h_3y_3 - h_4y_4$$

A continuidade de Φ segue das identidades

$$\Theta(g_i(z_2)) = \Theta(z_2) + h_i$$

Seja $T_0 = \Phi^{-1}(\{0\}), T_0$ é o fecho do levantamento de H' sobre N.

(ii) No segundo caso quando h_3 é racional podemos definir os círculos T_1^+ e T_1^+ . Para cada $(0, 0, y_3, y_4)$ na projeção sobre \mathbb{T}^4 do levantamento de H' para N, considere o conjunto dos correspondentes z_2 no levantamento e defina z_2^+ e z_2^- como o supremo e ínfimo deste conjunto, respectivamente. Seja T_1^+ o conjunto de pontos da forma $(0, 0, y_3, y_4, \kappa(z_2^+), z_2^+)$ e similarmente para T_1^- . Claramente estes círculos estão contidos em seções não compactas.

Em qualquer caso a unicidade de H' é facilmente verificada. De fato, qualquer outra reta que contenha elementos que não pertencem a H' seguindo essa direção e usando novamente o argumento de número de rotação, vemos que estamos "subindo" então devemos ou sair de \mathbb{T}^4 ou acumularmos numa seção compacta; em qualquer caso, chegamos a uma contradição.

Agora estamos prontos para dar a definição de uma de nossas principais ferramentas. Para cada ponto de p de T_0, T_1^+ ou T_1^- a ação $\tilde{\theta}$ restringida a seção S^1 induz uma aplicação linear $\tilde{\tau}_p : H' \to \mathbb{R}^2$. O toro T_0 naturalmente fica munido da medida unitaria, ao se levantar a medida unitaria de Lebesgue sobre \mathbb{T}^2 via projeção. No caso (ii), a medida de Lebesgue uni-dimensional sobre a projeção vertical de T_1^+ pode ser multiplicado por uma constante e levantado pela projeção para assim dar uma medida unitaria a T_1^+ e T_1^- . Sempre que integramos sobre os toros o faremos com respeito a essa medida.

Definição 4.16 Considere a aplicação $\tau : H' \to \mathbb{R}^2$ definida da seguinte forma

(i) Se o fecho do levantamento de H' é T_0 então $\tau(v) = \int_{T_0} \tilde{\tau}_p(v) dp$

(ii) Se o fecho do levantamento de H' contém T_1^+ então $\tau(v) = \int_{T_1^+} \tilde{\tau}_p(v) dp$

onde \mathbb{D}' é a imagem de τ

Neste sentido para provar que τ é bem comportado precissamos de uma interpretação que seja mais geométrica. Apresentaremos uma função auxiliar ξ que, para cada caso, será definido da seguinte forma:

- (i) Para o primeiro caso o levantamento de H' (o qual está contido en T₀) esta contido numa seção, logo numa órbita e, portanto, pode ser trazido de volta para ℝ². Em outras palavras isto define uma função contínua ξ : H' → ℝ² cuja imagem é a pre-imagem de T₀ pela ação θ̃.
- (ii) No segundo caso consideremos o levantamento de H' começando no ponto (0,0,0,0,κ(z₂⁺), z₂⁺) ∈ T₁⁺ e fazendo o mesmo como anteriormente para assim definir ξ.

O seguinte lema relaciona $\tau \in \xi$.

Lema 4.17 A transformação linear τ é injetiva, constante sobre as órbitas e satisfaz $\tau(v) = \lim_{t\to\infty} \frac{1}{t}\xi(tv)$.

Prova

Por $\tilde{\theta}$ ser uma boa perturbação, ξ pode ser estendido a uma vizinhança de H' de raio 1 em \mathbb{R}^2 . A inclusão em N do levantamento desta vizinhança e a compacidade do fecho de N implicam que ξ é uniformemente convergente neste dominio maior.

Primeiro provaremos a fórmula para τ . Notemos que

$$H' = \{t(0, 0, h_4, -h_3) \mid t \in \mathbb{R}\}\$$

é um espaço uni-dimensional e todo vetor é multiplo de $v = (0, 0, h_4, -h_3)$. Note que $\xi(tv) = \int_0^t \tilde{\tau}_{p(s)}(v) ds$ onde p(s) é obtido ao levantarmos sv para T_0 ou T_1^+ . Começaremos provando a fórmula para τ . Como para todo v de H' é tal que tv é uma linha densa na projeção vertical de T_0 ou T_1^+ , então consideremos o campo de vetores dado por v sobre T_0 . Este é unicamente ergódico, com a medida sobre T_0 sendo esta a única medida invariante. Pelo Teorema de Birkhoff o limite acima existe e seu valor é $\tau(v)$. Agora para um v em geral da vizinhança de H', um argumento similar mostra que o limite também existe e é igual a média de $\tilde{\tau}_p(v)$ onde p percorre o fecho da linha tv, um sub-toro. Além disso, a média sobre o toro original é a média das medias sobre sub-toros paralelos. Se a média sobre cada toro são iguais, temos a fórmula para um arbitrario v. Portanto é suficiente mostrar que $\lim_{t\to\infty} \frac{1}{t}\xi(tv) = \lim_{t\to\infty} \frac{1}{t}\xi(tv+w)$ para qualquer w: Esses outros limites correspondem as medias de $\tilde{\tau}_p(v)$ sobre o sub-toro paralelo e são assim conhecidos para existir. A igualdade dos dois limites segue da uniformidade contínua de ξ : A distância entre tv e tv + w é fixo; entre $\xi(tv)$ e $\xi(tv + w)$ é limitado quando t cresce entre $\frac{1}{t}\xi(tv)$ e $\frac{1}{t}\xi(tv + w)$ tende a zero.

Consideremos agora dois pontos da mesma seção (e na mesma órbita); queremos provar que τ é o mesmo para esses dois pontos. Sem perda de generalidade, suponha que entre eles exista uma distância menor que 1. Tome um destes pontos para ser o ponto base 0 na discussão acima e seja $w \in H$ o vector saindo do zero ao outro ponto em consideração. Chamamos de τ_2 a aplicação τ neste segundo ponto. Nós já tinhamos visto que H' é o mesmo para ambos pontos. Seja $v \in H'$ arbitrário. Como vimos acima $\tau(v) =$ $\lim_{t\to\infty} \frac{1}{t}\xi(tv)$. Similarmente $\tau_2(v) = \lim_{t\to\infty} \frac{1}{t}\xi(tv+w)$. Como anteriormente, a uniformidade contínua de ξ nos diz que os limites são iguais. A injetividade de τ segue diretamente da sua definição: τ é média de $\tilde{\tau}_p$, $\tilde{\tau}_p$ é a restrição de $\tilde{\vartheta}$ para H' e novamente como $\tilde{\theta}$ é boa, $\tilde{\vartheta}$ deve cair sempre dentro de uma bola convexa de transformações lineares inversiveis.

Teorema 4.18 Seja θ_0 a açao definida acima e p o ponto origem. Se $\tilde{\theta}$ é uma $C^1 - \delta$ -próxima de θ_0 para $0 < \delta < R$, onde R é tal que $||D^2(\theta_0)_p^{-1}|| \ge 2R$ então não existem órbitas do tipo $\mathbb{T}^2 \times \mathbb{R}^2$ para a ação $\tilde{\theta}$.

Demonstração

Note que o posto de $\frac{\partial}{z_2}A(\kappa(0), 0)$ é igual ao posto de $\frac{\partial}{z_2}A^{-1}(\kappa(0), 0)$ (ambas são inversíveis). De agora em diante vamos supor que existe uma arbitraria C^1 -aproximação de θ_0 com uma órbita não compacta da forma $\mathbb{T}^2 \times \mathbb{R}^2$ passando por $p_0 = (0, 0, 0, 0)$. A partir daqui chegaremos a uma contradição.

A matriz $\frac{\partial}{z_2}A^{-1}(\kappa(0), 0)$ é inversível, portanto injetiva quando aplicada a qualquer subespaço de \mathbb{R}^4 .

Para qualquer C^1 -aproximação $\tilde{\theta}$ de θ_0 , tal que o ponto (0, 0, 0, 0) está sobre uma órbita não compacta da forma $\mathbb{T}^2 \times \mathbb{R}^2$, podemos definir H' de dimensão 1 como anteriormente. Por compacidade de S^1 , considere uma sequência $\tilde{\theta}_k$ de perturbações de θ_0 tal que a C^1 -distância a θ_0 tende a zero e tal que suas versões H'_k tendem a uma reta fixa H'_0 . Sejam $v_0 \in H'_0$ um vetor fixo não nulo, $w_0 = \frac{\partial}{z_2} A^{-1}(\kappa(0), 0) v_0$ e $v_k \in H'_k$ vetores não nulos tendendo a v_0 . Sejam τ_k para $\tilde{\theta}_k$ como τ para $\tilde{\theta}$, definido acima. Podemos calcular $\tau_k(v_k)$ começando de $(0, 0, 0, 0, \kappa(0), 0)$ ou de $(0, 0, 0, 0, f^i(\kappa(0), 0))$, o qual segundo o lema, nos deve dar o mesmo resultado: chamaremos a esses dois vetores de $q_k^$ e q_k^+ . Agora mostraremos que para k suficientemente grande temos que $(q_k^+ - q_k^-).w_0 > 0$ o que é a contradição desejada. Sejam T⁻ e T⁺ toros como descritos acima para (0, 0, 0, 0, 0, 0) $(0, 0, 0, 0, f^i(\kappa(0), 0))$, respectivamente. Temos que $q_k^{\pm} = \int_{T^{\pm}} \tilde{\tau}_p(v) dp$, donde $q_k^{\pm}.w_0 = \int_{T^{\pm}} \tilde{\tau}_p(v).w_0 dp$. Subtraindo teremos

$$(q_k^+ - q_k^-).w_0 = \int_{\mathcal{T}} (\tilde{\tau}_{p^+} - \tilde{\tau}_{p^-})(v).w_0 dp$$

$$= \int_{\mathcal{T}} (\int_{z_2^-}^{z_2^+} \frac{\partial}{\partial z_2} \vartheta(p, z_2) dz_2)(v).w_0 dp$$

$$= \iint \frac{\partial}{\partial z_2} \vartheta(p, z_2)(v).w_0 dz_2 dp$$

Para nossas C^1 -perturbações porém, $\frac{\partial}{\partial z_2} \vartheta$ é próximo a $(A^{-1})(\kappa(0), 0)$ e vé próximo a v_0 . Em outras palavras, a expressão dentro da integral é próximo de $(A^{-1})(\kappa(0), 0)(v_0).w_0 = w_0.w_0$ e portanto estritamente positivo. Isto conclui a prova da desigualdade a qual, como tinhamos visto, contradiz o resultado prévio.