Pontifícia Universidade Católica do Rio de Janeiro

Angela Teresa Costa Sales

Retração, fluência e fratura em compósitos cimentícios reforçados com polpa de bambu

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de doutor em Engenharia Civil. Área de Concentração: Estruturas

Orientador: Khosrow Ghavami

Angela Teresa Costa Sales

Retração, Fluência e Fratura em Compósitos Cimentícios Reforçados com Polpa de Bambu

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Khosrow Ghavami Presidente/Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Holmer Savastano Júnior USP

Prof. Romildo Dias Toledo Filho UFRJ

Prof. Clélio Thaumaturgo

Prof. Felipe José da Silva IME

Prof. Celso RomanelDepartamento de Engenharia Civil – PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 21 de fevereiro de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Angela Teresa Costa Sales

Graduou-se em Engenharia Civil pela UFS (Universidade Federal de Sergipe) em 1986. Titulou-se Mestre em Desenvolvimento e Meio Ambiente, pela UFS, em 2001. È professora efetiva da UFS desde 1986, lecionando as disciplinas da Matéria de Ensino Materiais de Construção do curso de Engenharia Civil.

Ficha Catalográfica

Sales, Ângela Teresa Costa

Retração, fluência e fratura em compósitos cimentícios reforçados com polpa de bambu / Ângela Teresa Costa Sales ; orientador: Khosrow Ghavami. – Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2006.

273 f.: il.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil – Teses. 2. Polpa de bambu. 3. Compósitos cimentícios. 4. Fibras vegetais. 5. Retração plástica. 6. Retração livre. 7. Retração restringida. 8. Reversibilidade da retração. 9. Fluência sob compressão. 10. Fluência sob flexão. 11. Fratura. I. Ghavami, Khosrow. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Para meu pai, Joel Fontes Costa (*i. m.*), pelo amor extremado e exemplo de fé no poder do trabalho árduo; para minha mãe, Laudelina Hora Costa, amiga de todas as horas; para meu amado esposo, Marcos Sales, alicerce em que me firmo e junto a quem sinto poder superar-me; para meus filhos, Lucila e Daniel, fontes de estímulo para a luta diária.

Agradecimentos

A Deus, pela renovação incessante da fé que me alimenta;

Ao Professor Khosrow Ghavami, pela honra de ter sido sua orientada, pela generosidade dos ensinamentos e convívio harmonioso;

Ao Departamento de Engenharia Civil da PUC-Rio pela oportunidade de complementar minha formação acadêmica em tão eminente instituição;

À CAPES, pela concessão da bolsa de doutorado;

Aos amigos do Laboratório de Estruturas e Materiais (LEM-PUC), Euclides, José Nilson, Evandro e Haroldo, pela colaboração e convívio prazeroso;

Aos que fazem o ITUC, pela ajuda nos ensaios mecânicos e, em especial, a Marques da oficina, pela boa acolhida a meus pedidos de fabricação de aparatos;

A Felipe José da Silva (IME) pela constante colaboração, especialmente nos ensaios de microscopia eletrônica;

Aos professores Holmer Savastano (FZEA-USP) e Romildo Tolêdo (UFRJ) e Conrado Rodrigues (UFV), pela boa vontade com que acolheram meus pedidos de esclarecimento de dúvidas e cessão de material bibliográfico;

Às fraternas e eternas amigas Paola e Maria Fernanda (minhas filhas postiças) e a Regina, pelo carinho e apoio em todos os momentos;

À Industria Itapagé, pelo fornecimento da polpa de bambu;

A Sérgio Rosin, Rosane e Fred, pela amizade e carinho com que atenuaram nossa solidão, nesse período de afastamento;

A Mario Fernando, por tanta ajuda amiga, sempre rompendo a rudeza das muitas horas de trabalho com seu humor peculiar;

Aos amigos do Grupo Pesquisa em Materiais não Convencionais da PUC-Rio pelos bons momentos de convívio;

A meu primeiro irmão, Joel Costa Filho, e sua esposa, Rosali, pelo muito que facilitaram nossa instalação no Rio, pela atenção e cuidado que nos dispensaram;

A meus sogros, Sr. Sales e D. Cacilda, pelo amor e pelas orações;

A meu irmão Manoel Costa Neto, pelo carinho com que me favorece, e a Leonardo e Joelson, pela torcida por meu êxito;

Aos amigos Max, Cláudia, David, Dodora, Marly, Jorge Lima, Maria José e Gineilda, pelo afeto com que, à distância, me impeliam a prosseguir;

A Josefina e Rosita, pela dedicação a minha mãe, em minha ausência.

Resumo

Sales, Angela Teresa Costa; Ghavami, Khosrow. **Retração, fluência e fratura em compósitos cimentícios reforçados com polpa de bambu**. Rio de Janeiro, 2005, 273p. Tese de Doutorado — Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

A aplicação de compósitos cimentícios usando fibras vegetais, em substituição a fibras de asbestos, é uma realidade em indústrias de fibrocimento em vários países do mundo, pois, apesar das boas propriedades mecânicas e durabilidade, a utilização de asbestos acarreta problemas de insalubridade. Fibras vegetais, pela disponibilidade e adequação à preservação ambiental, apresentam vantagens sobre fibras sintéticas. O bambu é excelente fornecedor de fibras, pelo rápido crescimento, baixo custo e qualidade das fibras. Usando-se a polpa do vegetal, pode-se inserir maiores teores de fibras que, distribuídas aleatoriamente, conferem características isotrópicas ao compósito. Estudos são realizados, visando melhorar o desempenho dos compósitos com fibras vegetais. Retração e fluência se constituem em formas de deformação ao longo do tempo que podem comprometer o desempenho e reduzir a durabilidade do material. Tratando-se de materiais heterogêneos e sujeitos à presença de falhas, em diversos níveis, a aplicação da mecânica da fratura pode tornar-se valiosa ferramenta para projeto e controle da integridade desses compósitos, sendo a inibição da iniciação e propagação de trincas uma das principais funções do reforço de fibras curtas. Esse trabalho buscou analisar o comportamento de compósitos cimentícios reforçados com polpa de bambu, quanto à retração e à fluência, e obter parâmetros que descrevessem seu modo de fratura. Enquanto a capacidade de sofrer retração plástica foi reduzida, a retração livre na secagem cresceu com o aumento do teor de polpa de bambu no compósito, chegando a 40% de incremento para 14% de polpa, após um ano. Sob retração restringida, resultados mostraram melhor desempenho dos compósitos com fibras, pela ausência de fissuras detectáveis por fissurômetro, em relação à matriz sem reforço, que apresentou fissura em torno de 4 horas de exposição à secagem. Estudo da reversibilidade da retração mostrou que para os compósitos predominam as deformações de contração. Houve aumento da fluência sob compressão simples, com a inserção do reforço fibroso na mistura. Na fluência sob flexão, houve aumento da fluência específica na face comprimida com o aumento do teor de polpa na mistura. A fluência específica sob tração na flexão resultou maior para a matriz sem reforço do que para os compósitos com polpa de bambu. No estudo sobre mecânica da fratura, os corposde-prova entalhados de compósito com polpa apresentaram melhoria considerável no comportamento à flexão em relação à matriz sem reforço. Os compósitos com polpa mostraram-se menos sensíveis ao entalhe, com o incremento do teor de reforço fibroso. Observou-se considerável amolecimento (softening) precedendo a ruptura devido à propagação da trinca, nos compósitos. As curvas de resistência (curvas-R) permitiram identificar os valores de K_{IR} que, nos compósitos, mostrou manter certa constância, com o aumento do comprimento da trinca. Nesse platô da curva, os valores médios para K_{IR} foram de 1,88 MPa.m^{1/2} e 1,84 MPa.m^{1/2}, respectivamente, para compósitos com 8% e 14% de polpa de bambu. Nos compósitos, os perfis dos caminhos trilhados pelas trincas no crescimento foram tortuosos, sendo o mecanismo de fratura mais intensamente dominado pela presença do entalhe inicial na matriz sem reforço que nos compósitos.

Palavras-chave

Polpa de bambu, compósitos cimentícios, fibras vegetais, retração plástica, retração livre, retração restringida, reversibilidade da retração, fluência sob compressão, fluência sob flexão, fratura.

Abstract

Sales, Angela Teresa Costa; Ghavami, Khosrow. **Shrinkage, creep and fracture of cementitious composites reinforced with bamboo pulp**. Rio de Janeiro, 2005, 273p. DSc. Thesis. Department of Civil Engineering, Pontificia Universidade Católica do Rio de Janeiro.

The application of cimentitious composites using vegetal fibers in substitution of asbestos is a worldwide fact in the fiber cement industry. Despite their good mechanical properties and durability, the use of asbestos fibers causes well-known health hazards. Although vegetal fibers have relatively poor mechanical properties compared with synthetic fibers, they have other advantages such as low cost and low energy demand during manufacture. Bamboo is an excellent fiber supplier, due to its fast growth and the quality of its fibers. Using vegetal pulp it is possible to insert considerable amounts of fiber in a cement matrix, which randomly distributed confer isotropic characteristics to the composite. Studies are carried out aiming to improve the performance of composites with vegetal fibers. Shrinkage and creep are sorts of time depending deformation that may significantly reduce the durability and performance of the cement based composite. Cementitious composites are essentially heterogeneous materials subject to the presence of flaws at different levels due to the presence of many internal microcraks in the material prior to loading. Therefore, the application of fracture mechanics could become a suitable tool for the design and control of the integrity of these composites, since the inhibition of crack initiation and propagation is one of the main functions of the short fiber reinforcement. This work sought to analyze the behavior of cimentitious composites reinforced with bamboo pulp under shrinkage and creep and to provide sufficient fracture parameters to describe the failure mode of the material. The results show that, whereas the plastic shrinkage reduces, the free drying shrinkage increases proportionally to bamboo pulp content in the composite, reaching a 40% increment for a 14% pulp content, after one year. Under restrained shrinkage, the composite with bamboo pulp presents better performance than unreinforced matrix. Namely, under same boundary conditions, while the unreinforced matrix presents cracks after about four hours, the composites present no cracks visible through a 10x magnifying glass, even after forty five days of drying. Study of the shrinkage reversibility of the composite showed that there is contraction deformation prevalence. Under simple compression, the creep capacity of the bamboo pulp composites increases proportionally with the fiber content. Under bending stress, there was an increase of the specific creep in the compressed face of the specimen, as the pulp content of the mixture increases. The specific creep under bending tension for the tensile face was greater for the unreinforced matrix than in the bamboo pulp composites. As revealed through the assessment of fracture behavior of composites with bamboo pulp, notched specimens presented a considerable improvement in bending behavior when compared to the unreinforced matrix. The composites with pulp became less sensible to the notch with the increment of pulp content. In the bamboo pulp composites, considerable softening was observed in the load-displacement curve, as load gradually decreases after the peak load and before the rupture due to crack propagation. Using resistance curves (R-curves) it was possible to identify the K_{IR} values that, for the composites, kept certain constancy as the crack length increased. At this plateau of the curve, the average values for K_{IR} reached 1,88 MPa.m $^{1/2}$ and 1,84 MPa.m^{1/2} for composites with bamboo pulp content of 8% and 14% respectively. In the composites, crack profiles and crack surfaces were tortuous, while in the unreinforced matrix the fracture mechanisms were more intensely dominated by the presence of the initial notch.

Keywords

Bamboo pulp, cementitious composites, vegetal fibers, plastic shrinkage, free shrinkage, restrained shrinkage, shrinkage reversibility, creep under compression, creep under bending, fracture.

Sumário

i introdução	22
2 Fundamentação teórica	24
2.1 Uso de fibras vegetais em compósitos cimentícios	24
2.1.1 Fibras vegetais	28
2.1.1.1 Polpas de fibras vegetais	31
•	
2.1.1.2 Fibras comumente usadas em compósitos	34
2.1.1.2.1 Fibras de coco	34
2.1.1.2.2 Fibras de sisal	36
2.1.1.2.3 Fibras de juta	38
2.1.1.2.4 Fibras de bambu	40
2.1.1.2.5 Fibras de madeira	43
2.1.1.2.6 Fibras de bananeira	44
2.1.1.2.7 Fibras de bagaço de cana-de-açúcar	45
2.1.1.2.8 Variabilidade dos dados sobre fibras vegetais	46
2.1.2 Interação fibra-matriz	47
2.1.2.1 Interações mecânicas	47
2.1.2.2 Interações físicas e químicas	48
· ·	
2.2 Deformações variáveis com o tempo em compósitos cimentícios	51
2.2.1 Retração	53
2.1.1.1 Retração plástica	55
2.2.1.1.1 Pega do cimento	58
2.2.1.2 Retração por secagem do compósito endurecido	60
2.2.1.3 Retração autógena	66
2.2.1.4 Retração por carbonatação	70
2.2.2 Fluência	72
2.2.2.1 Classificação das deformações	73
2.2.2.2 Mecanismos da fluência	77
2.2.2.3 Ensaios de fluência	79
2.2.2.4 Fluência em compósitos cimentícios com fibras	81
2.2.3 Retração e fluência	83
	84
2.3 Fratura de compósitos cimentícios	
2.3.1 Princípios da Mecânica da Fratura	86
2.3.2 Mecânica da Fratura aplicada a materiais cimentícios	94
2.3.2.1 Métodos da trinca fictícia ou trinca coesiva	99
2.3.2.2 Métodos da trinca efetiva elástica	100
2.3.2.2.1 Modelo bi-paramétrico de Jenq e Shah	101
2.3.2.2.2 Modelo de efeito de escala de Bazant e Kazemi	103
2.3.2.2.3 Modelo de Karihaloo e Nallathambi	103
2.3.2.3 Curva de resistência à fratura – curva-R	104
2.3.3 Mecânica da fratura aplicada a compósitos cimentícios	
reforçados com fibras	106
3.000 00.11 110.00	
3 Procedimento experimental	111
3.1 Materiais utilizados	111
3.2 Produção dos compósitos	112
· ·	
3.2.1 Fração volumétrica das fibras no compósito	115
3.3 Ensaios de retração	117

3.3.1 Retração plástica	117
3.3.1.1 Caracterização da pega do compósito – evolução do calor de	
hidratação	117
3.3.1.2 Ensaio de retração plástica	119
3.3.1.2.1 Misturas utilizadas	120
3.3.1.2.2 Descrição do aparato e procedimento utilizado	121
3.3.2 Retração na secagem	123
3.3.2.1 Retração livre	123
3.3.2.1.1 Materiais	123
3.3.2.1.2 Métodos	124
3.3.2.2 Retração restringida – ensaio do anel	126
3.3.2.2.1 Materiais	126
3.3.2.2.2 Métodos	126
3.3.2.2.3 Escolha das dimensões do corpo-de-prova	129
3.3.2.3 Reversibilidade da retração	131
3.3.2.3.1 Materiais	131
3.3.2.3.2 Métodos	131
3.4 Ensaios de fluência	134
3.4.1 Fluência sob compressão	134
3.4.1.1 Resistência à compressão dos compósitos	134
3.4.1.2 Ensaio de fluência sob compressão	136
3.4.2 Fluência sob flexão	138
3.4.2.1 Resistência à flexão dos compósitos	138
3.4.2.2 Ensaio de fluência sob flexão	140
3.5 Ensaio de fratura	143
3.5.1 Ensaios com corpos-de-prova com entalhe	143
3.5.2 Ensaios com corpos-de-prova sem entalhe	144
3.5.3 Observação das faces de fratura por microscopia eletrônica de	
varredura (MEV)	145
4 Resultados e discussão	147
4.1 Retração	147
4.1.1 Retração plástica	147
4.1.1.1 Caracterização da evolução do calor de hidratação	147
4.1.1.2 Comportamento dos compósitos sob retração plástica	149
4.1.2 Retração na secagem	151
4.1.2.1 Comportamento dos compósitos sob retração livre	151
4.1.2.1.1 Modelos para retração livre	159
4.1.2.1.1.1 Modelo de Zhang e Li para retração em compósitos	
cimentícios com fibras	160
4.1.2.1.1.2 Modelo B3 para retração	169
4.1.2.2 Comportamento dos compósitos sob retração restringida -	
ensaio do anel	172
4.1.2.3 Deformações sob alternância de molhagem e secagem -	
reversibilidade da retração	182
4.1.2.3.1 Ensaios que iniciaram com secagem dos corpos-de-prova	182
4.1.2.3.2 Ensaios que iniciaram com saturação dos corpos-de-prova	191
4.2 Fluência	198
4.2.1 Fluência sob compressão	198
4 2 1 1 Caracterização da resistência à compressão	198

4.2.1.2 Comportamento dos compositos sob fluencia na compressao 4.2.1.3 Comportamento dos compósitos após recuperação da	200
fluência	208
4.2.1.4 Modelos para fluência sob compressão	209
4.2.1.4.1 Modelo da teoria da Visco-elasticidade linear (modelo de	
Zener)	210
4.2.1.4.2 Modelo B3 para fluência	213
4.2.2 Fluência sob flexão	217
4.2.2.1 Caracterização da resistência à flexão	217
4.2.2.2 Comportamento dos compósitos sob fluência na flexão	218
4.3 Fratura	224
4.3.1 Caracterização do comportamento à fratura	224
4.3.2 Análise da fratura por microscopia eletrônica de varredura	234
5 Conclusões e sugestões	237
5.1 Conclusões	237
5.1.1 Retração	237
5.1.1.1 Retração plástica	237
5.1.1.2 Retração na secagem	238
5.1.1.2.1 Retração livre	238
5.1.1.2.2 Retração restringida	239
5.1.1.2.3 Reversibilidade da retração	239
5.1.2 Fluência	240
5.1.2.1 Fluência sob compressão	240
5.1.2.2 Fluência sob flexão	241
5.1.3 Fratura	242
5.2 Sugestões para trabalhos futuros	243
Referências bibliográficas	246
Apêndice A: curvas tensão x deformação sob compressão	260
Apêndice B: Ensaios de flexão em quatro pontos de corpos-de-prova prismáticos de 25 mm x 50 mm x 200 mm	262
Apêndice C: Curvas de resistência dos corpos-de-prova prismáticos com entalhe, submetidos à flexão em quatro pontos	266

Lista de figuras

Figura 1: Esquema da estrutura de uma fibra de madeira leve	31
Figura 2: Esquema do colmo de bambu	42
Figura 3: Variação de resistência à tração(a). Variação de módulo de	
elasticidade(b)	49
Figura 4: Modelo de crescimento da fissura no compósito com fibras	50
Figura 5: Curva típica de evolução do calor de hidratação	61
Figura 6: Exemplo de desenvolvimento da temperatura com o tempo,	
desde a mistura, em pasta, argamassa e concreto	62
Figura 7 – Contração de Le Chatelier	70
Figura 8: Influência da seqüência secagem-carbonatação na	. •
retração	73
Figura 9: Perfil de deformação do compósito cimentício sob	
carregamento constante	76
Figura 10: Definição das componentes de deformação	77
Figura 11: Relação tensão-deslocamento e os diferentes estágios de	, ,
fissuração	87
Figura 12: Modos de carregamento para elemento com trinca: (a)	01
Modo I ou de abertura; (b) Modo II ou de cisalhamento; (c) Modo III	90
ou de rasgamento Figura 13: Aspecto de uma trinca e da região de domínio de K para	90
	02
aplicação da MFLE	92
Figura 14: Determinação do ponto de carga $P_{\mathbb{Q}}$ correspondente ao	00
início de crescimento da trinca.	92
Figura 15: Variação da energia potencial: antes do crescimento da	0.4
trinca (a); depois do crescimento da trinca (b)	94
Figura 16: Definição da Integral J em termos de energia potencial	96
Figura 17: Alguns mecanismos de tenacidade na ZPF: (a) blindagem	
de micro-fissuras; (b) deflexão da trinca; (c) ligação das faces por	
partícula de agregado; (d) oclusão por rugosidade das superfícies;	
(e) arredondamento da ponta por vazio; (f) ramificação da trinca	98
Figura 18: Modelo de trinca quase-frágil	100
Figura 19: Trinca do modo I para modelo de trinca fictícia	101
Figura 20: Procedimento para determinação de parâmetros de	
fratura pelo modelo bi-paramétrico de Jenq e Shah	104
Figura 21: Curva carga-deslocamento do modelo de trinca efetiva de	
Nallathambi e Karihaloo	106
Figura 22: Curva-R obtida da curva P-CMOD (Ferreira et al. 2002)	107
Figura 23: Mecanismos de resistência à fratura do concreto	
reforçado com fibras	111
Figura 24: Aspecto da polpa Kraft refinada de bambu	113
Figura 25: Dispersão da polpa em água	115
Figura 26: Sistema de aplicação de vácuo	116
Figura 27: Aplicação de compressão na moldagem das placas	117
Figura 28: Garrafa de Langavant (a). Sistema de aquisição de dados	
em ensaio de calor de hidratação (b)	121
Figura 29: Esquema do aparato para medida da variação da altura	123

Figura 30: Aparato montado conforme ASTM C 827	124
Figura 31: Molde com corpo-de-prova de retração livre	126
Figura 32: Retratômetro com relógio comparador(a). Corpos-de-	
prova na câmara climática(b)	128
Figura 33: Moldagem do anel de compósito. Molde preenchido com	
material e contra-molde (a). Compressão do anel (b)	129
Figura 34: Localização dos extensômetros no corpo-de-prova. Linha	0
central (a). Posições no perímetro da circunferência (b).	130
Figura 35: Medidas de retração restringida. Deformações por leitora	150
, , ,	120
portátil (a). Anel restringido, com fissuras e fissurômetro (b)	130
Figura 36: Anéis restringidos (a). Anéis livres (b).	131
Figura 37: Esquema do anel do teste de retração restringida	132
Figura 38: Medida das variações dimensionais por variação de	
umidade. Placa com pastilhas (a). Extensômetro mecânico tipo	
DEMEC (b)	135
Figura 39: Moldagem dos corpos-de-prova para ensaio de	
compressão. Molde preenchido (a). Aplicação da compressão na	
moldagem (b)	137
Figura 40: Ènsaio de compressão	138
Figura 41: Pórtico para ensaio de fluência	139
Figura 42: Rótula do pórtico de fluência sob compressão	140
Figura 43: Aparato para ensaio de fluência sob flexão (a). Alguns	
corpos-de-prova carregados no interior da câmara (b)	143
Figura 44: Esquema de fixação dos <i>strain gages</i> para ensaio de	170
	144
fluência na flexão. Vista superior (a). Vista lateral (b)	
Figura 45: Ensaio de flexão em vigota com entalhe	146
Figura 46: Curvas de aquecimento por calor de hidratação e de	4.40
dissipação do calor em ensaio do compósito CPB00	149
Figura 47: Curvas de aquecimento por calor de hidratação e de	
dissipação do calor em ensaio do compósito CPB08	150
Figura 48: Curvas de calor de hidratação no tempo t, para mistura de	
referência (CPB00) e compósito CPB08	150
Figura 49: Influência do teor de polpa de bambu na retração plástica	
do compósito	152
Figura 50: Variação média da altura dos corpos-de-prova no período	
entre 290 minutos e 24 horas do início do ensaio	153
Figura 51: Retração livre para misturas com diferentes teores de	
polpa durante um ano	154
Figura 52: Retração livre para misturas com diferentes teores de	101
polpa nos sete primeiros dias	155
•	100
Figura 53: Perda de massa para misturas com diferentes teores de	150
polpa	156
Figura 54: Relação entre deformação por retração e perda de massa	157
Figura 55: Retração em compósitos com matriz modificada por cinza	
de casca de arroz	158
Figura 56: Influência da presença da cinza de casca de arroz sobre a	
perda de massa dos compósitos	159
Figura 57: Retração nos compósitos com polpa de bambu e de sisal	159
Figura 58: Influência do tipo de polpa vegetal sobre a perda de	
massa dos compósitos	160

Figura 59: Retração nos compósitos com 8% de polpa de bambu	
com períodos diferentes de permanência no molde	160
Figura 60: Compósito com fibras orientadas aleatoriamente e	
compósito equivalente	163
Figura 61: Corte e seção transversal do cilindro representativo da	
matriz com fibra	163
Figura 62: Esquema usado na análise de transferência de tensões	
da fibra para a matriz	165
Figura 63: Comparação entre curvas de retração obtidas	
experimentalmente e obtidas pelo modelo de Zhan e Li (2001)	170
Figura 64: Predição adaptada da retração usando dados de ensaios	
de retração e perda de água para CPB08	173
Figura 65: Predição adaptada da retração usando dados de ensaios	
de retração e perda de água para CPB14	174
Figura 66: Evolução das deformações e das aberturas das fissuras	
do primeiro anel restringido com a mistura de referência (CPB00-1)	175
Figura 67: Evolução das deformações e das aberturas das fissuras	
do segundo anel restringido com a mistura de referência (CPB00-2)	175
Figura 68: Evolução das deformações e das aberturas das fissuras	
do terceiro anel restringido com a mistura de referência (CPB00-3)	176
Figura 69: Perfil e posição da primeira fissura do anel CPB00-2	176
Figura 70: Perfil da primeira fissura do anel CPB00-3. Surgimento da	
fissura (a). Abertura da fissura na conclusão do ensaio (b)	177
Figura 71: Evolução das aberturas das fissuras dos três anéis	
restringidos de CPB00	178
Figura 72: Evolução das deformações e das aberturas de fissuras	170
em anéis livres moldados com a mistura de referência (CPB00)	178
Figura 73: Fissura no anel livre número 1 da mistura de referência	179
Figura 74: Evolução das deformações do primeiro anel restringido	173
com CPB08	179
Figura 75: Evolução das deformações do segundo anel restringido	175
com CPB08	180
Figura 76: Evolução das deformações do terceiro anel restringido	100
com CPB08	180
Figura 77: Deformações em anéis livres de compósito com 8% de	100
polpa de bambu (CPB08)	181
Figura 78: Evolução das deformações do primeiro anel restringido	101
com CPB14	181
Figura 79: Evolução das deformações do segundo anel restringido	101
com CPB14	182
	102
Figura 80: Evolução das deformações do terceiro anel restringido	100
com CPB14	182
Figura 81: Deformações em anéis livres de compósito com 14% de	100
polpa de bambu (CPB14)	183
Figura 82: Variação das deformações por alternância de secagem e	105
molhagem na placa CPB00-1	185
Figura 83: Variação das deformações por alternância de secagem e	105
molhagem na placa CPB00-2	185
Figura 84: Variação das deformações por alternância de secagem e molhagem na placa CPB00-3	186
nomanen na mara vedules	IOD

Figura 85: Deformações médias das placas de CPB00 e média geral	186
Figura 86: Variação das deformações por alternância de secagem e	
molhagem na placa CPB08-1	187
Figura 87: Variação das deformações por alternância de secagem e	
molhagem na placa CPB08-2	188
Figura 88: Variação das deformações por alternância de secagem e	
molhagem na placa CPB08-3	188
Figura 89: Deformações médias das placas de CPB08 e média geral	188
Figura 90: Variação das deformações por alternância de secagem e	
molhagem na placa CPB14-1	189
Figura 91: Variação das deformações por alternância de secagem e	
molhagem na placa CPB14-2	190
Figura 92: Variação das deformações por alternância de secagem e	
molhagem na placa CPB14-3	190
Figura 93: Deformações médias das placas de CPB14 e média geral	190
Figura 94: Variação da deformação por variação da umidade nas	
três misturas	191
Figura 95: Variação das deformações por alternância de secagem e	
molhagem na placa CPB00-1 (segundo ensaio)	194
Figura 96: Variação das deformações por alternância de secagem e	
molhagem na placa CPB00-2 (segundo ensaio)	194
Figura 97: Variação das deformações por alternância de secagem e	
molhagem na placa CPB00-3 (segundo ensaio)	194
Figura 98: Deformações médias das placas de CPB00 e média geral	
(segundo ensaio)	195
Figura 99: Variação das deformações por alternância de secagem e	
molhagem na placa CPB08-1 (segundo ensaio)	196
Figura 100: Variação das deformações por alternância de secagem e	
molhagem na placa CPB08-2 (segundo ensaio)	197
Figura 101: Variação das deformações por alternância de secagem e	
molhagem na placa CPB08-3 (segundo ensaio)	197
Figura 102: Deformações médias das placas de CPB08 e média	
geral (segundo ensaio)	197
Figura 103: Variação das deformações por alternância de secagem e	
molhagem na placa CPB14-1 (segundo ensaio)	198
Figura 104: Variação das deformações por alternância de secagem e	
molhagem na placa CPB14-2 (segundo ensaio)	199
Figura 105: Variação das deformações por alternância de secagem e	
molhagem na placa CPB14-3 (segundo ensaio)	199
Figura 106: Deformações médias das placas de CPB14 e média	
geral (segundo ensaio)	199
Figura 107: Variação da deformação por variação da umidade nas	
três misturas (segundo ensaio)	200
Figura 108: Relações tensão <i>versus</i> deformação sob compressão	
para os compósitos com polpa de bambu	201
Figura 109: Corpos-de-prova de CPB08 e CPB00 rompidos sob	000
compressão	202
Figura 110: Fluência em corpo-de-prova não selado de CPB00	203
Figura 111: Fluência em corpo-de-prova selado de CPB00	203
Figura 112: Fluência em corpo-de-prova não selado de CPB08	204

Figura 113: Fluência em corpo-de-prova selado de CPB08	204
Figura 114: Fluência em corpo-de-prova não selado de CPB14	204
Figura 115: Fluência em corpo-de-prova selado de CPB14	205
Figura 116: Fluência total nas três misturas (não selado)	205
Figura 117: Fluência básica nas três misturas (selado)	205
Figura 118: Médias das perdas de massa dos corpos-de-prova	
selados durante ensaio de fluência na compressão	206
Figura 119: Fracionamento do total da deformação elástica e fluência	
sob compressão, após completada a recuperação das deformações	210
Figura 120: Modelo de Zener	212
Figura 121: Modelo de Zener para o compósito CPB08	214
Figura 122: Modelo de Zener para o compósito CPB14	215
Figura 123: Predição para fluência básica mais deformação elástica	
para compósitos CPB08 e CPB14 pelo modelo de Zener	215
Figura 124: Predição para fluência básica mais deformação elástica	
para diferentes teores de polpa de bambu pelo modelo de Zener	216
Figura 125: Predição para fluência básica para o compósito CPB08	
pelo modelo B3	219
Figura 126: Predição para fluência básica para o compósito CPB14	
pelo modelo B3	219
Figura 127: Curvas carga-deslocamento do ensaio de flexão de	2.0
CPB00	220
Figura 128: Curvas carga-deslocamento do ensaio de flexão de	220
CPB08	220
Figura 129: Curvas carga-deslocamento do ensaio de flexão de	220
CPB14	221
Figura 130: Comportamento sob fluência na flexão da mistura de	1
referência (CPB00)	222
Figura 131: Comportamento sob fluência na flexão do compósito	
com 8% de polpa de bambu (CPB08)	222
Figura 132: Comportamento sob fluência na flexão do compósito	
com 14% de polpa de bambu (CPB14)	222
Figura 133: Retração na secagem em corpos-de-prova de 120 mm x	
40 mm x 6 mm para as três misturas observadas	223
Figura 134: Curvas de fluência total para as três misturas, sob tração	223
na flexão e sob compressão na flexão	224
Figura 135: Fracionamento da soma da deformação elástica e	224
fluência sob flexão, após completada a recuperação das	
deformações	226
Figura 136: Curvas <i>P-deslocamento</i> para CPB00, CPB08 e CPB14	220
dos ensaios de flexão de vigotas sem entalhe	227
Figura 137: Curvas <i>P-CMOD</i> para CPB00, CPB08 e CPB14 dos	221
ensaios de flexão de vigotas com entalhe	228
•	220
Figura 138: Influência do teor de polpa de bambu sobre a	222
sensibilidade do compósito à presença do entalhe	232
Figura 139: Curva-R e curva <i>P-CMOD</i> para CPB00	233
Figura 140: Curva-R em função da razão a/W para CPB00	233
Figura 141: Curva-R e curva <i>P-CMOD</i> para CPB08	233
Figura 142: Curva-R em função da razão a/W para CPB08	233
Figura 143: Curva-R e curva <i>P-CMOD</i> para CPB14	235

Figura 144: Curva-R em função da razão a/W para CPB14	235
Figura 145: Superfícies de fratura para CPB08 e CPB00	236
Figura 146: Perfil de fratura em CPB14	237
Figura 147(a-b): Superfície de fratura da mistura de referência -	
CPB00	237
Figura 148(a-b): Superfície de fratura do compósito com 8% de polpa	
de bambu - CPB08	238
Figura 149(a-b): Superfície de fratura do compósito com 14% de	
polpa de bambu – CPB14	238

Lista de tabelas

Tabela 1: Propriedades de algumas fibras não vegetais	36
Tabela 2: Propriedades das fibras de coco	37
Tabela 3: Propriedades das fibras de sisal	39
Tabela 4: Propriedades das fibras de juta	41
Tabela 5: Propriedades das fibras de bambu	44
Tabela 6: Propriedades das fibras de madeira	46
Tabela 7: Propriedades das fibras de bananeira	47
Tabela 8: Propriedades das fibras de bagaço de cana-de-açúcar	48
Tabela 9: Composição da cinza de casca de arroz	114
Tabela 10: Médias e desvios médios de temperaturas e umidades	
relativas ambientais	123
Tabela 11: Misturas usadas para estudo da retração livre	128
Tabela 12: Valores médios dos parâmetros dos ensaios de	
reversibilidade da retração	200
Tabela 13: Valores médios de resistência e módulo de elasticidade	
à compressão	201
Tabela 14: Índices que relacionam parâmetros do ensaio de	
fluência na compressão dos compósitos com os da matriz sem	
reforço	207
Tabela 15: Parâmetros do ensaio de compressão dos compósitos	
após fluência	210
Tabela 16: Parâmetros dos ensaios de flexão para cada mistura	220
Tabela 17: Deformações em pontos típicos do ensaio de fluência na	
flexão	223
Tabela 18: Fluência específica sob flexão após 120 dias de	
carregamento	225
Tabela 19: Propriedades mecânicas à flexão dos compósitos em	
ensaios com corpos-de-prova prismáticos sem entalhe	229
Tabela 20: Propriedades mecânicas à flexão dos compósitos em	
ensaios com corpos-de-prova prismáticos com entalhe	229
Tabela 21: Valores de MOR de compósitos cimentícios com polpa	
de hambu e variáveis de ensaio	230

Lista de símbolos

а	Raio maior ou metade do comprimento total de uma trinca
	interna no material
	Teor de água na mistura, em massa
a_0	Comprimento inicial da trinca externa no material
ar	Teor de areia na argamassa, em massa
a*	Comprimento da trinca hipotética
A_f	Área da seção transversal da fibra
A_{m}	Area da seção transversal da matriz
b	Raio menor
В	Espessura do elemento com trinca, em mm
C (((1))	Teor de cimento na mistura, em massa
$C_0(t,t')$	Função de compliância, somente para fluência básica
$C_{d}(t,t',t_{0})$	Função de compliância para a fluência adicional devido à secagem
CMOD	Deslocamento de abertura da boca da trinca, em mm
CTOD	Deslocamento de abertura da ponta da trinca, em mm
CV	Coeficiente de variação
E	Módulo de elasticidade
E'	Módulo de elasticidade generalizado, relacionado ao módulo e
	elasticidade, E, e ao coeficiente de Poisson, v
EE	Energia específica
E_f	Módulo de elasticidade da fibra
E_m	Módulo de elasticidade da matriz
f'c	Resistência à compressão do concreto aos 28 dias de idade
F(a/W)	Função da geometria do elemento com trinca
FSE	Fator de sensibilidade ao entalhe
G	Taxa de variação da energia potencial devido ao aumento da área da trinca
G_lc	Taxa de variação da energia potencial devido ao aumento da
	área da trinca, na fratura no modo I de carregamento
G_{σ}	Taxa de energia para sobrepor a pressão no modelo da trinca
	coesiva
G_q	Taxa de variação da energia potencial devido ao aumento da
	área da trinca num material quase-frágil
h	a) Altura do elemento
	b) Umidade relativa ambiental
Н	Altura inicial do corpo-de-prova no ensaio de retração plástica
	(ASTM 827-87)
I	Leitura no cartaz indicador no ensaio de retração plástica
	(ASTM 827-87)
J	Integral de uma linha que circunda a ponta da trinca
J _{Ic}	Medida da tenacidade na fratura
J(t,ť)	Função de compliância, deformação (fluência mais elástica)no
	tempo t causada por uma tensão unitária uniaxial constante,
L	aplicada na idade t', em 10 ⁻⁶ /psi
k K	Fator de influência dimensional ou de orientação das fibras
K k.	Fator de intensidade de tensões, em MPa.m ^{1/2}
k _h	Parâmetro de dependência da umidade do modelo B3 para

 V_{wh}

W W

retração k_t Fator de concentração de tensões na ponta da trinca K_{c} Fator de intensidade de tensões crítico, ou tenacidade na fratura do material, em MPa.m^{1/2} Fator de intensidade de tensões crítico do modo I de K_{lc} carregamento, em MPa.m^{1/2} K_{IR} Fator de intensidade de tensões, obtido da curva-R Módulos elásticos das molas do modelo visco-elástico de Zener k_0, k_1 L Comprimento do vão livre Comprimento da fibra I_f $\begin{array}{c} L_{fe} \\ L_{i}^{min} \end{array}$ Comprimento efetivo da fibra Menor das três leituras no retratômetro, para cada corpo-deprova, no ensaio de retração livre (ABNT 8490) Menor das três leituras iniciais no retratômetro, para cada corpode-prova, no ensaio de retração livre (ABNT 8490) Comprimento inicial total do corpo-de-prova, no ensaio de L_{T} retração livre (ABNT 8490) LP Limite de proporcionalidade, tensão máxima da fase linear do diagrama σ-ε M a) Fator de magnificação b) Capacidade calorífica do calorímetro de Langavant e da amostra MOR Módulo de ruptura do ensaio à flexão Р Carga P_Q Carga correspondente ao início do crescimento da trinca Pressão interna p_i Q Calor de hidratação Parâmetros empíricos constitutivos do material para o modelo $q_1, q_2,$ B3 de fluência q_3, q_4 Raio do elemento representativo do compósito R Raio da fibra r_f Raio da zona plástica na ponta da trinca r_0 Desvio padrão s S(t) Função do tempo para modelo B3 de retração Tempo, em dias, correspondente à idade do material t ť Tempo, em dias, correspondente à idade do material quando do carregamento Tempo, em dias, em que o material foi exposto a secagem t_0 Т Temperatura U Energia de deformação UR Umidade relativa ambiental, em percentagem Deslocamento, em mm ٧ V Volume V_f Fração volumétrica das fibras no compósito Fração volumétrica da matriz no compósito V_{m} Volume de cimento hidratado V_{ch} Volume dos produtos de hidratação V_h

Volume de água consumida na hidratação do cimento

Deslocamento de abertura da trinca efetiva

Largura do elemento com uma trinca aberta

ZPF	Zona de Processos de Fratura
α	Coeficiente de perda calorífica do calorímetro de Langavant
δ	Deslocamento de separação das faces da trinca
∆a	Variação do comprimento da trinca
ΔH	Variação da altura do corpo-de-prova no ensaio de retração
	plástica (ASTM C 827-87)
ΔV	Contração de Le Chatelier
ΔW	Perda de água
ΔW_{∞}	Perda de água final, após secagem em estufa a 105° C
ϵ_{c}	Deformação de fluência do concreto
ε _{bc}	Fluência básica
ε _d	Deformação total dependente do tempo, durante o período de
	variação de umidade
ϵ_{m}	Retração da matriz
$\epsilon_{\sf dc}$	Fluência na secagem
ϵ_{s}	Deformação por retração
$\epsilon_{\sf sh}$	Deformação por retração, modelo B3 (Bazant e Baweja 1995)
$\epsilon_{sh\infty}$,	Deformação por retração final, modelo B3 (Bazant e Baweja
	1995)
ϵ_{t}	Retração total livre do compósito, no modelo de Zhang e Li
	(2001)
$\phi(t,t')$	Coeficiente de fluência
μ	a) Capacidade térmica do calorímetro de Langavant
	b) Ângulo de orientação das fibras no compósito
μ_1	Coeficiente de viscosidade do amortecedor do modelo visco-
	elástico de Zener Coeficiente de Poisson
ν	
θ_1	Temperatura da amostra no ensaio de calor de hidratação
θ_2	Temperatura da amostra de referência no ensaio de calor de hidratação
0	raio de curvatura da ponta da trinca
ρ	Tensão de tração na fibra
σ_{f}	Tensão de tração na matriz
σ_{m}	Tensão de tração média na matriz
σ_{ma}	Tensão máxima na ponta da trinca, em MPa
σ_{max}	Tensão nominal aplicada remotamente num elemento com
σ_{N}	trinca, em MPa
σ_{c}	Tensão crítica ou resistência teórica à fratura, em MPa
σ_0	Tensão de escoamento do material, em MPa
σ_{θ}	Tensão tangencial
$\sigma_{\rm r}$	Tensão radial
τ_0	Tensão de cisalhamento interfacial
-	Parâmetro do modelo B3 para retração, chamado de meio-
$ au_{sh}$	tempo de retração