6 Referências Bibliográficas

- [1] SORNETTE, D.. Why Stock Markets Crash: critical events in complex financial systems. Princeton University Press, Princeton, USA, 2002.
- [2] JOHANSEN, A.; LEDOIT, O.; SORNETTE, D.. Crashes as Critical Points. International Journal of Theoretical and Applied Finance Vol. 3, No. 2, 219-255, 2000.
- [3] JOHANSEN, A.; SORNETTE, D.. Significance of log-periodic precursors to financial crashes. Quantitative Finance 1 (4), 452-471, 2001.
- [4] STANLEY, H.E.. Introduction to Phase Transitions and Critical Phenomena. 1971.
- [5] VOIT, J.. **The Statistical Mechanics of Financial Markets.** Springer, Alemanha, 2001.
- [6] JOHANSEN, A.; SORNETTE, D.. Bubbles and anti-bubbles in Latin-American, Asian and Western stock markets: An empirical study. International Journal of Theoretical and Applied Finance 4 (6), 853-920, 2001.
- [7] SORNETTE, D.. **Discrete Scale Invariance and Complex Dimensions**. Physics Reports, 297, 239 270, 1998.
- [8] HARVEY, A. C.. **The Econometric Analysis of Time Series.** Philip Allan Publishers Limited, London, 1985.
- [9] TSALLIS, C.; STARIOLO, D.. **Generalized simulated annealing**. Physica A 233, 395-406, 1996.
- [10] DAVIDSON, R.; MACKINNON, J.. Estimation and Inference in Econometrics. Oxford University Press, New York, USA, 1993.
- [11] GREENE, W. H.. **Econometric Analysis**. Prentice Hall, New Jersey, USA, 5th Edition, 2003.
- [12] HAMILTON, J.. **Time Series Analysis.** Princeton University Press, New Jersey, USA, 1994.
- [13] CARATORI, P.; GAZOLA, L... O Poder da Estatística BDS em Modelos de Volatilidade Estocástica: uma investigação utilizando simulação de Monte Carlo. Trabalho de final de curso de Graduação. Departamento da Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2003.

- [14] FEIGENBAUM, J.. A Statistical Analysis of Log-periodic Precursors to Financial Crashes. Quantitative Finance 1, 346, 2001.
- [15] JOHANSEN, A.; LEDOIT, O.; SORNETTE, D.. Predicting Financial Crashes Using Discrete Scale Invariance. Journal of Risk 1, 5, 1999.
- [16] CAMPBELL, J.; LO, A.; MACKINLAY, A.. **The Econometrics of Financial Markets.** Princeton University Press, New Jersey, USA, 1997.
- [17] MORETTIN, P.. **Séries Temporais em Finanças.** Monografia. Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2002.

A Apêndice

A hazard rate h(t) é a probabilidade por unidade de tempo do crash ocorrer no próximo instante dado que ele ainda não ocorreu, dada por $h(t) = \frac{q(t)}{1 - O(t)} \, .$

Prova:

Pelo teorema da probabilidade total, considerando dois eventos a e b complementares, tem-se que:

$$P(a) = P(b)*P(a/b) + P(\sim b)*P(a/\sim b)$$
 (A.1)

Definindo os eventos a e b como:

a = ocorrência do *crash* entre t* e t*+dt

b = não ocorrência do crash entre 0 e t*

Tem-se também que: ~b = ocorrência do crash entre 0 e t*

Lembrando que a data de ocorrência do crash é uma variável estocástica sujeita a uma função densidade de probabilidade q(t) e a uma função de distribuição

cumulativa $Q(t) = \int_{t}^{t} q(t')dt'$, desta forma, $Q(t^*)$ é a probabilidade acumulada do

crash ocorrer até t^* , e complementarmente, $1 - Q(t^*)$ é a probabilidade do crash ocorrer depois de t^* .

Considerando um intervalo de tempo dt pequeno, tem-se que:

$$P(a) = q(t^*)dt (A.2)$$

$$P(b) = 1 - Q(t^*)$$
 (A.3)

De acordo com a definição da hazard rate:

$$P(a/b) = h(t^*)dt (A.4)$$

Além disso, por razões de mercado:

$$P(a/\sim b) = 0. \tag{A.5}$$

Aplicando (A.2), (A.3), (A.4), (A.5) em (A.1), conclui-se que:

$$q(t^*)dt = (1 - Q(t^*)) h(t^*)dt + 0$$
 \rightarrow $q(t^*) = (1 - Q(t^*)) h(t^*), ou seja,$

$$h(t^*) = \frac{q(t^*)}{1 - Q(t^*)}.$$

B Apêndice

A razão das distâncias, entre dois máximos consecutivos e o tempo crítico t_c , segue uma progressão geométrica igual ao fator característico do mercado λ ,

ou seja,
$$\frac{t_c-t_{n+1}}{t_c-t_n}=\lambda$$
 .

Prova:

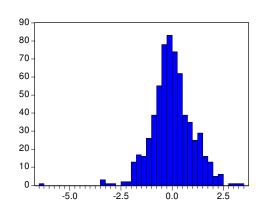
Considerando: $p(t) = A + B(t_c - t)^{\beta} \{1 + C \cos[w \ln(t_c - t) + \phi]\}$.

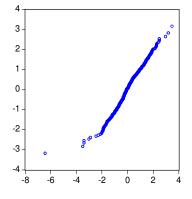
Os máximos locais de p(t) ocorrem quando a função cosseno for máxima. Assim, os máximos locais têm datas t_n dadas por: $w \ln(t_c - t_n) + \phi = 2\pi n$.

Considerando tempos consecutivos t_n e t_{n+1}:

$$w\ln(t_c-t_{\scriptscriptstyle n+1})-w\ln(t_c-t_{\scriptscriptstyle n})=2\pi\ ,\ \text{ou seja,}\ \ w\ln\!\left(\frac{t_c-t_{\scriptscriptstyle n+1}}{t_c-t_{\scriptscriptstyle n}}\right)=2\pi\ .$$

Daí,
$$\frac{t_c - t_{n+1}}{t_c - t_n} = e^{\frac{2\pi}{w}}$$
.


Sabendo-se que $e^{rac{2\pi}{w}}=\lambda$ (ver eq.(33)), conclui-se que: $rac{t_c-t_{n+1}}{t_c-t_n}=\lambda$.


C Apêndice

Histograma, QQ-plot, teste BDS, correlogramas e matriz variância-covariância das séries analisadas no capítulo 4.

• HANG SENG INDEX (Hong Kong) – 1997

Histograma e QQ-plot

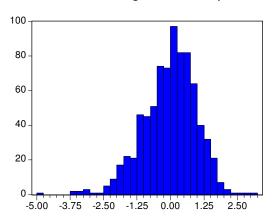
Teste BDS

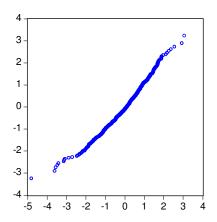
m\ε	0.5σ	1.0σ	1.5σ	2.0σ
2	0.13640	0.30440	0.38640	0.44240
3	0.32800	0.47120	0.47720	0.59240
4	0.24280	0.33360	0.28880	0.32320
5	0.17040	0.25880	0.15920	0.23600
6	0.13680	0.17640	0.09840	0.22240

p-valores bootstrapeados da estatística BDS, com 5000 repetições.

> Correlograma do resíduo padronizado

1 0.082 0.082 4.3889 0.036 1 2 0.048 0.041 5.8510 0.054 1 3 -0.020 -0.027 6.1031 0.107 1 4 -0.014 -0.012 6.2276 0.183 1 5 -0.015 -0.011 6.3686 0.272 1 6 -0.042 -0.040 7.5166 0.276 1 7 -0.033 -0.026 8.2329 0.313 1 8 -0.044 -0.037 9.4919 0.303 1 9 -0.006 0.000 9.5195 0.391 1 10 0.025 0.027 9.9364 0.446 1 11 -0.001 -0.008 9.9372 0.536 1 12 0.052 0.048 11.700 0.470 1 13 0.037 0.028 12.583 0.480 1 14 0.063 0.051 15.172 0.366
3 -0.020 -0.027 6.1031 0.107 4 -0.014 -0.012 6.2276 0.183 5 -0.015 -0.011 6.3686 0.272 6 -0.042 -0.040 7.5166 0.276 7 -0.033 -0.026 8.2329 0.313 8 -0.044 -0.037 9.4919 0.303 9 -0.006 0.000 9.5195 0.391 10 0.025 0.027 9.9364 0.446 11 -0.001 -0.008 9.9372 0.536 10 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
4 -0.014 -0.012 6.2276 0.183 5 -0.015 -0.011 6.3686 0.272 6 -0.042 -0.040 7.5166 0.276 7 -0.033 -0.026 8.2329 0.313 8 -0.044 -0.037 9.4919 0.303 9 -0.006 0.000 9.5195 0.391 10 0.025 0.027 9.9364 0.446 11 -0.001 -0.008 9.9372 0.536 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
5 -0.015 -0.011 6.3686 0.272 6 -0.042 -0.040 7.5166 0.276 7 -0.033 -0.026 8.2329 0.313 8 -0.044 -0.037 9.4919 0.303 9 -0.006 0.000 9.5195 0.391 10 0.025 0.027 9.9364 0.446 11 -0.001 -0.008 9.9372 0.536 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
01 01 01 01 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0276 0279 027
7 -0.033 -0.026 8.2329 0.313 8 -0.044 -0.037 9.4919 0.303 9 -0.006 0.000 9.5195 0.391 10 0.025 0.027 9.9364 0.446 11 -0.001 -0.008 9.9372 0.536 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
8 -0.044 -0.037 9.4919 0.303 9 -0.006 0.000 9.5195 0.391 10 0.025 0.027 9.9364 0.446 11 -0.001 -0.008 9.9372 0.536 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
9 -0.006 0.000 9.5195 0.391 10 0.025 0.027 9.9364 0.446 11 -0.001 -0.008 9.9372 0.536 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
10 0.025 0.027 9.9364 0.446 11 -0.001 -0.008 9.9372 0.536 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
11 -0.001 -0.008 9.9372 0.536 12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
12 0.052 0.048 11.700 0.470 13 0.037 0.028 12.583 0.480
13 0.037 0.028 12.583 0.480
14 0.063 0.051 15.172 0.366
15 0.019 0.008 15.413 0.422
16 0.019 0.015 15.642 0.478
(i) (i) 17 -0.030 -0.029 16.230 0.508
18 -0.015 -0.004 16.373 0.566
19 0.006 0.017 16.400 0.630
(20 -0.029 -0.023 16.963 0.655


Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	4 5 6 7 8 9 10 11	-0.030 0.016 -0.054 0.007 -0.027 0.056 0.007 0.022 -0.015 -0.002 -0.008	-0.030 0.015 -0.053 0.004 -0.025 0.051 0.012 0.019 -0.008 -0.003 -0.003 0.018	0.5916 0.7582 2.6546 2.6878 3.1591 5.1824 5.2190 5.5441 5.6912 5.6940 5.7361 6.0632 6.0657	Prob 0.442 0.684 0.611 0.675 0.521 0.633 0.698 0.770 0.840 0.890 0.913 0.944
		14 15 16 17 18	0.007	0.003 0.027 -0.001 -0.052 -0.017	6.0999 6.4635 6.4652 8.3540 8.4817 8.6139 8.6476	0.964 0.971 0.982 0.958 0.971 0.979 0.987


PUC-Rio - Certificação Digital Nº 0310410/CA

	А	В	S	tc	β	W	φp	φar	α0	α1	α2
Α	4.970E+05	4.970E+05 -5.107E+05 -1.374E+04		-1.214E-03	-3.885E+01	7.147E+00	-1.214E-03 -3.885E+01 7.147E+00 1.607E+00 2.346E+00 1.452E+04 1.106E+00 -2.028E+00	2.346E+00	1.452E+04	1.106E+00	-2.028E+00
В	-5.107E+05	-5.107E+05 5.519E+05	1.940E+04	1.371E-03	4.416E+01	-6.795E+00	1.371E-03 4.416E+01 -6.795E+00 -1.425E+00 -2.733E+00 -1.189E+04 -7.855E-01 1.568E+00	-2.733E+00	-1.189E+04	-7.855E-01	1.568E+00
ပ	-1.374E+04	1.940E+04	3.387E+04	2.003E-04	-2.248E+00	2.003E-04 -2.248E+00 3.865E+00		-6.536E-04 -1.299E+00 -4.977E+03 -2.081E-01 5.281E-01	-4.977E+03	-2.081E-01	5.281E-01
tc	-1.214E-03	1.371E-03	2.003E-04	1.391E-08	1.860E-07	1.391E-08 1.860E-07 1.410E-07	-1.439E-06 -2.048E-08 -8.135E-04 -2.852E-08 8.087E-08	-2.048E-08	-8.135E-04	-2.852E-08	8.087E-08
β	-3.885E+01	-3.885E+01 4.416E+01 -2.248E+00	-2.248E+00	1.860E-07	5.554E-03	-2.079E-03	1.860E-07 5.554E-03 -2.079E-03 -4.165E-04 -7.454E-05 -8.025E-01 3.429E-05 3.396E-05	-7.454E-05	-8.025E-01	3.429E-05	3.396E-05
W	7.147E+00	7.147E+00 -6.795E+00 3.865E+00	3.865E+00	1.410E-07	-2.079E-03	2.558E-02	1.410E-07 -2.079E-03 2.558E-02 1.774E-03 -7.460E-05 5.752E-01 -3.761E-05 -6.685E-06	-7.460E-05	5.752E-01	-3.761E-05	-6.685E-06
dф	1.607E+00	1.607E+00 -1.425E+00 -6.536E-04	-6.536E-04	-1.439E-06	-1.439E-06 -4.165E-04 1.774E-03	1.774E-03	5.821E-03	5.821E-03 2.476E-05 6.531E-01 1.841E-05 -5.996E-05	6.531E-01	1.841E-05	-5.996E-05
φar	2.346E+00	2.346E+00 -2.733E+00 -1.299E+00	_	-2.048E-08	-2.048E-08 -7.454E-05 -7.460E-05	-7.460E-05	2.476E-05		1.514E-04 2.851E-01 5.411E-06 -2.431E-05	5.411E-06	-2.431E-05
α0	1.452E+04	1.452E+04 -1.189E+04 -4.977E+03	-4.977E+03		-8.025E-01	-8.135E-04 -8.025E-01 5.752E-01		6.531E-01 2.851E-01 7.975E+04 1.716E+00 -7.021E+00	7.975E+04	1.716E+00	-7.021E+00
α1	1.106E+00	1.106E+00 -7.855E-01	-2.081E-01	-2.852E-08	3.429E-05	-3.761E-05	-2.852E-08 3.429E-05 -3.761E-05 1.841E-05 5.411E-06 1.716E+00 4.781E-04 -5.009E-04	5.411E-06	1.716E+00	4.781E-04	-5.009E-04
α2	-2.028E+00	-2.028E+00 1.568E+00 5.281E-01	5.281E-01	8.087E-08	3.396E-05	-6.685E-06	8.087E-08 3.396E-05 -6.685E-06 -5.996E-05 -2.431E-05 -7.021E+00 -5.009E-04 9.314E-04	-2.431E-05	-7.021E+00	-5.009E-04	9.314E-04

• NASDAQ (Estados Unidos) – 2000

> Histograma e QQ-plot

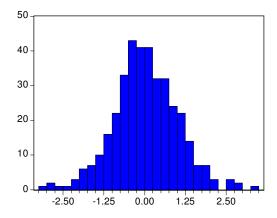
Teste BDS

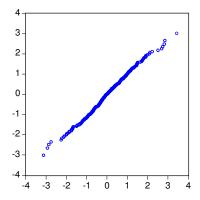
m\ε	0.5σ	1.0σ	1.5σ	2.0σ
2	0.53800	0.44920	0.15760	0.21480
3	0.93880	0.83520	0.87600	0.87560
4	0.96280	0.90760	0.98160	0.67280
5	0.93040	0.94280	0.98800	0.57400
6	0.87520	0.89120	0.91640	0.51000

p-valores bootstrapeados da estatística BDS, com 5000 repetições.

> Correlograma do resíduo padronizado

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
·þ	i	1	0.057	0.057	2.6684	0.102
ı j ı		2	0.047	0.044	4.4915	0.106
ı j ı		3	0.039	0.034	5.7177	0.126
()	(t)	4	-0.043	-0.049	7.1916	0.126
ψ		5	-0.004	-0.003	7.2067	0.206
ı ı		6	-0.004	-0.001	7.2191	0.301
ıþι		7	0.000	0.004	7.2192	0.406
ıþı		8	0.028	0.026	7.8593	0.447
ı ı	10	9	-0.007	-0.010	7.8946	0.545
ıþ	' I	10	0.070	0.069	11.901	0.292
ı ı	10	11	-0.004	-0.013	11.913	0.370
ιþi	· b	12	0.047	0.046	13.759	0.316
ıþı	1	13	0.032	0.022	14.600	0.333
ıþι	1 1	14	0.009	0.009	14.672	0.401
ıþı		15	0.034	0.027	15.611	0.408
ıψι	(t)	16	-0.038	-0.041	16.805	0.398
ıþι		17	-0.004	0.000	16.821	0.467
ıþι	1	18	0.022	0.021	17.215	0.508
ıþ	' II	19	0.061	0.068	20.280	0.378
ıþι	10	20	0.006	-0.014	20.309	0.439


Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı(ı	101	1	-0.026	-0.026	0.5638	0.453
ıb		2	0.065	0.065	4.0090	0.135
ı ı		3	-0.007	-0.003	4.0449	0.257
ı ı		4	0.002	-0.003	4.0467	0.400
ı¢ι	(1)	5	-0.027	-0.026	4.6289	0.463
ψ.	10	6	-0.021	-0.022	4.9854	0.546
1 1	10	7	0.008	0.010	5.0377	0.655
ı[ι	u[ı	8	-0.040	-0.038	6.3657	0.606
ı[ι	u[ı	9	-0.026	-0.029	6.9011	0.647
ı[ι	10	10	-0.030	-0.028	7.6546	0.663
(l)	(1)	11	-0.051	-0.051	9.8245	0.546
ı[ι	10	12	-0.034	-0.034	10.799	0.546
ı[ι	(h	13	-0.030	-0.028	11.547	0.565
ıψι	10	14	0.018	0.017	11.803	0.622
10		15	-0.009	-0.007	11.866	0.689
ı[ι	(1)	16	-0.026	-0.035	12.440	0.713
ı ı	10	17	-0.004	-0.010	12.452	0.772
10	1	18	-0.021	-0.023	12.814	0.803
ıþι	10	19	0.024	0.018	13.281	0.824
ı((ı	1(1)	20	-0.031	-0.033	14.062	0.827


PUC-Rio - Certificação Digital Nº 0310410/CA

_		_		_	_			_	_		_
α2	-7.353E-01	4.064E-01	7.983E-02	-8.982E-07	6.793E-06	-1.765E-04	-1.198E-04	4.779E-05	-1.443E-01	-1.652E-03	1.494E-03
α1	8.382E-01	-4.413E-01	-6.732E-02	7.024E-07	8.300E-06	1.594E-04	2.036E-04	-4.732E-05	1.191E-01	2.039E-03	-1.652E-03
α0	7.576E+01	-4.159E+01	-1.950E+01	5.344E-05	-3.353E-03	1.106E-02	-1.930E-02	-6.182E-03	3.291E+01	1.191E-01	-1.443E-01
φar	-3.401E+00	3.534E+00	1.500E-01	-2.079E-06	3.438E-04	-1.772E-04	3.991E-04	7.314E-05	-6.182E-03	-4.732E-05	4.779E-05
фр	-2.133E+01	1.903E+01	7.284E-01	-2.116E-04	4.278E-04	-1.280E-02	5.057E-02	3.991E-04	-1.930E-02	2.036E-04	-1.198E-04
W	6.392E+05 -6.581E+05 -1.199E+04 7.150E-01 -6.014E+01 7.901E+01 -2.133E+01 -3.401E+00 7.576E+01 8.382E-01 -7.353E-01	-7.300E-01 6.295E+01 -8.144E+01 1.903E+01 3.534E+00 -4.159E+01 -4.413E-01 4.064E-01	-1.523E-02 1.472E+00 -1.976E+00 7.284E-01 1.500E-01 -1.950E+01 -6.732E-02 7.983E-02	5.140E-06 -6.927E-05 4.177E-04 -2.116E-04 -2.079E-06 5.344E-05 7.024E-07 -8.982E-07	-6.927E-05 6.177E-03 -8.139E-03 4.278E-04 3.438E-04 -3.353E-03 8.300E-06 6.793E-06	7.901E+01 -8.144E+01 -1.976E+00 4.177E-04 -8.139E-03 4.610E-02 -1.280E-02 -1.772E-04 1.106E-02 1.594E-04 -1.765E-04	-2.116E-04 4.278E-04 -1.280E-02 5.057E-02 3.991E-04 -1.930E-02 2.036E-04 -1.198E-04	-2.079E-06 3.438E-04 -1.772E-04 3.991E-04 7.314E-05 -6.182E-03 -4.732E-05 4.779E-05	7.576E+01 -4.159E+01 -1.950E+01 5.344E-05 -3.353E-03 1.106E-02 -1.930E-02 -6.182E-03 3.291E+01 1.191E-01 -1.443E-01	-4.413E-01 -6.732E-02 7.024E-07 8.300E-06 1.594E-04 2.036E-04 -4.732E-05 1.191E-01 2.039E-03 -1.652E-03	-8.982E-07 6.793E-06 -1.765E-04 -1.198E-04 4.779E-05 -1.443E-01 -1.652E-03 1.494E-03
β	-6.014E+01	6.295E+01	1.472E+00	-6.927E-05	6.177E-03	-8.139E-03	4.278E-04	3.438E-04	-3.353E-03	8.300E-06	6.793E-06
tc	7.150E-01	-7.300E-01	-1.523E-02	5.140E-06	-6.927E-05	4.177E-04	-2.116E-04	-2.079E-06	5.344E-05	7.024E-07	-8.982E-07
С	-1.199E+04	1.245E+04	1.716E+03	-1.523E-02	1.472E+00	-1.976E+00	7.284E-01	1.500E-01	-1.950E+01	-6.732E-02	7.983E-02
В	-6.581E+05	-6.581E+05 6.804E+05	1.245E+04	-7.300E-01 -1.523E-02	6.295E+01	-8.144E+01	1.903E+01	3.534E+00	4.159E+01	-4.413E-01	4.064E-01
Α	6.392E+05	-6.581E+05	-1.199E+04	7.150E-01	-6.014E+01 6.295E+01	7.901E+01	-2.133E+01	-3.401E+00 3.534E+00	7.576E+01	8.382E-01	-7.353E-01
	Α	В	S	tc	β	W	dφ	φar	α0	α1	α2

IBOVESPA (Brasil) – 1997

> Histograma e QQ-plot

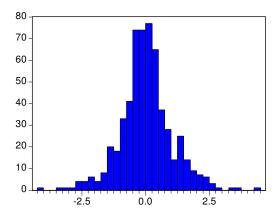
> Teste BDS

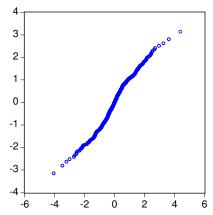
m\ε	0.5σ	1.0σ	1.5σ	2.0σ
2	0.83000	0.99720	0.85960	0.98520
3	0.86840	0.86360	0.85480	0.75560
4	0.96960	0.91760	0.86280	0.63200
5	0.47880	0.69000	0.64480	0.83640
6	0.36440	0.35400	0.40680	0.88800

p-valores bootstrapeados da estatística BDS, com 5000 repetições.

> Correlograma do resíduo padronizado

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- <u> </u>		1 0.072	0.072	1.9307	0.165
™ 1	ı <u>d</u> ı	2 -0.073	-0.078	3.9337	0.140
ı (ı	1(1	3 -0.027	-0.016	4.2179	0.239
1 (1		4 -0.028	-0.031	4.5236	0.340
r j u		5 0.013	0.014	4.5851	0.469
1 1	1(1	6 -0.003	-0.010	4.5877	0.598
۱ þ ۱	יום י	7 0.047	0.049	5.4367	0.607
1(1	[8 -0.020	-0.029	5.5913	0.693
1)1		9 0.023	0.035	5.7869	0.761
ι [ι	III	10 -0.049	-0.057	6.7210	0.751
1 (1	1(1	11 -0.035	-0.020	7.1895	0.784
1)1	1 1	12 0.014	0.008	7.2631	0.840
· þ i	'D	13 0.088	0.085	10.259	0.673
1 1	1(1	14 0.007	-0.013	10.279	0.742
1 ₫ 1	III	15 -0.064	-0.048	11.876	0.688
Q :	(16 -0.098	-0.093	15.660	0.477
ı [ı	[17 -0.044	-0.028	16.437	0.493
I 🔳		18 0.115	0.105	21.664	0.247
, p i		19 0.079	0.058	24.108	0.192
۱) ۱۱	' '	20 0.038	0.032	24.675	0.214


Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1 1		1 0.007	0.007	0.0167	0.897
ı () ı	101	2 -0.035	-0.035	0.4870	0.784
ı (lı	1(1)	3 -0.030	-0.029	0.8199	0.845
· 🗖		4 0.105	0.105	5.0498	0.282
ı j i		5 0.037	0.034	5.5670	0.351
ı [ı	u[·	6 -0.070	-0.065	7.4497	0.281
(-	ı d ı	7 -0.087	-0.079	10.360	0.169
ı j i	1 1	8 0.027	0.016	10.644	0.223
1(1	1(1)	9 -0.017	-0.033	10.760	0.293
ι [ι	1(1)	10 -0.046	-0.038	11.580	0.314
ι (ι	1(1	11 -0.032	-0.011	11.989	0.364
ı(ı	1(1	12 -0.011	-0.017	12.035	0.443
r j t	1 1	13 0.009	-0.002	12.066	0.522
ı l ı	ı d ı	14 -0.066	-0.063	13.748	0.469
1)1		15 0.022	0.030	13.942	0.530
ı b ı	<u> </u>	16 0.066	0.059	15.629	0.479
ı(lı	1(1)	17 -0.020	-0.032	15.787	0.539
ı (lı	I(18 -0.052	-0.042	16.863	0.533
· 🗖		19 0.104	0.107	21.149	0.329
1	I	20 0.174	0.154	33.162	0.032


PUC-Rio - Certificação Digital Nº 0310410/CA

· ·	Α	В	၁	tc	β	W	ф	ф	α0	α1	α2
A	8000400	-7855400	-208030	7.83900	-228.44	106.550	6.63730	-5.78290	7316.80	4.22070	-3.40810
В	-7855400	7724000	198640	-7.62420	223.45	-102.970	-7.66050	5.73270	5.73270 -6306.90 4.15760		3.27050
ပ	-208030	198640	20176	-0.19393	6.98150	-3.34000	3.33680	-0.33150 -1594.70 -0.31157 0.41653	-1594.70	-0.31157	0.41653
tc	7.83900	-7.62420	-0.19393	0.00005	-0.00018	0.00034	-0.00062	0.00000 -0.00450	-0.00450	0.000000	0.0000.0
8	-228.440	223.450	6.98150	-0.00018	0.00686	-0.00302	-0.00158	0.00014	0.00014 -0.33278 -0.00014 0.00013	-0.00014	0.00013
W	106.55000	-102.97000 -3.340	-3.34000	0.00034	-0.00302	0.02332	0.00556	0.00007	0.00007 -0.22112 -0.00002	-0.00002	0.00005
9-	6.63730	05099'2-	3.33680	-0.00062	-0.00158	0.00556	0.11515	0.00044	0.00044 -0.00387	0.00085	-0.00080
Ь	-5.78290	5.73270	-0.33150	0.0000.0	0.00014	0.00007	0.00044	0.00034	0.00034 0.13707	0.00002	-0.00002
α0	7316.80	06'9089-	-1594.70	-0.00450	-0.33278	-0.22112	-0.00387	0.13707	0.13707 11536.0	0.63258 -1.87530	-1.87530
α1	4.22070	-4.15760	-0.31157	0.00000	-0.00014	-0.00002	0.00085	0.00002	0.00002 0.63258	0.00000	-0.00062
α2	-3.40810	3.27050	0.41653	0.0000.0	0.00013	0.00005	-0.00080 -0.00002 -1.87530 -0.00062	-0.00002	-1.87530	-0.00062	0.00075

MERVAL (Argentina) – 2004

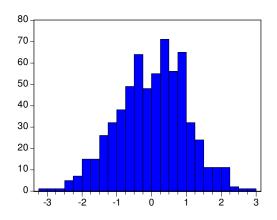
> Histograma e QQ-plot

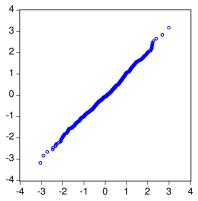
> Teste BDS

m\ε	0.5σ	1.0σ	1.5σ	2.0σ
2	0.23040	0.24560	0.28600	0.91760
3	0.79440	0.67920	0.85440	0.45480
4	0.98400	0.80400	0.95000	0.42240
5	0.69680	0.89520	0.80920	0.53720
6	0.55880	0.83720	0.69680	0.59320

p-valores bootstrapeados da estatística BDS, com 5000 repetições.

> Correlograma do resíduo padronizado


	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-	ı þ	ıb	1	0.060	0.060	2.1160	0.146
	1 1	1 1	2	-0.003	-0.007	2.1226	0.346
	1 1		3	0.000	0.001	2.1226	0.547
	ı j jı		4	0.034	0.034	2.7983	0.592
	ıþı		5	0.034	0.030	3.4883	0.625
	ı þi	• D	6	0.072	0.069	6.5730	0.362
	ı İ	' 	7	0.104	0.097	12.920	0.074
	1 1	1 1	8	-0.008	-0.019	12.958	0.113
	ı l ı	1 1	9	-0.009	-0.008	13.010	0.162
	ı(tı	1 1	10	-0.015	-0.020	13.142	0.216
	ıþı		11	0.034	0.025	13.822	0.243
	ı j ı	1	12	0.023	0.010	14.130	0.292
	ı l ı	III	13	-0.015	-0.029	14.270	0.355
	1 1	' '	14	0.002	-0.002	14.271	0.430
	ıψι	'¶'	15	-0.035	-0.033	15.014	0.450
	q٠	¶'	16	-0.058	-0.054	17.002	0.385
	ı¶ı	'¶'	17	-0.045	-0.041	18.199	0.376
	ı¶ı	["[l			-0.049		0.371
	1 1	' '	ı			19.382	0.433
	111		20	-0.018	-0.008	19.573	0.485


Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
10		1	0.039	0.039	0.8705	0.351
id.	'd'	3	0.059 -0.038	0.058 -0.042	2.9101 3.7399	0.233 0.291
'L	1 11		-0.040		4.6555	0.325
1 1 1		5 6	0.117 -0.048	0.125	12.632 13.979	0.027
illi	į į	7	-0.030		14.510	0.043
9	4.	_	-0.047		15.805	0.045
		10	-0.019 0.018	0.005	16.010 16.203	0.067
ıψ	l ili	11	-0.025	0.002	16.585	0.121
.)]1	<u>]</u> !		0.020	0.030	16.993	0.150
111			-0.028 -0.009	-0.023	17.464 17.510	0.179
ւիլ		15	0.030	0.029	18.044	0.260
1.	'] '	16	0.029	0.033	18.532 18.627	0.294
3	"	18	0.013	0.019	18.700	0.350
ı d ı	101	19	-0.046	-0.039	19.985	0.395
1 1	' '	20	0.008	0.002	20.023	0.456

	Α	В	၁	tc	β	W	9-	Ь	α0	α1	α2
A	29792.00	-30503.00	341,6000	0.5270	-13.2360	18.2680	-15.8290	-0.3749	-0.3749 -13.3940	0.0014	0.1157
В	-30503.00	31448.00	-378.7900	-0.5239	13.8060	-18,1450	16.4220	0.3623	10.3220	-0.0236 -0.0759	-0.0759
ပ	341,6000	-378.7900	182,4000	0.0163	-0.0387	0.9541	0.2233	-0.0201	1.0988	0.0091	-0.0157
tc	0.5270	-0.5239	0.0163	0.0001	-0.0002	0.0024	-0.0012	0.0000	900000	0.000.0	0.000.0
В	-13.2360	13.8060	-0.0387	-0.0002	0.0070	-0.0052	0.0103	0.0001	0.0052	0.000.0	0.0000
W	18.2680	-18.1450	0.9541	0.0024	-0.0052	0.1313	-0.0099	0.0000	0.0364	0.0001	-0.0003
9-	-15.8290	16.4220	0.2233	-0.0012	0.0103	6600'0-	0.1469	-0.0002	6800'0-	0.000.0	0.0001
Ь	-0.3749	0.3623	-0.0201	0.0000	0.0001	00000'0	-0.0002	0.0002	0.0038	0.000.0	0.0000
α0	-13.3940	10.3220	1.0988	0.0006	0.0052	0.0364	-0.0089	0.0038	3.6580	0.0195	-0.0401
a1	0.0014	-0.0236	0.0091	0.0000	0.0000	0.0001	0.000.0	0.0000	0.0195	0.0005	-0.0005
α2	0.1157	-0.0759	-0.0157	0.0000	0.0000	-0.0003	0.0001	0.0000	-0.0401	-0.0005	0.0007

• FTSE100 (Londres) - 1987

Histograma e QQ-plot

Teste BDS

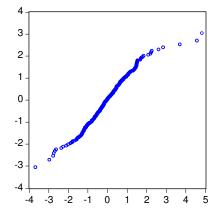
m\ε	0.5σ	1.0σ	1.5σ	2.0σ
2	0.304	0.743	0.648	0.909
3	0.537	0.870	0.581	0.978
4	0.439	0.499	0.291	0.659
5	0.925	0.760	0.562	0.935
6	0.390	0.574	0.549	0.931

p-valores bootstrapeados da estatística BDS, com 5000 repetições.

> Correlograma do resíduo padronizado

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
•	ı þ	l ib	1	0.068	0.068	2.9622	0.085
	ı j ı	l ili	2	0.019	0.015	3.2070	0.201
	ı ı		3	0.006	0.003	3.2273	0.358
	ı l ı	l ili	4	0.014	0.013	3.3546	0.500
	ılı —	I I	5	-0.020	-0.022	3.6222	0.605
	1 1		6	0.000	0.002	3.6224	0.728
	ıþ	·)	7	0.054	0.054	5.4948	0.600
	1 1	10	8	-0.003	-0.011	5.5028	0.703
	ı j ı	' 	9	0.091	0.092	10.943	0.280
	ıβ	i ji	10	0.070	0.058	14.114	0.168
	ıþι	1 1	11	0.023	0.010	14.454	0.209
	(l∙	(l)	12	-0.049	-0.051	16.005	0.191
	ı[lı	u[ı		-0.030		16.585	0.219
	ıþι	ļ iļi	14	0.019	0.023	16.812	0.266
	(l	(l)	15	-0.044	-0.043	18.085	0.258
	q٠	[l	16	-0.071	-0.075	21.390	0.164
	·ψ	ļ iļi	17	0.014	0.019	21.524	0.204
	Ψ.	III	18	-0.018		21.740	0.244
	יווי	' 1	19		0.067	24.591	0.174
	ıþı	1 1	20	0.029	0.017	25.140	0.196

Autocorrelation	Partial Correlation	A	0	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	1 -0. 2 -0. 3 -0. 4 0. 5 -0. 6 0. 7 -0. 8 0. 9 0. 10 0. 11 -0. 12 -0. 13 0. 14 -0. 15 -0.	006 026 062 095 072 044 001 032 089 062 034 020 051 012	-0.006 -0.026 -0.062 0.094 -0.076 0.046 0.007 0.017 0.111 0.050 -0.020 -0.011 0.042 -0.016 -0.005	0.0227 0.4637 2.9374 8.8431 12.229 13.508 13.509 14.191 19.339 21.844 22.611 22.886 24.581 24.678 24.743	0.880 0.793 0.401 0.065 0.032 0.036 0.061 0.077 0.022 0.016 0.020 0.029 0.028 0.038 0.054
4 4 1 0		17 -0. 18 -0. 19 0.	002 040 033	-0.090 -0.020 -0.050 0.007 -0.037	29.419 29.422 30.506 31.224 32.858	0.021 0.031 0.033 0.038 0.035


PUC-Rio - Certificação Digital Nº 0310410/CA

	Α	В	၁	tc	β	W	ф	Ь	α0	α1	α2
Α	720210.00	-736610.00 -168	-1681,0000	6.5184	-121.2100	-121.2100 199.3100 -142.5100 -10.7090 -461.1500 -3.9807	-142,5100	-10.7090	461,1500	7086.6-	6.7075
В	-736610.00	-736610.00 753700.00	1795.8000	-6.6452	124,1200	124,1200 -202,7800	145.9800	10.9590	472.0300	4.0843	-6.8723
ပ	-1681.0000	1795.8000	219.6100	-0.0153	0.2585	-0.5989	0.3753	6200.0-	-2.6534	-0.0302	0.0481
tc	6.5184	-6.6452	-0.0153	0.0001	-0.0011	0.0032	-0.0015	-0.0001	-0.0045	0.000.0	0.0001
ß	-121.2100	124.1200	0.2585	-0.0011	0.0207	-0.0316	0.0246	0.0018	0.0783	0.0007 -0.0011	-0.0011
W	199.3100	-202.7800	-0.5989	0.0032	-0.0316	0.1494	-0.0264	-0.0029	-0.1381	-0.0011	0.0020
9	-142.5100	145.9800	0.3753	-0.0015	0.0246	-0.0264	0.1051	0.0019	0.0948	900000	-0.0012
р	-10.7090	10.9590	-0.0079	-0.0001	0.0018	-0.0029	0.0019	0.0003	2900.0	0.000.0	-0.0001
α0	461,1500	472.0300	-2.6534	-0.0045	0.0783	-0.1381	0.0948	2900'0	5.3438	0.0325	0.0325 -0.0648
α1	-3.9807	4.0843	-0.0302	0.0000	0.0007	-0.0011	0.0006	0.000.0	0.0325	0.0007	-0.0008
07	6.7075	-6.8723	0.0481	0.0001	-0.0011	0.0020	-0.0012	10000'0-	-0.0648	8000.0-	0.0012

• INDIA BSE NATIONAL (Índia) – 2000

> Histograma e QQ-plot

Correlograma do resíduo padronizado

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı b ı		1	0.031	0.031	0.4109	0.522
ı j i	<u> </u>	2	0.048	0.047	1.3985	0.497
1 1		3	0.003	0.001	1.4034	0.705
1 1	1 1	4	0.003	0.001	1.4071	0.843
ı j i	<u> </u>	5	0.055	0.055	2.7440	0.739
□ I ·	[[·	6	-0.107	-0.111	7.7643	0.256
ı(tı	1(1	7	-0.010	-0.008	7.8082	0.350
ı(tı	1 1	8	-0.014	-0.003	7.8958	0.444
1 1	i i	9	0.007	0.009	7.9190	0.542
ı İ D	- b	10	0.062	0.061	9.6410	0.473
1)1		11	0.020	0.028	9.8094	0.548
ı(tı	([12	-0.011	-0.030	9.8627	0.628
1 1		13	0.005	0.003	9.8733	0.704
ı(tı	10	14	-0.015	-0.018	9.9764	0.764
ı¢ι	di	15	-0.045	-0.052	10.879	0.761
□ i	d +	16	-0.084	-0.070	14.018	0.597
ı(tı	i(i	17	-0.037	-0.020	14.648	0.621
ı¢ι	([18	-0.043	-0.038	15.472	0.629
ıdı	d -	19	-0.046	-0.039	16.436	0.628
ılı	l di	20	-0 020	-0 015	16 619	0 678

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- <u>i</u> l	'P	1	0.088	0.088	3.3637	0.067
' Di	ייף ו	2	0.072	0.065	5.6337	0.060
1 [] 1	"[]'	3	-0.031	-0.043	6.0465	0.109
1 1		4	-0.003	-0.002	6.0517	0.195
ı j ı	1 1	5	0.013	0.019	6.1270	0.294
ı <u>ا</u>	' 	6	0.094	0.092	10.029	0.123
1 1	1(1	7	-0.002	-0.021	10.031	0.187
1 1	1(1	8	0.001	-0.010	10.032	0.263
ı¢ι	10 1	9	-0.042	-0.033	10.794	0.290
ı ı	i i	10	0.004	0.012	10.802	0.373
ı(tı	1(1)	11	-0.025	-0.025	11.085	0.436
ı(tı	10 1	12	-0.025	-0.034	11.359	0.498
1 1	1 1	13	-0.008	0.003	11.384	0.579
ıdı	d	14	-0.054	-0.051	12.683	0.552
ı j a	ib	15	0.061	0.077	14.336	0.500
ı l ı	ı[ı	16	-0.018	-0.025	14.473	0.563
ı j ı	1 1	17	0.029	0.026	14.857	0.606
ılı	1 1	18	-0.008	-0.004	14.888	0.670
ıdı	l di		-0.053		16.161	0.647
بآر	']ı	20	0.005	0.025	16.174	0.706

	Α	В	0	tc	β	W	٥	Ь	α0	α1	α2
A	140800.00	-141960.00	798.0900	0.1754	-9.4025	31,3630	4.4667	-0.2015	-0.1114	-0.0681	0.0491
В	-141960.00	144680.00	-843.0700	-0.1743	9.3837	-33.2350	-12.1590	0.0774	0.2271	0.1244	-0.1010
ပ	798.0900	-843.0700	398.0100	0.0025	-0.0593	0.0250	-1.0036	0.0366	-0.0577	-0.0175	0.0166
tc	0.1754	-0.1743	0.0025	0.00001	0.000.0	0.0007	-0.0002	0.0000	0.0000	000000	0.000.0
8	-9.4025	9.3837	6650.0-	0.0000	0.0009	-0.0008	0.0012	0.0001	0.0001	00000'0	0.000.0
W	31.3630	-33.2350	0.0250	0.0007	-0.0008	0.1592	0.1597	-0.0002	-0.0002	7000.0-	0.0002
9-	4.4667	-12.1590	-1.0036	-0.0002	0.0012	0.1597	0.7752	-0.0012	-0.0007	6000'0-	0.0008
Ь	-0.2015	0.0774	99800	0.0000	0.0001	-0.0002	-0.0012	0.0002	0.0000	000000	0.000.0
α0	-0.1114	0.2271	2250.0-	0.0000	0.0001	-0.0002	20000'0-	0.0000	0.0379	2000.0	-0.0003
α1	-0.0681	0.1244	-0.0175	0.0000	0.0000	-0.0002	-0.0009	0.0000	0.0002	0.0001	-0.0001
α2	0.0491	-0.1010	0.0166	0.0000	0.0000	0.0002	0.0008	0.0000	-0.0003	-0.0001	0.0001