Pontifícia Universidade Católica DO RIO DE JANEIRO

Frank Chaviano Pruzaesky

Análise de um Sistema de Produção Simultânea de Eletricidade, Frio e Calor

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

> Orientadores: José Alberto dos Reis Parise Sérgio Leal Braga José Viriato Coelho Vargas

> > Rio de Janeiro, 25 de Agosto de 2005

Frank Chaviano Pruzaesky

Análise de um Sistema de Produção Simultânea de Eletricidade, Frio e Calor

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. José Alberto dos Reis Parise Orientador Pontifícia Universidade Católica de Rio de Janeiro

> Prof. Sérgio Leal Braga Co-Orientador Pontifícia Universidade Católica de Rio de Janeiro

> > Prof. José Viriato Coelho Vargas Co-Orientador Universidade Federal do Paraná

Prof. Marcos Sebastião de Paula Gomez Pontifícia Universidade Católica de Rio de Janeiro

Prof. Alcir de Faro Orlando Pontifícia Universidade Católica de Rio de Janeiro

> Prof. Hélcio Rangel Barreto Orlande COPPE/UFRJ

Prof. Carlos Eduardo Reuther de Siqueira Universidade Católica de Petrópolis

> Profa. Gisele Maria Ribeiro Vieira Universidade Católica de Petrópolis

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 25 de Agosto de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Frank Chaviano Pruzaesky

É Engenheiro Mecânico formado pela Faculdade de Engenharia Mecânica do ISPJAE (*Instituto Superior Politécnico "José Antonio Echeverría"*, La Habana, Cuba) e Mestre em Engenharia Mecânica na Área de Termociências pelo Departamento de Engenharia Mecânica da Pontifícia Universidade Católica do Rio de Janeiro. Atua nas áreas de energia e refrigeração.

Ficha Catalográfica

Pruzaesky, Frank Chaviano

Análise de um sistema de produção simultânea de eletricidade, frio e calor / Frank Chaviano Pruzaesky ; orientadores: José Alberto dos Reis Parise, Sérgio Leal Braga, José Viriato Coelho Vargas. – Rio de Janeiro : PUC, Departamento de Engenharia Mecânica, 2005.

286 f.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

 Engenharia mecânica – Teses. 2. Trigeração.
Cogeração. 4. Motor de combustão interna. 5. Motor bicombustível. 6. Bomba de calor. I. Parise, José Alberto dos Reis. II. Braga, Sérgio Leal. III. Vargas, José Viriato Coelho. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD:621

PUC-Rio - Certificação Digital Nº 0024970/CA

À Digna, más de cien palabras, más de cien motivos...

Agradecimentos

À minha família que sempre está do meu lado: À minha mãe, sem palavras. Ao meu padrasto, meus irmãos e meu pai, pelo apoio e carinho de sempre. À Niurka e Isabel, pelo carinho e incentivo. Às minhas tias, tios e primos, todos.

Aos meus amigos de *"Los Años Duros"*: Noli, Aniura, Evelio, Alejandro, Carlos, Amílcar, Raúl, Vilches, Caro, Jorge Milanés e família.

Aos meus amigos dos *"Tempos Modernos"*: Daniel, Ysrael e Marcinha, Danays, Vlado, Mauricio e Mariela, Epifanio, Camilo, Paulita, Sebastián e Karina, Mónica, Bruno, Gipsy, Maurício, Carlo, Mariana e Natacha, Bruna e Debbie. Ao Michel e à Fafá. Ao Jaime. À Gaúchada: Alexandre, Fernanda, Macarthy, Marcos, Fernando, Márcia. Ao Aldo. À Ranena.

Ao meu Orientador, Parise, pelo ensinamento, ajuda, incentivo, paciência e pelo apoio de sempre. Aos meus Co-Orientadores, Sérgio e Vargas, pelo apoio e incentivo.

Ao Dr Pablo Roque e aos professores da banca pelos conselhos e úteis sugestões para a elaboração do documento final.

Aos meus amigos do Laboratório de Termociências, do DEM, do ITUC e da PUC-Rio: Lourenço, Eduardo, Elizabet, José, Luis, Hugo, Melisa. À Juliana e a Jubs, Deborah, Thomas, Evemero, Gustavo, João, Ricardo, Carol e Ciça. Ao André, Roney, Erick, Edson. Ao Samuel, Joel, Mao, Yaneth, Teresa, Sygifredo, David, Milena. À Márcia, Rosely, Christiano, Carlúcio e Leninaldo, Marcos, Fada e Betty. À Vera, Eliane e Carmen. Ao "Gemada", Wagner, Pascoal, António Carlos. Aos Professores do Departamento de Engenharia Mecânica da PUC-Rio.

À Aniura, a Danays e a Iliana pelas mudanças.

À Fernanda pela amizade, apoio e carinho.

Ao CNPq e à FAPERJ pelo apoio financeiro.

Resumo

Pruzaesky, F.C.; Parise, J. A. R.; Braga, S. L.; Vargas, J. V. C. **Análise de um Sistema de Produção Simultânea de Eletricidade, Frio e Calor.** Rio de Janeiro, 2005. 286p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

A produção simultânea de energia elétrica, calor e frio, a partir da queima de combustível primário (trigeração), pode se mostrar como estratégia promissora do ponto de vista energético e de projeto, principalmente em indústrias como a química e a de alimentos. No presente trabalho descreve-se o estudo experimental de um sistema de produção de água gelada ("chiller") com compressor hermético acionado eletricamente. Um motor a combustão interna, do tipo Diesel, foi convertido para operar com gás natural veicular (Diesel-gás) e aciona um gerador de eletricidade que supre a energia elétrica necessária ao funcionamento do "chiller" e ao atendimento de demanda elétrica préestabelecida. O resultante sistema de trigeração é, portanto, composto por dois sub-sistemas: a bomba de calor ("chiller") e o conjunto motorgerador. Calor de rejeito, do condensador do "chiller" e do sistema de arrefecimento e gases de exaustão do motor, é recuperado para a produção de água quente. O sistema é analisado à luz da 1ª e 2ª leis da Termodinâmica. As razões entre as demandas de frio, calor e eletricidade, as temperaturas de evaporação e de condensação da bomba de calor, e a razão de substituição de óleo Diesel por gás natural veicular são os principais parâmetros de controle dos resultados apresentados. Determinou-se, para o sistema em questão, uma taxa de substituição energética ótima do óleo Diesel por GNV de aproximadamente 25%, com uma economia de 11% a 15% (para geração de potência elétrica acima de 4,0 kW), fundamentada na diferença de preços entre os dois combustíveis e numa melhora do rendimento do motor para estas

condições de operação. Obteve-se a contribuição percentual de cada um dos produtos energéticos (frio, calor e eletricidade), em função do consumo de combustível, para as diferentes potências testadas, em função da taxa de substituição energética do óleo Diesel por *GNV*. Determinou-se, experimentalmente, a vazão de água nos diferentes componentes, para a qual se obtém uma máxima eficiência do sistema, quando analisado do ponto de vista exergético.

Palavras-chave

Trigeração, Cogeração, Motor de combustão interna, Motor bi-combustível, Bomba de calor.

Abstract

Pruzaesky, F.C.; Parise, J. A. R.; Braga, S. L.; Vargas, J. V. C. Analysis of a System for the Simultaneous Production of Electrical Energy, Heat and Cold. Rio de Janeiro, 2005. 286p. DSc. Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The simultaneous production of electric energy, heat and cooling capacity from the primary fuel burning on a heat engine (trigeneration) can emerge as a promising strategy, from the energy and project points of view, mostly, in food and chemistry industries. The present work describes the experimental study of a vapor compression system for chilled water production. A Diesel internal combustion engine was converted to operate with natural gas (Diesel-gas) and drives an electric generator that supplies the necessary electric energy for the chiller's functioning and to attend the pre-established electric demand. The resultant system of trigeneration is, therefore, composed of two subsystems: the heat pump ("chiller") and the engine-generator group. Heat rejected from the condenser of "chiller" and from the cooling system and exhaust gases of the engine, is recovered for hot water production. The system is analyzed under the light of first and second laws of the Thermodynamics. The ratio between the cooling, heating and electricity demands, the temperatures of evaporation and condensation of the heat pump, and the Diesel-natural gas substitution ratio are main parameters of control of the presented results. The percentile contribution of cold, heat and electricity (on energetic fuel consumption basis), for the different electric energy generation rates, was obtained as a function of the energy substitution rate of the Diesel oil for natural gas. An optimal energy substitution rate of Diesel oil for natural gas of approximately 25% was determined with an economy rated between 11% and 15% (for electric energy generation rates above 4,0 kW), based both on the difference between prices of the two fuels and on the engine's

performance improvement for these operational conditions. An optimum water flow rate, from the exergetic point of view, was found for each component.

Keywords

Tri-generation, Co-generation, Internal combustion engine, Dual-fuel engine, Heat pump.

Sumário

Lista de Símbolos	23
1 Introdução	28
1.1. Cogeração	29
1.1.1. Cenário	32
1.1.2. Cogeração de eletricidade e aquecimento	34
1.1.3. Cogeração de eletricidade e refrigeração	37
1.2. Trigeração	38
1.2.1. Classificação dos sistemas de trigeração	40
1.2.2. Diferentes sistemas e capacidades	42
1.3. Critérios de avaliação e influência das políticas de incentivos	45
1.4. Perspectivas e tendências	47
1.5. Objetivos da tese	49
1.6. Conteúdo da tese	49
2 Aparato experimental	51
2.1. O sistema de trigeração	51
2.2. Descrição do sistema	54
2.2.1. O conjunto motor – gerador	54
2.2.2. O economizador (recuperador) de calor dos gases de exaustão	59
2.2.3. A bomba de calor	62
2.2.4. O painel de simulação e controle da carga elétrica	65
2.2.5. Tubulações	66
2.2.6. Isolamento térmico	66
2.3. Instrumentação da instalação experimental de trigeração	67
2.3.1. Instrumentação do motor	67
2.3.2. Medição de temperatura	71
2.3.3. Medição de pressão	72
2.3.4. Medição da potência elétrica	72

2.3.5. Aquisição de dados	73
2.3.6. Procedimento experimental	75
2.3.6.1. Planificação e objetivo dos testes	78
2.3.7. Procedimento de processamento e redução dos dados	80
3 Análise termodinâmica	82
3.1. Análise energética – 1ª lei da termodinâmica	82
3.1.1. Subsistema motor – gerador	84
3.1.1.1. Grupo moto – gerador	84
3.1.1.2. Arrefecimento do motor	87
3.1.1.3. Recuperação dos Gases (inclui análise de queima do Diese	e da
mistura bi-combustível)	87
3.1.2. Subsistema bomba de calor	93
3.1.2.1. Compressor	94
3.1.2.2. Condensador	95
3.1.2.3. Válvula de expansão	96
3.1.2.4. Evaporador	97
3.1.2.5. COP de refrigeração e de aquecimento	98
3.1.2.6. Outros componentes do sistema	99
3.1.3. Análise de eficiência	102
3.1.3.1. Razão de Conversão de Energia – Cogeração	103
3.1.3.2. Razão de Conversão de Energia – Trigeração	107
3.2. Análise exergética – 2ª lei	112
3.2.1. Sistema Motor – Gerador	116
3.2.1.1. Grupo moto – gerador	116
3.2.1.2. Arrefecimento do Motor	117
3.2.1.3. Recuperação do calor dos Gases de exaustão	118
3.2.2. Bomba de Calor	118
3.2.2.1. Compressor	119
3.2.2.2. Condensador	120
3.2.2.3. Válvula de Expansão	121
3.2.2.4. Evaporador	122
3.2.2.5. Eficiência exergética de refrigeração e de aquecimento	123

3.2.3. Análise de Eficiência do sistema	124
3.2.3.1. Eficiência exergética – Cogeração	125
3.2.3.2. Eficiência exergética – Trigeração	125

4 Redução de dados e análise da propagação das incertezas das medio	ções
1	127
4.1. Grupo Motor - Gerador e recuperação de calor dos gases	de
exaustão 1	128
4.1.1. Recuperação de calor dos gases de exaustão no economizador 1	134
4.1.2. Dados medidos e reduzidos no subsistema Motor – Gerador 1	35
4.2. Bomba de Calor1	135
4.2.1. Compressor 1	136
4.2.2. Condensador 1	138
4.2.3. Válvula termostática de expansão 1	40
4.2.4. Evaporador 1	40
4.2.5. Vazão de refrigerante 1	41
4.2.6. Dados medidos e reduzidos na bomba de calor 1	42
4.3. Eficiência dos componentes e do sistema 1	43
4.3.1. Eficiências da bomba de calor 1	43
4.3.1.1. Coeficientes de desempenho (<i>COP</i>) 1	143
4.3.1.2. Eficiência exergética (2ª lei) 1	44
4.3.2. Eficiência do sistema de cogeração 1	146
4.3.2.1. Eficiência Energética (1 ^a lei) 1	46
4.3.2.2. Eficiência exergética (2ª lei) 1	47
4.3.3. Eficiência do sistema de trigeração 1	48
4.3.3.1. Eficiência Energética (1 ^a lei) 1	48
4.3.3.2. Eficiência exergética (2ª lei) 1	48
5 Resultados 1	50
5.1. Bomba de calor1	50
5.1.1. Condições de operação 1	151
5.1.2. Compressor1	54
5.1.3. Condensador 1	59
5.1.4. Evaporador 1	61

5.1.5. Válvula de expansão termostática	165
5.1.6. Análise global de desempenho	167
5.1.6.1. 1ª lei da termodinâmica	168
5.1.6.2. 2ª lei da termodinâmica	171
5.2. Sistema (trigeração ou cogeração) operando com motor a Diesel j	puro
	175
5.2.1. Cogeração	175
5.2.2. Trigeração	180
5.3. Substituição do óleo Diesel por GNV	183
5.3.1. Cogeração	192
5.3.2. Trigeração	199
5.4. Análise econômica da substituição do óleo Diesel por GNV	207
5.5. Redução do fluxo de ar	211
5.6. Otimização Experimental em trigeração - 2ª lei da termodinâmica	222
6 Conclusões e recomendações para futuros trabalhos	232
Bibliografia	237
Apêndice A 1 – Programas para pré-processamento dos dados.	247
Apêndice A 2 – Dados reduzidos dos testes da bomba de calor	263
Apêndice A 3 – Dados reduzidos dos testes do sitema de trigeração co substituição de óleo Diesel	om 267
Apêndice A 4 – Dados reduzidos dos testes de otimização exergética	280

Lista de figuras

Figura 1 – Esquema de cogeração com ciclo Brayton (Hernández-Santollo e
Sánchez-Cifuentes, 2003) 35
Figura 2 – Esquema de cogeração com ciclo Diesel (Agnew et al., 1999) 37
Figura 3 - Planta de trigeração baseada no ciclo Brayton e um "chiller" de
absorção. Hernández-Santollo e Sánchez-Cifuentes (2003) 39
Figura 4 - Planta de trigeração na indústria de alimentos (esquema simplificado).
Bassols et al. (2002) 43
Figura 5 - Planta de trigeração com motor de combustão interna a gás natural
(esquema simplificado). Temir e Bilge (2004) 45
Figura 6 – Esquema da instalação experimental de trigeração52
Figura 7 - Conjunto motor-gerador54
Figura 8 - Esquema do sistema de subministro, medição da vazão volumétrica e
injeção do <i>GNV</i> 56
Figura 9 – Regulador de pressão do GNV56
Figura 10 – Sistema de alimentação e medição da vazão do óleo Diesel 58
Figura 11 – O economizador59
Figura 12 – Características geométricas da serpentina60
Figura 13 – Posicionamento do economizador, na descarga do motor61
Figura 14 – Bomba de calor instrumentada para experiência62
Figura 15 - Detalhamento esquemático da seção do sistema de trigeração,
correspondente à bomba de calor 64
Figura 16 – Painel de controle e simulação de carga elétrica65
Figura 17 - Sistema GO-POWER M-5000 para medição da vazão de ar no motor
68
Figura 18 - Representação esquemática do sistema de medição e injeção do óleo
Diesel 68
Figura 19 - Medidor de vazão do GNV tipo turbina acoplado ao regulador de
pressão do gás 70
Figura 20 - Representação esquemática da distribuição da energia no sistema de
trigeração 83

Figura 21 – Representação do motor	84
Figura 22 – Representação do gerador	86
Figura 23 – Representação do economizador	88
Figura 24 – Representação do compressor	94
Figura 25 – Representação do condensador	95
Figura 26 – Representação do evaporador	97
Figura 27 – Representação do aquecedor (carga térmica)	100
Figura 28 - Representação do tanque de armazenamento do circuito de ág	gua fria
	101
Figura 29 - Representação do tanque de armazenamento do circuito d	e água
quente	102
Figura 30 – Fluxo de exergia em um sistema	114
Figura 31 – Exemplo de Diagrama de Sankey	115
Figura 32 – Esquema de medição do conjunto motor – gerador	128
Figura 33 - Gráfico e ajuste de curva do calor específico a pressão constant	te do ar
	129
Figura 34 - Gráfico e ajuste de curva do calor específico a pressão const	ante da
água	131
Figura 35 - Gráfico e ajuste de curva da incerteza do calor específico a j	pressão
constante da água	132
Figura 36 – Gráfico e ajuste de curva da massa específica da água	133
Figura 37 – Esquema de medição do economizador	134
Figura 38 – Esquema de medição do compressor	136
Figura 39 – Influência das incertezas da temperatura e da pressão sobre a in	certeza
no cálculo da entalpia do refrigerante	137
Figura 40 – Esquema de medição do condensador	138
Figura 41 – Esquema de medição do evaporador	140
Figura 42 – Gráfico e ajuste de curva da entalpia específica da água	145
Figura 43 – Gráfico e ajuste de curva da entropia específica da água	145
Figura 44 – Gráfico e ajuste de curva da incerteza da exergia da água	146
Figura 45 - Faixa de variação das temperaturas de evaporação e condensad	ção nos
testes realizados	152
Figura 46 – Variação da temperatura ambiente ao longo dos testes	153

Figura 47 - Variação da temperatura de entrada da água no condensador ao longo
dos testes 153
Figura 48 - Variação da temperatura de entrada da água no evaporador, ao longo
dos testes 154
Figura 49 - Variação da vazão mássica de refrigerante com as temperaturas de
evaporação e de condensação 155
Figura 50 – Variação da vazão mássica de refrigerante com a razão de pressão 155
Figura 51 – Incerteza no cálculo da vazão de refrigerante156
Figura 52 - Variação da temperatura de descarga do compressor com as
temperaturas de evaporação e de condensação 156
Figura 53 - Variação da temperatura de descarga do compressor com a razão de
pressão 157
Figura 54 - Variação da eficiência isentrópica do compressor com as temperaturas
de evaporação e de condensação 157
Figura 55 - Variação da potência elétrica consumida com as temperaturas de
evaporação e de condensação 158
Figura 56 - Variação do trabalho específico do compressor com a razão de
pressão 159
Figura 57 - Variação da temperatura de saída da água do condensador com a
temperatura de evaporação 159
Figura 58 - Variação do grau de subresfriamento com a temperatura de
evaporação, para duas diferentes cargas de refrigerante 160
Figura 59 - Variação da taxa de rejeição de calor no condensador com as
temperaturas de evaporação e de condensação 161
Figura 60 - Variação da temperatura da água na saída do evaporador com a
temperatura de evaporação 161
Figura 61 - Variação da capacidade frigorífica da bomba de calor com as
temperaturas de evaporação e de condensação 162
Figura 62 - Variação do efeito refrigerante com as temperaturas de evaporação e
de condensação 163
Figura 63 - Variação do grau de superaquecimento à saída do evaporador com a
temperatura de evaporação 163

Figura 64 - Variação da queda de pressão no evaporador com a temperatura de
evaporação 164
Figura 65 – Relação entre a pressão e a temperatura de evaporação 164
Figura 66 - (a) Válvula de expansão termostática (Dossat, 1961); (b) balanço de
forças no diafragma da válvula 165
Figura 67 - Variação da característica da válvula com a temperatura de
evaporação 166
Figura 68 - Variação do grau de superaquecimento com a característica da válvula
(F_s/A) 167
Figura 69 - Variação do coeficiente de desempenho de refrigeração com as
temperaturas de evaporação e de condensação 168
Figura 70 - Variação do coeficiente de desempenho de refrigeração com a
diferença entre as temperaturas de evaporação e condensação 169
Figura 71 - Variação do coeficiente de desempenho de aquecimento com as
temperaturas de evaporação e de condensação 169
Figura 72 - Variação do coeficiente de desempenho de aquecimento com a
diferença entre as temperaturas de evaporação e condensação 170
Figura 73 - Taxa de destruição de exergia no compressor em função das
temperaturas de evaporação e de condensação e do grau de subresfriamento à
saída do condensador 171
Figura 74 – Variação da taxa de destruição de exergia no evaporador 172
Figura 75 – Variação da taxa de destruição de exergia na válvula de expansão 173
Figura 76 – Variação da taxa de destruição de exergia no condensador 173
Figura 77 - Variação da eficiência exergética da bomba de calor com a
temperatura de evaporação e condensação 174
Figura 78 – Temperatura de suprimento do óleo Diesel ao motor175
Figura 79 - Consumo de combustível (óleo Diesel) em função da potência elétrica
gerada 176
Figura 80 – Linha de Willan para uma rotação de 2100 rpm177
Figura 80 - Linha de Willan para uma rotação de 2100 rpm177Figura 81 - Balanço energético do motor, operando com óleo Diesel puro178
Figura 80 – Linha de Willan para uma rotação de 2100 rpm177Figura 81 – Balanço energético do motor, operando com óleo Diesel puro178Figura 82 – Razão de conversão de energia (recuperação total e caldeira auxiliar

Figura 83 - Eficiência exergética do sistema de cogeração operando com óleo
Diesel puro 179
Figura 84 - Taxa de variação da exergia da água de recuperação em cada
componente comparada à taxa de exergia do combustível 180
Figura 85 – Distribuição energética do sistema de trigeração180
Figura 86 - Razão de conversão de energia em função da potência elétrica
produzida 181
Figura 87 – Variação da eficiência exergética com a potência elétrica gerada 182
Figura 88 - Variação da exergia específica da água para cada componente em
função da potência elétrica gerada e da exergia do combustível 182
Figura 89 - Condições de operação cobertas na série de testes relativa à
substituição de óleo Diesel por gás natural em termos de α_{GNV} 183
Figura 90 - Condições de operação cobertas na série de testes relativa à
substituição de óleo Diesel por gás natural em termos de substituição
percentual mássica de óleo Diesel 184
Figura 91 - Condições de operação cobertas na série de testes relativa à
substituição de óleo Diesel por gás natural em termos da vazão mássica de
gás natural 185
Figura 92 – Percentual de substituição de óleo Diesel em função de α_{GNV} 185
Figura 93 – Razão de substituição de GNV em função da vazão mássica de GNV
186
Figura 94 – Temperatura de entrada do gás natural para as diferentes condições de
operação 186
Figura 95 – Temperatura de entrada do óleo Diesel para as diferentes condições de
operação 187
Figura 96 – Eficiência térmica do grupo motor – gerador em função de α_{GNV} 187
Figura 97 – <i>Linha de Willan</i> para o motor operando com gás e óleo Diesel 188
Figura 98 – Temperatura dos gases de exaustão189
Figura 99 - Variação da temperatura de saída da água de arrefecimento do motor
com a potência elétrica e a substituição do gás natural 190
Figura 100 - Energia quantificada no balanço energético do conjunto motor -
gerador 191

Figura 101 - Perdas não quantificadas no balanço energético do conjunto motor -
gerador 192
Figura 102 - Distribuição de energia no conjunto motor - gerador para uma
potência elétrica de 3,5 <i>kW</i> 193
Figura 103 - Distribuição de energia no conjunto motor - gerador para uma
potência elétrica de 4,5 <i>kW</i> 193
Figura 104 - Distribuição de energia no conjunto motor - gerador para uma
potência elétrica de 5,5 kW 194
Figura 105 - Distribuição de energia no conjunto motor - gerador para uma
potência elétrica de 7,5 <i>kW</i> 194
Figura 106 – Razão de potência em função de α_{GNV} 195
Figura 107 – Razão de conversão de energia em função de α_{GNV} 196
Figura 108 – Eficiência exergética em função de α_{GNV} 196
Figura 109 - Balanço de energia do sistema operando em modo de cogeração -
potência elétrica gerada: 4,5 <i>kW</i> 197
Figura 110 - Balanço de energia do sistema operando em modo de cogeração -
potência elétrica gerada: 7,5 <i>kW</i> 197
Figura 111 - Contabilidade de exergia do sistema operando em modo de
cogeração - potência elétrica gerada: 4,5 kW 198
Figura 112 - Contabilidade de exergia do sistema operando em modo de
cogeração - potência elétrica gerada: 7,5 kW 198
Figura 113 - Distribuição de energia no sistema de trigeração para uma potência
elétrica de $3,5 \ kW$ 199
Figura 114 - Distribuição de energia no sistema de trigeração para uma potência
elétrica de 4,5 <i>kW</i> 200
Figura 115 - Distribuição de energia no sistema de trigeração para uma potência
elétrica de 5,5 kW 200
Figura 116 - Distribuição de energia no sistema de trigeração para uma potência
elétrica de 7,5 kW 201
Figura 117 – Aproveitamento de energia em função de α_{GNV} 201
Figura 118 – Razão calor – frio do sistema 202
Figura 119 – Razão calor – potência elétrica do sistema 202

Figura 120 – Razão de conversão de energia em função de α_{GNV} 203
Figura 121 - Eficiência exergética do sistema de trigeração operando com óleo
Diesel e GNV 204
Figura 122 - Balanço de energia do sistema operando em modo de trigeração -
potência elétrica gerada: 4,5 <i>kW</i> 204
Figura 123 - Balanço de energia do sistema operando em modo de trigeração -
potência elétrica gerada: 7,5 <i>kW</i> 205
Figura 124 - Contabilidade de exergia do sistema operando em modo de
trigeração – potência elétrica gerada: $4,5 \ kW$ 206
Figura 125 - Contabilidade de exergia do sistema operando em modo de
trigeração – potência elétrica gerada: 7,5 <i>kW</i> 206
Figura 126 – Razão de custo de operação para potência elétrica de 3,5 <i>kW</i> 207
Figura 127 – Razão de custo de operação para potência elétrica de 4,5 kW 208
Figura 128 – Razão de custo de operação para potência elétrica de 5,5 <i>kW</i> 208
Figura 129 – Razão de custo de operação para potência elétrica de 7,5 <i>kW</i> 209
Figura 130 - Razão de custo de operação para R\$1,47 / kg GNV209
Figura 131 – Razão de custo de operação para R\$1,83 / kg GNV210
Figura 132 – Razão de custo de operação para R\$2,20 / kg GNV210
Figura 133 - Variação do coeficiente de substituição energética Diesel - gás com
a potência elétrica 211
Figura 134 – Variação da temperatura de entrada do GNV ao longo dos testes 212
Figura 135 - Variação da temperatura de entrada do óleo Diesel ao longo dos
testes 212
Figura 136 – Substituição mássica de óleo Diesel em função de α_{GNV} 213
Figura 137 – Substituição energética de óleo Diesel 213
Figura 138 – Variação do excesso de ar com α_{GNV} para diferentes níveis de
redução do fluxo de ar 214
Figura 139 – Distribuição de energia para 4,5 kW sem restrição no fluxo de ar 214
Figura 140 – Distribuição de energia para 4,5 kW com restrição de 17% no fluxo
de ar 215
Figura 141 – Distribuição de energia para 4,5 kW com restrição de 25% no fluxo
de ar 215

Figura 142 - Perdas não quantificadas no balanço de energia do conjunto motor -
gerador 216
Figura 143 - Energia quantificada no balanço de energia do conjunto motor -
gerador 216
Figura 144 - Perdas não quantificadas e substituição mássica de óleo Diesel em
função de α_{GNV} , sem restrição no fluxo de ar 217
Figura 145 - Perdas não quantificadas e substituição mássica de óleo Diesel em
função de α_{GNV} , com restrição de 17% no fluxo de ar 217
Figura 146 - Perdas não quantificadas e substituição mássica de óleo Diesel em
função de $\alpha_{_{GNV}}$, com restrição de 25% no fluxo de ar 218
Figura 147 – Eficiência térmica do conjunto motor – gerador para diferentes
níveis de redução de ar 218
Figura 148 - Razão de conversão de energia do sistema de trigeração para
diferentes níveis de redução de ar 219
Figura 149 - Eficiência exergética do sistema de trigeração para diferentes níveis
de redução de ar 220
Figura 150 - Razão de custo de operação para diferentes níveis de redução de an
(R\$ 1,47 / kg GNV) 220
Figura 151 - Razão de custo de operação para diferentes níveis de redução de an
(R\$ 1,83 / kg GNV) 221
Figura 152 - Razão de custo de operação para diferentes níveis de redução de an
(R\$ 2,20 / kg GNV) 221
Figura 153 – Variação da temperatura ambiente ao longo dos testes222
Figura 154 - Variação da temperatura de entrada da água no condensador ac
longo dos testes 223
Figura 155 - Variação da eficiência exergética com as vazões mássicas de água
no evaporador e no motor 224
Figura 156 - Variação da eficiência exergética com as vazões mássicas de água
no evaporador e no motor 224
Figura 157 - Variação da razão de conversão de energia com as vazões mássicas
de água, no evaporador e no motor 225
Figura 158 - Variação da razão de conversão de energia com as vazões mássicas
de água, no evaporador e no motor 226

- Figura 159 Variação da eficiência exergética com as vazões mássicas de água,no evaporador (extrapolada à vazão nula) e no motor227
- Figura 160 Variação da razão de conversão de energia com as vazões mássicas de água, no evaporador (extrapolada à vazão nula) e no motor 227
- Figura 161 Variação da eficiência exergética com as vazões mássicas de água,no evaporador e no motor, extrapoladas à vazão nula228
- Figura 162 Variação da eficiência exergética com as vazões mássicas de água, no evaporador e no motor, extrapoladas à vazão nula 229
- Figura 163 Variação da razão de conversão de energia com as vazões mássicas de água, no evaporador e no motor, extrapoladas à vazão nula 229
- Figura 164 Variação da razão de conversão de energia com as vazões mássicas de água, no evaporador e no motor, extrapoladas à vazão nula 230
- Figura 165 Variação da eficiência exergética do sistema de trigeração com as vazões mássicas de água, no evaporador e no motor, apresentando ponto ótimo 231

Lista de Símbolos

<i>C</i> :	(capacidade térmica) produto $\dot{m}c_p$ do fluido no trocador de
	calor (kW/K)
<i>C</i> :	fração mássica de carbono relativa à massa total de
	combustível (kg/kg_f)
c_p :	calor específico a pressão constante (kJ/kgK)
COP:	coeficientes de desempenho (-)
DFPU:	unidade de potência da mistura bi-combustível
<i>d</i> :	exergia destruída (kJ/kg)
Ė:	potência elétrica (kJ/kg)
ECR:	razão de conversão de energia (-)
e:	exergia específica (kJ/kg)
<i>G</i> :	quantidade total de mistura combustível fresca (kg/kg_f)
<i>H</i> :	fração mássica de hidrogênio relativa à massa total de
	combustível (kg/kg_f)
H _{inf} :	poder calorífico inferior equivalente (kW)
\dot{H}_{f} :	consumo energético equivalente de combustível (kW)
H_{f} :	poder calorífico inferior equivalente de combustível
	(kJ/kg)
H^*_{DF} :	poder calorífico inferior referido a uma DFPU (kW)
<i>h</i> :	entalpia específica (kJ/kg)
<i>I</i> :	intensidade da corrente elétrica (A)
<i>i</i> :	irreversibilidade do sistema (kJ/kg)
L:	exergia das perdas (kJ/kg)
<i>l</i> :	massa de ar (kg)

l_o :	massa teórica de ar necessária para a combustão de 1 kg de	
	combustível (kg)	
<i>m</i> :	massa (kg)	
<i>ṁ</i> :	vazão mássica (kg/s)	
n:	coeficiente de equivalência energética do combustível	
	secundário em relação ao primário (-)	
<i>n</i> %:	taxa de substituição do Diesel (-)	
<i>O</i> :	fração mássica de oxigênio relativa à massa total de	
	combustível (kg/kg_f)	
<i>P</i> :	potência (kW)	
<i>p</i> :	pressão (kPa)	
\dot{Q} :	taxa de transferência de calor (kW)	
<i>q</i> :	contribuição térmica do combustível em uma combustão	
	com dois combustíveis (-)	
<i>q</i> :	calor por unidade de massa (kJ/kg)	
<i>R</i> :	relação de demandas da instalação (-)	
RP%	razão de potência ou contribuição energética de um	
	componente do sistema	
R _{CH} :	razão entre a demanda de calor e de frio em um sistema de	
	trigeração (-)	
R_{EC} :	razão entre a demanda elétrica e de frio em um sistema de	
	trigeração (-)	
<i>R_{EH}</i> :	razão entre a demanda elétrica e de calor em um sistema de	
	cogeração (-)	
<i>s</i> :	entropia específica (kJ/kgK)	
<i>T</i> :	temperatura (K)	
<i>t</i> :	tempo (s)	
<i>U</i> :	energia interna (kJ)	
UA:	coeficiente global de transferência de calor (kW/K)	
<i>u</i> :	energia interna específica (kJ/kg)	
V:	tensão elétrica (Volt)	
v:	volume específico (m ³ /kg)	
\dot{W}_{CP} :	taxa de trabalho de compressão (kW)	

Símbolos Gregos:

α:	coeficiente de excesso de ar (-)
Г:	coeficiente de desempenho global de um componente
Δe	variação de exergia especifica (kJ/kg)
ΔT	diferença de temperaturas (K)
ΔT_{saq} :	grau de superaquecimento do evaporador (K)
$\Delta T_{sub:}$	grau de subresfriamento do condensador (K)
arphi :	ângulo de defasagem (voltagem × corrente)
η:	eficiência
ε:	efetividade (trocadores de calor)

Subscritos:

AQ:	aquecedor (carga térmica)
<i>a</i> :	ar
ao:	ambiente
aqc:	referente ao aquecimento
CA:	caldeira auxiliar
CD:	condensador
CP:	compressor
cogen:	cogeração
comp:	compressão
cond:	condensação
DEx:	dispositivo de expansão
Df:	combustível óleo Diesel
Diesel:	óleo Diesel
dem:	demanda
dual fuel:	óleo Diesel + gás natural
EC:	economizador
EG:	motor
EV:	evaporador
ele:	elétrico
evap:	evaporador

<i>f</i> :	combustível
fi:	referente ao combustível no ponto "i"
GE:	gerador elétrico
GNV:	gás natural veicular
<i>g</i> :	gases de exaustão
gi:	referente aos gases de exaustão no ponto "i"
H_2O :	água
<i>I</i> :	referente às analises da 1ª Lei da Termodinâmica
II:	referente às analises da 2ª Lei da Termodinâmica
<i>k</i> :	cinética
<i>k</i> :	condensação
<i>l</i> :	perdas
<i>l</i> :	evaporação
load:	demanda
min:	mínimo (trocadores de calor)
N_2 :	nitrogênio
NFS:	sistema estacionário
<i>O</i> :	ambiente
<i>O</i> ₂ :	oxigênio
PF:	combustível primário
<i>p</i> :	propriedade a pressão constante
<i>p</i> :	potencial
quim:	química
r:	refrigerante (R-22)
rec:	recuperado
ref:	referente à refrigeração
ri:	referente ao refrigerante no ponto <i>i</i> do esquema da figura 15
SF:	combustível secundário
saq:	superaquecimento
simple fuel:	somente óleo Diesel
TF:	tanque frio
TQ:	tanque quente
TR:	transmissão motor-gerador
th:	teórico

trigen:	trigeração
v:	propriedade a volume constante
<i>w</i> :	água
wa:	água quente no aquecedor (carga térmica)
wc:	água do condensador
wd:	água para dreno do tanque quente
we:	água do evaporador
wi:	referente à água no ponto "i" correspondente
wm:	água de arrefecimento do motor
wr:	água de reposição do tanque quente
<i>x</i> :	referente a um componente ou sistema genérico