Gladys Adriana Quintero Rojas

Polarização Eletrotérmica de Vidros e Fibras Ópticas

TESE DE DOUTORADO

DEPARTAMENTO DE FÍSICA

Programa de Pós-Graduação em Física

Rio de Janeiro Agosto de 2005

Gladys Adriana Quintero Rojas

Polarização Eletrotérmica de Vidros e Fibras Ópticas

TESE DE DOUTORADO

Tese apresentada ao Programa de Pós-Graduação em Física da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Física.

Professores Orientadores:

Isabel Cristina dos Santos Carvalho, Dr. Departamento de Física/PUC-Rio

Paula Medeiros Proença de Gouvêa, Ph.D. Programa de Pós-graduação em Metrologia (PósMQI) /PUC-Rio

Rio de Janeiro Agosto de 2005

Gladys Adriana Quintero Rojas Polarização Eletrotérmica de Vidros e Fibras Ópticas

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Física do Departamento de Física do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Isabel Cristina dos Santos Carvalho Orientadora Departamento de Física – PUC-Rio

Profa . Paula Medeiros Proença de Gouvêa Co-Orientadora

PósMQI – PUC-Rio

Prof. Bernhard Johannes Lesche UFJF

Prof. Carlos Renato de Carvalho UFRJ

Profa. Lílian Pantoja Sosman UERJ

Profa. Maria Cristina Ribeiro Carvalho CETUC – PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 30 de agosto de 2005.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e dos orientadores.

Gladys Adriana Quintero Rojas

Graduação (1990) e Mestrado (2000) em Física pela Universidade de Antioquia, Medellín, Colômbia. Coodenadora de laboratório de Física da Universidad Cooperativa de Colômbia de 1996-2000.

Ficha Catalográfica

Quintero Rojas, Gladys Adriana

Polarização eletrotérmica de vidros e fibras ópticas / Gladys Adriana Quintero Rojas ; orientadores: Isabel Cristina dos Santos Carvalho, Paula Medeiros Proença de Gouvêa. – Rio de Janeiro : PUC, Departamento de Física, 2005.

247 f.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física

Inclui bibliografia

 1. Física – Teses. 2. Vidro. 3. Sílica. 4. Fibra óptica. 5.
Polarização eletrotérmica. 6. Geração de segundo harmônico.
7. Não linearidade óptica. I. Carvalho, Isabel Cristina dos Santos. II. Gouvêa, Paula Medeiros Proença de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Física . IV. Título.

Agradeço especialmente a meus pais e irmãos, à pequena Sully e a todas as pessoas com as quais compartilhei estes momentos

Agradecimentos

Especialmente à minha orientadora, professora Isabel Cristiba dos Santos Carvalho, por me dar a oportunidade de trabalhar em seu grupo de Optoeletrônica, por sua orientação durante o desenvolvimento desta tese, e por sua colaboração em todos os aspectos de minha estadia no Brasil.

À minha co-orientadora, professora Paula Medeiros Proença Gouvêa, por sua orientação no laboratório e na escrita da tese, e por sua motivação, dedicação e paciência incondicionais.

Ao companheiro Hélio Ricardo Carvalho, por sua ajuda constante na montagem dos experimentos, na realização dos mesmos, por suas oportunas explicações e por ser como é.

À minha colega de laboratório e de penas Caroline Sousa Franco, pela ajuda imprescindível nos experimentos de polarização térmica e ataque químico, por toda a sua grande amizade, seu bom humor, seus conselhos e sua contínua motivação.

À Dra. Danays Morejón González, pela sua importante colaboração no desenvolvimento dos projetos relacionados à polarização de fibres ópticas, por toda a motivação que sempre me inspirou para a realização de meu trabalho, e por sua amizade.

Ao professor Marco Cremona, pela colaboração com meu trabalho, disponibilizando seus equipamentos e permitindo a realização da evaporação de eletrodos de alumiínio em seu laboratório.

Ao colega Cristiano Legnani, por toda a colaboração prestada durante a realização das evaporações dos eletrodos de alumínio sobre as amostras de vidro que foram polarizadas termicamente.

Ao Dr. Walter Margullis, por todo o estímulo e apoio na realização dos trabalhos envolvendo fibras ópticas especiais, disponibilizando amostras e discutindo resultados.

Ao Professor Bernhard Johannes Lesche, pelas importantes sugestões e pelas discussões dos resultados experimentais que obtivemos, assim como por todos os ensinamentos de física em geral.

Aos colegas Adriana Lúcia Cerri Triques, Yves Quiquempois, Alexandre Kudlinski, Michael Fokine, Niklas Myrén e Gilbert Martinelli pelas importantes colaborações, que se deram através da realização de experimentos com as amostras que foram polarizadas no Laboratório de Optoeletrônica da PUC-Rio, através de visitas de colaboração ao nosso laboratório, e pela troca constante troca de informações.

À Raquel Bacelar e à Marcia Arjona, por sua ajuda nos momentos em que precisei.

À Giza, por todos os serviços prestados e pela paciência, mantendo-me informada sobre os processos correntes.

Ao Zanelli, ao João, ao Wellington, ao Julinho e à Bernadete, por toda a imprescindível ajuda, com meus trabalhos sempre tão urgentes.

Aos meus amigos colombianos, com quem compartilhei gratos e também difícieis momentos.

À minha grande "pequeña" amiga Sully Milena Mejía Quintero, por sua colaboração permanente durante a realização de meus trabalhos no laboratório, e sobretudo por todo o apoio incondicional que me dispensou durante este período e pela amizade que continua me oferecendo.

Ao apoio financeiro do CNPq, pela bolsa de doutorado.

Ao projeto Ericsson pelo financiamento de diversos projetos no Laboratório de Optoeletrônica.

À Finep e ao CpqD, pelo financiamento oferecido por nossa participação no projeto Giga.

À Acreo pela disponibilização das fibras especiais utilizadas nesta tese.

Rojas, Gladys Adriana Quintero. **Polarização Eletrotérmica de Vidros e Fibras Ópticas.** Rio de Janeiro, 2005. 247p. Tese de Doutorado – Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio).

Componentes ópticos para sistemas de telecomunicações estão em crescente demanda. Para aumentar a eficiência destes componentes, reduzir os custos e permitir a integração aos sistemas atuais, tem-se incentivado a pesquisa de novos materiais, como, por exemplo, a sílica fundida. Geralmente, a sílica fundida, por ser um meio isotrópico, não exibe efeitos não lineares de segunda ordem como o efeito eletro-óptico, que pode ser utilizado na fabricação de chaves e moduladores ópticos. No entanto, pode-se induzir na sílica uma não linearidade de segunda ordem $(\chi^{(2)})$ da ordem de 1 pm/V através da técnica de polarização eletrotérmica. Observa-se a formação de uma camada depletada de íons e um campo elétrico muito intenso permanentemente gravado em sílica polarizada. A caracterização experimental desta camada de depleção, ou seja, espessura, perfil e magnitude do $\chi^{(2)}$ induzido, é importante para a compreensão do processo físico que ocorre durante a polarização. Podem ser encontrados na literatura resultados muito divergentes obtidos com diferentes técnicas de caracterização. Não se sabe se esta divergência é devida aos diferentes métodos usados, ou a diferentes condições de polarização e tipos de amostras. Nesta tese, fez-se uma comparação entre quatro técnicas de caracterização da espessura da camada de depleção em sílica polarizada: ataque químico interferométrico com ácido fluorídrico, Maker Fringe, microscopia óptica e de força atômica, e ataque interferométrico com medida de segundo harmônico em tempo real. A estabilidade da não linearidade induzida é importante para garantir a estabilidade de chaves e moduladores ópticos construídos com sílica polarizada, portanto, fez-se também um estudo de apagamento por temperatura da não linearidade induzida em amostras de sílica polarizada. Foi também estudado nesta tese a influência da superfície da amostra antes da polarização, fator importante para a otimização da reprodutibilidade do processo. Para investigar a potencialidade do desenvolvimento de um Atenuador Óptico Variável (VOA) a fibra óptica, também foi feito um estudo de polarização eletrotérmica em fibras ópticas. Estudos complementares foram realizados envolvendo a influência do campo elétrico na taxa de ataque de ácido fluorídrico em fibras ópticas. Fez-se também um estudo sobre redes de Bragg gravadas em fibras especiais. Parte desta tese foi financiada pelo CNPq (bolsa doutorado), pelo Convênio Ericsson/PUC-Rio - Termo Aditivo 04 e 14, ref: PUC.04, Polarização de fibras ópticas, e pelo Projeto GIGA – Finep – Funttel – CPqD, Subprojeto Atenuador Óptico Variável a Fibra Óptica.

Palavras-chave

Física, Vidro, Sílica, Fibra Óptica, Não-Linearidade Óptica, Polarização Eletrotérmica, Geração de Segundo Harmônico.

Abstract

Rojas, Gladys Adriana Quintero. **Glass and Optical Fiber Electrothermal Poling**. Rio de Janeiro, 2005. 247p. Doctorate Thesis – Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio).

Over the past few years, there has been a growing demand for optical components for telecommunication systems. In order to increase the efficiency of these components, reduce costs and allow integration to current systems, efforts have been made in researching new materials, for example, silica. Due to its isotropic nature, silica, ordinarily, does not present second order effects, for example, the electro-optic effect, which can be used for optical switching and modulation. However, eletrothermal poling can be used to induce in silica a second order nonlinearity $(\chi^{(2)})$ of the order of 1 pm/V. It can be observed that poled silica has an ion-depleted layer and a permanently recorded electric field. The experimental characterization of this depletion layer, i.e. width, profile and magnitude of the induced $\chi^{(2)}$, is important for the comprehension of the physical process occurring during polarization. Different results obtained with different characterization techniques can be found in literature. It is not known whether diverging results in literature are due to different methods of examination or due to different poling conditions and sample type. This thesis compares the findings of four experimental techniques used to monitor the width of the depletion region in fused silica samples poled under similar conditions - hydrofluoric acid (HF) etching, Maker Fringe, optical and atomic force microscope, and hydrofluoric acid (HF) etching with real time monitoring of the SH signal. The stability of the induced nonlinearity is important to guarantee the stability of optical switches and modulators built with poled silica; therefore, thermal annealing of the induced nonlinearity in poled silica is also investigated in this thesis. The influence of the sample surface before poling, an important factor in reproducibility, is also investigated in this thesis. In order to investigate the possibility of developing an optical fiber Variable Optical Attenuator (VOA), optical fiber electrothermal poling was also investigated. Additionally, studies of the influence of the electric field strength on HF etching rate were made, as well as recording of Bragg

gratings on special fibers. This thesis has been partially funded by CNPq (Doctorate scholarship), by Ericsson/PUC-Rio Accord – Additive term 04 e 14, ref: PUC.04, Poling of Optical Fiber, and by GIGA – Finep – Funttel – CPqD Project, Variable Optical Attenuator Subproject.

Key-Words

Physics, Glass, Silica, Optical Fiber, Optical Nonlinearity, Electrothermal Poling, Second Harmonic Generation (SHG).

Sumário

1. Introdução	32
2. Introdução à óptica não-linear e geração de segundo harmônico	36
2.1. Introdução	36
2.2. Introdução à óptica linear e não-linear	37
2.3. Efeitos não-lineares	49
2.3.1. Geração de Segundo Harmônico (SHG)	49
2.3.2. Efeito eletro-óptico	55
2.3.2.1. Efeito Pockels	56
2.3.2.2. Efeito Kerr	59
3. Polarização Térmica	61
3.1. Introdução	61
3.2. Métodos de Polarização	61
3.2.1. Polarização Eletrotérmica	62
3.2.1.1. Descrição	62
3.2.2. Polarização UV	69
3.2.3. Polarização Corona	71
3.3. Técnicas de caracterização	72
3.3.1. Pulsos de Pressão Induzidos por Laser (LIPP)	73
3.3.2. Maker Fringe	73
3.3.3. Ataque Químico Interferométrico	77
3.3.4. Microscópio de Força Atômica (AFM)	78
3.3.5. Interferômetro de Mach - Zehnder	80
3.3.6. Medidas de Segundo Harmônico em Tempo Real	82
3.4. Modelos propostos para polarização	83
4. Montagens experimentais para polarização e caracterização de	
sílica	86
4.1. Introdução	86
4.2. Descrição das amostras usadas	86
4.3. Montagem da polarização eletrotérmica	87

4.3.1. Eletrodos	88
4.3.1.1. Eletrodos de contato (Pressão)	88
4.3.1.2. Eletrodo depositado de ouro (Au)	89
4.3.1.3. Eletrodo depositado de alumínio (Al)	90
4.3.2. Equipamento, montagem e procedimento	91
4.4. Montagens para caracterização de sílica polarizada	95
4.4.1. Medição do segundo harmônico gerado	95
4.4.2. Experimento do Maker Fringe	98
4.4.3. Ataque Químico Interferométrico	106
5. Técnicas de Caracterização	110
5.1. Introdução	110
5.2. Técnicas de caracterização	110
5.2.1. Maker Fringe	110
5.2.2. Ataque Químico Interferométrico	114
5.2.3. Medida de Segundo Harmônico em Tempo Real	117
5.2.4. Técnicas de Microscopia	118
5.3. Comparação entre as Técnicas	119
5.4. Análise de Superfície	123
5.5. Experiência de Quatro Pontos	127
5.6. Conclusões	129
6. Apagamento de amostras polarizadas eletrotermicamente	131
6.1. Introdução	131
6.2. Polarização e apagamento	131
6.3. Circuito, tipos de anodos usados e tempos de apagamento	132
6.4. Medição do segundo harmônico gerado (SHG)	133
6.5. Medição da espessura da camada de depleção	134
6.6. Análises de resultados	134
6.6.1. Resultados da polarização e apagamento de amostras de	
Sílica Herasil. Anodos de contato	136
6.6.2. Resultados da polarização e apagamento de amostras de	
Sílica Herasil e Infrasil. Anodo de alumínio depositado de 50 nm	
e de 100 nm de espessura de sílica Infrasil	139
6.6.2.1. Anodo de alumínio de 50 nm de espessura. Amostras	

de Sílica Herasil	139
6.6.2.2. Anodo de alumínio de 100 nm de espessura. Amostras	
de Sílica Herasil	141
6.6.2.3. Anodo de alumínio de 50 nm de espessura. Amostras	153
6.6.2.4. Anodo de alumínio de 100 nm de espessura. Amostras	
de Sílica Infrasil e de Sílica Herasil	155
6.6.3. Resultados da polarização e apagamento de amostras de	
Sílica Herasil e de Sílica Infrasil. Anodo de ouro depositado de	
50 nm e de 100 nm de espessura	162
6.6.3.1. Anodo de ouro de 50 nm de espessura. Amostras de	
Sílica Herasil	162
6.6.3.2. Anodo de ouro de 100 nm de espessura. Amostras	
de Sílica Infrasil	164
6.7. Conclusões	172
7. Influência do campo elétrico na taxa de ataque de fibras	
especiais	174
7.1. Introdução	174
7.2. Fibra utilizada, equipamento e montagem da experiência	174
7.3. Resultados da Influência do campo elétrico na taxa de	
ataque de fibras especiais (V _{max} = +3 kV e micrômetro digital)	180
7.4. Cálculo teórico do campo elétrico aplicado e da variação da	
taxa de ataque	185
7.5. Resultados da Influência do campo elétrico na taxa de ataque	
de fibras especiais (V _{max} = +5 kV e micrômetro digital)	188
7.6. Resultados da Influência do campo elétrico na taxa de ataque	
de fibras especiais (V _{max} = +5 kV e microscópio óptico)	190
7.7. Conclusões	199
8. Polarização eletrotérmica de fibras ópticas especiais	201
8.1. Introdução	201
8.2. Fibras especiais usadas	201
8.3. Dispositivo de fibra óptica	202
8.3.1. Inserção de eletrodos	205
8.4. Montagem e procedimento para a polarização eletrotérmica	

de fibra óptica	209
8.5. Redes de Bragg em fibras especiais com e sem eletrodos	
inseridos	216
8.5.1. Procedimento	217
8.5.2. Dinâmica do crescimento da rede de Bragg na fibra	
especial F030402-1 com e sem eletrodos	219
8.5.3. Espectro de refletividade das redes crescidas	220
8.5.4. Espectro de refletividade das redes crescidas para	
diferentes tensões dc aplicadas	221
8.6. Conclusões	224
9. Proposta de um Atenuador Óptico Variável (VOA)	226
9.1. Introdução	226
9.2. Interferômetro de Sagnac como um atenuador óptico variável	226
9.2.1. Caracterização do acoplador e do interferômetro de Sagnac	228
9.3. Proposta VOA : fibra especial polarizada no interferômetro de	
Sagnac	230
9.4. Interferômetro de Mach-Zehnder (MZ)	232
9.5. Conclusão	235
10. Conclusões	236
11. Referências	239

Lista de Figuras

Figura 1 - Feixe fundamental entrando em um material não-linear.	
Na saída do material são obtidos um feixe fundamental e seu	
segundo harmônico	49
Figura 2 - Esquema do processo de polarização térmica. (a)	
Durante a polarização térmica as cargas positivas se deslocam em	
direção ao catodo deixando uma região depletada de íons positivos.	
(b) Depois da polarização, a região de depleção fica neutra e um	
campo muito intenso é gravado na amostra. R ₁ = resistência região	
de depleção, R_2 = resistência região neutra, E_{dc} = campo elétrico	
gravado	64
Figura 3 - Dimensões de: anodos de contato de dois tamanhos	
diferentes, anodo depositado diretamente na amostra, e catodo de	
contato	89
Figura 4 - Amostra com eletrodo de alumínio (esquerda) depositado	
e máscara de alumínio (direita)	90
Figura 5 - Montagem do circuito para a polarização de amostras de	
sílica	92
Figura 6 - Amostra e anodo encaixados dentro do suporte de teflon	93
Figura 7 - Circuito de polarização das amostras de sílica	94
Figura 8 - Curva de polarização de uma amostra de sílica polarizada	
durante 10 minutos a uma temperatura média de 280°C e uma	
tensão aplicada de 2,7 kV. O ajuste da curva obedece à equação :	
I(μ A) = 0,03 + 0,9 exp [- (t - 4) / 0,8] + 0,3 exp [- (t - 4) / 2,09]	95
Figura 9 - Montagem para a medição do Segundo Harmônico	
Gerado em uma amostra de sílica polarizada: "sistema de	
translação", "fotodetector" e "suporte rotacional"	97
Figura 10 - Goniômetro com suporte para fixar a amostra e os dois	
prismas semicilíndricos a cada lado da amostra, para realizar a	
experiência de Maker Fringe	99
Figura 11 - Feixe infravermelho (I_{ω}) incidindo sobre a região	

não-linear da amostra. Quando o ângulo de incidência é igual	
ao ângulo crítico (θ_{C}), o Segundo Harmônico Gerado ($I_{2\omega}$) sai	100
de forma rasante da amostra	
Figura 12 - Sistema: prisma - amostra sem polarizar - amostra -	
polarizada - prisma. Este sistema possibilitou a realização da	
experiência de Maker Fringe e a obtenção da espessura da região	
não-linear	101
Figura 13 - Esquema da montagem para a experiência de	
Maker Fringe e a obtenção da espessura não-linear	102
Figura 14 – A figura mostra a trajetória seguida pelos feixes	
Infravermelho (1064 nm) e segundo harmônico (532 nm) dentro da	
Amostra de sílica	103
Figura 15 - Geometria experimental. ${\rm I}_\omega$ é a intensidade do feixe	
Incidente, TM e TE são as polarizações magnético transverso e	
elétrico transverso do feixe incidente, θ é o ângulo de incidência	
com respeito à normal à amostra, θ_ω é o ângulo de propagação no	
interior da amostra	105
Figura 16 - Representação das duas reflexões causadas pelas duas	
superfícies de uma amostra	107
Figura 17 - Representação simplificada do Ataque Químico	
Interferométrico	108
Figura 18 - Gráfico da eficiência na conversão da potência versus	
ângulo de propagação interno de amostras polarizadas durante 20	
minutos a uma temperatura de 280ºC. As tensões aplicadas foram	
6,5 kV, 5,5 kV, 4,5 kV e 2,5 kV	111
Figura 19 - Gráfico da eficiência de conversão da potência de SH	
versus ângulo de propagação interno correspondente à amostra	
polarizada em 280°C e 6,5 kV por 20 min. Técnica Maker Fringe	
usando duas lentes semicilíndricas. A espessura da camada de	
depleção é w = 28,7µm	112
Figura 20 - Gráfico obtido através de um experimento de Maker	

Fringe com os prismas. A amostra de sílica No 22 foi polarizada por

10 min à temperatura de 280ºC e 3,5 kV de tensão. O valor obtido	
para w foi de 11,43 μm	114
Figura 21 - Intensidade do sinal de saída do interferômetro	
(unidades arbitrárias) versus tempo (min). Medida realizada na	
região polarizada da amostra. As linhas tracejadas indicam a	
posição dos pontos de mínima intensidade	115
Figura 22 - O gráfico mostra os sinais de saída do interferômetro	
usado para a medição de ataque interferométrico para duas regiões	
distintas (uma polarizada e outra não polarizada) da amostra No 38.	
Vê-se claramente a diferença entre os períodos dos dois sinais.	
Condições de polarização da amostra: 10 min de polarização,	
tensão aplicada de 2,7 kV, e uma temperatura de 280ºC. Eletrodos	
de contato (anodo de 2,0 cm)	116
Figura 23 - Taxa de ataque em função da profundidade, para	
profundidade até 2 μ m. A amostra No 38 foi pré-atacada por 1 min	
(veja 5.3). Condições de polarização da amostra: 10 min, 2,7 kV,	
280ºC. Eletrodos de contato (anodo de 2,0 cm)	117
Figura 24 - Esquema representando a amostra clivada e indicando	
a região onde o banho de ácido fluorídrico era realizado	118
Figura 25 - Gráfico comparando os resultados obtidos pelas duas	
técnicas de microscopia. Amostras foram polarizadas a uma	
temperatura de 280°C durante diferentes intervalos de tempo.	
A tensãa aplicada foi de 2,7 kV. O anodo utilizado foi de contato	
de 2,0 cm	120
Figura 26 - Imagem da região de depleção de uma amostra	
polarizada na PUC-Rio e transversalmente atacada com HF. A	
imagem foi obtida por um microscópio óptico de contraste de fase	
(ACREO). A amostra foi polarizada por 10 min, a 3,5 kV e 280ºC e	
o valor de w obtido foi de 1 <u>0</u> μm	121
Figura 27 - Imagem da região de depleção de uma amostra	
Polarizada na PUC-Rio e atacada transversalmente com HF.	
A imagem obtida por um Microscópio de Força Atômica (ACREO). A	
amostra foi polarizada por 10 min, a 3,5 kV e 280ºC e o valor de w	

obtido foi de 10 μ m.	122
Figura 28 - Valores obtidos para w através das diferentes técnicas	
utilizadas. Todas as amostras foram polarizadas à temperatura de	
280°C e a 3,5 kV de tensão. Os dados representados pelos	
quadrados azuis foram retirados das referências	
(Triques et al, 2000 e Triques et al., 2003), exceto pelas amostras	
polarizadas por 15 e 20 minutos. (Quintero et al., 2003;	
Franco et al., 2005)	123
Figura 29 - Taxa de ataque obtida pelo método interferométrico	
(amostra 38). Condiçoes de polarizaçao: 10min, 2,7 kV e 280°C.	
Eletrodos de contato (anodo de 2,0 cm)	125
Figura 30 - Taxa de ataque químico obtida pelo método	
interferométrico (amostra 39). Pré-ataque de 1 min. Condições de	
polarização: 10 min, 2,7 kV e 280ºC . Eletrodos de contato	
(anodo de 2,0 cm)	126
Figura 31 - Taxa de ataque químico obtida pelo método	
interferométrico (amostra 45). Pré-ataque de 1 min. Condições de	
polarização: 10 min, 2,7 kV e 280ºC. Eletrodos de contato	
(anodo de 2,0 cm)	127
Figura 32 - Esquema indicando o corte da amostra e os quatro	
pontos analisados através da técnica interferométrica	128
Figura 33 - Quatro curvas obtidas de uma amostra polarizada por	
10 min, 2,7 kV e 280ºC com eletrodos de contato	129
Figura 34 - Circuito para a polarização e apagamento de amostras	
de sílica Herasil e Infrasil. A resistência de 47 M Ω está em paralelo	
com a resistência de 47 k Ω e permite o fornecimento de cargas	
durante o apagamento. A potência dissipada por esta resistência	
é de 5 W	132
Figura 35 - A superfície da amostra apagada é irradiada com um	
feixe infravermelho (1064 nm) de um laser Nd:YAG. A amostra é	
inclinada um ângulo θ com respeito à direção do feixe. A lente	
que faz convergir o feixe sobre a amostra tem uma distância focal	
de 3,5 cm	134

Figura 36 - Taxa de ataque de amostras de sílica Herasil polarizadas eletrotermicamente durante 10 minutos a uma temperatura de 280°C e tensão de 2,7 kV. Os tempos de apagamento foram de 60 e 180 segundos. Foi utilizado anodo 137 de contato de 8,4 mm de diâmetro136 Figura 37 - Taxa de ataque de amostra de sílica Herasil polarizadas eletrotermicamente durante 10 minutos a uma temperatura de 280°C e tensão de 2,7 kV. O tempo de apagamento foi de 90 138 minutos. Foi utilizado anodo de contato de 8,4 mm de diâmetro Figura 38 - Taxa de ataque de amostras de sílica Herasil polarizadas eletrotermicamente durante 10 minutos e apagadas durante intervalos de tempo de 30, 60 e 180 segundos. Foram utilizados anodos de alumínio depositados sobre um lado de cada amostra. O filme de Al tinha um diâmetro de 20 mm e uma espessura de 50 nm 140 Figura 39 - Evolução da taxa de ataque da amostra Herasil (M05) polarizada durante 10 min e apagada durante 30 s (anodo de alumínio depositado de espessura igual a 100 nm). O valor médio da espessura da camada de depleção inferido da evolução da taxa de ataque foi de $(2,51\pm0,82)$ µm. A informação foi obtida de dois 143 sinais provenientes da região não-linear da amostra Figura 40 - Evolução da taxa de ataque da amostra Herasil (M10) polarizada durante 10 min e apagada durante 180 s (anodo de de alumínio depositado de espessura igual a 100 nm). O valor médio da espessura da camada de depleção inferido da evolução da taxa de ataque foi de (0.91 ± 0.23) µm. A informação foi obtida 144 de dois sinais provenientes da região não-linear da amostra Figura 41 - Taxa de ataque das amostras Herasil M04 e M05 polarizadas durante 10 min e apagadas durante 30 s (anodo de de alumínio depositado (100 nm)). Os valores das espessuras das camadas de depleção inferidas da evolução das taxas de ataque de cada amostra foram de $(2,12 \pm 0,66)$ µm para M04 e de $(2.83 \pm 0.76) \mu m$ para M05. A informação foi obtida de um sinal

proveniente da região polarizada de cada amostra Figura 42 - Taxa de ataque das amostras Herasil M06 e M07 polarizadas durante 10 min e apagadas durante 60 s (anodo de alumínio depositado (100 nm)). Os valores das espessuras das camadas de depleção inferido da evolução das taxas de ataque de cada amostra foram de (2,46 \pm 0,76) μ m para M06 e de (1,48 \pm 1,14) µm para M07. A informação foi obtida de um sinal 147 proveniente da região polarizada de cada amostra Figura 43 - Taxa de ataque das amostras Herasil com tempos de apagamento de 90 s (M08), de 120 s (M09) e de 180 s (M10 e M11), polarizadas durante 10 min (anodo de alumínio depositado (100 nm)). Os valores das espessuras das camadas de depleção inferidos da evolução das taxas de ataque de cada amostra foram de $(1,86 \pm 0,31)$ µm para M16, de $(1,22 \pm 0,10)$ µm para M14 e de $(0,99 \pm 0,046)$ µm para M12 . A informação foi obtidade um sinal proveniente da região polarizada de cada 148 amostra

Figura 44 - Taxa de ataque da amostra Herasil com tempo de apagamento de 90 s (M08), e da amostra Herasil não apagada (amostra de referência MA), ambas polarizadas durante 10 min com anodo de alumínio depositado de 100 nm. Os valores das espessuras das camadas de depleção inferidos da evolução das taxas de ataque de cada amostra foram de $(1,86 \pm 0,31)$ µm para para M08 e de $(9,0 \pm 0,44)$ µm para MA. A informação foi obtida 150 de um sinal proveniente da regiã polarizada de cada amostra Figura 45 - Espessura da camada de depleção versus o tempo de apagamento de amostras de sílica Herasil polarizadas durante 10 min e apagadas durante intervalos de tempo de 30 s, 60 s, 90 s, 120 s e 180 s (anodo de alumínio depositado de 100 nm). São observados dois pontos para algumas amostras devido ao uso dos dois sinais provenientes da amostra durante o ataque químico interferométrico. Temperatura de polarização 280°C

145

151

Figura 46 - Variação da eficiência na conversão da potência normalizada em função do tempo de apagamento, de amostras Herasil polarizadas durante 10 min e apagadas durante intervalos de tempo de 30, 60, 90, 120, 180 segundos. Anodo de alumínio 152 depositado (100 nm) Figura 47 - Perfil não-linear, d, das amostras de sílica Infrasil Com tempos de apagamento de 30 s (M01), 60 s (M02) e 180 s (M03) polarizadas durante 10 min a uma temperatura de 280°C e tensão aplicada de 2,7 kV. Anodo de alumínio depositado (50 nm) 154 - Universidade de Lille Figura 48 - Evolução da taxa de ataque normalizada. Amostras de sílica Infrasil com tempos de apagamento de 30 s (M01), 60 s (M02) e 180 s (M03) polarizadas durante 10 min a uma temperatura de 280oC e tensão aplicada de 2,7 kV. (Anodo de alumínio depositado (50 nm) - Universidade de Lille 155 Figura 49 - Corrente de polarização e de apagamento versus tempo. Amostra de sílica Infrasil polarizada durante 10 min a uma temperatura de 250°C e tensão de 2,7 kV com anodo de alumino 157 (200 nm). Tempo de apagamento 60 s Figura 50 - Corrente de polarização e de apagamento versus tempo. Amostra de sílica Herasil polarizada durante 10 min a uma temperatura de 250°C e tensão de 2,7 kV com anodo de alumino 158 (200 nm). Tempo de apagamento 180 s Figura 51 - Potência média do segundo harmônico gerado. Amostras de sílica Infrasil polarizadas a uma temperatura de 250°C e tensão aplicada de 2,7 kV durante 10 min. Com anodo de alumínio depositado (100 nm de espessura). Os tempos de apagamento foram de 0s ($L_0 \in LL_0$), 30 s ($L_1 \in LL1$), 60 s ($L_2 \in LL_2$), 90 s (L₃ e LL₃), 120 s (L₄ e LL₄) , 180 s (L₅ e LL₅). As amostras foram irradiadas com um feixe infravermelho (1064 nm) de potência 159 média 350 mW Figura 52 - Potência média do segundo harmônico gerado. Amostras de sílica Herasil polarizadas a uma temperatura de 250°C

e tensão aplicada de 2,7 kV durante 10 min. Com anodo de alumínio depositado (100 nm de espessura). Os tempos de apagamento foram de 0, 30, 60, 90, 120, 150, 180 e 240 s. As amostras foram irradiadas com um feixe infravermelho (1064 nm) 160 de potência média 350 mW. Dados na tabela 7 Figura 53 - Evolução da taxa de ataque de amostras de sílica Herasil polarizadas eletrotermicamente durante 10 minutos e apagadas durante intervalos de tempo de 30, 60 e 180 segundos. É mostrado o comportamento da taxa de ataque para os dois sinais de cada amostra. Foram utilizados anodos de ouro depositados sobre um lado de cada amostra. O filme depositado tinha um diâmetro de 20 mm e uma espessura de 50 nm 163 Figura 54 - Variação da eficiência na conversão da potência normalizada em função do tempo de apagamento de amostras Infrasil polarizadas durante 10 min e apagadas durante intervalos de tempo de 30, 60, 90, 120, 180 segundos. Anodo de ouro depositado (100 nm). Lab. Opto-eletrônica PUC-Rio 166 Figura 55 - Perfil não-linear d para a amostra de sílica Infrasil S00 polarizada durante 10 min a uma temperatura de 280°C e tensão aplicada de 2,7 kV e apagada durante zero minutos. Anodo de 167 ouro depositado (100 nm) - Universidade de Lille Figura 56 - Evolução da taxa de ataque normalizada para a amostra de Infrasil S00 polarizada durante 10 min a uma temperatura de 280°C e tensão aplicada de 2,7 kV, e apagada durante 0 min. Anodo de ouro depositado (100 nm) -168 Universidade de Lille Figura 57 - Evolução do perfil não-linear d para a amostra de sílica Infrasil S04 polarizada durante 10 min a uma temperatura de 280°C e tensão aplicada de 2,7 kV e apagada durante 120 s. Anodo de 169 ouro depositado (100 nm) - Universidade de Lille Figura 58 - Evolução da taxa de ataque normalizada para a amostra de Infrasil S04 polarizada durante 10 min a uma temperatura de de 280°C e tensão aplicada de 2,7 kV, e apagada durante 120 s.

Anodo de ouro depositado (100 nm) - Universidade de Lille	170
Figura 59 - Evolução do perfil não-linear d das amostras de sílica	
Infrasil polarizadas durante 10 minutos a uma temperatura de 280°C	
e tensão aplicada de 2,7 kV e apagadas duante os tempos de 30 s,	
60 s, 90 s, 150 s e 180 s. Anodo de ouro depositado	
(100 nm) - Universidade de Lille	171
Figura 60 - Evolução da taxa de ataque normalizada para amostras	
de Infrasil polarizadas durante 10 min a uma temperatura de 280°C	
e tensão aplicada de 2,7 kV, e com tempos de apagamento de	
30, 60, 90 s, 150 s, e 180 s. Anodo de ouro depositado (100 nm) -	
Universidade de Lille171	172
Figura 61 - Fibra capilar (ACREO/Suécia) F020607-1. O diâmetro	
externo da fibra é de 125 μm e do buraco é de 25 μm	175
Figura 62 - Fonte de alta tensão BELTRAN 915 de 0 kV a 20 kV	
(esquerda) e fonte de alta tensão FUG de dupla polaridade de	
de - 10 kV a 10 kV (direita)	175
Figura 63 - Divisor de tensão, no qual o lado esquerdo estava	
conectado a tensões negativas e o lado direito a tensões positivas	176
Figura 64 - Divisor de tensão e pontos de contacto entre os	
Extremos das fibras e dos cabos	177
Figura 65 - Durante o ataque, as fibras eram submersas em HF.	
Para manter as fibras em contato com o catodo de grafite, Foi	
usado um posicionador de acrílico. Todo o conjunto era colocado	
dentro de um recipiente de plástico contendo o ácido fluorídrico	
(HF)	178
Figura 66 - Micrômetro digital	179
Figura 67 - Microscópio Óptico Axioplan 2 imaging	179
Figura 68 - Imagem obtida no microscópio óptico (DCMM/PUC-Rio)	
da fibra de referência depois de ter sido atacada por 30 min com	
ácido fluorídrico	180
Figura 69 - A figura representa a vista transversal de uma fibra	
capilar, onde a é o raio do eletrodo e b o raio da fibra capilar	186
Figura 70 - Diâmetro resultante das fibras depois do ataque 1	

de 30 min com HF, versus a tensão aplicada. Medida realizada com	
microscópio óptico. A incerteza de medição foi igual a \pm 1,0 μm	192
Figura 71 - Taxa de ataque obtida depois do ataque 1 versus a	
tensão aplicada para cada fibra	193
Figura 72 - Diâmetro resultante das fibras depois do ataque 2 De	
30 min com HF versus a tensão aplicada. A incerteza de	
medição foi igual a ± 1,0 μ m	195
Figura 73 - Taxa de ataque obtida depois do ataque 2 de 30 min	
versus a tensão aplicada para cada fibra	196
Figura 74 - Diâmetro resultante das fibras depois do ataque 3 de 40	
min com HF versus a tensão aplicada. A incerteza de medição foi	
igual a ± 1,0 μm	198
Figura 75 - Taxa de ataque obtida depois do ataque 3 de 40 min	
versus a tensão aplicada para cada fibra	199
Figura 76 - A figura mostra a parte da fibra em contacto com o	
catodo. As medições do diâmetro resultante após do ataque	
deveriam ser feitas entre os pontos a e b	200
Figura 77 - Fibra F020523-8. Distância núcleo-buraco 18 µm.	
Diâmetro o buraco 30 μ m. Diâmetro do núcleo 10 μ m	202
Figura 78 - Fibra F030402-1F. Casca de sílica fundida. Diâmetro	
Do núcleo 4 μ m. Distância entre o núcleo e o buraco mais perto	
4 μm	202
Figura 79 - Máquina de polir fibra. Construída no laboratório	
Opto-eletrônica	204
Figura 80 - A figura Mostra como é o acesso ao eletrodo depois	
de se ter lixado em um ponto da fibra	204
Figura 81 - Dispositivo pronto para ser polarizado. Os fios de cobre	
fazem contato com os eletrodos através da tinta condutora	205
Figura 82 - Vista frontal da câmara de pressão utilizada para a	
a inserção de eletrodos nas fibras especiais	206
Figura 83 - Forno com a célula de pressão e a fibra em seu interior.	
Na direita a fonte conectada à resistência para aquecer a liga	206
Figura 84 - Vista superior da câmara de pressão. O parafuso possui	

um orifício por onde é introduzida a parte da fibra a ser posicionada dentro da célula de pressão 207 Figura 85 - Fibra sem revestimento com dois eletrodos inseridos 208 Figura 86 - Montagem para a polarização do dispositivo a fibra. O dispositivo a fibra sobre a superfície da chapa aquecedora. O termopar permite acompanhar a temperatura atingida pelo dispositivo. Os eletrodos da fibra estão em serie com uma resistência de 47 k Ω que permite conhecer o valor da tensão na 209 fibra durante o tempo de polarização Figura 87 - Corrente versus tempo de polarização para o dispositivo da fibra F20523-8. Experimento 1. A linha é uma guia para os olhos 211 Figura 88 - Corrente versus tempo de polarização para o dispositivo da fibra F20523-8. Experimento 2 (Tabela 20) A linha é uma guia 212 para os olhos Figura 89 - Dispositivo modificado. A figura mostra duas lâminas de "soda lime" conectadas através de dois pedaços de teflon 213 Figura 90 - Corrente e temperatura versus tempo de polarização. A temperatura de polarização foi de 280°C, a tensão aplicada na fibra foi de 947 V. A polarização foi realizada com uma montagem 215 modificada (figura 89) Figura 91 - Dispositivo feito com a fibra: F030402-1F. Os eletrodos inseridos foram fios de tungstênio 218 Figura 92 - Dinâmica do crescimento da rede de Bragg na fibra especial com sem eletrodos inseridos. Fibra F030420-1 núcleo de 4 219 µm de diâmetro Figura 93 - Espectro de refletividade da rede de Bragg crescida 220 na fibra especial F020523-8 sem eletrodos Figura 94 - Espectro de refletividade da rede de Bragg crescida 221 na fibra especial F020523-8 cem eletrodos inseridos Figura 95 - Espectro de refletividade da rede de Bragg crescida na fibra especial com eletrodos para diferentes tensões aplicadas 222 223 Figura 96 - Fibra dobrada como um laco Figura 97 - Variação da intensidade no espectro de refletividade

Para o comprimento de onda de Bragg de 1840, 23 nm quando	
É alterada a posição do laço feito com a fibra. Fibra F030402-8	
com eletrodos	224
Figura 98 - Esquema do interferômetro de Sagnac	227
Figura 99 - Caracterização do acoplador utilizado no interferômetro	
de Sagnac	229
Figura 100 - Potência de saída do interferômetro de Sagnac versus	
ângulo de rotação do controlador de polarização. A linha é só guia	
para os olhos	230
Figura 101 - Montagem para a polarização do dispositivo a fibra	
incluído na configuração do interferômetro de Sagnac como	
substituto do controlador de polarização	232
Figura 102 - Montagem 2x2 para a medida da resposta Kerr em um	
interferômetro de Mach - Zenhder	233
Figura 103 - Modulação do sinal transmitido. Efeito Kerr	234

Lista de Tabelas

Tabela 1 - A simetria da permutação intrínseca é usada para 45 contrair os dois últimos subscritos e escrever d_{il} no lugar de d_{iik} Tabela 2 - Resumo dos valores da espessura da camada de depleção obtidos com a técnica de Maker Fringe utilizando dois prismas semicilíndricos. As amostras de sílica Herasil foram polarizadas a uma temperatura de 280°C. A tensão aplicada foi de 3,5 kV. O rótulo se refere ao nome da amostra 113 Tabela 3 - Resumo da potência óptica média do segundo harmônico gerado, obtida para amostras de sílica Herasil polarizadas durante 10 minutos a uma temperatura de 280°C e tensão aplicada de 2,7 kV, com anodo de contato de 8,4 mm e apagadas durante intervalos de tempo de 60, 180 e 5400 segundos. Para realizar a medição da potência do segundo harmônico gerado, as amostras foram inclinadas em um ângulo de 450 com respeito à direção do 137 feixe incidente na amostra (ver figura 35) Tabela 4 - Resumo da potência óptica média do SHG para amostras de sílica Herasil polarizadas durantes 10 minutos com anodo de alumínio (Al) de 20 mm de diâmetro (espessura do filme 50 nm) e apagadas durante os intervalos de tempo de 30, 60, 90 e 180 segundos. As amostras foram posicionadas em um ângulo de 45° com respeito à direção do feixe incidente na amostra (ver figura 140 35)

Tabela 5 - Resumo da potência óptica média do segundo harmônico gerado e da espessura da camada de depleção obtida para amostras de sílica Herasil polarizadas durante 10 minutos a uma temperatura de 280°C, com anodos de alumínio depositado (Al) de 20 mm de diâmetro (espessura do filme 100 nm) e apagadas durante intervalos de tempo de 30, 60, 90, 120 e 180 segundos.

PUC-Rio - Certificação Digital Nº 0116448/CB

Para realizar a medição da potência as amostras foram inclinadas em um ângulo de 45° com respeito à direção do feixe incidente na 142 amostra (figura 35) Tabela 6 - Resumo dos tempos de apagamento e das espessuras da camada de depleção de amostras de sílica Infrasil polarizadas com anodo alumínio depositado (50 nm) 153 Tabela 7 - Resumo da potência média obtida para amostras de sílica Herasil polarizadas a uma temperatura de 250°C, tensão aplicada de 2,7 kV durante 10 min e apagadas durantes 0, 30, 60, 90, 120, 150, 180, 240 s. O anodo utilizado foi de alumínio depositado (100 nm de espessura). As amostras foram posicionadas nos ângulos de 30°e de 45° com respeito ao feixe em 161 direção às amostras. A potência do feixe incidente foi de 500 mW Tabela 8 - Resumo das potências ópticas médias obtidas para Amostras de sílica Herasil polarizadas durantes 10 minutos com anodos de ouro (Au) depositados, de 20 mm de diâmetro (espessura do filme 50 nm) e apagadas durante intervalos de tempo de 30, 60 e 180 segundos. Para realizar a medição da potência média do segundo harmônico as amostras foram posicionadas em um ângulo de 45° com respeito à direção do feixe 162 incidente na amostra (ver figura 35) Tabela - 9 - Resumo da potência óptica média do segundo harmônico gerado e da espessura da camada de depleção obtida para amostras de sílica Infrasil polarizadas durante 10 minutos com anodos de ouro depositados (Au) de 20 mm de diâmetro (espessura do filme 100nm) e apagadas durante intervalos de tempo de 0, 30, 60, 90, 120, 150 e 180 segundos. Para a realizar a medição da potência as amostras foram inclinadas em um ângulo de 45° com respeito à direção do feixe incidente na amostra (ver figura 35). A potência média do feixe fundamental (1064 nm) foi de 165 640 mW para todas as amostras nesta experiência Tabela 10 - Medida do diâmetro obtido para duas fibras capilares e duas fibras padrão (*SMF*) depois de 0 min e 20 min de ataque

químico com HF. As fibra 1 e fibra 2 são fibras capilares (ocas), e as	
fibra SMF 1 e fibra SMF 2 são fibras ópticas padrão	181
Tabela 11 - A tabela mostra os valores das tensoes aplicadas, os	
diâmetros resultantes medidos e as taxas de ataque inferidas	182
Tabela 12 - A tabela mostra os diâmetros medidos e as taxas de	
ataque inferidas depois dos ataques químicos nos intervalos de	
tempo de 15 min e de 10 min	184
Tabela 13 - αE_{ap} quando a tensão é ligada após a fibra ter sido	
atacada com HF por diferentes intervalos de tempo (o diâmetro	
externo ao se ligar a tensão é igual a 125 μm menos o raio	
atacado). O diâmetro do buraco da fibra é de 25 μ m	187
Tabela 14 - αE_{ap} quando a fibra com diâmetro extrerno é igual	
125 μm e para valores de tensão aplicada: +3 kV, +2 kV e +1 kV.	
O diâmetro do buraco da fibra é de 25 μ m	188
Tabela 15 - Tensão aplicada, campo elétrico calculado e variação	
Inferida da taxa de ataque	189
Tabela 16 - Diâmetros medidos com micrômetro digital. As fibras	
expostas a tensões negativas sofreram ataque durante 30 minutos	
com tensão Aplicada. As fibras expostas a tensões positivas	
sofreram ataque de 10 minutos com tensão aplicada e 20 minutos	
sem tensão. A fibra de referência sofreu 30 minutos de ataque	
com 0 kV	190
Tabela 17 - Diâmetros medidos com o microscópio óptico depois do	
ataque químico 1 durante 30min para as fibras submetidas a	
diferentes tensões (incerteza de medição igual a \pm 1,0 μm), e taxas	
de ataque correspondentes	192
Tabela 18 - Diâmetros medidos com o microscópio óptico depois	
do ataque químico 2 durante 30 min para as fibras submetidas a	
diferentes tensões (incerteza de medição igual a \pm 1,0 μm), e taxas	
de ataque correspondentes	194
Tabela 19 - Diâmetros medidos com o microscópio óptico depois	
do ataque químico 3 durante 40 min para as fibras submetidas a	

diferentes tensões (incerteza de medição igual a \pm 1,0 μ m)	197
Tabela 20 - Tensão aplicada durante a polarização para vários	
Valores de temperatura e tempos de polarização	210
Tabela 21 - Tensão aplicada na lâmina de "soda lime" e na fibra	
para cada valor da temperatura para 1 kV de tensão aplicada	214
Tabela 22 - A tabela mostra as diferentes posições nas que foi	
colocado o laço de fibra e o ângulo dessa posição com respeito à	
posição vertical do laço e o máximo do sinal registrado para cada	
posição	223