

Sandro Rogério Zang

Aplicação do Método do Casamento de Modos na Análise e no Projeto de Estruturas Coaxiais

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: José Ricardo Bergmann

Rio de Janeiro Setembro de 2005.

Sandro Rogério Zang

Aplicação do Método do Casamento de Modos na Análise e no Projeto de Estruturas Coaxiais

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

José Ricardo Bergmann Orientador Centro de Estudos em Telecomunicações - PUC-Rio

Fernando José da Silva Moreira Universidade Federal de Minas Gerais – UFMG

Luiz Costa da Silva Centro de Estudos em Telecomunicações - PUC-Rio

Flávio José Vieira Hasselmann Centro de Estudos em Telecomunicações - PUC-Rio

José Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 12 de setembro de 2005.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Sandro Rogério Zang

Graduou-se em Engenharia Elétrica, em julho de 2003, na Universidade Federal de Santa Maria. Em agosto do mesmo ano, iniciou no Centro de Estudos em Telecomunicações da Pontifícia Universidade Católica do Rio de Janeiro seu mestrado na área de eletromagnetismo aplicado.

Ficha Catalográfica

Zang, Sandro Rogério

Aplicação do Método do Casamento de Modos na Análise e no Projeto de Estruturas Coaxiais / Sandro Rogério Zang; orientador: José Ricardo Bergmann. Rio de Janeiro: PUC, Departamento de Engenharia Elétrica, 2005.

121 f. il. 30 cm

Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas

1. Engenharia elétrica – Teses. 2. Guias de onda coaxiais. 3. Estruturas de acoplamento. 4. Método do Casamento de Modos. 5. Alimentadores de antenas. 6. Matriz de espalhamento. I. Bergmann, José Ricardo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título. PUC-Rio - Certificação Digital Nº 0321229/CA

À minha família

Agradecimentos

Ao meu orientador José Ricardo Bergmann pelo estímulo, paciência e orientação, fundamentais em todas as etapas do desenvolvimento desse trabalho.

À minha família, em especial aos meus pais pela educação, carinho e incentivo, sem eles nada disso seria possível.

À Monique pelo amor, dedicação e por estar ao meu lado.

Aos amigos Tiago, Julia, Sheila, Andrea e Djeison pelo carinho, companheirismo e amizade sempre presente.

Aos colegas de mestrado, em especial aos amigos do PAA, pelo apoio e colaboração.

À Maria Lúcia e demais funcionários do CETUC, pelo carinho e atenção.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais esse trabalho não poderia ter sido realizado.

Resumo

Zang, Sandro Rogério. **Aplicação do Método do Casamento de Modos na Análise e no Projeto de Estruturas Coaxiais.** Rio de Janeiro, 2005. 121p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste presente trabalho, o Método do Casamento de Modos é aplicado na análise e no projeto de estruturas coaxiais. A estrutura de excitação é um dos pontos críticos do projeto de antenas do tipo discone quando se pretende explorar suas características de banda larga. Seções não uniformes de guias de ondas coaxiais são usualmente utilizadas como elementos dessa estrutura de excitação sendo, eventualmente, necessária a inclusão de anéis dielétricos para garantir a rigidez mecânica da antena. Devido a essas não uniformidades encontradas nas dimensões e no meio dielétrico desse dispositivo de microondas, métodos numéricos serão utilizados na predição do seu comportamento eletromagnético. O correto dimensionamento desses anéis e das descontinuidades de guias de onda coaxiais que compõe a estrutura de alimentação, permite estabelecer um compromisso entre minimização das perdas, alargamento da banda passante e rigidez mecânica. Associados ao Método do Casamento de Modos serão utilizados algoritmos de otimização que farão o ajuste das dimensões dessas seções de guias de onda coaxiais não uniformes, visando à minimização da perda de retorno e o aumento da banda de operação da antena. Finalmente, será feito o estudo de algumas estruturas de excitação, onde serão otimizados seus desempenhos para a perda de retorno.

Palavras-chave

Descontinuidades em guias de onda coaxiais; método do Casamento de Modos; matriz de espalhamento; estruturas de acoplamento.

Abstract

Zang, Sandro Rogério. **Application of Mode Matching Technique in the Analysis and Project of Coaxial Structures.** Rio de Janeiro, 2005. 121p. MSc. Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

In this present work, the Mode Matching technique is applied in the analysis and project of coaxial structures. The feed junction is one of the critical points of the project of discone antennas when broadband performance is expected. Usually, these junctions are composed of nonuniform sections of coaxial waveguide and, to guarantee the necessary mechanical rigidity of the structure, some sections are filled with dielectric material. The project of these feed junctions requires a compromise between frequency band, compact structure, minimal losses, and mechanical rigidity. Due to the discontinuities, numerical methods are used to predict the electromagnetic behavior. Here, Mode Matching technique associated with an optimization algorithm is employed in the adjustment of the dimensions of the coaxial waveguide sections, seeking the minimization of the return loss and the enlargement of the antenna bandwidth. Several types of junctions are explored and their performance is compared.

Keywords

Coaxial waveguide discontinuities; Mode Matching technique; scattering matrix; coupler structures.

Sumário

1 Introdução	17	
2 Determinação dos Campos Modais para o Guia de Onda Coaxial	20	
2.1. Introdução	20	
2.2. Solução da equação de Onda Homogênea em Coordenadas Cilíndricas	21	
2.2.1. Modo Transversal Magnético (TM ^z)	26	
2.2.2. Modo Transversal Elétrico (TE ^z)	31	
2.2.3. Modo Transversal Eletromagnético (TEM ^z)	35	
2.3. Modos TM^{z} e TE^{z} para $l = 0$	37	
3 Método do Casamento de Modos	39	
3.1. Introdução	39	
3.2. Matriz de Espalhamento de uma Descontinuidade de Seção Transversal de		
Guia de onda coaxial	41	
3.2.1. Cálculo dos Elementos da Matriz [P], para $l = 0$	49	
3.2.2. Cálculo dos Elementos da Matriz [<i>R</i>] para $l = 0$	53	
3.2.3. Cálculo dos Elementos da Matriz [Q], para $l = 0$	55	
3.3. Cascateamento Progressivo das Matrizes de Espalhamento de Várias		
Descontinuidades	56	
3.3.1. Matriz de Espalhamento de um Trecho de Guia de Onda Coaxial liso	57	
3.3.2. Matriz de Espalhamento da Associação em Cascata de duas		
Descontinuidades	58	
3.4. Validação do Algoritmo Numérico Implementado	63	
3.4.1. Primeiro caso	63	
3.4.2. Segundo caso	65	
4 Estudo de Estruturas de Acoplamento	68	
4.1. Introdução	68	
4.2. Primeira estrutura de acoplamento	69	
4.2.1. Otimização da Estrutura de Acoplamento	76	
4.2.2. Otimização das Dimensões dos Guias de Onda Coaxiais Lisos que		

Compõem a Estrutura de Acoplamento	78
4.2.3. Comparação entre Simulações e Medidas para Perda de Retorno	84
4.3. Segunda estrutura de acoplamento	86
4.4. Terceira estrutura de acoplamento	96
4.4.1. Dimensionamento das Estruturas de Suporte Mecânico	97
4.4.2. Dimensionamento da Estrutura de Transição	100
4.4.3. Dimensionamento da Estrutura de Acoplamento Completa	102
4.5. Quarta estrutura de acoplamento	107
4.5.1. Dimensionamento das Estruturas de Suporte Mecânico	108
4.5.2. Dimensionamento da Estrutura de Acoplamento Completa	114
5 Conclusão	117
6 Referências Bibliográficas	121

Lista de figuras

Figura 1.1 – Alimentação de uma antena discone modificada, através de um guia de onda coaxial. 18 Figura 2.1 – Geometria do problema proposto. (a) seção de guia de onda coaxial e (b) sistema de coordenadas cilíndricas. 21 Figura 2.2 - Representação dos vetores unitários em coordenadas cilíndricas para dois pontos distintos $(\rho_1, \phi_1, z_1) \in (\rho_2, \phi_2, z_2)$. 22 Figura 2.3 – f_{clm}^{TM} em função de a/b para os primeiros modos TM_{lm}^{z} , obtidos através da solução numérica da equação (2.39), considerando b = 15mm. 30 Figura 2.4 – Distribuição das componentes transversais de campo no interior do guia de onda coaxial para o modo TM_{01}^{z} . 30 Figura 2.5 – f_{clm}^{TE} em função de a/b para os primeiros modos TE_{lm}^{z} , obtidos através da solução numérica da equação (2.75), considerando b = 15mm. 34 Figura 2.6 – Distribuição das componentes transversais de campo no interior do guia de onda coaxial para os modos (a) TE_{11}^z e (b) TE_{21}^z . 34 Figura 2.7 – Distribuição das componentes transversais de campo no interior do guia de onda coaxial para o modo TEM². 36 Figura 3.1 – Estrutura de acoplamento entre dois guias de onda coaxiais infinitos de dimensões arbitrárias. (a) Visão espacial e (b) seção longitudinal da estrutura de acoplamento. 40 Figura 3.2 – Ilustração dos modos refletidos e transmitidos em cada descontinuidade de guia de onda coaxial. 40 Figura 3.3 - Descontinuidade em guia de onda coaxial: (a) seção longitudinal e (b) seção transversal. 41 Figura 3.4 – Ilustração das amplitudes dos campos incidentes e espalhados na descontinuidades (z = 0). 42 Figura 3.5 – Descontinuidade decrescente em guia de onda coaxial. 49 Figura 3.6 – (a) representação das duas matrizes de espalhamento conectadas, (b) representação da matriz de espalhamento geral obtida pelo cascateamento. 59 Figura 3.7 – Estrutura de acoplamento entre dois guias de onda coaxiais de dimensões distintas. 64

Figura 3.8 – $ S11_{00} (dB)$ para a estrutura de acoplamento da Figura 3.7.	65
Figura 3.9 - Estrutura de acoplamento entre dois guias de onda coaxiais	de
dimensões iguais, utilizando carregamento dielétrico.	66
Figura 3.10 – $ S11_{00} (dB)$ para a estrutura de acoplamento da Figura 3.9.	67
Figura 4.1 – Alimentação de uma antena discone modificada, através de um g	uia
de onda coaxial.	69
Figura 4.2 - Estrutura de acoplamento entre dois guias de onda coaxiais	de
dimensões diferentes.	70
Figura 4.3 – Estrutura de acoplamento com deslocamento G no cilindro condu	Itor
central (a) para a direita e (b) para a esquerda.	71
Figura 4.4 – Convergência dos valores de $ S11_{00} (dB)$ em função do núme	əro
máximo N de modos TM_{0n} , para a freqüência de 1GHz, considerando	(a)
$G = 0.1mm$, (b) $G = 10^{-2} mm$, (c) $G = 10^{-3} mm$ e (d) $G = 10^{-4} mm$, da estrutura	de
acoplamento ilustrada na Figura 4.3.	72
Figura 4.5 – Convergência dos valores de $ S11_{00} (dB)$ em função do núme	ero
máximo N de modos TM_{0n} , para a freqüência de 3GHz, considerando	(a)
$G = 0.1mm$, (b) $G = 10^{-2} mm$, (c) $G = 10^{-3} mm$ e (d) $G = 10^{-4} mm$, da estrutura	de
acoplamento ilustrada na Figura 4.3.	73
Figura 4.6 – $ S11_{00} (dB)$ para a estrutura de acoplamento ilustrada na Figura 4	1.2,
considerando o deslocamento para a direita e esquerda e (a) $L = 10mm$,	(b)
$L = 12.5mm \ e \ (c) \ L = 15mm$.	74
Figura 4.7 – $ S11_{00} (dB)$ para o acoplador da Figura 4.2, considerando	-se
$L_i = 10, 12.5 \text{ e } 15 \text{mm.}$	75
Figura 4.8 – Visualização das perdas parciais referentes a cada descontinuida	de.
	76
Figura 4.9 – Visualização da função objetivo $F(x)$.	77
Figura 4.10 – Curvas descritas pela equação (4.7) em função de γ .	78
Figura 4.11 - Comprimento dos guias de onda coaxiais que compõem	ı 0
acoplador em função da curvatura descrita pela equação (4.8) aplicada	ao
cilindro condutor externo do acoplador.	79
Figura 4.12 – Comparação do $ S11_{00} (dB)$ da estrutura inicial de otimização e	da
estrutura otimizada com o valor especificado para a perda de retor	no,
$P^{obj} = -45dB$, considerando-se acopladores com (a) $N = 2$ (b) $N = 3$ e (c) $N = 3$	=4
seções de guias de onda intermediárias compondo a estrutura, sendo $L_r = 20m$	ım .

Figura 4.13 – Comparação do $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada com o valor especificado para a perda de retorno, $P^{obj} = -45dB$, considerando-se acopladores com (a) N = 2 (b) N = 3 e (c) N = 4 seções de guias de onda intermediárias compondo a estrutura, sendo $L_T = 30mm$.

83 Figura 4.14 – Estrutura de acoplamento simétrica. 84 Figura 4.15 – Estrutura de acoplamento simétrica após a inclusão do deslocamento no condutor central. 85 Figura 4.16 – Comparação entre $|S11_{00}|(dB)$, obtido nas medidas, e simulação para o dispositivo da figura 4.14, considerando-se $L_1 = L_2 = L_3 = 10mm$. 85 Figura 4.17 – Comparação entre $|S11_{00}|(dB)$, obtido nas medidas, e simulações para o dispositivo da figura 4.15, considerando-se $L_1 = L_2 = L_3 = 10mm$ e G variando de 0.1 a 1mm. 86 Figura 4.18 – Estrutura de acoplamento entre dois guias de onda coaxiais de dimensões diferentes, com anéis dielétricos (a) depois e (b) antes e depois do 87 acoplador. Figura 4.19 – $|S11_{00}|(dB)$ para a estrutura de acoplamento ilustrada na Figura 4.18(a), para (a) Ld = 1mm, (b) Ld = 2mm e (c) Ld = 3mm. 88 Figura 4.20 - Comparação do $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada com o valor especificado para a perda de retorno, $P^{obj} = -45dB$, considerando-se (a) Ld = 1mm, (b) Ld = 2mm e (c) Ld = 3mm para a estrutura de acoplamento ilustrada na Figura 4.18(a). 89 Figura 4.21 - Comparação do $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada, referentes a segunda etapa de otimização, com o valor especificado para a perda de retorno, $P^{obj} = -45dB$, considerando-se (a) Ld = 1mm, (b) Ld = 2mm e (c) Ld = 3mm para a estrutura de acoplamento ilustrada na Figura 4.18(a). 91 Figura 4.22 – $|S11_{00}|(dB)$ para a estrutura de acoplamento ilustrada na Figura 4.18(b), para (a) Ld = 1mm, (b) Ld = 2mm e (c) Ld = 3mm. 92 Figura 4.23 - Comparação do $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada, com o valor especificado para a perda de retorno,

 $P^{obj} = -45dB$, considerando-se (a) Ld = 1mm, (b) Ld = 2mm e (c) Ld = 3mm para a estrutura de acoplamento ilustrada na Figura 4.18(b). 93

Figura 4.24 - Comparação do $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada, referentes a segunda etapa de otimização, com o valor especificado para a perda de retorno, $P^{obj} = -45dB$, considerando-se (a) Ld = 1mm, (b) Ld = 2mm e (c) Ld = 3mm para a estrutura de acoplamento ilustrada na Figura 4.18(b). 95 Figura 4.25 - Estrutura de acoplamento baseada na combinação das estruturas dos itens 3.4.1 e 3.4.2. 96 Figura 4.26 – Estrutura de suporte. 97 Figura 4.27 – $|S11_{00}|(dB)$ (a) para o primeiro suporte e (b) para o segundo suporte ilustrados na Figura 4.26. 98 Figura 4.28 - Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada e o valor especificado para a perda de retorno, $P^{obj} = -50 dB$, (a) para o primeiro suporte e (b) para o segundo suporte, ilustrados 100 na Figura 4.26. Figura 4.29 – Estrutura de transição entre dois guias de onda coaxiais de 100 dimensões distintas. Figura 4.30 – $|S11_{00}|(dB)$ para a estrutura de transição ilustrada na Figura 4.29.

101

Figura 4.31 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada e o valor especificado para a perda de retorno, $P^{obj} = -50dB$, referentes à estrutura de transição ilustrada na Figura 4.29. 102 Figura 4.32 – $|S11_{00}|(dB)$ para o acoplador ilustrado na Figura 4.25. 103 Figura 4.33 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada e o valor especificado para a perda de retorno, $P^{obj} = -50dB$, referentes à estrutura de acoplamento ilustrada na Figura 4.25. 104 Figura 4.34 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada, referente à segunda de otimização, e o valor especificado para a perda de retorno, $P^{obj} = -50dB$, da estrutura de acoplamento ilustrada na Figura 4.25. 104

Figura 4.35 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada, referente a terceira etapa de otimização, e o valor especificado para a perda de retorno, $P^{obj} = -45dB$, da estrutura de acoplamento ilustrada na Figura 4.25.

Figura 4.36 – Estrutura de acoplamento remodelada baseada no item 4.4. 108

Figura 4.37 – Estrutura de suporte remodelada. 108 Figura 4.38 – $|S11_{00}|(dB)$ para o primeiro suporte, ilustrado na Figura 4.37, para 109 (a) $L_N = 1mm$, (b) $L_N = 2mm$ e (c) $L_N = 3mm$. Figura 4.39 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada e o valor especificado para a perda de retorno, $P^{obj} = -50 dB$, referentes ao primeiro suporte, ilustrado na Figura 4.37, para (a) o primeiro e (b) segundo caso otimizado. 111 Figura $4.40 - |S11_{00}| (dB)$ para o segundo suporte, ilustrado na Figura 4.37, para (a) $L_N = 1mm$, (b) $L_N = 2mm$ e (c) $L_N = 3mm$. 112 Figura 4.41 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada e o valor especificado para a perda de retorno, $P^{obj} = -50 dB$, referentes ao segundo suporte, ilustrado na Figura 4.37, considerando-se $L_2 = 3mm$. 113 Figura $4.42 - |S11_{00}|(dB)$ para o acoplador ilustrado na Figura 4.36. 114 Figura 4.43 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura otimizada e o valor especificado para a perda de retorno, $P^{obj} = -50 dB$, referentes à Figura 4.36. 115 Figura 4.44 – Comparação entre $|S11_{00}|(dB)$ da estrutura inicial de otimização e da estrutura resultante do segundo caso otimizado e o valor especificado para a perda de retorno, $P^{obj} = -50 dB$, referentes à Figura 4.36. 116

Lista de tabelas

Tabela 3.1 – Dimensões da estrutura de acoplamento da figura 3.7.	64
Tabela 3.2 – Dimensões da estrutura de acoplamento da figura 3.9.	66
Tabela 4.1 – Dimensões dos cilindros condutores interno e externo para o	
acoplador da Figura 4.2.	70
Tabela 4.2 – Dimensões da estrutura inicial e otimizada para o acoplador com	
duas seções de guias de onda intermediárias compondo o acoplador, $N = 2$ e	
$L_T = 20mm$.	80
Tabela 4.3 – Dimensões da estrutura inicial e otimizada para o acoplador com	
três seções de guias de onda intermediárias compondo o acoplador, $N = 3$ e	
$L_T = 20mm$.	80
Tabela 4.4 – Dimensões da estrutura inicial e otimizada para o acoplador com	
quatro seções de guias de onda intermediárias compondo o acoplador, $N = 4$	е
$L_T = 20mm$.	81
Tabela 4.5 - Dimensões da estrutura inicial e otimizada para o acoplador com	
duas seções de guias de onda intermediárias compondo o acoplador, $N = 2$ e	
$L_T = 30mm$.	82
Tabela 4.6 – Dimensões da estrutura inicial e otimizada para o acoplador com	
três seções de guias de onda intermediárias compondo o acoplador, $N = 3$ e	
$L_T = 30mm$.	82
Tabela 4.7 – Dimensões da estrutura inicial e otimizada para o acoplador com	
quatro seções de guias de onda intermediárias compondo o acoplador, $N = 4$	е
$L_T = 30mm$.	83
Tabela 4.8 – Dimensões das seções de guias de onda coaxiais referentes à	
estrutura de acoplamento ilustrada na Figura 4.18.(a) e (b).	88
Tabela 4.9 – Dimensões das seções de guias de onda coaxiais resultantes da	
segunda etapa de otimização, para $Ld = 1mm$, referentes à estrutura de	
acoplamento ilustrada na Figura 4.18.(a).	90
Tabela 4.10 – Dimensões das seções de guias de onda coaxiais resultantes d	а
segunda etapa de otimização, para $Ld = 2mm$, referentes à estrutura de	
acoplamento ilustrada na Figura 4.18.(a).	90
Tabela 4.11 – Dimensões das seções de guias de onda coaxiais resultantes d	а
segunda etapa de otimização, para $Ld = 3mm$, referentes à estrutura de	

acoplamento ilustrada na Figura 4.18.(a).	91
Tabela 4.12 – Dimensões das secões de guias de onda coaxiais resultantes d	da
segunda etapa de otimização, para $Ld = Imm$, referentes à estrutura de	
acoplamento ilustrada na Figura 4.18.(b).	94
Tabela 4.13 – Dimensões das secões de guias de onda coaxiais resultantes d	da
segunda etapa de otimização, para $Ld = 2mm$, referentes à estrutura de	
acoplamento ilustrada na Figura 4.18.(b).	94
Tabela 4.14 – Dimensões das secões de guias de onda coaxiais resultantes d	da
segunda etapa de otimização, para $Ld = 3mm$, referentes à estrutura de	
acoplamento ilustrada na Figura 4.18.(b).	95
Tabela 4.15 – Dimensões envolvidas nas estruturas de suporte do acoplador	
referentes à Figura 4.26.	97
Tabela 4.16 – Dimensões resultantes dos três casos otimizados, $L_2 = 1$, 2 e	
<i>3mm,</i> para a primeira estrutura de suporte mecânico.	99
Tabela 4.17 – Dimensões resultantes dos três casos otimizados, $L_2 = 1$, 2 e	
3mm, para a segunda estrutura de suporte mecânico.	99
Tabela 4.18 – Dimensões da estrutura inicial de otimização para o acoplador	
completo, ilustrado na Figura 4.25.	102
Tabela 4.19 – Dimensões resultantes do segundo caso de otimização da	
estrutura de acoplamento completa referente à Figura 4.25.	105
Tabela 4.20 – dimensões resultantes do terceiro caso de otimização da estrut	tura
de acoplamento completa referente à Figura 4.25.	106
Tabela 4.21 – Dimensões resultantes dos dois casos otimizados, $L_2 = 2 e 3m_z$	m,
para a primeira estrutura de suporte mecânico.	110
Tabela 4.22 – Dimensões resultantes da otimização considerando $L_2 = 3mm$,	
para a segunda estrutura de suporte mecânico.	113
Tabela 4.23 – dimensões resultantes do segundo caso de otimização da	
estrutura de acoplamento completa referente à Figura 4.36.	116