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RESUMO

A previsdo precisa da geragao solar fotovoltaica ¢ um desafio crescente, especialmente
porque séries de geracdo incorporam efeitos combinados de sazonalidade, variabilidade
atmosférica e eventos operacionais dificeis de antecipar. Modelos estatisticos tradicionais,
embora eficientes em contextos estaveis, podem apresentar desempenho limitado diante de
mudangas abruptas no comportamento da série ou de condigdes climdticas atipicas. Uma
alternativa € incorporar variaveis meteorologicas contemporaneas a modelagem, permitindo
capturar variacdes do balango radiativo e da cobertura atmosférica que influenciam diretamente
a producdo de energia. Nesse contexto, o presente estudo tem como objetivo avaliar em que
medida varidveis exogenas provenientes da reanalise MERRA-2 — albedo da superficie, fragdo
total da area coberta por nuvens, radiagdo de onda longa absorvida pela superficie, espessura
optica das nuvens, temperatura da pele da superficie — melhoram a previsdo mensal da geracao
solar nas usinas de Ituverava (BA) e Pirapora (MG), comparando sistematicamente o
desempenho de modelos SARIMA e SARIMAX. Para isso, desenvolveram-se as etapas da
metodologia Box & Jenkins, abrangendo pré-processamento, identificacdo e estimagdo dos
modelos, avaliacdo em multiplas janelas temporais e proje¢ao futura das séries. Os resultados
mostraram que a inclusdo de exdgenas melhora de forma expressiva a capacidade preditiva dos
modelos, com ganhos sistemdticos em Pirapora e efeitos dependentes do regime temporal em
Ituverava. A principal contribui¢do do trabalho para a area de previsao energética esta em
demonstrar empiricamente que abordagens hibridas, que combinam modelos autorregressivos
e informagdes meteoroldgicas, aumentam a robustez das previsdes mensais de geragdo solar,
oferecendo subsidios relevantes para o planejamento a operagdo e a tomada de decisdo em

usinas fotovoltaicas no Brasil, em um cenario de rapida expansao da energia solar.
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ABSTRACT

Accurately forecasting solar photovoltaic generation is an increasing challenge, as
generation series incorporate combined effects of seasonality, atmospheric variability, and
operational events that are difficult to anticipate. Traditional statistical models, although
effective under stable conditions, may show limited performance when the series experiences
abrupt changes or atypical climatic behavior. An alternative is to incorporate contemporary
meteorological variables into the modeling process, allowing the model to capture variations in
radiative balance and cloud cover that directly influence energy production. In this context, the
present study aims to assess the extent to which exogenous variables from the MERRA-2
reanalysis — surface albedo, total cloud fraction, longwave radiation absorbed by the surface,
cloud optical thickness, and surface skin temperature — enhance monthly solar generation
forecasts for the Ituverava (BA) and Pirapora (MG) power plants, systematically comparing the
performance of SARIMA and SARIMAX models. The study applies the Box & Jenkins
methodology, including data preprocessing, model identification and estimation, evaluation
across multiple temporal windows, and future projections of the series. The results show that
incorporating exogenous variables significantly improves predictive accuracy, with consistent
gains in Pirapora and regime-dependent effects in [tuverava. The main contribution of this work
to the field of energy forecasting lies in empirically demonstrating that hybrid approaches —
combining autoregressive models with meteorological information — increase the robustness
of monthly solar generation forecasts, providing valuable support for planning, operation, and

decision-making in photovoltaic plants in Brazil, in a context of rapid solar expansion.
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1. INTRODUCAO

A transi¢do energética ¢ um dos maiores desafios contemporaneos, impulsionada pela
necessidade de reduzir emissdes de gases de efeito estufa e conter o avango das mudangas
climaticas (ONU, 2015; IRENA, 2025). Em 2024 a capacidade global de energia renovavel
alcangou 4,44 TeraWatts (TW), um crescimento de 15% em relagdo ao ano anterior,
impulsionado principalmente pela expansdo da energia solar fotovoltaica, que adicionou cerca
de 580 GW e respondeu por quase dois ter¢os das novas instalagdes no mundo (IRENA, 2025).
Com isso, as fontes renovaveis passaram a representar 43,5% da capacidade elétrica total
mundial, consolidando-se como o principal vetor da transi¢do energética global (IRENA,
2025).

No Brasil, cuja matriz elétrica é predominantemente limpa, 88% da oferta interna de
eletricidade provém de fontes renovaveis, sendo 56,8% de origem hidrica (EPE, 2025). O pais
lidera a América do Sul em capacidade renovavel instalada, com aproximadamente 919 GW
em 2024 (IRENA, 2025). Entre as fontes emergentes, a energia solar tem apresentado
crescimento expressivo e ja representa 9,3% da oferta interna (EPE, 2025).

Os estados da Bahia e de Minas Gerais destacam-se como polos da expansdo solar,
combinando alta insolagdo e investimentos robustos em infraestrutura. A Bahia abriga o
segundo maior parque solar centralizado do Brasil e lidera a geragao edlica, respondendo por
mais de 30% da produg¢ao nacional (EPE, 2025). Minas Gerais, pioneiro na geragao distribuida,
totaliza 4,5 GW de poténcia solar instalada e se mantém entre os maiores produtores do pais.
Juntos, os dois estados concentram cerca de um ter¢o da geragdo solar nacional — 23,3% em
Minas Gerais e 8,7% na Bahia —, o que refor¢a a importancia de estudos regionais que
considerem seus padrdes climaticos e operacionais (EPE, 2025).

Apesar do avanco das renovaveis, a intermiténcia e a variabilidade climdtica ainda
representam desafios significativos para a previsibilidade e a estabilidade do sistema elétrico.
A previsao assertiva da geracao solar € essencial para garantir confiabilidade e reduzir custos
operacionais associados a variabilidade atmosférica, sendo um requisito central para a
integragdo segura de niveis crescentes de energia solar (Inman et al., 2013; Breyer et al., 2017).
O Plano da Operagdo Energética 20252029 prevé que fontes renovaveis, além de micro e
minigeragao distribuidas representem cerca de um terco da capacidade total instalada do pais

até 2029, o que exigira modelos de previsdo mais robustos e flexiveis (ONS, 2025).



A diversidade climatica brasileira intensifica esses desafios, pois padroes de radiagdo,
nebulosidade e precipitacdo variam entre regides e estagdes do ano. Fendmenos como a Zona
de Convergéncia Intertropical (ZCIT) e a Zona de Convergéncia do Atlantico Sul (ZCAS)
influenciam de forma distinta o Norte—Nordeste ¢ o Sudeste, gerando regimes sazonais
contrastantes (Melo et al., 2024). Como a geragdo fotovoltaica ¢ altamente sensivel a essas
condi¢des, modelos baseados apenas em séries historicas apresentam limitagdes. Torna-se,
portanto, fundamental incorporar variaveis meteoroldogicas — como cobertura de nuvens,
temperatura e umidade — para representar de forma mais realista os fatores climaticos que
afetam a geracdo solar (Antonanzas et al., 2016).

Diante disso, este trabalho tem como objetivo propor e avaliar metodologias que
aprimorem a previsao da geracao de energia solar em usinas localizadas nos estados da Bahia
e de Minas Gerais — especificamente no Parque Solar Ituverava (BA) e no Complexo Solar
Pirapora (MG). Utilizam-se modelos da familia SARIMA, que capturam padrdes sazonais ¢
autocorrelacionados, € modelos SARIMAX, que incorporam varidveis exdgenas associadas a
condig¢des atmosféricas e de superficie, incluindo parametros de absor¢ao da radiagao, cobertura
e espessura de nuvens, refletdncia e temperatura da superficie, buscando reduzir a incerteza e
refletir com maior fidelidade as oscilagdes provocadas por fendmenos climaticos.

O estudo busca responder a trés questdes principais:

(1) em que medida a inclusao de varidveis exdgenas meteorologicas melhora o
desempenho preditivo dos modelos univariados de séries temporais aplicados a
geracdo solar;

(i1) quais combinagdes de variaveis e configuragdes de modelos apresentam melhor
ajuste para o contexto climatico e operacional das usinas analisadas;

(iii)  quais sdo os limites dos modelos SARIMA ¢ SARIMAX diante de rupturas
operacionais e mudancas estruturais na série de geragao

O trabalho estd organizado em seis capitulos. O Capitulo 1 apresenta a introdugdo, o
contexto e os objetivos do estudo. O Capitulo 2 reune o referencial tedérico sobre usinas
fotovoltaicas, previsdo de geracdo ¢ modelos ARIMA/SARIMA/SARIMAX. O Capitulo 3
caracteriza as usinas analisadas e descreve as variaveis meteoroldgicas utilizadas. O Capitulo 4
detalha a metodologia e os procedimentos de modelagem. O Capitulo 5 apresenta os resultados,

as comparagoes e as projegoes. Por fim, o Capitulo 6 retine as conclusdes do trabalho.



2. REFERENCIAL TEORICO

2.1. Usinas Fotovoltaicas

As usinas fotovoltaicas convertem diretamente a radiag@o solar em energia elétrica por
meio do efeito fotovoltaico, fendmeno em que fotons incidentes sobre materiais semicondutores
excitam elétrons, gerando uma diferenga de potencial capaz de produzir corrente elétrica
continua (Guerra et al., 2018). As células solares, compostas por jun¢des p-n, sdo agrupadas em
modulos que formam arranjos conectados a inversores e sistemas de controle, responsaveis por
converter a corrente continua (CC) em corrente alternada (CA) para injecao na rede elétrica.
Em sistemas isolados, a energia pode ser armazenada em baterias para uso posterior. A
eficiéncia desses sistemas depende de fatores fisicos, como irradidncia solar e temperatura das
células, que afeta diretamente a tensdo e o rendimento energético, além de perdas elétricas nos
inversores e na infraestrutura de conexao (Singh, 2013).

Além desses aspectos intrinsecos ao processo de conversdo, o desempenho das usinas
também ¢é condicionado por fatores operacionais associados a integracao ao Sistema Interligado

Nacional (SIN). Entre esses fatores, destaca-se o curtailment, entendido como a restrigdo

temporaria da geragdo elétrica mesmo quando ha disponibilidade de recurso solar. Esse
mecanismo ¢ utilizado pelo Operador Nacional do Sistema Elétrico (ONS) para garantir o
equilibrio carga-geracdo e preservar a estabilidade eletroenergética, especialmente em um
contexto de forte expansao das fontes renovaveis variaveis (ONS, 2025).

Segundo o Relatorio Técnico RT ONS DGL 0189/2025, o aumento do curtailment no
Brasil decorre principalmente de dois fatores: (i) a redug¢do da capacidade de escoamento do
sistema, resultante da atualizacdo dos modelos matematicos das usinas apos a perturbacao de
15 de agosto de 2023, que revelou discrepancias entre o comportamento real e o modelado; e
(i) o rapido crescimento da capacidade instalada de fontes renovaveis, concentrado no
Nordeste, em ritmo superior ao aumento da carga do sistema. Entre 2021 e 2025, a poténcia
instalada conjunta de usinas eolicas, fotovoltaicas centralizadas e micro e minigeragao
distribuida (MMGD) passou de cerca de 29 GW para quase 90 GW, um aumento de
aproximadamente 200%, sem expansdo proporcional da infraestrutura de transmissdo (ONS,
2025).

Dentro desse total, a MMGD ja representa mais de 38 GW em 2025 e deve atingir 58
GW até 2029, ampliando a complexidade da operagdo por estar fora do controle direto do ONS.



Em periodos de sobreoferta, as restricdes recaem sobre as usinas centralizadas, ja que a geragao
distribuida ndo ¢ sujeita aos cortes, o que acentua a assimetria entre agentes (ONS, 2025).

As restrigdes a geracdo sdo classificadas em trés categorias: indisponibilidade
externa, confiabilidade elétrica e razao energética. Nos ultimos anos, os cortes por sobreoferta
cresceram significativamente, totalizando 4.330 GWh em 2024, com picos de 22.766 MWmed
entre 9h e 16h, periodo de maior geracao solar (ONS, 2025). Para 2029, o ONS projeta que 96%
das restri¢des serdo motivadas por excesso de geragdao renovavel, podendo levar a perda de
até 20% da energia fotovoltaica potencial (ONS, 2025).

A mitigagdo do curtailment requer a expansao da infraestrutura de transmissdo, maior
integragdo entre os sistemas de transmissdo e distribuicdo e aprimoramento regulatorio para o
controle dos Recursos Energéticos Distribuidos (REDs). O ONS também recomenda o uso
de compensadores sincronos e politicas que promovam flexibilidade operativa e
armazenamento de energia (ONS, 2025).

Além disso, o fendmeno do curtailment representa um desafio relevante para a operacao
e o planejamento do sistema elétrico, pois resulta em perdas de energia e reducao da eficiéncia
das usinas solares. A analise de tal fendmeno deve ser conduzida de forma especifica, uma vez
que seus eventos refletem restricdes operativas e ndo a disponibilidade real de recurso solar.
Por isso, é necessario interpretar suas ocorréncias em paralelo as previsdes de geragdo, ja que
os cortes introduzem desvios que distorcem o comportamento natural da série. Assim, previsoes
acuradas, combinadas ao monitoramento sistematico dos eventos de curtailment, permitem

diagndsticos mais completos sobre a geracdo efetiva e seus condicionantes operacionais.

2.2. Previsao de Geracao de Energia Fotovoltaica

A previsao da geracdo de energia solar fotovoltaica tem se consolidado como um
componente essencial para a integracdo eficiente das fontes renovaveis ao sistema elétrico. A
variabilidade intrinseca da irradiancia solar e as rapidas flutuacdes causadas pela passagem de
nuvens podem comprometer o equilibrio entre oferta e demanda, gerar custos adicionais de
reserva € aumentar o risco de curtailment (Antonanzas et al., 2016; Inman et al., 2013). Dessa
forma, a elaboragdo de previsdes confidveis da geragao fotovoltaica ¢ fundamental tanto para o
planejamento do despacho energético quanto para a otimizacdo econdmica e operacional das

usinas (Bird et. al. 2014)



As previsdes podem ser caracterizadas por trés dimensdes principais: o horizonte de
previsdo, que representa o intervalo de tempo entre 0 momento presente € o instante futuro a
ser previsto; a resolugao temporal, que indica a frequéncia com que as previsoes sao emitidas;
e o intervalo de previsdo, que corresponde a duragdo do periodo futuro coberto pelas estimativas
(Antonanzas et al., 2016). Os métodos empregados evoluiram significativamente nas ltimas
décadas, passando de modelos puramente estatisticos baseados em séries historicas para
abordagens hibridas que integram dados meteorologicos, modelagem fisica e aprendizado de

maquina (Sobri et al., 2018).

De forma geral, as técnicas utilizadas para previsao da geracdo fotovoltaica podem ser

agrupadas em trés categorias principais:

(1) Modelos fisicos, que utilizam dados de irradiancia e temperatura para simular o

desempenho dos modulos e prever a poténcia resultante;

(2) Modelos estatisticos e de aprendizado de maquina, que estimam a geragdo com base

em padrdes historicos de comportamento da série e variaveis meteorologicas associadas; e

(3) Modelos hibridos, que combinam as duas abordagens anteriores, incorporando

elementos de fisica e estatistica (Antonanzas et al., 2016).

A Tabela 2.1 resume os principais métodos, dados de entrada e horizontes de previsao

descritos na literatura especializada.

Tabela 2.1: Principais métodos e horizontes de previsdo da geragao fotovoltaica.

Horizonte temporal

Modelos mais utilizados na literatura

Resumo

Modelo de persisténcia; modelos
autorregressivos (AR, ARMA); redes
neurais (ANN; k-NN); técnicas

A persisténcia ¢ amplamente usada
em horizontes muito curtos;

Intra-hora baseadas em vetores de movimento de ~ métodos estatisticos ¢ imagens de
nuvens (Cloud Motion Vectors — céu trazem ganhos modestos.
CMYV); imagens de céu (sky imagers).
Modelos baseados em satélite; vetores Modelos de satélite sdo eficazes até
de movimento de nuvens (CMV); 5 h; NWP apresentam melhor
Intra-dia modelos de previsao numérica do desempenho acima de 4 h;

tempo (Numerical Weather Prediction
— NWP); modelos hibridos.

abordagens hibridas também sdo
comuns.

Dia seguinte

Modelos baseados em NWP; modelos
fisicos (ex.: Solis, Ineichen, ESRA);
SARIMA/ARIMA; poés-processamento
estatistico; previsdes por ensemble.

Uso de NWP e modelos de céu
claro, ajustados por técnicas
estatisticas e combinagdes de
previsoes.




Modelos de previsdo numérica do Uso de NWP e modelos de séries

o . tempo (NWP); modelos de séries temporais ¢ regressdes sazonais
Dois dias ou mais . A
temporais (ARIMA, SARIMA); para capturar tendéncias de longo
regressoes com termos de Fourier. prazo e variabilidade climatica

Fonte: Adaptado de Antonanzas et. al. (2016)

A literatura converge em destacar que ndo existe um modelo universalmente superior:
o desempenho depende fortemente do horizonte de previsdo, da resolugcdo temporal e da
qualidade dos dados disponiveis. Para horizontes muito curtos, modelos de persisténcia
continuam sendo a referéncia basica; ja para horizontes de horas ou dias, as abordagens hibridas
e probabilisticas tendem a apresentar maior precisdo. De modo geral, a combinagdo entre
modelos fisicos e estatisticos tem se mostrado a estratégia mais robusta, especialmente quando
se utilizam dados meteorologicos de alta frequéncia e algoritmos de aprendizado de maquina
para correcdo de viés (Antonanzas et al., 2016; Sobri et al., 2018).

Entre os métodos estatisticos, os modelos da familia SARIMA (Seasonal
Autoregressive Integrated Moving Average) tém sido amplamente empregados em aplicagdes
de curto prazo para previsao da geragao fotovoltaica. Esses modelos capturam os padroes de
autocorrelacdo e a sazonalidade presentes nas séries historicas de irradidncia e poténcia,
ajustando componentes autorregressivos, integrados e de média movel que refletem a dinamica
temporal do sistema.

Os modelos SARIMA sao especialmente uteis quando a Uinica informagao disponivel €
a série de poténcia da usina, permitindo gerar previsdes rapidas e de facil interpretacdo. Apesar
da simplicidade, esses modelos servem como referéncia em estudos comparativos, sendo
frequentemente utilizados como base para avaliar métodos mais complexos. Além disso, ha
evidéncias de que a inclusdo de varidveis exogenas tende a melhorar o desempenho desses
modelos, ampliando sua capacidade preditiva (Antonanzas et al., 2016; Bacher et al., 2009).
Abordagens autorregressivas foram algumas das primeiras aplicadas a previsdo solar de curto
prazo, por modelarem adequadamente a persisténcia e a autocorrelagao das séries de irradidncia
e geragdao. Contudo, o desempenho tende a decair em horizontes superiores a poucas horas,
devido a dificuldade em representar variacdes abruptas causadas por nuvens e fendmenos
atmosféricos ndo lineares (Inman et al., 2013).

De forma complementar, os modelos ARIMA e SARIMA sdo classificados entre os
métodos estatisticos classicos, adequados para previsdes de curto prazo em contextos com

disponibilidade limitada de dados exdgenos. Embora ndo capturem plenamente a natureza
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estocastica e ndo linear da geragdo solar, o SARIMA mantém relevancia pratica por incorporar
padrdes sazonais didrios e anuais de radiacdo, mostrando-se particularmente util em séries com
periodicidade bem definida — como a geragdo mensal ou diaria de usinas solares (Sobri et al.,
2018). Evolugdes desses modelos, como o SARIMAX, ampliaram sua aplicabilidade ao
permitir a inclusdo de varidveis meteorologicas externas — irradiancia, nebulosidade,
temperatura — como covariaveis no processo autorregressivo, o que melhora seu desempenho
e aproxima o modelo estatistico da dinamica fisica do sistema sem perda de interpretabilidade
(Antonanzas et al., 2016; Sobri et al., 2018).

Entretanto, observa-se que a literatura se concentra majoritariamente em previsoes
intradiérias ou horéarias, com uso de dados meteoroldgicos de alta frequéncia. Nesse sentido, o
presente estudo amplia essa perspectiva ao avaliar a aplicabilidade dos modelos SARIMA e
SARIMAX em uma escala temporal mensal, incorporando médias mensais de variaveis
atmosféricas e de superficie como preditores para estimar a geracdo fotovoltaica nos meses
seguintes. Essa abordagem busca investigar se, mesmo com dados agregados, € possivel
capturar padrdes relevantes de variabilidade climatica e melhorar a acuracia das previsoes.

Além da relevancia operacional para usinas individuais, as previsdes de geragdo
fotovoltaica vém assumindo um papel cada vez mais central no planejamento energético de
médio prazo no Brasil, especialmente no contexto do despacho integrado hidro-termo-edlico-
solar que caracteriza o Sistema Interligado Nacional (SIN). A répida expansdao das fontes
renovaveis, associada as limitagdes da infraestrutura de transmissdo ¢ ao avanco da micro e
minigeracdo distribuida, tem elevado a complexidade da operacdo, tornando a previsdo solar
um insumo estratégico para as analises conduzidas pelo Operador Nacional do Sistema Elétrico
(ONS).

Em horizontes mensais ou sazonais, estimativas acuradas de geracdo fotovoltaica
apoiam decisdes relacionadas a politica de operagao dos reservatorios hidrelétricos, a
programacao do despacho térmico e a avaliacdo das condi¢des de seguranca operativa. A
antecipacao de padrdes de disponibilidade solar permite ao ONS ajustar a quantidade de 4gua
turbinada ou armazenada, otimizar o acionamento das usinas termelétricas e identificar, com
maior antecedéncia, possiveis riscos de sobreoferta e eventos de curtailment, especialmente em
regides com elevada concentragao de empreendimentos edlicos e solares, como o Nordeste.

Nesse contexto, modelos estatisticos como SARIMA e SARIMAX, quando aplicados a

séries mensais, apresentam potencial para complementar as ferramentas utilizadas no



planejamento energético de médio prazo, fornecendo estimativas que podem ser integradas aos
cenarios do Plano Mensal de Operagdao (PMO). Assim, a presente abordagem contribui para
aproximar métodos de previsao baseados em séries temporais das necessidades praticas do
planejamento brasileiro, fortalecendo a capacidade de antecipagao das condigdes de operacao

do SIN em um contexto de crescente participagdo da energia solar.

2.3. Modelos ARIMA

Os modelos da classe ARIMA, desenvolvidos por Box & Jenkins, constituem uma das
abordagens mais consolidadas para modelagem e previsdao de séries temporais univariadas.
Esses modelos utilizam apenas os valores passados da propria série para estimar seu
comportamento futuro (Box et al., 2015).

A formulagdo basica se apoia em dois componentes fundamentais. O modelo
autorregressivo de ordem p, denotado por AR(p), pressupde que o valor atual da série z; pode
ser expresso como uma combinagao linear de seus p valores passados acrescida de um termo
de erro aleatorio a;. Por outro lado, o modelo de médias moveis de ordem g, MA(q), relaciona
o valor presente com o erro atual e com q erros passados. A combinacao dessas duas estruturas
origina o0 modelo ARMA(p, q), adequado para séries estaciondrias que ndo apresentam
tendéncia ou sazonalidade significativa. Para que o ARMA seja valido, devem ser atendidas
simultaneamente (1) a condicdo de estacionariedade, vinculada ao componente AR, garantindo
que choques transitorios nao provoquem explosao da série e (ii) a condi¢do de invertibilidade,
associada ao componente MA, assegurando que os erros passados possam ser representados de
forma tnica por meio de valores presentes.

Quando a série apresenta tendéncia, niveis mutdveis ou ndo estacionariedade de ordem
baixa, aplica-se o modelo ARIMA(p, d, q), no qual o componente “Integrado” (I) corresponde
as diferenciacdes sucessivas necessarias para tornar a série estacionaria. Assim, o ARIMA
representa a dindmica temporal a partir da série diferenciada, que entdo pode ser modelada
como ARMA.

No entanto, diversas séries temporais exibem dependéncia em lags sazonais, isto &,
correlagdo significativa em multiplos inteiros de um periodo s. Em séries mensais, por exemplo,
¢ comum observar correlagdo elevada nos lags 12, 24, 36 etc. Nessas situagdes, a estrutura
ARIMA nao ¢ suficiente para capturar padroes de repetigao anual, sendo necessario incorporar

uma sazonalidade estocastica, segundo a qual uma observacao em determinado més se relaciona



com observagdes do mesmo més em anos anteriores (Morettin; Toloi, 1981). Esse
comportamento motivou a extensao da formulagdo ARIMA para o modelo sazonal SARIMA,
que permite representar simultaneamente dependéncias de curto prazo, efeitos de tendéncia e

periodicidade.

2.3.1. Modelo Sazonal Autoregressivo Integrado de Médias Maveis

(SARIMA)

O modelo SARIMA ¢ uma extensdo do ARIMA que incorpora tanto componentes
sazonais quanto nao sazonais, permitindo representar séries com dependéncia temporal e
padrdes periddicos. Ele ¢ indicado para séries estaciondrias ou que podem ser tornadas
estacionarias por diferencia¢io. O modelo ¢é identificado pelos pardmetros (p,d, q) X
(P,D,Q),, em que:

— p,d, g sdo os parametros do componente ndo sazonal (AR, diferenciagdo e MA);

— P,D,Q s3o os parametros do componente sazonal (AR sazonal, diferencas
sazonais € MA sazonal);

— s ¢ aperiodicidade da sazonalidade, ou seja, o nimero de periodos que define a
repeticdo do padrao (por exemplo, s = 12 para séries mensais com padrao
anual).

Formalmente, seja z, a série original, e W, = V¢VPz, a série diferenciada d vezes nio
sazonalmente e D vezes sazonalmente, onde o operador de diferenga sazonal ¢ definido como:

Vezp = 2z, — 2= (1—B%)z (2.1)

Entdo, a série W, pode ser modelada como ARMA com componentes sazonais:

¢(BYP(B)W, = 6(B)O(B*)a; (2.2)

ou, substituindo W, = V2V2z,, obtém-se a forma completa do SARIMA:

¢ (BYD(B*)VIVIz, = 6(B)O(B*)a, (2.3)
onde:
- ¢(B)=(1—-¢B—--— ¢,BP) ¢ o operador autorregressivo nao sazonal,
- 0B)=(1-6,B—— Gqu) ¢ 0 operador de médias mdveis ndo sazonal,
- ®B%)=(1—-d,B5—--— ®pBP) ¢ 0 operador autorregressivo sazonal,



- 0(B%) = (1—0,B% —--— 0,B%) ¢ 0 operador de médias moveis sazonal;
— a; € ruido branco, com média zero e variancia constante.
A aplicagdo das diferencas d e D garante que W, seja estaciondria, permitindo modelar
tanto os efeitos sazonais quanto os nao sazonais de maneira consistente (Box et al., 2015).
Além disso, em vdrias aplicagdes praticas, parte da variagdo da série nao ¢ explicada
apenas pela sua estrutura interna, mas também por fatores externos observaveis. Para esses
casos, 0 modelo SARIMAX amplia o SARIMA ao incluir variaveis exogenas, permitindo

capturar efeitos adicionais de carater explicativo.

2.3.2. Modelo Sazonal Autoregressivo Integrado de Médias Moveis

com Variaveis Exdogenas (SARIMAX)

O SARIMAX ¢ uma extensdo do modelo SARIMA que permite incluir uma ou mais
variaveis exogenas (Xx;;) para explicar parte da variagao da série z;. Em termos gerais, o modelo
combina os componentes autorregressivos € de médias modveis, tanto sazonais quanto nao
sazonais, com termos adicionais que representam o impacto das varidveis externas sobre a

variavel dependente z,. Sua formulagao pode ser expressa como:

k
B(B) D(B) V4 V2 7, = 0(B) O(B%) ac + ) fivi @5
i=1

onde:
— Xx;+ ¢ avarivavel exogena i no tempo t,comi =1, ..., k;
— B € o coeficiente associado a variavel exdgena;
— s éaperiodicidade da sazonal;
— ¢ (B) e 8(B) sao os operadores AR ¢ MA ndo sazonais;
- ®(B%)e0(B%)sa d AR e MA is;
(B°) e ©(B*) sao os operadores e sazonais;

— a; € o termo de erro aleatorio (ruido branco).

Diferentemente de uma regressdo classica, os coeficientes f; ndo podem ser
interpretados isoladamente, como o efeito direto de um aumento unitdrio em X, ja que seu
efeito depende da defasagem da série z; (Hyndman, 2010). Assim, o impacto de uma variavel
exodgena ndo ¢ imediato nem constante ao longo do tempo, dependendo do comportamento

dinamico da série.
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De forma alternativa, Hyndman (2010) prop6s representar o modelo SARIMAX como
uma regressao com erros SARIMA, onde os residuos da regressdo seguem uma estrutura

autorregressiva e de médias moveis. Assim, tem-se:

k
Zy = Z Bixit + ¢ (2.5)
i=1
Ne =GN+ Pple—p + PiNe_s + -+ PpNeps — 010, — = 0qQr_qg — 01,5 — - — B a;_gs (2.6)

Nessa formulagao, existem dois termos de erro distintos: o erro da regressao (1;) € o
erro do modelo SARIMA (a;). Assume-se que apenas o termo a, segue um processo de ruido
branco.

Utilizando o operador de defasagem B, o modelo SARIMAX pode ser reescrito de

forma compacta como:

k
0(B)0(BS)
Zy = ; Bixit + ¢(B)CD(BS)VdV? Qg (27)

Por fim, ¢ fundamental ressaltar que, antes de estimar o modelo, deve-se verificar a
estacionaridade tanto da série dependente z, quanto das varidveis exodgenas x;;. Caso alguma
delas ndo seja estaciondria, os coeficientes estimados podem se tornar inconsistentes e
comprometer a validade das inferéncias.

Dado que as séries analisadas neste estudo podem apresentar tanto efeitos sazonais
quanto influéncias externas, as formulacdes SARIMA e SARIMAX constituem alternativas

adequadas para a modelagem adotada.
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3. CARACTERIZACAO DAS USINAS E VARIAVEIS DO ESTUDO

3.1. Usinas do Estudo

Para o presente estudo, foram selecionadas duas usinas solares localizadas em regioes
distintas do Brasil: o Parque Solar de Ituverava, na Bahia, e o Complexo Solar Pirapora, em
Minas Gerais (Figura 3.1). A escolha desses empreendimentos permite analisar padrdes de
geracdo em diferentes contextos geograficos e climaticos, considerando tanto a capacidade

instalada quanto o perfil de radiacdo solar de cada local.

Figura 3.1: Localizagdo das usinas

Fonte: Elaboragdo propria (2025)

3.1.1. Parque Solar de Ituverava (BA)

O Parque Solar de Ituverava esta localizado no municipio de Tabocas do Brejo Velho,

a cerca de 800 km de Salvador. Em operagao desde setembro de 2017, ¢ um dos maiores parques
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solares da América do Sul, ocupando uma area de aproximadamente 579 hectares (equivalente
a 700 campos de futebol). O empreendimento possui 850 mil mddulos fotovoltaicos,
com capacidade instalada de 254 MW, gerando cerca de 550 GWh por ano, energia suficiente
para abastecer aproximadamente 268 mil familias e evitar a emissao de 318 mil toneladas de
CO: anualmente (Enel Green Power, 2025).

Além da geragdo de energia, o parque incorpora praticas de sustentabilidade e economia
circular, como reaproveitamento de agua da chuva e de unidades de resfriamento, compostagem
de residuos organicos e programas de restauracdo da vegetacdo nativa. A usina também
desenvolve iniciativas socioambientais, incluindo a instalagdo de poleiros e ninhos artificiais
para a fauna local e projetos sociais, como a doacdao de painéis solares obsoletos para fornecer
energia a uma bomba de adgua utilizada por familias da comunidade local (Enel Green Power,

2025).

3.1.2. Complexo Solar Pirapora (MG)

O Complexo Solar Pirapora, localizado no norte de Minas Gerais, ¢ um dos maiores
empreendimentos fotovoltaicos da América Latina. Instalado em uma area de cerca de 800
hectares, o complexo abriga mais de um milhdo de painéis solares que acompanham o
movimento do sol, maximizando a captacdo da irradiancia ao longo do dia. O projeto € operado
pela EDF Renewables em parceria com a Canadian Solar, que também fabrica os modulos
fotovoltaicos utilizados (G1, 2017).

Com capacidade instalada total de 321 MW, o complexo tem papel relevante na
diversificacdo da matriz energética brasileira, sendo capaz de abastecer cerca de 420 mil
residéncias. Em 2024, foi anunciada uma futura expansdo de 100 MW, que elevara a
capacidade total para 421 MW, com investimento de aproximadamente R$ 1 bilhao, liderado
pelas mesmas empresas (Cenario Energia, 2024). A nova fase prevé o uso de painéis bifaciais,

capazes de captar luz em ambos os lados e aumentar a eficiéncia do sistema.

A operacao do complexo evita a emissao de aproximadamente 350 mil toneladas de CO-
por ano e gera impactos socioecondmicos positivos, com a criagdo de mais de 2 mil empregos
diretos e indiretos durante o processo de expansdo. Também sdo desenvolvidas agdes de

responsabilidade social voltadas a educacdo ambiental e ao fortalecimento da infraestrutura
local, alinhando o empreendimento aos principios de sustentabilidade e desenvolvimento

regional (Cenario Energia, 2024).
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3.2. Variaveis Exdgenas Climaticas

A geragdo de energia em sistemas fotovoltaicos € fortemente condicionada por fatores
atmosféricos e de superficie, como irradiancia solar, cobertura de nuvens e temperatura da
superficie terrestre. Por isso, o uso de varidveis climaticas como regressoras exogenas em
modelos de previsdo tem se mostrado essencial para capturar a variabilidade sazonal ¢ as
flutuagdes de curto prazo associadas a radiagao solar.

De acordo com Stock e Watson (2020), uma variavel exdgena € aquela determinada fora
do modelo, ou seja, ndo correlacionada com o termo de erro, ao contrario das variaveis
endogenas, que sdo determinadas dentro da prépria estrutura do modelo. A inclusdo de varidveis
exogenas permite que parte das variacdes historicas observadas na série seja explicada por
fatores externos, levando a previsdes mais precisas (Hyndman et al., 2021).

No contexto deste trabalho, foram selecionadas variaveis atmosféricas e de superficie
diretamente relacionadas ao balanco radiativo e aos processos que determinam a geracio
fotovoltaica. Cada uma delas ¢ detalhada a seguir, com énfase em seus fundamentos fisicos e

na forma como influenciam a variabilidade da producao de energia.

3.2.1. Albedo da superficie (ALBEDO)

O albedo de superficie ¢ a razdo entre a irradiancia solar refletida pela superficie
terrestre e a irradiancia total incidente, sendo uma das principais variaveis do balanco de energia
da Terra (Lu et al., 2021). Essa propriedade optica expressa a fragdo da radiagdo solar devolvida
a atmosfera e controla a energia efetivamente absorvida pela superficie, influenciando
processos como aquecimento do solo, evapotranspiracdo e balango radiativo (Zhang et al.,
2022).

O albedo apresenta forte variabilidade espacial e temporal em fungdo de fatores como
tipo de solo, umidade, vegetagdo e uso do solo (Lu et al., 2021). Alteracdes nesses componentes
modificam o equilibrio entre absor¢ao e reflexdo da radiacao solar: albedos mais altos reduzem
o aquecimento superficial, enquanto albedos mais baixos aumentam a absor¢do de energia
(Zhang et al., 2022). Por sua relevancia climatica, ¢ considerado pela Organizagao
Meteorologica Mundial um parametro essencial de observagdo, amplamente monitorado por
sensoriamento remoto (Lu et al., 2021).

No contexto brasileiro, o albedo ¢ variavel-chave em modelos de balango de energia,

como o SEBAL, utilizados para estimar radiagdo liquida e fluxos de calor em regides tropicais
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(Angelini et al., 2021). Pequenas variagcdes nesse parametro podem gerar diferencas
significativas em evapotranspiragdo e temperatura de superficie. Conceitualmente, areas mais
claras refletem mais radiacao, parte da qual pode ser aproveitada pelos modulos fotovoltaicos.
Assim, sob certas condigdes de inclinacdo e orientagdo, maiores valores de albedo podem
favorecer a geragdo de energia solar, ceteris paribus (Zhang et al., 2022; Angelini et al., 2021).
Além disso, albedos mais altos geralmente indicam maior incidéncia de radiacdo naquele

instante, reforcando sua relagdo com periodos de maior irradiancia.

3.2.2. Fracio total da area coberta por nuvens (CLDTOT)

A varidvel CLDTOT (total cloud area fraction) representa a fragao da area horizontal
coberta por nuvens em determinado instante ou periodo, sendo definida como a razdo entre a
area coberta ¢ a 4rea total observada (Ding et al., 2023). E amplamente utilizada em produtos
de reanalise e sensoriamento remoto para quantificar o grau de cobertura do céu e avaliar os
efeitos das formagdes de nuvens sobre o balango radiativo da atmosfera.

A cobertura total de nuvens exerce influéncia direta na radiacao solar incidente, pois as
nuvens refletem e absorvem parte da radiacao de onda curta proveniente do sol, reduzindo a
irradiancia direta e modificando a componente difusa (Shuvalova, 2023). Assim, variagdes na
fragdo de nuvens provocam oscilagdes significativas na energia solar disponivel a superficie,
afetando de forma imediata a geragdo fotovoltaica.

De forma empirica, Sarkar (2016) identificou uma relagdo nao linear entre a fracao de
nuvens ¢ a razao entre a radiagdo solar global e a extraterrestre, mostrando que o aumento da
cobertura de nuvens reduz a irradiancia incidente. O autor demonstrou ainda que, na auséncia

de medigdes diretas, € possivel estimar a radiag@o solar a partir do grau de nebulosidade.

3.2.3. Radiac¢do de onda longa absorvida pela superficie (LWGAB)

A radiagdo de onda longa absorvida pela superficie (LWGAB) ¢ uma das componentes
do balango de radiacdo terrestre, representando o ganho liquido de energia térmica da superficie
a partir da diferenga entre a radiacdo emitida pela atmosfera e a emitida pela propria superficie
(Wang & Dickinson, 2013). Essa variavel reflete diretamente as trocas de energia entre a Terra
¢ a atmosfera e influencia processos de evapotranspiragdo, convecgado ¢ aquecimento superficial
(Zeng & Cheng, 2021).

A LWGAB ¢ determinada pela temperatura da superficie, pela emissividade do solo e

pelo contetido atmosférico de vapor d’agua e nuvens, que modulam a emissdo e absor¢ao de

15



radiagdo infravermelha. Em regides quentes e imidas, grande parte dessa emissdo provém das
camadas atmosféricas mais proximas do solo, tornando a LWGAB especialmente sensivel as
condigdes locais (Wang & Dickinson, 2013). Produtos satelitais, como o Global Land Surface
Satellite (GLASS), permitem estimar essa radiagdo com alta precisao e detalhamento espacial
(Zeng & Cheng, 2021).

No contexto da geracao solar, a LWGAB pode se associar ao desempenho fotovoltaico
por mecanismos distintos. Por um lado, valores mais altos indicam maior energia térmica retida
na superficie, o que tende a elevar a temperatura dos modulos e reduzir a eficiéncia das células
solares (Wang & Dickinson, 2013; Zeng & Cheng, 2021). Por outro, fluxos elevados de
radiacdo de onda longa absorvida também refletem maior carga radiativa atmosférica naquele

instante, associando-se a condi¢des de maior entrada de energia no sistema.

3.2.4. Espessura optica das nuvens (TAUTOT)

A espessura oOptica das nuvens (cloud optical thickness) ¢ uma variavel radiativa que
expressa a capacidade de uma nuvem em atenuar ou dispersar a radiagdo solar incidente, sendo
proporcional ao coeficiente de extingdo integrado verticalmente. Valores mais altos indicam
maior absor¢do e espalhamento da luz dentro da nuvem (Yi et al., 2025). A variavel TAUTOT,
disponivel em produtos de reandlise como 0 MERRA-2, representa a espessura Optica total de
todas as nuvens — liquidas e s6lidas — em diferentes altitudes, refletindo de forma abrangente
o impacto das formagdes de nuvens sobre a transmissao da radiagao solar até a superficie (Barry
et al., 2023).

Fisicamente, a espessura Optica influencia a razao entre radiacdo direta e difusa. Nuvens
finas aumentam a radiag@o espalhada, enquanto nuvens espessas reduzem a irradiancia global
ao refletirem parte significativa da radiacao para o espaco (Yi et al., 2025). Dessa forma,
variagdes na TAUTOT sdo determinantes da atenuacdo da irradidncia superficial e,
consequentemente, do potencial de geragdo fotovoltaica.

Estudos recentes mostram que o aumento da espessura Optica das nuvens esta associado
a reducdo exponencial da radiagdo solar recebida, conforme a Lei de Beer—Lambert,
confirmando seu valor como varidvel preditora robusta em modelos de previsdo de irradiancia
e poténcia solar (Wandji Nyamsi & Lindfors, 2025). Assim, quanto maior o valor de TAUTOT,
menor tende a ser a radiagdo solar incidente e, portanto, a geragao fotovoltaica - ceteris paribus

(Barry et al., 2023).
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3.2.5. Temperatura da pele da superficie (TS)

A temperatura da pele da superficie (surface skin temperature — TS) representa a
temperatura radiativa efetiva da interface entre a superficie terrestre e a atmosfera, sendo um
dos principais parametros do balanco de energia da Terra. Essa variavel reflete o estado térmico
da camada mais externa do solo, vegetagdo ou infraestrutura urbana, resultante dos fluxos de
energia absorvidos e emitidos pela superficie (Jin, 2010). A TS ¢ obtida por sensores térmicos
a bordo de satélites — como o MODIS — que captam a radiacdo infravermelha emitida pela
superficie, permitindo estimativas continuas da temperatura terrestre.

Além de sua importancia climatica, a TS ¢ relevante para a andlise de sistemas
fotovoltaicos. Estudos indicam que a instalacdo de usinas solares altera o balango energético
local: ao comparar 23 usinas de grande escala, Zhang & Xu (2020) observaram uma redugao
média de 0,53 °C na temperatura superficial apos a instalagao dos painéis, atribuida a conversao
de energia solar em eletricidade ¢ ao sombreamento das placas. Esses resultados evidenciam a
sensibilidade da TS as variagdes de absor¢do e emissao de energia em areas fotovoltaicas.

No contexto da geragdo fotovoltaica, a TS também pode se relacionar ao desempenho
dos sistemas por mecanismos distintos. Por um lado, temperaturas de pele mais altas indicam
maior energia solar incidente e absorvida pela superficie naquele instante, o que costuma estar
associado a condi¢des de maior irradiancia e, portanto, maior potencial de geracdo. Por outro,
o aumento da temperatura da superficie tende a aquecer os modulos, reduzindo a eficiéncia das

células solares e podendo limitar parte do ganho energético (Zhang & Xu, 2020).
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4. METODOLOGIA

A metodologia adotada neste trabalho segue um fluxo estruturado que organiza, de
forma clara, todas as fases da constru¢ao dos modelos e da geracao das previsoes. O fluxograma

a seguir sintetiza esse percurso e orienta o desenvolvimento das proximas subsegdes.

4.1. Bases de dados e pré-processamento

Pré- - ) 3 ) 3 W Diagnostico e
3 s
processamento g ~ = i s validagio do
4 k . S|
dos dados z : -, _ modelo

Obtengdio das
bases de dados

Figura 4.1: Fluxograma da Metodologia
Fonte: Elaboragao propria (2025)

A implementagdo computacional das etapas de obtencdo, tratamento e agregacao dos
dados foi realizada no ambiente Python (versdo 3.11.5). Nesse ambiente, foram desenvolvidas
rotinas para automatizar o download das bases, a filtragem espacial dos dados, a agregagio
temporal para frequéncia mensal ¢ a consolidagao das séries utilizadas nas etapas posteriores
de modelagem.

A etapa de modelagem estatistica e avaliagao dos modelos foi conduzida no ambiente
RStudio, utilizando o R (versdo 4.4.3), que oferece amplo suporte a estimacao, diagnostico e

validagdo de modelos SARIMA ¢ SARIMAX.

4.1. Bases de dados e pré-processamento

Os dados de geragdo de energia fotovoltaica foram obtidos junto ao Operador Nacional
do Sistema Elétrico (ONS), por meio da plataforma publica de dados abertos, que disponibiliza
informagdes de geragao horaria por usina (ONS, 2025). As séries horarias foram agregadas para
frequéncia mensal por meio da soma dos valores de geragdo de cada més. Essa escolha
metodologica estd associada ao objetivo de destacar padrdes sazonais e tendéncias de médio e
longo prazo, relevantes para fins de planejamento estratégico.

Além disso, a agregacdo mensal atenua as flutuagdes pontuais tipicas da escala horéria,
influenciadas por variagdes meteoroldgicas transitorias ou indisponibilidades operacionais de
curta duragdo, conferindo maior estabilidade estatistica as séries. Por esse motivo, nao foi
necessario aplicar procedimentos adicionais de detec¢do e remogao de outliers, uma vez que a
agregacdo mensal ja reduz substancialmente a influéncia de valores extremos.

No caso das usinas analisadas, os primeiros registros datam de meados de 2017.

Contudo, optou-se por iniciar a série em maio de 2018, uma vez que os meses iniciais
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correspondem ao periodo de comissionamento das plantas, em que a geragdo ainda nao refletia
a plena utilizagdo da capacidade instalada. A Figura 4.2 ilustra esse comportamento inicial tanto
no Parque Solar de Ituverava quanto no Complexo Solar Pirapora, evidenciando a instabilidade

da produgdo até a consolidag@o do regime normal de operagao.
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Figura 4.2: Linha de corte dos dados de geragdo de energia
Fonte: Elaboragao prépria (2025)

Para obter as varidveis exogenas utilizadas na modelagem, foi necessario recorrer a
fontes climaticas que oferecessem séries historicas completas, consistentes e espacialmente
continuas. Diante da cobertura irregular de medigdes locais nas regides das usinas, optou-se
pelo uso de dados de reanalise, que combinam observagdes meteoroldgicas de satélites, estagdes
de superficie e radares com modelos numéricos de previsdo do tempo, produzindo estimativas
continuas, homogéneas e fisicamente coerentes ao longo do tempo (Araujo et al., 2024).

Entre as principais reanalises disponiveis, destacam-se o ERAS5 e o ERAS-Land (do
European Centre for Medium-Range Weather Forecasts — ECMWF), o CFSv2 (Climate
Forecast System, da NOAA) e o MERRA-2 (Modern-Era Retrospective analysis for Research
and Applications, da NASA). Conforme demonstrado por Araujo et al. (2024), em um estudo
que comparou o desempenho dessas quatro bases em 35 localidades brasileiras, o MERRA -2
apresentou o menor erro médio quadratico e as maiores correlagdes com medi¢cdes do INMET
em 90% das estagdes analisadas. Além desse desempenho superior, o MERRA-2 oferece séries
temporais continuas desde 1980, com frequéncia hordria e resolucdo espacial de

aproximadamente 0,5° latitude x 0,625° longitude, caracteristicas que refor¢am sua adequagao
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para estudos de previsdo de geragdo fotovoltaica. Por esses motivos, 0 MERRA-2 foi adotado
como fonte das varidveis exodgenas neste trabalho.

A partir disso, foram selecionadas variaveis atmosféricas e de superficie consideradas
relevantes para a modelagem da geragao fotovoltaica: albedo da superficie (ALBEDO), fra¢ao
total da area coberta por nuvens (CLDTOT), radiacdo de onda longa absorvida pela superficie
(LWGAB), espessura Optica das nuvens (TAUTOT) e temperatura da pele da supertficie (TS).

Para associar os dados meteorologicos as usinas analisadas, foram identificados os
pontos de grade do MERRA-2 mais préximos as coordenadas geograficas de cada instalagdo.
Essa correspondéncia foi realizada por meio do célculo da distancia geodésica entre cada célula
da grade e as coordenadas reais das usinas, utilizando a formula de Haversine.

A formula de Haversine ¢ amplamente empregada em aplicagdes de navegacdo e
analises geoespaciais por estimar a menor distancia entre dois pontos na superficie terrestre a
partir de suas coordenadas geograficas (latitude e longitude). Segundo Mahmoud e Akkari
(2016), essa equagao calcula a distancia de grande circulo, assumindo a Terra como uma esfera
perfeita, aproximagdo que simplifica os calculos e apresenta erro maximo inferior a 0,3%,
considerado desprezivel em escalas regionais. Embora a Terra seja, na realidade, um esferoide
oblato, ou seja, ligeiramente achatado nos polos, essa representacao esférica ¢ suficientemente

precisa e computacionalmente mais eficiente do que métodos mais complexos, como o

de Vincenty, que utiliza um modelo elipsoidal. A equacdo geral da Haversine ¢ expressa como:

d = 2r arcsin| [sin? <A7<P) + cos(¢,) cos(p,) sin? (A?/l) (4.1)
em que:
- d éadistancia entre dois pontos na superficie terrestre;
- réoraio médio da Terra (= 6317 km);
- @4 € @, sao as latitudes dos pontos em radianos;
- Ag@ e AA representam, respectivamente, as diferencas de latitude e longitude
entre os pontos, em radianos.
Apos o célculo das distancias, selecionou-se o ponto de grade com a menor distdncia
para cada usina. Essa aproximagao ¢ considerada adequada para estudos desta natureza,
considerando que a resolugdo espacial do MERRA-2 ndo permite uma correspondéncia exata

entre coordenadas pontuais ¢ os centros de grade, ¢ que as distancias envolvidas sao
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suficientemente pequenas para representar de forma confidvel as condicdes meteorologicas
locais.

Assim como os dados de geragdo do ONS, as séries meteoroldgicas também foram
convertidas para frequéncia mensal, calculando-se a média dos valores horarios para cada més,
de modo a suavizar oscilagdes de curto prazo e destacar a sazonalidade. Essa estratégia
metodologica favorece a comparabilidade entre bases de dados distintas e contribui para

analises mais robustas do ponto de vista estatistico.

4.2. Metodologia Box & Jenkins

Com as séries de geragdo e das varidaveis meteorologicas ja consolidadas em frequéncia
mensal e submetidas ao pré-processamento necessario, procede-se a etapa da modelagem das
séries. Para isso, adotou-se a metodologia Box & Jenkins, um procedimento empirico,
sistematico e iterativo para constru¢do de modelos SARIMA e variantes com variaveis
exogenas, visando identificar um modelo parcimonioso e estatisticamente consistente, capaz de
representar a dindmica estocastica da série e produzir previsdes confiaveis (Box et al., 2015).

Os autores destacam que o processo ¢ ciclico e envolve iteragdes até que um modelo
adequado seja alcangado. Essa abordagem converge com o roteiro de Hyndman e

Athanasopoulos (2021). Com base nesses referenciais, as etapas adotadas sdo as seguintes:

4.2.1. Analise exploratoria e transformacao da série

Inicialmente, a série temporal ¢ plotada e inspecionada visualmente para identificar
padrdes sazonais, tendéncias, quebras estruturais e observagdes atipicas. Em seguida, avalia-se
a necessidade de transformagdes estabilizadoras de variancia, como Box-Cox ou logaritmica
(In y1), utilizadas quando ha indicios de heterocedasticidade. No presente estudo, a decisdo foi
guiada pela inspecdo visual da série e pela analise do comportamento da variancia, ndo sendo
identificada a necessidade de transformagao adicional.

Nessa etapa também sdo tratados outliers e eventuais descontinuidades que possam
distorcer o comportamento da série. Os dados originais de geragdo, disponibilizados em
frequéncia horéria, foram agregados para a frequéncia mensal por meio da soma. Esse
procedimento atua como um mecanismo natural de suavizagdo, reduzindo a influéncia de
flutuagdes pontuais, falhas momentaneas de medi¢do ou interrupgdes operacionais de curta
duracdo. Dessa forma, ndo foi necessaria a aplicagdo de métodos adicionais de corre¢do ou

exclusdo de outliers.
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4.2.2. Estacionarizacao e diferenciacao

Em seguida, ¢ preciso testar a estacionariedade da série para garantir que o modelo
SARIMA seja aplicavel. Neste trabalho, utilizou-se o teste de Dickey—Fuller Aumentado

(ADF), com constante, baseado no modelo:

14
Ayr=a+ yyeq1+ Z 8; Ay¢_i + & (4.2)

i=1
em que Ay, = y; — Y;_1, p corresponde ao nimero de defasagens adicionais incluidas
para eliminar autocorrelagdo serial dos residuos, e o termo constante @ permite acomodar séries
cuja média ¢ diferente de zero.
As hipoteses do teste sdo:
Hy:y = 0 (asérie possui raiz unitaria e € nao estacionaria)
{ Hi:y <0 (asérie ndo possui raiz unitaria e & estacionaria)
O coeficiente y ¢ estimado por minimos quadrados ordindrios, e a estatistica de teste é

calculada pela razao entre o estimador y e seu erro padrdo:

A

T = Y
SE()

Se o teste indicar ndo estacionariedade, aplica-se a diferenciacdo regular ou sazonal da

(4.3)

série até que suas propriedades estatisticas se tornem aproximadamente constantes ao longo do
tempo. A diferenciacdo regular consiste na subtragdo do valor imediatamente anterior:

Ay, =yt = Ye-1 (4.4)
sendo utilizada para remover tendéncias de longo prazo. Ja a diferenciagdo sazonal ¢ aplicada

quando ha padrdes que se repetem em intervalos fixos e consiste na subtracao do valor
observado em um periodo sazonal anterior:

Aye = Ye = Ye-s (4.5)
em que S representa o periodo da sazonalidade. A escolha entre diferenciagdo regular, sazonal

ou a combinacdo de ambas ¢ guiada pelos resultados dos testes de estacionariedade e pela

analise dos graficos da série e de suas fungdes de autocorrelagao.

4.2.3. Identificacao do modelo e estimaciao dos parametros

Com a série estacionarizada, examinam-se as Fung¢des de Autocorrelacdo (FAC) ¢

Autocorrelagdo Parcial (FACP) para determinar a estrutura do modelo e identificar ordens
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adequadas de componentes autorregressivos e de médias moveis — (p,d, q) para a parte
regular e (P, D, Q) para a parte sazonal.

Computacionalmente, embora a fun¢do auto.arima() do pacote forecast (Hyndman &
Khandakar, 2008) seja amplamente utilizada para automatizar essa etapa, ela ndo garante a
exploracao completa do espago paramétrico quando se deseja testar, de forma sistematica e
controlada, todas as combinagdes plausiveis de modelos. Esse ponto ¢ especialmente relevante
em contextos que exigem comparar modelos sob 0 mesmo conjunto de restrigdes e assegurar a
comparabilidade direta dos critérios de informacdo entre todas as alternativas consideradas. Por
essa razao, este trabalho adotou uma busca sistematica controlada, aplicando manualmente uma
grade de modelos definida com base na interpretacao da FAC.

Com a grade definida, cada modelo foi estimado por méxima verossimilhanca
(Maximum Likelihood Estimation — MLE), método que busca os valores dos coeficientes que
maximizam a probabilidade de observacao dos dados sob o modelo proposto. A estimagdo por
MLE fornece, para cada modelo, o valor da log-verossimilhanga (£), que representa o quao bem
aquela especificagao explica a série observada.

A partir da log-verossimilhanca e do niumero de pardmetros estimados (k), calculou-se
o Akaike Information Criterion corrigido (AICc) como critério de selecdo, recomendado em

amostras finitas por penalizar modelos excessivamente complexos e favorecer estruturas mais

parcimoniosas:
AIC = =24 + 2k (4.6)
2k(k + 1)
AlCc = AIC + ————— 4.7
¢ n—k-—1 (4.7

em que n ¢ o tamanho da amostra. Entre os modelos estimados, adotou-se sempre aquele
que apresentou o menor valor de AICc, por oferecer a melhor relagdo entre qualidade de ajuste

e complexidade do modelo.
4.2.4. Diagnostico e validacdo do modelo

4.2.4.1 Diagnostico dos residuos

Apos a estimagado, € necessario verificar se os residuos do modelo sdo compativeis com
0o comportamento esperado em um processo bem especificado, isto ¢, auséncia de

autocorrelacao e distribuigdo aproximadamente simétrica. Para isso, neste trabalho foram

aplicados dois testes formais: Ljung—Box e Jarque—Bera.
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O teste de Ljung—Box, proposto por Ljung & Box (1978), avalia simultancamente as
autocorrelacdes dos residuos até um numero predefinido de defasagens m. Um modelo
SARIMA adequadamente especificado deve produzir residuos compativeis com um ruido
branco, isto €, sem autocorrelagao significativa.

As hipoteses sdo dadas por:

{ Hy:py = py =+ = ppy = 0 (ndo ha autocorrelac@o nos residuos)
Hi:3k <mtalque p, # 0 (h& autocorrelacdo remanescente)

A estatistica de teste ¢ definida por:

A2
2L g~ om) (48)

m
Q=nn+2) Z
=t
em que n ¢ o tamanho da amostra, P € a autocorrelacdo amostral dos residuos no lag
k e m € o nimero de defasagens avaliadas
O teste de Jarque—Bera, proposto por Jarque & Bera (1980), avalia se a assimetria (S) e
a curtose (K) dos residuos sdo compativeis com os valores esperados sob normalidade (S =
0 e K = 3). Embora a normalidade ndo seja uma exigéncia estrita para fins de previsdo, ela ¢
importante no diagndstico Box—Jenkins, pois garante que a estrutura do modelo foi
adequadamente especificada e possibilita a comparagao homogénea entre diferentes modelos.
As hipoteses do teste sdo:

{ Hy:S=0e K =3 (osresiduos seguem distribuicao normal)

Hi:S#0o0ukK # 3 (ha viola¢ao da normalidade)
A estatistica de teste ¢ dada por:
n K — 3)?
JB = glszﬁ—%l ]B~)(2(2) (49)

Caso o modelo nao seja aprovado em qualquer um dos testes ele ¢ descartado. Dessa

forma, o melhor modelo selecionado ¢ aquele que combina menor AICc com aprovacao

simultanea nos testes de Ljung—Box e Jarque—Bera.

4.2.4.2 Validacao fora da amostra

Para avaliar a capacidade preditiva dos modelos em periodos ndo utilizados na
estimacdo, adotou-se uma estratégia de validacdo fora da amostra baseada em duas janelas
temporais de teste, cada uma com duragdo de 12 meses, correspondendo a um ciclo sazonal

completo (Tabela 4.1).

24



Para cada janela de teste, utilizou-se como conjunto de treinamento todo o historico
anterior. Essa estratégia garante que os modelos sejam estimados nas mesmas
condigdes, permitindo uma comparagdo direta tanto no ajuste in-sample quanto na sua

capacidade preditiva.

Tabela 4.1: Configuracdo das janelas de modelagem

Janela In-sample Out-of-sample
1 mai/2018-jul/2023 ago/2023-jul/2024
2 mai/2018-jul/2024 ago/2024-jul/2025

Fonte: Elaboracao propria (2025)

A avaliagdo das previsodes nas janelas de teste foi realizada por meio de duas métricas
amplamente utilizadas na literatura de previsdo de geragdo fotovoltaica: o0 Mean Absolute

Percentage Error (MAPE) e o Root Mean Square Error (RMSE), definidas respectivamente por:

n

1 L= D,
MAPE = —Z |u| x 100 (4.10)
n & Vi
=1
1 n
RMSE = [ (i = 9)? (4.11)
i=1

em que y; sdo os valores observados, y; os valores previstos pelo modelo e n o

nimero de observagdes no periodo de teste.

4.2.5. Previsao e aplicacio

Com o modelo validado, procede-se a geracao de previsdes. No contexto deste estudo,
os modelos SARIMA e SARIMAX sdo aplicados a previsdo da geragdo mensal de energia

fotovoltaica nas usinas de [tuverava e Pirapora.
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5. RESULTADOS E DISCUSSOES

Nesta secdo, sdo apresentados e discutidos os resultados obtidos a partir da aplicagdo da
metodologia proposta as séries de geragdo das duas usinas analisadas. Cada etapa — desde a
modelagem até a avaliagdo preditiva — foi conduzida separadamente para cada usina,
permitindo comparar o desempenho dos modelos considerados ¢ identificar aquele com melhor

capacidade preditiva para as previsoes futuras.

5.1. Analise exploratoria e transformacao da série

5.1.1. Geracao de energia fotovoltaica

As séries historicas de geragdo mensal de energia fotovoltaica das usinas de Ituverava
(BA) e Pirapora (MG) apresentam oscilacdes irregulares ao longo do tempo, com variacdes de
amplitude entre meses e anos (Figura 5.1). Embora seja possivel identificar padrdes recorrentes
de aumento e redugao da producao, esses ciclos ndo seguem uma periodicidade rigidamente
definida, indicando sazonalidade moderada ou varidvel. Esse comportamento ¢ caracteristico
de usinas em regides tropicais, onde a distribuicdo anual da radiacao solar ¢ relativamente
uniforme, e as flutuacdes de geracdo sdo influenciadas principalmente por condigdes
meteoroldgicas transitorias, como cobertura de nuvens, precipitagdo e temperatura ambiente,

além de fatores operacionais, como manutencdes ¢ degradagao dos modulos.
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Figura 5.1: Série temporal mensal de gerag@o de energia fotovoltaica

Fonte: Elaboragdo propria (2025)
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Em relagdo as estatisticas descritivas apresentadas na Tabela 5.1, observa-se que a usina
de Pirapora apresenta um nivel médio de geragdo mensal superior ao de Ituverava (63.797
MWh contra 36.105 MWh). No entanto, [tuverava exibe maior variabilidade relativa,
com coeficiente de variagdo (CV) de 17,3%, enquanto Pirapora apresenta CV de 14,6%,

indicando maior estabilidade na produg¢do ao longo do periodo analisado.

Tabela 5.1: Estatisticas descritivas de gerag@o de energia fotovoltaica

Usina Média Desvio Padrdio Minimo Mdximo cVv Assimetria Curtose
Ttuverava | 36.105,40 6.260,90 20.581,40 51.427,20 17,30 -0,37 3,22
Pirapora | 63.797,30 9.286,70 35.793,50 85.841,90 14,60 -0,33 3,63

Fonte: Elaboragao propria (2025)

Em ambas as séries, a assimetria ligeiramente negativa sugere uma leve concentragdo
de valores acima da média, e a curtose proxima a trés caracteriza distribuigdes
aproximadamente mesocurticas, sem ocorréncia expressiva de valores extremos. Esses
resultados indicam que as séries de geracdo das duas usinas apresentam comportamento
estatistico estavel e consistente, com variagdes atribuidas principalmente as condigdes
atmosféricas locais, sem evidéncias de distor¢des significativas nos dados.

No contexto da transformacdo da série, verificou-se na analise exploratoria que nao
havia sinais de heterocedasticidade, ndo sendo necessaria a aplicacado de técnicas de
estabilizacdo da variancia, como Box—Cox ou transformacao logaritmica. As séries de geracao
mantém amplitude relativamente estdvel ao longo dos anos, ndo apresentam
heterocedasticidade visivel e exibem distribui¢do aproximadamente mesocurtica. Dessa forma,
optou-se por preservar a escala original dos dados, garantindo interpretacao direta dos
resultados e coeréncia fisica com a variavel de interesse (MWh).

A distribuigdo dos valores pode ser observada nos histogramas da Figura 5.2, que
confirmam a concentracdo de frequéncias em torno das médias, sem caudas alongadas. Em
Ituverava (BA), observa-se uma maior ocorréncia de valores de geracao baixos, sugerindo
episodios pontuais de limitagdo operacional ou redu¢do temporaria da produgdo. J4 em Pirapora
(MQG), a distribuicdo ¢ mais ampla, refletindo uma variagcao mais acentuada entre periodos de

alta e baixa geracgao.
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Figura 5.2: Histogramas da geragdo mensal das usinas
Fonte: Elaboragao propria (2025)
O boxplot comparativo (Figura 5.3) complementa essa analise, mostrando que Pirapora
apresenta niveis médios de geracdo mais elevados, porém com maior dispersdo e presenga de
valores extremos, enquanto Ituverava mantém menor média, mas com comportamento mais

concentrado ¢ estavel.
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Figura 5.3: Boxplot comparativo das usinas Ituverava (BA) e Pirapora (MG)
Fonte: Elaboragdo propria (2025)
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A decomposicdo STL das séries (Figura 5.4) permite identificar de forma clara os
componentes de tendéncia, sazonalidade e ruido. Observa-se a existéncia de uma sazonalidade,
com picos ¢ vales que se repetem periodicamente, e uma tendéncia de queda mais pronunciada
a partir de 2023, sobretudo em Ituverava. Essa reducao pode estar relacionada a fatores

operacionais que impactaram a producdo efetiva. O componente residual mostra

comportamento essencialmente aleatorio, indicando boa separagdo das componentes da série.
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Figura 5.4: Decomposi¢do STL das séries de geracdo fotovoltaica
Fonte: Elaboragdo propria (2025)

As Fungdes de Autocorrelacao (FAC) e Autocorrelagdo Parcial (FACP) das séries de
geracdo mensal (Figura 5.5) indicam dependéncia temporal de curta duracdo em ambas as
usinas, compativel com processos estacionarios. Em Ituverava (BA), observam-se
autocorrelagdes positivas significativas apenas nos primeiros lags, seguidas de um répido
decaimento para valores proximos de zero, sem indicagdo de tendéncia persistente ou
sazonalidade marcada. A FACP reforca esse padrdo ao exibir um pico dominante no primeiro
lag e valores pouco expressivos nas defasagens seguintes, sugerindo uma estrutura
autorregressiva de baixa ordem. Em Pirapora (MG), a FAC também apresenta correlagdes
iniciais moderadas e decaimento relativamente rapido, com oscilagdes de pequena magnitude
em defasagens mais longas, possivelmente associadas a uma componente sazonal leve. A FACP

mantém significancia concentrada no primeiro lag, apontando novamente para uma dinamica

de memoria curta.
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Figura 5.5: Fungdes de Autocorrelagdo (FAC) e Autocorrelagio Parcial (FACP) das séries de geracdo
Fonte: Elaboragéo propria (2025)

5.1.2. Variaveis meteorologicas exdogenas

As varidveis meteoroldgicas selecionadas como potenciais explicativas da geragdo
fotovoltaica foram: albedo da superficie (ALBEDO), cobertura de nuvens (CLDTOT), radiacao
de onda longa absorvida pela superficie (LWGAB), espessura oOptica das nuvens
(TAUTOT) e temperatura da superficie (TS). Para cada usina, as séries mensais dessas
varidveis foram extraidas do ponto de grade do MERRA-2 mais préximo as suas coordenadas
geograficas, de modo a representar adequadamente as condicdes locais de radiagdo, temperatura
e cobertura atmosférica. A proximidade entre cada usina e o respectivo ponto de grade foi obtida
por meio do calculo de distancia baseado na formula de Haversine, conforme descrito na Sec¢ao
4.1. A Tabela 5.2 apresenta a correspondéncia entre as coordenadas reais das usinas, 0s pontos

de grade utilizados e as distancias calculadas.

Tabela 5.2: Correspondéncia entre coordenadas das usinas e os pontos de grade do MERRA-2

Usina Coordenadas Reais Ponto de grade do MERRA 2 Distincia (km)
Ituverava (BA) | Lat.—12,5996°, Lon. —44,1114° Lat. —12,5°, Lon. —44,375° 30,7
Pirapora (MG) | Lat.—17,4066°, Lon. —44,9219° Lat. —17,5°, Lon. —45,0° 13,3

Fonte: Elaborag@o propria (2025)

30



Tendo estabelecida essa correspondéncia espacial, a Figura 5.6 apresenta as séries

mensais das varidveis meteorologicas para Ituverava (BA) e Pirapora (MG).
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Figura 5.6: Séries temporais das variaveis meteoroldgicas exdgenas
Fonte: Elaborag@o propria (2025)

Observa-se que as variaveis exibem padroes sazonais anuais bem definidos, compativeis
com a alternancia entre os periodos seco e chuvoso caracteristicos do clima tropical. O albedo
destaca-se pela diferenca de comportamento entre as localidades: em Pirapora, a série
apresenta sazonalidade mais regular e bem-comportada, refletindo a maior estabilidade
climatica e a presenca de estagdes do ano mais definidas. Em Ituverava, o padrdo ¢
relativamente mais irregular, possivelmente associado a maior variabilidade atmosférica
regional, como flutua¢des na umidade e na cobertura de nuvens, que influenciam a refletancia
média estimada pelo modelo de reanalise. Além disso, observa-se que em Pirapora ha relagdo
inversa entre ALBEDO e CLDTOT, coerente com o efeito fisico da cobertura de nuvens na
redugdo da radiacao refletida pela superficie.

No que se refere a necessidade de transformacao das séries exdgenas, também nao se
observou qualquer indicio de variancia ndo constante ou assimetria acentuada que justificasse
procedimentos como Box—Cox ou logaritmo natural. As varidveis meteorologicas
apresentaram dinamica estavel, com amplitude aproximadamente constante e distribuigao
visualmente simétrica, além de sazonalidade anual bem definida, sem evidéncias de tendéncia
ou heterocedasticidade.

A Figura 5.7 apresenta as Fungdes de Autocorrelagdo (FAC) das varidveis exogenas

para Ituverava ¢ Pirapora. Em ambas as localidades, observam-se picos em defasagens
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multiplas de 12 meses, confirmando a presenca de um componente sazonal anual consistente

com os padroes observados nas séries temporais.
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Figura 5.7: Fungdes de Autocorrelagdo (FAC) das varidveis meteorologicas exodgenas
Fonte: Elaboragdo propria (2025)

Fora os picos sazonais, as autocorrelagdes decaem rapidamente e permanecem proximas
de zero, indicando baixa persisténcia temporal e auséncia de tendéncia de longo prazo. Esses
resultados sugerem que as séries apresentam comportamento estatisticamente estavel,
com sazonalidade bem definida e estacionariedade em média e varidncia. Assim, mostram-se
adequadas ndo apenas para uso como variaveis explicativas em modelos SARIMAX, mas
também para previsoes independentes com modelos da familia SARIMA, permitindo proje¢des

futuras das variaveis meteorologicas e, consequentemente, da geracao fotovoltaica.

5.1.3. Relacio entre a geracao de energia e as variaveis exdgenas

A fim de investigar a influéncia das varidveis meteorologicas sobre a geragdo mensal
de energia fotovoltaica, realizou-se uma analise de correlagdo linear de Pearson, que mede a
intensidade e a direcdo da associagdo linear entre duas variaveis continuas (Benesty et al.,
2009). Como ja estabelecido na secdo anterior, utilizaram-se as séries meteoroldgicas
correspondentes a localizacdo de cada usina. Considerando que os efeitos meteorologicos
influenciam a geracdo de forma quase imediata, optou-se por analisar correlagdes
contemporaneas (lag 0), sem defasagem temporal entre as séries de geragdo e as variaveis

exogenas. (Jebli et al., 2021).
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A significancia estatistica das correlagdes foi avaliada individualmente pelo teste t de
Student, que testa a hipotese nula de auséncia de correlagdo populacional (Hy: p = 0) (Pearson,
1932). Adotou-se nivel de significancia de 10% para identificar as relagdes estatisticamente
relevantes.

Em Ituverava, o albedo, a espessura optica das nuvens (TAUTOT), a cobertura de
nuvens (CLDTOT) e a temperatura da superficie (TS) apresentaram correlacdes

estatisticamente significativas com a geragdo (Tabela 5.3).

Tabela 5.3: Correlag@o entre variaveis exogenas e geragdo na Usina de Ituverava (BA)

Variavel Correlacao p-valor Significativa
ALBEDO 0,322 0,002 *
TAUTOT -0,267 0,013 *
CLDTOT -0,22 0,041 *

TS 0,207 0,055 *
LWGAB -0,135 0,212

Fonte: Elaboracao propria (2025)

O albedo e a temperatura da superficie (TS) apresentaram correlagdes positivas com a
geracdo, sugerindo que condigdes tipicas de maior irradidncia — como céu mais limpo, maior
refletancia da superficie e temperaturas elevadas — tendem a coincidir com maior produgdo
fotovoltaica. Em contraste, a espessura optica das nuvens (TAUTOT) e a cobertura de nuvens
(CLDTOT) exibiram correlacdes negativas, coerentes com o efeito de atenuacao da radiagdo
solar causado pela presenga de nuvens. A variadvel radiacdo de onda longa absorvida pela
superficie (LWGAB), embora também negativa, apresentou correlacio fraca.

Em Pirapora, a temperatura da superficie (TS) apresentou a correlacdo mais elevada e
estatisticamente significativa com a geragao (Tabela 5.4), refor¢cando seu papel como indicador
indireto de irradiancia solar. As demais varidveis, individualmente, apresentaram correlagdes

fracas e ndo significativas, mas com sinais coerentes com o comportamento fisico esperado.

Tabela 5.4: Correlag@o entre variaveis exogenas e geracdo na Usina de Pirapora (MG)

Variavel Correlagio p-valor Significativa
TS 0,424 < 0,001 *
ALBEDO 0,163 0,132
TAUTOT -0,154 0,155
LWGAB 0,059 0,59
CLDTOT -0,041 0,708

Fonte: Elaboragdo propria (2025)
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As matrizes de correlagdo (Figura 5.8) evidenciam relagdes consistentes entre as
variaveis atmosféricas analisadas. Observa-se uma forte interdependéncia entre CLDTOT,
LWGAB e TAUTOT (r > 0,85), indicando que essas varidveis representam aspectos
complementares de um mesmo fendmeno fisico — a interagdo entre nuvens, vapor d’agua e

radiacao incidente.

Matriz de Correlagao ltuverava (BA) Matriz de Correlagao Pirapora (MG)
TS 0.21 0.24 023 0.51 0.15 1 TS 0.42 -0.27 0.42 0.66 0.27 1
TAUTOT  -0.27 -0.29 0.89 0.85 1 0.15 TAUTOT  -0.15 08 0.87 0.84 1 027 r
1.0
LWGAB -0.14 -0.22 0.87 1 0.85 0.51 LWGAB 0.06 -0.84 09 1 0.84 0.66 05
0.0
CLDTOT  -0.22 -0.3 1 0.87 0.89 023 CLDTOT  -0.04 -0.83 1 0.9 0.87 042
0.5
ALBEDO 0.32 1 -0.3 -0.22 -0.29 024 ALBEDO 0.16 1 0.83 -0.84 -0.8 -0.27 1.0
Geragao 1 0.32 0.22 -0.14 -0.27 0.21 Geragao 1 0.16 -0.04 0.06 0.15 042
® o 3 @ 3 o £ 5 @ 3y <2
£ & &£ & & X & &F & &L
T R A & @« @ ¥

Figura 5.8: Matriz de Correlagao
Fonte: Elaboragdo propria (2025)

As correlagdes elevadas observadas entre algumas dessas varidveis meteorologicas
sugerem a presenca de multicolinearidade, isto €, dependéncia linear entre os preditores. Esse
fendomeno ocorre quando duas ou mais varidveis explicativas compartilham informagdes
redundantes, o que pode pode gerar coeficientes com sinais/magnitudes pouco estaveis,
aumentar erros-padrio e até mascarar significancias individuais mesmo quando o R? do modelo
¢ alto (Thompson et al., 2017).

Para mensurar o grau dessa redundancia, aplicou-se o Fator de Inflagdo da Variancia

(Variance Inflation Factor — VIF), calculado como:
1
VIF; = —— (5.1)

em que Rjz representa o coeficiente de determinagdo da regressdo da variavel j sobre as

demais. O VIF quantifica o quanto a variancia do coeficiente de j ¢ inflada pela correlagdo com

outros preditores. Quanto a pontos de corte, a literatura alerta que ndo hd consenso rigido:

valores maiores que 10 sdo por vezes usados como indicativo de multicolinearidade “severa”,
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enquanto faixas intermedidrias (5—10) sugerem atengdo, mas a interpretacdo deve considerar

tamanho amostral e R? do modelo, evitando decisdes dicotdomicas (Thompson et al., 2017).
Tabela 5.5: Fator de Inflagdo da Variancia (VIF) entre exdgenas

Variavel VIF Ituverava (BA) Classificacao VIF Pirapora (MG) Classificacao

LWGAB 11,15 Alta 39,62 Alta
TAUTOT 7,39 Moderada 7,13 Moderada
CLDTOT 6,88 Moderada 8,17 Moderada
TS 2,78 Baixa 7,85 Moderada
ALBEDO 1,30 Baixa 8,17 Moderada

Fonte: Elaboragao propria (2025)

Os resultados apresentados na Tabela 5.5 indicaram colinearidade moderada a alta nas
variaveis CLDTOT, LWGAB e TAUTOT em ambas as usinas, mas sem colinearidade perfeita
(r < 1), 0 que ndo inviabiliza a estimagao do modelo. Essa redundancia parcial é esperada, uma
vez que essas variaveis representam diferentes dimensdes do balango radiativo atmosférico.

Dessa forma, optou-se por testar todas as combinacdes possiveis de varidveis exdgenas
na modelagem SARIMAX, buscando capturar efeitos conjuntos e potenciais interagdes nao
lineares entre os fatores atmosféricos. Embora os valores de VIF indiquem certo grau de
multicolinearidade, essa condi¢ao ndo inviabiliza o modelo, pois o foco deste estudo ¢ previsao,
e nao inferéncia causal. De acordo com Thompson et al. (2017), a multicolinearidade pode

aumentar a variancia dos coeficientes, mas ndo compromete o desempenho preditivo se o

modelo estiver corretamente especificado.

5.2. Estacionariedade e diferenciacao

A andlise exploratoria das FAC e FACP na se¢@o 5.1 sugeriu que tanto as séries de
geracdo quanto as séries das variaveis exodgenas apresentam comportamento estavel ao longo
do tempo, sem tendéncia deterministica pronunciada e com sazonalidade bem delimitada nas
variaveis exdgenas, indicando um comportamento estacionario. Para verificar formalmente essa
evidéncia, aplicou-se o teste Dickey—Fuller aumentado com constante, conforme descrito na
secao 4.2.

Neste estudo, adotou-se nivel de significancia de 5%, que corresponde a um valor critico
de -2,89. Valores da estatistica de teste mais negativos que os criticos levam a rejeicdo da
hipdtese nula de raiz unitaria e, portanto, a conclusao de que a série € estacionaria. A Tabela

5.6 apresenta os resultados para as séries analisadas.

35



Tabela 5.6: Resultados do Teste ADF para as Séries de Geragdo e Varidveis Exdgenas

Série Estatistica de Teste Resultado
Ituverava (BA) -3,71 Estacionaria
Pirapora (MG) -4.86 Estacionaria

ALBEDO 6,24 Estacionaria
CLDTOT -4.49 Estacionaria
LWGAB 4,97 Estacionaria
TAUTOT 478 Estacionaria
7S -5,89 Estacionaria

Fonte: Elaboragdo propria (2025)

Os resultados confirmam que nenhuma das séries apresenta raiz unitaria, ou seja, todas
sdo estaciondrias em nivel ao nivel de significancia adotado. Esse diagnostico € consistente com
o comportamento observado visualmente nas analises anteriores, em que nao se verificaram
tendéncias persistentes ou padrdes de ndo estacionariedade. Dessa forma, a modelagem pdde

ser conduzida diretamente em nivel, sem a necessidade de diferenciagdo regular adicional.

5.3.1dentificacao, Estimaciao e Diagnostico dos modelos

Uma vez confirmada a estacionariedade das séries, procedeu-se a etapa de identificacao
e estimagdo dos modelos. Apesar de apresentarem comportamento estatisticamente estavel ao
longo da maior parte do periodo analisado, as séries de geragdo exibem, nos meses finais,
reducdes atipicas de geragdo que se desviam do padrao historico dominante.

Diante desse comportamento, retoma-se a estratégia de validacdo fora da amostra
definida na Sec¢do 4.2.4.1, aplicando-se as duas janelas temporais de teste de 12 meses
apresentadas na Tabela 4.1, permitindo avaliar o desempenho dos modelos em um periodo
alinhado ao padrao histérico e no trecho recente de comportamento distinto.

No caso dos modelos SARIMAX, foi necessdrio, adicionalmente, especificar as
varidveis climaticas correspondentes ao periodo de teste. Para cada usina, utilizaram-se os
valores contemporaneos (lag 0) das varidveis exdgenas obtidos no ponto de grade MERRA -2
mais proximo as coordenadas geograficas da usina, conforme Tabela 5.2.

Com as variaveis exogenas alinhadas, procedeu-se a identificacio dos modelos

SARIMA. Conforme descrito na segdo 4.2, a identificagdo dos modelos SARIMA foi conduzida
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por meio de uma varredura sistematica em uma grade controlada de combinagdes possiveis de
(p,d,q9)(P,D, Q),. A definicio dessa grade baseou-se exclusivamente em evidéncias empiricas
da série:

e Diferenciagdo regular (d) — o teste ADF indicou que a série de geragdo ja era
estacionaria em nivel, justificando a escolha de d = 0.

e Diferenciagdo sazonal (D) — a inspecao da FAC mostrou que os lags sazonais (12, 24,
36) permaneciam dentro das bandas de significancia, sem picos representativos de raiz
unitaria sazonal. Assim, definiu-se D = 0, permitindo comparabilidade plena dos AICc
entre os modelos.

e Ordens maximas (p,q,P,Q)— a analise conjunta das FAC e FACP indicou
dependéncia temporal significativa apenas nos primeiros. Com base nisso,
estabeleceram-se limites coerentes € parcimoniosos: Pmax = 35 @max = 3> Pmax = 2,
Qmax = 2.

Para cada modelo da grade foram calculados e armazenados o AICc e os resultados dos
testes de diagnostico (Ljung—Box e Jarque—Bera). A selegdo final seguiu exatamente os critérios
metodologicos da segdo 4.2, considerando apenas os modelos estatisticamente validos. Assim,
o melhor modelo em cada janela foi definido entre aqueles que:

1. Apresentaram o menor valor de AICc dentre todas as especificacdes estimadas; e

2. Foram aprovados simultaneamente nos testes de diagnostico, adotando-se:

o p-valor = 0,10 no teste de Ljung—Box, assegurando maior rigor na detec¢do de
autocorrelacdo residual;

o p-valor > 0,05 no teste de Jarque—Bera, garantindo aderéncia adequada a
suposicao de normalidade dos residuos.

O desempenho preditivo dos modelos selecionados nas janelas de teste foi entdo
avaliado conforme o procedimento de valida¢dao fora da amostra descrito na Secdo 4.2.1.4,
utilizando as métricas de MAPE e RMSE definidas nas Equacdes (4.10) e (4.11).

O mesmo procedimento descrito ao longo desta se¢do foi integralmente aplicado aos
modelos SARIMAX. Nesse caso, todas as combinagdes das varidveis exogenas
contemporaneas foram cruzadas com a grade de ordens SARIMA definida anteriormente,
resultando em uma varredura completa das especificagdes possiveis.

As Tabelas 5.7 e 5.8 apresentam, para cada usina e para cada janela, os melhores

modelos SARIMA ¢ SARIMAX identificados, juntamente com suas principais métricas: o
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AICc obtido no periodo de treinamento, os p-valores dos testes de diagndstico dos residuos

(Ljung—Box e Jarque—Bera) e os erros de previsdo no periodo de teste.

Tabela 5.7: Modelos selecionados para previsdo da geragéo fotovoltaica em Ituverava

Melhor Modelo Exdgenas AICc RMSE MAPE P -Z;or p -ygor
SARIMA  SARIMA(2,0,1)(0,0,2)(12] - 1273 6037 1331% 025 0,56
3
§ TAUTOT 10 +
~
SARIMAX ~ SARIMA(1,0,0)(0,0,2)(12] AL};EDI&IM 1225 7296 1745% 012 0.65
LWGAB_10
SARIMA  SARIMA(2,0,1)(0,0,2)(12] - 1512 11373 4123% 0,37 0,32
N
3 CLDTOT 10 +
S TAUTOT 10 +
SARIMAX ~ SARIMA(1,0,1)(0,02)121 ALBEDO 10+ 1472 10099 35.85% 0,10 0,38
TS 10+
LWGAB _10

Fonte: Elaboragdo propria (2025)

A Figura 5.9 apresenta, para as duas janelas de teste, a comparagdo visual entre a

geragao real e as previsdes dos modelos SARIMA e SARIMAX em Ituverava, evidenciando as

diferencas no nivel previsto e na capacidade de cada modelo acompanhar as variacdes mensais

da série.
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Figura 5.9: Previsdo da geragdo fotovoltaica nas janelas de teste em Ituverava

Fonte: Elaboracdo propria (2025)
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Os resultados de Ituverava mostram comportamentos distintos entre as duas janelas
analisadas. Na Janela 1, embora o SARIMAX tenha apresentado um AICc aproximadamente
4% menor que o SARIMA — indicando melhor aderéncia ao conjunto de treinamento — essa
vantagem nao se manteve no periodo de teste. O erro percentual médio do SARIMAX foi cerca
de 31% maior que o do SARIMA, além de apresentar maior magnitude média dos erros
quadraticos. Nesse intervalo, em que a série ainda segue um padrao relativamente tipico de
variacao, o modelo univariado mostrou-se mais eficaz, sugerindo que a inclusdo das exogenas
nao trouxe ganhos preditivos. O modelo SARIMAX selecionado incorporou TAUTOT 10,
ALBEDO 10, TS 10 ¢ LWGAB _10. Entre essas varidveis, ALBEDO, TAUTOT e TS
apresentaram correlagdes significativas com a geracdo na analise feita na secdo 5.1.3, mas
CLDTOT — também significativa — nao foi incluida, ao passo que LWGAB foi selecionada
apesar de sua correlagdo mais fraca.

Na Janela 2, o cenario se inverte. Assim como na primeira janela, o SARIMAX
apresentou melhor ajuste em treinamento, reduzindo o AICc em aproximadamente 3%. No
entanto, dessa vez, o ganho também ocorreu no teste: o erro percentual médio caiu cerca de
13% em relagdo ao SARIMA, e houve igualmente redugdo na magnitude média dos erros
quadréaticos. Essa janela coincide com o trecho de queda mais acentuada e comportamento
atipico da série, em que a geracgao se afasta de forma intensa do padrdo historico. Nesses meses
mais desafiadores, o SARIMAX acompanhou melhor a trajetéria observada. O modelo
selecionado incorporou todas as varidveis exogenas contemporaneas — ALBEDO 10,
CLDTOT 10, TAUTOT 10, TS 10 e LWGAB 10. Essa especificagdo reflete de maneira direta
o padrdo de correlagdes estimado anteriormente, j& que ALBEDO, TAUTOT, CLDTOT e TS
estavam associadas de forma significativa ao comportamento da geragdo, enquanto LWGAB,
embora menos correlacionada isoladamente, estd fisicamente ligada ao regime de nuvens. A
inclusdo conjunta das variaveis torna o modelo mais responsivo as mudancas atmosféricas que
caracterizam esse periodo.

De forma geral, em Ituverava, os resultados indicam que o ganho proporcionado pelas
variaveis exogenas depende do regime da série. Em periodos mais regulares, como na Janela 1,
o SARIMA ¢ suficiente e tende a generalizar melhor. Ja em momentos de mais dificil previsao,
como na Janela 2, o SARIMAX se mostra mais robusto ao incorporar informagdes
meteorologicas adicionais, reduzindo os erros de previsdo e capturando com maior

sensibilidade as variagdes nas condi¢des de operagao da usina.
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Tabela 5.8: Modelos selecionados para previsdo da geragio fotovoltaica em Pirapora

Fonte: Elaboragdo prépria (2025)

Melhor Modelo Exogenas AICc RMSE MAPE P -Z‘ZW p -;tgor
_ | SaRmA  SARIMA(10.2)2.00)2 ; 1319 6796  9,15% 082 0,68
s
2
& CLDTOT 10+
SARIMAX ~SARIMA(2,03)(0,0,1y21 TAUTOT 10+ 1265 4573  552% 026 0,5
LWGAB. 10
| sarmz4 SARIMA(LO.1)(10.0)2 ; 1566 16096 29.71% 0,62 0,59
3
V
S
~
SARIMAX ~ SARIMA(1,0,1)(1,0,1)12] T:LUBTE%%I?OJF 1504 10370 18,92% 024 0,52

A Figura 5.10 apresenta a comparacao visual entre a geracdo real e as previsdes dos

modelos SARIMA e SARIMAX em Pirapora, permitindo observar como cada especificagdo se

ajusta ao nivel da série e a sua variabilidade mensal.

Pirapora (MG)

80000

70000

60000

Geracao (MWh)

50000

40000

QS Q
% B
¥ &
P P
Data
— Real = SARIMA = SARIMAX

Figura 5.10: Previsdo da geragdo fotovoltaica nas janelas de teste em Pirapora

Fonte: Elaboragéo propria (2025)

Os resultados de Pirapora mostram que a inclusdo de varidveis exogenas trouxe ganhos

substanciais. Na Janela 1, o SARIMAX reduziu o AICc em aproximadamente 4% em relacao

ao SARIMA, indicando melhor ajuste no treinamento. No periodo de teste, a melhora foi ainda
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mais expressiva: 0 MAPE caiu cerca de 39,7% e o RMSE reduziu-se em aproximadamente
32,7%. A composi¢ao do modelo selecionado — CLDTOT, TAUTOT e LWGAB — reflete
parcialmente as relagdes identificadas na analise de correlagao da se¢ao 5.1.3. Embora nenhuma
dessas varidveis tenha se mostrado individualmente forte, dado que apenas TS apresentou
correlagdo significativa com a geragdo, esse conjunto representa diferentes dimensdes da
cobertura de nuvens e do balango radiativo atmosférico. Como essas variaveis sao altamente
correlacionadas entre si e estdo diretamente relacionadas com a irradiancia efetiva, sua inclusido
¢ coerente com o comportamento fisico da usina e ajuda a explicar por que o SARIMAX
apresentou desempenho superior nesse intervalo.

Na Janela 2, marcada por quedas acentuadas e comportamento atipico da série, os ganhos
tornaram-se ainda mais relevantes. O SARIMAX voltou a reduzir o AICc em cerca de 4% e
melhorou a previsao no teste, com reducao aproximada de 36% no MAPE e de 35% no RMSE.
Nesse caso, o modelo selecionado incorporou TAUTOT e ALBEDO, duas varidveis cuja
interpretagdo fisica dialoga diretamente com condi¢des atmosféricas instaveis: TAUTOT esta
associada a espessura Optica das nuvens, que atenua a irradiancia, enquanto ALBEDO reflete
mudanc¢as no comportamento radiativo da superficie. Ainda que ALBEDO ndo tenha exibido
correlacgdo significativa isoladamente na analise preliminar, sua inclusdo ao lado de TAUTOT
¢ consistente com o alto grau de associacdo linear entre varidveis atmosféricas observado na
matriz de correlagdo. Assim, em Pirapora, a escolha das variaveis exogenas nos modelos
vencedores mantém coeréncia fisica com o fendmeno, contribuindo de forma clara para a
melhora preditiva em ambos os regimes analisados.

De forma geral, em Pirapora a inclusdo das varidveis exdgenas trouxe ganho consistente
em todas as janelas. Tanto no ajuste quanto no teste, 0 SARIMAX superou o SARIMA,
indicando que a geragdo da usina responde de forma mais sensivel as condi¢des atmosféricas.
Assim, mesmo variaveis com correlacdo individual moderada contribuiram para melhorar a
previsao, tornando o SARIMAX mais eficaz em diferentes regimes de comportamento da série.

Em comparacdo direta entre as duas usinas, o ganho proporcionado pelo SARIMAX
com relacdo ao SARIMA na Janela 2 foi significativamente maior em Pirapora — redugdo de
cerca de 36% no MAPE — enquanto em Ituverava o ganho foi mais moderado, aproximando-
se de 13%. Esse contraste torna-se particularmente relevante porque, em ambas as usinas, 0s
modelos vencedores da Janela 2 incluiram a varidvel ALBEDO entre os preditores. Nesse

contexto, a sazonalidade mais regular ¢ bem definida do ALBEDO em Pirapora, conforme
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discutido na Sec¢do 5.1, pode ter contribuido para que o modelo com exdgenas capturasse de
forma mais eficiente as varia¢des do periodo recente, marcado por quedas acentuadas e maior
instabilidade. J4 em Ituverava, onde o ALBEDO apresenta comportamento mais irregular, esse
mesmo efeito tende a ser menos pronunciado, o que é compativel com o ganho preditivo mais
modesto observado.

Por fim, tanto em Ituverava quanto em Pirapora observa-se um comportamento comum
entre os modelos: os erros no periodo de teste aumentam de forma expressiva da Janela 1 para
a Janela 2, independentemente da inclusdo ou nao de variaveis exodgenas. Em Ituverava, o
MAPE salta de aproximadamente 13 — 17% na Janela 1 para 36 — 41% na Janela 2. J4 em
Pirapora, cresce de cerca de 5 — 9% para 19 —30% no mesmo intervalo. Esse padrdao consistente
nas duas usinas — mesmo estando localizadas em estados diferentes e expostas a condigdes
meteorologicas distintas — sugere a ocorréncia de um fendmeno externo a dindmica usual das
séries, possivelmente associado a curtailment ou limitagdes operacionais concentradas no
periodo mais recente. A convergéncia desse aumento de erro entre usinas distintas reforca a
interpretagao de que houve um evento excepcional que nenhum modelo, univariado ou com

exogenas, seria capaz de antecipar apenas com base no comportamento historico.

5.4. Previsao e aplicacio

Concluida a etapa de estimacdo dos modelos e a avaliagdo de seu desempenho nos
periodos de treinamento e teste, procede-se a geragao das previsoes futuras. Como os modelos
SARIMAX dependem de valores contemporaneos (lag 0) das variaveis exdgenas, tornou-se
necessario projetar também essas séries meteoroldgicas. Assim, o primeiro passo consistiu em
ajustar modelos de previsdo individuais para cada variavel climatica, possibilitando a
construgao dos cenarios exdgenos requeridos para as projecoes de geracao fotovoltaica. Assim,
0 primeiro passo consistiu em construir modelos de previsdo individuais para cada variavel

climatica.
5.4.1. Modelagem e projecao das variaveis exogenas

As séries exdgenas apresentam comportamento sazonal e estatisticamente estavel ao
longo do tempo, com oscilagdes recorrentes em defasagens multiplas de 12 meses, conforme
discutido na Se¢do 5.1.2. Diante desse padrdo, adotou-se a modelagem por meio da familia
SARIMA, adequada para capturar estruturas sazonais deterministicas e estocasticas. Antes da

modelagem, a estacionariedade das séries foi avaliada por meio do teste de Dickey—Fuller
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Aumentado (ADF), apresentado na Se¢do 5.2. Os resultados confirmaram a auséncia de raiz
unitaria, permitindo o uso de modelos SARIMA sem transformagdes adicionais.

Em um primeiro momento, cada varidvel foi ajustada individualmente com o
procedimento auto.arima(), do pacote forecast (Hyndman & Khandakar, 2008), que combina
busca automatizada com otimizacdo via MLE e selecdo baseada no AICc, assegurando
equilibrio entre qualidade de ajuste e simplicidade estrutural. Essa estimacdo foi realizada
utilizando janelas de teste para avaliar preliminarmente a capacidade dos modelos de reproduzir
a dinamica temporal das séries. Essa etapa teve carater validatorio e demonstrou que os modelos
produziriam previsdes aderentes, com residuos sem autocorrelacdo significativa.

A partir dessa confirmagdo, os modelos foram reestimados utilizando toda a série
disponivel, uma vez que, na etapa de previsao futura, busca-se maximizar o uso de informagao
histérica para gerar projecOes mais estaveis e estatisticamente robustas. Os modelos finais
selecionados (Tabela 5.9) apresentam estruturas sazonais parcimoniosas e passam no teste de
Ljung-Box, indicando auséncia de autocorrelagdo residual. Embora alguns modelos ndo
satisfacam o teste de Jarque—Bera, essa violacdo nao compromete o uso dos ajustes, pois a
normalidade dos residuos ndo ¢ um requisito para previsdes pontuais, que constituem o foco

desta etapa.

Tabela 5.9: Modelos selecionados para projecdo das variaveis exdgenas

Varidvel Modelo AICe p-valor LB p-valor JB
ALBEDO SARIMA(1,0,0)(0,1,2)[12] =712 0,30 0,01
. CLDTOT SARIMA(0,0,0)(2,1,0)(12] -140 0,26 0,00
o§ s SARIMA(0,0,1)(0,1,1)[12] 285 0,43 0,64
= LWGAB SARIMA(1,0,1)(0,1,1)[12] 507 0,72 0,78
TAUTOT SARIMA(0,0,2)(2,1,0)r12] 524 0,86 0,04
ALBEDO SARIMA(0,0,1)(0,1,2)r12] -709 0,24 0,27
. CLDTOT SARIMA(0,0,0)(0,1,2)[12] -133 0,45 0,76
§~ 7S SARIMA(1,0,0)(0,1,2)[12] 248 0,65 0,01
= LWGAB SARIMA(1,0,1)(0,1,1)[12] 523 0,82 0,85
TAUTOT SARIMA(1,0,0)(0,1,1)[12] 564 0,68 0,00

Fonte: Elaboragdo propria (2025)
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As projecdes das variaveis exdgenas mantém coeréncia com o comportamento historico,
preservando a sazonalidade anual caracteristica e niveis médios compativeis com a trajetéria
recente das séries. A Figura 5.11 mostra essa continuidade entre os valores observados e
previstos, evidenciando uma transi¢ao suave, sem rupturas abruptas ou mudangas artificiais de
padrdo. Esse comportamento indica que os modelos SARIMA capturam adequadamente a
estrutura temporal das séries, reforcando a confiabilidade das projecdes geradas e sua

adequacdo como insumo para os modelos SARIMAX utilizados na etapa subsequente.
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Figura 5.11: Projecdes futuras das varidveis exdgenas (12 passos a frente)

Fonte: Elaboragao propria (2025)

5.4.2. Previsao da geracao de energia fotovoltaica

Com as exdgenas projetadas, procedeu-se a modelagem final da geracao fotovoltaica
para cada usina, estimando-se tanto modelos SARIMA quanto modelos SARIMAX. Essa etapa
seguiu o procedimento metodologico previamente validado nas janelas de teste, mas agora
utilizando toda a série historica disponivel, uma vez que o objetivo € gerar previsoes futuras e,
portanto, maximizar o uso de informag¢ao na estimac¢ao dos parametros.

A selecao dos modelos considerou dois critérios complementares. Primeiramente,
adotou-se o menor valor de AICc entre as alternativas estimadas, assegurando parciménia e
adequacdo estatistica. Em seguida, avaliou-se o diagndstico residual, exigindo auséncia de
autocorrelacao significativa conforme o teste de Ljung—Box e distribui¢do aproximadamente

simétrica segundo o teste de Jarque—Bera. Essa combinacao de critérios garante que os modelos
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finais sejam estatisticamente consistentes, bem ajustados e apropriados para a tarefa de

previsao.

A Tabela 5.10 apresenta os modelos selecionados para previsdo da geracao nas duas

usinas. Em ambos os casos, os modelos SARIMAX exibiram valores de AICc inferiores aos

dos modelos SARIMA, o que indica melhor ajuste estatistico quando as variaveis exogenas sao

incorporadas a dinamica autoregressiva.

Tabela 5.10: Modelos selecionados para previsdo da geragio fotovoltaica

Modelo Exdgenas AICc p-valor LB p-valor JB
SARIMA ARIMA(1,0,1) - 1754 0,72 0,39
S
e
;ﬁ CLDTOT 10 +
= TAUTOT 10 +
SARIMAX  SARIMA(1,0,1)(0,0,2)[12] ALBEDO 10 + 1720 0,61 0,12
LWGAB 10
s SARIMA SARIMA(1,0,0)(1,0,1)12] - 1819 0,56 0,10
3
S
-5 TAUTOT 10 +
SARIMAX  SARIMA(3,0,1)(1,0,1)ri2;  ALBEDO 10 + 1738 0,66 0,66
TS 10

Fonte: Elaboragdo propria (2025)

A Tabela 5.11 apresenta as equagdes estimadas para cada usina, com os coeficientes

ajustados pela modelagem final, seguindo a forma geral descrita nas Equagdes (2.5) e (2.6).

Tabela 5.11: Equagdes dos modelos selecionados para previsdo da geragdo fotovoltaica

Equacdo do Modelo
o SARIMA z=092,_4—0,58 a,_, (5.4)
5
o]
= z,=0962,_,—055a,_4+ 017 a;_, + 0,33 a,_,, — 14.656 CLDTOT,
SARIMAX —235 TAUTOT, + 536.008 ALBEDO, + 271 LWGAB, (5.5)
SAR[MA Zy = 0,5 Zi_q + 0,85 Zi_q1p2 — 0,66 Ar_q12 (5.6)
5
§" Zf = 0,1 Zt—l + 0,38 Zt—Z + 0,47 Zt—3 + Zt—12 + 0,23 at_l - 0,78 at_lz
<

SARIMAXY —344 TAUTOT, + 999.827 ALBEDO, + 1.543 TS, (5.7)

Fonte: Elaboragdo propria (2025)
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Os coeficientes estimados nas equagdes reforcam relagdes coerentes com os conceitos
fisicos discutidos na Se¢do 3.2 e com a analise de correlagdo apresentada na Se¢do 5.1.3. Em
Ituverava, as variaveis fracdo total da area coberta por nuvens (CLDTOT;) e espessura optica
das nuvens (TAUT OT;) apresentam coeficientes negativos, em linha com o efeito de atenuacao
da radiacdo solar exercido pelas nuvens. Em contraste, o albedo da superficie (ALBEDO;) ¢ a
radiacdo de onda longa absorvida pela superficie (LW GAB;) apresentam coeficientes positivos,
o que ¢ compativel com a correlagdo positiva observada entre ALBEDO e geragdo, € com o
fato de que maiores valores de LWGAB estdo associados a condi¢cdes atmosféricas que
frequentemente ocorrem em dias de maior energia disponivel.

Em Pirapora, a espessura optica das nuvens (TAUTOT;) mantém coeficiente negativo,
alinhado a reducdo da irradidncia sob nuvens mais espessas. Por outro lado, o albedo da
superficie (ALBEDO,) ¢ a temperatura da pele da superficie (TS;) exibem coeficientes
positivos, consistentes com seus sinais na matriz de correlagdo e com sua interpretagdo fisica
— TS, em particular, foi a varidvel mais correlacionada com a geracao na usina, indicando sua
forte associacdo com condigdes de alta irradiancia.

Apos a selecdo das especificagdes, foram geradas as previsdes 12 passos a frente para
Ituverava e Pirapora, cujos resultados, apresentados na Figura 5.12, permitem comparar
diretamente o comportamento dos modelos SARIMA e SARIMAX ao longo do horizonte
futuro. Em ambas as usinas, observa-se continuidade entre os valores observados e projetados,
sem rupturas abruptas ou mudancas artificiais de padrao.
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Em Ituverava, as previsdes mostram trajetorias distintas entre os dois modelos. O
SARIMA — que, no caso dessa usina, nao possui componente sazonal explicita — produz uma
recuperagao mais pronunciada apos o periodo de queda observado no final da amostra. Ja o
SARIMAX apresenta uma evolugdo mais moderada e contida, refletindo nao apenas o efeito
das varidveis exdgenas projetadas, mas também a interagdo entre seus termos autoregressivos
e de médias moveis, que tornam o modelo mais responsivo ao comportamento recente da série.
Dessa forma, o SARIMAX tende a prolongar o nivel reduzido de geracao registrado nos ultimos
meses, produzindo previsdes mais conservadoras no curto prazo.

Em Pirapora, a divergéncia entre os modelos ¢ ainda mais evidente. O SARIMA sugere
uma retomada em direcdo aos patamares historicamente observados, enquanto o SARIMAX
mantém a série em niveis substancialmente mais baixos. Como as projecdes das variaveis
exogenas nao indicam, por si s0, deterioragdes acentuadas, essa diferenca parece decorrer da
combinacdo entre a estrutura dindmica do modelo e a queda expressiva observada nos meses
finais da amostra, potencialmente associada a fatores operacionais como curtailment ou
restrigdes temporarias de geragdo. Assim, o SARIMAX captura de forma mais forte essa
tendéncia recente, propagando-a para o horizonte futuro e resultando em previsdes mais

conservadoras.

5.4.3. Validacao com dados reais

Durante o desenvolvimento deste trabalho, novos dados de geracdo se tornaram
disponiveis para os meses de agosto, setembro e outubro de 2025. Esses valores permitem
realizar uma validagdo adicional dos modelos ajustados, comparando diretamente as previsoes
produzidas pelos modelos SARIMA e SARIMAX com as observagdes efetivamente
registradas. Essa etapa complementa a avaliacdo realizada nas janelas historicas de teste,
oferecendo evidéncias mais recentes sobre o desempenho preditivo dos modelos.

A Tabela 5.12 apresenta os resultados dessa comparagdo, com as métricas de erro
RMSE e MAPE para cada usina e modelo. Em Ituverava, o SARIMAX reduziu o RMSE em
cerca de 11% e o MAPE em aproximadamente 23% em relacdo ao SARIMA. Em Pirapora, os
ganhos foram ainda mais expressivos, com quedas de cerca de 61% no RMSE e 68% no MAPE,
mostrando superioridade em relagdo ao modelo sem varidveis exdgenas. Embora a valida¢ao

contemple apenas trés meses, esses resultados indicam que, nas duas usinas, a inclusdo das
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variaveis climaticas melhorou de forma consistente a capacidade dos modelos de acompanhar
o comportamento recente da geragdo.

Tabela 5.12: Desempenho das previsdes em comparagao com dados reais

Modelo Exdgenas RMSE MAPE

SARIMA ARIMA(1,0,1) - 2370 9,47%
5
5 CLDTOT 10+
E TAUTOT _10 + .
= | SARIMAX  SARIMA(1,0,1)(0,0,2)12] ALBEDO_10 + 2116 7,26%

LWGAB_I0
S SARIMA SARIMA(1,0,0)(1,0,1)12] - 14404 30,25%
S
g TAUTOT 10+
& | SARIMAX  SARIMA(3,0,1)(1,0,112;  ALBEDO 10 + 5634 9,67%
TS_10

Fonte: Elaboragao propria (2025)
A Figura 5.13 evidencia, para ambas as usinas, como os modelos se comportam em

relacdo aos valores observados nos meses de agosto, setembro e outubro de 2025. Em Ituverava,
o SARIMA projeta uma recuperacdo mais acentuada, enquanto o SARIMAX acompanha mais
de perto o nivel efetivamente registrado no inicio do horizonte, consistente com seus erros
menores. Em Pirapora, o contraste ¢ ainda mais claro, o SARIMA retorna rapidamente a

patamares elevados, ao passo que o SARIMAX preserva o movimento de queda observado no

final da amostra, alinhando-se de forma mais fiel a trajetoria recente.
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6. CONCLUSOES

Este trabalho avaliou o impacto da inclusdo de varidveis meteorologicas exdgenas na
previsdo da geracdo fotovoltaica mensal nas usinas de Ituverava (BA) e Pirapora (MG),
comparando sistematicamente modelos SARIMA e SARIMAX. A analise permitiu identificar
de forma clara em quais condi¢des as exdgenas contribuem para a melhoria preditiva e quais
combinacgdes de varidveis e configuracdes de modelos se ajustam melhor a cada contexto
operacional.

De forma geral, observou-se que as variaveis exogenas melhoram o desempenho dos
modelos sobretudo em periodos de maior instabilidade. Em momentos de comportamento mais
regular — como em Ituverava na Janela 1 — o modelo univariado SARIMA capturou
satisfatoriamente a sazonalidade e o nivel médio da série, apresentando desempenho superior
ao SARIMAX. Isso indica que, quando a dinamica histérica é estavel, a estrutura
autorregressiva tende a generalizar bem, sem necessidade de covariaveis adicionais.

Entretanto, diante de mudancas abruptas — como redugdes atipicas de geragdao ou
desvios marcantes da sazonalidade — os modelos SARIMAX se mostraram mais eficientes. De
maneira geral, todas as cinco variaveis meteoroldgicas analisadas (TAUTOT, ALBEDO,
CLDTOT, TS e LWGAB) apareceram em alguma combinagdo vencedora, variando conforme
a janela e o comportamento recente da série, o que refor¢a seu papel como mecanismos
adicionais de ajuste as condi¢des atmosféricas contemporaneas.

Em Pirapora, as combinacdes dessas varidveis se mostraram mais consistentes e
recorrentes entre as janelas, com destaque para TAUTOT, CLDTOT, LWGAB ¢ ALBEDO,
além de TS no modelo final para previsao futura. Essa repeticao sugere maior estabilidade na
influéncia das exdgenas e maior previsibilidade climatica da usina, favorecendo o desempenho
dos modelos SARIMAX. J& em Ituverava, embora as mesmas variaveis tenham sido
selecionadas ao longo das janelas, o padrao foi menos uniforme: diferentes combinagdes foram
escolhidas em cada periodo, refletindo maior sensibilidade as condi¢des especificas de cada
janela. Essa variagdo refor¢a que a influéncia das exdgenas na usina € mais dependente do
regime temporal ¢ das mudangas recentes no comportamento da série.

O estudo também identificou um aumento expressivo dos erros de previsdo na janela
mais recente para ambas as usinas, independentemente do modelo. Esse padrao simultaneo
sugere a ocorréncia de fatores externos a dindmica atmosférica — possivelmente curtailment,

intervengdes operacionais ou restrigdes temporarias — que nao podem ser capturados por
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variaveis meteorologicas, evidenciando limites inerentes aos modelos SARIMA e SARIMAX
diante de rupturas estruturais.

As previsdes futuras realizadas no topico 5.4 mostraram trajetérias distintas entre os
modelos: o SARIMA retorna mais rapidamente ao nivel médio historico, enquanto o
SARIMAX projeta valores mais conservadores ao propagar a influéncia das variaveis
exdgenas. Ao comparar essas previsoes com os dados reais de agosto a outubro de 2025,

observou-se que o SARIMAX se manteve mais proximo da trajetoria efetivamente registrada,
apresentando reducdes expressivas nos erros em ambas as usinas — especialmente em Pirapora,
onde o ganho percentual foi substancialmente maior. Essa evidéncia adicional, obtida fora do
periodo utilizado na modelagem, confirma a maior responsividade do SARIMAX as condicdes
recentes da série e reforca o beneficio da incorporagdo das varidveis meteoroldgicas no processo
preditivo.

Em sintese, conclui-se que a inclusdo de varidveis meteorologicas ¢ uma ferramenta
valiosa para aprimorar previsdes de geragdao fotovoltaica, especialmente em contextos de
instabilidade. Contudo, o desempenho 6timo depende do contexto especifico de cada usina, da
regularidade das séries meteorologicas e do regime observado no periodo analisado. Os
resultados reforcam a relevancia de abordagens hibridas no planejamento energético e mostram
que os modelos SARIMAX capturam dimensdes complementares da dinamica de geracao,
ampliando a capacidade preditiva em diferentes cenarios.

Apesar dos avangos obtidos, este estudo apresenta limitagdes que também apontam
direcdes claras para pesquisas futuras. A auséncia de informagdes operacionais detalhadas das
usinas, como eventos de curtailment ou manutencdes, limita a capacidade dos modelos de
capturar integralmente rupturas estruturais observadas na série, especialmente nos periodos
mais recentes. Ademais, a modelagem em frequéncia mensal reduz a sensibilidade a eventos
intramensais, € a estrutura linear dos modelos SARIMAX pode ndo capturar relagdes
atmosféricas mais complexas. Estudos futuros podem avangar ao incorporar dados operacionais
reais das usinas, explorar frequéncias mais altas (didria ou horaria), testar modelos hibridos e
ndo lineares, expandir a analise para um maior nimero de usinas e regides ¢ incluir novas

variaveis atmosféricas, ampliando a robustez e a generalizagdo dos resultados.
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