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Resumo

A previsdo de demanda ocupa papel central na gestdo da cadeia de suprimentos € no
Planejamento e Controle da Produgdo (PCP), especialmente em ambientes marcados por alta
incerteza, volatilidade e complexidade, como aqueles associados a Industria 4.0 e ao PCP 4.0.
Neste contexto, modelos estatisticos cldssicos, embora amplamente utilizados, mostram
limitagdes para lidar com multiplos padrdes sazonais, relagdes ndo lineares e grande volume de
dados e variaveis exdgenas. Amparado pela Teoria do Processamento de Informagado
Organizacional (OIPT), este trabalho parte da premissa de que a sele¢do de modelos de previsao
deve estar alinhada ao nivel de incerteza da demanda e a capacidade de processamento de
informacdo da organizacdo, buscando um fit entre complexidade da tarefa e sofisticagdo
analitica da ferramenta. Por meio da metodologia de Design Science Research, ¢ desenvolvido
um artefato computacional sob a forma de um Sistema de Apoio a Decisdo (SAD) que integra:
(1) um pipeline de previsao de demanda multi—item, combinando modelos estatisticos e de
Machine Learning; e (ii) um modulo de avaliacdo multicritério que considera simultaneamente
métricas de acurdcia, viés, estabilidade e desempenho computacional. O artefato ¢ aplicado a
dados reais extraidos do ERP de uma empresa industrial, conduzindo uma “competi¢do de
modelos” em multiplas séries temporais no nivel de SKU. Os resultados evidenciam que nao
existe um modelo dominante universal; ao contrario, diferentes algoritmos apresentam melhor
desempenho em subconjuntos especificos de itens, reforcando a logica contingencial da OIPT.
A avaliagdo multicritério permite adaptar a recomendagdo de modelos a diferentes prioridades
organizacionais (por exemplo, foco maximo em acurécia, equilibrio entre acurdcia e custo
computacional ou busca por maior robustez e estabilidade), oferecendo ao gestor uma
ferramenta pratica para selecao de modelos alinhada a estratégia da empresa. O estudo contribui
teoricamente ao operacionalizar a OIPT no contexto da previsao de demanda e, do ponto de
vista pratico, ao disponibilizar um prototipo de SAD que pode ser incorporado aos processos
de S&OP e PCP 4.0, apoiando uma tomada de decisdo mais informada, agil e aderente as
exigéncias de cadeias de suprimentos complexas e digitais.

Palavras-chave: Previsdo de demanda; Machine Learning; PCP 4.0; Teoria do

Processamento de Informagao Organizacional; OIPT; Analise multicritério; Sistema de Apoio
a Decisdo; S&OP; 1A
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Development of a Multi-Item Demand Forecasting System Based on Machine
Learning and Multicriteria Analysis in the Context of PCP 4.0: An OIPT-Based
Approach

Abstract

Demand forecasting plays a central role in supply chain management and Production Planning
and Control (PPC), especially in environments characterized by high uncertainty, volatility, and
complexity, such as those associated with Industry 4.0 and PPC 4.0. In this context, traditional
statistical models, although widely used, exhibit important limitations when dealing with
multiple seasonal patterns, nonlinear relationships, and large volumes of data and exogenous
variables. Grounded in Organizational Information Processing Theory (OIPT), this study
assumes that the selection of forecasting models must be aligned with both the level of demand
uncertainty and the organization’s information processing capacity, seeking a fit between task
complexity and analytical sophistication. Using the Design Science Research methodology, a
computational artefact is developed in the form of a Decision Support System (DSS) that
integrates: (i) a multi-item demand forecasting pipeline combining statistical and Machine
Learning models; and (i1) a multicriteria evaluation module that simultaneously accounts for
accuracy, bias, stability, and computational performance. The artefact is applied to real data
extracted from the ERP system of an industrial company, enabling a “model competition”
across multiple time series at the SKU level. The results show that there is no universally
dominant model; instead, different algorithms perform best for specific subsets of items,
reinforcing OIPT’s contingency logic. The multicriteria assessment makes it possible to adapt
model recommendations to distinct organizational priorities (e.g., maximum focus on accuracy,
balance between accuracy and computational cost, or emphasis on robustness and stability),
providing managers with a practical tool for model selection aligned with the firm’s strategy.
This study contributes to theory by operationalizing OIPT in the context of demand forecasting
and, from a practical standpoint, by delivering a DSS prototype that can be embedded into
S&OP and PPC 4.0 processes, supporting more informed, agile, and strategy-consistent
decision-making in complex and digital supply chains.

Keywords: Demand forecasting; Machine Learning; PPC 4.0; Organizational Information
Processing Theory; OIPT; Multicriteria analysis; Decision Support System; S&OP; Al
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1. Introducao

A gestao da cadeia de suprimentos (Supply Chain Management - SCM) se tornou um
pilar estratégico para a competitividade das empresas em um mercado globalizado, dindmico e
cada vez mais centrado no cliente. Nesse cendrio, a capacidade de antecipar as necessidades do
mercado e alinhar os recursos produtivos e logisticos de forma eficiente nao ¢ apenas uma
vantagem competitiva, mas uma condi¢do essencial para a sobrevivéncia e prosperidade dos
negocios. No centro dessa questio esta a previsdo de demanda, um processo critico que serve
como alicerce para virtualmente todas as decisdes de planejamento, desde o nivel estratégico
até o operacional. (ATHANASOPOULOS et al., 2017)

A precisdo na previsdo de demanda impacta diretamente na eficiéncia operacional,
satisfacdo do cliente e rentabilidade de uma empresa. (MAKRIDAKIS ET AL., 1998) No nivel
estratégico, projecdes acuradas permitem identificar tendéncias de mercado, antecipar
oportunidades de crescimento e se preparar contra possiveis ameagas. Taticamente, elas sdo
indispensaveis para o planejamento de vendas e operagdes (S&OP), alocacdo de recursos,
estratégias de marketing e gestao de portfolio de produtos. No ambito operacional, as previsdes
guiam o planejamento e controle da produgdo (PCP), a gestdo de estoques, a programacao da
producdo, o planejamento de necessidades de materiais (MRP) e a logistica de distribuicdo,
buscando o equilibrio 6timo entre o nivel de servico e os custos operacionais. (FILDES et al.,
2022)

Contudo, prever a demanda com precisdo tornou-se uma tarefa exponencialmente mais
desafiadora. O ambiente de negdcios contemporaneo € caracterizado por uma volatilidade
crescente, ciclos de vida de produtos cada vez mais curtos, alta customizacao e a complexidade
introduzida por novos modelos de negocio, como o varejo omnichannel. As necessidades dos
clientes tornaram-se mais dindmicas e complexas, aumentando as limitagdes dos modelos
preditivos, que frequentemente enfrentam a escassez de séries historicas robustas e a
dificuldade de capturar o comportamento erratico das variaveis envolvidas. (HOFMANN e
RUTSCHMANN, 2018)

Historicamente, as empresas tém se apoiado em métodos estatisticos consagrados para
a analise de séries temporais, como os modelos de Suavizagdo Exponencial (a exemplo da
familia ETS - Erro, Tendéncia e Sazonalidade) e os modelos Autorregressivos Integrados de
Médias Moveis (ARIMA) (BOX et al., 2015). Embora eficazes em cenarios com padrdes de

comportamento relativamente estaveis, esses modelos classicos frequentemente pressupdem



linearidade e estacionariedade nos dados, premissas que sdo cada vez mais violadas pela
complexidade dos mercados atuais. A dificuldade em modelar multiplos padrdes sazonais,
tendéncias nao lineares e o impacto de variaveis exdgenas de forma integrada representa uma
barreira significativa para a obtengdo da acurdcia necessaria para uma gestdo proativa e
eficiente. (UZSOY, 2018)

E neste ponto que a ascensio da Inteligéncia Artificial (IA) e, mais especificamente, das
areas de Aprendizado de Maquina (Machine Learning - ML) e Aprendizado Profundo (Deep
Learning), surge como uma mudanca de paradigma para a previsao de demanda. Impulsionada
pela Quarta Revolucao Industrial (Industria 4.0), a IA oferece um novo arsenal de ferramentas
capazes de extrair padrdes e insights de grandes volumes de dados (Big Data) com uma
profundidade e precisdo sem precedentes. (SHARMA et al., 2022). A Inteligéncia Artificial
busca projetar sistemas computacionais capazes de imitar padrdoes de comportamento humano
e gerar conhecimento relevante para a resolugdo de problemas. (GARTNER) Dentro da IA, o
Aprendizado de Méaquina permite que os algoritmos aprendam a partir de dados histdricos sem
serem explicitamente programados, identificando relagdes complexas e ndo lineares que
passariam despercebidas pelos métodos tradicionais. Modelos como Prophet, XGBoost e
Random Forest exemplificam o poder dessas técnicas, oferecendo flexibilidade e alta
performance preditiva em diversos cendrios.

A necessidade de adotar ferramentas mais sofisticadas ¢ bem explicada pela Teoria do
Processamento de Informagdes Organizacionais (Organizational Information Processing
Theory - OIPT) (GALBRAITH, 1974). A teoria defende que a exceléncia organizacional ¢
alcancada quando a capacidade de processamento de informagdes de uma empresa esté alinhada
com a incerteza e a complexidade do seu ambiente (GALBRAITH, 1974, 1977). Em outras
palavras, quanto maior a incerteza, gerada pela volatilidade do mercado, complexidade de
produtos e interdependéncia na cadeia de suprimentos, maior a quantidade de informagdo que
a empresa precisa processar para tomar decisoes eficazes (SRINIVASAN; SWINK; KIM,
2015). As ferramentas de previsao tradicionais representam uma capacidade de processamento
limitada, adequada para ambientes mais estaveis, o que tem sido destacado em estudos recentes
que aplicam a OIPT para explicar limitagdes de sistemas analiticos em cadeias de suprimentos
complexas (ZHU et al., 2018). No cenario atual, com volume massivo de dados e dinamica de
mercado imprevisivel, essa capacidade ¢ excedida, gerando uma lacuna de desempenho que
exige maior capacidade de processamento de informacdo (YANG et al., 2025). Modelos de IA

e ML, com sua habilidade de processar grandes conjuntos de dados e modelar relagdes nao
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lineares complexas, surgem como uma evolucdo da capacidade de processamento de
informacdes, permitindo que as empresas fechem essa lacuna e respondam de forma mais agil
e precisa aos desafios do mercado, em linha com estudos recentes que combinam OIPT com
big data analytics e analytics em cadeias de suprimentos (YU et al., 2021).

A integracdo de modelos de previsdo baseados em Inteligéncia Artificial tem o potencial
de transformar radicalmente os processos de Planejamento de Vendas e Operagdes (S&OP) e
de Planejamento e Controle da Produgao (PCP). O S&OP, que funciona como um processo
tatico para equilibrar demanda e oferta, depende fundamentalmente de um plano de demanda
confiavel. Previsdes mais acuradas e com menor viés, geradas por algoritmos de ML, resultam
em um planejamento agregado da producao mais alinhado a realidade do mercado, otimizando
os niveis de estoque, melhorando a alocacao de recursos ¢ aumentando a previsibilidade dos
resultados do negdcio. (BRAU, 2023) No nivel operacional, o impacto no PCP ¢ igualmente
profundo. Previsdes granulares e precisas no nivel de SKU (Stock Keeping Unit) permitem um
planejamento mais eficiente, reduzindo tanto o risco de falta de componentes (stockout) quanto
o excesso de estoque de matéria-prima. A capacidade dos modelos de ML de prever picos e
vales de demanda com maior antecedéncia possibilita um sequenciamento e programacao da
producdo mais inteligentes, otimizando o uso da capacidade instalada e minimizando tempos
ociosos. (SHARMA, 2022)

Essa evolucdo tecnologica, catalisada pela Industria 4.0, estd redefinindo o
Planejamento e Controle da Producdo (PCP), consolidando o que se entende por PCP 4.0.
Diferentemente de abordagens anteriores, o PCP 4.0 foca na digitaliza¢do, automacdo e
conectividade de ponta a ponta, por meio da integragdo de sistemas ciberfisicos (CPS) e da
Internet das Coisas (IoT). O objetivo ¢ transformar as func¢des gerenciais, tornando-as mais
integradas e automatizadas para operar em redes de valor otimizadas em tempo real. (BUENO,
2020). Neste paradigma, a digitalizag¢do viabiliza a coleta massiva de dados em tempo real de
toda a cadeia de suprimentos, promovendo "visibilidade e rastreabilidade. A integracao vertical
de ambientes de producao fisicos e digitais, conectando sistemas de gestao (ERP) e de execugao
da manufatura (MES) com a inteligéncia maquina a maquina, permite uma visdo holistica e
sincronizada das operagdes. A automagdo, por sua vez, ¢ potencializada por algoritmos de
Inteligéncia Artificial (IA) e Machine Learning (ML), que atuam como o motor analitico do
PCP 4.0. Esses modelos sdao capazes de processar grandes volumes de dados (Big Data) para
realizar previsdes de demanda mais acuradas e identificar padrdes complexos que seriam

imperceptiveis aos métodos estatisticos tradicionais. (SHARMA, 2022)



Portanto, a transi¢ao para métodos de previsdo baseados em [A ndo ¢ meramente uma
atualizagdo tecnoldgica, mas uma redefini¢ao dos processos de planejamento. A complexidade
do mercado moderno exige uma capacidade de processamento de informagdes cada vez maior
e a IA, com modelos como Prophet, XGBoost, Random Forest ¢ redes neurais, oferece a
capacidade computacional e analitica necessaria para lidar com esse problema, permitindo que
o PCP evolua de uma fung¢do puramente reativa para uma com capacidades preditivas e
prescritivas, onde os modelos nao apenas preveem, mas também apoiam a otimizagao das
decisdes.

Apesar de ser um tema com crescente popularidade, a grande maioria das pesquisas foca
exclusivamente na acurécia preditiva como Unico critério para avaliar modelos, ignorando
outros fatores criticos para a implementagdo pratica, como custo computacional, tempo de
execucdo e a necessidade de conhecimento especializado do gestor, que sdo cruciais para a
viabilidade em um ambiente de negocios real. (KOLKOVA E NAVRATIL, 2021).

Diante desse contexto, formula-se a seguinte questdo de pesquisa:

RQ1: Como alinhar a sele¢ao de modelos de previsao a incerteza da demanda e a capacidade
de processamento de informagao sob diferentes prioridades organizacionais?

Para responder a essa questdo, a proposta deste trabalho ¢ desenvolver e aplicar um artefato
(Sistema de Apoio a Decisao) fundamentado na metodologia de Design Science Research. O
objetivo central ¢ propor uma metodologia/prototipo que combine modelos de previsdao
baseados em Machine Learning com um método de andlise multicritério, avaliando
simultaneamente diferentes algoritmos segundo multiplas métricas alinhadas a OIPT. A partir
disso, o sistema recomenda, para cada item ou grupo de itens, o modelo com melhor ajuste entre
desempenho preditivo, eficiéncia computacional e estabilidade, de modo a maximizar o fit
organizacional entre a complexidade da demanda e a capacidade de processamento de
informacdo disponivel. Mais especificamente, os objetivos especificos do trabalho podem ser
definidos da seguinte forma:

1. Desenvolver um Sistema de Apoio a Decisdo que integre um pipeline de previsao de
demanda multi—item baseado em Machine Learning e modelos estatisticos com um
moddulo de avaliagdo multicritério, operacionalizando os conceitos de capacidade de
processamento de informacao da OIPT.

2. Aplicar o artefato a dados reais da empresa, conduzindo uma “competicao de modelos”
em multiplas séries, comparando desempenho em termos de acuricia, viés, tempo de

processamento e medidas de incerteza.



Esses objetivos serdo cumpridos através de uma abordagem multimétodos: (i) qualitativa,
com entrevistas exploratorias que permitem enquadrar o problema sob a OIPT e definir
requisitos da solug¢do; e (i) quantitativa, com desenvolvimento e teste do artefato
computacional, que combina modelos de previsdao e métodos multicritério em um ambiente
experimental controlado com dados reais da empresa.

Este trabalho busca oferecer contribui¢des tedricas e praticas relevantes. Do ponto de
vista tedrico, a pesquisa contribui ao operacionalizar a OIPT como uma ferramenta analitica
para a selecdo de modelos de previsao, conectando um conceito classico da administragao a
pratica da engenharia de produgdo e da ciéncia de dados. Além disso, oferece um estudo
empirico comparativo de modelos de IA de ponta em um contexto de demanda complexa e com
dados reais, complementado por uma estrutura multicritério de decisao. No ambito pratico, a
principal contribui¢ao ¢ o desenvolvimento de um artefato que pode ser diretamente utilizado
pela empresa para aprimorar seu processo decisorio. Por fim, este estudo serve como um guia
metodoldgico para outras organizagdes que buscam avaliar e implementar solugdes de IA em
seus processos de planejamento de demanda, sob a perspectiva de fit organizacional proposta
pela OIPT.

Este trabalho esta estruturado da seguinte forma: na Se¢do 2, apresenta-se o referencial
tedrico, abordando Industria 4.0, PCP 4.0, os principais modelos de previsdao de demanda
(estatisticos, de Machine Learning e Deep Learning) e a Teoria do Processamento de
Informacao Organizacional (OIPT). A Secdo 3 descreve a metodologia adotada, baseada em
Design Science Research, assim como os métodos de coleta e andlise de dados. A Secdo 4
apresenta o desenvolvimento do artefato proposto e os procedimentos da competicdo de
modelos. Na Sec¢ado 5, sdo discutidos os resultados empiricos e as andlises multicritério. Por fim,

a Secdo 6 traz as conclusdes, contribui¢des, limitagdes e sugestdes para pesquisas futuras.



2.Referencial Teorico

2.1 Industria 4.0

A Industria 4.0 (I4.0) representa o inicio da Quarta Revolucao Industrial. Este conceito
emergiu pela primeira vez em 2011 na Feira Industrial de Hannover, na Alemanha, sendo
impulsionado como uma iniciativa estratégica nacional pelo governo. (ROZANEC,2022) A
14.0 ¢ definida como uma tendéncia de digitalizacao e automagao que transforma as redes de
manufatura e a cadeia de suprimentos, evoluindo para fabricas inteligentes que permitem niveis
sem precedentes de flexibilidade e transparéncia operacional. (BUENO, 2020)

Fundamentalmente, a 14.0 é caracterizada por trés grandes tendéncias tecnologicas:
conectividade, inteligéncia e automagao flexivel. (TORTORELLA, 2022) E um termo guarda-
chuva que descreve a automacao e a troca de dados em tecnologias e processos de fabricagao,
buscando a criagdo de redes de valor inteiramente digitalizadas, conectadas, inteligentes e
descentralizadas. (IVANOV, 2021) O objetivo principal € tornar os processos de producao
altamente flexiveis e reconfigurdveis para se adaptar as rdpidas mudancas do mercado,
viabilizando o ideal de customizacdo em massa a um custo comparavel ao da producdo em
massa. A 14.0, portanto, ndo se limita apenas a manufatura direta dentro da empresa, mas
abrange toda a cadeia de valor. (CIANO, 2021)

O sucesso dessa transformacgao depende da sinergia de diversas tecnologias disruptivas.
Entre os pilares tecnologicos habilitadores cruciais para a 14.0 estdo os Sistemas Ciberfisicos
(CPS), a Computagdo em Nuvem (Cloud Computing), a Realidade Aumentada, a Robdtica
Avangada e, centralmente, a Internet das Coisas (IoT), o Big Data Analytics (BDA), o Machine
Learning (ML) e a Inteligéncia Artificial (IA). (ALEXOPOULOS, 2020)

A Internet das Coisas (IoT), especialmente a Industrial Internet of Things (IloT), ¢ a
espinha dorsal da conectividade na 14.0. Ela ¢ composta por uma rede de objetos fisicos, como
sensores embarcados, etiquetas RFID, eletronicos e atuadores, que sdo interconectados e
capazes de trocar informacdes através de infraestruturas de comunicagdo. A IoT/IloT
interconecta maquinas e ativos fisicos para coletar dados em tempo real do chdo de fabrica.
Essa capacidade de coleta de dados em tempo real € o que permite a integragcdo dos CPS, onde
os ativos de fabricacdo se ligam ao ciberespaco. A conectividade fornecida pela IoT ¢
fundamental para aumentar a transparéncia e a rastreabilidade ao longo da cadeia de valor.

A proliferacao de entidades altamente conectadas e a onipresenca de sensores levam a

geracdo de uma quantidade massiva, heterogénea e dindmica de dados. Esse volume crescente



de informagoes digitais, que pode chegar a varios gigabytes por dia do chdo de fabrica, € o que
constitui o Big Data (BD) e exige tecnologias eficientes para coleta (via IoT), armazenamento
(via Cloud Computing) e processamento (usando técnicas de IA). O Big Data Analytics (BDA)
¢ a ferramenta essencial que permite as organizagdes extrairem valor e percepcdes uteis dessa
vasta gama de dados para a tomada de decisdes. O BDA pode ser classificado em diferentes
niveis de complexidade, como: Analise Descritiva (descreve a situagdo atual, auxiliando no
diagnostico de problemas), Analise Preditiva (prevé eventos e tendéncias futuras) e Analise
Prescritiva (utiliza técnicas avangadas para prescrever e adaptar agdes, oferecendo mecanismos
de tomada de decisdao). O BD, ao ser analisado, serve como um recurso critico em estagios de
processamento para obter insights funcionais.

O processamento e a analise desse Big Data sdo amplamente realizados pela Inteligéncia
Artificial (IA) e seu subcampo, o Machine Learning (ML). A IA é um componente central para
a 14.0 e para os sistemas baseados em IoT, sendo ativamente utilizada para processamento de
dados, analise e tomada de decisdes em ambientes industriais. O ML, em particular, foca em
extrair conhecimento util e permitir que o componente de ML tome decisdes, aumentando a
eficiéncia da fabricacdo. As técnicas de ML, incluindo as redes neurais profundas (Deep
Learning), sao ideais para desvendar padrdes de producao complexos e fornecer suporte a
decisdo oportuno em diversas aplicagdes. A aprendizagem de maquina ¢ categorizada,
conforme o feedback disponivel, em Aprendizagem Supervisionada (onde a resposta correta €
fornecida), Aprendizagem por Refor¢o (onde o agente aprende a politica ideal por interacao
com o ambiente) e Aprendizagem Nao Supervisionada (onde se buscam padrdes nos dados
brutos sem avaliacdo). A IA e o ML, ao fornecerem inteligéncia acionavel a partir dos dados
coletados, transformam os modelos operacionais de reativos para proativos e prescritivos.

Os resultados da implementacdo da 14.0, habilitada por esta infraestrutura tecnoldgica
integrada (IoT, Big Data, ML e TA), sdo percebidos de maneira abrangente nas operagdes e na
gestdo da cadeia de suprimentos. Em um nivel genérico, as empresas que adotam essas
estratégias baseadas em dados obtém beneficios significativos no desempenho operacional e
financeiro.

Um dos ganhos mais evidentes ¢ a melhoria da eficiéncia e produtividade. A automagao
e a integragdo vertical dos sistemas (permitidas pela conectividade e pelos CPS) levam a
processos mais simplificados e a redugao de trabalho manual. Isso se manifesta em um aumento

da produtividade, uma melhoria da Eficiéncia Geral do Equipamento (OEE) e uma reducao nos



tempos de ciclo (lead times). A capacidade de monitoramento em tempo real fornecida pela IoT
e a andlise de BD possibilitam o controle e a regulagdo autbnoma da produgao.

Outro beneficio crucial ¢ a Manutengdo Preditiva (PdM). Ao utilizar IA e ML para
analisar grandes volumes de dados de sensores (Big Data), € possivel prever falhas e estimar a
vida util remanescente de equipamentos. Essa capacidade preditiva evita paradas nao planejadas
(downtimes) e a substituicdo desnecessaria de equipamentos, resultando em redugdo de custos
de manuten¢ao e aumento da seguranga, disponibilidade e eficiéncia dos processos.

A qualidade do produto e do processo também ¢ drasticamente melhorada. A 14.0 visa
a producao de itens de maior qualidade ao menor custo possivel. O uso de ML para inspecao e
controle de qualidade permite a detec¢do precoce e precisa de defeitos, o que contribui para
reduzir erros e corre¢oes durante o desenvolvimento e fabricagao.

Além disso, a 14.0 fortalece a flexibilidade e a resiliéncia da cadeia de suprimentos. A
maior flexibilidade na produg¢ao ¢ alcangada através da reconfigura¢ao dindmica de ativos, ¢ a
capacidade de processamento de dados suporta a tomada de decisdes em ambientes volateis,
ajudando as empresas a navegarem por riscos e disrupgdes.

O impacto da 14.0 na exceléncia operacional pode ser visto como uma transi¢cdo que
refor¢a a necessidade de uma perspectiva sistémica e integrativa, onde a fusdo eficaz entre o
mundo fisico e cibernético, possibilitada pela conectividade e inteligéncia, exige que as
empresas integrem sistematicamente as novas tecnologias digitais como suporte as suas

iniciativas continuas de melhoria, em vez de focar apenas na adocao isolada de tecnologias.

22PCP4.0

O Planejamento e Controle da Producao (PCP) ¢ a funcdo central da gestdo de
operagdes, responsavel por traduzir os planos estratégicos e a demanda de mercado em agdes
tangiveis no chao de fabrica. O PCP tradicional, estruturado em torno de conceitos como MRP
(Material Requirements Planning) e MRP II (Manufacturing Resource Planning), opera de
forma hierdrquica e muitas vezes rigida. Ele depende de planos mestres de producao (MPS) que
sdo definidos em lotes, com base em previsdes de demanda de médio e longo prazo, e que sdo
atualizados em ciclos periddicos (semanais ou mensais). A eficicia desse sistema ¢ totalmente
dependente da acuracia da previsdo de demanda inicial; um erro na previsdo gera o notdrio
"efeito chicote" (bullwhip effect), amplificando distor¢des de estoque e cronograma ao longo

de toda a cadeia de suprimentos (LEE; PADMANABHAN; WHANG, 1997).



O PCP 4.0 ¢ a evolugdo direta desta funcdo, infundida com os principios e tecnologias
da Industria 4.0. Ele ndo ¢ apenas um PCP digitalizado, mas um sistema de planejamento e
controle fundamentalmente rearquitetado. Ao invés de operar em lotes rigidos, o PCP 4.0 busca
gerenciar a "customizagdo em massa" € o "Lote 1", onde cada produto pode ser tinico (ZHONG;
XU; WANG, 2017). Para alcangar essa flexibilidade, o PCP 4.0 deve ser dindmico, autbnomo
e orientado a dados em tempo real.

Neste novo paradigma, a importancia da previsdo de demanda nao diminui; pelo
contrario, ela se torna ainda mais critica, mas sua natureza e seu papel mudam drasticamente.
O PCP 4.0 ndo pode mais depender de uma unica previsdao estatica de longo prazo para
alimentar um MPS rigido. A volatilidade da demanda e a necessidade de resposta rapida exigem
um modelo de previsdo diferente: um que seja granular, de altissimo prazo (muitas vezes em
horizontes de dias ou horas) e continuo, tornando tecnologias como a IA e ML os motores do

PCP 4.0.

2.3 O Panorama dos Modelos Preditivos na Previsao de Demanda

A previsdo de demanda €, em sua esséncia, um problema de analise de séries temporais.
Uma série temporal ¢ uma sequéncia de pontos de dados coletados em intervalos de tempo
sucessivos. No contexto da demanda, o objetivo € analisar o comportamento historico desses
dados, identificando padrdes como tendéncia (crescimento ou declinio a longo prazo),
sazonalidade (flutuagdes periddicas e previsiveis) e ciclicidade (padrdes de médio prazo), para
prever o comportamento futuro (HYNDMAN; ATHANASOPOULOS, 2018). O panorama
industrial de metodologias para essa tarefa evoluiu significativamente, transitando de modelos
puramente estatisticos para uma adog¢do generalizada de técnicas de Machine Learning (ML),
culminando na atual preferéncia por abordagens hibridas e de alta performance.

Historicamente, o dominio da previsdo de demanda pertencia aos modelos estatisticos
classicos, reverenciados por sua robustez teorica, interpretabilidade e eficacia em dados com
padrdes claros e relativamente estaveis. A familia de métodos de Suavizagdo Exponencial
(Exponential Smoothing - ES), incluindo o método de Holt-Winters, tornou-se um padrao da
indtstria por sua capacidade de decompor a série em nivel, tendéncia e sazonalidade.
Paralelamente, a metodologia Box-Jenkins popularizou os modelos ARIMA (Autoregressive
Integrated Moving Average), que modelam a demanda futura com base em sua propria inércia,
ou seja, na dependéncia linear de seus valores passados e de erros de previsao passados (Box,

Jenkins, Reinsel, & Ljung, 2015). Esses modelos univariados sao eficazes, mas compartilham



uma limita¢do fundamental: eles lutam para incorporar de forma nativa e eficaz fatores externos
(variaveis exdgenas), como o impacto de promogdes, agdes de concorrentes, feriados moveis
ou mudangas abruptas no sentimento do consumidor.

O panorama industrial contemporaneo, no entanto, ¢ definido pela volatilidade e pela
riqueza de dados. A ascensao do Big Data, impulsionada pela Industria 4.0, disponibilizou um
volume sem precedentes de informagdes contextuais que afetam a demanda. Isso expOs as
limitagdes dos modelos estatisticos tradicionais e abriu caminho para a adog¢ao em larga escala
do Machine Learning (ML). Diferente dos modelos estatisticos, que partem de pressuposigoes
sobre a estrutura dos dados, os modelos de ML sdo projetados para "aprender" padrdes
complexos, ndo-lineares ¢ interagdes sutis diretamente dos dados (JAMES et al., 2013).

No cenario industrial atual, um grupo de modelos de ML se destaca: os algoritmos
baseados em arvores de decisdo. Modelos como Random Forest e, mais notavelmente, as
Gradient Boosting Machines (GBMs), com implementa¢des populares como XGBoost (CHEN;
GUESTRIN, 2016) e LightGBM, tornaram-se a ferramenta de escolha para muitas
organizagdes. A razdo de seu sucesso ¢ a capacidade de lidar com dados tabulares de forma
muito eficaz. Eles podem processar nativamente centenas de varidveis exogenas (prego,
investimento em marketing, dados de IoT, clima), lidar com dados ausentes, capturar relacdes
nao-lineares (como o efeito decrescente de um desconto) e fornecer métricas de "importancia
de caracteristica", oferecendo um grau de interpretabilidade sobre o que esta impulsionando a
previsao.

Em paralelo, modelos de Deep Learning (DL), um subcampo do ML, ganharam tragado
para problemas de séries temporais mais complexos. Redes Neurais Recorrentes (RNNs) e suas
variantes mais avangadas, como LSTMs (Long Short-Term Memory) e GRUs (Gated Recurrent
Units), foram projetadas especificamente para dados sequenciais, possuindo uma "memoria"
interna que lhes permite capturar dependéncias de longo prazo na série temporal. Mais
recentemente, arquiteturas baseadas em Transformers, que revolucionaram o processamento de
linguagem natural, foram adaptadas para séries temporais (como o Temporal Fusion
Transformer), demonstrando uma capacidade superior de modelar padrdes temporais
complexos em multiplos horizontes de previsao (LIM et al.2021).

Contudo, o panorama atual da indastria raramente ¢ uma escolha binéria entre estatistica
e ML. As famosas "M-Competitions", uma série de competi¢des de previsdo em larga escala,
tém moldado as melhores praticas. A M4 Competition (2018) revelou que os métodos mais

precisos eram frequentemente modelos hibridos, que combinavam a capacidade de
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decomposi¢do de modelos estatisticos (como a Suaviza¢do Exponencial) com a capacidade de
aprendizado de padrdoes complexos de redes neurais (MAKRIDAKIS; SPILIOTIS;
ASSIMAKOPOULOS, 2018). A subsequente M5 Competition (2020), focada em dados reais
de varejo e incluindo varidveis exdgenas, foi um marco: os métodos vencedores foram quase
exclusivamente baseados em variagdes do LightGBM, solidificando o dominio dos modelos de

gradient boosting para problemas de previsdo de demanda em larga escala e ricos em features.

2.3.1 Modelos Estatisticos Classicos

Os modelos estatisticos tradicionais sdo fundamentais para a previsdo de séries temporais,
servindo como benchmarks robustos. Eles geralmente se baseiam na decomposic¢ao de padrdes

historicos, como tendéncia e sazonalidade.

2.3.1.1 ETS (Error, Trend, Seasonality)

Os modelos ETS (Erro, Tendéncia e Sazonalidade) formam uma familia de métodos de
previsdo de séries temporais também conhecida como Suavizagdo Exponencial (Exponential
Smoothing). A premissa central desta abordagem ¢ o célculo de médias ponderadas dos dados
histéricos, onde os pesos decrescem exponencialmente a medida que as observagdes se tornam
mais antigas. Essencialmente, a técnica separa o padrao sistematico do ruido aleatorio presente
nos dados, permitindo que o suavizador atue como um filtro para obter uma estimativa mais
precisa desse padrao.

O framework ETS decompde a série temporal em seus trés componentes fundamentais:
Erro (E), Tendéncia (T) e Sazonalidade (S). Cada um desses componentes pode ser especificado
de forma aditiva (A), multiplicativa (M) ou nula (N). A combinacdo dessas variacdes gera até
30 modelos distintos. E importante notar que modelos com erro aditivo e erro multiplicativo
podem gerar previsdes pontuais idénticas, diferindo, no entanto, nos intervalos de confianca
calculados. A configuragdo mais simples ¢ o ETS(A,N,N), conhecida como Suavizagao
Exponencial Simples (SES), adequada para séries sem tendéncia ou sazonalidade, onde a
previsdo se baseia em uma média ponderada do valor observado e da previsdo anterior. Outras
configuragdes incluem o método de Holt (ETS(A,A,N)), que incorpora uma tendéncia linear, e
modelos que utilizam uma tendéncia "amortecida" (Ad), util para cenarios onde se espera que
o crescimento ou declinio diminua em horizontes futuros. A selecdo do modelo ideal ¢é
frequentemente automatizada por fun¢des que buscam minimizar os residuos ou maximizar a
maxima verossimilhanga, utilizando critérios de informa¢ao como o Akaike Information

Criteria (AIC) para selecionar a configuragdo mais competente.
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2.3.1.2 Método de Holt-Winters

Embora tecnicamente seja um subconjunto da familia ETS, o método de Holt-Winters
¢ frequentemente destacado por sua aplicagdo historica e especifica no tratamento de dados
sazonais. Este modelo ¢ uma extensdo direta do método de Holt (que ja incorpora a tendéncia
linear). O Holt-Winters adiciona um terceiro componente para modelar explicitamente a
sazonalidade. Esta abordagem ¢ ideal para séries temporais que apresentam padrdes sazonais
bem definidos e repetitivos, como vendas no varejo.

A arquitetura do modelo utiliza trés equagdes de suavizacao distintas para atualizar, a
cada periodo, o Nivel (N;), a Tendéncia(T;) e a Sazonalidade (S;). O comportamento dessas
equacdes ¢ controlado por trés parametros de suavizagdo: a (alfa), associado ao nivel; B (beta),
associado a tendéncia; e y (gama), associado a sazonalidade. Na pratica, esses parametros sao
ajustados automaticamente por meio da minimizacdo da soma dos erros quadrados entre os

valores previstos e os observados.

2.3.1.3 ARIMA/SARIMA

Uma abordagem alternativa aos modelos de suavizacdo exponencial ¢ a familia de
modelos Autorregressivos Integrados de Médias Moveis (ARIMA), também conhecidos como
modelos de Box & Jenkins. Enquanto os modelos ETS assumem que nao ha correlagao entre
os residuos, o ARIMA ¢ projetado especificamente para explorar a autocorrelagdo, ou seja, a
conexdo entre as observacdes passadas e os valores futuros. A familia ARIMA tem
demonstrado desempenho satisfatorio na modelagem de séries temporais com diferentes niveis
de complexidade.

O modelo ARIMA(p,d,q) ¢ definido por trés componentes: p (Ordem Autorregressiva -
AR), que utiliza uma regressao linear dos valores passados da propria série para prever o futuro;
g (Ordem de Médias Moveis - MA), que utiliza uma regressao linear dos erros de previsao
passados; e d (Ordem de Integragdo - I), que representa o nimero de diferenciacdes necessarias
para tornar a série estacionaria (isto ¢, com média e varidncia constantes ao longo do tempo).

O modelo ARIMA basico ndo lida nativamente com sazonalidade. Para isso, utiliza-se
a extensdo SARIMA (Seasonal ARIMA). O SARIMA adiciona componentes sazonais
(P,D,Q) m aos parametros ndo sazonais (p,d,q), onde m representa o periodo da sazonalidade
(ex: 12 para dados mensais). A extensao mais poderosa desta familia ¢ o SARIMAX, que
permite a inclusdo de varidveis explicativas (exdgenas) ao modelo SARIMA. Esta abordagem,

também chamada de Regressdo Dinamica, ¢ extremamente relevante para a engenharia de
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producdo, pois permite que a previsdo de demanda seja influenciada ndo apenas pelo seu
comportamento passado, mas também por drivers externos, como promogdes, feriados,

investimentos em marketing.

2..32 Modelos de Machine Learning (ML)

Diferente dos modelos estatisticos que extrapolam padrdes temporais, os modelos de
ML aprendem uma fun¢ao de mapeamento f(X) — y, onde y é a demanda a ser prevista e X ¢
um conjunto de "features" (caracteristicas). Na previsdo de demanda, essas features sdo
tipicamente criadas por engenharia de features (ex: lags da demanda, médias moveis, dia da

semana, més, etc.).

2.3.2.1 Modelo Prophet

O modelo Prophet ¢ uma biblioteca de codigo aberto desenvolvida pela equipe do
Facebook (Meta), projetada especificamente para a previsao de dados de negocios. Ele ¢
fundamentado em um modelo de decomposi¢do aditivo (ou multiplicativo) expresso pela
relacdo y,= g+ s;+ h,te;, onde g, representa a funcao de tendéncia, s; as mudancas periddicas
(sazonalidade), h; o efeito de feriados ou eventos, €; o termo de erro. Uma de suas principais
vantagens para a pratica empresarial ¢ a facilidade em incorporar um calendario de eventos
customizados. Por exemplo, o modelo pode ser alimentado com datas de feriados ou eventos
especificos do negodcio, como promogdes ou eventos esportivos, capturando o impacto na

demanda antes e depois da ocorréncia.

2.3.2.2 Random Forest

O Random Forest (Floresta Aleatoria) ¢ um método de ensemble (conjunto) baseado em
bagging (Bootstrap Aggregating). Esta técnica de Machine Learning opera construindo uma
vasta colegdo de arvores de decisao independentes durante a fase de treinamento. Para
problemas de regressdo, como a previsao de demanda, o resultado do modelo € obtido através
da média das previsdes de todas as arvores individuais que compdem a "floresta". A robustez
do modelo advém de duas fontes principais de aleatoriedade: primeiro, cada arvore € treinada
sobre uma amostra aleatéria dos dados de treinamento (amostragem com reposicao); segundo,
ao construir cada né da arvore, apenas um subconjunto aleatério de features (variaveis) €
considerado para definir a divisdao. Este processo duplo garante que as arvores sejam
descorrelacionadas, o que reduz drasticamente a variancia do modelo final e mitiga o risco de

overfitting.
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Para ser aplicado a problemas de séries temporais, que ndo ¢ sua fun¢do nativa, o
Random Forest exige que o problema seja reestruturado como um problema de regressao
supervisionada. Isso ¢ feito através de um processo de "engenharia de features", onde o valor
futuro da demanda (o alvo da previsao, y) € previsto com base em um conjunto de caracteristicas
(X) construidas a partir de dados historicos. Essas caracteristicas tipicamente incluem valores
defasados (lags) da propria demanda (ex: demanda de 7 dias atras), estatisticas de janela mével
(ex: média ou desvio padrao dos ultimos 30 dias) e variaveis exogenas, como dados de
calendario (dia da semana, més, feriado) ou indicadores de negdcios (ex: dias de promogao). A
principal vantagem do Random Forest ¢ sua alta performance com pouca necessidade de
sintonizagao de hiperparametros e sua robustez a outliers. Sua maior limitagcdo na previsdo de
demanda ¢ ser um modelo inerentemente ndo-extrapolativo: ele ndo consegue prever valores
que estejam fora do intervalo de dados (minimo e méaximo) observado durante o treinamento,

tornando-o inadequado para séries com forte tendéncia de crescimento ou queda.

2.3.2.3 XGBoost (Extreme Gradient Boosting)

O XGBoost (Extreme Gradient Boosting) ¢ outro modelo de ensemble baseado em
arvores de decisdo, mas que utiliza a técnica de boosting (reforco) em vez de bagging. O
boosting funciona de forma sequencial: o modelo treina uma primeira arvore (geralmente
"fraca"); em seguida, uma segunda arvore ¢ treinada especificamente para corrigir 0s erros
(residuos) cometidos pela primeira. Este processo € repetido centenas ou milhares de vezes,
com cada nova arvore focando nos erros residuais do conjunto anterior, permitindo que o
modelo aprenda padrdes extremamente complexos e ndo-lineares. O XGBoost ¢ uma
implementag¢ao especifica e altamente otimizada do gradient boosting, que domina competi¢des
de ciéncia de dados (como o Kaggle) para dados tabulares.

Sua superioridade se deve a otimizagdes de sistema, como processamento paralelo, e
avangos algoritmicos, notavelmente a inclusdo de regularizagdo (L1 - Lasso e L2 - Ridge)
diretamente na fun¢do de perda. Essa regularizagdao controla a complexidade das arvores e
previne o overfitting, um problema comum em algoritmos de gradient boosting tradicionais.
Tal como o Random Forest, sua aplicagdo na previsdo de demanda exige uma robusta
engenharia de features, transformando a série temporal em um conjunto de dados
supervisionado com lags, médias mdveis e variaveis exdogenas. O XGBoost frequentemente

r

apresenta acuracia superior ao Random Forest, mas ¢ consideravelmente mais sensivel a
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sintonizag¢ao de hiperparametros (como taxa de aprendizado, profundidade maxima das arvores
e parametros de regularizacdao). Similarmente ao RF, o XGBoost também ¢ um modelo ndo-
extrapolativo, limitando sua capacidade de prever valores além do espectro de dados de

treinamento.

2.3.3 Modelos de Deep Learning (Redes Neurais)

Os modelos de Deep Learning (DL) sdo uma subarea do ML que utiliza redes neurais
artificiais com maultiplas camadas (profundas) para aprender representacdes complexas dos
dados. Para séries temporais, os modelos de DL sao capazes de aprender padrdes temporais
diretamente dos dados, muitas vezes eliminando a necessidade de engenharia de features

manual.

2.3.3.1 N-BEATS (Neural Basis Expansion Analysis for Interpretable Time
Series)

O N-BEATS ¢ uma arquitetura de Deep Learning pura, que alcangou notoriedade ao
demonstrar desempenho estado-da-arte na competicdo de previsdo M4, superando métodos
estatisticos e hibridos tradicionais. Diferente das LSTMs, o N-BEATS nao utiliza células
recorrentes ou camadas convolucionais; sua arquitetura ¢ baseada inteiramente em camadas
densas (fully connected layers), organizadas em uma estrutura de "stacks" (pilhas) e "blocos".
O principio fundamental do N-BEATS ¢ a decomposi¢do da série temporal, de forma anédloga
aos métodos cldssicos. A rede processa a série historica (lookback period) e a decompde
sequencialmente. Um primeiro stack modela um componente da série (como a tendéncia); o
residuo dessa modelagem (a série original menos a tendéncia prevista) ¢ entdo passado para o
proximo stack, que modela outro componente (como a sazonalidade).

Cada bloco dentro de um stack utiliza "fung¢des de base" (basis expansion) para modelar
esses componentes. Por exemplo, um bloco de tendéncia aprende coeficientes para um conjunto
de polindomios, enquanto um bloco de sazonalidade aprende coeficientes para um conjunto de
séries de Fourier. O modelo final agrega as previsdes de todos os blocos. Uma das principais
vantagens do N-BEATS sobre outras arquiteturas de Deep Learning ¢ a sua interpretabilidade.
Na sua versao "interpretavel" (N-BEATS-I), os stacks sdo pré-configurados para modelar
especificamente a tendéncia e a sazonalidade, permitindo que o analista visualize os
componentes que o modelo aprendeu, superando o problema da "caixa-preta" comum em

LSTMs. Embora nativamente univariado, seu desempenho € robusto e demonstra a capacidade
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das redes neurais profundas de aprenderem e generalizarem padrdes classicos de séries

temporais de forma eficaz.

2.4 OIPT

A Teoria do Processamento de Informagao Organizacional (OIPT), como articulada
fundamentalmente por Jay Galbraith (1974, 1977), oferece um referencial tedrico robusto para
entender como as empresas estruturam suas operacdes € porque selecionam determinadas
tecnologias, incluindo os modelos de previsao de demanda. A premissa central da OIPT ¢ que
as organizagdes sdo sistemas abertos de processamento de informacao que devem lidar com a
incerteza para executar suas tarefas. O desempenho organizacional, portanto, ¢ contingente a
habilidade da empresa em projetar estruturas e mecanismos capazes de processar a quantidade
de informagdo necessaria para lidar com a incerteza imposta por suas tarefas e seu ambiente
(Galbraith, 1977).

O postulado central de Galbraith (1977) € que a incerteza, definida como a diferenca (o
gap) entre a quantidade de informag¢ao que uma organizacgao precisa ter para tomar decisdes e
a quantidade de informagdo que ela efetivamente possui, ¢ o principal impulsionador das
escolhas de design organizacional. Quanto maior a incerteza da tarefa, maior a quantidade de
informagdo que deve ser processada durante a execucdo da tarefa para que se atinja um nivel
de desempenho aceitavel. No contexto especifico da previsdo de demanda, a incerteza ndo €
uma abstragdo; ela se manifesta de formas concretas: alta volatilidade do mercado, ciclos de
vida curtos de produtos, grande variedade de SKUs, forte impacto de varidveis exdgenas (como
promogdes, agdes de concorrentes, clima ou eventos macroecondmicos) € a complexa
interdependéncia da cadeia de suprimentos (Tushman & Nadler, 1978). Um ambiente de alta
incerteza, como um varejista de fast-fashion ou um e-commerce, gera uma necessidade de
processamento de informagdo exponencialmente maior do que um fabricante de um produto
commodity estavel.

Diante dessa incerteza, a OIPT propde que as organizagdes tenham duas
estratégias basicas: (1) reduzir a necessidade de processamento de informagao (criando recursos
de folga, como estoques de seguranca, ou criando tarefas autocontidas) ou (2) aumentar sua
capacidade de processamento de informacao (investindo em sistemas de informacgao verticais
ou criando relagdes laterais) (Galbraith, 1974). A escolha de um modelo de previsdo de
demanda ¢, na visao da OIPT, uma decisao estratégica fundamental sobre o nivel de capacidade

de processamento de informacgao (IPC) que a empresa deseja instalar.
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Modelos estatisticos tradicionais, como médias moveis, suavizagdo exponencial ou
mesmo modelos ARIMA univariados, representam um nivel de IPC relativamente baixo. Eles
sao projetados para processar um fluxo de informagdo limitado e estruturado: a propria série
temporal historica da demanda. Eles sdo eficazes precisamente em ambientes de baixa
incerteza, onde o passado ¢ um bom preditor do futuro e a informagao necessaria para a decisdo
¢ contida na prépria série de dados. Tentar usar um modelo tdo simples em um ambiente de alta
incerteza falha porque o modelo ndo tem capacidade para processar a vasta quantidade de
informacgao adicional (promocdes, dados de midias sociais, etc.) que a organizacao precisa para
reduzir essa incerteza.

Por outro lado, o advento de modelos de Machine Learning (ML), como XGBoost ¢
LightGBM, e a infraestrutura de Big Data que os suporta, representam um investimento direto
e macigo no aumento da capacidade de processamento de informac¢ao. Esses modelos sao, por
definicdo, mecanismos de alta IPC. Eles sdo projetados especificamente para processar
simultaneamente centenas ou milhares de fluxos de informacdo (variaveis exogenas),
identificar padrdes ndo-lineares complexos e extrair significado de dados ndo estruturados
(como sentimentos em redes sociais), informagao que os modelos tradicionais sdo incapazes de
processar. Na linguagem de Galbraith, a implementa¢do de um sistema de previsao baseado em
ML ¢ um investimento em um "sistema de informacao vertical" sofisticado, projetado para
canalizar um grande volume de dados do ambiente para os tomadores de decisdo de forma
utilizével.

O sucesso, no entanto, ndo reside simplesmente em maximizar a capacidade de
processamento. A OIPT ¢ uma teoria de contingéncia, e seu conceito mais crucial € o fit (ajuste).
O desempenho organizacional ¢ alcangado quando ha um alinhamento entre o nivel de incerteza
da tarefa e a capacidade de processamento de informacdo da organizagdo (TUSHMAN;
NADLER, 1978). O desalinhamento (misfit) ¢ prejudicial. Se a incerteza da demanda ¢ alta
(mercado volatil, muitas promog¢des), mas a empresa utiliza um modelo de baixa capacidade de
processamento de informagdao (como uma média movel), existirda um gap de informagdo. A
capacidade da empresa ¢ menor que sua necessidade, resultando em previsdes imprecisas,
excesso de estoque e rupturas. Inversamente, se a incerteza ¢ baixa (um produto estavel,
maduro), mas a empresa investe recursos excessivos em um complexo modelo de Deep
Learning (alta capacidade de processamento de informagao) que requer manutengao constante

e vastos recursos computacionais, ela estd sendo ineficiente. A capacidade excede a
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necessidade, gerando custos desnecessdrios sem um ganho de performance correspondente
(DAFT; LENGEL, 1986).

Portanto, a OIPT oferece um framework teorico poderoso para guiar a selecao de
modelos de previsao. A escolha nao deve ser puramente técnica, mas sim uma decisao de design
organizacional. Uma empresa que busca o fit deve primeiro diagnosticar a incerteza de seu
ambiente de demanda. Para SKUs de baixa incerteza, modelos estatisticos de baixa capacidade
de processamento de informagdo sdo adequados e eficientes. Para SKUs de alta incerteza, a
organiza¢do deve investir em modelos de alta capacidade de processamento de informacgao
(como ML) para processar a informacao necessaria para reduzir essa incerteza ¢ permitir um
planejamento eficaz. A OIPT, em suma, justifica porque ndo existe um "melhor modelo"
universal, mas sim um "modelo adequado" que equilibra a complexidade do ambiente com a

capacidade informacional da ferramenta.
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3.Metodologia

3.1 Design da pesquisa

O trabalho adota como base metodologica o Design Science Research (DSR), ou
Pesquisa em Ciéncia do Design, como mostrado na figura 1. Esta abordagem ¢
fundamentalmente um paradigma de resolugdo de problemas, distinto das abordagens
explicativas ou descritivas tradicionais. O objetivo central da DSR ndo ¢ apenas descrever,
explicar ou prever a realidade, mas sim altera-la através da criagdo de "artefatos" novos e
intencionais que enderecam problemas organizacionais praticos e relevantes (HEVNER,
MARCH, PARK; RAM, 2004). Esses artefatos podem ser construtos, modelos, métodos ou
instanciagdes de sistemas (MARCH; SMITH, 1995). A DSR busca, portanto, criar
conhecimento Util, que ¢ simultaneamente rigoroso em sua concepg¢do € relevante em sua

aplicagdo pratica.

ETAPA1; ETAPA 2: ETAPA 3: ETAPA 4: ETAPA5: ETAPAG:
IDENTIFICACAQ DO <—» DEFINICAD DOS *DESENVOLVIMENT » APLICACAQ DO > AVALIAC.:\-O > DIVULGA .-iO
PROBLEMA OBJETIVOS DO ARTEFATO ARTEFATO = G
- Pré F'rocelssamento I I I
Realizacdo de Andlise das Processamento Utilizagio de dados Comparaco com Publicacdo do
enirevistas ndo - . H
entrevistas Pos-Processamento reais no SAD metas da empresa trabalho
estruturadas MCDM

Figura 1 — Pipeline metodologico. Fonte: Autoria prépria, 2025.

O processo da DSR ¢ inerentemente iterativo, movendo-se entre a construgdo do
artefato, sua avalia¢do e o refinamento do problema. Para estruturar esta pesquisa, foi adotado
o modelo de processo de DSR proposto por Peffers, Tuunanen, Rothenberger e Chatterjee
(2007), que consolida diversas abordagens em um processo nominal de seis etapas:
Identifica¢do do Problema e Motivacdo, Definicdo do objetivo, Desenvolvimento, Aplicacao,
Avaliagdao e Divulgacdo. Ao longo dessas seis etapas, foi utilizada uma abordagem multi-
métodos, com etapas qualitativas e quantitativas. Essa abordagem multi-métodos advém da
natureza do problema, onde o desafio ndo ¢ apenas matematico. Enquanto a parte quantitativa

¢ responsavel por processar dados, rodar modelos e aplicar métodos de decisdo multicritério
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para comparar os resultados, a parte qualitativa é fundamental para o entendimento do contexto
do problema e definir objetivos. Sob a 6tica da OIPT, o desempenho organizacional depende
do ajuste (fif) entre a incerteza da tarefa e a capacidade de processamento de informacao. A fase
qualitativa da pesquisa foca no lado da demanda da informagao (diagnosticar a incerteza e os
requisitos), enquanto a fase quantitativa foca no lado da oferta (desenvolver e testar a

capacidade de processamento dos algoritmos).

3.1.1 Fase Qualitativa: Identificacao do Problema e Motivacao e Definicao
dos Objetivos da Solucio

A etapa inicial do Design Science Research (DSR) consiste na defini¢do do problema
de pesquisa especifico e na justificativa da solu¢do proposta, garantindo que o artefato a ser
desenvolvido gere uma oportunidade de melhoria genuina e traga beneficios claros a
organiza¢do (PEFFERS et al., 2007). Para evitar uma definicdo puramente tedrica e basear o
problema no contexto organizacional real, esta etapa foi conduzida através de uma abordagem
qualitativa exploratoria, utilizando entrevistas nao estruturadas com especialistas em
planejamento de demanda (demand planners) da empresa em estudo. A escolha por entrevistas
nao estruturadas permitiu uma exploragao aberta e profunda das percepcdes dos especialistas
sobre os desafios, limitagdes e pontos de dor do processo de previsao de demanda vigente (YIN,
2014).

A andlise dessas entrevistas revelou que a organizacdo opera em um mercado
caracterizado por alta volatilidade, com um portfélio de produtos diversificado (SKUs) com
diferentes ciclos de vida e os métodos de previsdo atuais demonstram limitagdes significativas
em lidar com essa complexidade, evidenciando um gap entre a necessidade de informagao para
um planejamento acurado e a capacidade dos sistemas atuais de processar e modelar essa
informacao, um desalinhamento sob a otica da Teoria do Processamento de Informagado
Organizacional (GALBRAITH, 1977). O problema central ndo reside na auséncia de uma
previsdo, mas na sub-otimizacgao da sua qualidade, o que gera ineficiéncias operacionais como
estoques de seguranga excessivos e potenciais rupturas.

Uma vez identificado o problema, a metodologia DSR exige a definicdo de objetivos
tangiveis e mensuraveis para a solu¢do, permitindo que o artefato seja rigorosamente avaliado
nas etapas posteriores (PEFFERS et al., 2007). Com base nas entrevistas, foram identificados
os dois indicadores-chave de desempenho (KPIs) utilizados internamente para julgar a eficacia
do planejamento: Forecast Accuracy (Acuracia da Previsdo) e Forecast Bias (Viés da
Previsdo). O primeiro objetivo, aumentar a acuracia, ¢ central para a eficiéncia operacional,
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pois mede o quao proximas as previsoes estdo dos valores de demanda reais (HYNDMAN;
ATHANASOPOULOS, 2018). A baixa acuracia introduz ruido no planejamento, forcando a
organizacdo a proteger-se com estoques inflados ou resultando em perda de vendas e
deterioragao do nivel de servico (CHOPRA; MEINDL, 2016).

O segundo objetivo, diminuir o viés da previsdo, ¢ igualmente importante, pois a
acuracia isolada ¢ insuficiente se o erro ndo for aleatorio. O viés mede a tendéncia sistematica
de um modelo em superestimar ou subestimar consistentemente a demanda real (HYNDMAN;
ATHANASOPOULOS, 2018). Um viés consistente de sub-previsdo leva a rupturas de estoque
e perda de receita, enquanto o viés de sobre-previsdo resulta em acumulo de estoque, custos de
armazenagem e risco de obsolescéncia (GARDNER, 2006). Portanto, o artefato deve ter como
meta gerar previsdes com um viés estatisticamente proximo de zero, indicando que os erros sao

aleatorios e ndo sistematicos.

3.1.2 Fase Quantitativa: Modelagem Experimental

Ap6s o diagnostico qualitativo e a defini¢do dos objetivos, a pesquisa avangou para as
etapas de "Design e Desenvolvimento" e "Demonstracdo”, conforme preconizado pelo ciclo
metodoldgico do Design Science Research (PEFFERS et al., 2007). Esta fase adotou uma
abordagem quantitativa e experimental, com o objetivo de materializar o artefato computacional
proposto: um Sistema de Apoio a Decisdo (SAD) multicritério capaz de operacionalizar e
comparar diferentes modelos de previsao.

A estratégia central desta etapa consistiu na estruturacdo de um experimento
comparativo robusto entre diferentes modelos. Inspirada nas metodologias aplicadas nas
renomadas competi¢cdes internacionais M4 e M5, esta abordagem rejeita a premissa de que
existiria um algoritmo universalmente 6timo para todas as séries temporais (MAKRIDAKIS;
SPILIOTIS; ASSIMAKOPOULOS, 2020). Em vez disso, o artefato foi construido para testar
empiricamente o desempenho relativo de diferentes familias de algoritmos, abrangendo desde
métodos estatisticos cldssicos, como a Suavizacdo Exponencial, até técnicas avangadas de
Machine Learning € Deep Learning, sob as mesmas condi¢oes de contorno e utilizando dados
reais da organizagao.

O desenvolvimento do artefato seguiu um fluxo logico estruturado em trés estigios
principais: Pré processamento, processamento e pds processamento, contando com uma
avaliagcdo multicritério, operacionalizando o conceito tedrico de fit organizacional proposto pela

Teoria do Processamento de Informagao Organizacional (OIPT). Diferente de abordagens
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tradicionais que observam exclusivamente a minimizagdo do erro, o design desta pesquisa
incorporou variaveis de eficiéncia computacional (tempo de processamento) e estabilidade
(incerteza), reconhecendo que a complexidade do modelo deve ser proporcional a

complexidade da tarefa (TUSHMAN; NADLER, 1978).

3.2 Métodos de Coleta de Dados

A realizacdo de uma pesquisa fundamentada no Design Science Research (DSR) exige
uma estratégia de coleta de dados robusta, capaz de sustentar tanto a relevancia pratica do
artefato quanto o rigor cientifico da sua construcdo. A validade de um Sistema de Apoio a
Decisdao (SAD) nao reside apenas na sofisticacdo dos seus algoritmos, mas na qualidade e na
representatividade das informagdes que o alimentam. Para compreender a complexidade do
fendmeno estudado, esta pesquisa adotou uma abordagem de triangulagcdo de dados (FLICK,
2009), combinando fontes primarias qualitativas (entrevistas) com dados secundarios
quantitativos (extragdo de ERP), além de uma revisdo da literatura para compreender o estado
da arte. Esta secdo detalha os procedimentos, justificativas e protocolos adotados para cada

modalidade de coleta.

3.2.1 Entrevistas Nao Estruturadas com Especialistas

Na fase inicial de diagnostico e identificacdo do problema (Etapa 1 do DSR), a coleta
de dados teve como objetivo capturar o conhecimento tacito, as nuances processuais € as
percepgoes subjetivas sobre os desafios do planejamento de demanda. O método selecionado
para esta investigacdo foi a realizacdo de entrevistas ndo estruturadas com especialistas da
organizagao.

A escolha por entrevistas nao estruturadas, em detrimento de questionarios fechados ou
entrevistas semiestruturadas rigidas, justifica-se pela natureza exploratoria desta fase da
pesquisa. Em estudos de caso em que as fronteiras entre o fendmeno € o contexto ndo sao
claramente evidentes, a flexibilidade ¢ crucial (YIN, 2014). Questionarios estruturados
pressupdem que o pesquisador ja conhece as variaveis relevantes a serem testadas, no entanto,
no contexto complexo de Supply Chain, as causas raizes da ineficiéncia muitas vezes ndo sao
quantificaveis em um primeiro momento. A entrevista ndo estruturada permite que o
entrevistado estabeleca a linha de raciocinio, oferecendo uma visdo mais holistica e menos

enviesada pelas premissas do pesquisador (MARCONI; LAKATOS, 2003). Este método ¢ ideal
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para a obten¢do de dados de natureza profunda, permitindo captar ndo apenas os fatos, mas o
significado que os sujeitos atribuem a eles, essencial para diagnosticar o desalinhamento
proposto pela Teoria do Processamento de Informagao Organizacional.

Foram selecionados especialistas que atuam na linha de frente do processo: planejadores
de demanda (demand planners), responsaveis pela execu¢do técnica da previsdo e pelas
interfaces com as areas comercial e financeira. O processo de coleta ocorreu em ambiente
reservado, garantindo a confidencialidade necessaria para que os participantes expusessem

criticas ao processo vigente.

3.2.2 Dados Secundarios: Extracio e Tratamento de Dados do Sistema ERP

Para as fases de "Design e Desenvolvimento" e "Aplicacdo" (Etapas 3 e 4 do DSR), a
pesquisa exigiu dados quantitativos para o treinamento e validacdo dos modelos preditivos. A
fonte utilizada foi a base de dados transacional do Sistema Integrado de Gestdo (ERP -
Enterprise Resource Planning) da organizagao parceira. Por questoes de confidencialidade, as
demandas foram multiplicadas por um niimero inteiro para a descaracterizagdo de informagao
sensivel.

A utilizagdo de dados secundarios extraidos diretamente de sistemas corporativos
confere a pesquisa o que denominam de validade ecoldgica (HAIR et al., 2009). Ao contrario
de dados simulados ou sintéticos, frequentemente usados em pesquisas teoricas de estatistica,
os dados de ERP contém "ruidos" reais, como sazonalidades irregulares, tendéncias de
mercado, efeitos de promocgdes e o impacto de intervengdes humanas, que desafiam a robustez
dos algoritmos. No contexto da Industria 4.0 e do Big Data Analytics, a capacidade de extrair
valor de grandes volumes de dados historicos ¢ uma competéncia central (HOFMANN;
RUTSCHMANN, 2018). Os dados coletados referem-se ao historico de vendas sell-in (vendas
da indtstria para o varejista). A escolha pelo sell-in justifica-se pela posi¢cdo da empresa na
cadeia de suprimentos: como fabricante, seu planejamento de producdo e estoque deve
responder primariamente aos pedidos colocados pelos seus clientes diretos (distribuidores e
varejistas), embora estes sejam derivados da demanda final (sell-out).

O dataset abrange um horizonte temporal de mais de 56 meses (dados a partir de 01/2021).
Este periodo foi definido para garantir a captura de, no minimo, dois a trés ciclos sazonais
completos, requisito fundamental para o treinamento eficaz de modelos como SARIMA e Holt-

Winters, que dependem da identificacio de padroes repetitivos (HYNDMAN;
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ATHANASOPOULOS, 2018). Em termos de granularidade, os dados foram coletados no nivel
de SKU (Stock Keeping Unit) e mensalmente. A partir dele, foram coletadas as seguintes
variaveis:

e Variavel Alvo (Target): Volume de vendas unitarias faturadas.

e Variaveis Temporais: Data do faturamento, permitindo a extragao de features derivadas
como més, trimestre € ano.

e Atributos Categoricos: Hierarquia do produto, incluindo Marca, Familia e Subfamilia.
Metodologicamente, optou-se por realizar a modelagem preditiva no nivel de agregacao
de "Subfamilia". Esta decisdo fundamenta-se na necessidade de mitigar os ruidos
causados por rupturas de estoque pontuais que afetam SKUs individuais para previsoes
taticas de médio prazo (KOLASSA; SIEMSEN , 2016).

Durante a extracdo, foram aplicados filtros para excluir itens descontinuados ou
lancamentos muito recentes com histérico inferior a 12 meses, visto que a escassez de dados
historicos inviabilizaria o treinamento supervisionado de algoritmos de Machine Learning
(BISHOP, 2006). A base de dados resultante da extragdo do ERP constituiu a matéria-prima

empirica para a "competi¢do de modelos".

3.3 Métodos de analise de dados

A andlise de dados foi estruturada em trés estagios fundamentais: (1) Pré-processamento
e Engenharia de Atributos, visando adequar os dados brutos aos requisitos dos algoritmos; (2)
Processamento e Modelagem, onde ocorre o treinamento e validacdo cruzada; e (3) Pos-
processamento e Decisdo Multicritério, focado na avaliagdo de desempenho e sele¢do do

modelo 6timo.

3.3.1 Pré-processamento

A etapa de pré-processamento nao se limita a limpeza de dados, mas inclui um
diagnostico estatistico profundo para garantir que as séries temporais atendam aos pressupostos

teoricos dos modelos a serem treinados.

3.3.1.1 Diagnostico de Distribuicao e Testes de Normalidade

A analise de normalidade ¢ uma etapa diagndstica fundamental. O design do artefato
nao assume que o usuario saiba interpretar valores brutos de Assimetria e Curtose; em vez disso,
executa um painel de testes estatisticos formais. Muitas técnicas de modelagem estatistica e

econométrica, bem como alguns algoritmos de machine learning, assumem que os dados ou
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seus residuos seguem uma distribuicao Gaussiana. A violagao dessa premissa pode invalidar os
resultados do modelo ou reduzir sua performance preditiva.

Além disso, a premissa de que os erros de previsao (ou a demanda) seguem uma distribui¢ao
normal € crucial para a constru¢do de intervalos de confianga confidveis. Para uma avaliagdo
rigorosa, utiliza-se um nivel de significincia a = 0,05. As hipdteses formais sdo:

e Hj: A amostra provém de uma distribuicdo normal.

e H;: A amostra nao provém de uma distribui¢do normal.

A rejei¢do de H ocorre se o p-valor for inferior a 0,05. Para mitigar a sensibilidade variada
dos testes a desvios especificos (assimetria vs. caudas pesadas), adota-se um conjunto de trés
testes complementares (THADEWALD; BUNING, 2007):

« Teste de Shapiro-Wilk: E o método primario devido a sua poténcia estatistica superior
para amostras de tamanho pequeno a moderado (N < 5000), o que € comum em s¢ries
temporais de S&OP (SHAPIRO; WILK, 1965). Estudos confirmam sua eficicia sob
essas restricoes (RAZALI; WAH, 2011)5. A estatistica W avalia a correlagdo entre
dados ordenados e valores esperados:

O )
X, (g - X)?

o Teste de Jarque-Bera: Teste assintotico que se baseia nos momentos da distribuicdo,

w

verificando se a assimetria e a curtose da amostra se alinham aos de uma distribuicao
normal (JARQUE; BERA, 1987). Este teste ¢ particularmente eficaz na identificagdo
de "caudas pesadas, que frequentemente enviesam estimadores de Minimos Quadrados
Ordinarios (BROOKS, 2019).

e Teste de Kolmogorov-Smirnov (K-S): Uma prova de aderéncia ndo paramétrica que
mede a distdncia maxima (D) entre a Funcdo de Distribuicio Acumulada (FDA)
empirica e a FDA tedrica (KOLMOGOROV, 1933; MASSEY, 1951). Sua inclusdo
justifica-se pela capacidade de avaliar a aderéncia global, sendo menos sensivel a
outliers extremos do que o Jarque-Bera (CHAKRAVARTI et al., 1967).

O artefato traduz a rejei¢do de Hyem agdo pratica, sugerindo transformagdes para a
estabilizacdo da variincia. Esta etapa segue o trabalho de Box e Cox (1964), recomendando
transformagdes como a logaritmica ou a familia de transformagdes de poténcia de Box-Cox.
Complementarmente, a descri¢do contextualiza o SKU analisado através do Coeficiente de
Variacao (CV%), métrica crucial para a classificacdo da previsibilidade de demanda (SILVER

etal., 2016).
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3.3.1.2 Verificacdo de Estacionariedade (Raiz Unitaria)

Apos a analise distributiva, prossegue-se para a verificagdo da estacionariedade. Uma série
¢ classificada como estacionaria se sua média, varidncia e autocovariancia sido constantes no
tempo (HAMILTON, 1994). A modelagem de séries ndo estaciondrias sem o devido tratamento
pode resultar em "regressdes espurias", onde altos valores de R? mascaram a falta de relagdo
causal real entre as varidveis (GRANGER; NEWBOLD, 1974).

Reconhecendo o baixo poder estatistico dos testes de raiz unitaria em amostras finitas, esta
metodologia adota a estratégia de triangulagdo confirmatodria. (Enders, 2014). O diagndstico
final emerge do consenso entre trés testes com estruturas distintas:

1. Teste Augmented Dickey-Fuller (ADF): Testa a presenca de uma raiz unitaria, onde

a hipotese nula (Hy) € de que a série é ndo estacionaria (DICKEY; FULLER, 1979). A

formulagdo utiliza termos defasados para corrigir a autocorrelagdo serial.

Ayr =a+pt+yy—1+

L

6;Ayr—; + &
1

P
2. Teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS): Para aumentar a confiabilidade,
emprega-se o teste KPSS, que inverte a 16gica das hipoteses, com a hipdtese nula sendo
que a série é estacionaria (KWIATKOWSKI et al., 1992). E essencial para distinguir

séries puramente ndo estacionarias.

3. Teste Phillips-Perron (PP): Aplicado como validador robusto (PHILLIPS; PERRON,
1988). Diferente do ADF, o teste PP aplica uma corre¢ao ndao paramétrica baseada no
estimador de variancia de longo prazo de Newey e West (1987), tornando-o resiliente a
formas gerais de heterocedasticidade nos erros.

Se os testes indicarem ndo estacionariedade, a metodologia prescreve a aplicagdo de

diferenciagdo sucessiva (A%) até que a série se torne estacionaria, um pré-requisito para a

calibracao de modelos ARIMA (BOX; JENKINS; REINSEL, 2015).

3.3.1.3 Decomposicio Estrutural e Sazonalidade

A metodologia avanga para a decomposicao estrutural como ferramenta exploratoria
essencial (HYNDMAN; ATHANASOPOULOS, 2018). O objetivo ¢ isolar trés componentes

latentes da série Y;: Tendéncia (T;), Sazonalidade (S;) e Residuo (R;). A metodologia classica
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define a relagdo entre os componentes (MAKRIDAKIS; WHEELWRIGHT; HYNDMAN,
1998):

e Modelo Aditivo: Usado quando a amplitude da sazonalidade e do ruido ¢ constante.

Y, =T, +S; +R;
e Modelo Multiplicativo: Comum em vendas com heterocedasticidade, onde a
magnitude sazonal cresce com a tendéncia.
Y =T XS X R,

A estimagao ¢ feita pelo método de médias moveis (MACAULAY, 1930). Para quantificar
a presenca de padrdes ciclicos, utiliza-se a métrica "Forca da Sazonalidade" ($F_S$), conforme
proposto por Wang, Smith e Hyndman (2006). Ela mede a propor¢do da varidncia (apos

remogao da tendéncia) explicada pela sazonalidade:

F 01 Var(R;)
=max( 01— ———
S Var(S; + R;)

O valor de Fs (entre 0 e 1) serve como um gatilho de decisdo. Se Fg exceder um limiar
(ex: 0.5), o sistema recomenda a transi¢do para modelos preditivos com componente sazonal

explicito, como SARIMA ou Holt-Winters.

3.3.1.4 Tratamento de Outliers e Estabilizacao da Série

A etapa de pré-processamento ¢ um imperativo metodologico para assegurar a validade
dos modelos preditivos. Dados brutos de demanda frequentemente apresentam anomalias,
heterocedasticidade e nao-estacionariedade que, se nao tratadas, podem enviesar severamente
a estimagdo de pardmetros (HAIR et al., 2009). Este mddulo estrutura-se em trés etapas
sequenciais: detec¢do e tratamento de valores atipicos, transformagdes para estabilizag¢do e

padronizacdo de escala.

3.3.1.4.1 Detecc¢ao e Tratamento de Outliers

Outliers sdo observagdes que divergem significativamente do padrdo global da série
(HAWKINS, 1980). Em modelos baseados em Minimos Quadrados Ordindrios, tais pontos
podem distorcer a regressao e violar pressupostos de normalidade. A metodologia emprega trés
abordagens complementares para sua detec¢ao:

1. Z-Score: Método paramétrico que padroniza os dados assumindo uma distribuigao

Gaussiana. O escore z; quantifica a distancia da observagdo a média em unidades de

desvio padrao:
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Adota-se o limiar |z;| > 3 para classificagdo de outliers extremos (HAIR et al., 2009). A

limitagdo deste método reside na sua sensibilidade: outliers extremos podem inflar o desvio

padrdo amostral (s), mascarando a propria detecgao.

2. Intervalo Interquartil (IQR): Para contornar a falta de robustez do Z-Score, utiliza-se o

método nao-paramétrico do IQR, fundamentado na andlise exploratéria de Tukey
(1977). Baseado em estatisticas de ordem (Mediana, Q4, Q3), este método ¢ resiliente a

valores extremos. Os limites de detec¢do sdao definidos como:

Limites = [Q; — 3-IQR, Q; + 3 - IQR]

Onde IQR = @3- Q;. Pontos fora destes limites sdo considerados anomalos.

3.

Isolation Forest (Floresta de Isolamento): Como abordagem de Machine Learning
ndo supervisionada, aplica-se o Isolation Forest (LIU; TING; ZHOU, 2008). O
algoritmo isola anomalias baseando-se no principio de que sdo "poucas e diferentes".
Ao particionar os dados aleatoriamente em arvores de decisdo, outliers tendem a ficar
isolados mais proximos da raiz (menor caminho médio), dispensando pressupostos

sobre a distribui¢ao dos dados.

Apos a detecgdo, o sistema prioriza a Winsorizagdo (GHOSH; VOGT, 2012). Ao contrario

da remocao (que cria lacunas temporais), esta técnica limita os valores extremos aos quantis de

5% e 95%, preservando a estrutura temporal da série enquanto reduz a influéncia de eventos

atipicos.

3.3.1.4.2 Transformacodes para Estabilizacdo de Variancia

Esta etapa visa adequar a estrutura estocastica da série temporal aos pressupostos teoricos

dos modelos estatisticos, corrigindo fendmenos de heterocedasticidade onde a dispersdao dos

dados aumenta proporcionalmente ao nivel da demanda média.

Transformagdo Logaritmica: E a abordagem mais direta para linearizar tendéncias
exponenciais e converter relacdes multiplicativas em aditivas. O artefato implementa a
variante "Log-plus-one" para lidar com demandas nulas:

vt =In(y + 1)
Transformacdo de Box-Cox: Para casos em que a transformagdo logaritmica €

insuficiente, utiliza-se a transformag¢ao paramétrica de Box e Cox (1964). O método
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estima, via Maxima Verossimilhanga, um parametro $\lambda$ ideal que maximiza a

normalidade:

) yi—1 (0)
Y =T (A #0), v =1In(y)

3.3.1.5 Induciao de Estacionariedade (Diferenciacio)

A estacionariedade ¢ um pré-requisito estrito para a familia ARIMA. Baseando-se no
diagnostico dos testes de raiz unitaria (ADF/KPSS), a metodologia aplica operadores de
diferenca (Delta) conforme preconizado por Box e Jenkins (2015):
o Diferenciagdo Simples (d): Remove tendéncias estocasticas e deterministicas lineares:
Ayr =yt — Y1
o Diferenciagdo Sazonal (D): Remove a correlagdo serial oriunda de ciclos repetitivos,
subtraindo a observagdo atual daquela ocorrida no mesmo periodo do ciclo anterior (ex:
s=12):
AsYe =Yt — Vi—s

3.3.1.6 Padronizacao de Escala para Machine Learning

Diferentemente da etapa anterior, esta subsecdo foca na eficiéncia computacional e na
convergéncia numérica dos algoritmos de Aprendizado de Maquina. Modelos baseados em
otimizagdo por gradiente (como Redes Neurais) sdo sensiveis & magnitude das varidveis. O
artefato oferece trés técnicas:

1. Padronizagdo (StandardScaler): Centraliza os dados na média zero e ajusta a variancia

para a unidade (BISHOP, 2006):

2. Normalizagdo Min-Max (MinMaxScaler): Comprime os dados para o intervalo [0, 1].
E mandatéria para o treinamento de Deep Learning (LSTMs, N-BEATS) para evitar a
saturacao das fungdes de ativagdo e o problema do "desaparecimento do gradiente"
(GOODFELLOW; BENGIO; COURVILLE, 2016):

: y — min(y)
Y= max(y) — min(y)

3. Escalonamento Robusto (RobustScaler): Utiliza a Mediana e o Intervalo Interquartil

(IQR) para centralizar os dados, garantindo que a presenca de anomalias ndo distorca a

escala da maioria dos dados em séries ruidosas:
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3.3.2 Processamento

ApoOs o pré-processamento, a etapa de processamento de dados foca na transformacgado
das séries temporais em estruturas adequadas para o treinamento de algoritmos
supervisionados. Enquanto os modelos estatisticos classicos (como SARIMA e ETS) possuem
uma estrutura matematica desenhada explicitamente para lidar com a dependéncia temporal, os
algoritmos de Machine Learning (ML), como Random Forest e Gradient Boosting, operam sob
o pressuposto de independéncia entre as observagdes.

Para aplicar estes algoritmos eficazes a previsdo de demanda, é necessario realizar uma
transformagao metodoldgica nos dados, convertendo a série temporal Y = {y;,y,, ..., yr} em
uma matriz de regressao supervisionada. Este processo, denominado Engenharia de Atributos
(Feature Engineering), tem como objetivo "desconstruir" a informagdo temporal (tendéncia,
sazonalidade e autocorrelagdo) em um vetor de caracteristicas explicativas X;, permitindo que
o modelo aprenda uma fung¢ao de mapeamento f tal que y; = f(X;).

A metodologia adotada baseia-se na estratégia de Janela Deslizante (Sliding Window),
conforme formalizado por Bontempi, Ben Taieb e Le Borgne (2013). O vetor de features X,
construido ¢ composto por trés categorias de variaveis: defasagens (Lags), estatisticas moveis

e componentes calendarios.

3.2.2.1 Estrutura de Autocorrelacio: Variaveis de Defasagem (Lags)

As variaveis mais criticas para a previsao de séries temporais com ML sdo os lags, que
representam os valores passados da série alvo. Eles permitem que o modelo capture a estrutura
de autocorrelagdo, ou a "memoria" do processo. O método gera um conjunto de defasagens,
com cada lag definido como X 145 k = Vi—k:

o Lags Curtos (t —1,t — 2,t — 3): Capturam a dependéncia imediata e a persisténcia

de curto prazo (o nivel recente da demanda).

o Lag Semestral (t — 6): Captura ciclos de médio prazo.

o Lag Sazonal (t — 12): Fundamental para capturar a sazonalidade anual. O valor de

vendas do mesmo més no ano anterior ¢ frequentemente o preditor isolado mais forte

no varejo e industria.
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3.2.2.2 Tendéncia Local: Estatisticas Moveis (Rolling Window)

Para mitigar o ruido aleatorio de observagdes individuais e fornecer ao modelo uma

visdo da tendéncia local, calcula-se a Média Movel simples dos tltimos 3 periodos (mas). E

crucial notar a decis@o metodologica de design para evitar o vazamento de dados (data leakage):

amédia movel é calculada sobre os valores defasados (shiff), garantindo que a média em t utilize

apenas informagdes disponiveis até t-1.

A formulagdo matematica ¢ dada por:

3
1
Xt,mas = EZ Ve—i

3.2.2.3 Sazonalidade Deterministica: Componentes Calendarios

Enquanto os lags capturam a sazonalidade estocéstica (baseada nos valores passados), os

modelos de ML beneficiam-se explicitamente de "dicas" deterministicas sobre a posi¢do

temporal da observagdo. O método extrai trés componentes da data:

Més: Permite ao modelo aprender padrdes sazonais fixos (ex: aumento de vendas em
novembro).

Trimestre: Captura padrdes sazonais agregados.

Ano: Serve como uma proxy para a tendéncia global de longo prazo (ex: crescimento

anual do mercado).

3.2.2.4 Prevenc¢ao de Vazamento de Dados (Data Leakage)

Uma preocupacgdo central na metodologia ¢ garantir que nenhuma informacao futura seja

utilizada para prever o passado. Para assegurar a integridade do experimento, foram

implementadas as seguintes salvaguardas:

l.

Concatenacdo Temporal: Os dados de treino e teste sdo concatenados
temporariamente para a geragdo de features (evitando perda de dados na fronteira da
divisdo), mas a ordem cronoldgica ¢ estritamente mantida via ordenagdo por data.
Divisao Deterministica: A separacdo final entre as matrizes de treino (X¢reino» Yereino)
e teste (Xiester Veeste )€ feita exclusivamente baseada na data de corte, correspondente a
ultima observagdo do conjunto de treino original.

Tratamento de NaNs na Origem: A criacdo de /ags gera valores nulos (NaNs) nas

primeiras observagoes da série (ex: o lag,, ndo existe para os primeiros 12 meses).

31



Estas linhas sdo removidas antes do treinamento, pois modelos como Random Forest nao
lidam nativamente com valores faltantes na entrada.
Ao final deste processo, o problema de previsao de série temporal ¢ transformado em um
problema de aprendizado supervisionado padrao, onde o modelo aprende a fungao f:
5]\15 = f(yt—ll e Ye-12) m, Mtl Qt' Yt)
Esta engenharia de atributos permite que algoritmos nao-lineares e nao-paramétricos,
como arvores de decisdo, detectem interagcdes complexas (por exemplo, a correlacao entre um
més especifico e uma tendéncia de média movel ascendente) que modelos lineares classicos

teriam dificuldade em capturar sem especificagdes manuais complexas.

3.2.2.5 Estratégia de Validacdo Temporal

A validagdo de modelos preditivos em séries temporais impde desafios metodologicos
distintos daqueles encontrados na aprendizagem supervisionada padrdao. Em dados tabulares
(cross-section), assume-se que as observagdes sdo independentes e identicamente distribuidas,
0 que permite o uso de embaralhamento aleatdrio (shuffling) para valida¢do cruzada. No
entanto, em séries temporais, a dependéncia temporal e a ordem cronologica sdo intrinsecas ao
problema. O desrespeito a essa ordem resulta em vazamento de dados (data leakage), uma falha
metodoldgica grave onde o modelo ¢ treinado com informagdes futuras para prever o passado,
gerando métricas de acuracia artificialmente infladas e inuteis para a pratica (HYNDMAN;
ATHANASOPOULOS, 2018).

Para garantir a robustez das previsdes e a capacidade de generalizagdo dos modelos, o
artefato implementa uma Estratégia de Validacao em Dois Niveis:

1. Avaliagao Final via Hold-Out (Out-of-Sample):

Este nivel simula o cendrio real de uso do sistema de S&OP. O usuario define, através da
interface, um percentual p (tipicamente 20%) dos dados mais recentes para compor o conjunto
de teste. A série historica Y = {y;,y,, ..., ¥r} ¢ dividida deterministicamente em um ponto de
corte Topyy = |T X (1 —p)] em:

e Conjunto de Treinamento: utilizado exclusivamente para o ajuste dos
parametros e treinamento dos modelos.
e Conjunto de Teste: utilizado exclusivamente para a avalia¢ao final das métricas

de desempenho (MAPE, RMSE).
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Esta abordagem garante que as métricas reportadas no Dashboard reflitam a capacidade real
do modelo de prever um futuro desconhecido ("Out-of-Sample"), sem nunca ter acessado esses
dados durante a fase de ajuste.

2. Otimizagao via Valida¢ao Cruzada Temporal (Walk-Forward):

Para os modelos de Machine Learning (Random Forest, XGBoost, LightGBM) e Deep
Learning (N-BEATS), a selecdo dos hiperparametros (ex: profundidade da arvore, taxa de
aprendizado) nao pode ser realizada no conjunto de teste final, sob pena de overfitting
especifico a esse conjunto. O artefato implementa a técnica de Validagdo Cruzada em Janela
Deslizante (Rolling Origin ou Walk-Forward Validation), utilizando a classe TimeSeriesSplit
da biblioteca scikit-learn. Ao contrario do K-Fold tradicional, esta técnica cria multiplas
divisoes (folds) de treino e validagdo que respeitam estritamente a ordem temporal:

o Fold 1: Treino [ty, t; ], Validagdo [ty41, txsn]
o Fold 2: Treino [ty, tx4n], Validagdo [tyh41, ton]
o Fold n: Treino [ty, tr_,], Validagio [t7_p4q, t7]
Conforme defendido por Bergmeir e Benitez (2012), esta abordagem ¢ estatisticamente
superior para séries temporais, pois avalia a estabilidade do modelo em diferentes pontos do
tempo e sob diferentes contextos de tendéncia e sazonalidade. O artefato calcula a métrica de

erro média através desses folds para guiar a escolha definitiva dos hiper parametros

3.2.2.6 Otimizacao de Hiperparametros (HPT)

A busca pela combinagdo 6tima de hiperparametros (1*) que minimiza a fungdo de
perda (2) ¢ automatizada pelo artefato. A estratégia de otimizagdo varia conforme a natureza
do algoritmo, garantindo eficiéncia computacional e precisdo estatistica:

A. Modelos Estatisticos (SARIMA, ETS): Critério de Informacao
Para modelos classicos, a otimizagdo nao utiliza validagdao cruzada computacionalmente
intensiva, mas sim a minimizacao de Critérios de Informacao, especificamente o AIC (Akaike
Information Criterion):

AIC =2k —2In(L)

Onde k ¢ o numero de parametros estimados e (f,) ¢ o valor maximo da funcao de
verossimilhanga. O artefato utiliza o algoritmo auto arima (HYNDMAN; KHANDAKAR,
2008) para buscar a combinagao (p,d,q)(P,D,Q) m$ que resulta no menor AIC, penalizando
modelos excessivamente complexos para evitar overfitting.

B. Modelos de ML/DL: Busca Estocastica e Bayesiana
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Para modelos de aprendizado de maquina, onde o espago de busca ¢ vasto e a funcdo
objetivo ¢ ndo-convexa, o artefato oferece duas abordagens avancadas, configurdveis pelo
usuario:

e Random Search (RandomizedSearchCV): Em vez de testar exaustivamente todas as
combinagdes (Grid Search), o algoritmo amostra aleatoriamente N configura¢des do
espaco de parametros. A busca aleatdria € empiricamente mais eficiente que o Grid
Search para encontrar Otimos globais, pois explora melhor as dimensdes mais
importantes dos hiperpardmetros (BERGSTRA; BENGIO ,2012).

e Otimizacio Bayesiana (BayesSearchCV): Esta ¢ a abordagem estado-da-arte
implementada no sistema. Ela trata a otimizagdo como um problema de "caixa-preta",
construindo um modelo probabilistico substituto da fungdo objetivo. A cada iteragdo, o
algoritmo utiliza os resultados passados para decidir "inteligentemente" qual conjunto
de pardmetros testar a seguir, equilibrando a explora¢do de 4reas incertas com a
exploragdo de areas promissoras (SNOEK; LAROCHELLE; ADAMS, 2012).

A funcdo objetivo utilizada na otimizac¢do (a métrica a ser minimizada) ¢ selecionada pelo

usuario, permitindo alinhar o treinamento com o objetivo de negocio (ex: minimizar MAPE

para penalizar erros relativos ou RMSE para penalizar grandes desvios).

3.3.1. Pos processamento e Estruturaciao do Problema de Decisao
Multicritério (MCDM)

Apos o processamento de dados, a etapa de pos processamento consiste no calculo de
diferentes métricas relacionadadas ao desempenho do modelo, como MAPE, MSE, Tempo
computacional gasto e na analise de trade-off e selecdo do modelo mais adequado para cada
SKU. Tradicionalmente, a literatura de forecasting foca na minimizagdo do erro (acuricia)
como critério unico de sele¢do. No entanto, sob a 6tica da OIPT, a escolha de um sistema de
previsdo ¢ uma decisdo organizacional que deve equilibrar a necessidade de reducdo de
incerteza com a capacidade de processamento de informagao disponivel.

A utilizagdo de um unico critério (como o MAPE) ignora restrigdes operacionais
criticas, como o tempo de execucao do algoritmo (/ead time da informacao) e a estabilidade da
previsdo. Para lidar com essa complexidade multidimensional, esta pesquisa adota uma
abordagem de MCDM. A aplicacdo de métodos MCDM e Machine Learning de forma
combinada permite integrar métricas de performance técnica com requisitos de negdcio,
oferecendo uma solu¢cdo de compromisso mais robusta para o gerenciamento de estoques e

planejamento (Vidal et al., 2022).
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Neste trabalho, o problema de decisdo ¢ estruturado utilizando o método SAW (Simple Additive
Weighting). A escolha pelo SAW justifica-se pela sua transparéncia, simplicidade
computacional para implementacdo em tempo real no dashboard desenvolvido e pela
capacidade de modelar preferéncias compensatorias, onde um desempenho ruim em um critério
(ex: alto tempo de processamento) pode ser compensado por um desempenho excelente em
outro (ex: acurdcia superior).
A estrutura do problema de decis@o ¢ definida por uma matriz de decisdao $D$, onde as
linhas representam as Alternativas (A4;) ¢ as colunas representam os Critérios (Cj)
e Alternativas (A): O conjunto de modelos treinados e validados na etapa anterior.
A
= {ETS, Holt-Winters, SARIMA, Random Forest, XGBoost, Prophet, N-BEATS, ...}
e Critérios (C): Foram selecionadas trés dimensdes conflitantes que refletem o trade-off
proposto pela OIPT entre qualidade da informagao e custo de processamento:
1. Precisdo(Cq): Mensurada pelo erro de previsdo (MAPE ou RMSE). Representa
a capacidade do modelo de reduzir a incerteza externa. O objetivo ¢ minimizar.
2. Eficiéncia (C;): Mensurada pelo Tempo de Treinamento e Inferéncia (em
segundos). Representa o consumo de recursos da capacidade de processamento
organizacional. O objetivo ¢ minimizar.
3. Estabilidade (C3): Mensurada pelo Desvio Padrdo dos residuos ou variancia do
erro nos folds de validagcdo. Representa a confiabilidade do modelo e a

consisténcia da informagdo gerada. O objetivo € minimizar.

3.3.5.2. Normalizacido e Agregacio (Método SAW)

Como os critérios possuem unidades de medida distintas (percentual de erro vs. segundos de
processamento), a aplicacdo direta da soma ponderada ¢ inviavel. A metodologia aplica,
portanto, uma etapa de normalizacao linear.

Para critérios do tipo "custo" (onde menor € melhor, como Erro e Tempo), utiliza-se a seguinte

fungio de transformagdo para normalizar o valor x;; da alternativa 1 no critério j em um score

normalizado r;; que varia de 0 a 100:

rl'j = 100)((1—

xyj — min(x;) )

max(xj) — min(xj) + €

35



Onde € é uma constante pequena (10~°) para evitar divisdo por zero. Esta formulagio garante
que o modelo com o menor erro (ou menor tempo) receba score 100, enquanto o pior
desempenho receba 0.

Ap6s a normalizagio, o indice de Preferéncia Global (S;) ou "Score Geral" para cada modelo
¢ calculado pela soma ponderada dos valores normalizados:

_Xj=a Wity

S, =222
Jj=1

Wj
Onde w; representa o peso de importancia atribuido ao critério j.

A atribui¢ao dos pesos (w) € o mecanismo pelo qual o artefato operacionaliza o fit
organizacional. O dashboard desenvolvido permite que o gestor configure esses pesos
dinamicamente para refletir o contexto estratégico, conforme ilustrado na implementacao do
sistema:

e Cenario de Alta Criticidade (Curva A): O gestor pode atribuir peso majoritario a
Precisdo (ex:Werro = 80, Weempo = 0, Westapitidzage = 0), priorizando a redugdo de
incerteza independente do custo computacional.

e Cenario de Alta Frequéncia/Restricio (Curva C): Para itens de baixo valor ou
limitagdes de hardware, o gestor pode aumentar o peso da Eficiéncia (eX:Wiempo = 50),
penalizando modelos complexos (como Random Forest ou Prophet) que consomem
recursos excessivos para ganhos marginais.

O modelo que apresentar o maior valor de S; é recomendado pelo sistema como a solucao

Otima para o item analisado, garantindo que a escolha tecnologica esteja alinhada a necessidade

de processamento de informagao especifica daquele SKU.
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4. Design e Desenvolvimento do Artefato

Um artefato desenvolvido com base em Design Science Research s6 cumpre seu
objetivo de relevancia pratica se for utilizavel e agregar valor ao tomador de decisao (HEVNER
etal., 2004). No contexto da previsao de demanda, onde a incerteza € alta, o julgamento humano
especializado ¢ insubstituivel. Portanto, o artefato ndo foi concebido como uma "caixa preta"
automatizada, mas como um sistema de suporte a decisdo human-in-the-loop (centrado no ser
humano).

Para materializar essa interface, foi escolhida a biblioteca Streamlit. A escolha desta ferramenta
¢ estratégica: sendo um framework em Python, ela se integra com todo os pacotes de data
science (Pandas, Scikit-learn, XGBoost, Prophet, etc.) utilizado no mddulo de repositorio de
modelos. Isso permite a criagdo de um aplicativo web interativo de forma extremamente rapida,
sem a necessidade de desenvolvimento front-end complexo, focando os esforgos na
funcionalidade analitica.

O dashboard em Streamlit atua como o principal painel de analise para os especialistas (demand
planners), traduzindo os resultados complexos da competicdo de modelos em insights
interpretaveis e personalizados de acordo com suas prioridades. Sua estrutura ¢ projetada para
facilitar a resposta as necessidades recorrentes do demand planner. O artefato foi concebido
como um sistema multicritério de suporte a decisdo para previsao de demanda. A implantagao
do multicritério no artefato ¢ uma resposta direta a OIPT: reconhece-se que diferentes produtos
(ou subfamilias de produtos) possuem diferentes niveis de incerteza. Um tUnico modelo
(representando uma Unica capacidade de processamento) seria inadequado. Portanto, o artefato
¢ projetado como um portfélio de modelos, permitindo um fit entre o0 modelo e a natureza da
série temporal analisada, que permite ao tomador de decisdo escolher o modelo que melhor
atende as suas necessidades.

Esta secdo descreve o fluxo de uso completo e ideal do artefato, da perspectiva do
usudrio, mapeando cada tela e interagdo, desde o upload inicial dos dados até a geracdao da

previsao final e exportacao do plano de experimentos.

4.1 Pagina Inicial e Modulo de Upload de Dados

A jornada do usuario comega na Tela Inicial, que funciona como um "portal" para o
artefato, apresentando uma breve descricdo de suas funcionalidades e apresentando seus
desenvolvedores. No final da tela inicial, ha uma indicacao levando o usuério para a pagina de

upload de dados, onde o usuario vai comecar a interagir de fato com o aplicativo.
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O modulo Upload de Dados, mostrado na figura 2, ¢ extremamente importante pois
garante a qualidade de todo o pipeline que vem a seguir. O design deste modulo foca em trés
pilares: flexibilidade, robustez e feedback imediato.

Pensando na flexibilidade, o modulo oferece dois caminhos de entrada: o primeiro € o
widget, que permite ao usudrio carregar seus proprios dados em formato Excel e o segundo ¢
Usar Dados de Exemplo, habilitando o aplicativo a ser testado com dados genéricos.

O processo da leitura destes dados comega com o Mapeamento Semantico, permitindo
que o artefato funcione mesmo com falta de um padrao de nomenclatura nas bases de dados
dos usuarios de negocio. Nessa etapa, eles designam as colunas de Identificagdo do Item,
Data/Periodo ¢ Demanda. Isso permite que o artefato utilize qualquer base de dados que
contenha essas informacgdes. Além disso, os usuarios podem, opcionalmente, selecionar
"Variaveis Exogenas" para indicar eventos como promogdes e feriados, que serdo interpretados
por alguns dos modelos de previsao.

Apds o mapeamento, o usuario avanga para o modulo de "Validagdo e Limpeza de
Dados". Aqui, sdo oferecidas opgoes de pré-processamento basicas, exibidas como checkboxes,
que incluem remover linhas com dados faltantes e substituir valores negativos por 0. Apds
decidir aplicar ou ndo essas transformagdes e clicar em "Aplicar Alteragdoes e Validar", o
modulo fornece um feedback visual imediato por meio de estatisticas, um grafico de série
temporal. Ao concluir, os dados processados sdo salvos no estado da sessdo, garantindo sua
persisténcia e disponibilidade para as etapas. O processo se encerra com um guia ativo,
indicando a "Proximos passos: Va para Analise Exploratéria", concluindo assim o primeiro

ciclo de interagdo do artefato
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Dados de Exemplo

Usar Dados de Exemplo

Perodosjitem (médio)

Dados Carregados

Ml Dados Carregados

Figura 2- Tela de Upload de dados. Fonte: Autoria propria, 2025.

4.2 Mo6dulo de Analise Exploratoria

Apo6s o upload e validagdo dos dados, o planejador avanga para o Mddulo de Andlise
Exploratoria e Testes Estatisticos. Este componente ¢ essencial para os objetivos de
transparéncia do artefato e seu papel como sistema de apoio a decisdo, partindo da premissa de

que a selecdo de modelos de previsdo nao deve ser um processo de "caixa-preta".

B VisualizacGes - A

stdeica de Oomamda A

DistibuicSo da Demanda

M Comparagio com Outros Itens

camsaragi depema

Figura 3- Tela de Visualizagoes — Analise Exploratoria. Fonte: Autoria propria, 2025.
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A interface ¢ estruturada em quatro abas complementares. A primeira, "Visualizagdes",
mostrada na Figura 3, foca na inspe¢do qualitativa, exibindo o grafico da série temporal
sobreposto por uma média mével para identificacdo de tendéncias, além de histogramas e
boxplots que revelam a distribui¢ao dos dados e a presenca visual de outliers.

A andlise avanga para o campo quantitativo na aba de "Estatisticas Descritivas" (Figura 4).
O usuario ¢ apresentado a métricas de destaque: Média, Mediana, Desvio Padrao e o Coeficiente
de Variagdao (CV%). O CV% ¢ especialmente critico no contexto de S&OP, pois quantifica a
volatilidade relativa; valores elevados (ex: > 50%) sinalizam uma demanda errdtica,

justificando a necessidade de modelos mais robustos.

M Estatisticas Descritivas - A

Média

@ Estatisticas Completas

B Testes Realizados

M Dados Carregados A Testes de Normalidade

"

M Comparagdo com Outros Itens

Figura 4- Tela de Estatisticas descritivas — Andlise Exploratoria. Fonte: Autoria propria, 2025.

Para um detalhamento técnico, o artefato exibe uma tabela de "Estatisticas Completas". Esta
visao mais detalhada apresenta medidas como Media, Mediana, Moda, Variancia, Amplitude,
Quartis e Intervalo Interquartil, Assimetria (Skewness) e Curtose (Kurtosis).

A seguir, vem a se¢io " ll. Testes de Normalidade". O design do artefato ndo assume que o
usudrio saiba interpretar os valores de Assimetria e Curtose. Em vez disso, ele executa um
painel de testes estatisticos formais para verificar se os dados de demanda se assemelham a uma
Curva de Gauss (distribuicao normal). Nessa etapa, sdo realizados os testes de Shapiro Wilk,
Jarque-Berra e Kolmogorov-Smirnov, e os resultados sao exibidos em um quadro comparativo,

com a Estatistica, P-valor e o resultado.
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O artefato desenvolvido traduz a rejeicao de Hy (p < 0,05) em agdo pratica, sugerindo
transformagoes para a estabilizagdo da variancia. Esta etapa segue o trabalho seminal de Box e
Cox (1964), recomendando transformagdes como a logaritmica ou a familia de transformagdes
de poténcia de Box-Cox para normalizar a distribuicdo antes da modelagem preditiva.
Complementarmente, a descricdo contextualiza o SKU analisado através do Coeficiente de
Variacao (CV%), métrica crucial para a classificacdo da previsibilidade de demanda (Silver et
al., 2016).

Apos a andlise distributiva, prossegue-se para a verificacdo da estacionariedade (Figura 5).
Uma série ¢ classificada como estacionaria se sua média, varidncia € autocovariancia sao
constantes no tempo (HAMILTON, 1994). Reconhecendo o baixo poder estatistico dos testes
de raiz unitdria em amostras finitas, esta metodologia adota a estratégia de triangulagdo
confirmatoria (Enders, 2014). O diagnoéstico final emerge do consenso entre trés testes com

estruturas distintas: ADF, KPSS e Phillips-Perron.

A Testes de Estacionariedade - A

B Augmented Dickey-Fuller (ADF)

Fstatistica ADF

S catlpstas B KPSS (Kwiatkowski-Phillips-Schmidt-Shin)

¥ Dados Carregados
Estatistca kPSS

M Testes Realizados

T Dados Carregados

ens

M Phillips-Perron (PP)

Obsenvagies

? Sugestdes

W sér

Figura 5- Tela de Testes de Estacionariedade — Andlise Exploratoria. Fonte: Autoria prépria, 2025.

Avancando no fluxo do usuario, a metodologia segue para a decomposi¢ao estrutural como
ferramenta exploratoria essencial (HYNDMAN; ATHANASOPOULOS, 2018), com sua
interface mostrada na Figura 6. O objetivo ¢ isolar trés componentes latentes da série Y;:
Tendéncia (T;), Sazonalidade (S;) e Residuo (R;). Isso permite ao planejamento de S&OP

distinguir se as variagdes na demanda sdo de longo prazo, ciclica ou aleatérias. Aqui, o usuario
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pode escolher usar a decomposicao aditiva ou multiplicativa e definir o periodo sazonal (valor

padrdo = 12 meses)

@ selegdo de Item para Anélise Detalhada

Upload de Dados
® W ansli
/ P

Figura 6- Tela de Decomposi¢do e Sazonalidade — Andlise Exploratéria. Fonte: Autoria propria, 2025.

4.3. Modulo de Pré-Processamento

A etapa de pré-processamento ¢ um imperativo metodologico para assegurar a validade
dos modelos preditivos. Dados brutos de demanda frequentemente apresentam anomalias,
heterocedasticidade e ndo-estacionariedade que, se ndo tratadas, podem enviesar severamente
a estimacdo de parametros (HAIR et al., 2009).

Este modulo estrutura-se em trés etapas sequenciais: (1) deteccdo e tratamento de outliers, (2)
transformagdes para estabilizacdo de variancia e estacionariedade, e (3) normalizagdo de escala

para algoritmos de ML.
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@ Selegdo de Itens

W Ardlise Explor

I Dados Carregados

¥ Sugestdes Autométicas

Figura 7- Tela de Detecgdo de Outliers — Pré-Processamento. Fonte: Autoria propria, 2025.

Na tela de detecgdo de outliers (Figura 7), o usuario pode escolher entre trés métodos
para o tratamento dos dados: Z-Score, IQR e Isolation Forest, sendo possivel ajustar os
thresholds desejados nas duas primeiras opgdes. Ao ser identificado um outlier na série, ele ¢

indicado com um X vermelho no gréafico para facilitar a identificacao.

W Transformagdes Matematicas

iz Quadrada|

© Preview-A

W Dados Carregados

=

® Sugestdes Automaticas

Figura 8- Tela de Transformagdes matemdticas — Pré-Processamento. Fonte: Autoria propria, 2025.
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Na tela de transformagdes matematicas (Figura 8), o usuario tem a oportunidade de
aplicar diferentes transformagdes que podem ajudar a estabilizar a variancia, tornar a serie mais
proxima da normalidade e melhorar a performance dos modelos. Nele, hd 5 transformagdes
diferentes que podem ser aplicadas individualmente em cada uma das séries analisadas. Sao
elas: Log, Raiz quadrada, Box-Cox, Diferenciacdo ordem 1 e Diferenciagdo Sazonal (lagl2).

Ao selecionar uma das transformagdes, ¢ feita uma comparagdo da série original com a
transformada, exibindo informag¢des de média, desvio e CV% de cada uma, além de mostrar a
série de fato. No final da tela, ha uma sugestdao de transformacdo a ser aplicada baseada nas

caracteristicas da série.

Distribuicho: Original vs Normalizado (A)

@ Sugestdes por Tipo de Modelo

* SARIMA, ETS, Holt

Figura 9- Tela de Normalizacdo — Pré-Processamento. Fonte: Autoria propria, 2025.

Por fim, na tela de normalizag¢ao (Figura 9), o usudrio pode escolher aplicar uma das
trés transformacdes disponiveis no artefato de acordo com suas necessidades. No fim da tela, é
sinalizado ao usudrio qual transformac¢do deve ser aplicada dependendo do modelo que sera

utilizado.

4.4. Modulo de Treinamento e Otimiza¢cao de Modelos

O Moddulo de Treinamento constitui o motor analitico do artefato proposto. Esta etapa
marca a transi¢cao do diagndstico da analise estatistica para a fase de experimentacdo. O objetivo
deste modulo ndo ¢ apenas ajustar um modelo isolado, mas orquestrar uma competi¢ao entre
diferentes modelos para identificar a abordagem mais eficaz para cada série temporal

individual.
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A primeira fase do Modulo de Treinamento ¢ a Configuracao do Experimento. Mostrada
na Figura 10, esta etapa representa a interface de controle entre o julgamento humano (o
conhecimento de negdcio do planejador) e o poder computacional dos algoritmos. O artefato
impde uma estrutura de decisdo que obriga o usuario a definir explicitamente trés dimensdes
fundamentais do problema de previsdo: o escopo (quais itens), a metodologia (quais modelos)
e a estratégia de validagdo.
A primeira decisdo oferecida ao usuario ¢ a defini¢do da abrangéncia da analise. O componente
de selegdo permite dois modos de operagao:

e Execucao em Lote (Batch): "Todos os itens". Simula o processo rotineiro de S&OP,

onde centenas de SKUs sdo previstos simultaneamente.

¢ Execucido Focada: "Selecionar especificos". Permite uma analise detalhada.

O artefato apresenta ao usudrio o portfolio de modelos disponiveis, segregados em duas
categorias distintas: Modelos Classicos/Estatisticos (SARIMA, ETS, Holt-Winters, TBATS) e
Modelos de Machine/Deep Learning (Random Forest, XGBoost, LightGBM, Prophet, N-
BEATS).

A decisdo de design de permitir a multipla selecdo (checkbox) fundamenta-se no principio
da combinacdo de previsdes e na evidéncia empirica de que ndo existe um modelo
universalmente superior. Competi¢cdes de previsao como a M4 (MAKRIDAKIS; SPILIOTIS;
ASSIMAKOPOULOS, 2018) demonstraram que diferentes familias de algoritmos performam
melhor em diferentes horizontes e frequéncias de dados. Ao permitir que o usuario selecione,
por exemplo, "SARIMA" e "XGBoost" simultaneamente, o artefato configura um experimento
competitivo para identificar empiricamente qual abordagem modela melhor a série de

determinado item.
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ens com pouces dados (< 24 meses) ou gaps podem falhar ou ser pulados.

@ Selecgdo de Itens para Treinar

¥ Modelos Treinados

W Test

T Dados Carregados

# Iniciae Treinamento

Figura 10 - Tela de Selegdo de modelos — Treinamento. Fonte: Autoria propria, 2025.

Um dos principais diferenciais do artefato ¢ a funcionalidade "Sugestdo Automatica"
(Figura 11). Este componente atua como um sistema de recomendag¢do que traduz as
caracteristicas estatisticas da série em uma sele¢ao 6tima de modelos.

Este sistema baseia-se em um conjunto de regras heuristicas derivadas das melhores praticas
de forecasting (HYNDMAN; ATHANASOPOULOS, 2018):

e Comprimento da Série (n_obs):

o Sen<24meses: O sistema recomenda modelos parcimoniosos como ETS e Holt-
Winters Aditivo, alertando que modelos de ML/DL (que exigem grandes
amostras para treinamento) tendem a sofrer de overfitting ou falhar por falta de
dados.

o Se n>48 meses: O sistema habilita e recomenda modelos de alta complexidade
como N-BEATS e Random Forest.

e Volatilidade (cv):

o Se o Coeficiente de Variagao ¢ alto (> 0.7), indicando demanda erratica, o
sistema prioriza modelos ndo-lineares baseados em arvores (XGBoost, Random
Forest), que lidam melhor com variancia alta do que os modelos lineares
classicos.

e Sazonalidade (sazonal):
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o Se detectada pelos testes de autocorrelacdo (ACF), o sistema recomenda
explicitamente modelos com componentes sazonais nativos (SARIMA, Holt-
Winters, Prophet).

e Presenca de Outliers (outliers):

o Se detectados, o sistema sugere modelos robustos a ruido (Random Forest,
Prophet) e desencoraja modelos sensiveis a valores extremos (como modelos
baseados em médias moveis simples sem tratamento prévio).

Esta logica de recomendagdo reduz a barreira cognitiva para o usuario, garantindo que

modelos inadequados sejam filtrados antes mesmo do inicio do processamento computacional.

tens com poucos dados (< 24 meses) ou gaps podem falkar ou ser pulados.

@ selecdo de Itens para Treinar

T Dados Carregados

e

Figura 11- Tela de Sugestdo automatica de modelos — Treinamento. Fonte: Autoria propria, 2025.

Na tela de configuragdes (Figura 12), o usudrio consegue ter controle total sobre o plano
operacionaliza¢do do modelo. O artefato dispde de diversos dispositivos para que a experiencia
possa ser ideal para as necessidades do demand planner. A primeira escolha a ser feita ¢ a
divisdo treino/teste através de um slider, com padrao definido para 20% de teste. A seguir, deve
ser decidido se o artefato utilizard ou nao a otimizagao de hiperparametros (HPT). Caso opte
pela otimizagdo, deve ser definido o método de otimizacdo (RandomSearch ou Bayesian
Search), o numero de iteragdes que serdo realizadas para achar o modelo 6timo e a métrica de
otimizacao desejada (MSE, RMSE, MAPE ou MAE).

Caso o demand planner ndo opte pela otimizagao de hiperparametros, os parametros dos
modelos podem ser definidos manualmente, da maneira que ele achar melhor baseado em sua
experiencia.
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€ Parametros de Treinamento
mo

© Otimizagdo de Hiperparametros (HPT)

@ Ativar Otimizacio Automdtica (HPT)

HPT para Modelos de Machine Learning (RF, XGB, LGBM)

HPT para Outros Modelos (Modo Automitico)

I Dados Carregados

A Parametros Manuais (Ignorados se HPT estiver ativado)

> Parimetros: Modelos Autométicos (SARIMA & TBATS)

v Pardmetros: Holt- Winters

Figura 12- Tela de Configura¢do — Treinamento. Fonte: Autoria propria, 2025.

4.5. Modulo de Testes e Validacao com Dados Novos

Apos a fase de treinamento e otimizacdo, a jornada entra na fase de testes e validagao.
Na literatura de forecasting, ¢ amplamente reconhecido que um modelo pode apresentar um
ajuste excelente aos dados de treino (in-sample), mas falhar ao prever novos dados (out-of-
sample), fenomeno conhecido como overfitting (MAKRIDAKIS et al., 2018).

O modulo de testes, foi desenhado para mitigar esse risco e fornecer ao planejador de
S&OP uma ferramenta de auditoria. O objetivo deste modulo € duplo: (1) Permitir o diagndstico
dos erros através da andlise de residuos e (2) Simular o ambiente de produgdo, testando os
modelos treinados contra arquivos de dados totalmente novos, simulando a chegada de novos
periodos de venda.

A interface ¢ estruturada em trés abas funcionais que operacionalizam a avaliagdo
metodoldgica: Visualizacdo de Previsdes (Figura 13), Teste com Novos Dados e Comparacao
de Modelos (Figura 14).

A primeira aba foca na analise do comportamento do modelo selecionado no conjunto de teste
(hold-out) definido durante o treinamento.

Metodologicamente, a analise dos residuos (e; = y; — ¥;) € o teste definitivo da adequagdo
de um modelo. Se um algoritmo extraiu com sucesso toda a informacdo estrutural (sinal)
disponivel nos dados, os residuos devem se comportar como Ruido Branco. O artefato fornece

trés ferramentas para esta verificagao:
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1. Grafico de Residuos no Tempo: Permite verificar a premissa de média zero (E[e;] =
0) e a homoscedasticidade (varidncia constante). Se os residuos apresentam padrdes
ondulatorios ou crescentes, indica que o modelo falhou em capturar a sazonalidade ou
a volatilidade da série, respectivamente (HYNDMAN; ATHANASOPOULOS, 2018).

2. Histograma de Residuos: Permite verificar a premissa de normalidade
(et ~ N(0, 02)). Uma distribui¢do assimétrica ou bimodal nos residuos sugere que o
modelo esta enviesado, subestimando ou superestimando sistematicamente a demanda.

3. Métricas de Erro: O célculo do MAE (Erro Médio Absoluto) e RMSE (Raiz do Erro
Quadratico Médio) oferece uma quantificagdo da precisdo. Enquanto o MAE ¢ mais
interpretavel, o RMSE penaliza grandes desvios, sendo uma métrica importante em

situagdes onde nao pode haver rupturas ou sobreestoque, por exemplo.

[ Visualizagdo de Previsdes

A

I Métricas de Performance

i Real vs Previsto

A-Prophet

I Anélise de Residuos

Residuos a0 Longo do Tempo. Distribuigio dos Residuos.

Estatisticas dos Residuos:

Figura 13 - Tela de Visualizar Previsoes — Testes. Fonte: Autoria propria, 2025.

Dentro do modulo de testes, ha também a funcionalidade de testes com novos dados.
Diferente da validagdo hold-out (que separa uma parte do histdrico existente), este teste permite
que o usuario faca o upload de um arquivo contendo dados que o sistema nunca viu. Este
processo simula a realidade operacional do S&OP: o modelo ¢ treinado no més M, e no més
M-+1 sua performance ¢ auditada com os dados reais de vendas recém-fechados.

A tltima etapa consolida os resultados, permitindo uma anélise comparativa preliminar. O
artefato gera um relatério visualizado através de dois graficos. Primeiro, um Boxplot de

Distribui¢ao de Erros (MAPE) revela a estabilidade dos modelos. Em S&OP, a consisténcia ¢
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frequentemente preferivel a uma precisdo média alta com falhas ocasionais graves (Armstrong,
2001). Segundo um Grafico de Barras de Tempo Computacional permite avaliar se o ganho de
acuracia de um modelo complexo justifica o custo adicional de processamento frente a modelos
mais simples. Finalmente, o médulo gera uma tabela de Ranking onde vocé pode ordenar os

modelos pela métrica desejada.

i Comparagdo de Modelos

B Tabela Comparativa

W Gréficos Comparativos

Distribuicio de MAPE por Modelo Tempo Médio de Treino por Modelo

‘"“ Q = 5 H g Q E ﬂ ﬁ é u |

Otservaches

¥ Ranking de Modelos

Figura 14- Tela de Comparagdo de modelos — Testes. Fonte: Autoria propria, 2025.

4.6. Interface de Avaliacido e Sistema de Apoio a Decisdao (Dashboard)

A tltima etapa do artefato € a construgao de um Dashboard Analitico. Esta interface tem
como objetivo ir além da visualizagdo de dados, funcionando como um Sistema de Apoio a
Decisao (SAD) interativo. Nela, sdo processados os resultados brutos da etapa de treinamento
e ¢ fornecido ao planejador de demanda uma plataforma para a selecio racional, baseada em
diferentes varidveis, dos modelos de previsao. A tela de dashboard esté estruturada em 6 abas,

cada uma desenhada para responder a uma pergunta especifica do processo de planejamento.
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sdo Geral

@ Trade-off: Precisdo vs Velocidade

MAPE vs Tempo de Treinamento

B Tabela Resumo (MAPE e Tempo)

s

nae

Figura 15- Tela de Visdo Geral — Dashboard. Fonte: Autoria propria, 2025.

O primeiro médulo, denominado "Visdo Geral", mostrado na Figura 15, atua como um
painel de controle executivo. Sua fun¢do metodoldgica ¢ sintetizar o desempenho global dos
experimentos, permitindo uma avaliagdo rapida do desempenho dos modelos. O sistema agrega
métricas de todos os modelos treinados para calcular KPIs agregados, como o MAPE médio
global e o tempo total de processamento computacional.

O destaque desta se¢ao reside na implementacao visual da "Fronteira de Eficiéncia". Foi
desenvolvido um gréfico de dispersdo que correlaciona duas variaveis conflitantes: o Tempo de
Treinamento (eixo X) e o Erro MAPE (eixo Y). Cada ponto no grafico representa um par
Modelo-Item. Esta visualizacdo ¢ critica para identificar outliers positivos (modelos que se
situam no quadrante inferior esquerdo, com alta precisdo e baixo tempo) e descartar modelos
ineficientes. Além disso, o artefato gera uma tabela resumo interativa, que permite a ordenagao
dos dados por qualquer coluna, facilitando a identificacdo radpida dos melhores desempenhos
em cada uma das métricas.

Reconhecendo que a minimizacdo do erro médio ndo € o Unico critério para a escolha
de um modelo em ambiente industrial, como defendido na OIPT, o segundo modulo, mostrado
na Figura 16, implementa um método Decisao Multicritério (MCDM). A metodologia adotada
baseia-se no Método da Soma Ponderada (SAW - Simple Additive Weighting). Através de
controles deslizantes (sliders), o usudrio define o peso de trés dimensdes: Precisdo (inverso do

Erro), Eficiéncia (inverso do Tempo) e Estabilidade (inverso da Incerteza/Desvio Padrao dos
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residuos). Como as métricas possuem unidades e escalas distintas (segundos, porcentagem e
unidades de produto), o algoritmo aplica uma normalizagdo linear para transformar todos os
valores em uma escala adimensional de 0 a 100. Para métricas onde "menor ¢ melhor" (erro,
tempo e incerteza), € aplicada uma inversao. O Score Geral ¢ calculado pela soma ponderada
dos scores normalizados das trés dimensdes.

Visualmente, esta analise ¢ suportada por Graficos de Radar, que permitem comparar a
"cobertura" de desempenho de cada modelo. Tabelas detalhadas exibem os scores parciais de
cada dimensdo, garantindo transparéncia sobre o motivo pelo qual um modelo obteve

determinada pontuacao final.

@ Anilise Multicritério

‘| Definigdo de Pesos para o Score

M Comparagéio Multidimensional - A

Radar Chart -A

T Dados Carregados

M Scores por Dimensdo

Figura 16- Tela de Andlise Multicritério — Dashboard. Fonte: Autoria propria, 2025.

O modulo de "Comparacao de Erros" (Figura 17) aprofunda a validagdo estatistica,
movendo-se da analise de médias para a andlise de distribuigdes. O codigo implementa Box
Plots para as métricas MAPE e MAE. Um modelo pode apresentar um MAPE médio baixo,
mas possuir uma alta varidncia ou diversos outliers, indicando instabilidade em periodos
especificos, problema esse revelado pelo Box Plot.

Adicionalmente, foi implementada uma matriz de calor cruzando a dimensao "Itens"
com a dimensdao "Modelos". A intensidade da cor representa a magnitude do erro. Esta
ferramenta visual permite detectar padrdes sistémicos de falha ou sucesso, identificando se

determinados algoritmos funcionam melhor com determinados tipos de item. Tabelas de
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estatistica descritiva (média, desvio padrdo, minimo ¢ maximo do erro) complementam a
analise visual.

B Comparagio de Erros

Distribuicie de MAPE por Modelo Distribuicio de MAE por Modslo

[ Mapa de Calor: MAPE por Item e Modelo

MAPE por nam & Modele

I Estatisticas de Erro por Modelo

Figura 17- Tela de Comparagdo de erros — Dashboard. Fonte: Autoria prépria, 2025.

Dada a aplicacao do artefato no contexto do PCP 4.0, cada vez mais impactado por um
grande volume de dados (Big Data) gerados a partir de suas tecnologias, como o IoT, a
eficiéncia computacional € tratada como um requisito critico. A quarta aba, mostrada na Figura
18, dedica-se a analisar o custo de processamento dos algoritmos. A visualizagdao dos dados
ocorre através de graficos de barras. Esta andlise € vital para dimensionar a infraestrutura
tecnologica necessaria para utilizar modelos mais complexos ou adaptar os modelos que serao

utilizados para que sejam compativeis com a capacidade computacional existente.
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4 Performance Computacional

@ Tempo de Treinamento

T Dados Carregados Tempe Midio de Treinsments por Modela

Figura 18- Tela de Performance computacional — Dashboard. Fonte: Autoria propria, 2025.

O quinto modulo (Figura 19) operacionaliza a escolha do modelo. Utilizando os pesos
definidos na etapa multicritério, o sistema gera um ranking consolidado. O algoritmo identifica
o "Campeao Geral" (modelo com maior média de Score Geral) e, crucialmente, executa uma
logica de sele¢ao granular, determinando o Melhor Modelo por Item.

Esta funcionalidade oferece uma solug¢do personalizada e alinhada com a OPIT,
rejeitando a premissa de que um Unico algoritmo deve ser universalmente aplicado, € sim um
algoritmo que se adapte as particularidades de cada série. O resultado ¢ apresentado em tabelas
dindmicas que listam, para cada SKU, qual foi o modelo vencedor, seu score final e o erro
associado. Um gréfico de distribui¢do (Pizza) ilustra o share de cada algoritmo no portfélio,

oferecendo uma visao do desempenho dos diferentes modelos.
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¥ Ranking Final Multicritério

¥ Ranking Global de Modelos

M Melhor Modelo por Item

i Distribuiciio dos Melhores Modelos

Quantat vezes cads modela foi o methor!

Figura 19- Tela de Ranking final multicritério — Dashboard. Fonte: Autoria propria, 2025.

A ultima etapa do fluxo metodologico € a "Previsao Futura" (Figura 20). Diferente da
etapa de validacao (que separa dados em treino e teste), esta funcdo executa um retreinamento
utilizando 100% do historico disponivel. O cddigo recupera os hiperparametros Otimos
armazenados na sessao e reconstroi o modelo.

Para projetar um horizonte de 12 meses, os resultados (historico + previsdo) sao

exportaveis para Excel, garantindo interoperabilidade com outros sistemas corporativos.

W Dados Carragados

Figura 20- Tela de Previsdo futura — Dashboard. Fonte: Autoria propria, 2025
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4.7. Registro dos experimentos

Por fim, na tela de Registro de Experimentos (Figura 21), apds o fim do ciclo de previsao
de demanda e escolha de modelo se encerrarem, o usudrio pode exportar em formato Excel um
plano de experimentos detalhado, com todas as transformacdes nas séries realizadas nas etapas
de pré-processamento, previsdes realizadas por cada modelo nas etapas de treino e teste, um
resumo dos parametros utilizados no treinamento e os hiperparametros 6timos encontrados,

caso a op¢ao tenha sido habilitada.

© Configuragbes Testadas (da Tela de Treinamento)

Ex Fx e cx D Bx

/ Parimetros e Configuracbes (da Tela de Treinamento)

I Resultados Obtidos (da Tela de Treinamento)

Figura 21- Tela de Registro de experimento. Fonte: Autoria propria, 2025
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5. Aplicacao do artefato em um caso real

A secdo anterior detalhou a concepg¢ao do artefato de previsdo multicritério,
fundamentado nos principios do Design Science Research (DSR). A metodologia culminou no
design de um sistema que incorpora uma competi¢cdo de modelos (estatisticos, machine learning
e deep learning) e um pipeline robusto de pré-processamento, com o objetivo de enderegar as
lacunas identificadas na Etapa 1 da DSR. Esta secdo avanga no ciclo do DSR, focando nas
etapas de Demonstracao (Etapa 4) e Avaliacdo (Etapa 5) (PEFFERS et al., 2007). O artefato
sera agora aplicado em um ambiente operacional real para demonstrar sua utilidade e medir
rigorosamente seu desempenho e aplicabilidade.

Para a realizagdo do experimento, foram selecionados todos os produtos de duas das
marcas presentes no portfolio da empresa. A avaliagdo empirica foi conduzida utilizando séries
temporais reais de vendas B2B (sell-in) desses produtos, agregados por subfamilia, do portfélio
da organizacdo parceira. Essa agregacdo por subfamilia ja ¢ realizada hoje no processo de
previsdo de demanda da empresa e se da para que as séries sejam menos afetadas pelas rupturas,
decorrentes de uma demanda volatil e uma cadeia de suprimentos complexa na qual a empresa
esta inserida, com lead times longos e disponibilidade de matéria prima limitada em
determinados momentos. Atualmente, na empresa, sdo utilizados apenas os modelos estatisticos
classicos para o suporte ao processo de previsdo de demanda.

Toda a discussdo a seguir ¢ fundamentada na Teoria do Processamento de Informacao
Organizacional (OIPT). Nesta secdo, ¢ testada a hipdtese de que o desempenho superior no
planejamento de demanda ndo advém da escolha de um modelo universalmente 6timo, mas sim
do fit entre a incerteza inerente a tarefa de previsdo, a capacidade de processamento
computacional alocada e as prioridades estratégicas definidas pelo planejador de demanda. Para
demonstrar a flexibilidade e a robustez do artefato frente a diferentes realidades de negbcio, os
resultados foram segmentados e analisados sob dois cenarios de decisdo distintos: a priorizagao
exclusiva da acuricia, e a busca pelo equilibrio e eficiéncia operacional, ambas feitas na
granularidade de subfamilia. Em ambos os cenarios de avaliagdo multicritério, estd sendo
avaliado o desempenho dos modelos com a otimizagao de parametros ligada com o nimero de
instancias da otimizacao bayesiana igual a 30 (valor padrao do SAD) e com MSE definida como

métrica de otimizacdo, como ¢ utilizado na empresa hoje.
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5.1. Anélise de Desempenho Global e a Fronteira de Eficiéncia

A avalia¢ao empirica do artefato iniciou-se com uma analise de desempenho, comparando todas
as familias de algoritmos (estatisticos, machine learning e deep learning) aplicadas as séries
temporais de sell-in das subfamilias selecionadas. Esta etapa tem como objetivo estabelecer
uma linha de base de performance e verificar a existéncia de um modelo universalmente

superior, hipotese frequentemente debatida na literatura de forecasting.

Tabela 1- Comparagdo global dos modelos. Fonte: Autoria propria, 2025.

MAPE Tempo Score Score Score
Modelo Médio (%) Médio (s) Erro Tempo Incerteza
Prophet 45.00 125.02 73.24 18.45 67.02
ETS 45.30 0.38 72.78 99.77 66.50
Holt-Winters Multiplicativo 49.27 0.09 66.68 99.95 67.12
N-BEATS 50.20 52.80 65.24 65.57 61.26
H-W s/ Trend 52.47 0.02 61.75 100.00 65.50
TBATS 53.09 118.73 60.79 22.54 67.79
Holt-Winters Aditivo 53.26 0.08 60.54 99.96 61.31
Random Forest 61.42 87.76 47.98 42.76 65.09
SARIMA 64.79 0.91 42.78 99.42 65.18
XGBoost 70.36 22.02 34.22 85.65 64.51
LightGBM 73.58 11.12 29.25 92.76 64.66

Os resultados consolidados revelam uma disparidade significativa entre as classes de
modelos, tanto na precisdo das previsdes quanto, € principalmente, no consumo de recursos
computacionais. A Tabela 1 apresenta um resumo das métricas médias obtidas no experimento.

Ao analisar a dimensdo da eficiéncia, observa-se que os modelos estatisticos classicos,
notadamente a familia de Suaviza¢do Exponencial (ETS e Holt-Winters), mantiveram sua
reputacao de robustez e velocidade. O modelo ETS, por exemplo, registrou um tempo médio
de treinamento de apenas 0,38 segundos por sé€rie. Em contraste, os modelos de inteligéncia
artificial exigiram uma capacidade de processamento exponencialmente maior. O algoritmo
Prophet demandou, em média, 125,02 segundos para processar as mesmas séries, um aumento
de aproximadamente 328 vezes no custo computacional em comparagdo ao ETS. O modelo de
Deep Learning N-BEATS situou-se em um patamar intermedidrio de custo, com média de 52,8
segundos.

Na dimensao da precisdo (mensurada pelo MAPE - Erro Percentual Absoluto Médio),
a relacdo nao ¢ linear. Embora o modelo Prophet tenha apresentado o menor erro médio global

em alguns cendrios de teste, a diferenca de acurdcia em relagdo aos métodos estatisticos foi, em
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muitos casos, marginal. J& os algoritmos baseados em arvores de decisdo, como XGBoost e
Random Forest, apresentaram uma varidncia de desempenho grande, com erros médios
(MAPE) superiores a 60% e 70% em determinadas situagdes. Este comportamento sugere a
ocorréncia de overfitting em séries com historicos mais curtos ou com alta relagdo ruido-sinal,
onde a complexidade do modelo excedeu a informacao disponivel nos dados.

Estes achados corroboram a Teoria do Processamento de Informacdo Organizacional
(OIPT) aplicada ao PCP 4.0. Observa-se claramente uma Fronteira de Eficiéncia. Para a maioria
dos itens de comportamento estdvel, os modelos estatisticos oferecem o melhor fit
organizacional, entregando precisdo competente com custo computacional desprezivel. A
aplicagdo de modelos pesados de IA (como Prophet ou N-BEATS) s6 se justifica
estatisticamente em itens de alta volatilidade ou "Curva A", onde uma redu¢do marginal no erro
de previsao traduz-se em ganhos financeiros que compensam o alto /ead time de processamento

da informagao.
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Figura 22— Fronteira de eficiéncia dos modelos. Fonte: Autoria propria, 2025.

Portanto, a superioridade de um modelo ndo ¢ absoluta, mas depende da situacao.
Enquanto a TA demonstrou capacidade de capturar padrdes complexos que escaparam a
estatistica classica em itens especificos, sua aplicagdo indiscriminada em todo o portfolio
geraria uma ineficiéncia sist€émica, consumindo recursos de processamento desproporcionais

ao ganho de acurécia obtido.

5.2. Avaliacao Multicritério: O Impacto da Estratégia na Selecido

Reconhecendo que a minimizag¢ao do erro médio ndo € o unico critério para a escolha

de um modelo em ambiente industrial, conforme defendido pela Teoria do Processamento de
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Informacao Organizacional (OIPT), esta etapa aplicou o método de decisao multicritério SAW
(Simple Additive Weighting). O objetivo foi demonstrar como a defini¢do de "melhor modelo"
¢ dinamica e dependente das prioridades estratégicas do planejador de demanda.

Para validar a robustez do artefato, foram simulados trés cenarios distintos de pesos para

os critérios de Precisdo (Erro), Eficiéncia (Tempo) e Estabilidade (Incerteza).

5.2.1. Cenario 1: Foco Estratégico na Precisao

No primeiro cenario de avaliagdo, o sistema foi configurado para simular um ambiente
de alta criticidade, onde a redugdo da incerteza ¢ a prioridade maxima. Neste contexto, assume-
se que o custo da falta de produto ou o custo de oportunidade de vendas perdidas superam
largamente quaisquer preocupagdes com o custo computacional ou tempo de execucdo dos
modelos. Os pesos do algoritmo multicritério do artefato foram ajustados para maximizar a
acuracia, nao penalizando o consumo de recursos de hardware. Sob a otica da OIPT, este
cenario reflete a busca por uma capacidade de processamento de informacao maxima, onde a
organiza¢do decide investir pesadamente em analise de dados para mitigar a volatilidade do
mercado. A configuragdo de pesos priorizou exclusivamente a acurdcia (Erro = 100%, Tempo
= 0%, Estabilidade = 0%).

Tabela 2— Pesos de cada métrica no cendario 1. Fonte: Autoria propria, 2025

Erro (MAPE) Tempo (s) Incerteza (estabilidade)
Peso 100 0 0

Nesse cendrio, os scores globais correspondem ao Score de erro, mostrado na tabela 1.
Os resultados globais consolidados neste cendrio demonstram uma vantagem dos métodos de
Machine Learning, especificamente, o modelo Prophet. Ele alcangou a primeira posi¢ao no
ranking global, com um Score Geral de 73,24, seguido de perto pelo modelo ETS com 72,78.
A lideranga do Prophet justifica-se pela sua capacidade superior em modelar sazonalidades
complexas e mudancas de tendéncia, resultando no menor MAPE médio do experimento
(45,00%). Contudo, a margem estreita para o ETS (apenas 0,46 pontos de diferenca no score)
indica que, para o conjunto de dados analisado, o ganho de precisdao da abordagem de Machine
Learning foi marginal em relagdo ao método estatistico cléssico.

Nesse cenario considerando exclusivamente o lado operacional, com 100% da
pontuacdo vinda do score de erro, o modelo Prophet se destacou, sendo o melhor modelo em 4

das 6 subfamilias analisadas (A, B, D, F), enquanto o Holt-Winters multiplicativo obteve o
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melhor resultado na subfamilia E e 0 N-BEATS na C. Na figura 23, podemos ver o grafico de
pizza representando a porcentagem de subfamilias onde cada modelo obteve um melhor

desempenho.

B Prophet
N-BEATS
M Holt-Winters Multiplicativo

16.7%

Figura 23— Percentual de itens onde cada modelo obteve o melhor Score no cendrio 1. Fonte: Autoria propria, 2025.

5.2.2. Cenario 2: Gestao de riscos

Neste cenario, a andlise transita de uma perspectiva puramente focada na magnitude do
erro para uma abordagem orientada & gestdo de riscos e confiabilidade da informagdo. Na
pratica do S&OP, um modelo de previsdo que apresenta uma acurdcia média excelente, mas
que falha drasticamente em periodos aleatorios (alta variancia), ¢ considerado perigoso. A
instabilidade nos residuos de previsao impacta diretamente o calculo dos estoques de seguranca,
que sdo dimensionados justamente para cobrir a variabilidade do erro durante o lead time. Esta
configuracdo penaliza severamente modelos que apresentam outliers em seus residuos ou
comportamento erratico entre diferentes janelas de validagdo, privilegiando a robustez. Os
pesos foram distribuidos igualmente entre as dimensoes Erro e Estabilidade (Erro = 100, Tempo

= 0, Estabilidade = 100).

Tabela 3— Pesos de cada métrica no cendrio 2. Fonte: Autoria propria, 2025.

Erro (MAPE) Tempo (s) Incerteza (estabilidade)
Peso 100 0 100

Ao aplicar esta ponderacdo aos resultados experimentais, a configuragdo do ranking se
altera. O Prophet segue na lideranca (Score 70,13), demonstrando que sua vantagem nao esta

apenas na média do erro, mas na consisténcia das previsoes (Score de Incerteza de 67,02, o
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segundo maior do grupo). O modelo TBATS, que havia tido desempenho mediano nos outros
cenarios, subiu para a 4* posi¢do, destacando-se pela estabilidade de seus componentes
sazonais. J& modelos como LightGBM e XGBoost permaneceram nas ultimas posigdes,
evidenciando a alta variancia e o risco de overfitting associados a algoritmos de arvore de

decisdo em séries temporais curtas.

Tabela 4— Scores no cenario 2. Fonte: Autoria propria, 2025.

Score MAPE Tempo Score Score Score
Modelo Geral Meédio (%) Médio (s) Erro Tempo Incerteza
Prophet 70.13 45.00 125.02 73.24 18.45 67.02
ETS 69.64 45.3 0.38 72.78 99.77 66.50
Holt-Winters Multiplicativo ~ 66.90 49.27 0.09 66.68 99.95 67.12
TBATS 64.29 53.09 118.73 60.79 22.54 67.79
H-W s/ Trend 63.63 52.47 0.02 61.75 100.00 65.50
N-BEATS 63.25 50.20 52.80 65.24 65.57 61.26
Holt-Winters Aditivo 60.92 53.26 0.08 60.54 99.96 61.31
Random Forest 56.54 61.42 87.76 47.98 42.76 65.09
SARIMA 53.98 64.79 0.91 42.78 99.42 65.18
XGBoost 49.37 70.36 22.02 34.22 85.65 64.51
LightGBM 46.96 73.58 11.12 29.25 92.76 64.66

Nesse cenario, o0 modelo Prophet mais uma vez liderou, sendo o melhor modelo em 3
das 6 subfamilias analisadas (B, D, F). Além dele, podemos ver a entrada do N-BEATS, modelo
de deep learning como o melhor modelo para a subfamilia C, obtendo um MAPE de 27,71%
para essa subfamilia, o segundo menor entre todos os modelos testados em todos as subfamilias,
e um Score total de 99,29 para a subfamilia C. Do lado dos modelos estatisticos, o Holt-Winters
Multiplicativo segui com a subfamilia E enquanto o TBATS aparece como o melhor modelo da
subfamilia A. Na Figura 24, podemos observar a porcentagem de subfamilias onde cada modelo

obteve um melhor desempenho considerando esse novo cenario.
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B Frophet
N-BEATS

B Holt-Winters Multiplicativo
TBATS

Figura 24— Percentual de itens onde cada modelo obteve o melhor Score no cenario 2. Fonte: Autoria propria, 2025.

5.2.3. Cenario 3: Equilibrio Operacional

O terceiro cenario de teste inverte a logica de decisdo, priorizando a agilidade e a
eficiéncia do processo de S&OP. Este cenario simula uma realidade operacional comum em
grandes organizagdes de varejo e bens de consumo: a necessidade de re-planejamento agil,
muitas vezes em periodos mais curtos, ou a existéncia de restricdes de infraestrutura de TI ao
lidar com bases de dados massivas. Neste arranjo, os pesos do sistema multicritério foram
reconfigurados para considerar de maneira igual a qualidade de previsdo e o esforco
computacional.

A alteracao dos critérios de sele¢do provocou uma reordenacao drastica no ranking de
modelos, ilustrando a sensibilidade do artefato as preferéncias gerenciais. Os pesos foram
distribuidos igualmente entre as trés dimensodes (Erro = 100, Tempo = 100, Estabilidade =

100).

Tabela 5— Scores no cendrio 3. Fonte: Autoria propria, 2025.

Erro (MAPE) Tempo (s) Incerteza (estabilidade)
Peso 100 100 100

A introducdo da varidvel "Tempo" alterou drasticamente o ranking. O modelo ETS
ascendeu a lideranca absoluta com um Score Geral de 79,68, seguido pelo Holt-Winters
Multiplicativo (Score 77,92). Em contraste, os modelos de Machine Learning enfrentaram uma
queda drastica. Entre eles, vale destacar o Prophet, lider no primeiro cendrio e que caiu para a

9% posi¢do (Score 52,90), penalizado severamente pelo seu alto tempo de processamento
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(125,02 segundos em média, contra 0,38s do ETS). Este resultado valida a premissa de que o
excesso de capacidade de processamento, modelos lentos e complexos geram ineficiéncia
organizacional quando nao acompanhados de um ganho proporcional em reducao de incerteza

ou aumento de sua capacidade computacional.

Tabela 6— Scores no cendrio 3. Fonte: Autoria propria, 2025.

Score MAPE Tempo Score Score Score
Modelo Geral Meédio (%) Médio (s) Erro Tempo Incerteza
ETS 79.68 45.30 0.38 72.78 99.77 66.50
Holt-Winters Multiplicativo ~ 77.92 49.27 0.09 66.68 99.95 67.12
H-W s/ Trend 75.75 52.47 0.02 61.75 100.00 65.50
Holt-Winters Aditivo 73.94 53.26 0.08 60.54 99.96 61.31
SARIMA 69.12 64.79 0.91 42.78 99.42 65.18
N-BEATS 64.02 50.20 52.80 65.24 65.57 61.26
LightGBM 62.22 73.58 11.12 29.25 92.76 64.66
XGBoost 61.46 70.36 22.02 34.22 85.65 64.51
Prophet 52.90 45.00 125.02 73.24 18.45 67.02
Random Forest 51.94 61.42 87.76 47.98 42.76 65.09
TBATS 50.38 53.09 118.73 60.79 22.54 67.79

Nesse novo cenario considerando um equilibrio entre os 3 parametros, os modelos
estatisticos classicos obtiveram larga vantagem, sendo escolhidos o melhor modelo em todas 6
subfamilias analisadas, como podemos observar na Figura 25. Para as familias A e C, foi
escolhido o ETS, para B e D, Holt-Winters aditivo, para a subfamilia E, Holt-Winters
Multiplicativo e para a F, SARIMA.

W e
Holt-Winters Aditivo
B sARIMA
Holt-Winters Multiplicative

Figura 25— Percentual de itens onde cada modelo obteve o melhor Score no cendrio 3. Fonte: Autoria prépria, 2025.
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5.3 Discussoes

Os resultados obtidos na aplicagdo empirica do artefato confirmam a premissa central
deste estudo de que ndo existe um algoritmo universalmente superior para a previsdo de
demanda no contexto do PCP 4.0. A varia¢ao de desempenho observada entre as subfamilias e
amudanca de ranking conforme a reconfiguragao dos pesos do sistema multicritério evidenciam
que a escolha do “melhor” modelo depende do contexto de decisdo e das prioridades gerenciais,
e ndo apenas da dimensao operacional da acurécia.

Sob a lente da Teoria do Processamento de Informagao Organizacional (OIPT), esses
achados refor¢gam empiricamente o conceito de fit entre a incerteza da tarefa e a capacidade de
processamento de informacdo da organizacdo (GALBRAITH, 1974). Em termos de capacidade
de processamento de informacao, as séries com demanda mais erratica e alta volatilidade geram
maior necessidade de processamento de informagdo. Nesses casos, os modelos de Machine
Learning e Deep Learning, como Prophet e N-BEATS, representam uma elevacdo da
capacidade de processamento de informagao, oferecendo melhor capacidade de captura de
padrdes complexos, ainda que com custo computacional significativamente maior.

Por outro lado, para subfamilias com padrdes mais estaveis ou com menor criticidade
em termos de risco de ruptura, modelos estatisticos classicos, como ETS, Holt-Winters e
SARIMA, mostraram-se suficientes para atender as necessidades de processamento, oferecendo
previsdes aceitaveis com consumo de recursos muito inferior. Nesses casos, investir em
modelos mais complexos implicaria em um aumento de custo computacional sem contrapartida
proporcional em reducdo de incerteza, o que, segundo a OIPT, caracteriza desperdicio
organizacional e misfit entre tarefa e estrutura de informacao.

E nesse ponto que o componente multicritério do artefato passa a operar como um
“agente” da OIPT no processo decisorio. Ao integrar simultanecamente as dimensdes de erro
(MAPE), tempo computacional e estabilidade, o sistema de apoio a decisdo transforma os
resultados do treinamento e dos testes em um mecanismo explicito de balanceamento entre
necessidade de processamento de informagdo e capacidade de processamento de informacgao.
A possibilidade de configurar pesos diferentes para cada dimensdo permite que o planejador
ajuste, de forma declarada, o nivel de capacidade de processamento que a organizagdo esta
disposta a mobilizar para responder a incerteza observada em cada série, tornando o fit uma
escolha gerencial parametrizavel e auditavel, em vez de uma consequéncia implicita da escolha

de um tnico modelo.
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Nos cendrios em que a acuracia ¢ priorizada (Cendrio 1), o sistema multicritério
aproxima a organizacdo de uma estratégia de “maximizacdo” da capacidade de processamento
de informagao, aceitando maiores tempos de processamento e maior complexidade algoritmica
em troca de menor incerteza nas previsoes. Na logica da OIPT, o artefato atua como um
mecanismo de aumento deliberado da capacidade de processamento de informagdo para lidar
com um ambiente considerado como altamente incerto, tipico de contextos em que o custo da
falta de produto ou de perda de vendas ¢ elevado.

Ja nos cendrios que incorporam tempo e estabilidade (Cendrios 2 e 3), o mesmo artefato
passa a funcionar como um dispositivo de racionalizagdo da capacidade de processamento. Ao
penalizar modelos lentos ou instaveis, o sistema multicritério ajuda a evitar situagdes de
“excesso” de capacidade de processamento, como o uso de modelos complexos em séries de
baixa incerteza, que, de acordo com a OIPT, nao contribuem para reduzir a incerteza residual e
apenas adicionam custo e complexidade ao processo organizacional (GALBRAITH, 1974). Na
pratica, o sistema orienta a organizagao a operar mais proxima de uma fronteira eficiente entre
esforco computacional e qualidade da informacao, ajustando a estrutura de processamento as
caracteristicas informacionais de cada série.

Dessa forma, o artefato proposto contribui para a literatura ao demonstrar
empiricamente um mecanismo concreto pelo qual a OIPT pode ser operacionalizada em
ambientes de PCP 4.0 e S&OP. O moddulo multicritério ndo apenas seleciona modelos
“melhores” do ponto de vista isolado da acurdcia, mas atua como um mediador entre os
requisitos de informacao (incerteza, criticidade, volatilidade) e a capacidade de processamento
(tipo de modelo, tempo de execugdo, complexidade computacional), promovendo um fit

dindmico e contextualizado entre a demanda e as prioridades da empresa.
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6. Conclusao

A gestdo da cadeia de suprimentos contemporanea, impulsionada pela 14.0, exige que
as organizagdes transitem de modelos reativos para sistemas preditivos e adaptaveis. A
volatilidade dos mercados atuais e o advento do Big Data expuseram as limitacdes dos métodos
tradicionais de previsao, exigindo a adog¢do de novas abordagens analiticas (HOFMANN;
RUTSCHMANN, 2018). Este trabalho de conclusdao de curso propds-se a investigar essa
lacuna, desenvolvendo e avaliando um artefato computacional alinhado aos principios do PCP
4.0, fundamentado metodologicamente no Design Science Research (DSR) (PEFFERS et al.,
2007) e teoricamente na Teoria do Processamento de Informacao Organizacional (OIPT).

O objetivo central desta pesquisa foi responder como a selecdo de modelos de previsdo
de demanda pode ser otimizada considerando o trade-off entre precisdo, tempo de
processamento e incerteza. Para tanto, foi desenvolvido um sistema multicritério de suporte a
decisdo que orquestrou uma competicao entre modelos estatisticos cldssicos e algoritmos de
Machine Learning e Deep Learning. A aplicacdo deste artefato em dados reais permitiu validar
empiricamente os conceitos de ajuste (fit) organizacional. Os resultados corroboram a visao de
que o desempenho nao ¢ absoluto, mas contingencial ao alinhamento entre a incerteza da tarefa
e a capacidade de processamento de informacdo da organizacio (TUSHMAN; NADLER,
1978).

Nos testes realizados, observou-se que modelos de Machine Learning, especificamente
o Prophet e N-Beats, demonstraram uma capacidade superior de reduzir a incerteza em itens de
alta complexidade (Curva A). Para a subfamilia C, a aplicagdo dessas técnicas resultou em uma
redu¢do do erro em comparacdo aos métodos estatisticos. Isso valida a premissa de que tarefas
de alta incerteza demandam alta capacidade de processamento de informagao, superando as
limitagdes inerentes aos modelos lineares e estaciondrios.

Contudo, a pesquisa também iluminou o custo oculto dessa sofisticacdo. A analise de
eficiéncia demonstrou que modelos de Machine Learning podem ser ordens de magnitude mais
lentos que métodos classicos como o ETS e o Holt-Winters. Esse achado ¢ crucial, pois a
complexidade computacional e o tempo de execucdo sdo fatores criticos para a viabilidade
pratica da implementacio de modelos preditivos em ambientes de negocios reais (KOLKOVA;
NAVRATIL, 2021). O artefato provou seu valor ao identificar que, para itens de menor
volatilidade, modelos estatisticos simples entregam resultados mais eficientes, evitando o

desperdicio de recursos e o excesso de processamento desnecessario (DAFT; LENGEL, 1986).
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Uma das principais contribui¢des teoricas deste trabalho foi a operacionalizacdo da
OIPT no contexto do PCP. Ao demonstrar que a "melhor previsdo" varia dependendo se o
objetivo estratégico ¢ a acuracia ou a eficiéncia, o estudo refuta a visao de que o modelo mais
complexo ¢ sempre o melhor. A fragmentacao das vitorias refor¢a o conceito de equifinalidade
e confirma achados recentes de que métodos hibridos e a combinacdo de previsdes tendem a
ser superiores a abordagens monoliticas em competi¢des de larga escala (MAKRIDAKIS et al.,
2018; 2020).

No entanto, ¢ fundamental delimitar o escopo da aplicacao da ferramenta desenvolvida.
Deve-se reconhecer que o artefato atua estritamente como um Sistema de Apoio a Decisao
(SAD) e ndo substitui a necessidade de um processo robusto de Planejamento de Vendas e
Operagdes (S&OP). A previsdo estatistica ou algoritmica ¢ apenas o ponto de partida; o
resultado 6timo organizacional depende da integracdo colaborativa entre as areas de Vendas,
Marketing, Financas e Operagdes, que aportam inteligéncia de mercado qualitativa nao
capturada pelos modelos matematicos (KAHN, 2003; BRAU, 2023). O artefato serve, portanto,
para reduzir a incerteza analitica, mas o consenso do plano de demanda permanece uma
responsabilidade humana e processual.

Como oportunidades para pesquisas futuras, sugere-se a expansao do repositorio de
modelos do artefato para incluir arquiteturas de Redes Neurais Recorrentes mais sofisticadas,
como as LSTMs (Long Short-Term Memory), que sao projetadas especificamente para capturar
dependéncias de longo prazo em sequéncias temporais complexas (KOLKOVA; NAVRATIL,
2021). Adicionalmente, recomenda-se a evolugdo do artefato para além da previsdo de demanda
pura, buscando sua integracdo horizontal com outras areas do S&OP. Isso incluiria a conexao
com modulos de gerenciamento de estoques, utilizando a métrica de incerteza do artefato para
calibrar estoques de seguranga dinamicos, € com o planejamento de transportes, otimizando a
malha logistica com base na predi¢do granular de volume.

Em suma, este trabalho conclui que a transi¢ao para o PCP 4.0 ndo ¢ apenas uma
atualizagdo tecnologica, mas uma evolugdo na capacidade de digitalizacdo e inteligéncia
organizacional (BUENO, 2020). O artefato validado serve como um prototipo dessa nova era,
onde a precisdo analitica e a eficiéncia operacional caminham juntas, guiadas pela inteligéncia

humana apoiada por dados.
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Apendice

Resultados de todos os testes por item

Item Modelo MAPE Tempo_Treino
A Prophet 27.61646 120.0508
A ETS 31.15595 0.231381
A H-W s/ Trend 33.21133 0.017952
A Holt-Winters Multiplicativo 33.41618 0.063829
A TBATS 35.82466 127.9415
A Random Forest 36.3631 32.34757
A Holt-Winters Aditivo 36.48137 0.064827
A N-BEATS 37.04203 59.98471
A XGBoost 37.84699 20.46552
A SARIMA 55.11998 0.385639
A LightGBM 55.62847 10.095
B Prophet 45.91068 119.8236
B Holt-Winters Aditivo 47.81512 0.07679
B ETS 51.84404 0.258404
B Holt-Winters Multiplicativo 56.09227 0.067878
B H-W s/ Trend 58.13908 0.021943
B SARIMA 67.90665 0.566774
B TBATS 74.35426 122.1303
B N-BEATS 77.45307 43.13559
B Random Forest 78.97987 109.3954
B XGBoost 81.59653 24.49828
B LightGBM 88.14408 11.8167
C N-BEATS 27.70994 55.40091
C ETS 28.18804 0.670641
C Prophet 40.98833 153.2894
C Holt-Winters Aditivo 51.13248 0.095464
C TBATS 52.56336 114.4748
C SARIMA 56.80234 2.653694
C Random Forest 70.86907 119.9752
C Holt-Winters Multiplicativo 73.68868 0.085553
C XGBoost 82.39245 22.00214
C H-W s/ Trend 83.44303 0.024962
C LightGBM 92.58829 10.41121
D Prophet 50.23982 139.6851
D Holt-Winters Aditivo 50.32415 0.085742
D Holt-Winters Multiplicativo 50.63842 0.093748
D H-W s/ Trend 53.58031 0.018949
D ETS 60.25541 0.448811
D LightGBM 69.43826 12.74357
D TBATS 69.85304 115.0513
D Random Forest 73.95462 101.2436
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N-BEATS

SARIMA

XGBoost
Holt-Winters Multiplicativo
N-BEATS

H-W s/ Trend

ETS

TBATS

Random Forest
Prophet
Holt-Winters Aditivo
XGBoost

LightGBM

SARIMA

Prophet

Random Forest
TBATS

H-W s/ Trend
SARIMA

XGBoost

N-BEATS

LightGBM
Holt-Winters Multiplicativo
ETS

Holt-Winters Aditivo

76.48307
76.69556
91.90481
36.31198
40.39935
46.99323
47.99617
48.65051
71.52436
71.99372
74.98879
87.12414
91.18439
92.54983
33.26389
36.80285
37.29781
39.43416
39.69241
41.27108
42.12697
44.51757
45.44737
52.37288
58.79722

57.25959

0.46985
23.37494
0.069563
50.21722
0.025078
0.352618
108.2335
83.90885
146.1705
0.075003

21.5316
10.91911
0.633729
71.08122
79.66143
124.5756

0.01895
0.759727

20.2304

50.7786
10.71429
0.172538
0.297482
0.060837
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