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Resumo 
A previsão de demanda ocupa papel central na gestão da cadeia de suprimentos e no 

Planejamento e Controle da Produção (PCP), especialmente em ambientes marcados por alta 

incerteza, volatilidade e complexidade, como aqueles associados à Indústria 4.0 e ao PCP 4.0. 

Neste contexto, modelos estatísticos clássicos, embora amplamente utilizados, mostram 

limitações para lidar com múltiplos padrões sazonais, relações não lineares e grande volume de 

dados e variáveis exógenas. Amparado pela Teoria do Processamento de Informação 

Organizacional (OIPT), este trabalho parte da premissa de que a seleção de modelos de previsão 

deve estar alinhada ao nível de incerteza da demanda e à capacidade de processamento de 

informação da organização, buscando um fit entre complexidade da tarefa e sofisticação 

analítica da ferramenta. Por meio da metodologia de Design Science Research, é desenvolvido 

um artefato computacional sob a forma de um Sistema de Apoio à Decisão (SAD) que integra: 

(i) um pipeline de previsão de demanda multi–item, combinando modelos estatísticos e de 

Machine Learning; e (ii) um módulo de avaliação multicritério que considera simultaneamente 

métricas de acurácia, viés, estabilidade e desempenho computacional. O artefato é aplicado a 

dados reais extraídos do ERP de uma empresa industrial, conduzindo uma “competição de 

modelos” em múltiplas séries temporais no nível de SKU. Os resultados evidenciam que não 

existe um modelo dominante universal; ao contrário, diferentes algoritmos apresentam melhor 

desempenho em subconjuntos específicos de itens, reforçando a lógica contingencial da OIPT. 

A avaliação multicritério permite adaptar a recomendação de modelos a diferentes prioridades 

organizacionais (por exemplo, foco máximo em acurácia, equilíbrio entre acurácia e custo 

computacional ou busca por maior robustez e estabilidade), oferecendo ao gestor uma 

ferramenta prática para seleção de modelos alinhada à estratégia da empresa. O estudo contribui 

teoricamente ao operacionalizar a OIPT no contexto da previsão de demanda e, do ponto de 

vista prático, ao disponibilizar um protótipo de SAD que pode ser incorporado aos processos 

de S&OP e PCP 4.0, apoiando uma tomada de decisão mais informada, ágil e aderente às 

exigências de cadeias de suprimentos complexas e digitais. 

 

Palavras-chave: Previsão de demanda; Machine Learning; PCP 4.0; Teoria do 

Processamento de Informação Organizacional; OIPT; Análise multicritério; Sistema de Apoio 

à Decisão; S&OP; IA 
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Development of a Multi-Item Demand Forecasting System Based on Machine 

Learning and Multicriteria Analysis in the Context of PCP 4.0: An OIPT-Based 

Approach 

 

Abstract 
Demand forecasting plays a central role in supply chain management and Production Planning 

and Control (PPC), especially in environments characterized by high uncertainty, volatility, and 

complexity, such as those associated with Industry 4.0 and PPC 4.0. In this context, traditional 

statistical models, although widely used, exhibit important limitations when dealing with 

multiple seasonal patterns, nonlinear relationships, and large volumes of data and exogenous 

variables. Grounded in Organizational Information Processing Theory (OIPT), this study 

assumes that the selection of forecasting models must be aligned with both the level of demand 

uncertainty and the organization’s information processing capacity, seeking a fit between task 

complexity and analytical sophistication. Using the Design Science Research methodology, a 

computational artefact is developed in the form of a Decision Support System (DSS) that 

integrates: (i) a multi-item demand forecasting pipeline combining statistical and Machine 

Learning models; and (ii) a multicriteria evaluation module that simultaneously accounts for 

accuracy, bias, stability, and computational performance. The artefact is applied to real data 

extracted from the ERP system of an industrial company, enabling a “model competition” 

across multiple time series at the SKU level. The results show that there is no universally 

dominant model; instead, different algorithms perform best for specific subsets of items, 

reinforcing OIPT’s contingency logic. The multicriteria assessment makes it possible to adapt 

model recommendations to distinct organizational priorities (e.g., maximum focus on accuracy, 

balance between accuracy and computational cost, or emphasis on robustness and stability), 

providing managers with a practical tool for model selection aligned with the firm’s strategy. 

This study contributes to theory by operationalizing OIPT in the context of demand forecasting 

and, from a practical standpoint, by delivering a DSS prototype that can be embedded into 

S&OP and PPC 4.0 processes, supporting more informed, agile, and strategy-consistent 

decision-making in complex and digital supply chains. 

 

Keywords: Demand forecasting; Machine Learning; PPC 4.0; Organizational Information 

Processing Theory; OIPT; Multicriteria analysis; Decision Support System; S&OP; AI  
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1. Introdução 

A gestão da cadeia de suprimentos (Supply Chain Management - SCM) se tornou um 

pilar estratégico para a competitividade das empresas em um mercado globalizado, dinâmico e 

cada vez mais centrado no cliente. Nesse cenário, a capacidade de antecipar as necessidades do 

mercado e alinhar os recursos produtivos e logísticos de forma eficiente não é apenas uma 

vantagem competitiva, mas uma condição essencial para a sobrevivência e prosperidade dos 

negócios. No centro dessa questão está a previsão de demanda, um processo crítico que serve 

como alicerce para virtualmente todas as decisões de planejamento, desde o nível estratégico 

até o operacional. (ATHANASOPOULOS et al., 2017) 

A precisão na previsão de demanda impacta diretamente na eficiência operacional, 

satisfação do cliente e rentabilidade de uma empresa. (MAKRIDAKIS ET AL., 1998) No nível 

estratégico, projeções acuradas permitem identificar tendências de mercado, antecipar 

oportunidades de crescimento e se preparar contra possíveis ameaças. Taticamente, elas são 

indispensáveis para o planejamento de vendas e operações (S&OP), alocação de recursos, 

estratégias de marketing e gestão de portfólio de produtos. No âmbito operacional, as previsões 

guiam o planejamento e controle da produção (PCP), a gestão de estoques, a programação da 

produção, o planejamento de necessidades de materiais (MRP) e a logística de distribuição, 

buscando o equilíbrio ótimo entre o nível de serviço e os custos operacionais. (FILDES et al., 

2022) 

Contudo, prever a demanda com precisão tornou-se uma tarefa exponencialmente mais 

desafiadora. O ambiente de negócios contemporâneo é caracterizado por uma volatilidade 

crescente, ciclos de vida de produtos cada vez mais curtos, alta customização e a complexidade 

introduzida por novos modelos de negócio, como o varejo omnichannel. As necessidades dos 

clientes tornaram-se mais dinâmicas e complexas, aumentando as limitações dos modelos 

preditivos, que frequentemente enfrentam a escassez de séries históricas robustas e a 

dificuldade de capturar o comportamento errático das variáveis envolvidas. (HOFMANN e 

RUTSCHMANN, 2018) 

Historicamente, as empresas têm se apoiado em métodos estatísticos consagrados para 

a análise de séries temporais, como os modelos de Suavização Exponencial (a exemplo da 

família ETS - Erro, Tendência e Sazonalidade) e os modelos Autorregressivos Integrados de 

Médias Móveis (ARIMA) (BOX et al., 2015). Embora eficazes em cenários com padrões de 

comportamento relativamente estáveis, esses modelos clássicos frequentemente pressupõem 
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linearidade e estacionariedade nos dados, premissas que são cada vez mais violadas pela 

complexidade dos mercados atuais. A dificuldade em modelar múltiplos padrões sazonais, 

tendências não lineares e o impacto de variáveis exógenas de forma integrada representa uma 

barreira significativa para a obtenção da acurácia necessária para uma gestão proativa e 

eficiente. (UZSOY, 2018) 

É neste ponto que a ascensão da Inteligência Artificial (IA) e, mais especificamente, das 

áreas de Aprendizado de Máquina (Machine Learning - ML) e Aprendizado Profundo (Deep 

Learning), surge como uma mudança de paradigma para a previsão de demanda. Impulsionada 

pela Quarta Revolução Industrial (Indústria 4.0), a IA oferece um novo arsenal de ferramentas 

capazes de extrair padrões e insights de grandes volumes de dados (Big Data) com uma 

profundidade e precisão sem precedentes. (SHARMA et al., 2022). A Inteligência Artificial 

busca projetar sistemas computacionais capazes de imitar padrões de comportamento humano 

e gerar conhecimento relevante para a resolução de problemas. (GARTNER) Dentro da IA, o 

Aprendizado de Máquina permite que os algoritmos aprendam a partir de dados históricos sem 

serem explicitamente programados, identificando relações complexas e não lineares que 

passariam despercebidas pelos métodos tradicionais. Modelos como Prophet, XGBoost e 

Random Forest exemplificam o poder dessas técnicas, oferecendo flexibilidade e alta 

performance preditiva em diversos cenários. 

A necessidade de adotar ferramentas mais sofisticadas é bem explicada pela Teoria do 

Processamento de Informações Organizacionais (Organizational Information Processing 

Theory - OIPT) (GALBRAITH, 1974). A teoria defende que a excelência organizacional é 

alcançada quando a capacidade de processamento de informações de uma empresa está alinhada 

com a incerteza e a complexidade do seu ambiente (GALBRAITH, 1974, 1977). Em outras 

palavras, quanto maior a incerteza, gerada pela volatilidade do mercado, complexidade de 

produtos e interdependência na cadeia de suprimentos, maior a quantidade de informação que 

a empresa precisa processar para tomar decisões eficazes (SRINIVASAN; SWINK; KIM, 

2015). As ferramentas de previsão tradicionais representam uma capacidade de processamento 

limitada, adequada para ambientes mais estáveis, o que tem sido destacado em estudos recentes 

que aplicam a OIPT para explicar limitações de sistemas analíticos em cadeias de suprimentos 

complexas (ZHU et al., 2018). No cenário atual, com volume massivo de dados e dinâmica de 

mercado imprevisível, essa capacidade é excedida, gerando uma lacuna de desempenho que 

exige maior capacidade de processamento de informação (YANG et al., 2025). Modelos de IA 

e ML, com sua habilidade de processar grandes conjuntos de dados e modelar relações não 
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lineares complexas, surgem como uma evolução da capacidade de processamento de 

informações, permitindo que as empresas fechem essa lacuna e respondam de forma mais ágil 

e precisa aos desafios do mercado, em linha com estudos recentes que combinam OIPT com 

big data analytics e analytics em cadeias de suprimentos (YU et al., 2021). 

A integração de modelos de previsão baseados em Inteligência Artificial tem o potencial 

de transformar radicalmente os processos de Planejamento de Vendas e Operações (S&OP) e 

de Planejamento e Controle da Produção (PCP). O S&OP, que funciona como um processo 

tático para equilibrar demanda e oferta, depende fundamentalmente de um plano de demanda 

confiável. Previsões mais acuradas e com menor viés, geradas por algoritmos de ML, resultam 

em um planejamento agregado da produção mais alinhado à realidade do mercado, otimizando 

os níveis de estoque, melhorando a alocação de recursos e aumentando a previsibilidade dos 

resultados do negócio. (BRAU, 2023) No nível operacional, o impacto no PCP é igualmente 

profundo. Previsões granulares e precisas no nível de SKU (Stock Keeping Unit) permitem um 

planejamento mais eficiente, reduzindo tanto o risco de falta de componentes (stockout) quanto 

o excesso de estoque de matéria-prima. A capacidade dos modelos de ML de prever picos e 

vales de demanda com maior antecedência possibilita um sequenciamento e programação da 

produção mais inteligentes, otimizando o uso da capacidade instalada e minimizando tempos 

ociosos. (SHARMA, 2022) 

Essa evolução tecnológica, catalisada pela Indústria 4.0, está redefinindo o 

Planejamento e Controle da Produção (PCP), consolidando o que se entende por PCP 4.0. 

Diferentemente de abordagens anteriores, o PCP 4.0 foca na digitalização, automação e 

conectividade de ponta a ponta, por meio da integração de sistemas ciberfísicos (CPS) e da 

Internet das Coisas (IoT). O objetivo é transformar as funções gerenciais, tornando-as mais 

integradas e automatizadas para operar em redes de valor otimizadas em tempo real. (BUENO, 

2020). Neste paradigma, a digitalização viabiliza a coleta massiva de dados em tempo real de 

toda a cadeia de suprimentos, promovendo "visibilidade e rastreabilidade. A integração vertical 

de ambientes de produção físicos e digitais, conectando sistemas de gestão (ERP) e de execução 

da manufatura (MES) com a inteligência máquina a máquina, permite uma visão holística e 

sincronizada das operações. A automação, por sua vez, é potencializada por algoritmos de 

Inteligência Artificial (IA) e Machine Learning (ML), que atuam como o motor analítico do 

PCP 4.0. Esses modelos são capazes de processar grandes volumes de dados (Big Data) para 

realizar previsões de demanda mais acuradas e identificar padrões complexos que seriam 

imperceptíveis aos métodos estatísticos tradicionais. (SHARMA, 2022) 
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Portanto, a transição para métodos de previsão baseados em IA não é meramente uma 

atualização tecnológica, mas uma redefinição dos processos de planejamento. A complexidade 

do mercado moderno exige uma capacidade de processamento de informações cada vez maior 

e a IA, com modelos como Prophet, XGBoost, Random Forest e redes neurais, oferece a 

capacidade computacional e analítica necessária para lidar com esse problema, permitindo que 

o PCP evolua de uma função puramente reativa para uma com capacidades preditivas e 

prescritivas, onde os modelos não apenas preveem, mas também apoiam a otimização das 

decisões. 

Apesar de ser um tema com crescente popularidade, a grande maioria das pesquisas foca 

exclusivamente na acurácia preditiva como único critério para avaliar modelos, ignorando 

outros fatores críticos para a implementação prática, como custo computacional, tempo de 

execução e a necessidade de conhecimento especializado do gestor, que são cruciais para a 

viabilidade em um ambiente de negócios real. (KOLKOVÁ E NAVRÁTIL, 2021). 

Diante desse contexto, formula-se a seguinte questão de pesquisa: 

RQ1: Como alinhar a seleção de modelos de previsão à incerteza da demanda e à capacidade 

de processamento de informação sob diferentes prioridades organizacionais? 

Para responder a essa questão, a proposta deste trabalho é desenvolver e aplicar um artefato 

(Sistema de Apoio à Decisão) fundamentado na metodologia de Design Science Research. O 

objetivo central é propor uma metodologia/protótipo que combine modelos de previsão 

baseados em Machine Learning com um método de análise multicritério, avaliando 

simultaneamente diferentes algoritmos segundo múltiplas métricas alinhadas à OIPT. A partir 

disso, o sistema recomenda, para cada item ou grupo de itens, o modelo com melhor ajuste entre 

desempenho preditivo, eficiência computacional e estabilidade, de modo a maximizar o fit 

organizacional entre a complexidade da demanda e a capacidade de processamento de 

informação disponível. Mais especificamente, os objetivos específicos do trabalho podem ser 

definidos da seguinte forma: 

1.  Desenvolver um Sistema de Apoio à Decisão que integre um pipeline de previsão de 

demanda multi–item baseado em Machine Learning e modelos estatísticos com um 

módulo de avaliação multicritério, operacionalizando os conceitos de capacidade de 

processamento de informação da OIPT. 

2. Aplicar o artefato a dados reais da empresa, conduzindo uma “competição de modelos” 

em múltiplas séries, comparando desempenho em termos de acurácia, viés, tempo de 

processamento e medidas de incerteza. 
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Esses objetivos serão cumpridos através de uma abordagem multimétodos: (i) qualitativa, 

com entrevistas exploratórias que permitem enquadrar o problema sob a OIPT e definir 

requisitos da solução; e (ii) quantitativa, com desenvolvimento e teste do artefato 

computacional, que combina modelos de previsão e métodos multicritério em um ambiente 

experimental controlado com dados reais da empresa. 

Este trabalho busca oferecer contribuições teóricas e práticas relevantes. Do ponto de 

vista teórico, a pesquisa contribui ao operacionalizar a OIPT como uma ferramenta analítica 

para a seleção de modelos de previsão, conectando um conceito clássico da administração à 

prática da engenharia de produção e da ciência de dados. Além disso, oferece um estudo 

empírico comparativo de modelos de IA de ponta em um contexto de demanda complexa e com 

dados reais, complementado por uma estrutura multicritério de decisão. No âmbito prático, a 

principal contribuição é o desenvolvimento de um artefato que pode ser diretamente utilizado 

pela empresa para aprimorar seu processo decisório. Por fim, este estudo serve como um guia 

metodológico para outras organizações que buscam avaliar e implementar soluções de IA em 

seus processos de planejamento de demanda, sob a perspectiva de fit organizacional proposta 

pela OIPT. 

Este trabalho está estruturado da seguinte forma: na Seção 2, apresenta-se o referencial 

teórico, abordando Indústria 4.0, PCP 4.0, os principais modelos de previsão de demanda 

(estatísticos, de Machine Learning e Deep Learning) e a Teoria do Processamento de 

Informação Organizacional (OIPT). A Seção 3 descreve a metodologia adotada, baseada em 

Design Science Research, assim como os métodos de coleta e análise de dados. A Seção 4 

apresenta o desenvolvimento do artefato proposto e os procedimentos da competição de 

modelos. Na Seção 5, são discutidos os resultados empíricos e as análises multicritério. Por fim, 

a Seção 6 traz as conclusões, contribuições, limitações e sugestões para pesquisas futuras. 
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2.Referencial Teórico 

2.1 Indústria 4.0 

A Indústria 4.0 (I4.0) representa o início da Quarta Revolução Industrial. Este conceito 

emergiu pela primeira vez em 2011 na Feira Industrial de Hannover, na Alemanha, sendo 

impulsionado como uma iniciativa estratégica nacional pelo governo. (ROŽANEC,2022) A 

I4.0 é definida como uma tendência de digitalização e automação que transforma as redes de 

manufatura e a cadeia de suprimentos, evoluindo para fábricas inteligentes que permitem níveis 

sem precedentes de flexibilidade e transparência operacional. (BUENO, 2020) 

Fundamentalmente, a I4.0 é caracterizada por três grandes tendências tecnológicas: 

conectividade, inteligência e automação flexível. (TORTORELLA, 2022) É um termo guarda-

chuva que descreve a automação e a troca de dados em tecnologias e processos de fabricação, 

buscando a criação de redes de valor inteiramente digitalizadas, conectadas, inteligentes e 

descentralizadas. (IVANOV, 2021) O objetivo principal é tornar os processos de produção 

altamente flexíveis e reconfiguráveis para se adaptar às rápidas mudanças do mercado, 

viabilizando o ideal de customização em massa a um custo comparável ao da produção em 

massa. A I4.0, portanto, não se limita apenas à manufatura direta dentro da empresa, mas 

abrange toda a cadeia de valor. (CIANO, 2021) 

O sucesso dessa transformação depende da sinergia de diversas tecnologias disruptivas. 

Entre os pilares tecnológicos habilitadores cruciais para a I4.0 estão os Sistemas Ciberfísicos 

(CPS), a Computação em Nuvem (Cloud Computing), a Realidade Aumentada, a Robótica 

Avançada e, centralmente, a Internet das Coisas (IoT), o Big Data Analytics (BDA), o Machine 

Learning (ML) e a Inteligência Artificial (IA). (ALEXOPOULOS, 2020) 

A Internet das Coisas (IoT), especialmente a Industrial Internet of Things (IIoT), é a 

espinha dorsal da conectividade na I4.0. Ela é composta por uma rede de objetos físicos, como 

sensores embarcados, etiquetas RFID, eletrônicos e atuadores, que são interconectados e 

capazes de trocar informações através de infraestruturas de comunicação. A IoT/IIoT 

interconecta máquinas e ativos físicos para coletar dados em tempo real do chão de fábrica. 

Essa capacidade de coleta de dados em tempo real é o que permite a integração dos CPS, onde 

os ativos de fabricação se ligam ao ciberespaço. A conectividade fornecida pela IoT é 

fundamental para aumentar a transparência e a rastreabilidade ao longo da cadeia de valor. 

A proliferação de entidades altamente conectadas e a onipresença de sensores levam à 

geração de uma quantidade massiva, heterogênea e dinâmica de dados. Esse volume crescente 
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de informações digitais, que pode chegar a vários gigabytes por dia do chão de fábrica, é o que 

constitui o Big Data (BD) e exige tecnologias eficientes para coleta (via IoT), armazenamento 

(via Cloud Computing) e processamento (usando técnicas de IA). O Big Data Analytics (BDA) 

é a ferramenta essencial que permite às organizações extraírem valor e percepções úteis dessa 

vasta gama de dados para a tomada de decisões. O BDA pode ser classificado em diferentes 

níveis de complexidade, como: Análise Descritiva (descreve a situação atual, auxiliando no 

diagnóstico de problemas), Análise Preditiva (prevê eventos e tendências futuras) e Análise 

Prescritiva (utiliza técnicas avançadas para prescrever e adaptar ações, oferecendo mecanismos 

de tomada de decisão). O BD, ao ser analisado, serve como um recurso crítico em estágios de 

processamento para obter insights funcionais. 

O processamento e a análise desse Big Data são amplamente realizados pela Inteligência 

Artificial (IA) e seu subcampo, o Machine Learning (ML). A IA é um componente central para 

a I4.0 e para os sistemas baseados em IoT, sendo ativamente utilizada para processamento de 

dados, análise e tomada de decisões em ambientes industriais. O ML, em particular, foca em 

extrair conhecimento útil e permitir que o componente de ML tome decisões, aumentando a 

eficiência da fabricação. As técnicas de ML, incluindo as redes neurais profundas (Deep 

Learning), são ideais para desvendar padrões de produção complexos e fornecer suporte à 

decisão oportuno em diversas aplicações. A aprendizagem de máquina é categorizada, 

conforme o feedback disponível, em Aprendizagem Supervisionada (onde a resposta correta é 

fornecida), Aprendizagem por Reforço (onde o agente aprende a política ideal por interação 

com o ambiente) e Aprendizagem Não Supervisionada (onde se buscam padrões nos dados 

brutos sem avaliação). A IA e o ML, ao fornecerem inteligência acionável a partir dos dados 

coletados, transformam os modelos operacionais de reativos para proativos e prescritivos. 

Os resultados da implementação da I4.0, habilitada por esta infraestrutura tecnológica 

integrada (IoT, Big Data, ML e IA), são percebidos de maneira abrangente nas operações e na 

gestão da cadeia de suprimentos. Em um nível genérico, as empresas que adotam essas 

estratégias baseadas em dados obtêm benefícios significativos no desempenho operacional e 

financeiro. 

Um dos ganhos mais evidentes é a melhoria da eficiência e produtividade. A automação 

e a integração vertical dos sistemas (permitidas pela conectividade e pelos CPS) levam a 

processos mais simplificados e à redução de trabalho manual. Isso se manifesta em um aumento 

da produtividade, uma melhoria da Eficiência Geral do Equipamento (OEE) e uma redução nos 
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tempos de ciclo (lead times). A capacidade de monitoramento em tempo real fornecida pela IoT 

e a análise de BD possibilitam o controle e a regulação autônoma da produção. 

Outro benefício crucial é a Manutenção Preditiva (PdM). Ao utilizar IA e ML para 

analisar grandes volumes de dados de sensores (Big Data), é possível prever falhas e estimar a 

vida útil remanescente de equipamentos. Essa capacidade preditiva evita paradas não planejadas 

(downtimes) e a substituição desnecessária de equipamentos, resultando em redução de custos 

de manutenção e aumento da segurança, disponibilidade e eficiência dos processos. 

A qualidade do produto e do processo também é drasticamente melhorada. A I4.0 visa 

a produção de itens de maior qualidade ao menor custo possível. O uso de ML para inspeção e 

controle de qualidade permite a detecção precoce e precisa de defeitos, o que contribui para 

reduzir erros e correções durante o desenvolvimento e fabricação. 

Além disso, a I4.0 fortalece a flexibilidade e a resiliência da cadeia de suprimentos. A 

maior flexibilidade na produção é alcançada através da reconfiguração dinâmica de ativos, e a 

capacidade de processamento de dados suporta a tomada de decisões em ambientes voláteis, 

ajudando as empresas a navegarem por riscos e disrupções. 

O impacto da I4.0 na excelência operacional pode ser visto como uma transição que 

reforça a necessidade de uma perspectiva sistêmica e integrativa, onde a fusão eficaz entre o 

mundo físico e cibernético, possibilitada pela conectividade e inteligência, exige que as 

empresas integrem sistematicamente as novas tecnologias digitais como suporte às suas 

iniciativas contínuas de melhoria, em vez de focar apenas na adoção isolada de tecnologias. 

 

2.2 PCP 4.0 

O Planejamento e Controle da Produção (PCP) é a função central da gestão de 

operações, responsável por traduzir os planos estratégicos e a demanda de mercado em ações 

tangíveis no chão de fábrica. O PCP tradicional, estruturado em torno de conceitos como MRP 

(Material Requirements Planning) e MRP II (Manufacturing Resource Planning), opera de 

forma hierárquica e muitas vezes rígida. Ele depende de planos mestres de produção (MPS) que 

são definidos em lotes, com base em previsões de demanda de médio e longo prazo, e que são 

atualizados em ciclos periódicos (semanais ou mensais). A eficácia desse sistema é totalmente 

dependente da acurácia da previsão de demanda inicial; um erro na previsão gera o notório 

"efeito chicote" (bullwhip effect), amplificando distorções de estoque e cronograma ao longo 

de toda a cadeia de suprimentos (LEE; PADMANABHAN; WHANG, 1997). 



9 

 

 O PCP 4.0 é a evolução direta desta função, infundida com os princípios e tecnologias 

da Indústria 4.0. Ele não é apenas um PCP digitalizado, mas um sistema de planejamento e 

controle fundamentalmente rearquitetado. Ao invés de operar em lotes rígidos, o PCP 4.0 busca 

gerenciar a "customização em massa" e o "Lote 1", onde cada produto pode ser único (ZHONG; 

XU; WANG, 2017). Para alcançar essa flexibilidade, o PCP 4.0 deve ser dinâmico, autônomo 

e orientado a dados em tempo real. 

 Neste novo paradigma, a importância da previsão de demanda não diminui; pelo 

contrário, ela se torna ainda mais crítica, mas sua natureza e seu papel mudam drasticamente. 

O PCP 4.0 não pode mais depender de uma única previsão estática de longo prazo para 

alimentar um MPS rígido. A volatilidade da demanda e a necessidade de resposta rápida exigem 

um modelo de previsão diferente: um que seja granular, de altíssimo prazo (muitas vezes em 

horizontes de dias ou horas) e contínuo, tornando tecnologias como a IA e ML os motores do 

PCP 4.0. 

2.3 O Panorama dos Modelos Preditivos na Previsão de Demanda 

 A previsão de demanda é, em sua essência, um problema de análise de séries temporais. 

Uma série temporal é uma sequência de pontos de dados coletados em intervalos de tempo 

sucessivos. No contexto da demanda, o objetivo é analisar o comportamento histórico desses 

dados, identificando padrões como tendência (crescimento ou declínio a longo prazo), 

sazonalidade (flutuações periódicas e previsíveis) e ciclicidade (padrões de médio prazo), para 

prever o comportamento futuro (HYNDMAN; ATHANASOPOULOS, 2018). O panorama 

industrial de metodologias para essa tarefa evoluiu significativamente, transitando de modelos 

puramente estatísticos para uma adoção generalizada de técnicas de Machine Learning (ML), 

culminando na atual preferência por abordagens híbridas e de alta performance. 

Historicamente, o domínio da previsão de demanda pertencia aos modelos estatísticos 

clássicos, reverenciados por sua robustez teórica, interpretabilidade e eficácia em dados com 

padrões claros e relativamente estáveis. A família de métodos de Suavização Exponencial 

(Exponential Smoothing - ES), incluindo o método de Holt-Winters, tornou-se um padrão da 

indústria por sua capacidade de decompor a série em nível, tendência e sazonalidade. 

Paralelamente, a metodologia Box-Jenkins popularizou os modelos ARIMA (Autoregressive 

Integrated Moving Average), que modelam a demanda futura com base em sua própria inércia, 

ou seja, na dependência linear de seus valores passados e de erros de previsão passados (Box, 

Jenkins, Reinsel, & Ljung, 2015). Esses modelos univariados são eficazes, mas compartilham 
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uma limitação fundamental: eles lutam para incorporar de forma nativa e eficaz fatores externos 

(variáveis exógenas), como o impacto de promoções, ações de concorrentes, feriados móveis 

ou mudanças abruptas no sentimento do consumidor. 

 O panorama industrial contemporâneo, no entanto, é definido pela volatilidade e pela 

riqueza de dados. A ascensão do Big Data, impulsionada pela Indústria 4.0, disponibilizou um 

volume sem precedentes de informações contextuais que afetam a demanda. Isso expôs as 

limitações dos modelos estatísticos tradicionais e abriu caminho para a adoção em larga escala 

do Machine Learning (ML). Diferente dos modelos estatísticos, que partem de pressuposições 

sobre a estrutura dos dados, os modelos de ML são projetados para "aprender" padrões 

complexos, não-lineares e interações sutis diretamente dos dados (JAMES et al., 2013). 

 No cenário industrial atual, um grupo de modelos de ML se destaca: os algoritmos 

baseados em árvores de decisão. Modelos como Random Forest e, mais notavelmente, as 

Gradient Boosting Machines (GBMs), com implementações populares como XGBoost (CHEN; 

GUESTRIN, 2016) e LightGBM, tornaram-se a ferramenta de escolha para muitas 

organizações. A razão de seu sucesso é a capacidade de lidar com dados tabulares de forma 

muito eficaz. Eles podem processar nativamente centenas de variáveis exógenas (preço, 

investimento em marketing, dados de IoT, clima), lidar com dados ausentes, capturar relações 

não-lineares (como o efeito decrescente de um desconto) e fornecer métricas de "importância 

de característica", oferecendo um grau de interpretabilidade sobre o que está impulsionando a 

previsão. 

 Em paralelo, modelos de Deep Learning (DL), um subcampo do ML, ganharam tração 

para problemas de séries temporais mais complexos. Redes Neurais Recorrentes (RNNs) e suas 

variantes mais avançadas, como LSTMs (Long Short-Term Memory) e GRUs (Gated Recurrent 

Units), foram projetadas especificamente para dados sequenciais, possuindo uma "memória" 

interna que lhes permite capturar dependências de longo prazo na série temporal. Mais 

recentemente, arquiteturas baseadas em Transformers, que revolucionaram o processamento de 

linguagem natural, foram adaptadas para séries temporais (como o Temporal Fusion 

Transformer), demonstrando uma capacidade superior de modelar padrões temporais 

complexos em múltiplos horizontes de previsão (LIM et al.2021). 

Contudo, o panorama atual da indústria raramente é uma escolha binária entre estatística 

e ML. As famosas "M-Competitions", uma série de competições de previsão em larga escala, 

têm moldado as melhores práticas. A M4 Competition (2018) revelou que os métodos mais 

precisos eram frequentemente modelos híbridos, que combinavam a capacidade de 
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decomposição de modelos estatísticos (como a Suavização Exponencial) com a capacidade de 

aprendizado de padrões complexos de redes neurais (MAKRIDAKIS; SPILIOTIS; 

ASSIMAKOPOULOS, 2018). A subsequente M5 Competition (2020), focada em dados reais 

de varejo e incluindo variáveis exógenas, foi um marco: os métodos vencedores foram quase 

exclusivamente baseados em variações do LightGBM, solidificando o domínio dos modelos de 

gradient boosting para problemas de previsão de demanda em larga escala e ricos em features. 

2.3.1 Modelos Estatísticos Clássicos 

Os modelos estatísticos tradicionais são fundamentais para a previsão de séries temporais, 

servindo como benchmarks robustos. Eles geralmente se baseiam na decomposição de padrões 

históricos, como tendência e sazonalidade. 

2.3.1.1 ETS (Error, Trend, Seasonality) 

 Os modelos ETS (Erro, Tendência e Sazonalidade) formam uma família de métodos de 

previsão de séries temporais também conhecida como Suavização Exponencial (Exponential 

Smoothing). A premissa central desta abordagem é o cálculo de médias ponderadas dos dados 

históricos, onde os pesos decrescem exponencialmente à medida que as observações se tornam 

mais antigas. Essencialmente, a técnica separa o padrão sistemático do ruído aleatório presente 

nos dados, permitindo que o suavizador atue como um filtro para obter uma estimativa mais 

precisa desse padrão.   

 O framework ETS decompõe a série temporal em seus três componentes fundamentais: 

Erro (E), Tendência (T) e Sazonalidade (S). Cada um desses componentes pode ser especificado 

de forma aditiva (A), multiplicativa (M) ou nula (N). A combinação dessas variações gera até 

30 modelos distintos. É importante notar que modelos com erro aditivo e erro multiplicativo 

podem gerar previsões pontuais idênticas, diferindo, no entanto, nos intervalos de confiança 

calculados. A configuração mais simples é o ETS(A,N,N), conhecida como Suavização 

Exponencial Simples (SES), adequada para séries sem tendência ou sazonalidade, onde a 

previsão se baseia em uma média ponderada do valor observado e da previsão anterior. Outras 

configurações incluem o método de Holt (ETS(A,A,N)), que incorpora uma tendência linear, e 

modelos que utilizam uma tendência "amortecida" (Ad), útil para cenários onde se espera que 

o crescimento ou declínio diminua em horizontes futuros. A seleção do modelo ideal é 

frequentemente automatizada por funções que buscam minimizar os resíduos ou maximizar a 

máxima verossimilhança, utilizando critérios de informação como o Akaike Information 

Criteria (AIC) para selecionar a configuração mais competente.   
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2.3.1.2 Método de Holt-Winters 

 Embora tecnicamente seja um subconjunto da família ETS, o método de Holt-Winters 

é frequentemente destacado por sua aplicação histórica e específica no tratamento de dados 

sazonais. Este modelo é uma extensão direta do método de Holt (que já incorpora a tendência 

linear). O Holt-Winters adiciona um terceiro componente para modelar explicitamente a 

sazonalidade. Esta abordagem é ideal para séries temporais que apresentam padrões sazonais 

bem definidos e repetitivos, como vendas no varejo.   

 A arquitetura do modelo utiliza três equações de suavização distintas para atualizar, a 

cada período, o Nível (𝑁𝑡), a Tendência(T𝑡) e a Sazonalidade (S𝑡). O comportamento dessas 

equações é controlado por três parâmetros de suavização: α (alfa), associado ao nível; β (beta), 

associado à tendência; e γ (gama), associado à sazonalidade. Na prática, esses parâmetros são 

ajustados automaticamente por meio da minimização da soma dos erros quadrados entre os 

valores previstos e os observados. 

2.3.1.3 ARIMA/SARIMA 

 Uma abordagem alternativa aos modelos de suavização exponencial é a família de 

modelos Autorregressivos Integrados de Médias Móveis (ARIMA), também conhecidos como 

modelos de Box & Jenkins. Enquanto os modelos ETS assumem que não há correlação entre 

os resíduos, o ARIMA é projetado especificamente para explorar a autocorrelação, ou seja, a 

conexão entre as observações passadas e os valores futuros. A família ARIMA tem 

demonstrado desempenho satisfatório na modelagem de séries temporais com diferentes níveis 

de complexidade.   

 O modelo ARIMA(p,d,q) é definido por três componentes: p (Ordem Autorregressiva - 

AR), que utiliza uma regressão linear dos valores passados da própria série para prever o futuro; 

q (Ordem de Médias Móveis - MA), que utiliza uma regressão linear dos erros de previsão 

passados; e d (Ordem de Integração - I), que representa o número de diferenciações necessárias 

para tornar a série estacionária (isto é, com média e variância constantes ao longo do tempo).   

 O modelo ARIMA básico não lida nativamente com sazonalidade. Para isso, utiliza-se 

a extensão SARIMA (Seasonal ARIMA). O SARIMA adiciona componentes sazonais 

(P,D,Q)_m aos parâmetros não sazonais (p,d,q), onde m representa o período da sazonalidade 

(ex: 12 para dados mensais). A extensão mais poderosa desta família é o SARIMAX, que 

permite a inclusão de variáveis explicativas (exógenas) ao modelo SARIMA. Esta abordagem, 

também chamada de Regressão Dinâmica, é extremamente relevante para a engenharia de 
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produção, pois permite que a previsão de demanda seja influenciada não apenas pelo seu 

comportamento passado, mas também por drivers externos, como promoções, feriados, 

investimentos em marketing. 

2..32 Modelos de Machine Learning (ML) 

 Diferente dos modelos estatísticos que extrapolam padrões temporais, os modelos de 

ML aprendem uma função de mapeamento f(X) → 𝑦, onde y é a demanda a ser prevista e X é 

um conjunto de "features" (características). Na previsão de demanda, essas features são 

tipicamente criadas por engenharia de features (ex: lags da demanda, médias móveis, dia da 

semana, mês, etc.).   

2.3.2.1 Modelo Prophet 

 O modelo Prophet é uma biblioteca de código aberto desenvolvida pela equipe do 

Facebook (Meta), projetada especificamente para a previsão de dados de negócios. Ele é 

fundamentado em um modelo de decomposição aditivo (ou multiplicativo) expresso pela 

relação 𝑦𝑡= g𝑡+ s𝑡+ h𝑡+𝜖𝑡, onde 𝑔𝑡 representa a função de tendência, s𝑡 as mudanças periódicas 

(sazonalidade), h𝑡 o efeito de feriados ou eventos, 𝜖𝑡 o termo de erro. Uma de suas principais 

vantagens para a prática empresarial é a facilidade em incorporar um calendário de eventos 

customizados. Por exemplo, o modelo pode ser alimentado com datas de feriados ou eventos 

específicos do negócio, como promoções ou eventos esportivos, capturando o impacto na 

demanda antes e depois da ocorrência. 

2.3.2.2 Random Forest 

 O Random Forest (Floresta Aleatória) é um método de ensemble (conjunto) baseado em 

bagging (Bootstrap Aggregating). Esta técnica de Machine Learning opera construindo uma 

vasta coleção de árvores de decisão independentes durante a fase de treinamento. Para 

problemas de regressão, como a previsão de demanda, o resultado do modelo é obtido através 

da média das previsões de todas as árvores individuais que compõem a "floresta". A robustez 

do modelo advém de duas fontes principais de aleatoriedade: primeiro, cada árvore é treinada 

sobre uma amostra aleatória dos dados de treinamento (amostragem com reposição); segundo, 

ao construir cada nó da árvore, apenas um subconjunto aleatório de features (variáveis) é 

considerado para definir a divisão. Este processo duplo garante que as árvores sejam 

descorrelacionadas, o que reduz drasticamente a variância do modelo final e mitiga o risco de 

overfitting. 
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 Para ser aplicado a problemas de séries temporais, que não é sua função nativa, o 

Random Forest exige que o problema seja reestruturado como um problema de regressão 

supervisionada. Isso é feito através de um processo de "engenharia de features", onde o valor 

futuro da demanda (o alvo da previsão, y) é previsto com base em um conjunto de características 

(X) construídas a partir de dados históricos. Essas características tipicamente incluem valores 

defasados (lags) da própria demanda (ex: demanda de 7 dias atrás), estatísticas de janela móvel 

(ex: média ou desvio padrão dos últimos 30 dias) e variáveis exógenas, como dados de 

calendário (dia da semana, mês, feriado) ou indicadores de negócios (ex: dias de promoção). A 

principal vantagem do Random Forest é sua alta performance com pouca necessidade de 

sintonização de hiperparâmetros e sua robustez a outliers. Sua maior limitação na previsão de 

demanda é ser um modelo inerentemente não-extrapolativo: ele não consegue prever valores 

que estejam fora do intervalo de dados (mínimo e máximo) observado durante o treinamento, 

tornando-o inadequado para séries com forte tendência de crescimento ou queda. 

 

2.3.2.3 XGBoost (Extreme Gradient Boosting) 

 O XGBoost (Extreme Gradient Boosting) é outro modelo de ensemble baseado em 

árvores de decisão, mas que utiliza a técnica de boosting (reforço) em vez de bagging. O 

boosting funciona de forma sequencial: o modelo treina uma primeira árvore (geralmente 

"fraca"); em seguida, uma segunda árvore é treinada especificamente para corrigir os erros 

(resíduos) cometidos pela primeira. Este processo é repetido centenas ou milhares de vezes, 

com cada nova árvore focando nos erros residuais do conjunto anterior, permitindo que o 

modelo aprenda padrões extremamente complexos e não-lineares. O XGBoost é uma 

implementação específica e altamente otimizada do gradient boosting, que domina competições 

de ciência de dados (como o Kaggle) para dados tabulares. 

 Sua superioridade se deve a otimizações de sistema, como processamento paralelo, e 

avanços algorítmicos, notavelmente a inclusão de regularização (L1 - Lasso e L2 - Ridge) 

diretamente na função de perda. Essa regularização controla a complexidade das árvores e 

previne o overfitting, um problema comum em algoritmos de gradient boosting tradicionais. 

Tal como o Random Forest, sua aplicação na previsão de demanda exige uma robusta 

engenharia de features, transformando a série temporal em um conjunto de dados 

supervisionado com lags, médias móveis e variáveis exógenas. O XGBoost frequentemente 

apresenta acurácia superior ao Random Forest, mas é consideravelmente mais sensível à 
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sintonização de hiperparâmetros (como taxa de aprendizado, profundidade máxima das árvores 

e parâmetros de regularização). Similarmente ao RF, o XGBoost também é um modelo não-

extrapolativo, limitando sua capacidade de prever valores além do espectro de dados de 

treinamento. 

2.3.3 Modelos de Deep Learning (Redes Neurais) 

 Os modelos de Deep Learning (DL) são uma subárea do ML que utiliza redes neurais 

artificiais com múltiplas camadas (profundas) para aprender representações complexas dos 

dados. Para séries temporais, os modelos de DL são capazes de aprender padrões temporais 

diretamente dos dados, muitas vezes eliminando a necessidade de engenharia de features 

manual. 

2.3.3.1 N-BEATS (Neural Basis Expansion Analysis for Interpretable Time 

Series) 

 O N-BEATS é uma arquitetura de Deep Learning pura, que alcançou notoriedade ao 

demonstrar desempenho estado-da-arte na competição de previsão M4, superando métodos 

estatísticos e híbridos tradicionais. Diferente das LSTMs, o N-BEATS não utiliza células 

recorrentes ou camadas convolucionais; sua arquitetura é baseada inteiramente em camadas 

densas (fully connected layers), organizadas em uma estrutura de "stacks" (pilhas) e "blocos". 

O princípio fundamental do N-BEATS é a decomposição da série temporal, de forma análoga 

aos métodos clássicos. A rede processa a série histórica (lookback period) e a decompõe 

sequencialmente. Um primeiro stack modela um componente da série (como a tendência); o 

resíduo dessa modelagem (a série original menos a tendência prevista) é então passado para o 

próximo stack, que modela outro componente (como a sazonalidade). 

 Cada bloco dentro de um stack utiliza "funções de base" (basis expansion) para modelar 

esses componentes. Por exemplo, um bloco de tendência aprende coeficientes para um conjunto 

de polinômios, enquanto um bloco de sazonalidade aprende coeficientes para um conjunto de 

séries de Fourier. O modelo final agrega as previsões de todos os blocos. Uma das principais 

vantagens do N-BEATS sobre outras arquiteturas de Deep Learning é a sua interpretabilidade. 

Na sua versão "interpretável" (N-BEATS-I), os stacks são pré-configurados para modelar 

especificamente a tendência e a sazonalidade, permitindo que o analista visualize os 

componentes que o modelo aprendeu, superando o problema da "caixa-preta" comum em 

LSTMs. Embora nativamente univariado, seu desempenho é robusto e demonstra a capacidade 
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das redes neurais profundas de aprenderem e generalizarem padrões clássicos de séries 

temporais de forma eficaz. 

2.4 OIPT 

A Teoria do Processamento de Informação Organizacional (OIPT), como articulada 

fundamentalmente por Jay Galbraith (1974, 1977), oferece um referencial teórico robusto para 

entender como as empresas estruturam suas operações e porque selecionam determinadas 

tecnologias, incluindo os modelos de previsão de demanda. A premissa central da OIPT é que 

as organizações são sistemas abertos de processamento de informação que devem lidar com a 

incerteza para executar suas tarefas. O desempenho organizacional, portanto, é contingente à 

habilidade da empresa em projetar estruturas e mecanismos capazes de processar a quantidade 

de informação necessária para lidar com a incerteza imposta por suas tarefas e seu ambiente 

(Galbraith, 1977). 

O postulado central de Galbraith (1977) é que a incerteza, definida como a diferença (o 

gap) entre a quantidade de informação que uma organização precisa ter para tomar decisões e 

a quantidade de informação que ela efetivamente possui, é o principal impulsionador das 

escolhas de design organizacional. Quanto maior a incerteza da tarefa, maior a quantidade de 

informação que deve ser processada durante a execução da tarefa para que se atinja um nível 

de desempenho aceitável. No contexto específico da previsão de demanda, a incerteza não é 

uma abstração; ela se manifesta de formas concretas: alta volatilidade do mercado, ciclos de 

vida curtos de produtos, grande variedade de SKUs, forte impacto de variáveis exógenas (como 

promoções, ações de concorrentes, clima ou eventos macroeconômicos) e a complexa 

interdependência da cadeia de suprimentos (Tushman & Nadler, 1978). Um ambiente de alta 

incerteza, como um varejista de fast-fashion ou um e-commerce, gera uma necessidade de 

processamento de informação exponencialmente maior do que um fabricante de um produto 

commodity estável. 

 Diante dessa incerteza, a OIPT propõe que as organizações tenham duas 

estratégias básicas: (1) reduzir a necessidade de processamento de informação (criando recursos 

de folga, como estoques de segurança, ou criando tarefas autocontidas) ou (2) aumentar sua 

capacidade de processamento de informação (investindo em sistemas de informação verticais 

ou criando relações laterais) (Galbraith, 1974). A escolha de um modelo de previsão de 

demanda é, na visão da OIPT, uma decisão estratégica fundamental sobre o nível de capacidade 

de processamento de informação (IPC) que a empresa deseja instalar. 
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 Modelos estatísticos tradicionais, como médias móveis, suavização exponencial ou 

mesmo modelos ARIMA univariados, representam um nível de IPC relativamente baixo. Eles 

são projetados para processar um fluxo de informação limitado e estruturado: a própria série 

temporal histórica da demanda. Eles são eficazes precisamente em ambientes de baixa 

incerteza, onde o passado é um bom preditor do futuro e a informação necessária para a decisão 

é contida na própria série de dados. Tentar usar um modelo tão simples em um ambiente de alta 

incerteza falha porque o modelo não tem capacidade para processar a vasta quantidade de 

informação adicional (promoções, dados de mídias sociais, etc.) que a organização precisa para 

reduzir essa incerteza. 

 Por outro lado, o advento de modelos de Machine Learning (ML), como XGBoost e 

LightGBM, e a infraestrutura de Big Data que os suporta, representam um investimento direto 

e maciço no aumento da capacidade de processamento de informação. Esses modelos são, por 

definição, mecanismos de alta IPC. Eles são projetados especificamente para processar 

simultaneamente centenas ou milhares de fluxos de informação (variáveis exógenas), 

identificar padrões não-lineares complexos e extrair significado de dados não estruturados 

(como sentimentos em redes sociais), informação que os modelos tradicionais são incapazes de 

processar. Na linguagem de Galbraith, a implementação de um sistema de previsão baseado em 

ML é um investimento em um "sistema de informação vertical" sofisticado, projetado para 

canalizar um grande volume de dados do ambiente para os tomadores de decisão de forma 

utilizável. 

O sucesso, no entanto, não reside simplesmente em maximizar a capacidade de 

processamento. A OIPT é uma teoria de contingência, e seu conceito mais crucial é o fit (ajuste). 

O desempenho organizacional é alcançado quando há um alinhamento entre o nível de incerteza 

da tarefa e a capacidade de processamento de informação da organização (TUSHMAN; 

NADLER, 1978). O desalinhamento (misfit) é prejudicial. Se a incerteza da demanda é alta 

(mercado volátil, muitas promoções), mas a empresa utiliza um modelo de baixa capacidade de 

processamento de informação (como uma média móvel), existirá um gap de informação. A 

capacidade da empresa é menor que sua necessidade, resultando em previsões imprecisas, 

excesso de estoque e rupturas. Inversamente, se a incerteza é baixa (um produto estável, 

maduro), mas a empresa investe recursos excessivos em um complexo modelo de Deep 

Learning (alta capacidade de processamento de informação) que requer manutenção constante 

e vastos recursos computacionais, ela está sendo ineficiente. A capacidade excede a 
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necessidade, gerando custos desnecessários sem um ganho de performance correspondente 

(DAFT; LENGEL, 1986).  

Portanto, a OIPT oferece um framework teórico poderoso para guiar a seleção de 

modelos de previsão. A escolha não deve ser puramente técnica, mas sim uma decisão de design 

organizacional. Uma empresa que busca o fit deve primeiro diagnosticar a incerteza de seu 

ambiente de demanda. Para SKUs de baixa incerteza, modelos estatísticos de baixa capacidade 

de processamento de informação são adequados e eficientes. Para SKUs de alta incerteza, a 

organização deve investir em modelos de alta capacidade de processamento de informação 

(como ML) para processar a informação necessária para reduzir essa incerteza e permitir um 

planejamento eficaz. A OIPT, em suma, justifica porque não existe um "melhor modelo" 

universal, mas sim um "modelo adequado" que equilibra a complexidade do ambiente com a 

capacidade informacional da ferramenta.
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3.Metodologia 

3.1 Design da pesquisa 

 O trabalho adota como base metodológica o Design Science Research (DSR), ou 

Pesquisa em Ciência do Design, como mostrado na figura 1. Esta abordagem é 

fundamentalmente um paradigma de resolução de problemas, distinto das abordagens 

explicativas ou descritivas tradicionais. O objetivo central da DSR não é apenas descrever, 

explicar ou prever a realidade, mas sim alterá-la através da criação de "artefatos" novos e 

intencionais que endereçam problemas organizacionais práticos e relevantes (HEVNER, 

MARCH, PARK; RAM, 2004). Esses artefatos podem ser construtos, modelos, métodos ou 

instanciações de sistemas (MARCH; SMITH, 1995). A DSR busca, portanto, criar 

conhecimento útil, que é simultaneamente rigoroso em sua concepção e relevante em sua 

aplicação prática. 

 

Figura 1 – Pipeline metodológico.  Fonte: Autoria própria, 2025. 

 O processo da DSR é inerentemente iterativo, movendo-se entre a construção do 

artefato, sua avaliação e o refinamento do problema. Para estruturar esta pesquisa, foi adotado 

o modelo de processo de DSR proposto por Peffers, Tuunanen, Rothenberger e Chatterjee 

(2007), que consolida diversas abordagens em um processo nominal de seis etapas: 

Identificação do Problema e Motivação, Definição do objetivo, Desenvolvimento, Aplicação, 

Avaliação e Divulgação. Ao longo dessas seis etapas, foi utilizada uma abordagem multi-

métodos, com etapas qualitativas e quantitativas. Essa abordagem multi-métodos advém da 

natureza do problema, onde o desafio não é apenas matemático. Enquanto a parte quantitativa 

é responsável por processar dados, rodar modelos e aplicar métodos de decisão multicritério 
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para comparar os resultados, a parte qualitativa é fundamental para o entendimento do contexto 

do problema e definir objetivos. Sob a ótica da OIPT, o desempenho organizacional depende 

do ajuste (fit) entre a incerteza da tarefa e a capacidade de processamento de informação. A fase 

qualitativa da pesquisa foca no lado da demanda da informação (diagnosticar a incerteza e os 

requisitos), enquanto a fase quantitativa foca no lado da oferta (desenvolver e testar a 

capacidade de processamento dos algoritmos). 

3.1.1 Fase Qualitativa: Identificação do Problema e Motivação e Definição 

dos Objetivos da Solução 

 A etapa inicial do Design Science Research (DSR) consiste na definição do problema 

de pesquisa específico e na justificativa da solução proposta, garantindo que o artefato a ser 

desenvolvido gere uma oportunidade de melhoria genuína e traga benefícios claros à 

organização (PEFFERS et al., 2007). Para evitar uma definição puramente teórica e basear o 

problema no contexto organizacional real, esta etapa foi conduzida através de uma abordagem 

qualitativa exploratória, utilizando entrevistas não estruturadas com especialistas em 

planejamento de demanda (demand planners) da empresa em estudo. A escolha por entrevistas 

não estruturadas permitiu uma exploração aberta e profunda das percepções dos especialistas 

sobre os desafios, limitações e pontos de dor do processo de previsão de demanda vigente (YIN, 

2014). 

A análise dessas entrevistas revelou que a organização opera em um mercado 

caracterizado por alta volatilidade, com um portfólio de produtos diversificado (SKUs) com 

diferentes ciclos de vida e os métodos de previsão atuais demonstram limitações significativas 

em lidar com essa complexidade, evidenciando um gap entre a necessidade de informação para 

um planejamento acurado e a capacidade dos sistemas atuais de processar e modelar essa 

informação, um desalinhamento sob a ótica da Teoria do Processamento de Informação 

Organizacional (GALBRAITH, 1977). O problema central não reside na ausência de uma 

previsão, mas na sub-otimização da sua qualidade, o que gera ineficiências operacionais como 

estoques de segurança excessivos e potenciais rupturas. 

Uma vez identificado o problema, a metodologia DSR exige a definição de objetivos 

tangíveis e mensuráveis para a solução, permitindo que o artefato seja rigorosamente avaliado 

nas etapas posteriores (PEFFERS et al., 2007). Com base nas entrevistas, foram identificados 

os dois indicadores-chave de desempenho (KPIs) utilizados internamente para julgar a eficácia 

do planejamento: Forecast Accuracy (Acurácia da Previsão) e Forecast Bias (Viés da 

Previsão). O primeiro objetivo, aumentar a acurácia, é central para a eficiência operacional, 
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pois mede o quão próximas as previsões estão dos valores de demanda reais (HYNDMAN; 

ATHANASOPOULOS, 2018). A baixa acurácia introduz ruído no planejamento, forçando a 

organização a proteger-se com estoques inflados ou resultando em perda de vendas e 

deterioração do nível de serviço (CHOPRA; MEINDL, 2016). 

O segundo objetivo, diminuir o viés da previsão, é igualmente importante, pois a 

acurácia isolada é insuficiente se o erro não for aleatório. O viés mede a tendência sistemática 

de um modelo em superestimar ou subestimar consistentemente a demanda real (HYNDMAN; 

ATHANASOPOULOS, 2018). Um viés consistente de sub-previsão leva a rupturas de estoque 

e perda de receita, enquanto o viés de sobre-previsão resulta em acúmulo de estoque, custos de 

armazenagem e risco de obsolescência (GARDNER, 2006). Portanto, o artefato deve ter como 

meta gerar previsões com um viés estatisticamente próximo de zero, indicando que os erros são 

aleatórios e não sistemáticos. 

3.1.2 Fase Quantitativa: Modelagem Experimental 

Após o diagnóstico qualitativo e a definição dos objetivos, a pesquisa avançou para as 

etapas de "Design e Desenvolvimento" e "Demonstração", conforme preconizado pelo ciclo 

metodológico do Design Science Research (PEFFERS et al., 2007). Esta fase adotou uma 

abordagem quantitativa e experimental, com o objetivo de materializar o artefato computacional 

proposto: um Sistema de Apoio à Decisão (SAD) multicritério capaz de operacionalizar e 

comparar diferentes modelos de previsão. 

A estratégia central desta etapa consistiu na estruturação de um experimento 

comparativo robusto entre diferentes modelos. Inspirada nas metodologias aplicadas nas 

renomadas competições internacionais M4 e M5, esta abordagem rejeita a premissa de que 

existiria um algoritmo universalmente ótimo para todas as séries temporais (MAKRIDAKIS; 

SPILIOTIS; ASSIMAKOPOULOS, 2020). Em vez disso, o artefato foi construído para testar 

empiricamente o desempenho relativo de diferentes famílias de algoritmos, abrangendo desde 

métodos estatísticos clássicos, como a Suavização Exponencial, até técnicas avançadas de 

Machine Learning e Deep Learning, sob as mesmas condições de contorno e utilizando dados 

reais da organização. 

O desenvolvimento do artefato seguiu um fluxo lógico estruturado em três estágios 

principais: Pré processamento, processamento e pós processamento, contando com uma 

avaliação multicritério, operacionalizando o conceito teórico de fit organizacional proposto pela 

Teoria do Processamento de Informação Organizacional (OIPT). Diferente de abordagens 
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tradicionais que observam exclusivamente a minimização do erro, o design desta pesquisa 

incorporou variáveis de eficiência computacional (tempo de processamento) e estabilidade 

(incerteza), reconhecendo que a complexidade do modelo deve ser proporcional à 

complexidade da tarefa (TUSHMAN; NADLER, 1978). 

 

3.2 Métodos de Coleta de Dados 

A realização de uma pesquisa fundamentada no Design Science Research (DSR) exige 

uma estratégia de coleta de dados robusta, capaz de sustentar tanto a relevância prática do 

artefato quanto o rigor científico da sua construção. A validade de um Sistema de Apoio à 

Decisão (SAD) não reside apenas na sofisticação dos seus algoritmos, mas na qualidade e na 

representatividade das informações que o alimentam. Para compreender a complexidade do 

fenômeno estudado, esta pesquisa adotou uma abordagem de triangulação de dados (FLICK, 

2009), combinando fontes primárias qualitativas (entrevistas) com dados secundários 

quantitativos (extração de ERP), além de uma revisão da literatura para compreender o estado 

da arte. Esta seção detalha os procedimentos, justificativas e protocolos adotados para cada 

modalidade de coleta. 

 

3.2.1 Entrevistas Não Estruturadas com Especialistas 

Na fase inicial de diagnóstico e identificação do problema (Etapa 1 do DSR), a coleta 

de dados teve como objetivo capturar o conhecimento tácito, as nuances processuais e as 

percepções subjetivas sobre os desafios do planejamento de demanda. O método selecionado 

para esta investigação foi a realização de entrevistas não estruturadas com especialistas da 

organização. 

A escolha por entrevistas não estruturadas, em detrimento de questionários fechados ou 

entrevistas semiestruturadas rígidas, justifica-se pela natureza exploratória desta fase da 

pesquisa. Em estudos de caso em que as fronteiras entre o fenômeno e o contexto não são 

claramente evidentes, a flexibilidade é crucial (YIN, 2014). Questionários estruturados 

pressupõem que o pesquisador já conhece as variáveis relevantes a serem testadas, no entanto, 

no contexto complexo de Supply Chain, as causas raízes da ineficiência muitas vezes não são 

quantificáveis em um primeiro momento. A entrevista não estruturada permite que o 

entrevistado estabeleça a linha de raciocínio, oferecendo uma visão mais holística e menos 

enviesada pelas premissas do pesquisador (MARCONI; LAKATOS, 2003). Este método é ideal 
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para a obtenção de dados de natureza profunda, permitindo captar não apenas os fatos, mas o 

significado que os sujeitos atribuem a eles, essencial para diagnosticar o desalinhamento 

proposto pela Teoria do Processamento de Informação Organizacional. 

Foram selecionados especialistas que atuam na linha de frente do processo: planejadores 

de demanda (demand planners), responsáveis pela execução técnica da previsão e pelas 

interfaces com as áreas comercial e financeira. O processo de coleta ocorreu em ambiente 

reservado, garantindo a confidencialidade necessária para que os participantes expusessem 

críticas ao processo vigente. 

 

3.2.2 Dados Secundários: Extração e Tratamento de Dados do Sistema ERP 

Para as fases de "Design e Desenvolvimento" e "Aplicação" (Etapas 3 e 4 do DSR), a 

pesquisa exigiu dados quantitativos para o treinamento e validação dos modelos preditivos. A 

fonte utilizada foi a base de dados transacional do Sistema Integrado de Gestão (ERP - 

Enterprise Resource Planning) da organização parceira. Por questões de confidencialidade, as 

demandas foram multiplicadas por um número inteiro para a descaracterização de informação 

sensível. 

A utilização de dados secundários extraídos diretamente de sistemas corporativos 

confere à pesquisa o que denominam de validade ecológica (HAIR et al., 2009). Ao contrário 

de dados simulados ou sintéticos, frequentemente usados em pesquisas teóricas de estatística, 

os dados de ERP contêm "ruídos" reais, como sazonalidades irregulares, tendências de 

mercado, efeitos de promoções e o impacto de intervenções humanas, que desafiam a robustez 

dos algoritmos. No contexto da Indústria 4.0 e do Big Data Analytics, a capacidade de extrair 

valor de grandes volumes de dados históricos é uma competência central (HOFMANN; 

RUTSCHMANN, 2018). Os dados coletados referem-se ao histórico de vendas sell-in (vendas 

da indústria para o varejista). A escolha pelo sell-in justifica-se pela posição da empresa na 

cadeia de suprimentos: como fabricante, seu planejamento de produção e estoque deve 

responder primariamente aos pedidos colocados pelos seus clientes diretos (distribuidores e 

varejistas), embora estes sejam derivados da demanda final (sell-out). 

O dataset abrange um horizonte temporal de mais de 56 meses (dados a partir de 01/2021). 

Este período foi definido para garantir a captura de, no mínimo, dois a três ciclos sazonais 

completos, requisito fundamental para o treinamento eficaz de modelos como SARIMA e Holt-

Winters, que dependem da identificação de padrões repetitivos (HYNDMAN; 
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ATHANASOPOULOS, 2018). Em termos de granularidade, os dados foram coletados no nível 

de SKU (Stock Keeping Unit) e mensalmente. A partir dele, foram coletadas as seguintes 

variáveis: 

• Variável Alvo (Target): Volume de vendas unitárias faturadas. 

• Variáveis Temporais: Data do faturamento, permitindo a extração de features derivadas 

como mês, trimestre e ano. 

• Atributos Categóricos: Hierarquia do produto, incluindo Marca, Família e Subfamília. 

Metodologicamente, optou-se por realizar a modelagem preditiva no nível de agregação 

de "Subfamília". Esta decisão fundamenta-se na necessidade de mitigar os ruídos 

causados por rupturas de estoque pontuais que afetam SKUs individuais para previsões 

táticas de médio prazo (KOLASSA; SIEMSEN , 2016). 

Durante a extração, foram aplicados filtros para excluir itens descontinuados ou 

lançamentos muito recentes com histórico inferior a 12 meses, visto que a escassez de dados 

históricos inviabilizaria o treinamento supervisionado de algoritmos de Machine Learning 

(BISHOP, 2006). A base de dados resultante da extração do ERP constituiu a matéria-prima 

empírica para a "competição de modelos". 

3.3 Métodos de análise de dados 

A análise de dados foi estruturada em três estágios fundamentais: (1) Pré-processamento 

e Engenharia de Atributos, visando adequar os dados brutos aos requisitos dos algoritmos; (2) 

Processamento e Modelagem, onde ocorre o treinamento e validação cruzada; e (3) Pós-

processamento e Decisão Multicritério, focado na avaliação de desempenho e seleção do 

modelo ótimo. 

3.3.1 Pré-processamento 

A etapa de pré-processamento não se limita à limpeza de dados, mas inclui um 

diagnóstico estatístico profundo para garantir que as séries temporais atendam aos pressupostos 

teóricos dos modelos a serem treinados. 

3.3.1.1 Diagnóstico de Distribuição e Testes de Normalidade 

A análise de normalidade é uma etapa diagnóstica fundamental. O design do artefato 

não assume que o usuário saiba interpretar valores brutos de Assimetria e Curtose; em vez disso, 

executa um painel de testes estatísticos formais. Muitas técnicas de modelagem estatística e 

econométrica, bem como alguns algoritmos de machine learning, assumem que os dados ou 



25 

 

seus resíduos seguem uma distribuição Gaussiana. A violação dessa premissa pode invalidar os 

resultados do modelo ou reduzir sua performance preditiva. 

Além disso, a premissa de que os erros de previsão (ou a demanda) seguem uma distribuição 

normal é crucial para a construção de intervalos de confiança confiáveis. Para uma avaliação 

rigorosa, utiliza-se um nível de significância 𝛼 = 0,05. As hipóteses formais são: 

• 𝐻0: A amostra provém de uma distribuição normal. 

• 𝐻1: A amostra não provém de uma distribuição normal. 

A rejeição de 𝐻0 ocorre se o p-valor for inferior a 0,05. Para mitigar a sensibilidade variada 

dos testes a desvios específicos (assimetria vs. caudas pesadas), adota-se um conjunto de três 

testes complementares (THADEWALD; BÜNING, 2007): 

• Teste de Shapiro-Wilk: É o método primário devido à sua potência estatística superior 

para amostras de tamanho pequeno a moderado (N < 5000), o que é comum em séries 

temporais de S&OP (SHAPIRO; WILK, 1965). Estudos confirmam sua eficácia sob 

essas restrições (RAZALI; WAH, 2011)5. A estatística W avalia a correlação entre 

dados ordenados e valores esperados: 

𝑊 =
(∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 )

2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

 

• Teste de Jarque-Bera: Teste assintótico que se baseia nos momentos da distribuição, 

verificando se a assimetria e a curtose da amostra se alinham aos de uma distribuição 

normal (JARQUE; BERA, 1987). Este teste é particularmente eficaz na identificação 

de "caudas pesadas, que frequentemente enviesam estimadores de Mínimos Quadrados 

Ordinários (BROOKS, 2019). 

• Teste de Kolmogorov-Smirnov (K-S): Uma prova de aderência não paramétrica que 

mede a distância máxima (D) entre a Função de Distribuição Acumulada (FDA) 

empírica e a FDA teórica (KOLMOGOROV, 1933; MASSEY, 1951). Sua inclusão 

justifica-se pela capacidade de avaliar a aderência global, sendo menos sensível a 

outliers extremos do que o Jarque-Bera (CHAKRAVARTI et al., 1967). 

O artefato traduz a rejeição de 𝐻0 em ação prática, sugerindo transformações para a 

estabilização da variância. Esta etapa segue o trabalho de Box e Cox (1964), recomendando 

transformações como a logarítmica ou a família de transformações de potência de Box-Cox. 

Complementarmente, a descrição contextualiza o SKU analisado através do Coeficiente de 

Variação (CV%), métrica crucial para a classificação da previsibilidade de demanda (SILVER 

et al., 2016). 
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3.3.1.2 Verificação de Estacionariedade (Raiz Unitária) 

Após a análise distributiva, prossegue-se para a verificação da estacionariedade. Uma série 

é classificada como estacionária se sua média, variância e autocovariância são constantes no 

tempo (HAMILTON, 1994). A modelagem de séries não estacionárias sem o devido tratamento 

pode resultar em "regressões espúrias", onde altos valores de 𝑅2 mascaram a falta de relação 

causal real entre as variáveis (GRANGER; NEWBOLD, 1974). 

Reconhecendo o baixo poder estatístico dos testes de raiz unitária em amostras finitas, esta 

metodologia adota a estratégia de triangulação confirmatória. (Enders, 2014). O diagnóstico 

final emerge do consenso entre três testes com estruturas distintas: 

1. Teste Augmented Dickey-Fuller (ADF): Testa a presença de uma raiz unitária, onde 

a hipótese nula (𝐻0) é de que a série é não estacionária (DICKEY; FULLER, 1979). A 

formulação utiliza termos defasados para corrigir a autocorrelação serial. 

Δ𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + ∑ 𝛿𝑖Δ𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 

 

2. Teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS): Para aumentar a confiabilidade, 

emprega-se o teste KPSS, que inverte a lógica das hipóteses, com a hipótese nula sendo 

que a série é estacionária (KWIATKOWSKI et al., 1992). É essencial para distinguir 

séries puramente não estacionárias. 

3. Teste Phillips-Perron (PP): Aplicado como validador robusto (PHILLIPS; PERRON, 

1988). Diferente do ADF, o teste PP aplica uma correção não paramétrica baseada no 

estimador de variância de longo prazo de Newey e West (1987), tornando-o resiliente a 

formas gerais de heterocedasticidade nos erros. 

Se os testes indicarem não estacionariedade, a metodologia prescreve a aplicação de 

diferenciação sucessiva (Δ𝑑) até que a série se torne estacionária, um pré-requisito para a 

calibração de modelos ARIMA (BOX; JENKINS; REINSEL, 2015). 

 

3.3.1.3 Decomposição Estrutural e Sazonalidade 

A metodologia avança para a decomposição estrutural como ferramenta exploratória 

essencial (HYNDMAN; ATHANASOPOULOS, 2018). O objetivo é isolar três componentes 

latentes da série 𝑌𝑡: Tendência (𝑇𝑡), Sazonalidade (𝑆𝑡) e Resíduo (𝑅𝑡). A metodologia clássica 
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define a relação entre os componentes (MAKRIDAKIS; WHEELWRIGHT; HYNDMAN, 

1998): 

• Modelo Aditivo: Usado quando a amplitude da sazonalidade e do ruído é constante. 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 

• Modelo Multiplicativo: Comum em vendas com heterocedasticidade, onde a 

magnitude sazonal cresce com a tendência. 

𝑌𝑡 = 𝑇𝑡 × 𝑆𝑡 × 𝑅𝑡 

A estimação é feita pelo método de médias móveis (MACAULAY, 1930). Para quantificar 

a presença de padrões cíclicos, utiliza-se a métrica "Força da Sazonalidade" ($F_S$), conforme 

proposto por Wang, Smith e Hyndman (2006). Ela mede a proporção da variância (após 

remoção da tendência) explicada pela sazonalidade: 

𝐹𝑆 = max (0,1 −
Var(𝑅𝑡)

Var(𝑆𝑡 + 𝑅𝑡)
) 

O valor de 𝐹𝑆 (entre 0 e 1) serve como um gatilho de decisão. Se 𝐹𝑆 exceder um limiar 

(ex: 0.5), o sistema recomenda a transição para modelos preditivos com componente sazonal 

explícito, como SARIMA ou Holt-Winters. 

3.3.1.4 Tratamento de Outliers e Estabilização da Série 

A etapa de pré-processamento é um imperativo metodológico para assegurar a validade 

dos modelos preditivos. Dados brutos de demanda frequentemente apresentam anomalias, 

heterocedasticidade e não-estacionariedade que, se não tratadas, podem enviesar severamente 

a estimação de parâmetros (HAIR et al., 2009). Este módulo estrutura-se em três etapas 

sequenciais: detecção e tratamento de valores atípicos, transformações para estabilização e 

padronização de escala. 

3.3.1.4.1 Detecção e Tratamento de Outliers 

Outliers são observações que divergem significativamente do padrão global da série 

(HAWKINS, 1980). Em modelos baseados em Mínimos Quadrados Ordinários, tais pontos 

podem distorcer a regressão e violar pressupostos de normalidade. A metodologia emprega três 

abordagens complementares para sua detecção: 

1. Z-Score: Método paramétrico que padroniza os dados assumindo uma distribuição 

Gaussiana. O escore 𝑧𝑖 quantifica a distância da observação à média em unidades de 

desvio padrão: 
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𝑧𝑖 =
𝑦𝑖 − 𝑦̅

𝑠
 

Adota-se o limiar |𝑧𝑖 | > 3 para classificação de outliers extremos (HAIR et al., 2009). A 

limitação deste método reside na sua sensibilidade: outliers extremos podem inflar o desvio 

padrão amostral (s), mascarando a própria detecção. 

2. Intervalo Interquartil (IQR): Para contornar a falta de robustez do Z-Score, utiliza-se o 

método não-paramétrico do IQR, fundamentado na análise exploratória de Tukey 

(1977). Baseado em estatísticas de ordem (Mediana, 𝑄1, 𝑄3), este método é resiliente a 

valores extremos. Os limites de detecção são definidos como: 

Limites = [𝑄1 − 3 ⋅ IQR,  𝑄3 + 3 ⋅ IQR] 

Onde IQR = 𝑄3- 𝑄1. Pontos fora destes limites são considerados anômalos. 

3. Isolation Forest (Floresta de Isolamento): Como abordagem de Machine Learning 

não supervisionada, aplica-se o Isolation Forest (LIU; TING; ZHOU, 2008). O 

algoritmo isola anomalias baseando-se no princípio de que são "poucas e diferentes". 

Ao particionar os dados aleatoriamente em árvores de decisão, outliers tendem a ficar 

isolados mais próximos da raiz (menor caminho médio), dispensando pressupostos 

sobre a distribuição dos dados. 

Após a detecção, o sistema prioriza a Winsorização (GHOSH; VOGT, 2012). Ao contrário 

da remoção (que cria lacunas temporais), esta técnica limita os valores extremos aos quantis de 

5% e 95%, preservando a estrutura temporal da série enquanto reduz a influência de eventos 

atípicos. 

 

3.3.1.4.2 Transformações para Estabilização de Variância 

Esta etapa visa adequar a estrutura estocástica da série temporal aos pressupostos teóricos 

dos modelos estatísticos, corrigindo fenômenos de heterocedasticidade onde a dispersão dos 

dados aumenta proporcionalmente ao nível da demanda média. 

• Transformação Logarítmica: É a abordagem mais direta para linearizar tendências 

exponenciais e converter relações multiplicativas em aditivas. O artefato implementa a 

variante "Log-plus-one" para lidar com demandas nulas: 

𝑦𝑡
′ = ln(𝑦𝑡 + 1) 

• Transformação de Box-Cox: Para casos em que a transformação logarítmica é 

insuficiente, utiliza-se a transformação paramétrica de Box e Cox (1964). O método 
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estima, via Máxima Verossimilhança, um parâmetro $\lambda$ ideal que maximiza a 

normalidade: 

𝑦𝑡
(𝜆)

=
𝑦𝑡

𝜆 − 1

𝜆
 (𝜆 ≠ 0),   𝑦𝑡

(0)
= ln(𝑦𝑡) 

3.3.1.5 Indução de Estacionariedade (Diferenciação) 

A estacionariedade é um pré-requisito estrito para a família ARIMA. Baseando-se no 

diagnóstico dos testes de raiz unitária (ADF/KPSS), a metodologia aplica operadores de 

diferença (Delta) conforme preconizado por Box e Jenkins (2015): 

• Diferenciação Simples (d): Remove tendências estocásticas e determinísticas lineares: 

Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

• Diferenciação Sazonal (D): Remove a correlação serial oriunda de ciclos repetitivos, 

subtraindo a observação atual daquela ocorrida no mesmo período do ciclo anterior (ex: 

s=12): 

Δ𝑠𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑠 

 

3.3.1.6 Padronização de Escala para Machine Learning 

Diferentemente da etapa anterior, esta subseção foca na eficiência computacional e na 

convergência numérica dos algoritmos de Aprendizado de Máquina. Modelos baseados em 

otimização por gradiente (como Redes Neurais) são sensíveis à magnitude das variáveis. O 

artefato oferece três técnicas: 

1. Padronização (StandardScaler): Centraliza os dados na média zero e ajusta a variância 

para a unidade (BISHOP, 2006): 

𝑦′ =
𝑦 − 𝜇

𝜎
 

2. Normalização Min-Max (MinMaxScaler): Comprime os dados para o intervalo [0, 1]. 

É mandatória para o treinamento de Deep Learning (LSTMs, N-BEATS) para evitar a 

saturação das funções de ativação e o problema do "desaparecimento do gradiente" 

(GOODFELLOW; BENGIO; COURVILLE, 2016): 

𝑦′ =
𝑦 − min(𝑦)

max(𝑦) − min(𝑦)
 

3. Escalonamento Robusto (RobustScaler): Utiliza a Mediana e o Intervalo Interquartil 

(IQR) para centralizar os dados, garantindo que a presença de anomalias não distorça a 

escala da maioria dos dados em séries ruidosas: 
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𝑦′ =
𝑦 − Mediana

IQR
 

3.3.2 Processamento 

Após o pré-processamento, a etapa de processamento de dados foca na transformação 

das séries temporais em estruturas adequadas para o treinamento de algoritmos 

supervisionados. Enquanto os modelos estatísticos clássicos (como SARIMA e ETS) possuem 

uma estrutura matemática desenhada explicitamente para lidar com a dependência temporal, os 

algoritmos de Machine Learning (ML), como Random Forest e Gradient Boosting, operam sob 

o pressuposto de independência entre as observações. 

Para aplicar estes algoritmos eficazes à previsão de demanda, é necessário realizar uma 

transformação metodológica nos dados, convertendo a série temporal 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑇} em 

uma matriz de regressão supervisionada. Este processo, denominado Engenharia de Atributos 

(Feature Engineering), tem como objetivo "desconstruir" a informação temporal (tendência, 

sazonalidade e autocorrelação) em um vetor de características explicativas 𝑋𝑡, permitindo que 

o modelo aprenda uma função de mapeamento 𝑓 tal que 𝑦𝑡̂ = 𝑓(𝑋𝑡). 

A metodologia adotada baseia-se na estratégia de Janela Deslizante (Sliding Window), 

conforme formalizado por Bontempi, Ben Taieb e Le Borgne (2013). O vetor de features 𝑋𝑡 

construído é composto por três categorias de variáveis: defasagens (Lags), estatísticas móveis 

e componentes calendários. 

 

3.2.2.1 Estrutura de Autocorrelação: Variáveis de Defasagem (Lags) 

As variáveis mais críticas para a previsão de séries temporais com ML são os lags, que 

representam os valores passados da série alvo. Eles permitem que o modelo capture a estrutura 

de autocorrelação, ou a "memória" do processo. O método gera um conjunto de defasagens, 

com cada lag definido como 𝑥𝑡,𝑙𝑎𝑔_𝑘 = 𝑦𝑡−𝑘: 

• Lags Curtos (𝑡 − 1, 𝑡 − 2, 𝑡 − 3): Capturam a dependência imediata e a persistência 

de curto prazo (o nível recente da demanda). 

• Lag Semestral (𝑡 − 6): Captura ciclos de médio prazo. 

• Lag Sazonal (𝑡 − 12): Fundamental para capturar a sazonalidade anual. O valor de 

vendas do mesmo mês no ano anterior é frequentemente o preditor isolado mais forte 

no varejo e indústria. 
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3.2.2.2 Tendência Local: Estatísticas Móveis (Rolling Window) 

Para mitigar o ruído aleatório de observações individuais e fornecer ao modelo uma 

visão da tendência local, calcula-se a Média Móvel simples dos últimos 3 períodos (𝑚𝑎3). É 

crucial notar a decisão metodológica de design para evitar o vazamento de dados (data leakage): 

a média móvel é calculada sobre os valores defasados (shift), garantindo que a média em t utilize 

apenas informações disponíveis até t-1. 

A formulação matemática é dada por: 

𝑥𝑡,𝑚𝑎3
=

1

3
∑ 𝑦𝑡−𝑖

3

𝑖=1

 

3.2.2.3 Sazonalidade Determinística: Componentes Calendários 

Enquanto os lags capturam a sazonalidade estocástica (baseada nos valores passados), os 

modelos de ML beneficiam-se explicitamente de "dicas" determinísticas sobre a posição 

temporal da observação. O método extrai três componentes da data: 

• Mês: Permite ao modelo aprender padrões sazonais fixos (ex: aumento de vendas em 

novembro). 

• Trimestre: Captura padrões sazonais agregados. 

• Ano: Serve como uma proxy para a tendência global de longo prazo (ex: crescimento 

anual do mercado). 

3.2.2.4 Prevenção de Vazamento de Dados (Data Leakage) 

Uma preocupação central na metodologia é garantir que nenhuma informação futura seja 

utilizada para prever o passado. Para assegurar a integridade do experimento, foram 

implementadas as seguintes salvaguardas: 

1. Concatenação Temporal: Os dados de treino e teste são concatenados 

temporariamente para a geração de features (evitando perda de dados na fronteira da 

divisão), mas a ordem cronológica é estritamente mantida via ordenação por data. 

2. Divisão Determinística: A separação final entre as matrizes de treino (𝑋𝑡𝑟e𝑖𝑛o, 𝑦𝑡𝑟eino) 

e teste (𝑋𝑡este, 𝑦𝑡este)é feita exclusivamente baseada na data de corte, correspondente à 

última observação do conjunto de treino original. 

3. Tratamento de NaNs na Origem: A criação de lags gera valores nulos (NaNs) nas 

primeiras observações da série (ex: o 𝑙𝑎𝑔12 não existe para os primeiros 12 meses). 
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Estas linhas são removidas antes do treinamento, pois modelos como Random Forest não 

lidam nativamente com valores faltantes na entrada. 

Ao final deste processo, o problema de previsão de série temporal é transformado em um 

problema de aprendizado supervisionado padrão, onde o modelo aprende a função 𝑓: 

𝑦𝑡̂ = 𝑓(𝑦𝑡−1, … , 𝑦𝑡−12, 𝑦𝑡−1…𝑡−3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑀𝑡, 𝑄𝑡, 𝑌𝑡) 

Esta engenharia de atributos permite que algoritmos não-lineares e não-paramétricos, 

como árvores de decisão, detectem interações complexas (por exemplo, a correlação entre um 

mês específico e uma tendência de média móvel ascendente) que modelos lineares clássicos 

teriam dificuldade em capturar sem especificações manuais complexas. 

3.2.2.5 Estratégia de Validação Temporal 

A validação de modelos preditivos em séries temporais impõe desafios metodológicos 

distintos daqueles encontrados na aprendizagem supervisionada padrão. Em dados tabulares 

(cross-section), assume-se que as observações são independentes e identicamente distribuídas, 

o que permite o uso de embaralhamento aleatório (shuffling) para validação cruzada. No 

entanto, em séries temporais, a dependência temporal e a ordem cronológica são intrínsecas ao 

problema. O desrespeito a essa ordem resulta em vazamento de dados (data leakage), uma falha 

metodológica grave onde o modelo é treinado com informações futuras para prever o passado, 

gerando métricas de acurácia artificialmente infladas e inúteis para a prática (HYNDMAN; 

ATHANASOPOULOS, 2018). 

Para garantir a robustez das previsões e a capacidade de generalização dos modelos, o 

artefato implementa uma Estratégia de Validação em Dois Níveis: 

1. Avaliação Final via Hold-Out (Out-of-Sample): 

Este nível simula o cenário real de uso do sistema de S&OP. O usuário define, através da 

interface, um percentual p (tipicamente 20%) dos dados mais recentes para compor o conjunto 

de teste. A série histórica 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑇} é dividida deterministicamente em um ponto de 

corte 𝑇𝑐𝑢𝑡 = ⌊𝑇 × (1 − 𝑝)⌋ em: 

• Conjunto de Treinamento: utilizado exclusivamente para o ajuste dos 

parâmetros e treinamento dos modelos. 

• Conjunto de Teste: utilizado exclusivamente para a avaliação final das métricas 

de desempenho (MAPE, RMSE). 
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Esta abordagem garante que as métricas reportadas no Dashboard reflitam a capacidade real 

do modelo de prever um futuro desconhecido ("Out-of-Sample"), sem nunca ter acessado esses 

dados durante a fase de ajuste. 

2. Otimização via Validação Cruzada Temporal (Walk-Forward): 

Para os modelos de Machine Learning (Random Forest, XGBoost, LightGBM) e Deep 

Learning (N-BEATS), a seleção dos hiperparâmetros (ex: profundidade da árvore, taxa de 

aprendizado) não pode ser realizada no conjunto de teste final, sob pena de overfitting 

específico a esse conjunto. O artefato implementa a técnica de Validação Cruzada em Janela 

Deslizante (Rolling Origin ou Walk-Forward Validation), utilizando a classe TimeSeriesSplit 

da biblioteca scikit-learn. Ao contrário do K-Fold tradicional, esta técnica cria múltiplas 

divisões (folds) de treino e validação que respeitam estritamente a ordem temporal: 

o Fold 1: Treino [𝑡0, 𝑡𝑘], Validação [𝑡𝑘+1, 𝑡𝑘+ℎ] 

o Fold 2: Treino [𝑡0, 𝑡𝑘+ℎ], Validação [𝑡h+1, 𝑡2h] 

o Fold n: Treino [𝑡0, 𝑡𝑇−ℎ], Validação [𝑡𝑇−ℎ+1, 𝑡𝑇] 

Conforme defendido por Bergmeir e Benítez (2012), esta abordagem é estatisticamente 

superior para séries temporais, pois avalia a estabilidade do modelo em diferentes pontos do 

tempo e sob diferentes contextos de tendência e sazonalidade. O artefato calcula a métrica de 

erro média através desses folds para guiar a escolha definitiva dos hiper parâmetros 

3.2.2.6 Otimização de Hiperparâmetros (HPT) 

A busca pela combinação ótima de hiperparâmetros (𝜆∗) que minimiza a função de 

perda (𝐿̂) é automatizada pelo artefato. A estratégia de otimização varia conforme a natureza 

do algoritmo, garantindo eficiência computacional e precisão estatística: 

A. Modelos Estatísticos (SARIMA, ETS): Critério de Informação 

Para modelos clássicos, a otimização não utiliza validação cruzada computacionalmente 

intensiva, mas sim a minimização de Critérios de Informação, especificamente o AIC (Akaike 

Information Criterion): 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿̂) 

Onde k é o número de parâmetros estimados e (𝐿̂) é o valor máximo da função de 

verossimilhança. O artefato utiliza o algoritmo auto_arima (HYNDMAN; KHANDAKAR, 

2008) para buscar a combinação (p,d,q)(P,D,Q)_m$ que resulta no menor AIC, penalizando 

modelos excessivamente complexos para evitar overfitting. 

B. Modelos de ML/DL: Busca Estocástica e Bayesiana 
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Para modelos de aprendizado de máquina, onde o espaço de busca é vasto e a função 

objetivo é não-convexa, o artefato oferece duas abordagens avançadas, configuráveis pelo 

usuário: 

• Random Search (RandomizedSearchCV): Em vez de testar exaustivamente todas as 

combinações (Grid Search), o algoritmo amostra aleatoriamente N configurações do 

espaço de parâmetros. A busca aleatória é empiricamente mais eficiente que o Grid 

Search para encontrar ótimos globais, pois explora melhor as dimensões mais 

importantes dos hiperparâmetros (BERGSTRA; BENGIO ,2012). 

• Otimização Bayesiana (BayesSearchCV): Esta é a abordagem estado-da-arte 

implementada no sistema. Ela trata a otimização como um problema de "caixa-preta", 

construindo um modelo probabilístico substituto da função objetivo. A cada iteração, o 

algoritmo utiliza os resultados passados para decidir "inteligentemente" qual conjunto 

de parâmetros testar a seguir, equilibrando a exploração de áreas incertas com a 

exploração de áreas promissoras (SNOEK; LAROCHELLE; ADAMS, 2012). 

A função objetivo utilizada na otimização (a métrica a ser minimizada) é selecionada pelo 

usuário, permitindo alinhar o treinamento com o objetivo de negócio (ex: minimizar MAPE 

para penalizar erros relativos ou RMSE para penalizar grandes desvios). 

3.3.1. Pós processamento e Estruturação do Problema de Decisão 

Multicritério (MCDM) 

Após o processamento de dados, a etapa de pós processamento consiste no cálculo de 

diferentes métricas relacionadadas ao desempenho do modelo, como MAPE, MSE, Tempo 

computacional gasto e na análise de trade-off e seleção do modelo mais adequado para cada 

SKU. Tradicionalmente, a literatura de forecasting foca na minimização do erro (acurácia) 

como critério único de seleção. No entanto, sob a ótica da OIPT, a escolha de um sistema de 

previsão é uma decisão organizacional que deve equilibrar a necessidade de redução de 

incerteza com a capacidade de processamento de informação disponível. 

A utilização de um único critério (como o MAPE) ignora restrições operacionais 

críticas, como o tempo de execução do algoritmo (lead time da informação) e a estabilidade da 

previsão. Para lidar com essa complexidade multidimensional, esta pesquisa adota uma 

abordagem de MCDM. A aplicação de métodos MCDM e Machine Learning de forma 

combinada permite integrar métricas de performance técnica com requisitos de negócio, 

oferecendo uma solução de compromisso mais robusta para o gerenciamento de estoques e 

planejamento (Vidal et al., 2022). 
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Neste trabalho, o problema de decisão é estruturado utilizando o método SAW (Simple Additive 

Weighting). A escolha pelo SAW justifica-se pela sua transparência, simplicidade 

computacional para implementação em tempo real no dashboard desenvolvido e pela 

capacidade de modelar preferências compensatórias, onde um desempenho ruim em um critério 

(ex: alto tempo de processamento) pode ser compensado por um desempenho excelente em 

outro (ex: acurácia superior). 

A estrutura do problema de decisão é definida por uma matriz de decisão $D$, onde as 

linhas representam as Alternativas (𝐴𝑖) e as colunas representam os Critérios (Cj) 

• Alternativas (A): O conjunto de modelos treinados e validados na etapa anterior. 

𝐴

= {ETS, Holt-Winters, SARIMA, Random Forest, XGBoost, Prophet, N-BEATS, …} 

• Critérios (C): Foram selecionadas três dimensões conflitantes que refletem o trade-off 

proposto pela OIPT entre qualidade da informação e custo de processamento: 

1. Precisão(𝐂𝟏): Mensurada pelo erro de previsão (MAPE ou RMSE). Representa 

a capacidade do modelo de reduzir a incerteza externa. O objetivo é minimizar. 

2. Eficiência (𝐂𝟐): Mensurada pelo Tempo de Treinamento e Inferência (em 

segundos). Representa o consumo de recursos da capacidade de processamento 

organizacional. O objetivo é minimizar. 

3. Estabilidade (𝐂𝟑): Mensurada pelo Desvio Padrão dos resíduos ou variância do 

erro nos folds de validação. Representa a confiabilidade do modelo e a 

consistência da informação gerada. O objetivo é minimizar. 

3.3.5.2. Normalização e Agregação (Método SAW) 

Como os critérios possuem unidades de medida distintas (percentual de erro vs. segundos de 

processamento), a aplicação direta da soma ponderada é inviável. A metodologia aplica, 

portanto, uma etapa de normalização linear. 

Para critérios do tipo "custo" (onde menor é melhor, como Erro e Tempo), utiliza-se a seguinte 

função de transformação para normalizar o valor 𝑥𝑖𝑗 da alternativa i no critério j em um score 

normalizado 𝑟𝑖𝑗 que varia de 0 a 100: 

𝑟𝑖𝑗 = 100 × (1 −
𝑥𝑖𝑗 − min(𝑥𝑗)

max(𝑥𝑗) − min(𝑥𝑗) + 𝜖
) 
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Onde 𝜖 é uma constante pequena (10−6) para evitar divisão por zero. Esta formulação garante 

que o modelo com o menor erro (ou menor tempo) receba score 100, enquanto o pior 

desempenho receba 0. 

Após a normalização, o Índice de Preferência Global (𝑺𝒊) ou "Score Geral" para cada modelo 

é calculado pela soma ponderada dos valores normalizados: 

𝑆𝑖 =
∑ 𝑤𝑗

𝑛
𝑗=1 ⋅ 𝑟𝑖𝑗

∑ 𝑤𝑗
𝑛
𝑗=1

 

 

Onde 𝑤𝑗 representa o peso de importância atribuído ao critério j. 

A atribuição dos pesos (w) é o mecanismo pelo qual o artefato operacionaliza o fit 

organizacional. O dashboard desenvolvido permite que o gestor configure esses pesos 

dinamicamente para refletir o contexto estratégico, conforme ilustrado na implementação do 

sistema: 

• Cenário de Alta Criticidade (Curva A): O gestor pode atribuir peso majoritário à 

Precisão (ex:𝑤𝑒𝑟𝑟𝑜 = 80, 𝑤𝑡𝑒𝑚𝑝𝑜 = 0, 𝑤𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 = 0), priorizando a redução de 

incerteza independente do custo computacional. 

• Cenário de Alta Frequência/Restrição (Curva C): Para itens de baixo valor ou 

limitações de hardware, o gestor pode aumentar o peso da Eficiência (ex:𝑤𝑡𝑒𝑚𝑝𝑜 = 50), 

penalizando modelos complexos (como Random Forest ou Prophet) que consomem 

recursos excessivos para ganhos marginais. 

O modelo que apresentar o maior valor de 𝑆𝑖 é recomendado pelo sistema como a solução 

ótima para o item analisado, garantindo que a escolha tecnológica esteja alinhada à necessidade 

de processamento de informação específica daquele SKU.
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4. Design e Desenvolvimento do Artefato 

Um artefato desenvolvido com base em Design Science Research só cumpre seu 

objetivo de relevância prática se for utilizável e agregar valor ao tomador de decisão (HEVNER 

et al., 2004). No contexto da previsão de demanda, onde a incerteza é alta, o julgamento humano 

especializado é insubstituível. Portanto, o artefato não foi concebido como uma "caixa preta" 

automatizada, mas como um sistema de suporte à decisão human-in-the-loop (centrado no ser 

humano). 

Para materializar essa interface, foi escolhida a biblioteca Streamlit. A escolha desta ferramenta 

é estratégica: sendo um framework em Python, ela se integra com todo os pacotes de data 

science (Pandas, Scikit-learn, XGBoost, Prophet, etc.) utilizado no módulo de repositório de 

modelos. Isso permite a criação de um aplicativo web interativo de forma extremamente rápida, 

sem a necessidade de desenvolvimento front-end complexo, focando os esforços na 

funcionalidade analítica. 

O dashboard em Streamlit atua como o principal painel de análise para os especialistas (demand 

planners), traduzindo os resultados complexos da competição de modelos em insights 

interpretáveis e personalizados de acordo com suas prioridades. Sua estrutura é projetada para 

facilitar a resposta às necessidades recorrentes do demand planner. O artefato foi concebido 

como um sistema multicritério de suporte à decisão para previsão de demanda. A implantação 

do multicritério no artefato é uma resposta direta à OIPT: reconhece-se que diferentes produtos 

(ou subfamílias de produtos) possuem diferentes níveis de incerteza. Um único modelo 

(representando uma única capacidade de processamento) seria inadequado. Portanto, o artefato 

é projetado como um portfólio de modelos, permitindo um fit entre o modelo e a natureza da 

série temporal analisada, que permite ao tomador de decisão escolher o modelo que melhor 

atende às suas necessidades. 

Esta seção descreve o fluxo de uso completo e ideal do artefato, da perspectiva do 

usuário, mapeando cada tela e interação, desde o upload inicial dos dados até a geração da 

previsão final e exportação do plano de experimentos. 

4.1 Página Inicial e Módulo de Upload de Dados 

A jornada do usuário começa na Tela Inicial, que funciona como um "portal" para o 

artefato, apresentando uma breve descrição de suas funcionalidades e apresentando seus 

desenvolvedores. No final da tela inicial, há uma indicação levando o usuário para a página de 

upload de dados, onde o usuário vai começar a interagir de fato com o aplicativo. 
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O módulo Upload de Dados, mostrado na figura 2, é extremamente importante pois 

garante a qualidade de todo o pipeline que vem a seguir. O design deste módulo foca em três 

pilares: flexibilidade, robustez e feedback imediato. 

Pensando na flexibilidade, o módulo oferece dois caminhos de entrada: o primeiro é o 

widget, que permite ao usuário carregar seus próprios dados em formato Excel e o segundo é 

Usar Dados de Exemplo, habilitando o aplicativo a ser testado com dados genéricos. 

O processo da leitura destes dados começa com o Mapeamento Semântico, permitindo 

que o artefato funcione mesmo com falta de um padrão de nomenclatura nas bases de dados 

dos usuários de negócio. Nessa etapa, eles designam as colunas de Identificação do Item, 

Data/Período e Demanda. Isso permite que o artefato utilize qualquer base de dados que 

contenha essas informações. Além disso, os usuários podem, opcionalmente, selecionar 

"Variáveis Exógenas" para indicar eventos como promoções e feriados, que serão interpretados 

por alguns dos modelos de previsão. 

 Após o mapeamento, o usuário avança para o módulo de "Validação e Limpeza de 

Dados". Aqui, são oferecidas opções de pré-processamento básicas, exibidas como checkboxes, 

que incluem remover linhas com dados faltantes e substituir valores negativos por 0. Após 

decidir aplicar ou não essas transformações e clicar em "Aplicar Alterações e Validar", o 

módulo fornece um feedback visual imediato por meio de estatísticas, um gráfico de série 

temporal. Ao concluir, os dados processados são salvos no estado da sessão, garantindo sua 

persistência e disponibilidade para as etapas. O processo se encerra com um guia ativo, 

indicando a "Próximos passos: Vá para Análise Exploratória", concluindo assim o primeiro 

ciclo de interação do artefato 
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Figura 2- Tela de Upload de dados. Fonte: Autoria própria, 2025. 

4.2 Módulo de Análise Exploratória 

Após o upload e validação dos dados, o planejador avança para o Módulo de Análise 

Exploratória e Testes Estatísticos. Este componente é essencial para os objetivos de 

transparência do artefato e seu papel como sistema de apoio à decisão, partindo da premissa de 

que a seleção de modelos de previsão não deve ser um processo de "caixa-preta". 

 

Figura 3- Tela de Visualizações – Análise Exploratória. Fonte: Autoria própria, 2025. 
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A interface é estruturada em quatro abas complementares. A primeira, "Visualizações", 

mostrada na Figura 3, foca na inspeção qualitativa, exibindo o gráfico da série temporal 

sobreposto por uma média móvel para identificação de tendências, além de histogramas e 

boxplots que revelam a distribuição dos dados e a presença visual de outliers. 

A análise avança para o campo quantitativo na aba de "Estatísticas Descritivas" (Figura 4). 

O usuário é apresentado a métricas de destaque: Média, Mediana, Desvio Padrão e o Coeficiente 

de Variação (CV%). O CV% é especialmente crítico no contexto de S&OP, pois quantifica a 

volatilidade relativa; valores elevados (ex: > 50%) sinalizam uma demanda errática, 

justificando a necessidade de modelos mais robustos. 

 

Figura 4- Tela de Estatísticas descritivas – Análise Exploratória. Fonte: Autoria própria, 2025. 

Para um detalhamento técnico, o artefato exibe uma tabela de "Estatísticas Completas". Esta 

visão mais detalhada apresenta medidas como Media, Mediana, Moda, Variância, Amplitude, 

Quartis e Intervalo Interquartil, Assimetria (Skewness) e Curtose (Kurtosis). 

A seguir, vem a seção "         Testes de Normalidade". O design do artefato não assume que o 

usuário saiba interpretar os valores de Assimetria e Curtose. Em vez disso, ele executa um 

painel de testes estatísticos formais para verificar se os dados de demanda se assemelham a uma 

Curva de Gauss (distribuição normal). Nessa etapa, são realizados os testes de Shapiro Wilk, 

Jarque-Berra e Kolmogorov-Smirnov, e os resultados são exibidos em um quadro comparativo, 

com a Estatistica, P-valor e o resultado. 
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O artefato desenvolvido traduz a rejeição de 𝐻0 (p < 0,05) em ação prática, sugerindo 

transformações para a estabilização da variância. Esta etapa segue o trabalho seminal de Box e 

Cox (1964), recomendando transformações como a logarítmica ou a família de transformações 

de potência de Box-Cox para normalizar a distribuição antes da modelagem preditiva. 

Complementarmente, a descrição contextualiza o SKU analisado através do Coeficiente de 

Variação (CV%), métrica crucial para a classificação da previsibilidade de demanda (Silver et 

al., 2016).  

Após a análise distributiva, prossegue-se para a verificação da estacionariedade (Figura 5). 

Uma série é classificada como estacionária se sua média, variância e autocovariância são 

constantes no tempo (HAMILTON, 1994). Reconhecendo o baixo poder estatístico dos testes 

de raiz unitária em amostras finitas, esta metodologia adota a estratégia de triangulação 

confirmatória (Enders, 2014). O diagnóstico final emerge do consenso entre três testes com 

estruturas distintas: ADF, KPSS e Phillips-Perron. 

 

Figura 5- Tela de Testes de Estacionariedade – Análise Exploratória. Fonte: Autoria própria, 2025. 

Avançando no fluxo do usuário, a metodologia segue para a decomposição estrutural como 

ferramenta exploratória essencial (HYNDMAN; ATHANASOPOULOS, 2018), com sua 

interface mostrada na Figura 6. O objetivo é isolar três componentes latentes da série Y𝑡: 

Tendência (𝑇𝑡), Sazonalidade (S𝑡) e Resíduo (R𝑡). Isso permite ao planejamento de S&OP 

distinguir se as variações na demanda são de longo prazo, cíclica ou aleatórias. Aqui, o usuário 
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pode escolher usar a decomposição aditiva ou multiplicativa e definir o período sazonal (valor 

padrão = 12 meses) 

 

 

Figura 6- Tela de Decomposição e Sazonalidade – Análise Exploratória. Fonte: Autoria própria, 2025. 

4.3. Módulo de Pré-Processamento 

A etapa de pré-processamento é um imperativo metodológico para assegurar a validade 

dos modelos preditivos. Dados brutos de demanda frequentemente apresentam anomalias, 

heterocedasticidade e não-estacionariedade que, se não tratadas, podem enviesar severamente 

a estimação de parâmetros (HAIR et al., 2009). 

Este módulo estrutura-se em três etapas sequenciais: (1) detecção e tratamento de outliers, (2) 

transformações para estabilização de variância e estacionariedade, e (3) normalização de escala 

para algoritmos de ML. 
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Figura 7- Tela de Detecção de Outliers – Pré-Processamento. Fonte: Autoria própria, 2025. 

Na tela de detecção de outliers (Figura 7), o usuário pode escolher entre três métodos 

para o tratamento dos dados: Z-Score, IQR e Isolation Forest, sendo possível ajustar os 

thresholds desejados nas duas primeiras opções. Ao ser identificado um outlier na série, ele é 

indicado com um X vermelho no gráfico para facilitar a identificação. 

 

Figura 8- Tela de Transformações matemáticas – Pré-Processamento. Fonte: Autoria própria, 2025. 
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Na tela de transformações matemáticas (Figura 8), o usuário tem a oportunidade de 

aplicar diferentes transformações que podem ajudar a estabilizar a variância, tornar a serie mais 

próxima da normalidade e melhorar a performance dos modelos. Nele, há 5 transformações 

diferentes que podem ser aplicadas individualmente em cada uma das séries analisadas. São 

elas: Log, Raiz quadrada, Box-Cox, Diferenciação ordem 1 e Diferenciação Sazonal (lag12). 

Ao selecionar uma das transformações, é feita uma comparação da série original com a 

transformada, exibindo informações de média, desvio e CV% de cada uma, além de mostrar a 

série de fato.  No final da tela, há uma sugestão de transformação a ser aplicada baseada nas 

características da série. 

 

Figura 9- Tela de Normalização – Pré-Processamento. Fonte: Autoria própria, 2025. 

Por fim, na tela de normalização (Figura 9), o usuário pode escolher aplicar uma das 

três transformações disponíveis no artefato de acordo com suas necessidades. No fim da tela, é 

sinalizado ao usuário qual transformação deve ser aplicada dependendo do modelo que será 

utilizado. 

4.4. Módulo de Treinamento e Otimização de Modelos 

O Módulo de Treinamento constitui o motor analítico do artefato proposto. Esta etapa 

marca a transição do diagnóstico da análise estatística para a fase de experimentação. O objetivo 

deste módulo não é apenas ajustar um modelo isolado, mas orquestrar uma competição entre 

diferentes modelos para identificar a abordagem mais eficaz para cada série temporal 

individual. 
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A primeira fase do Módulo de Treinamento é a Configuração do Experimento. Mostrada 

na Figura 10, esta etapa representa a interface de controle entre o julgamento humano (o 

conhecimento de negócio do planejador) e o poder computacional dos algoritmos. O artefato 

impõe uma estrutura de decisão que obriga o usuário a definir explicitamente três dimensões 

fundamentais do problema de previsão: o escopo (quais itens), a metodologia (quais modelos) 

e a estratégia de validação. 

A primeira decisão oferecida ao usuário é a definição da abrangência da análise. O componente 

de seleção permite dois modos de operação: 

● Execução em Lote (Batch): "Todos os itens". Simula o processo rotineiro de S&OP, 

onde centenas de SKUs são previstos simultaneamente. 

● Execução Focada: "Selecionar específicos". Permite uma análise detalhada. 

O artefato apresenta ao usuário o portfólio de modelos disponíveis, segregados em duas 

categorias distintas: Modelos Clássicos/Estatísticos (SARIMA, ETS, Holt-Winters, TBATS) e 

Modelos de Machine/Deep Learning (Random Forest, XGBoost, LightGBM, Prophet, N-

BEATS). 

A decisão de design de permitir a múltipla seleção (checkbox) fundamenta-se no princípio 

da combinação de previsões e na evidência empírica de que não existe um modelo 

universalmente superior. Competições de previsão como a M4 (MAKRIDAKIS; SPILIOTIS; 

ASSIMAKOPOULOS, 2018) demonstraram que diferentes famílias de algoritmos performam 

melhor em diferentes horizontes e frequências de dados. Ao permitir que o usuário selecione, 

por exemplo, "SARIMA" e "XGBoost" simultaneamente, o artefato configura um experimento 

competitivo para identificar empiricamente qual abordagem modela melhor a série de 

determinado item. 
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Figura 10 - Tela de Seleção de modelos – Treinamento.  Fonte: Autoria própria, 2025. 

Um dos principais diferenciais do artefato é a funcionalidade "Sugestão Automática" 

(Figura 11). Este componente atua como um sistema de recomendação que traduz as 

características estatísticas da série em uma seleção ótima de modelos. 

Este sistema baseia-se em um conjunto de regras heurísticas derivadas das melhores práticas 

de forecasting (HYNDMAN; ATHANASOPOULOS, 2018): 

● Comprimento da Série (n_obs): 

o Se n<24meses: O sistema recomenda modelos parcimoniosos como ETS e Holt-

Winters Aditivo, alertando que modelos de ML/DL (que exigem grandes 

amostras para treinamento) tendem a sofrer de overfitting ou falhar por falta de 

dados. 

o Se n>48 meses: O sistema habilita e recomenda modelos de alta complexidade 

como N-BEATS e Random Forest. 

● Volatilidade (cv): 

o Se o Coeficiente de Variação é alto (> 0.7), indicando demanda errática, o 

sistema prioriza modelos não-lineares baseados em árvores (XGBoost, Random 

Forest), que lidam melhor com variância alta do que os modelos lineares 

clássicos. 

● Sazonalidade (sazonal): 
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o Se detectada pelos testes de autocorrelação (ACF), o sistema recomenda 

explicitamente modelos com componentes sazonais nativos (SARIMA, Holt-

Winters, Prophet). 

● Presença de Outliers (outliers): 

o Se detectados, o sistema sugere modelos robustos a ruído (Random Forest, 

Prophet) e desencoraja modelos sensíveis a valores extremos (como modelos 

baseados em médias móveis simples sem tratamento prévio). 

Esta lógica de recomendação reduz a barreira cognitiva para o usuário, garantindo que 

modelos inadequados sejam filtrados antes mesmo do início do processamento computacional. 

 

Figura 11- Tela de Sugestão automática de modelos – Treinamento.  Fonte: Autoria própria, 2025. 

Na tela de configurações (Figura 12), o usuário consegue ter controle total sobre o plano 

operacionalização do modelo. O artefato dispõe de diversos dispositivos para que a experiencia 

possa ser ideal para as necessidades do demand planner. A primeira escolha a ser feita é a 

divisão treino/teste através de um slider, com padrão definido para 20% de teste. A seguir, deve 

ser decidido se o artefato utilizará ou não a otimização de hiperparâmetros (HPT). Caso opte 

pela otimização, deve ser definido o método de otimização (RandomSearch ou Bayesian 

Search), o número de iterações que serão realizadas para achar o modelo ótimo e a métrica de 

otimizacao desejada (MSE, RMSE, MAPE ou MAE). 

Caso o demand planner não opte pela otimização de hiperparâmetros, os parâmetros dos 

modelos podem ser definidos manualmente, da maneira que ele achar melhor baseado em sua 

experiencia. 
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Figura 12- Tela de Configuração – Treinamento.  Fonte: Autoria própria, 2025. 

4.5. Módulo de Testes e Validação com Dados Novos 

Após a fase de treinamento e otimização, a jornada entra na fase de testes e validação. 

Na literatura de forecasting, é amplamente reconhecido que um modelo pode apresentar um 

ajuste excelente aos dados de treino (in-sample), mas falhar ao prever novos dados (out-of-

sample), fenômeno conhecido como overfitting (MAKRIDAKIS et al., 2018). 

O módulo de testes, foi desenhado para mitigar esse risco e fornecer ao planejador de 

S&OP uma ferramenta de auditoria. O objetivo deste módulo é duplo: (1) Permitir o diagnóstico 

dos erros através da análise de resíduos e (2) Simular o ambiente de produção, testando os 

modelos treinados contra arquivos de dados totalmente novos, simulando a chegada de novos 

períodos de venda. 

A interface é estruturada em três abas funcionais que operacionalizam a avaliação 

metodológica: Visualização de Previsões (Figura 13), Teste com Novos Dados e Comparação 

de Modelos (Figura 14). 

A primeira aba foca na análise do comportamento do modelo selecionado no conjunto de teste 

(hold-out) definido durante o treinamento. 

Metodologicamente, a análise dos resíduos (𝑒𝑡 = 𝑦𝑡 − 𝑦t̂) é o teste definitivo da adequação 

de um modelo. Se um algoritmo extraiu com sucesso toda a informação estrutural (sinal) 

disponível nos dados, os resíduos devem se comportar como Ruído Branco. O artefato fornece 

três ferramentas para esta verificação: 
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1. Gráfico de Resíduos no Tempo: Permite verificar a premissa de média zero (𝐸[𝑒𝑡] =

0) e a homoscedasticidade (variância constante). Se os resíduos apresentam padrões 

ondulatórios ou crescentes, indica que o modelo falhou em capturar a sazonalidade ou 

a volatilidade da série, respectivamente (HYNDMAN; ATHANASOPOULOS, 2018). 

2. Histograma de Resíduos: Permite verificar a premissa de normalidade  

(𝑒𝑡 ∼ 𝑁(0, 𝜎2)). Uma distribuição assimétrica ou bimodal nos resíduos sugere que o 

modelo está enviesado, subestimando ou superestimando sistematicamente a demanda. 

3. Métricas de Erro: O cálculo do MAE (Erro Médio Absoluto) e RMSE (Raiz do Erro 

Quadrático Médio) oferece uma quantificação da precisão. Enquanto o MAE é mais 

interpretável, o RMSE penaliza grandes desvios, sendo uma métrica importante em 

situações onde não pode haver rupturas ou sobreestoque, por exemplo. 

 

Figura 13 - Tela de Visualizar Previsões – Testes.  Fonte: Autoria própria, 2025. 

Dentro do modulo de testes, há também a funcionalidade de testes com novos dados. 

Diferente da validação hold-out (que separa uma parte do histórico existente), este teste permite 

que o usuário faça o upload de um arquivo contendo dados que o sistema nunca viu. Este 

processo simula a realidade operacional do S&OP: o modelo é treinado no mês M, e no mês 

M+1 sua performance é auditada com os dados reais de vendas recém-fechados. 

A última etapa consolida os resultados, permitindo uma análise comparativa preliminar. O 

artefato gera um relatório visualizado através de dois gráficos. Primeiro, um Boxplot de 

Distribuição de Erros (MAPE) revela a estabilidade dos modelos. Em S&OP, a consistência é 
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frequentemente preferível a uma precisão média alta com falhas ocasionais graves (Armstrong, 

2001). Segundo um Gráfico de Barras de Tempo Computacional permite avaliar se o ganho de 

acurácia de um modelo complexo justifica o custo adicional de processamento frente a modelos 

mais simples. Finalmente, o módulo gera uma tabela de Ranking onde você pode ordenar os 

modelos pela métrica desejada. 

 

Figura 14- Tela de Comparação de modelos – Testes.  Fonte: Autoria própria, 2025. 

4.6. Interface de Avaliação e Sistema de Apoio à Decisão (Dashboard) 

A última etapa do artefato é a construção de um Dashboard Analítico. Esta interface tem 

como objetivo ir além da visualização de dados, funcionando como um Sistema de Apoio à 

Decisão (SAD) interativo. Nela, são processados os resultados brutos da etapa de treinamento 

e é fornecido ao planejador de demanda uma plataforma para a seleção racional, baseada em 

diferentes variáveis, dos modelos de previsão. A tela de dashboard está estruturada em 6 abas, 

cada uma desenhada para responder a uma pergunta específica do processo de planejamento. 
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Figura 15- Tela de Visão Geral – Dashboard.  Fonte: Autoria própria, 2025. 

O primeiro módulo, denominado "Visão Geral", mostrado na Figura 15, atua como um 

painel de controle executivo. Sua função metodológica é sintetizar o desempenho global dos 

experimentos, permitindo uma avaliação rápida do desempenho dos modelos. O sistema agrega 

métricas de todos os modelos treinados para calcular KPIs agregados, como o MAPE médio 

global e o tempo total de processamento computacional. 

O destaque desta seção reside na implementação visual da "Fronteira de Eficiência". Foi 

desenvolvido um gráfico de dispersão que correlaciona duas variáveis conflitantes: o Tempo de 

Treinamento (eixo X) e o Erro MAPE (eixo Y). Cada ponto no gráfico representa um par 

Modelo-Item. Esta visualização é crítica para identificar outliers positivos (modelos que se 

situam no quadrante inferior esquerdo, com alta precisão e baixo tempo) e descartar modelos 

ineficientes. Além disso, o artefato gera uma tabela resumo interativa, que permite a ordenação 

dos dados por qualquer coluna, facilitando a identificação rápida dos melhores desempenhos 

em cada uma das métricas. 

Reconhecendo que a minimização do erro médio não é o único critério para a escolha 

de um modelo em ambiente industrial, como defendido na OIPT, o segundo módulo, mostrado 

na Figura 16, implementa um método Decisão Multicritério (MCDM). A metodologia adotada 

baseia-se no Método da Soma Ponderada (SAW - Simple Additive Weighting). Através de 

controles deslizantes (sliders), o usuário define o peso de três dimensões: Precisão (inverso do 

Erro), Eficiência (inverso do Tempo) e Estabilidade (inverso da Incerteza/Desvio Padrão dos 
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resíduos). Como as métricas possuem unidades e escalas distintas (segundos, porcentagem e 

unidades de produto), o algoritmo aplica uma normalização linear para transformar todos os 

valores em uma escala adimensional de 0 a 100. Para métricas onde "menor é melhor" (erro, 

tempo e incerteza), é aplicada uma inversão. O Score Geral é calculado pela soma ponderada 

dos scores normalizados das três dimensões. 

Visualmente, esta análise é suportada por Gráficos de Radar, que permitem comparar a 

"cobertura" de desempenho de cada modelo. Tabelas detalhadas exibem os scores parciais de 

cada dimensão, garantindo transparência sobre o motivo pelo qual um modelo obteve 

determinada pontuação final. 

 

Figura 16- Tela de Análise Multicritério – Dashboard.  Fonte: Autoria própria, 2025. 

O módulo de "Comparação de Erros" (Figura 17) aprofunda a validação estatística, 

movendo-se da análise de médias para a análise de distribuições. O código implementa Box 

Plots para as métricas MAPE e MAE. Um modelo pode apresentar um MAPE médio baixo, 

mas possuir uma alta variância ou diversos outliers, indicando instabilidade em períodos 

específicos, problema esse revelado pelo Box Plot. 

Adicionalmente, foi implementada uma matriz de calor cruzando a dimensão "Itens" 

com a dimensão "Modelos". A intensidade da cor representa a magnitude do erro. Esta 

ferramenta visual permite detectar padrões sistêmicos de falha ou sucesso, identificando se 

determinados algoritmos funcionam melhor com determinados tipos de item. Tabelas de 
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estatística descritiva (média, desvio padrão, mínimo e máximo do erro) complementam a 

análise visual.  

 

Figura 17- Tela de Comparação de erros – Dashboard.  Fonte: Autoria própria, 2025. 

Dada a aplicação do artefato no contexto do PCP 4.0, cada vez mais impactado por um 

grande volume de dados (Big Data) gerados a partir de suas tecnologias, como o IoT, a 

eficiência computacional é tratada como um requisito crítico. A quarta aba, mostrada na Figura 

18, dedica-se a analisar o custo de processamento dos algoritmos. A visualização dos dados 

ocorre através de gráficos de barras. Esta análise é vital para dimensionar a infraestrutura 

tecnológica necessária para utilizar modelos mais complexos ou adaptar os modelos que serão 

utilizados para que sejam compatíveis com a capacidade computacional existente. 
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Figura 18- Tela de Performance computacional – Dashboard.  Fonte: Autoria própria, 2025. 

O quinto módulo (Figura 19) operacionaliza a escolha do modelo. Utilizando os pesos 

definidos na etapa multicritério, o sistema gera um ranking consolidado. O algoritmo identifica 

o "Campeão Geral" (modelo com maior média de Score Geral) e, crucialmente, executa uma 

lógica de seleção granular, determinando o Melhor Modelo por Item. 

Esta funcionalidade oferece uma solução personalizada e alinhada com a OPIT, 

rejeitando a premissa de que um único algoritmo deve ser universalmente aplicado, e sim um 

algoritmo que se adapte às particularidades de cada série. O resultado é apresentado em tabelas 

dinâmicas que listam, para cada SKU, qual foi o modelo vencedor, seu score final e o erro 

associado. Um gráfico de distribuição (Pizza) ilustra o share de cada algoritmo no portfólio, 

oferecendo uma visão do desempenho dos diferentes modelos. 
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Figura 19- Tela de Ranking final multicritério – Dashboard.  Fonte: Autoria própria, 2025. 

A última etapa do fluxo metodológico é a "Previsão Futura" (Figura 20). Diferente da 

etapa de validação (que separa dados em treino e teste), esta função executa um retreinamento 

utilizando 100% do histórico disponível. O código recupera os hiperparâmetros ótimos 

armazenados na sessão e reconstrói o modelo. 

Para projetar um horizonte de 12 meses, os resultados (histórico + previsão) são 

exportáveis para Excel, garantindo interoperabilidade com outros sistemas corporativos. 

 

Figura 20- Tela de Previsão futura – Dashboard.  Fonte: Autoria própria, 2025 
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4.7. Registro dos experimentos 

 Por fim, na tela de Registro de Experimentos (Figura 21), após o fim do ciclo de previsão 

de demanda e escolha de modelo se encerrarem, o usuário pode exportar em formato Excel um 

plano de experimentos detalhado, com todas as transformações nas séries realizadas nas etapas 

de pré-processamento, previsões realizadas por cada modelo nas etapas de treino e teste, um 

resumo dos parâmetros utilizados no treinamento e os hiperparâmetros ótimos encontrados, 

caso a opção tenha sido habilitada. 

 
Figura 21- Tela de Registro de experimento.  Fonte: Autoria própria, 2025 
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5. Aplicação do artefato em um caso real 

A seção anterior detalhou a concepção do artefato de previsão multicritério, 

fundamentado nos princípios do Design Science Research (DSR). A metodologia culminou no 

design de um sistema que incorpora uma competição de modelos (estatísticos, machine learning 

e deep learning) e um pipeline robusto de pré-processamento, com o objetivo de endereçar as 

lacunas identificadas na Etapa 1 da DSR. Esta seção avança no ciclo do DSR, focando nas 

etapas de Demonstração (Etapa 4) e Avaliação (Etapa 5) (PEFFERS et al., 2007). O artefato 

será agora aplicado em um ambiente operacional real para demonstrar sua utilidade e medir 

rigorosamente seu desempenho e aplicabilidade. 

Para a realização do experimento, foram selecionados todos os produtos de duas das 

marcas presentes no portfólio da empresa. A avaliação empírica foi conduzida utilizando séries 

temporais reais de vendas B2B (sell-in) desses produtos, agregados por subfamília, do portfólio 

da organização parceira. Essa agregação por subfamília já é realizada hoje no processo de 

previsão de demanda da empresa e se dá para que as séries sejam menos afetadas pelas rupturas, 

decorrentes de uma demanda volátil e uma cadeia de suprimentos complexa na qual a empresa 

está inserida, com lead times longos e disponibilidade de matéria prima limitada em 

determinados momentos. Atualmente, na empresa, são utilizados apenas os modelos estatísticos 

clássicos para o suporte ao processo de previsão de demanda. 

Toda a discussão a seguir é fundamentada na Teoria do Processamento de Informação 

Organizacional (OIPT). Nesta seção, é testada a hipótese de que o desempenho superior no 

planejamento de demanda não advém da escolha de um modelo universalmente ótimo, mas sim 

do fit entre a incerteza inerente à tarefa de previsão, a capacidade de processamento 

computacional alocada e as prioridades estratégicas definidas pelo planejador de demanda. Para 

demonstrar a flexibilidade e a robustez do artefato frente a diferentes realidades de negócio, os 

resultados foram segmentados e analisados sob dois cenários de decisão distintos: a priorização 

exclusiva da acurácia, e a busca pelo equilíbrio e eficiência operacional, ambas feitas na 

granularidade de subfamília. Em ambos os cenários de avaliação multicritério, está sendo 

avaliado o desempenho dos modelos com a otimização de parâmetros ligada com o número de 

instâncias da otimização bayesiana igual a 30 (valor padrão do SAD) e com MSE definida como 

métrica de otimização, como é utilizado na empresa hoje.  
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5.1. Análise de Desempenho Global e a Fronteira de Eficiência 

A avaliação empírica do artefato iniciou-se com uma análise de desempenho, comparando todas 

as famílias de algoritmos (estatísticos, machine learning e deep learning) aplicadas às séries 

temporais de sell-in das subfamílias selecionadas. Esta etapa tem como objetivo estabelecer 

uma linha de base de performance e verificar a existência de um modelo universalmente 

superior, hipótese frequentemente debatida na literatura de forecasting. 

Tabela 1– Comparação global dos modelos.  Fonte: Autoria própria, 2025. 

 Os resultados consolidados revelam uma disparidade significativa entre as classes de 

modelos, tanto na precisão das previsões quanto, e principalmente, no consumo de recursos 

computacionais. A Tabela 1 apresenta um resumo das métricas médias obtidas no experimento. 

Ao analisar a dimensão da eficiência, observa-se que os modelos estatísticos clássicos, 

notadamente a família de Suavização Exponencial (ETS e Holt-Winters), mantiveram sua 

reputação de robustez e velocidade. O modelo ETS, por exemplo, registrou um tempo médio 

de treinamento de apenas 0,38 segundos por série. Em contraste, os modelos de inteligência 

artificial exigiram uma capacidade de processamento exponencialmente maior. O algoritmo 

Prophet demandou, em média, 125,02 segundos para processar as mesmas séries, um aumento 

de aproximadamente 328 vezes no custo computacional em comparação ao ETS. O modelo de 

Deep Learning N-BEATS situou-se em um patamar intermediário de custo, com média de 52,8 

segundos. 

Na dimensão da precisão (mensurada pelo MAPE - Erro Percentual Absoluto Médio), 

a relação não é linear. Embora o modelo Prophet tenha apresentado o menor erro médio global 

em alguns cenários de teste, a diferença de acurácia em relação aos métodos estatísticos foi, em 

Modelo 

MAPE 

Médio (%) 

Tempo 

Médio (s) 

Score 

Erro 

Score 

Tempo 

Score 

Incerteza 

Prophet 45.00 125.02 73.24 18.45 67.02 

ETS 45.30 0.38 72.78 99.77 66.50 

Holt-Winters Multiplicativo 49.27 0.09 66.68 99.95 67.12 

N-BEATS 50.20 52.80 65.24 65.57 61.26 

H-W s/ Trend 52.47 0.02 61.75 100.00 65.50 

TBATS 53.09 118.73 60.79 22.54 67.79 

Holt-Winters Aditivo 53.26 0.08 60.54 99.96 61.31 

Random Forest 61.42 87.76 47.98 42.76 65.09 

SARIMA 64.79 0.91 42.78 99.42 65.18 

XGBoost 70.36 22.02 34.22 85.65 64.51 

LightGBM 73.58 11.12 29.25 92.76 64.66 

      



59 

 

muitos casos, marginal. Já os algoritmos baseados em árvores de decisão, como XGBoost e 

Random Forest, apresentaram uma variância de desempenho grande, com erros médios 

(MAPE) superiores a 60% e 70% em determinadas situações. Este comportamento sugere a 

ocorrência de overfitting em séries com históricos mais curtos ou com alta relação ruído-sinal, 

onde a complexidade do modelo excedeu a informação disponível nos dados. 

Estes achados corroboram a Teoria do Processamento de Informação Organizacional 

(OIPT) aplicada ao PCP 4.0. Observa-se claramente uma Fronteira de Eficiência. Para a maioria 

dos itens de comportamento estável, os modelos estatísticos oferecem o melhor fit 

organizacional, entregando precisão competente com custo computacional desprezível. A 

aplicação de modelos pesados de IA (como Prophet ou N-BEATS) só se justifica 

estatisticamente em itens de alta volatilidade ou "Curva A", onde uma redução marginal no erro 

de previsão traduz-se em ganhos financeiros que compensam o alto lead time de processamento 

da informação. 

 

Figura 22– Fronteira de eficiência dos modelos.  Fonte: Autoria própria, 2025. 

Portanto, a superioridade de um modelo não é absoluta, mas depende da situação. 

Enquanto a IA demonstrou capacidade de capturar padrões complexos que escaparam à 

estatística clássica em itens específicos, sua aplicação indiscriminada em todo o portfólio 

geraria uma ineficiência sistêmica, consumindo recursos de processamento desproporcionais 

ao ganho de acurácia obtido. 

5.2. Avaliação Multicritério: O Impacto da Estratégia na Seleção 

Reconhecendo que a minimização do erro médio não é o único critério para a escolha 

de um modelo em ambiente industrial, conforme defendido pela Teoria do Processamento de 



60 

 

Informação Organizacional (OIPT), esta etapa aplicou o método de decisão multicritério SAW 

(Simple Additive Weighting). O objetivo foi demonstrar como a definição de "melhor modelo" 

é dinâmica e dependente das prioridades estratégicas do planejador de demanda. 

Para validar a robustez do artefato, foram simulados três cenários distintos de pesos para 

os critérios de Precisão (Erro), Eficiência (Tempo) e Estabilidade (Incerteza). 

5.2.1. Cenário 1: Foco Estratégico na Precisão 

No primeiro cenário de avaliação, o sistema foi configurado para simular um ambiente 

de alta criticidade, onde a redução da incerteza é a prioridade máxima. Neste contexto, assume-

se que o custo da falta de produto ou o custo de oportunidade de vendas perdidas superam 

largamente quaisquer preocupações com o custo computacional ou tempo de execução dos 

modelos. Os pesos do algoritmo multicritério do artefato foram ajustados para maximizar a 

acurácia, não penalizando o consumo de recursos de hardware. Sob a ótica da OIPT, este 

cenário reflete a busca por uma capacidade de processamento de informação máxima, onde a 

organização decide investir pesadamente em análise de dados para mitigar a volatilidade do 

mercado. A configuração de pesos priorizou exclusivamente a acurácia (Erro = 100%, Tempo 

= 0%, Estabilidade = 0%). 

Tabela 2– Pesos de cada métrica no cenário 1.  Fonte: Autoria própria, 2025 

 Erro (MAPE) Tempo (s) Incerteza (estabilidade) 

Peso 100 0 0 

 

Nesse cenário, os scores globais correspondem ao Score de erro, mostrado na tabela 1.  

Os resultados globais consolidados neste cenário demonstram uma vantagem dos métodos de 

Machine Learning, especificamente, o modelo Prophet. Ele alcançou a primeira posição no 

ranking global, com um Score Geral de 73,24, seguido de perto pelo modelo ETS com 72,78. 

A liderança do Prophet justifica-se pela sua capacidade superior em modelar sazonalidades 

complexas e mudanças de tendência, resultando no menor MAPE médio do experimento 

(45,00%). Contudo, a margem estreita para o ETS (apenas 0,46 pontos de diferença no score) 

indica que, para o conjunto de dados analisado, o ganho de precisão da abordagem de Machine 

Learning foi marginal em relação ao método estatístico clássico. 

Nesse cenário considerando exclusivamente o lado operacional, com 100% da 

pontuação vinda do score de erro, o modelo Prophet se destacou, sendo o melhor modelo em 4 

das 6 subfamílias analisadas (A, B, D, F), enquanto o Holt-Winters multiplicativo obteve o 
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melhor resultado na subfamília E e o N-BEATS na C. Na figura 23, podemos ver o gráfico de 

pizza representando a porcentagem de subfamílias onde cada modelo obteve um melhor 

desempenho. 

 

Figura 23– Percentual de itens onde cada modelo obteve o melhor Score no cenário 1.  Fonte: Autoria própria, 2025. 

5.2.2. Cenário 2: Gestão de riscos  

Neste cenário, a análise transita de uma perspectiva puramente focada na magnitude do 

erro para uma abordagem orientada à gestão de riscos e confiabilidade da informação. Na 

prática do S&OP, um modelo de previsão que apresenta uma acurácia média excelente, mas 

que falha drasticamente em períodos aleatórios (alta variância), é considerado perigoso. A 

instabilidade nos resíduos de previsão impacta diretamente o cálculo dos estoques de segurança, 

que são dimensionados justamente para cobrir a variabilidade do erro durante o lead time. Esta 

configuração penaliza severamente modelos que apresentam outliers em seus resíduos ou 

comportamento errático entre diferentes janelas de validação, privilegiando a robustez. Os 

pesos foram distribuídos igualmente entre as dimensões Erro e Estabilidade (Erro = 100, Tempo 

= 0, Estabilidade = 100). 

Tabela 3– Pesos de cada métrica no cenário 2.  Fonte: Autoria própria, 2025. 

 Erro (MAPE) Tempo (s) Incerteza (estabilidade) 

Peso 100 0 100 

 

Ao aplicar esta ponderação aos resultados experimentais, a configuração do ranking se 

altera. O Prophet segue na liderança (Score 70,13), demonstrando que sua vantagem não está 

apenas na média do erro, mas na consistência das previsões (Score de Incerteza de 67,02, o 
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segundo maior do grupo). O modelo TBATS, que havia tido desempenho mediano nos outros 

cenários, subiu para a 4ª posição, destacando-se pela estabilidade de seus componentes 

sazonais. Já modelos como LightGBM e XGBoost permaneceram nas últimas posições, 

evidenciando a alta variância e o risco de overfitting associados a algoritmos de árvore de 

decisão em séries temporais curtas. 

Tabela 4– Scores no cenário 2.  Fonte: Autoria própria, 2025. 

Modelo 

Score 

Geral 

MAPE 

Médio (%) 

Tempo 

Médio (s) 

Score 

Erro 

Score 

Tempo 

Score 

Incerteza 

Prophet 70.13 45.00 125.02 73.24 18.45 67.02 

ETS 69.64 45.3 0.38 72.78 99.77 66.50 

Holt-Winters Multiplicativo 66.90 49.27 0.09 66.68 99.95 67.12 

TBATS 64.29 53.09 118.73 60.79 22.54 67.79 

H-W s/ Trend 63.63 52.47 0.02 61.75 100.00 65.50 

N-BEATS 63.25 50.20 52.80 65.24 65.57 61.26 

Holt-Winters Aditivo 60.92 53.26 0.08 60.54 99.96 61.31 

Random Forest 56.54 61.42 87.76 47.98 42.76 65.09 

SARIMA 53.98 64.79 0.91 42.78 99.42 65.18 

XGBoost 49.37 70.36 22.02 34.22 85.65 64.51 

LightGBM 46.96 73.58 11.12 29.25 92.76 64.66 
 

Nesse cenário, o modelo Prophet mais uma vez liderou, sendo o melhor modelo em 3 

das 6 subfamílias analisadas (B, D, F). Além dele, podemos ver a entrada do N-BEATS, modelo 

de deep learning como o melhor modelo para a subfamília C, obtendo um MAPE de 27,71% 

para essa subfamília, o segundo menor entre todos os modelos testados em todos as subfamílias, 

e um Score total de 99,29 para a subfamília C. Do lado dos modelos estatísticos, o Holt-Winters 

Multiplicativo segui com a subfamília E enquanto o TBATS aparece como o melhor modelo da 

subfamília A. Na Figura 24, podemos observar a porcentagem de subfamílias onde cada modelo 

obteve um melhor desempenho considerando esse novo cenário. 
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Figura 24– Percentual de itens onde cada modelo obteve o melhor Score no cenário 2.  Fonte: Autoria própria, 2025. 

5.2.3. Cenário 3: Equilíbrio Operacional  

O terceiro cenário de teste inverte a lógica de decisão, priorizando a agilidade e a 

eficiência do processo de S&OP. Este cenário simula uma realidade operacional comum em 

grandes organizações de varejo e bens de consumo: a necessidade de re-planejamento ágil, 

muitas vezes em períodos mais curtos, ou a existência de restrições de infraestrutura de TI ao 

lidar com bases de dados massivas. Neste arranjo, os pesos do sistema multicritério foram 

reconfigurados para considerar de maneira igual a qualidade de previsão e o esforço 

computacional. 

A alteração dos critérios de seleção provocou uma reordenação drástica no ranking de 

modelos, ilustrando a sensibilidade do artefato às preferências gerenciais. Os pesos foram 

distribuídos igualmente entre as três dimensões (Erro = 100, Tempo = 100, Estabilidade = 

100). 

Tabela 5– Scores no cenário 3.  Fonte: Autoria própria, 2025. 

 Erro (MAPE) Tempo (s) Incerteza (estabilidade) 

Peso 100 100 100 

 

A introdução da variável "Tempo" alterou drasticamente o ranking. O modelo ETS 

ascendeu à liderança absoluta com um Score Geral de 79,68, seguido pelo Holt-Winters 

Multiplicativo (Score 77,92). Em contraste, os modelos de Machine Learning enfrentaram uma 

queda drástica. Entre eles, vale destacar o Prophet, líder no primeiro cenário e que caiu para a 

9ª posição (Score 52,90), penalizado severamente pelo seu alto tempo de processamento 
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(125,02 segundos em média, contra 0,38s do ETS). Este resultado valida a premissa de que o 

excesso de capacidade de processamento, modelos lentos e complexos geram ineficiência 

organizacional quando não acompanhados de um ganho proporcional em redução de incerteza 

ou aumento de sua capacidade computacional. 

Tabela 6– Scores no cenário 3.  Fonte: Autoria própria, 2025. 

Modelo 

Score 

Geral 

MAPE 

Médio (%) 

Tempo 

Médio (s) 

Score 

Erro 

Score 

Tempo 

Score 

Incerteza 

ETS 79.68 45.30 0.38 72.78 99.77 66.50 

Holt-Winters Multiplicativo 77.92 49.27 0.09 66.68 99.95 67.12 

H-W s/ Trend 75.75 52.47 0.02 61.75 100.00 65.50 

Holt-Winters Aditivo 73.94 53.26 0.08 60.54 99.96 61.31 

SARIMA 69.12 64.79 0.91 42.78 99.42 65.18 

N-BEATS 64.02 50.20 52.80 65.24 65.57 61.26 

LightGBM 62.22 73.58 11.12 29.25 92.76 64.66 

XGBoost 61.46 70.36 22.02 34.22 85.65 64.51 

Prophet 52.90 45.00 125.02 73.24 18.45 67.02 

Random Forest 51.94 61.42 87.76 47.98 42.76 65.09 

TBATS 50.38 53.09 118.73 60.79 22.54 67.79 

 

Nesse novo cenário considerando um equilíbrio entre os 3 parâmetros, os modelos 

estatísticos clássicos obtiveram larga vantagem, sendo escolhidos o melhor modelo em todas 6 

subfamílias analisadas, como podemos observar na Figura 25. Para as famílias A e C, foi 

escolhido o ETS, para B e D, Holt-Winters aditivo, para a subfamília E, Holt-Winters 

Multiplicativo e para a F, SARIMA. 

 

Figura 25– Percentual de itens onde cada modelo obteve o melhor Score no cenário 3.  Fonte: Autoria própria, 2025. 
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5.3 Discussões 

Os resultados obtidos na aplicação empírica do artefato confirmam a premissa central 

deste estudo de que não existe um algoritmo universalmente superior para a previsão de 

demanda no contexto do PCP 4.0. A variação de desempenho observada entre as subfamílias e 

a mudança de ranking conforme a reconfiguração dos pesos do sistema multicritério evidenciam 

que a escolha do “melhor” modelo depende do contexto de decisão e das prioridades gerenciais, 

e não apenas da dimensão operacional da acurácia. 

Sob a lente da Teoria do Processamento de Informação Organizacional (OIPT), esses 

achados reforçam empiricamente o conceito de fit entre a incerteza da tarefa e a capacidade de 

processamento de informação da organização (GALBRAITH, 1974). Em termos de capacidade 

de processamento de informação, as séries com demanda mais errática e alta volatilidade geram 

maior necessidade de processamento de informação. Nesses casos, os modelos de Machine 

Learning e Deep Learning, como Prophet e N-BEATS, representam uma elevação da 

capacidade de processamento de informação, oferecendo melhor capacidade de captura de 

padrões complexos, ainda que com custo computacional significativamente maior. 

Por outro lado, para subfamílias com padrões mais estáveis ou com menor criticidade 

em termos de risco de ruptura, modelos estatísticos clássicos, como ETS, Holt-Winters e 

SARIMA, mostraram-se suficientes para atender às necessidades de processamento, oferecendo 

previsões aceitáveis com consumo de recursos muito inferior. Nesses casos, investir em 

modelos mais complexos implicaria em um aumento de custo computacional sem contrapartida 

proporcional em redução de incerteza, o que, segundo a OIPT, caracteriza desperdício 

organizacional e misfit entre tarefa e estrutura de informação. 

É nesse ponto que o componente multicritério do artefato passa a operar como um 

“agente” da OIPT no processo decisório. Ao integrar simultaneamente as dimensões de erro 

(MAPE), tempo computacional e estabilidade, o sistema de apoio à decisão transforma os 

resultados do treinamento e dos testes em um mecanismo explícito de balanceamento entre 

necessidade de processamento de informação e capacidade de processamento de informação. 

A possibilidade de configurar pesos diferentes para cada dimensão permite que o planejador 

ajuste, de forma declarada, o nível de capacidade de processamento que a organização está 

disposta a mobilizar para responder à incerteza observada em cada série, tornando o fit uma 

escolha gerencial parametrizável e auditável, em vez de uma consequência implícita da escolha 

de um único modelo. 
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Nos cenários em que a acurácia é priorizada (Cenário 1), o sistema multicritério 

aproxima a organização de uma estratégia de “maximização” da capacidade de processamento 

de informação, aceitando maiores tempos de processamento e maior complexidade algorítmica 

em troca de menor incerteza nas previsões. Na lógica da OIPT, o artefato atua como um 

mecanismo de aumento deliberado da capacidade de processamento de informação para lidar 

com um ambiente considerado como altamente incerto, típico de contextos em que o custo da 

falta de produto ou de perda de vendas é elevado. 

Já nos cenários que incorporam tempo e estabilidade (Cenários 2 e 3), o mesmo artefato 

passa a funcionar como um dispositivo de racionalização da capacidade de processamento. Ao 

penalizar modelos lentos ou instáveis, o sistema multicritério ajuda a evitar situações de 

“excesso” de capacidade de processamento, como o uso de modelos complexos em séries de 

baixa incerteza, que, de acordo com a OIPT, não contribuem para reduzir a incerteza residual e 

apenas adicionam custo e complexidade ao processo organizacional (GALBRAITH, 1974). Na 

prática, o sistema orienta a organização a operar mais próxima de uma fronteira eficiente entre 

esforço computacional e qualidade da informação, ajustando a estrutura de processamento às 

características informacionais de cada série. 

Dessa forma, o artefato proposto contribui para a literatura ao demonstrar 

empiricamente um mecanismo concreto pelo qual a OIPT pode ser operacionalizada em 

ambientes de PCP 4.0 e S&OP. O módulo multicritério não apenas seleciona modelos 

“melhores” do ponto de vista isolado da acurácia, mas atua como um mediador entre os 

requisitos de informação (incerteza, criticidade, volatilidade) e a capacidade de processamento 

(tipo de modelo, tempo de execução, complexidade computacional), promovendo um fit 

dinâmico e contextualizado entre a demanda e as prioridades da empresa. 
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6. Conclusão 

A gestão da cadeia de suprimentos contemporânea, impulsionada pela I4.0, exige que 

as organizações transitem de modelos reativos para sistemas preditivos e adaptáveis. A 

volatilidade dos mercados atuais e o advento do Big Data expuseram as limitações dos métodos 

tradicionais de previsão, exigindo a adoção de novas abordagens analíticas (HOFMANN; 

RUTSCHMANN, 2018). Este trabalho de conclusão de curso propôs-se a investigar essa 

lacuna, desenvolvendo e avaliando um artefato computacional alinhado aos princípios do PCP 

4.0, fundamentado metodologicamente no Design Science Research (DSR) (PEFFERS et al., 

2007) e teoricamente na Teoria do Processamento de Informação Organizacional (OIPT). 

O objetivo central desta pesquisa foi responder como a seleção de modelos de previsão 

de demanda pode ser otimizada considerando o trade-off entre precisão, tempo de 

processamento e incerteza. Para tanto, foi desenvolvido um sistema multicritério de suporte à 

decisão que orquestrou uma competição entre modelos estatísticos clássicos e algoritmos de 

Machine Learning e Deep Learning. A aplicação deste artefato em dados reais permitiu validar 

empiricamente os conceitos de ajuste (fit) organizacional. Os resultados corroboram a visão de 

que o desempenho não é absoluto, mas contingencial ao alinhamento entre a incerteza da tarefa 

e a capacidade de processamento de informação da organização (TUSHMAN; NADLER, 

1978). 

Nos testes realizados, observou-se que modelos de Machine Learning, especificamente 

o Prophet e N-Beats, demonstraram uma capacidade superior de reduzir a incerteza em itens de 

alta complexidade (Curva A). Para a subfamília C, a aplicação dessas técnicas resultou em uma 

redução do erro em comparação aos métodos estatísticos. Isso valida a premissa de que tarefas 

de alta incerteza demandam alta capacidade de processamento de informação, superando as 

limitações inerentes aos modelos lineares e estacionários. 

Contudo, a pesquisa também iluminou o custo oculto dessa sofisticação. A análise de 

eficiência demonstrou que modelos de Machine Learning podem ser ordens de magnitude mais 

lentos que métodos clássicos como o ETS e o Holt-Winters. Esse achado é crucial, pois a 

complexidade computacional e o tempo de execução são fatores críticos para a viabilidade 

prática da implementação de modelos preditivos em ambientes de negócios reais (KOLKOVÁ; 

NAVRÁTIL, 2021). O artefato provou seu valor ao identificar que, para itens de menor 

volatilidade, modelos estatísticos simples entregam resultados mais eficientes, evitando o 

desperdício de recursos e o excesso de processamento desnecessário (DAFT; LENGEL, 1986). 
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Uma das principais contribuições teóricas deste trabalho foi a operacionalização da 

OIPT no contexto do PCP. Ao demonstrar que a "melhor previsão" varia dependendo se o 

objetivo estratégico é a acurácia ou a eficiência, o estudo refuta a visão de que o modelo mais 

complexo é sempre o melhor. A fragmentação das vitórias reforça o conceito de equifinalidade 

e confirma achados recentes de que métodos híbridos e a combinação de previsões tendem a 

ser superiores a abordagens monolíticas em competições de larga escala (MAKRIDAKIS et al., 

2018; 2020). 

No entanto, é fundamental delimitar o escopo da aplicação da ferramenta desenvolvida. 

Deve-se reconhecer que o artefato atua estritamente como um Sistema de Apoio à Decisão 

(SAD) e não substitui a necessidade de um processo robusto de Planejamento de Vendas e 

Operações (S&OP). A previsão estatística ou algorítmica é apenas o ponto de partida; o 

resultado ótimo organizacional depende da integração colaborativa entre as áreas de Vendas, 

Marketing, Finanças e Operações, que aportam inteligência de mercado qualitativa não 

capturada pelos modelos matemáticos (KAHN, 2003; BRAU, 2023). O artefato serve, portanto, 

para reduzir a incerteza analítica, mas o consenso do plano de demanda permanece uma 

responsabilidade humana e processual. 

Como oportunidades para pesquisas futuras, sugere-se a expansão do repositório de 

modelos do artefato para incluir arquiteturas de Redes Neurais Recorrentes mais sofisticadas, 

como as LSTMs (Long Short-Term Memory), que são projetadas especificamente para capturar 

dependências de longo prazo em sequências temporais complexas (KOLKOVÁ; NAVRÁTIL, 

2021). Adicionalmente, recomenda-se a evolução do artefato para além da previsão de demanda 

pura, buscando sua integração horizontal com outras áreas do S&OP. Isso incluiria a conexão 

com módulos de gerenciamento de estoques, utilizando a métrica de incerteza do artefato para 

calibrar estoques de segurança dinâmicos, e com o planejamento de transportes, otimizando a 

malha logística com base na predição granular de volume. 

Em suma, este trabalho conclui que a transição para o PCP 4.0 não é apenas uma 

atualização tecnológica, mas uma evolução na capacidade de digitalização e inteligência 

organizacional (BUENO, 2020). O artefato validado serve como um protótipo dessa nova era, 

onde a precisão analítica e a eficiência operacional caminham juntas, guiadas pela inteligência 

humana apoiada por dados. 
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Apendice 

Resultados de todos os testes por item 

Item Modelo MAPE Tempo_Treino 
A Prophet 27.61646 120.0508 
A ETS 31.15595 0.231381 
A H-W s/ Trend 33.21133 0.017952 
A Holt-Winters Multiplicativo 33.41618 0.063829 
A TBATS 35.82466 127.9415 
A Random Forest 36.3631 32.34757 
A Holt-Winters Aditivo 36.48137 0.064827 
A N-BEATS 37.04203 59.98471 
A XGBoost 37.84699 20.46552 
A SARIMA 55.11998 0.385639 
A LightGBM 55.62847 10.095 
B Prophet 45.91068 119.8236 
B Holt-Winters Aditivo 47.81512 0.07679 
B ETS 51.84404 0.258404 
B Holt-Winters Multiplicativo 56.09227 0.067878 
B H-W s/ Trend 58.13908 0.021943 
B SARIMA 67.90665 0.566774 
B TBATS 74.35426 122.1303 
B N-BEATS 77.45307 43.13559 
B Random Forest 78.97987 109.3954 
B XGBoost 81.59653 24.49828 
B LightGBM 88.14408 11.8167 
C N-BEATS 27.70994 55.40091 
C ETS 28.18804 0.670641 
C Prophet 40.98833 153.2894 
C Holt-Winters Aditivo 51.13248 0.095464 
C TBATS 52.56336 114.4748 
C SARIMA 56.80234 2.653694 
C Random Forest 70.86907 119.9752 
C Holt-Winters Multiplicativo 73.68868 0.085553 
C XGBoost 82.39245 22.00214 
C H-W s/ Trend 83.44303 0.024962 
C LightGBM 92.58829 10.41121 
D Prophet 50.23982 139.6851 
D Holt-Winters Aditivo 50.32415 0.085742 
D Holt-Winters Multiplicativo 50.63842 0.093748 
D H-W s/ Trend 53.58031 0.018949 
D ETS 60.25541 0.448811 
D LightGBM 69.43826 12.74357 
D TBATS 69.85304 115.0513 
D Random Forest 73.95462 101.2436 
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D N-BEATS 76.48307 57.25959 
D SARIMA 76.69556 0.46985 
D XGBoost 91.90481 23.37494 
E Holt-Winters Multiplicativo 36.31198 0.069563 
E N-BEATS 40.39935 50.21722 
E H-W s/ Trend 46.99323 0.025078 
E ETS 47.99617 0.352618 
E TBATS 48.65051 108.2335 
E Random Forest 71.52436 83.90885 
E Prophet 71.99372 146.1705 
E Holt-Winters Aditivo 74.98879 0.075003 
E XGBoost 87.12414 21.5316 
E LightGBM 91.18439 10.91911 
E SARIMA 92.54983 0.633729 
F Prophet 33.26389 71.08122 
F Random Forest 36.80285 79.66143 
F TBATS 37.29781 124.5756 
F H-W s/ Trend 39.43416 0.01895 
F SARIMA 39.69241 0.759727 
F XGBoost 41.27108 20.2304 
F N-BEATS 42.12697 50.7786 
F LightGBM 44.51757 10.71429 
F Holt-Winters Multiplicativo 45.44737 0.172538 
F ETS 52.37288 0.297482 
F Holt-Winters Aditivo 58.79722 0.060837 

 

 

 

 

 

 

 

 


