
1 

 

 

FELIPE MAIA VASSALO 

VITOR CABEDA DE FARIA CASTRO 

 

 

 

Sistema de apoio à decisão para planejamento da produção baseado em previsão 

de demanda: estudo de caso aplicado em uma empresa de manufatura moveleira 

 

 

 

 

 

PROJETO DE GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO  

APRESENTADO AO DEPARTAMENTO DE ENGENHARIA INDUSTRIAL  

DA PUC-RIO, COMO PARTE DOS REQUISITOS PARA OBTENÇÃO 

DO TÍTULO DE ENGENHEIRO DE PRODUÇÃO 

 

 

 

 

Orientador: Rodrigo Goyannes Gusmão Caiado 

Co-orientador: Renan Silva Santos 

 

 

 

 

Departamento de Engenharia Industrial 

Rio de Janeiro, 24 de novembro de 2025. 

  



2 

 

AGRADECIMENTOS 

Agradecemos, primeiramente, às nossas famílias por acreditarem em nós ao longo de 

toda esta jornada. Seu apoio constante foi essencial para que conseguíssemos superar os 

desafios e concluir este trabalho com dedicação e serenidade. 

Aos amigos que fizemos durante nossa trajetória universitária, expressamos nossa 

profunda gratidão. Cada conversa, parceria, incentivo e experiência compartilhada 

contribuíram de forma significativa para o nosso crescimento pessoal e profissional. 

Estendemos nossos agradecimentos aos funcionários da PUC-Rio e, em especial, às 

equipes do Departamento de Engenharia Industrial, por proporcionarem um ambiente 

acadêmico acolhedor, enriquecedor e com todos os recursos necessários para o 

desenvolvimento desta pesquisa. 

Por fim, agradecemos aos nosso orientador, Rodrigo Caiado e coorientador, Renan 

Santos, por todo o apoio, disponibilidade e pelas valiosas orientações ao longo da elaboração 

deste trabalho. A dedicação e paciência de vocês foram fundamentais para que pudéssemos 

evoluir e aprimorar cada etapa deste TCC. 

  



3 

 

RESUMO 

Este trabalho desenvolve um artefato computacional para apoio à decisão no 

planejamento da produção, integrando modelos de previsão de demanda a ferramentas clássicas 

de Planejamento e Controle da Produção (PCP), com foco em uma empresa real do setor 

moveleiro escolar. A pesquisa, conduzida sob a metodologia Design Science Research (DSR), 

parte da identificação de limitações na prática atual da organização, cuja tomada de decisão era 

fortemente baseada na experiência dos gestores e pouco apoiada em dados estruturados. Para 

endereçar essa lacuna, foi concebida uma solução capaz de processar séries temporais, gerar 

previsões, calcular o Master Production Schedule (MPS) e avaliar impactos em estoques, 

capacidade produtiva e custos operacionais. 

O artefato desenvolvido estrutura-se em módulos integrados, abrangendo desde o 

upload e análise exploratória da série temporal até a geração automática da previsão, cálculo 

do MPS, análise de custo relevante total e diagnósticos visuais consolidados em um painel 

gerencial. A solução incorpora modelos estatísticos e de machine learning, explorando 

diferentes configurações de hiperparâmetros para selecionar o modelo mais adequado com base 

em métricas de acurácia. As previsões resultantes abastecem o módulo de PCP, que calcula 

estoques projetados, tamanhos de lote, início de ordens e ATP (Available to Promise), 

permitindo a simulação de cenários operacionais. 

A aplicação do artefato em dados reais da empresa demonstrou sua utilidade prática ao 

permitir maior previsibilidade da demanda, melhor organização das ordens de produção e 

diagnóstico de trade-offs entre custos de setup, manutenção e ruptura. Foram também 

conduzidas análises de sensibilidade que permitiram avaliar a resposta do sistema a variações 

de parâmetros produtivos e econômicos, reforçando a robustez do modelo. Por fim, o artefato 

foi avaliado por especialistas da empresa, que destacaram sua relevância prática, facilidade de 

uso e potencial de expansão para outros produtos e setores internos. Os resultados obtidos 

evidenciam que a integração entre previsão de demanda e PCP, mediada por uma ferramenta 

computacional interativa, que contribui de forma significativa para a tomada de decisões mais 

precisas e alinhadas às necessidades reais de negócio. 

Palavras-chave: Previsão de demanda; PCP; MPS; Machine Learning; Séries temporais; 

Design Science Research. 
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ABSTRACT 

This work develops a computational artifact to support decision-making in 

production planning, integrating demand-forecasting models with classical Production 

Planning and Control (PPC) tools, with a focus on a real company in the school furniture 

sector. The research, conducted under the Design Science Research (DSR) methodology, 

begins with the identification of limitations in the organization’s current practice, in 

which decision-making was strongly based on managerial experience and weakly 

supported by structured data. To address this gap, a solution was conceived capable of 

processing time series, generating forecasts, calculating the Master Production Schedule 

(MPS), and evaluating the impacts on inventory, production capacity, and operational 

costs. 

The developed artifact is structured into integrated modules, ranging from 

uploading and exploratory analysis of the time series to automatic forecast generation, 

MPS calculation, total relevant cost analysis, and consolidated visual diagnostics in a 

managerial panel. The solution incorporates statistical and machine learning models, 

exploring different hyperparameter configurations to select the most suitable model based 

on accuracy metrics. The resulting forecasts feed the PPC module, which calculates 

projected inventories, lot sizes, order releases, and ATP (Available to Promise), enabling 

the simulation of operational scenarios. 

The application of the artifact to real company data demonstrated its practical 

usefulness by enabling greater demand predictability, improved organization of 

production orders, and clearer diagnosis of trade-offs involving setup, holding, and 

stockout costs. Sensitivity analyses were also conducted to evaluate the system’s response 

to variations in production and economic parameters, reinforcing the robustness of the 

model. Finally, the artifact was evaluated by company specialists, who highlighted its 

practical relevance, ease of use, and potential for expansion to other products and internal 

sectors. The results indicate that integrating demand forecasting and PPC through an 

interactive computational tool contributes significantly to more precise and business-

aligned decision-making. 

Key words: Demand forecasting; PPC; MPS; Machine Learning; Time series; Design 

Science Research.  
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1 INTRODUÇÃO 

A Indústria 4.0 tem impulsionado mudanças significativas nos sistemas produtivos, com 

destaque para a integração de tecnologias digitais, inteligência artificial e análise de dados como 

meios de apoiar decisões estratégicas. A competitividade em ambientes de manufatura exige 

maior precisão na previsão de demanda e maior eficiência na gestão de estoques, fatores 

essenciais para reduzir desperdícios, atender com confiabilidade e otimizar recursos (Babaï; 

Arampatzis, 2025). 

No setor moveleiro, especialmente na fabricação de móveis escolares, esses desafios 

tornam-se ainda mais relevantes. A sazonalidade da demanda, marcada por períodos de pico 

como a volta às aulas, somada à diversidade de modelos e especificações, dificulta o 

planejamento da produção e compromete a adequação dos estoques. Em muitos casos, as 

decisões ainda são tomadas com base em métodos empíricos ou históricos simplificados, 

resultando em estoques excessivos ou insuficientes, que geram atrasos e perda de oportunidades 

de venda, impactando nível de serviço. 

A literatura mostra que a aplicação de algoritmos de aprendizado de máquina, do inglês 

machine learning (ML) em previsão de demanda tem produzido ganhos significativos de 

acurácia e capacidade preditiva em cadeias produtivas complexas (DOUAIOUI et al., 2024; 

KHEDR et al., 2024). Quando combinada com ferramentas clássicas de Planejamento e 

Controle da Produção (PCP), como o Planejamento Mestre da Produção, do inglês Master 

Production Schedule (MPS). Essa abordagem contribui para um alinhamento mais eficiente 

entre oferta e demanda, ao conectar previsões de consumo a decisões de produção e 

abastecimento (Polo-triana, 2024; Sattar et al., 2025). Apesar desses avanços, diversos autores 

apontam que a aplicação prática de modelos de ML ainda ocorre de forma isolada, com baixa 

integração aos sistemas operacionais de PCP e gestão de estoques, o que mantém uma lacuna 

entre a geração de previsões e a execução dos planos mestres de produção (Lima et al., 2021; 

Goltsos, 2022; Maier, 2022). Essa limitação reforça a necessidade de desenvolver artefatos 

híbridos que combinem a precisão dos modelos preditivos baseados em dados com a estrutura 

decisória dos modelos clássicos de PCP, tornando possível converter previsões acuradas em 

ações operacionais concretas no MPS e no controle de estoques. 
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Diante desse cenário, emerge o seguinte problema de pesquisa (PP): como desenvolver 

um modelo que converta previsões de demanda em decisões de planejamento e gestão de 

estoques, aumentando a eficiência e a confiabilidade operacional em uma empresa de 

manufatura moveleira? 

O estudo justifica-se, portanto, pela necessidade de aproximar os avanços teóricos sobre 

previsão e inteligência artificial da realidade de empresas do setor moveleiro. Do ponto de vista 

acadêmico, contribui ao propor uma abordagem integrada entre modelos de previsão baseados 

em Inteligência Artificial (IA) e ferramentas de PCP, campo em que ainda existem lacunas a 

serem exploradas. Sob a ótica prática, apresenta uma alternativa de apoio à decisão que pode 

resultar em redução de custos, maior confiabilidade nos prazos de entrega e maior alinhamento 

da produção às demandas de mercado. 

O objetivo geral deste trabalho é desenvolver um modelo de apoio à decisão para o 

planejamento inteligente de operações em uma empresa de manufatura moveleira, integrando 

previsões de demanda a ferramentas de PCP. Como objetivos específicos, busca-se:  

(i) elaborar e comparar diferentes modelos de previsão de demanda com base em 

modelos clássicos e de ML;  

(ii) selecionar o modelo mais adequado à série temporal apresentada pelo usuário;  

(iii) integrar o modelo escolhido ao MPS, possibilitando integrar previsão com 

gestão de estoque;  

(iv) desenvolver uma interface que possibilite avaliação dos resultados para tomada 

de decisões; 

(v) Avaliar o desempenho do artefato quanto à precisão, usabilidade e impactos no 

PCP em um caso real; 

(vi) Aplicação de combinação de métodos de segmentação de SKU’s com objetivo 

de trazer relevância a aplicação dentro do estudo de caso. 

A pesquisa é de natureza aplicada e fundamenta-se na metodologia Design Science 

Research (DSR), que tem como propósito a construção e avaliação de artefatos voltados à 

solução de problemas reais com base em fundamentos científicos (Dresch; Lacerda; Antunes, 

2015). O estudo busca desenvolver um artefato computacional de apoio à decisão que integre 

previsões de demanda obtidas por modelos de previsão à ferramenta clássica do Planejamento 

e Controle da Produção (MPS), que será validado através de um Estudo de Caso, empiricamente 
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e experimentalmente, através de conversas com especialistas da área e utilizando dados reais 

da empresa. A base de dados será extraída do sistema de gestão da empresa analisada, 

permitindo comparar modelos preditivos e incorporar o mais acurado ao artefato.  

Do ponto de vista teórico, a pesquisa contribui para solucionar um gap evidente na 

literatura, através da combinação de modelos de previsão que utilizem da Inteligência Artificial 

e o uso de ferramentas clássicas de gestão de estoque e avaliação da produção. Sob a ótica 

prática, oferece às empresas um instrumento digital que apoia decisões operacionais de forma 

automatizada e baseada em dados reais de demanda. Em termos metodológicos, o estudo 

demonstra a aplicabilidade da DSR na criação de soluções híbridas que unem a atualidade, com 

modelos de ML, os métodos clássicos, já conhecidos e amplamente utilizados, com a gestão da 

produção. 

Este trabalho está estruturado da seguinte forma: o Capítulo 1 apresenta a introdução, 

incluindo contexto, problema, objetivos e justificativa. O Capítulo 2 traz o referencial teórico, 

abordando os principais conceitos sobre as etapas de pré-processamento, processamento e pós-

processamento que foram usadas no desenvolvimento do artefato. O Capítulo 3 descreve a 

metodologia aplicada, passando por todos os pontos do desenvolvimento do projeto. O Capítulo 

4 apresenta os resultados e discussões sobre o protótipo criado e, por fim, o Capítulo 5 apresenta 

as conclusões do artefato desenvolvido. 
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2 REFERENCIAL TEÓRICO 

2.1 Segmentação e Priorização de SKU’s 

2.1.1 Clusterização (K-means) 

Clusterização é uma técnica de aprendizado não supervisionado utilizada para agrupar 

dados em conjuntos homogêneos, buscando maximizar a similaridade interna e minimizar a 

similaridade entre grupos (Beltrame; Fonseca, 2010). Essa abordagem é amplamente usada 

dentro de mineração de dados e análise preditiva, permitindo identificar padrões e tendências 

que auxiliam na tomada de decisão (IBM, 2023). 

Entre os métodos existentes, o K-means se destaca por sua simplicidade e eficiência. O 

algoritmo divide o conjunto de dados em k grupos, atribuindo cada grupo ao centroide mais 

próximo e recalculando as médias até que os grupos se estabilizem (BELTRAME; FONSECA, 

2010).  

Nos últimos anos, a aplicação do K-means em engenharia de produção tem se expandido 

significativamente, impulsionada pela digitalização dos processos industriais e avanço da 

indústria 4.0.  

2.1.2 Curva ABC 

A Curva ABC é uma ferramenta amplamente utilizada na gestão de estoques por 

permitir a classificação dos itens conforme sua relevância econômica e operacional. Baseada 

no Princípio de Pareto, a metodologia identifica que uma pequena parcela dos itens responde 

pela maior parte do valor movimentado, agrupando-os em três categorias: A, de maior 

importância; B, intermediária; e C, de menor impacto no valor total (Dias, 2015). 

Essa técnica possibilita aos gestores direcionarem seus esforços aos produtos mais 

significativos, otimizando o uso dos recursos e reduzindo custos operacionais (Ballou, 2006). 

A aplicação prática da ferramenta tem mostrado resultados expressivos. Em uma empresa do 

setor de combate a incêndio, a adoção da Curva ABC resultou em redução de 51% do capital 

investido em estoque, além de maior equilíbrio econômico e melhor utilização do espaço físico 

(Facchini; Silva; Leite, 2019). A técnica também contribui para a melhoria da eficiência 

logística e competitividade organizacional, evidenciando produtos com maior giro e 

lucratividade (Santa ana, 2021). 
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2.2 Modelos de Previsão de Demanda: Clássicos e Machine Learning  

2.2.1 Séries Temporais 

2.2.1.1 Conceito de Série Temporal  

Uma série temporal é uma sequência de observações registradas em intervalos regulares 

cujo propósito é identificar padrões do passado e projetar comportamentos futuros. Essas séries 

costumam apresentar componentes como tendência, sazonalidade, nível e ruído, além de 

dependência temporal capturada por medidas como a autocorrelação. Ao tratá-las como 

processos estocásticos, é possível formalizar propriedades estatísticas — média, variância e 

covariâncias ao longo de defasagens — e distinguir padrões estruturais de flutuações aleatórias 

(Hyndman e Athanasopoulos, 2024). 

No contexto industrial, séries temporais são fundamentais para identificar padrões 

ligados à demanda, produção, uso de máquinas e indicadores de qualidade. Sua análise permite 

otimizar recursos, aumentar a eficiência, antecipar flutuações e apoiar decisões em ambientes 

incertos. Em sistemas orientados por produção enxuta e dependente da demanda, previsões 

precisas são essenciais para reduzir estoques, evitar rupturas, manter o fluxo produtivo e 

garantir entregas confiáveis, reforçando a competitividade (Fatima e Rahimi, 2024). 

2.2.1.2 Principais Características 

Para compreender o comportamento de uma série temporal e interpretar corretamente 

seus padrões, é essencial reconhecer as características que definem sua estrutura ao longo do 

tempo. Cada série apresenta um conjunto próprio de propriedades que refletem o fenômeno 

estudado — algumas podem demonstrar uma tendência de crescimento ou queda, enquanto 

outras exibem padrões que se repetem periodicamente, ou ainda flutuações aleatórias sem 

regularidade aparente. A identificação desses elementos é fundamental para a escolha adequada 

do modelo de previsão e para a extração de informações relevantes sobre a dinâmica temporal 

dos dados (Hyndman e Athanasopoulos, 2024). 

A tendência representa o movimento de longo prazo da série, indicando crescimento, 

queda ou mudança estrutural ao longo do tempo. Ela não precisa ser linear e pode variar de 

direção em diferentes períodos. Identificá-la é fundamental, pois orienta a forma como os 

modelos são ajustados e interpretados. A sazonalidade corresponde a padrões que se repetem 
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em intervalos regulares, como meses, estações ou dias, geralmente associados a hábitos de 

consumo, clima ou eventos do calendário. Esse comportamento recorrente, como o aumento 

típico das vendas no Natal, precisa ser capturado pelo modelo para melhorar a precisão das 

previsões. O ruído, por sua vez, representa a parcela aleatória da série: variações irregulares e 

imprevisíveis que não seguem nenhum padrão estrutural. Ele decorre de choques momentâneos 

e fatores externos. Um bom modelo deve isolar esse componente, deixando resíduos 

essencialmente aleatórios e sem autocorrelação, indicando que toda a informação sistemática 

foi explicada (Hyndman e Athanasopoulos, 2024). 

Além disso, essas características representam os componentes fundamentais de uma 

série temporal. Para compreendê-los de forma mais detalhada e aplicá-los adequadamente aos 

modelos de previsão, é comum decompor a série em partes separadas, analisando 

individualmente o comportamento de cada uma. Essa decomposição permite distinguir a 

tendência, a sazonalidade e o ruído de forma mais clara, facilitando a interpretação dos padrões. 

A decomposição pode ser feita de forma aditiva ou multiplicativa, dependendo da relação entre 

as componentes e o nível da série. O modelo aditivo é mais apropriado quando a magnitude das 

flutuações sazonais e das variações ao redor da tendência não varia com o nível da série 

temporal. Já o modelo multiplicativo é mais indicado quando a variação sazonal ou cíclica é 

proporcional ao nível da série, o que é comum em séries econômicas (Hyndman e 

Athanasopoulos, 2024). 

Matematicamente, a decomposição aditiva e multiplicativa pode ser representada da 

seguinte forma: 

𝑦𝑡 =  𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 

Equação 1: Decomposição Aditiva da Série Temporal 

𝑦𝑡 =  𝑆𝑡 × 𝑇𝑡 × 𝑅𝑡 

Equação 2: Decomposição Multiplicativa da Série Temporal 

Por fim, a frequência de uma série temporal — isto é, o intervalo entre as observações, 

como diário, semanal, mensal ou anual — influencia diretamente o tipo de padrão que pode ser 

identificado e o horizonte de previsão possível. Séries com maior granularidade (como diárias 

ou horárias) tendem a capturar flutuações rápidas e comportamentos sazonais de curto prazo, 
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enquanto séries agregadas em períodos mais longos (mensais ou anuais) destacam tendências 

estruturais de maior duração. A escolha da frequência deve ser coerente com o objetivo da 

análise e com a disponibilidade de dados, garantindo a consistência temporal necessária para a 

aplicação de modelos de previsão confiáveis. No contexto industrial, manter uma frequência 

adequada e constante é fundamental para identificar variações reais de desempenho e evitar 

conclusões distorcidas sobre a demanda ou a produção (Hyndman e Athanasopoulos, 2024). 

2.2.2 Fundamentação Estatística 

2.2.2.1 Conceitos estatísticos básicos 

Antes da aplicação de métodos de previsão em séries temporais, é essencial 

compreender conceitos estatísticos fundamentais que possibilitam interpretar o comportamento 

dos dados e identificar irregularidades. As medidas, como média, mediana, variância e desvio 

padrão são amplamente utilizadas para descrever o centro e a dispersão de uma distribuição. A 

média representa o valor médio das observações, enquanto a mediana expressa o ponto central 

da amostra, sendo menos sensível à influência de valores extremos. A variância e o desvio 

padrão, por sua vez, quantificam o grau de dispersão em torno da média, indicando o quanto os 

dados se afastam de seu comportamento típico. O exame prévio dessas medidas permite 

identificar anomalias e compreender se a série apresenta comportamento estável ou variações 

que demandam tratamento específico (Montgomery; Runger, 1994). 

Uma das abordagens mais utilizadas para a identificação de valores atípicos é o método 

do intervalo interquartílico, do inglês Interquartile Range (IQR), que se baseia nos quartis da 

distribuição dos dados. O primeiro quartil (Q1) corresponde ao ponto em que 25% das 

observações estão abaixo, e o terceiro quartil (Q3) indica o ponto em que 75% estão abaixo. O 

intervalo interquartílico é então calculado como a diferença entre esses dois valores, servindo 

como medida robusta de dispersão para detectar possíveis outliers (Montgomery; Runger, 

1994). 

𝐼𝑄𝑅  = 𝑄3 − 𝑄1 

Equação 3: Intervalo Interquartílico 

A partir do intervalo interquartílico, definem-se os limites para a identificação de valores 

atípicos, do inglês outliers, que correspondem a observações que se distanciam 

significativamente do padrão central dos dados. Para determinar esses limites, considera-se que 
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um valor é classificado como outlier moderado quando está acima do limite superior (LS) ou 

abaixo do limite inferior (LI) obtidos a partir do intervalo interquartílico. As fórmulas 

correspondentes são apresentadas a seguir. Essa metodologia auxilia na detecção de 

observações discrepantes, permitindo a limpeza e preparação adequada das séries temporais 

antes da modelagem, o que contribui para análises mais consistentes e previsões mais precisas 

(Montgomery; Runger, 1994). 

𝐿𝐼  =  𝑄3 − 1,5 × 𝐼𝑄𝑅 

Equação 4: Limite Inferior do Método Interquartílico 

𝐿𝑆  =  𝑄3 + 1,5 × 𝐼𝑄𝑅 

Equação 5: Limite Superior do Método Interquartílico 

2.2.2.2 Propriedades e comportamentos das séries temporais 

Para a construção de modelos de previsão consistentes e adequados, é fundamental 

realizar uma análise aprofundada das propriedades estatísticas das séries temporais. Essa etapa 

permite compreender como os dados se comportam ao longo do tempo, identificando aspectos 

como estabilidade, dependência entre observações e variações de dispersão. A avaliação dessas 

características é essencial para selecionar transformações e métodos de modelagem coerentes 

com o tipo de série em estudo, evitando erros de especificação e garantindo resultados mais 

precisos (Hyndman e Athanasopoulos, 2024). 

A estacionariedade ocorre quando as propriedades estatísticas de uma série temporal 

não dependem do momento em que são observadas, ou seja, quando a média, a variância e a 

covariância permanecem constantes ao longo do tempo. Séries que apresentam tendência ou 

sazonalidade não são estacionárias, pois esses componentes fazem com que o comportamento 

da série se altere de forma sistemática entre os períodos. Já séries compostas apenas por ruído 

branco — flutuações aleatórias sem padrão — são estacionárias, visto que mantêm 

variabilidade constante e ausência de dependência temporal. Em alguns casos, séries com 

comportamento cíclico, mas sem tendência definida, também podem ser consideradas 

estacionárias, desde que os ciclos não possuam periodicidade fixa. Quando a série não apresenta 

estacionariedade, é comum aplicar técnicas de diferenciação (Δ), que removem tendências e 

tornam a série adequada para modelos baseados nesse pressuposto, como o ARIMA e suas 

variações (Hyndman e Athanasopoulos, 2024). 
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A autocorrelação é uma medida estatística que avalia o grau de dependência entre os 

valores atuais de uma série temporal e seus valores passados, também chamados de lags. Cada 

lag representa o número de períodos de defasagem entre duas observações sucessivas da série, 

sendo o lag 1 a comparação entre 𝑦𝑡 e 𝑦𝑡−1, o lag 2 entre 𝑦𝑡 e 𝑦𝑡−2, e assim por diante. Valores 

de autocorrelação próximos de 1 indicam forte dependência entre os períodos, enquanto valores 

próximos de 0 sugerem comportamento aleatório, característico de um ruído branco. Essa 

medida é fundamental para identificar padrões de persistência nos dados e auxiliar na escolha 

de modelos adequados de previsão. A fórmula utilizada para o cálculo da autocorrelação é 

apresentada a seguir (Hyndman e Athanasopoulos, 2024). 

𝑟𝑘 =
∑ (𝑦𝑡 − 𝑦)
𝑇
𝑡=𝑘+1 × (𝑦𝑡−𝑘 − 𝑦)

∑ (𝑦𝑡 − 𝑦)2
𝑇
𝑡=1

 

Equação 6: Equação de Autocorrelação 

A heterocedasticidade ocorre quando a variância de uma série temporal não permanece 

constante ao longo do tempo, indicando que os valores apresentam flutuações de amplitude 

variável entre os períodos. Em outras palavras, a dispersão dos dados depende do momento 

observado, o que reflete instabilidade na variabilidade da série. Esse comportamento é comum 

em séries econômicas e financeiras, que apresentam períodos de maior e menor volatilidade. Já 

a homocedasticidade caracteriza séries em que a variância é constante, tornando o 

comportamento dos erros mais previsível e adequado à aplicação de modelos estatísticos 

tradicionais. Identificar a presença de heterocedasticidade é essencial para definir 

transformações e métodos que estabilizem a variância e garantam a coerência dos resultados 

obtidos (Ashley, 2012). 

É possível também avaliar a intensidade dos componentes de tendência e sazonalidade 

presentes em uma série temporal, o que auxilia na compreensão do seu comportamento e na 

escolha dos modelos de previsão mais adequados. A partir da decomposição STL, a série é 

separada em três partes: tendência (𝑇𝑡), sazonalidade (𝑆𝑡) e resíduo (𝑅𝑡). Com base nessa 

estrutura, pode-se mensurar o quanto a série é explicada pela tendência e o quanto é explicada 

pela sazonalidade, utilizando medidas conhecidas como força da tendência (𝐹𝑇) e força da 

sazonalidade (𝐹𝑆). Esses indicadores variam entre 0 e 1, sendo valores próximos de 1 associados 

a séries com forte tendência ou sazonalidade, e valores próximos de 0 a séries que apresentam 
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comportamento mais aleatório. As fórmulas utilizadas para o cálculo dessas medidas são 

apresentadas a seguir (Hyndman e Athanasopoulos, 2024). 

𝐹𝑇 = max(0,1 −
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑇𝑡 + 𝑅𝑡)
) 

Equação 7: Força da Tendência em uma Série Temporal 

𝐹𝑆 = max(0,1 −
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑆𝑡 + 𝑅𝑡)
) 

Equação 8:Força da Sazonalidade em uma Série Temporal 

2.2.2.3 Avaliação Estatística das Séries Temporais 

Para compreender adequadamente o comportamento de uma série temporal e garantir a 

aplicação correta dos modelos de previsão, é fundamental realizar testes estatísticos e análises 

gráficas que permitam identificar suas principais características. Essa etapa possibilita verificar 

se a série apresenta propriedades como estacionariedade, homocedasticidade, normalidade dos 

resíduos e autocorrelação, além de avaliar a presença de tendências ou padrões sazonais. A 

combinação entre testes formais e inspeção visual fornece uma base sólida para a avaliação 

estatística da série, permitindo selecionar métodos e transformações que melhor representem 

seu comportamento real e assegurem maior precisão nas previsões. 

Para identificar as características de intermitência de uma série temporal e classificá-la 

conforme o padrão de ocorrência de sua demanda, são utilizadas duas métricas principais: o 

Intervalo Médio entre Demandas, do inglês Average Inter-Demand Interval (ADI) e o 

Coeficiente de Variação ao Quadrado, do inglês Squared Coefficient of Variation (CV²). O ADI 

representa o intervalo médio entre dois períodos consecutivos com ocorrência de demanda, 

enquanto o CV² mede a variabilidade relativa dos tamanhos das demandas não nulas. Esses 

indicadores permitem distinguir séries contínuas de séries intermitentes, caracterizando o grau 

de irregularidade dos dados. Valores elevados de ADI indicam longos períodos sem demanda, 

enquanto altos valores de CV² refletem grande variação entre as quantidades demandadas. A 

combinação desses parâmetros possibilita identificar o tipo de comportamento da série e definir 

o método de previsão mais apropriado. As fórmulas correspondentes ao cálculo do ADI e do 

CV² são apresentadas a seguir (Kaya, Sahin e Demirel, 2020). 
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𝐴𝐷𝐼  =  
∑ 𝑡𝑖
𝑁
𝑖=1

𝑁
 

Equação 9: Intervalo Médio entre Demandas 

𝐶𝑉2 =

(

 
√∑ (℮𝑖 −℮)

2
𝑁
𝑖=1

℮
 

)

  

Equação 10: Coeficiente de Variação ao Quadrado 

onde 𝑡𝑖 representa o tempo entre duas demandas consecutivas, 𝑒𝑖 o valor da demanda no 

período, 𝑒  a média das demandas não nulas e 𝑁 o número total de períodos analisados. 

A combinação entre as métricas ADI e CV² permite classificar as séries de demanda em 

quatro categorias distintas, de acordo com a frequência e a variabilidade das ocorrências. 

Quando os valores de ADI e CV² são baixos, a série é classificada como suave (smooth), 

indicando que as demandas ocorrem frequentemente e apresentam baixa variação entre os 

períodos. Séries com ADI alto e CV² baixo são denominadas intermitentes (intermittent), pois 

apresentam longos intervalos sem demanda, mas com quantidades relativamente estáveis 

quando ocorrem. Já as séries com ADI baixo e CV² alto são consideradas erráticas (erratic), 

caracterizadas por ocorrências regulares, porém com tamanhos de demanda muito variáveis. 

Por fim, séries com valores elevados de ADI e CV² são classificadas como irregulares ou 

instáveis (lumpy), refletindo longos períodos sem demanda e volumes altamente imprevisíveis 

quando ocorrem (Kaya, Sahin e Demirel, 2020). 

Essas quatro classificações podem ser visualizadas graficamente por meio de um 

diagrama de quadrantes, no qual o eixo horizontal representa o ADI e o eixo vertical o CV². 

Esse gráfico facilita a identificação do comportamento da série e auxilia na seleção do modelo 

de previsão mais adequado para cada tipo de padrão, permitindo uma análise mais assertiva do 

grau de intermitência (Kaya, Sahin e Demirel, 2020). 
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Figura 1: Classificação dos Padrões de Demanda Segundo os Valores de ADI e CV² 

Fonte: Kaya, Sahin e Demirel (2020). 

Para verificar se uma série apresenta homocedasticidade — isto é, variância constante 

dos erros — ou heterocedasticidade, é comum aplicar o teste de Breusch–Pagan, também 

conhecido como Lagrange Multiplier test (LM). Esse procedimento testa a hipótese nula (𝐻0) 

de homocedasticidade, segundo a qual a variância dos resíduos é constante, contra a hipótese 

alternativa (𝐻1), que indica a presença de heterocedasticidade, isto é, variância dependente das 

variáveis explicativas. O teste consiste em estimar uma regressão auxiliar dos resíduos ao 

quadrado sobre as variáveis independentes e calcular o estatístico LM, que segue uma 

distribuição qui-quadrado com graus de liberdade iguais ao número de regressores incluídos. 

Caso o valor do estatístico exceda o ponto crítico da distribuição, rejeita-se 𝐻0, concluindo-se 

que há evidências de heterocedasticidade. Dessa forma, o teste permite identificar se a série 

possui variância constante ou variância crescente e instável, auxiliando na escolha de 

transformações adequadas, como log ou Box–Cox, para estabilizar a variância (Greene, 2018). 

A heterocedasticidade condicional foi introduzida por Engle (1982) em seu modelo 

Autoregressive Conditional Heteroscedasticity (ARCH), no qual demonstrou que a variância 

dos erros em uma série temporal pode variar ao longo do tempo e depender de valores passados 

da própria série. Essa característica reflete a presença de períodos consecutivos de alta ou baixa 

variabilidade, especialmente comuns em séries econômicas e financeiras. De forma conceitual, 

o autor mostra que a variância condicional aumenta conforme o nível da série cresce, indicando 

que a dispersão dos dados não é constante. Esse comportamento pode ser identificado 

empiricamente pela relação positiva entre o nível médio e o desvio padrão da série, sugerindo 
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que a variância cresce junto com o nível — sintoma típico de heterocedasticidade condicional 

(Engle, 1982). 

O teste de Shapiro–Wilk, proposto originalmente por Shapiro e Wilk (1965), é um dos 

métodos mais reconhecidos para avaliar a normalidade de uma amostra. Sua formulação baseia-

se na correlação entre os dados observados e os valores esperados de uma distribuição normal 

teórica, sendo calculado por meio da razão entre a variância explicada pelos quantis esperados 

e a variância total amostral. O estatístico 𝑆𝑊 varia entre 0 e 1, onde valores próximos de 1 

indicam alta aderência à normalidade. Teoricamente, o teste verifica se a ordenação dos dados 

e suas covariâncias correspondem às de uma distribuição normal padrão, o que o torna 

altamente sensível a desvios de assimetria e curtose. 

𝑆𝑊 =
(∑ 𝑎𝑖

𝑛
𝑖=1 𝑋(𝑖))

2

∑ (𝑋𝑖 − 𝑋)
2

𝑛
𝑖=1

 

Equação 11: Teste de Shapiro-Wilk 

A avaliação da assimetria pode ser realizada por meio do coeficiente de assimetria (𝑎3), 

que quantifica o grau e o sentido de afastamento de uma distribuição em relação à simetria. De 

acordo com Costa Neto (2002), essa medida é obtida pelo quociente entre o momento centrado 

de terceira ordem (𝑚3) e o cubo do desvio padrão (𝑠3), conforme a expressão apresentada a 

seguir: 

𝑎3 =
𝑚3
𝑠3

 

Equação 12: Coeficiente de Assimetria  

Essa fórmula gera uma medida adimensional, permitindo comparações entre diferentes 

conjuntos de dados. Valores positivos de 𝑎3 indicam assimetria positiva, ou seja, distribuições 

alongadas à direita, enquanto valores negativos indicam assimetria negativa, com cauda 

alongada à esquerda. Quando o coeficiente é próximo de zero, considera-se a distribuição 

aproximadamente simétrica (Costa Neto, 2002). 

O teste de Dickey–Fuller Aumentado (ADF) é um teste de hipótese desenvolvido para 

verificar a presença de raiz unitária em séries temporais, sendo amplamente utilizado para 

avaliar a estacionariedade dos dados. A hipótese nula (𝐻0) assume que a série possui raiz 
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unitária e, portanto, não é estacionária, enquanto a hipótese alternativa (𝐻1) sugere que a série 

é estacionária. O teste baseia-se na estimação de um modelo autorregressivo, avaliando se o 

coeficiente associado ao termo defasado é estatisticamente diferente de zero. A versão 

aumentada (ADF) proposta por Dickey e Fuller (1979) inclui defasagens adicionais das 

diferenças da variável dependente para corrigir autocorrelações nos resíduos, tornando o teste 

mais robusto para séries reais. Assim, o ADF permite identificar se as flutuações da série 

decorrem de choques transitórios (estacionária) ou permanentes (não estacionária), sendo 

uma das ferramentas fundamentais na análise de séries temporais. 

O teste de Kwiatkowski–Phillips–Schmidt–Shin (KPSS), por sua vez, foi desenvolvido 

como um complemento ao teste ADF, invertendo suas hipóteses para uma análise mais 

abrangente da estacionariedade. Nesse teste, a hipótese nula (𝐻0) assume que a série é 

estacionária — ou seja, possui média e variância constantes ao longo do tempo — enquanto a 

hipótese alternativa (𝐻1) indica a presença de raiz unitária, caracterizando a não 

estacionariedade. O KPSS avalia se a variância do componente de tendência estocástica é 

estatisticamente diferente de zero; se for, rejeita-se a estacionariedade. Conforme Kwiatkowski 

et al. (1992), a combinação dos testes ADF e KPSS oferece uma estrutura mais robusta para 

determinar a natureza da série temporal: enquanto o ADF busca evidências contra a 

estacionariedade, o KPSS busca evidências a favor, permitindo uma interpretação cruzada dos 

resultados. 

2.2.3 Transformação de Séries Temporais 

A aplicação de transformações em séries temporais é uma prática amplamente adotada 

na modelagem estatística, visando melhorar o ajuste e a interpretabilidade dos modelos. 

Segundo Box e Cox (1964), transformar os dados pode auxiliar na estabilização da variância, 

na aproximação da normalidade dos erros e na linearização das relações entre variáveis, 

tornando o modelo mais adequado às suposições clássicas da análise de regressão e previsão. 

Lütkepohl e Xu (2009) destacam que transformações como a logarítmica podem reduzir a 

heterocedasticidade e, consequentemente, melhorar a precisão das previsões, desde que 

realmente promovam uma variância mais estável. Como reforçam Hyndman e Athanasopoulos 

(2021), transformar uma série é, portanto, uma maneira de facilitar seu manejo e potencialmente 

induzir melhores previsões. A decisão de aplicar ou não uma transformação deve ser avaliada 

a partir das características da série, algo que será discutido nas seções seguintes. 
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2.1.3.1 Transformação Box-Cox 

A transformação Box–Cox foi desenvolvida como um método estatístico para 

estabilizar a variância, normalizar os resíduos e linearizar relações entre variáveis em modelos 

de regressão e séries temporais. Em Box-Cox et al. (An Analysis of Transformations, 1964), os 

autores propõem uma família paramétrica de transformações que dependem de um parâmetro 

ℷ  , estimado via máxima verossimilhança. Essa abordagem busca encontrar uma transformação 

dos dados 𝑦 que satisfaça as suposições clássicas de modelos lineares — normalidade, 

homocedasticidade e aditividade — quando aplicadas às observações transformadas. A 

transformação é definida por: 

𝑦(ℷ) = ├
log(𝑦), 𝑠𝑒 ℷ=0

𝑦ℷ−1
ℷ
, 𝑠𝑒 ℷ≠0

 

Equação 13: Transformação Box-Cox 

Com esse procedimento, Box e Cox (1964) demonstram que a seleção de ℷ   deve ser 

feita de modo a maximizar a verossimilhança dos dados transformados, garantindo que o 

modelo resultante apresente variância constante e distribuição aproximadamente normal. Em 

termos práticos, quando o valor estimado de ℷ é próximo de zero, recomenda-se utilizar a 

transformação. Por outro lado, quando ℷ próximo de um, entende-se que a série não necessita 

de transformação, uma vez que a variância já é aproximadamente constante. Essa metodologia 

é amplamente aplicada na modelagem de séries temporais para tratar heterocedasticidade e 

assimetria, fornecendo uma base teórica robusta para a aplicação de transformações de potência 

em análises de previsão. 

É importante destacar que a transformação Box-Cox só é válida para observações 

estritamente positivas, uma vez que envolve operações de potência e logaritmo. Além disso, a 

interpretação dos resultados deve ser feita na escala transformada, sendo necessário reconverter 

os valores para a escala original após a previsão, aplicando a transformação inversa. Box e Cox 

(1964) também enfatizam que o uso da transformação deve equilibrar simplicidade e eficácia 

estatística, evitando distorções interpretativas excessivas. 
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2.1.3.2 Transformação Logarítmica 

A transformação logarítmica é amplamente utilizada na modelagem de séries temporais 

como uma forma de estabilizar a variância e reduzir a relação proporcional entre o nível da série 

e sua dispersão. De acordo com Hyndman e Athanasopoulos (2021), essa técnica é 

especialmente recomendada quando a amplitude das flutuações aumenta à medida que os 

valores da série crescem, característica comum em variáveis econômicas e de demanda. Ao 

aplicar o logaritmo, relações multiplicativas entre as observações tornam-se aditivas, o que 

facilita o ajuste de modelos lineares e melhora a aderência às suposições de homocedasticidade 

e normalidade dos resíduos. Lütkepohl e Xu (2009) destacam que o uso do log também pode 

contribuir para maior precisão preditiva em séries com variância não constante, desde que sua 

aplicação realmente estabilize a variabilidade dos dados. 

Conforme Hyndman e Athanasopoulos (2021), a transformação logarítmica deve ser 

aplicada apenas a séries estritamente positivas, uma vez que o logaritmo de valores nulos ou 

negativos é indefinido. Nesses casos, recomenda-se adicionar uma constante a toda a série, de 

modo a garantir a positividade antes da transformação. A aplicação é realizada ponto a ponto, 

substituindo cada observação 𝑦𝑡 por log (𝑦𝑡), o que comprime a escala dos valores maiores e 

expande a dos menores, reduzindo a amplitude relativa das variações. Após o ajuste do modelo 

e a obtenção das previsões no domínio transformado, os valores previstos devem ser 

reconvertidos à escala original por meio da função exponencial inversa, 𝑒𝑦𝑡  preservando a 

interpretabilidade dos resultados. 

2.2.4 Realizar previsões com séries temporais 

As previsões com séries temporais consistem em estimar valores futuros com base no 

comportamento histórico de uma variável observada ao longo do tempo. Esse tipo de análise 

utiliza métodos estatísticos capazes de identificar padrões, tendências e sazonalidades presentes 

na série, permitindo compreender a estrutura dos dados antes de projetar resultados futuros. De 

acordo com Hyndman e Athanasopoulos (2021), a etapa de exploração e compreensão dos 

dados é essencial para garantir previsões confiáveis, uma vez que características como 

tendência, sazonalidade e aleatoriedade influenciam diretamente na escolha do modelo mais 

adequado e na precisão dos resultados obtidos. 
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Dito isso, é importante destacar que existem diversos modelos de séries temporais, cada 

um com abordagens e estruturas próprias para analisar os dados. Um exemplo simples é o 

método naïve, que projeta os valores futuros exatamente iguais à última observação disponível, 

servindo como uma referência básica de desempenho (Hyndman & Athanasopoulos, 2021). 

Para compreender se o modelo está reagindo adequadamente à série temporal, é 

fundamental avaliar a performance das previsões geradas. Para isso, recomenda-se dividir a 

base de dados em duas etapas: treinamento e teste. A etapa de treinamento é utilizada para 

estimar os parâmetros dos modelos, enquanto a etapa de teste serve para avaliar a acurácia das 

previsões em dados não utilizados no ajuste. Essa separação permite verificar o desempenho do 

modelo em situações reais e reduzir o risco de superajuste, do inglês overfitting, que ocorre 

quando o modelo se adapta demais aos dados históricos e perde capacidade preditiva. Como 

ressaltam os autores, um modelo que se ajusta perfeitamente aos dados de treinamento não 

necessariamente realiza boas previsões, e o excesso de parâmetros pode ser tão prejudicial 

quanto a ausência de padrões sistemáticos. Assim, as métricas de acurácia tornam-se 

ferramentas essenciais para comparar o desempenho entre diferentes modelos e identificar 

aquele que apresenta o melhor equilíbrio entre ajuste e capacidade de previsão (Hyndman & 

Athanasopoulos, 2021). 

2.2.4.1 Modelos de previsão 

No campo da previsão de séries temporais, os modelos podem ser divididos em duas 

grandes categorias: modelos clássicos e modelos baseados em aprendizado de máquina. Os 

modelos clássicos, amplamente abordados por Hyndman e Athanasopoulos (2021), como os 

métodos de suavização exponencial (ETS) e os modelos ARIMA, baseiam-se em fundamentos 

estatísticos que descrevem relações temporais explícitas nos dados, utilizando parâmetros 

definidos a partir de propriedades como tendência e sazonalidade. Já os modelos de aprendizado 

de máquina, como Random Forest e redes neurais recorrentes, buscam capturar padrões 

complexos de forma não linear, aprendendo diretamente com os dados sem pressupor uma 

estrutura estatística específica. Dessa forma, enquanto os modelos clássicos oferecem maior 

interpretabilidade e simplicidade, os métodos de machine learning tendem a apresentar melhor 

desempenho em séries com comportamentos mais irregulares ou com múltiplas variáveis 

explicativas. 
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2.2.4.1.1 Modelos Clássicos 

2.2.4.1.1.1 Suavização exponencial (ETS) 

O modelo ETS (Error, Trend, Seasonal) é um método clássico de previsão baseado na 

suavização exponencial, em que as observações mais recentes recebem maior peso na 

estimativa dos valores futuros, enquanto as mais antigas têm influência decrescente. Esse 

modelo busca capturar três componentes fundamentais de uma série temporal — erro, tendência 

e sazonalidade — combinando-os de forma aditiva ou multiplicativa conforme o 

comportamento dos dados. Dessa maneira, o ETS é capaz de se ajustar a diferentes padrões, 

como séries com tendência linear, tendência amortecida ou sazonalidade regular. Uma das 

principais vantagens desse método é sua flexibilidade e simplicidade, permitindo gerar 

previsões rápidas e robustas sem exigir transformações adicionais ou pressupostos complexos 

de estacionariedade (Hyndman & Athanasopoulos, 2021). 

2.2.4.1.1.2 SARIMA 

Os modelos SARIMA (Seasonal Autoregressive Integrated Moving Average) 

representam uma abordagem alternativa à previsão de séries temporais, distinta da lógica do 

modelo ETS. Enquanto o ETS foca em decompor a série em seus componentes estruturais — 

tendência, sazonalidade e erro — o SARIMA busca capturar as relações de dependência 

temporal existentes entre as observações por meio da autocorrelação. Em outras palavras, esse 

modelo parte do princípio de que os valores futuros podem ser explicados pelos 

comportamentos passados da própria série, considerando tanto padrões de curto prazo quanto 

efeitos sazonais recorrentes. Essa capacidade de modelar a interdependência entre os dados 

torna o SARIMA especialmente adequado para séries que apresentam padrões repetitivos e 

correlação significativa entre períodos consecutivos. 

Para que o modelo SARIMA seja aplicado de forma adequada, é fundamental que a 

série temporal seja estacionária, ou seja, que apresente média e variância aproximadamente 

constantes ao longo do tempo. A estacionariedade garante que as relações de dependência 

observadas entre os períodos sejam estáveis permitindo que o modelo capture corretamente a 

estrutura de autocorrelação. No entanto, muitas séries reais apresentam tendência ou 

sazonalidade, o que viola essa condição. Para contornar esse problema, realiza-se o processo de 

diferenciação, que consiste em subtrair o valor atual pelo valor anterior, removendo variações 
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sistemáticas e estabilizando a série em torno de uma média. Essa diferenciação pode ser feita 

uma ou mais vezes, originando as chamadas primeira e segunda diferença, de acordo com o 

grau necessário para tornar a série estacionária (Hyndman & Athanasopoulos, 2021). 

O modelo SARIMA(p, d, q)(P, D, Q)\ₛ combina componentes autorregressivos (AR), de 

médias móveis (MA) e de diferenciação, tanto em sua forma regular quanto sazonal. Os 

parâmetros p, d e q representam, respectivamente, a ordem autorregressiva, o número de 

diferenças não sazonais e a ordem da média móvel. Já os parâmetros P, D e Q correspondem às 

mesmas características, porém aplicadas à componente sazonal da série, enquanto “s” indica o 

período da sazonalidade (por exemplo, 12 para dados mensais). A combinação dessas partes 

torna o SARIMA um dos modelos mais robustos e amplamente utilizados na previsão de séries 

temporais, especialmente quando os dados apresentam comportamento periódico e dependência 

temporal significativa (Hyndman & Athanasopoulos, 2021). 

2.2.4.1.2 Modelos de Machine Learning 

2.2.4.1.2.1 Croston 

O modelo Croston, proposto por Croston (1972), é amplamente utilizado para a previsão 

de demandas intermitentes, caracterizadas por longos períodos de ausência de demanda 

intercalados com valores positivos irregulares. Nessas situações, métodos tradicionais, como a 

suavização exponencial simples, tendem a gerar previsões imprecisas, pois não conseguem lidar 

adequadamente com os períodos de zero demanda (Bertolde & Xavier Jr., 2013). O método de 

Croston resolve esse problema ao decompor a série em dois componentes: o tamanho médio da 

demanda não nula (𝑍𝑡) e o intervalo médio entre ocorrências (𝑃𝑡). Ambas as variáveis são 

atualizadas por meio de suavização exponencial, conforme as equações: 

𝑍̂𝑡 = 𝛼𝑍𝑡 + (1 − 𝛼)𝑍̂𝑡−1 

𝑃̂𝑡 =  𝛼𝑃𝑡 + (1 − 𝛼)𝑃̂𝑡−1 

𝐷̂𝑡 =
𝑍̂𝑡

𝑃̂𝑡
 

Equação 14: Equações do Modelo Croston 
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Em que 𝛼 é o parâmetro de suavização, 𝑍𝑡 representa o tamanho da demanda quando 

ocorre uma venda, e 𝑃𝑡 é o intervalo entre duas demandas consecutivas. Assim, o valor previsto 

𝐷̂𝑡  representa a taxa média de demanda por período. De acordo com Kaya, Sahin e Demirel 

(2020), esse modelo e suas variações — como as de Syntetos-Boylan, Leven-Segerstedt e Vinh 

— apresentam bom desempenho em contextos de baixa frequência de consumo e alta 

variabilidade, sendo amplamente aplicados em previsões de itens de reposição e manutenção. 

(Croston, 1972; Bertolde & Xavier Jr., 2013; Kaya, Sahin & Demirel, 2020) 

O modelo SBA (Syntetos–Boylan Approximation) foi desenvolvido por Syntetos e 

Boylan (2001) como uma extensão do método de Croston, com o objetivo de corrigir o viés 

presente em suas estimativas. Estudos mostraram que o modelo original de Croston tende a 

superestimar a demanda, o que pode levar a níveis de estoque excessivos (Bertolde & Xavier 

Jr., 2013). Para reduzir esse problema, Syntetos e Boylan (2001) propuseram um fator de 

correção aplicado à fórmula original, ajustando a previsão pela expressão: 

𝐷̂𝑡 = (1 −
𝛼

2
)
𝑍̂𝑡

𝑃̂𝑡
 

Equação 15: Expressão do SBA 

De acordo com Kaya, Sahin e Demirel (2020), essa modificação reduz o viés e melhora 

a precisão das previsões em séries intermitentes, especialmente naquelas classificadas como 

intermittent e lumpy, segundo a categorização baseada no ADI e no CV². Assim, o SBA tornou-

se uma das variantes mais utilizadas do método de Croston, equilibrando simplicidade e maior 

acurácia em contextos de demanda irregular. 

O modelo TSB (Teunter–Syntetos–Babai) foi proposto como uma nova extensão do 

método de Croston, com o objetivo de aprimorar a modelagem da probabilidade de ocorrência 

da demanda ao longo do tempo. Diferentemente dos modelos Croston e SBA, que pressupõem 

uma taxa de demanda constante entre as ocorrências, o TSB introduz uma estrutura que atualiza 

não apenas o tamanho médio da demanda, mas também a probabilidade de uma nova demanda 

ocorrer em cada período (Teunter, Syntetos & Babai, 2011). Dessa forma, o método é capaz de 

reagir mais rapidamente a mudanças na frequência de demanda, tornando-se especialmente útil 

para séries intermitentes com períodos de inatividade prolongados. Matematicamente, o modelo 

é definido pelas seguintes equações: 
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𝑍̂𝑡 =  𝛼𝑍𝑡 + (1 − 𝛼)𝑍̂𝑡−1 

𝑃̂𝑡 =  𝛽𝑃𝑡 + (1 − 𝛽)𝑃̂𝑡−1 

𝐷̂𝑡 = 𝑃̂𝑡 × 𝑍̂𝑡 

Equação 16: Equações do TSB 

O TSB apresenta melhor desempenho em séries de demanda altamente irregulares, pois 

é capaz de reduzir o viés presente nas estimativas e ajustar-se a mudanças estruturais na 

frequência de ocorrência dos pedidos, superando os resultados dos modelos Croston e SBA em 

diversos contextos práticos (Teunter, Syntetos & Babai, 2011; Kaya, Sahin & Demirel, 2020). 

2.2.4.1.2.2 Random Forest 

O modelo Random Forest (RF), proposto por Breiman (2001), é um algoritmo de 

aprendizado de máquina baseado em árvores de decisão que pode ser aplicado tanto em 

problemas de classificação quanto de regressão. Sua principal característica é o uso do método 

ensemble, combinando diversas árvores geradas a partir de subconjuntos aleatórios dos dados 

e dos preditores — processo conhecido como bagging — para reduzir a variância e melhorar a 

precisão das previsões. O RF é especialmente útil para lidar com dados complexos e não 

lineares, sendo capaz de modelar relações intrincadas entre variáveis e identificar 

automaticamente os preditores mais relevantes. No contexto de séries temporais, o RF utiliza 

valores defasados da própria série como variáveis explicativas, permitindo capturar padrões de 

dependência temporal sem a necessidade de pressupor estacionariedade ou linearidade. Além 

disso, o Random Forest apresenta bom desempenho preditivo, mesmo em séries sazonais e não 

estacionárias, tornando-se uma alternativa robusta aos modelos clássicos como ARIMA e ETS 

(Breiman, 2001; Tyralis & Papacharalampous, 2017; Teixeira & Rodrigues, 2022). 

A aplicação do Random Forest em séries temporais segue uma lógica semelhante à de 

regressões tradicionais, em que o algoritmo aprende a relação entre a variável de interesse e 

seus valores passados. Conforme proposto por Tyralis e Papacharalampous (2017), o modelo é 

treinado a partir de um conjunto de observações 𝑥𝑡, utilizando variáveis defasadas como 

preditores. Assim, a previsão de um novo valor é obtida por meio de uma função 𝑔(∙) ajustada 

pelo algoritmo, expressa como: 
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𝑥𝑡 = 𝑔(𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑘) 

Equação 17: Algoritmo do Random Forest 

em que 𝑘 representa o número de defasagens consideradas. Cada árvore da floresta é construída 

a partir de subconjuntos aleatórios das observações e variáveis, e o resultado final é calculado 

pela média das previsões individuais das árvores, reduzindo o risco de overfitting. O 

desempenho do modelo depende diretamente da quantidade de defasagens escolhidas: poucas 

defasagens podem limitar a informação temporal disponível, enquanto um número excessivo 

reduz o tamanho do conjunto de treinamento e pode prejudicar a acurácia. Dessa forma, o 

Random Forest se mostra eficaz para previsões de curto prazo, capturando padrões recentes da 

série sem necessidade de suposições estatísticas rígidas (Tyralis & Papacharalampous, 2017). 

2.2.4.1.2.3 LSTM 

 O modelo Long Short-Term Memory (LSTM) é uma variação das redes neurais 

recorrentes (RNN) desenvolvida para aprimorar a capacidade dessas redes em capturar 

dependências de longo prazo em séries temporais. Enquanto as RNNs tradicionais sofrem com 

o problema do vanishing gradient, que dificulta o aprendizado de padrões distantes no tempo, 

o LSTM introduz um mecanismo de memória interna composto por células e portas de entrada, 

esquecimento e saída, que controlam o fluxo e a retenção das informações relevantes ao longo 

da sequência (Shi et al., 2015). Essa estrutura permite que o modelo mantenha e atualize 

informações de forma seletiva, preservando relações temporais mais complexas e melhorando 

o desempenho preditivo. Segundo Fischer e Krauss (2018), as redes LSTM demonstram 

desempenho superior aos modelos tradicionais de previsão, principalmente em séries não 

lineares, sazonais e de alta variabilidade, sendo amplamente aplicadas em contextos financeiros, 

meteorológicos e de previsão de demanda. 

 Matematicamente, a rede LSTM é composta por unidades chamadas células de 

memória, responsáveis por armazenar e atualizar informações relevantes ao longo do tempo. 

Cada célula contém três portas principais: porta de esquecimento (𝑓𝑡), porta de entrada (𝑖𝑡) e 

porta de saída (𝑜𝑡) que determinam, respectivamente, quais informações devem ser descartadas, 

atualizadas e transmitidas à saída. O estado interno da célula (𝑐𝑡) é atualizado com base nas 

seguintes equações: 
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𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  

𝑖𝑡 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑐̃𝑡 = tanh (𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑐̃𝑡 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡⨀tanh (𝑐𝑡) 

Equação 18: Equações do LSTM 

em que 𝑥𝑡representa a entrada no tempo 𝑡, ℎ𝑡 é a saída oculta, 𝜎 é a função sigmoide e ⨀ denota 

a multiplicação elemento a elemento. As matrizes 𝑊e os vetores 𝑏 correspondem aos pesos e 

vieses aprendidos durante o treinamento. Esse conjunto de operações permite ao modelo 

armazenar informações relevantes de longo prazo e evitar a perda de gradientes, o que o torna 

altamente eficaz em previsões de séries temporais com forte dependência sequencial (Shi et al., 

2015; Fischer & Krauss, 2018). 

2.2.3.2 Métricas de Acurácia 

A avaliação do desempenho dos modelos de previsão é uma etapa essencial para garantir 

a confiabilidade dos resultados obtidos. As métricas de acurácia permitem quantificar o erro 

entre os valores observados e os valores previstos, servindo como base para a comparação entre 

diferentes métodos de modelagem. De acordo com Hyndman e Athanasopoulos (2021), um erro 

de previsão representa a diferença entre o valor real e o valor estimado pelo modelo, 

expressando a parcela imprevisível da série temporal. Em termos matemáticos, o erro pode ser 

representado como 𝑒𝑇+ℎ = 𝑦𝑇+ℎ − 𝑦̂𝑇+ℎ|𝑇, em que 𝑦𝑇+ℎ é o valor observado e 𝑦̂𝑇+ℎ|𝑇 é o valor 

previsto com base nos dados até o tempo. Dessa forma, a análise dos erros de previsão permite 

compreender o quanto as estimativas do modelo se afastam dos valores reais, fornecendo uma 

medida objetiva de sua precisão. 
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2.2.3.2.1 MAE e RMSE 

Dentre as principais métricas de avaliação, destacam-se o Erro Absoluto Médio (MAE) 

e a Raiz do Erro Quadrático Médio (RMSE). O MAE representa a média dos valores absolutos 

das diferenças entre as previsões e os valores observados, indicando o erro médio cometido 

pelo modelo sem considerar o sentido da diferença. Sua fórmula é dada por: 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

 

Equação 19: Fórmula do MAE 

Esse indicador é simples e intuitivo, sendo amplamente utilizado por expressar o erro 

médio em unidades da própria variável analisada. Já o RMSE é uma métrica semelhante, porém 

eleva as diferenças ao quadrado antes de calcular a média e, em seguida, aplica a raiz quadrada, 

conforme a expressão: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2
𝑛

𝑡=1

 

Equação 20: Fórmula do RMSE 

Essa característica faz com que o RMSE atribua maior peso aos erros grandes, sendo 

mais sensível a desvios extremos. Enquanto o MAE fornece uma visão geral da magnitude dos 

erros, o RMSE é mais apropriado quando se deseja enfatizar a ocorrência de previsões muito 

distantes dos valores reais. (Hyndman & Athanasopoulos, 2021) 

2.2.3.2.2 MAPE e sMAPE 

Além das métricas baseadas em erros absolutos, também podem ser utilizadas medidas 

percentuais, que possuem a vantagem de serem livres de unidades e permitem comparar o 

desempenho da previsão entre diferentes séries. A mais comum é o Erro Percentual Absoluto 

Médio (MAPE), definido como: 
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𝑀𝐴𝑃𝐸 =  
100

𝑛
∑|

𝑦𝑡 − 𝑦̂𝑡
𝑦𝑡

|

𝑛

𝑡=1

 

Equação 21: Fórmula do MAPE 

O MAPE expressa o erro médio em termos percentuais, oferecendo uma interpretação 

direta da acurácia do modelo. No entanto, Hyndman e Athanasopoulos (2021) destacam que 

essa métrica pode se tornar indefinida quando 𝑦𝑡 = 0 e tende a apresentar valores extremos 

quando 𝑦𝑡 está próximo de zero. Como alternativa, os autores apresentam o Erro Percentual 

Absoluto Médio Simétrico (sMAPE), definido por: 

𝑠𝑀𝐴𝑃𝐸 =  
100

𝑛
∑
2× |𝑦𝑡 − 𝑦̂𝑡|

|𝑦𝑡| + |𝑦̂𝑡|

𝑛

𝑡=1

 

Equação 22: Fórmula do sMAPE 

Essa forma busca reduzir o impacto de valores muito baixos de 𝑦𝑡, tornando a 

comparação entre modelos mais equilibrada. Entretanto, mesmo o sMAPE pode se tornar 

instável em séries com valores próximos de zero, devendo ser utilizado com cautela. (Hyndman 

& Athanasopoulos, 2021) 

2.3 Planejamento da Produção: Impactos em Custos e Estoque 

2.3.1 MPS 

O Planejamento Mestre da Produção, do inglês Master Production Schedule (MPS) é 

uma ferramenta fundamental do Planejamento e Controle da Produção (PCP), responsável por 

transformar o plano agregado de produção em uma visualização que permite definir o que será 

produzido, em que quantidade e em qual período. O MPS atua como elo entre o planejamento 

estratégico e a execução operacional, garantindo o equilíbrio entre a demanda do mercado e a 

capacidade produtiva disponível (Slack et al 2009). 

O objetivo principal do MPS é traduzir as metas de produção em ordens realizáveis, 

assegurando o uso eficiente dos recursos e o atendimento aos prazos de entrega. Para isso, o 
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planejamento mestre detalha a produção de itens finais considerando prazos de fornecimento, 

restrições de capacidade e políticas de estoque (Tubino, 2009).  

Além de sua função técnica, o MPS também desempenha um papel estratégico, pois 

auxilia na tomada de decisões relacionadas à priorização de pedidos, à gestão de capacidade e 

à análise de cenários de demanda. Ao integrar informações de vendas, estoques e capacidade 

de produção, o MPS contribui para o aumento da confiabilidade nos prazos de entrega e para a 

redução de custos operacionais. (Slack et al., 2009). 

2.3.1.1 Estrutura e Funcionamento do MPS 

O Programa Mestre da Produção (MPS) materializa-se em um registro estruturado que 

organiza, por período, às previsões de demanda, pedidos firmes, estoque, ordens planejadas e 

disponibilidade para prometer (Slack, 2009). No cabeçalho do registro, constam o item 

planejado, o tamanho de lote, o lead time, o estoque inicial “em mãos” e o horizonte temporal 

(semanas/meses), informações indispensáveis para a coerência entre demanda e capacidade 

(Tubino, 2009). 

 

 

 

 

 

O estoque projetado é calculado como um saldo recursivo que agrega o estoque do 

período anterior, adiciona o que será recebido via MPS e subtrai a demanda relevante do 

período, assegurando visibilidade antecipada de faltas e sobras (Jacobs et al., 2018). A relação 

operacional pode ser escrita por período 𝑡: 

𝐸𝑠𝑡𝑜𝑞𝑢𝑒 𝑃𝑟𝑜𝑗𝑒𝑡𝑎𝑑𝑜𝑡 = 𝐸𝑠𝑡𝑜𝑞𝑢𝑒𝑡−1 + 𝑄𝑡𝑑𝑒.𝑀𝑃𝑆𝑡 −max {𝑃𝑟𝑒𝑣𝑖𝑠𝑡𝑜𝑡 , 𝐸𝑚 𝐶𝑎𝑟𝑡𝑒𝑖𝑟𝑎𝑡}  

Equação 23: Cálculo do Estoque Projetado por Período 

O campo Início MPS desloca a liberação das ordens para 𝑡 − lead time, garantindo 

disponibilidade na data planejada de recebimento e sincronizando o MPS com tempos de 

Figura 3: Modelos de Registro MPS Vazio 
Figura 2: Modelo de Registro MPS 

Fonte: Os autores (2025) 
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suprimento e fabricação (Krajewski, 2017). Essa defasagem é central para alinhar calendários 

de produção e abastecimento, reduzindo atrasos e retrabalhos derivados de disparos tardios 

(Tubino, 2009). 

O Available to Promise (ATP) representa a parte não comprometida do plano, isto é, o 

que pode ser prometido a novos pedidos sem alterar o MPS aprovado, sendo chave para a 

integração vendas-produção (Jacobs et al., 2018). Para um período com recebimento de lote do 

MPS, o ATP é usualmente calculado da seguinte forma: 

𝐴𝑇𝑃𝑡 = 𝑄𝑡𝑑𝑒.𝑀𝑃𝑆𝑡 − ∑ 𝑃𝑒𝑑𝑖𝑑𝑜𝑠 𝐹𝑖𝑟𝑚𝑒𝑠𝜏

(𝑝𝑟ó𝑥.𝑀𝑃𝑆)−1

𝜏=𝑡

 

Equação 24: Cálculo do ATP por Período 

A apresentação do ATP acumulado facilita a leitura comercial de “quanto ainda posso 

prometer” ao longo do horizonte, apoiando decisões de priorização e datas de entrega com 

menor necessidade de replanejamento (Slack, 2009). 

2.3.2 Custos 

O planejamento e controle da produção deve equilibrar três componentes fundamentais 

de custo: custo de preparação, do inglês setup e o custo de manutenção de estoque, que, 

somados, compõem o custo relevante total do sistema de produção (Tubino, 2009; Corrêa, 

2008). Esses custos representam as consequências econômicas das decisões de tamanho de lote 

e de nível de estoque e, portanto, orientam o ponto de equilíbrio entre eficiência produtiva e 

nível de serviço ao cliente (Krajewski, 2017). 

O custo de setup corresponde ao dispêndio associado à preparação de um lote de 

produção, englobando atividades como ajustes de máquina, limpeza, calibração, emissão de 

ordens e movimentações iniciais. Esse custo é representado pelo parâmetro 𝐴 e tende a diminuir 

à medida que se aumentam os tamanhos dos lotes, pois menos setups são necessários dentro de 

um mesmo horizonte de tempo (Tubino, 2009). O custo de setup pode ser definido como: 

𝐶𝑠𝑒𝑡𝑢𝑝 = 
𝐴 ×  𝐷

𝑄
 

Equação 25: Cálculo do Custo de Preparação (Setup) 
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O custo de manutenção de estoque (ou custo de manter) está associado ao capital 

empatado, ao espaço físico, às perdas por deterioração e ao custo de oportunidade. Esse custo 

é proporcional ao nível médio de estoque e é representado por 𝐻 (custo unitário de manter um 

item por período). O custo de manutenção de estoque pode ser expresso da seguinte forma: 

𝐶𝑚𝑎𝑛𝑡𝑒𝑟 = 
𝐻 ×  𝑄

2
 

Equação 26: Cálculo do Custo de Manter o Estoque 

A soma desses dois componentes resulta no custo relevante total (CRT), que representa 

o custo operacional associado a uma determinada política de lote (Tubino, 2009). O modelo 

clássico de lote econômico de compra define o CRT por: 

𝐶𝑅𝑇(𝑄) =  
𝐴 ×  𝐷

𝑄
+ 
𝐻 ×  𝑄

2
 

Equação 27: Cálculo do Custo Relevante Total no Modelo EOQ 

Em sistemas produtivos, quando a taxa de produção (p) é finita e maior que a demanda 

𝐷, o modelo do lote econômico de produção ajusta o custo de manutenção para refletir o estoque 

médio efetivo, resultando em: 

𝐶𝑅𝑇(𝑄) =  
𝐴 ×  𝐷

𝑄
+  𝐻 × (1 −

𝐷

𝑃
) ×

𝑄

2
 

Equação 28: Cálcuo do Custo Relevante Total no Modelo EPQ 

2.3.3 Estoque de Segurança 

O estoque de segurança é a reserva adicional de produtos mantida para proteger o 

sistema produtivo contra incertezas na demanda e no tempo de reposição. Seu objetivo é 

minimizar o risco de ruptura sem gerar excessos de capital imobilizado, garantindo o nível de 

serviço desejado (Slack, 2009). 

Nos modelos clássicos, o estoque de segurança é calculado a partir da variabilidade da 

demanda e do nível de serviço estabelecido, sendo determinado pela expressão geral: 
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𝑆𝑆 =  𝑧 × 𝜎𝐷  ×  √𝐿 

Equação 29: Cálculo Clássico do Estoque de Segurança 

Em que 𝑧 é o fator associado ao nível de serviço (obtido da distribuição normal 

padrão), 𝜎𝐷 é o desvio padrão da demanda e 𝐿 é o lead time (Tubino, 2009). Esse 

formato é adequado quando a incerteza é relativamente estável em termos absolutos, 

independentemente da magnitude da demanda (Tubino, 2009). 

Entretanto, ainda é possível calcular o estoque de segurança utilizando o 

Método do Coeficiente de Variação (CV), onde o desvio padrão (𝜎𝐷 ) é estimado como 

uma função da demanda prevista (𝜎𝑡 = 𝐶𝑉 × 𝐷𝑡), tornando o estoque de segurança 

sensível a oscilações da demanda mensal (OLSEN, 2015). Nesse caso, o estoque de 

segurança do período t é calculado como: 

𝑆𝑆 =  𝑧 × (𝐶𝑉 × 𝐷𝑡)  ×  √𝐿 

Equação 30: Cálculo do Estoque de Segurança Utilizando o Coeficiente de Variação 
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3 METODOLOGIA 

Este capítulo está estruturado em 07 seções. Na Seção 3.1, apresenta-se a metodologia 

adotada para condução do estudo de forma mais generalizada, justificando sua escolha e 

ressaltando sua adequação ao tema e aos resultados almejados. A Seção 3.2 aborda de forma 

mais detalhada quais são exatamente os métodos combinados dentro da metodologia Design 

Science Research (DSR). Na Seção 3.3, é realizada a definição do problema a ser abordado no 

caso, como contexto para o problema geral e os específicos bem como a explicitação de como 

eles serão alcançados. A Seção 3.4 aprofunda-se na revisão da literatura utilizada para 

elaboração do artefato, bem como toda estrutura e base para desenvolvimento do artefato. A 

Seção 3.5 detalha o processo de desenvolvimento do artefato proposto, os módulos inclusos, 

além de definir o fluxo durante utilização. A Seção 3.6 atua em trazer o perfil dos práticos que 

farão a avaliação empírica e analítica do artefato. Por fim, a Seção 3.7 apresenta o plano de 

disseminação da ferramenta para uso dentro do caso estudado. 

3.1 Design Science Research (DSR) 

Este trabalho adota como método de pesquisa a DSR, amplamente utilizada na 

Engenharia de Produção para a concepção de artefatos que solucionam problemas reais de 

natureza organizacional. A escolha do DSR se justifica pela natureza prática e aplicada do 

estudo, cujo objetivo central não é apenas descrever ou analisar um fenômeno existente, mas 

desenvolver um artefato que integre previsões de demanda às ferramentas de PCP. Como 

destacam Lacerda et al. (2013), a DSR diferencia-se de métodos tradicionais, justamente por 

ter como propósito principal a construção e avaliação de artefatos que atendam a classes de 

problemas relevantes na área. 

No contexto do presente estudo, o artefato a ser desenvolvido corresponde a uma 

interface para apoio à decisão no fluxo de gestão de estoques. O artefato desenvolvido no 

presente trabalho será validado a partir do teste usando dados históricos reais de demanda (2017 

a 2025) extraídos do sistema TOTVS da empresa, bem como avaliação dos práticos da área. 

A adoção do DSR é particularmente relevante neste trabalho, pois a pesquisa se insere 

em uma classe de problemas voltada ao planejamento e controle da produção, onde há 

necessidade de ferramentas que combinem rigor científico e aplicabilidade prática. O método 

possibilita estruturar o processo de forma sistemática, abrangendo desde a identificação do 

problema, o desenvolvimento do artefato e a sua avaliação, até a comunicação dos resultados à 
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Companhia. Dessa forma, garante-se que o conhecimento produzido seja cientificamente válido 

e, ao mesmo tempo, útil para apoiar as decisões organizacionais (Lacerda et al., 2013). 

3.2 Estrutura do DSR 

A DSR é uma abordagem multimétodo que integra técnicas qualitativas, quantitativas, 

projetuais e computacionais para apoiar a construção e avaliação de artefatos voltados à solução 

de problemas organizacionais. Segundo Lacerda et al. (2013), esse caráter híbrido permite unir 

rigor científico — por meio de fundamentos teóricos e métodos analíticos — e relevância 

prática, ao aplicar a solução em um contexto real. 

No presente estudo, diferentes métodos foram articulados conforme as necessidades do 

ciclo de design: métodos qualitativos para compreender o processo produtivo e o contexto da 

empresa; métodos quantitativos e computacionais para modelar dados históricos, gerar 

previsões e implementar o artefato; e métodos projetuais para estruturar o fluxo lógico da 

solução. A aplicação em estudo de caso garantiu a validação empírica da proposta. 

3.3 Conscientização do Problema 

A etapa de Conscientização do Problema consiste em compreender de forma estruturada 

o contexto organizacional no qual o artefato será aplicado, conforme preconiza a DSR. Nesta 

seção, descreve-se o processo metodológico utilizado para identificar e delimitar o problema 

que motivou o desenvolvimento da solução proposta. Para isso, recorreu-se inicialmente a 

técnicas qualitativas, como visitas técnicas, entrevistas exploratórias e observações diretas dos 

processos, complementadas por análises preliminares dos dados disponíveis. Além disso, uma 

revisão de literatura foi conduzida para situar o problema em relação aos desafios amplamente 

discutidos no âmbito do Planejamento e Controle da Produção (PCP) e da previsão de demanda. 

A combinação dessas abordagens permitiu estruturar o problema geral e os problemas 

específicos que orientam as etapas subsequentes deste estudo. 

3.3.1 Introdução: como o problema foi definido 

A etapa de Conscientização do Problema corresponde ao ponto de partida da DSR e tem 

como objetivo entender, de forma abrangente, a situação que motiva o desenvolvimento do 

artefato. Nessa fase inicial, o pesquisador deve buscar compreender a natureza do problema, 

seus impactos e as condições do ambiente no qual a solução será aplicada. A literatura destaca 

que essa compreensão pode emergir tanto da análise teórica quanto de evidências empíricas 
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obtidas no campo, permitindo identificar necessidades, limitações e oportunidades que 

justifiquem a elaboração de um artefato. Embora a DSR não prescreva um procedimento único 

para realizar essa aproximação inicial, a etapa de conscientização é fundamental para garantir 

que o problema seja adequadamente definido e que a solução proposta esteja alinhada às 

demandas reais do contexto estudado (Lacerda et al., 2013). 

Em consonância com essa orientação metodológica, este estudo adotou uma abordagem 

qualitativa inicial para a compreensão do problema. Foram realizadas visitas ao campo, 

entrevistas exploratórias com profissionais envolvidos no processo produtivo, análises 

documentais e uma avaliação preliminar dos dados históricos disponíveis. Esses 

procedimentos, utilizados de forma complementar, possibilitaram captar diferentes 

perspectivas sobre o funcionamento das atividades, identificar potenciais limitações dos 

métodos atualmente empregados e compreender como o problema se manifesta na prática. 

3.3.2 Entendendo os prejuízos da problemática nas Empresas 

Compreender como a previsão de demanda e o PCP afetam o desempenho das empresas 

é fundamental para contextualizar o problema deste estudo. Falhas de previsão — como 

estimativas imprecisas, métodos inadequados ou falta de rigor estatístico — impactam estoques, 

custos, capacidade produtiva e nível de serviço, sendo apontadas como uma das principais 

fontes de ineficiência industrial (Machines et al., 2024). Além disso, a dificuldade de integrar 

previsão, plano-mestre e necessidades de materiais compromete a consistência das decisões 

produtivas. 

A baixa qualidade das previsões de demanda muitas vezes decorre da dependência de 

julgamentos subjetivos, substituindo métodos quantitativos estruturados. Conforme Machines 

et al. (2024), muitas empresas ainda baseiam decisões em intuição, suposições e percepções 

individuais, aumentando a incerteza e reduzindo a confiabilidade do planejamento. Sem 

análises estatísticas adequadas, padrões como tendência e sazonalidade deixam de ser 

identificados, fazendo com que oscilações naturais sejam interpretadas como simples ruído. 

Como resultado, oportunidades de modelagem são perdidas, e o processo de previsão se torna 

menos preciso e menos eficaz para apoiar o PCP. 

Além disso, estimativas mal configuradas geram divergências entre o previsto e o 

realizado, criando desbalanceamentos que levam tanto ao excesso quanto à falta de produção, 

ou seja, uma instabilidade operacional. Esses desvios resultam em estoques elevados — com 
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aumento de custos e capital imobilizado — ou em rupturas e atrasos no atendimento. Ambos 

os cenários reduzem o nível de serviço e exigem ações corretivas, como setups adicionais, 

compras emergenciais ou ajustes de última hora, elevando os custos associados à baixa 

qualidade das previsões. geram custos adicionais associados à baixa qualidade das previsões 

(Machines et al., 2024). 

Diante desses problemas — que incluem previsões imprecisas, decisões empíricas e 

falta de integração com o PCP — torna-se necessário identificar, na literatura, alternativas que 

possam mitigar essas ineficiências. Assim, surge a seguinte questão norteadora da revisão 

teórica: quais soluções a literatura propõe para aprimorar a previsão de demanda e sua 

integração ao Planejamento e Controle da Produção, reduzindo ineficiências e melhorando o 

desempenho operacional em ambientes de manufatura? 

3.4 Sugestão de Soluções 

Com base no problema identificado e guiados pela questão de revisão de literatura — 

que busca compreender quais soluções são propostas para aprimorar a previsão de demanda e 

sua integração ao PCP — esta seção apresenta as abordagens metodológicas consideradas para 

a construção do artefato. Inicialmente, são discutidas as técnicas destacadas pela literatura como 

adequadas para enfrentar os desafios de previsão e planejamento. Em seguida, descreve-se a 

estrutura metodológica adotada, organizada em etapas de pré-processamento, processamento e 

pós-processamento. Por fim, detalha-se o processo de seleção da abordagem utilizada no 

estudo, estabelecendo os fundamentos que orientam o desenvolvimento do artefato apresentado 

no capítulo seguinte. 

Combinação de palavras-chaves com expressões booleanas “OR” e “AND” 

 

( "Artificial Intelligence" OR "Machine Learning" OR "Deep Learning" ) AND ( "Inventory 

Management" OR "Stock Control" OR "Warehouse Management" OR "Inventory 

Optimization" ) AND ( "Demand Forecasting" OR "Sales Forecasting" OR "Demand 

Prediction" ) AND ( "Manufacturing Industry" OR "Furniture Industry" OR "Woodworking 

Industry" OR "School Furniture" OR "Industrial Production" OR "Production Planning" ) 

AND ("Make-to-Order") AND ( LIMIT-TO ( DOCTYPE,"ar" ) OR LIMIT-TO ( 

DOCTYPE,"cp" ) ) AND ( LIMIT-TO ( SUBJAREA,"ENGI" ) OR LIMIT-TO ( 
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SUBJAREA,"BUSI" ) ) AND ( LIMIT-TO ( LANGUAGE,"English" ) OR LIMIT-TO ( 

LANGUAGE,"Portuguese" ) ) 

 

Tabela 1: Pesquisas e Strings de Busca 

Fonte: Os autores (2025) 

 

 

 

 

 

 

 

 

Além disso, ao longo do desenvolvimento deste estudo, foram consultadas diversas 

fontes pertencentes à chamada literatura cinzenta, composta tanto por obras clássicas quanto 

por estudos recentes que fundamentam a discussão teórica e metodológica. No total, foram 

utilizados 13 livros que abrangem temas centrais como Planejamento e Controle da Produção, 

gestão de estoques, previsão de demanda e análise estatística, fornecendo a base conceitual 

necessária para estruturar o artefato proposto. Complementarmente, foram analisados 30 artigos 

científicos, incluindo revisões sistemáticas, estudos aplicados e contribuições de referência em 

séries temporais, aprendizagem de máquina, heterocedasticidade e métodos econométricos. 

Esse conjunto diversificado de fontes permite alinhar o trabalho às práticas consolidadas da 

área, ao mesmo tempo em que incorpora avanços recentes da literatura, fortalecendo o rigor 

teórico e a atualidade da solução apresentada. 

O fluxo analítico de dados normalmente envolve três etapas fundamentais — pré-

processamento, processamento e pós-processamento — que estruturam a construção de 

modelos e análises confiáveis. O pré-processamento consiste na preparação da base, 

englobando limpeza, transformação, seleção e redução dos dados, com o objetivo de eliminar 

Figura 4: Diagrama Prisma 

Fonte: Os autores (2025) 
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ruídos, inconsistências e redundâncias. Essa etapa é considerada crítica porque, como destacam 

Ramírez-Gallego et al. (2017), a qualidade do pré-processamento determina diretamente o 

desempenho e a estabilidade dos modelos aplicados posteriormente, além de evitar que padrões 

espúrios comprometam a eficiência dos algoritmos. O processamento corresponde à aplicação 

das técnicas analíticas ou preditivas escolhidas, enquanto o pós-processamento envolve a 

interpretação dos resultados, a avaliação da performance e a verificação de sua utilidade prática, 

garantindo que as decisões finais se baseiem em evidências consistentes e alinhadas ao contexto 

estudado. 

À luz desse fluxo metodológico e considerando a necessidade de validar empiricamente 

o artefato proposto, emerge a pergunta do estudo de caso: como aplicar e avaliar, em uma 

empresa moveleira, um artefato que integra previsões de demanda às ferramentas de PCP, 

analisando seus impactos na operação e na tomada de decisão? 

3.4.1 Pré-Processamento 

No processo de pré-processamento, a base de dados foi inicialmente estruturada por 

meio do algoritmo de clusterização K-means na plataforma Microsoft Excel, técnica 

amplamente empregada para agrupar elementos com características semelhantes em conjuntos 

homogêneos. Para a aplicação do método, utilizou-se a quantidade de demanda como atributo 

de agrupamento e a distância euclidiana como métrica de similaridade, permitindo que os 

produtos fossem distribuídos em grupos de forma a minimizar a variabilidade interna em 

relação aos centróides, que representam o volume médio de cada cluster. Dessa forma, a 

clusterização possibilitou segmentar os itens em três categorias — alto, médio e baixo volume 

— organizando a base de maneira consistente antes da modelagem quantitativa (Beltrame; 

Fonseca, 2010). 

Além disso, sobre o grupo de alto volume, aplicou-se a classificação ABC, metodologia 

fundamentada no Princípio de Pareto que classifica itens conforme sua relevância econômica e 

operacional. Essa combinação de segmentação e priorização possibilitou identificar o Stock 

Keeping Unit (SKU) mais representativo do portfólio, direcionando a análise para os produtos 

de maior impacto (Dias, 2015). 

Após a identificação do SKU mais representativo, procedeu-se à avaliação estatística da 

série temporal correspondente, etapa essencial para fundamentar a escolha dos métodos de 

previsão mais adequados. Inicialmente, foram aplicadas métricas específicas para análise de 



44 

 

intermitência, tais como o ADI e o CV², conforme proposto por Kaya, Sahin e Demirel (2020). 

Essas medidas permitiram caracterizar a frequência de ocorrência das demandas e a 

variabilidade dos tamanhos das demandas não nulas, fornecendo uma visão preliminar do 

padrão de comportamento da série. Essa etapa antecede a seleção dos modelos preditivos 

porque orienta decisões sobre a necessidade de métodos voltados a séries intermitentes ou 

técnicas tradicionais para séries mais regulares. 

Além disso, foram conduzidos testes estatísticos para examinar propriedades estruturais 

da série temporal, garantindo compatibilidade entre suas características e os modelos que 

seriam posteriormente empregados. Para investigar heterocedasticidade, utilizaram-se o teste 

de Breusch–Pagan (Greene, 2018) e o modelo ARCH de Engle (1982), enquanto a normalidade 

foi avaliada por meio do teste de Shapiro–Wilk (Shapiro; Wilk, 1965) e complementada pelo 

coeficiente de assimetria (Costa Neto, 2002). A estacionariedade da série foi analisada com os 

testes ADF (Dickey; Fuller, 1979) e KPSS (Kwiatkowski et al., 1992), cuja combinação fornece 

um diagnóstico robusto sobre a presença de tendência estocástica ou raiz unitária. A aplicação 

conjunta desses procedimentos permitiu construir uma caracterização estatística sólida da série, 

oferecendo subsídios essenciais para a definição dos modelos de previsão utilizados no 

processamento. 

Por fim, avaliou-se também a intensidade dos componentes estruturais da série — 

tendência e sazonalidade — a fim de compreender seu grau de explicação e orientar a 

modelagem de forma mais precisa. Para isso, realizou-se a decomposição STL e mensurou-se 

a força da tendência (Fₜ) e a força da sazonalidade (Fₛ), indicadores que quantificam o quanto a 

variação da série é atribuída a cada um desses componentes. Esses índices, que variam entre 0 

e 1, auxiliaram na identificação de séries dominadas por estrutura forte ou por comportamento 

predominantemente aleatório, contribuindo para definir se modelos com tendência ou 

sazonalidade explícitas seriam recomendados (Hyndman & Athanasopoulos, 2024). 

Após as análises estatísticas da série, procedeu-se à etapa de transformações com o 

objetivo de aprimorar a tratabilidade dos dados e, consequentemente, a qualidade das previsões. 

Inicialmente, aplicou-se a transformação logarítmica, recomendada quando a série apresenta 

variância crescente com o nível dos valores, permitindo estabilizar a dispersão e linearizar 

relações multiplicativas. Além disso, utilizou-se o método de bootstrap, que consiste em gerar 

réplicas da série por meio da reamostragem dos resíduos, preservando a estrutura temporal e 

possibilitando uma avaliação mais robusta da incerteza associada às previsões. Essas 
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transformações combinadas resultaram em uma série mais bem comportada para a modelagem, 

reduzindo efeitos de escala, heterocedasticidade e variações bruscas antes da aplicação dos 

modelos de previsão (Hyndman & Athanasopoulos, 2021). 

3.4.2 Processamento 

A partir da fundamentação estatística realizada e das transformações realizadas nas 

séries, foi possível selecionar modelos de previsão compatíveis com as características 

identificadas na série temporal do SKU analisado. Para isso, os modelos foram organizados em 

dois grupos: métodos clássicos de séries temporais e modelos de ML, permitindo avaliar 

abordagens estruturais e algoritmos baseados em aprendizado. Em seguida, esses modelos 

foram comparados entre si por meio de métricas de acurácia aplicadas na fase de teste, conforme 

recomendado por Hyndman e Athanasopoulos (2021). Entre as medidas utilizadas, destacam-

se o MAE, RMSE, MAPE e sMAPE, que possibilitam avaliar o desempenho das previsões sob 

diferentes perspectivas. No entanto, a métrica principal adotada para julgamento dos modelos 

foi o MAE, por sua simplicidade interpretativa, robustez e adequação ao objetivo do estudo, 

permitindo determinar de forma clara qual método apresentava menor discrepância média em 

relação aos valores observados. Essa etapa consolidou a escolha do modelo mais apropriado 

para representar o comportamento futuro da série temporal analisada. 

A definição do pipeline experimental foi orientada por práticas recomendadas na 

literatura de otimização de modelos, especialmente no que diz respeito à exploração estruturada 

de hiperparâmetros. Conforme discutido por Bergstra e Bengio (2012), a avaliação sistemática 

de múltiplas combinações é essencial para identificar configurações que maximizam o 

desempenho dos modelos, uma vez que diferentes parâmetros podem ter impactos distintos na 

qualidade das previsões e não há garantia teórica de que um conjunto específico seja superior a 

priori. Assim, o pipeline foi construído para percorrer de forma abrangente variações nos 

parâmetros dos modelos clássicos — como SARIMA — e dos modelos de aprendizado de 

máquina — como Random Forest e LSTM — permitindo comparar empiricamente seu 

comportamento diante da série analisada. Após a execução dos experimentos, o desempenho 

dos modelos foi avaliado na etapa de teste seguindo os critérios propostos por Hyndman e 

Athanasopoulos (2021), o que possibilitou selecionar o método mais consistente com base em 

evidências empíricas. Dessa forma, a escolha final do modelo decorreu de um processo de 

experimentação guiado por princípios robustos de busca por hiperparâmetros, alinhado às 

melhores práticas de previsão e machine learning. 
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Com a seleção do modelo mais adequado e a geração das previsões finais, encerra-se a 

etapa de processamento. As previsões obtidas constituem a base para a próxima fase do estudo, 

na qual as projeções de demanda serão utilizadas como insumo para o planejamento e controle 

da produção (PCP).  

3.4.3 Pós-Processamento 

No estágio de pós-processamento, Tubino (2009), Corrêa e Corrêa (2008) e Krajewski, 

Ritzman e Malhotra (2017) enfatizam que, após gerada a estimativa de demanda, é necessário 

determinar níveis de estoque, tamanhos de lote e políticas de reposição capazes de equilibrar 

custos de setup, manutenção e eventuais faltas. O pós-processamento, portanto, atua como 

ponte entre a previsão e o MPS, traduzindo informações probabilísticas em parâmetros 

operacionais concretos. 

A definição do estoque de segurança é uma das etapas centrais desse processo, sendo 

amplamente tratada pela literatura como mecanismo de proteção contra incertezas. Os autores 

convergem no uso de abordagens baseadas na variabilidade da demanda ou do erro de previsão, 

associadas a um nível de serviço desejado — normalmente expresso por um fator z da 

distribuição normal. A estabilidade do sistema depende da calibragem adequada desse estoque 

de segurança, que deve considerar tanto o comportamento histórico da demanda quanto o lead 

time de reposição. Essa lógica fundamenta a solução adotada, em que o artefato calcula 

automaticamente o estoque de segurança variável por período com base no coeficiente de 

variação ou no desvio-padrão, conforme previsto na literatura (Slack; Chambers; Johnston, 

2009; Tubino, 2009). 

Outra dimensão essencial do pós-processamento é o dimensionamento de lotes, uma vez 

que o tamanho do lote afeta diretamente custos e disponibilidade de materiais. Os modelos 

clássicos, como lote econômico (EOQ/EPQ) e políticas Lote-a-Lote (L4L) ou Lote Fixo (FX), 

são amplamente utilizados para compatibilizar demanda, capacidade e custos operacionais. 

Esses modelos são incorporados ao artefato para definir, a partir da previsão e dos parâmetros 

fornecidos, as quantidades liberadas no MPS. Dessa forma, as decisões de reposição passam a 

refletir não apenas a demanda prevista, mas também os custos relevantes e a política de 

planejamento estabelecida pela empresa (Corrêa & Corrêa, 2008; Tubino, 2009). 
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3.5 Desenvolvimento do Artefato 

3.5.1 Arquitetura Geral do Artefato 

O artefato desenvolvido consiste em uma aplicação web construída em Python com a 

biblioteca Streamlit e disponibilizada em ambiente online através da hospedagem via Streamlit 

Cloud, integrando análise de dados, previsão de demanda e Planejamento e Controle da 

Produção (PCP). Sua arquitetura segue os princípios da Design Science Research (DSR), que 

orientam a construção de artefatos funcionais e avaliáveis. Para isso, o sistema foi organizado 

de forma modular, combinando páginas de interação com o usuário e módulos de 

processamento responsáveis pelas operações computacionais mais complexas (Dresch; 

Lacerda; Antunes, 2015). 

As páginas Streamlit formam a camada de interface do artefato e estruturam o fluxo 

operacional do usuário, que avança pelas etapas de upload da série temporal, análise 

exploratória, geração da previsão, definição dos parâmetros de PCP, construção do MPS e 

visualização dos resultados. Embora organizadas sequencialmente, essas páginas dependem de 

variáveis armazenadas em “st.session_state”, que garante a integridade do fluxo e impede que 

etapas posteriores sejam acessadas sem que as anteriores tenham sido concluídas. 

O processamento central é realizado pelos módulos “Estatistica.py”, “pipeline.py”, e 

“mps.py”. O primeiro produz diagnósticos da série temporal, como decomposição, tendência e 

detecção de outliers; o segundo executa e compara modelos de previsão, selecionando 

automaticamente o mais acurado; e o terceiro implementa o cálculo completo do MPS, 

incluindo estoque de segurança, políticas de lote, custos relevantes e indicadores como ATP. 

Esses módulos funcionam como componentes reutilizáveis chamados pelas páginas conforme 

necessário. 

O fluxo de dados percorre o artefato de maneira integrada: a série carregada é tratada e 

analisada, utilizada para geração da previsão e, posteriormente, combinada com os parâmetros 

definidos pelo usuário para produzir o MPS. Essa arquitetura modular e interativa permite que 

o artefato mantenha coerência entre previsão, planejamento e análise gerencial, além de atender 

às diretrizes da DSR ao possibilitar ciclos iterativos de construção e avaliação. 



48 

 

3.5.2 Descrição dos Módulos 

O artefato foi organizado em módulos funcionais correspondentes às páginas da 

aplicação Streamlit, complementados por rotinas de processamento implementadas em scripts 

de apoio. A comunicação entre os módulos ocorre por meio de variáveis armazenadas dentro 

do código, que garantem a integridade do fluxo e impedem o avanço para etapas posteriores 

sem que as anteriores tenham sido concluídas. 

O módulo de menu (Menu.py) atua como ponto de entrada do sistema, apresentando a 

aplicação e disponibilizando a navegação entre as páginas. Embora o usuário possa acessar 

diretamente qualquer aba pela interface, cada módulo contém verificações internas que exigem 

a existência de informações mínimas em sessão (por exemplo, série carregada ou previsão 

gerada) para liberar a execução das rotinas principais. 

O Módulo 01 – Upload da Série Temporal (01_Upload.py) recebe o arquivo de dados 

históricos, realiza a leitura, validação e padronização das colunas de data e quantidade e 

armazena a série. 

 Em seguida, o Módulo 02 – Série Temporal (02_Serie_Temporal.py) apresenta gráficos 

e estatísticas básicas, permitindo uma primeira inspeção visual do comportamento da demanda. 

Apresenta histograma e Box-Plot da série, assim como a decomposição da série para 

identificação de tendência, sazonalidade e qualidade dos dados.  

O Módulo 03 – Análise Detalhada (03_Analise_Detalhada.py), é um módulo opcional 

para aqueles que tenham interesse em aprofundar a análise da série temporal avaliada. Ele é 

apoiado pelas funções do script “Estatistica.py”, apresentando um viés mais técnico com 

objetivo de explorar mais as características da série temporal. 

O Módulo 04 – Previsão (04_Previsao.py), em conjunto com o script “pipeline.py”, 

executa o pipeline de modelos de previsão. Nessa etapa são testados diferentes métodos 

estatísticos e de ML, calculadas métricas de desempenho (como MAE, RMSE, MAPE e 

indicadores de viés) e selecionado automaticamente o modelo considerado mais adequado. A 

previsão resultante é armazenada e passa a funcionar como entrada principal para os módulos 

de Planejamento e Controle da Produção. Nesta etapa o usuário pode repetir o processo quantas 

vezes achar necessário.  
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O Módulo 05 – Inputs do MPS (05_Inputs_MPS.py) coleta os parâmetros necessários à 

construção do MPS. Nessa página, o usuário informa o estoque em mãos, os pedidos em 

carteira, política de lote, tamanho de lote, lead time, a configuração de congelamento do plano, 

se desejar, bem como os parâmetros econômicos para serem utilizados como base no cálculo 

do custo de setup, custo de manutenção, custo de ruptura do horizonte de planejamento. 

Também são definidos o método de cálculo do estoque de segurança (via coeficiente de 

variação ou desvio-padrão) e o nível de serviço desejado, que serão utilizados posteriormente 

no cálculo do MPS. Assim como na etapa anterior, o usuário poderá ajustar os parâmetros como 

quiser, simulando cenários e obtendo MPS a partir dele. 

O Módulo 06 – MPS (06_MPS.py), sustentado pelo script “mps.py”, integra a previsão 

selecionada aos parâmetros de PCP para gerar o programa mestre de produção. O artefato 

calcula as principais linhas do MPS, conforme o modelo clássico: demanda prevista (Previsto), 

pedidos em carteira, Estoque Projetado, quantidade MPS (lotes planejados), Início MPS 

(ajustado pelo lead time) e ATP acumulado. As rotinas internas consideram o que foi definido 

pelo usuário no módulo anterior, além de prepararem os dados para exportação em planilha 

eletrônica e para uso no módulo de síntese. 

Por fim, o Módulo 07 – Dashboard de Conclusão (07_Dashboard_Conclusao.py) reúne 

os resultados do artefato em uma visão gerencial. Essa página apresenta a comparação entre 

série histórica e previsão, o MPS consolidado, indicadores de acurácia e viés da previsão, 

comportamento de custos relevantes e análises sobre a capacidade de atendimento de novos 

pedidos com base no ATP. O módulo também oferece recursos de simulação, permitindo ao 

usuário avaliar o impacto de ajustes de parâmetros sobre o planejamento e os estoques. 

3.5.3 Fluxos do Usuário 

O fluxo operacional do artefato foi modelado utilizando duas abordagens distintas e 

complementares: Business Process Model and Notation (BPMN), para representar o processo 

de uso do sistema, e Unified Modeling Language (UML), para descrever a interação entre o 

usuário e as funcionalidades oferecidas. A combinação dessas representações permite visualizar 

não apenas a sequência lógica das atividades, mas também as dependências estruturais entre os 

módulos e as ações necessárias para transformar os dados históricos em decisões de 

planejamento da produção. 
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O diagrama BPMN mapeia todo processo do usuário dentro do artefato, desde o upload 

da série temporal até à visualização das recomendações geradas, evidenciando todos os 

caminhos e decisões que precisam ser tomadas.  

Complementarmente, o diagrama de casos de uso em UML representa a interação entre 

o ator principal, o usuário, e as funcionalidades centrais do sistema. O diagrama evidencia todas 

as ações realizadas pelo usuário, bem como as realizadas pelo sistema efetivamente. 

 

 

Figura 5: Mapeamento do Fluxo do Artefato 

Fonte: Os autores (2025) 

Figura 6: Diagrama de Caso de Uso 

Fonte: Os autores (2025) 
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A utilização conjunta de BPMN e UML oferece uma visão abrangente e estruturada do 

funcionamento do artefato, tornando explícitas as etapas percorridas pelo usuário, os requisitos 

de cada módulo e as atividades.  

3.6 Avaliação do Artefato 

A avaliação do artefato proposto concentrou-se em verificar, de forma rigorosa, sua 

utilidade prática e aderência às necessidades da equipe usuária, observando como a ferramenta 

seria incorporada às rotinas de trabalho e qual relevância agregaria ao processo decisório. Em 

consonância com Lacerda et al. (2013), a etapa de avaliação deve considerar critérios 

previamente definidos — como clareza dos objetivos, coerência entre o ambiente interno do 

artefato e o ambiente externo onde ele opera, e a capacidade de o artefato gerar resultados 

satisfatórios para o problema em questão. Assim, buscou-se avaliar se a solução desenvolvida 

era compreensível, operacionalizável e efetiva para os usuários, bem como se cumpria os 

requisitos funcionais esperados. Além disso, foram considerados aspectos qualitativos 

relacionados à experiência dos avaliadores, alinhando-se ao entendimento de que a validade 

pragmática do artefato depende tanto de seu desempenho técnico quanto da percepção de sua 

aplicabilidade no contexto real de uso. 

Para conduzir a avaliação observacional e experimental do artefato, foram realizados 

testes utilizando bases reais da empresa de manufatura estudada, de modo a verificar seu 

comportamento em condições próximas ao ambiente operacional. Esses testes foram 

acompanhados por dois avaliadores-chave: o gerente de TI, profissional com mais de 20 anos 

de experiência em soluções tecnológicas, responsável por analisar a robustez técnica, a 

arquitetura e a operacionalidade do artefato; e a gerente de operações, cuja atuação incluiu 

julgar a aplicabilidade prática da ferramenta no cotidiano do PCP, avaliando sua aderência às 

rotinas e sua capacidade de apoiar decisões de planejamento. Essa configuração segue as 

recomendações de Lacerda et al. (2013), que destacam a importância de envolver especialistas 

tanto no domínio tecnológico quanto no domínio do problema para fortalecer a validade 

pragmática do artefato e assegurar que ele seja eficaz e relevante no contexto real de uso. 

3.7 Conclusão e Comunicação dos Resultados 

A comunicação dos resultados do artefato seguiu os princípios da Design Science 

Research, priorizando acessibilidade, clareza e disseminação do conhecimento produzido. A 

solução desenvolvida foi disponibilizada ao público por meio de uma aplicação web hospedada 



52 

 

na plataforma Streamlit Cloud, acessível diretamente via URL (Link para acesso), permitindo 

que gestores, pesquisadores e demais interessados utilizem o protótipo sem necessidade de 

instalação local. Essa forma de disponibilização favorece a interação com as funcionalidades 

do sistema — como análise da série temporal, geração da previsão e cálculo do MPS — e amplia 

o alcance da ferramenta, tornando possível sua demonstração e aplicação em diferentes 

contextos. 

Além disso, o artefato foi apresentado formalmente à empresa parceira do projeto, 

viabilizando sua utilização prática como ferramenta de apoio às decisões de previsão de 

demanda e planejamento da produção. A disponibilização do sistema por meio da URL facilita 

sua incorporação em processos internos e permite que a organização experimente cenários, 

avalie parâmetros e explore o potencial do protótipo em integrar previsão e PCP. Por fim, os 

resultados e a arquitetura da solução foram comunicados à banca avaliadora durante a 

apresentação da monografia, consolidando a validação acadêmica do artefato e reforçando sua 

contribuição teórica, prática e metodológica. 

  

https://artefatotcc.streamlit.app/
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4 RESULTADOS E DISCUSSÃO 

4.1 Descrição do caso e da empresa 

A empresa analisada neste estudo de caso é uma indústria moveleira especializada na 

fabricação de mobiliário escolar. Seu portfólio é voltado principalmente para instituições de 

ensino, atendendo desde escolas e universidades até centros educacionais variados. Como 

empresa de manufatura, opera com processos produtivos estruturados e uma linha de produtos 

que exige padronização, eficiência operacional e capacidade de resposta à demanda. A escolha 

dessa organização permitiu explorar, de forma prática, os desafios e oportunidades do 

planejamento e controle da produção em um contexto real de manufatura seriada voltada ao 

setor educacional. 

Para compreender a fundo o funcionamento do caso e definir a forma de atuação, foram 

realizadas entrevistas e visitas técnicas à empresa, permitindo observar de perto a rotina da área 

de PCP. Essas interações evidenciaram uma lacuna significativa no planejamento futuro, que 

era conduzido majoritariamente com base na experiência dos profissionais. Embora a equipe 

possuísse conhecimento intuitivo sobre os movimentos sazonais do mercado ao longo do ano, 

as decisões não eram sustentadas por dados estruturados. Diante desse cenário, identificamos 

que a melhor contribuição seria o desenvolvimento de um artefato capaz de prever a demanda, 

oferecendo subsídios quantitativos para o planejamento. Além disso, integramos essa previsão 

a ferramentas de PCP, como o MPS, permitindo que os gestores realizassem um planejamento 

mais robusto, fundamentado em dados e alinhado às práticas modernas utilizadas no mercado. 

A delimitação do estudo concentrou-se nos principais produtos do portfólio associados 

ao ensino básico e superior, cuja demanda apresenta variações significativas ao longo do ano, 

especialmente em períodos de renovação de matrículas e reformas escolares. A empresa 

demonstrou interesse no projeto devido à necessidade de aprimorar sua capacidade de 

planejamento e reduzir incertezas relacionadas à compra de materiais, alocação de recursos e 

definição da capacidade produtiva. 

4.2 Aplicação do protótipo no caso 

Para demonstrar a aplicação prática do protótipo desenvolvido, selecionamos duas séries 

temporais a partir do pré-processamento descrito na metodologia. A primeira corresponde ao 

produto de maior relevância no faturamento da empresa, permitindo analisar a previsão de 

demanda de um item individual de alta representatividade. A segunda consiste em uma série 
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agregada formada pela combinação de três produtos distintos, construída com o objetivo de 

avaliar o comportamento conjunto desses itens ao longo do tempo. É importante destacar que, 

por se tratar de uma agregação, essa segunda série não foi submetida ao MPS, uma vez que a 

lógica do planejamento mestre de produção exige a análise individualizada dos produtos, 

conforme previsto em sua metodologia. 

4.2.1 Antes do uso do artefato 

Antes da utilização do artefato, partimos de uma base completa contendo toda a 

demanda registrada pela empresa desde 2017. Para organizar esse conjunto de dados e 

identificar padrões relevantes, aplicamos um processo de clusterização utilizando a 

metodologia k-means, agrupando os produtos em três categorias: baixo volume, com 259 

produtos; médio volume, com 194 produtos e alto volume, composto por 95 produtos. A partir 

desses agrupamentos, concentramos a análise nos itens de alto volume e aplicamos a 

classificação ABC para identificar os produtos mais representativos dentro desse cluster. Esse 

processo permitiu localizar o item de maior relevância no faturamento, classificado como “A” 

e identificado pelo código 7, que se destacou como o produto principal da empresa. A seguir, 

são apresentadas as imagens contendo os resultados obtidos pelas metodologias de 

clusterização e classificação ABC, respectivamente: 

 

 

Figura 7: Resultado da Clusterização 

Fonte: Os autores (2025) 

 

Figura 8: Resultado da Classificação ABC 
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Fonte: Os autores (2025) 

 

4.2.2 Primeiros passos dentro do artefato 

Para iniciar o uso do artefato, carregamos as duas séries temporais selecionadas — a 

série real correspondente ao principal SKU, reconhecida como série 1, e uma série temporal 

artificial criada exclusivamente para fins de experimentação — diretamente pelo módulo de 

upload da aplicação. Seguindo Lacerda et al. (2013), a utilização de dados artificiais é 

fundamental para realizar análises experimentais controladas, permitindo avaliar a robustez e o 

comportamento do artefato em cenários livres das imperfeições presentes nos dados reais. Após 

navegar pelo menu inicial, o usuário acessa a área destinada ao carregamento dos dados 

históricos, onde o artefato realiza automaticamente a padronização das colunas e armazena as 

informações necessárias para as etapas seguintes. Esse primeiro passo garante que ambas as 

séries estejam devidamente estruturadas no ambiente da aplicação, possibilitando avançar para 

as avaliações estatísticas, inspeções visuais e demais funcionalidades disponibilizadas nos 

módulos posteriores. 

 

 

 

 

 

 

 

 

 

 

4.2.3 Resultados – Análise Série Temporal e Previsão 

Na etapa seguinte, o artefato apresenta a visualização completa das duas séries 

temporais carregadas, permitindo uma leitura imediata das diferenças estruturais entre elas. A 

Figura 9: Carregamento da Série Temporal 

Fonte: Os autores (2025) 
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série artificial exibe um comportamento estável e bem-comportado, com tendência suave de 

crescimento, variabilidade moderada (CV de 17,3%) e ausência de valores extremos — 

características confirmadas tanto pelo gráfico de linha quanto pelas estatísticas descritivas, que 

mostram média e mediana praticamente iguais e nenhum valor faltante ou discrepante. Em 

contraste, a série real do SKU apresenta uma dinâmica bastante irregular, marcada por picos 

muito elevados, quedas abruptas e um coeficiente de variação extremamente alto (125,6%), 

refletindo sua assimetria e elevada dispersão. O gráfico mensal evidencia essa instabilidade, 

com oscilações intensas ao longo do período, e os valores de mínimo e máximo mostram uma 

amplitude expressiva. Essa visualização conjunta permite ao usuário compreender, desde o 

início, como a série artificial funciona como um cenário controlado para experimentação, 

enquanto a série real impõe desafios típicos de dados empresariais, reforçando a importância 

de comparar o desempenho do artefato em contextos contrastantes.  

A visualização estatística complementa a compreensão das diferenças estruturais entre 

as séries. Na série artificial, o histograma apresenta distribuição relativamente uniforme e 

concentrada, refletindo valores estáveis e ausência de caudas longas. O box-plot mensal reforça 

essa estabilidade, com intervalos interquartis próximos, poucas variações entre meses e 

inexistência de outliers relevantes. Os gráficos de tendência e sazonalidade mostram 

exatamente o comportamento esperado para dados sintéticos: tendência linear suave e 

sazonalidade regular, simétrica e altamente previsível. Em contraste, a série real exibe um 

histograma assimétrico e fortemente concentrado em valores baixos, acompanhado de uma 

longa cauda que se estende até demandas superiores a 9.000 unidades — evidência clara de 

picos abruptos e comportamento errático. O box-plot mensal torna essa instabilidade ainda mais 

evidente, com forte dispersão, presença de múltiplos outliers e uma variação expressiva entre 

meses. A tendência apresenta queda acentuada ao longo dos anos, enquanto a componente 

Figura 10: Análise Exploratória, Série Real x Série Artificial 

Fonte: Os autores (2025) 
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sazonal revela oscilações intensas e irregulares. Em conjunto, esses gráficos mostram como a 

série artificial funciona como referência controlada, enquanto a série real apresenta grande 

complexidade, elevada variabilidade e comportamento desafiador para modelagem preditiva. 

 

Além disso, o artefato identifica automaticamente outliers pelo método interquartílico 

(IQR), ainda na etapa de análise exploratória. Os resultados reforçam o contraste entre as séries: 

a série artificial não apresenta nenhum valor extremo, enquanto a série real possui seis outliers, 

todos associados a picos elevados de demanda. Essa verificação rápida de qualidade dos dados 

ajuda o usuário a reconhecer a maior instabilidade da série real antes de avançar para a etapa 

de modelagem. 

 

 

 

 

 

 

 

 

 

A seguir, o artefato disponibiliza a etapa de análise detalhada, um módulo opcional 

voltado para usuários que desejam aprofundar o diagnóstico estatístico da série temporal. Nessa 

página, o usuário pode ajustar parâmetros como a quantidade de lags utilizados nos cálculos de 

Figura 12: Identificação de Outliers, Série Real 

Fonte: Os autores (2025) 

Figura 13: Identificação de Outliers, Série Artificial 

Fonte: Os autores (2025) 

Figura 11: Análise Gráfica, Série Real x Série Artificial 

Fonte: Os autores (2025) 
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autocorrelação e nos testes formais. O artefato aplica três grupos principais de verificações: (1) 

tipo de demanda, utilizando as métricas ADI e CV² para classificar a série como regular, 

intermitente, errática ou irregular; (2) heterocedasticidade, avaliada a partir da relação entre 

nível e variação da série e de testes baseados em regressões auxiliares; e (3) assimetria e 

positividade, examinadas por meio do coeficiente de skewness e pela detecção de valores 

menores ou iguais a zero, que orientam a necessidade de transformações como log ou Box–

Cox. Nos resultados observados, a série artificial apresenta comportamento regular, baixa 

variabilidade relativa, assimetria praticamente nula e sinal de heterocedasticidade leve e estável. 

Já a série real exibe CV² elevado, forte assimetria positiva e variância crescente ao longo do 

tempo, sendo classificada como errática — um indicativo claro de maior complexidade e maior 

necessidade de transformações antes da modelagem preditiva. 

Na sequência da análise detalhada, o artefato apresenta diagnósticos adicionais 

relacionados à decomposição STL, testes de estacionariedade e recomendação de 

transformação Box–Cox. A força da tendência e da sazonalidade é estimada segundo Hyndman 

e Athanasopoulos (2021), permitindo ao usuário compreender a contribuição de cada 

componente na série. Em seguida, são aplicados os testes ADF e KPSS, que verificam 

estacionariedade sob hipóteses opostas e fornecem um diagnóstico combinado mais robusto, 

Figura 15: Análise Detalhada (Parte 1), Série Real x Série Artificial 

Fonte: Os autores (2025) 

Figura 14: Análise Detalhada (Parte 2), Série Real x Série Artificial 

Fonte: Os autores (2025) 
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conforme descrito no referencial teórico. Por fim, o artefato estima o parâmetro λ da 

transformação Box–Cox via máxima verossimilhança, indicando se a estabilização de variância 

é necessária. Nos resultados, a série artificial apresenta tendência forte (1.00), sazonalidade 

pronunciada (0.86) e valores de ADF e KPSS que confirmam não estacionariedade, além de um 

λ intermediário (0.63), sugerindo leve transformação. Já a série real exibe tendência fraca 

(0.40), sazonalidade baixa (0.13), confirmação de não estacionariedade pelos testes e λ muito 

próximo de zero (0.15), indicando alta necessidade de transformação para estabilizar a 

variância. 

Por fim, a análise detalhada apresenta os gráficos de autocorrelação (FAC) e 

autocorrelação parcial (FACP), que permitem identificar padrões de dependência serial na série. 

A FAC revela a persistência dos efeitos ao longo dos lags, enquanto a FACP mostra quais 

defasagens exercem influência direta, auxiliando na identificação de estruturas AR, MA ou 

ARMA/ARIMA. A série artificial exibe uma autocorrelação que decai lentamente, 

característica de séries não estacionárias com forte componente de tendência e sazonalidade. Já 

a série real apresenta correlações mais irregulares e dispersas, coerentes com seu 

comportamento errático e de alta variabilidade. Com base em todos os resultados obtidos na 

análise detalhada, o artefato gera automaticamente um conjunto de recomendações, indicando 

transformações, tipos de modelos mais adequados, tratamento de heterocedasticidade, 

necessidade de diferenciação ou suavização e cuidados com sazonalidade — orientando o 

usuário de forma prática sobre os próximos passos antes da etapa de previsão. 

 

 

 

Na etapa de Previsão, o usuário define os parâmetros que orientarão a geração dos 

modelos e das projeções. O primeiro ajuste disponível é o horizonte de previsão, que pode ser 

configurado para 6, 8 ou 12 meses, lembrando que horizontes mais longos tendem a reduzir a 

Figura 16: Análise Detalhada (Parte Final), Série Real x Série Artificial 

Fonte: Os autores (2025) 
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precisão das estimativas. Em seguida, o usuário pode ativar ou não diferentes formas de pré-

processamento, de acordo com as recomendações obtidas na análise detalhada anterior. Entre 

essas escolhas estão a aplicação da transformação logarítmica, indicada para séries com 

heterocedasticidade ou assimetria, e a utilização do bootstrap, que amplia a robustez da busca 

pelo melhor modelo ao gerar múltiplas réplicas da série temporal. O artefato também permite 

definir o número de réplicas utilizadas no bootstrap — quanto maior esse número, maior a 

chance de encontrar um ajuste superior, embora o processo se torne mais lento. O valor padrão 

definido pela aplicação é de 20 réplicas, configuração utilizada para todas as análises 

apresentadas. Ademais, para iniciar o processo de previsão, basta o usuário clicar em “Rodar 

previsão”, após escolher tais parâmetros. 

Na etapa de execução da previsão, o artefato testa automaticamente um conjunto de 

modelos e combinações de hiperparâmetros definidos em um grid estruturado. Os modelos 

avaliados incluem Croston, SBA, TSB, Random Forest, SARIMA e LSTM, cada um 

selecionado para refletir diferentes padrões identificados na análise detalhada. O grupo 

Croston/SBA/TSB foi incluído devido à alta variabilidade e ao comportamento errático da série 

real, características que tornam esses métodos adequados para demandas irregulares e 

intermitentes. O Random Forest contribui pela flexibilidade em capturar relações não lineares 

a partir de múltiplos tamanhos de defasagem. O SARIMA é testado por sua robustez em séries 

com estrutura temporal clássica, permitindo modelar dependências autorregressivas, sazonais e 

de médias móveis. Por fim, o LSTM foi incorporado por sua capacidade de aprender padrões 

complexos de longo prazo, sendo especialmente útil quando a série apresenta comportamento 

não linear, ruído elevado ou relação temporal de maior profundidade. 

Os hiperparâmetros de cada modelo foram definidos em faixas coerentes com a 

literatura e calibradas para equilibrar desempenho e custo computacional. No Croston, SBA e 

TSB, variam-se alphas e betas para diferentes graus de suavização; no Random Forest, testam-

se combinações de número de estimadores, profundidade máxima e lags; no SARIMA, o grid 

considera pequenas variações em (p,d,q) e (P,D,Q) para evitar superparametrização; e no 

LSTM, utilizamos uma arquitetura compacta — com número reduzido de neurônios e épocas 

suficientes para convergência — a fim de garantir boa performance sem comprometer o tempo 

de processamento. Assim, a previsão é construída sobre uma busca sistemática e equilibrada 
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entre modelos tradicionais e modernos, garantindo representatividade das características 

observadas nas séries.  

 

 

 

 

 

 

 

 

 

Ao rodar a previsão, o artefato executa automaticamente todos os modelos definidos e 

percorre cada combinação de hiperparâmetros nas fases de treinamento e teste, buscando aquele 

que produz o menor MAE dentro da amostra — métrica adotada para determinar o modelo 

campeão. Após encontrar o melhor ajuste, a aplicação apresenta ao usuário o modelo vencedor, 

seus hiperparâmetros e a previsão fora da amostra. Para a série real, o melhor desempenho foi 

obtido pelo SARIMA (2,0,0)(1,0,0,12), utilizando bootstrap na réplica 10, configuração 

coerente com sua elevada variabilidade e comportamento errático. Já na série artificial, o 

modelo campeão foi o SARIMA (0,1,0)(1,1,0,12), também rodado com bootstrap na réplica 

15, refletindo um cenário mais estável, com tendência e sazonalidade bem definidas que 

favorecem modelos clássicos e previsões mais consistentes. 

 

Figura 17: Etapa de Previsão 

Fonte: Os autores (2025) 

Figura 18: Resultado das Previsões, Série Real x Série Artificial 

Fonte: Os autores (2025) 
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Ao final da etapa de previsão, o usuário tem ainda a opção de baixar um arquivo 

contendo todos os experimentos realizados, permitindo consultar cada combinação de modelo 

e hiperparâmetro testada pelo artefato. Além disso, apresenta-se a seguir duas tabelas com os 

melhores desempenhos dos demais modelos de previsão avaliados para cada uma das séries: 

Modelo de previsão Pré-processamento Hiperparâmetros MAE 

Sarima Bootstrap (2,0,0)x(1,0,0,12) 36,41 

Croston Bootstrap  = 0,5 199,17 

SBA Bootstrap  = 0,5 137,45 

TSB Bootstrap  = 0,5;  = 0,1 199,17 

Random Forest Bootstrap 

N_estimators= 200; 

Lags = 1...12; 

Max_depth = None 

137,50 

LSTM Logaritmo 

Window = 12; epochs = 30; 

Batch = 16; 

Units = 64 

252,64 

Tabela 2: Melhores resultados para cada modelo na série real 

Fonte: Os autores (2025) 
 

Modelo de previsão Pré-processamento Hiperparâmetros MAE 

Sarima Bootstrap (0,1,0)x(1,1,0,12) 0,32 

Croston Bootstrap  = 0,5 0,56 

SBA Bootstrap  = 0,1 6,97 

TSB Bootstrap  = 0,5;  = 0,1 0,56 

Random Forest Bootstrap 

N_estimators= 200; 

Lags = 1...12; 

Max_depth = None 

0,65 

LSTM Bootstrap 

Window = 6; epochs = 30; 

Batch = 16; 

Units = 64 

0,51 

Tabela 3: Melhores resultados para cada modelo na série artificial 

Fonte: Os autores (2025) 
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 Assim, para avançar no fluxo da aplicação, basta clicar em “Salvar previsão”, 

garantindo que o modelo campeão e suas estimativas sejam registrados. Somente após esse 

passo a próxima etapa é habilitada, permitindo que o usuário utilize os resultados para dar 

continuidade ao planejamento de produção (PCP) dentro das ferramentas integradas do artefato. 

4.2.4 Resultados – Gestão de estoque 

A aba Inputs do MPS reúne todos os parâmetros necessários para que o usuário 

configure o MPS de acordo com as características operacionais do item analisado. É nessa etapa 

que o artefato recebe as informações fundamentais para gerar o MPS, permitindo que políticas 

de lote, estoque inicial, pedidos firmes, horizonte congelado e parâmetros de custo sejam 

definidos antes da execução do cálculo. No cenário base utilizado neste trabalho, o item 

planejado é a Cadeira Escolar Adulto, com política de lote fixo e tamanho de lote de 500 

unidades, acompanhado de um estoque inicial de 150 unidades. Essas informações constituem 

a configuração padrão do artefato e orientam a geração do plano apresentado nos cenários 

seguintes. 

 

 

 

 

 

 

  

Figura 19: Inputs Operacionais MPS – Cenário Base 

Fonte: Os autores (2025) 
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O usuário também pode configurar parâmetros relacionados ao estoque de segurança, 

definindo se usará o cálculo variável (com base no coeficiente de variação ou desvio padrão) 

ou estático, seguindo o nível de serviço determinado. No cenário base, ativamos o estoque de 

segurança automático, utilizando o método do coeficiente de variação, a uma taxa de 15 % 

demanda/erro. 

 

Figura 20: Estoque de Segurança – Cenário Base 

Fonte: Os autores (2025) 

Além disso, o sistema oferece a possibilidade de ativar um período de congelamento do 

horizonte, impedindo alterações nas primeiras semanas ou meses do planejamento. Para os 

resultados apresentados, essa opção foi mantida desativada no cenário base. 

A aba também permite a edição dos pedidos firmes já em carteira, que influenciam 

diretamente a necessidade líquida e o momento em que as ordens são liberadas. No cenário 

base, os pedidos registrados contemplam o período de setembro de 2025 a fevereiro de 2026, 

com valores entre 80 e 150 unidades por mês, refletindo uma demanda institucional típica do 

setor de interesse.                                                                          . 

 

Figura 22: Pedidos firmes – Cenário Base 

Fonte: Os autores (2025) 

  

Figura 21: Congelamento de Horizonte – Cenário Base 

Fonte: Os autores (2025) 
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Por fim, o usuário insere os parâmetros econômicos utilizados posteriormente na análise 

de custos, incluindo o custo de setup (A = R$ 300), a taxa de produção (p = 2.500 un/mês), o 

valor unitário do item (R$ 100), o custo de manter estoque (R$ 2,50 por unidade/mês) e o custo 

de falta (R$ 30/unidade). Esses valores compõem integralmente o cenário base e funcionam 

como referência para todas as análises de sensibilidade desenvolvidas nas seções seguintes. 

 

Figura 23: Parâmetros de Custos – Cenário Base 

Fonte: Os autores (2025) 

Todo esse conjunto de informações forma a base sobre a qual o artefato constrói o MPS, 

permitindo que o usuário visualize o impacto de diferentes configurações nos resultados 

operacionais e econômicos do planejamento. Ao finalizar o cadastro de todas as informações o 

usuário deve clicar no botão “Salvar inputs do MPS”, que retornará a seguinte mensagem: 

 Essa mensagem mostrará que o usuário está pronto para seguir para visualização do 

MPS e, por fim, as recomendações geradas automaticamente com base em tudo que foi 

registrado dentro do artefato ao longo do seu processo. 

Figura 24: Mensagem de Confirmação 

Fonte: Os autores (2025) 
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 Ao seguir para a página seguinte, o usuário consegue visualizar o quadro efetivamente 

com tudo que foi definido no módulo anterior. Para o cenário base construído, chegamos no 

seguinte plano de produção: 

 Dentro desta mesma página, o usuário poderá observar quais foram os parâmetros 

aplicados para construção do MPS, aqueles definidos na página anterior. Bem como exportar o 

MPS gerado em formato de planilha eletrônica. Após validação completa do MPS, usuário 

poderá seguir para conclusão do artefato, que falaremos na próxima seção. 

4.2.5 Resultados – Recomendações 

A aba de Recomendações tem como objetivo apresentar ao usuário um painel 

consolidado de diagnóstico, permitindo interpretar rapidamente os resultados gerados pelo 

artefato e tomar decisões embasadas tanto na previsão quanto no MPS. Esse painel funciona 

como um ambiente de apoio à decisão, reunindo informações sobre acurácia, viéses, custos, 

capacidade de atendimento (ATP) e impactos de alterações paramétricas. A seguir, descrevem-

se os principais resultados exibidos em cada uma das subseções deste módulo, acompanhados 

das respectivas visualizações.  

Figura 25: MPS - Cenário Base 

Fonte: Os autores (2025) 
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A primeira parte apresenta o desempenho do modelo de previsão selecionado pelo 

artefato como o mais adequado. O sistema exibe o modelo campeão, seus parâmetros ajustados 

e o comportamento da previsão frente aos valores reais da série. O gráfico resultante permite 

avaliar visualmente a aderência entre previsto e realizado, destacando oscilações, períodos de 

maior discrepância e estabilidade temporal. 

Em seguida, o painel disponibiliza as métricas de desempenho associadas ao modelo 

escolhido, incluindo MAE, sMAPE, RMSE e MAPE. Esses indicadores são apresentados de 

forma numérica e acompanhados de uma interpretação automática, facilitando a leitura por 

parte do usuário. O artefato ainda contextualiza o significado desses valores, destacando que 

erros elevados podem decorrer de características próprias da série, como sazonalidade irregular 

ou comportamento intermitente. 

Figura 26: Real + Projetado - Cenário Base 

Fonte: Os autores (2025) 

Figura 27: Métricas de Desempenho da Previsão - Cenário Base 

Fonte: Os autores (2025) 
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Na subseção seguinte, o sistema apresenta o diagnóstico de viéses da previsão. São 

exibidos o viés médio absoluto, o viés percentual e o MAE no período de backtest, permitindo 

identificar se o modelo tende sistematicamente a superestimar ou subestimar a demanda. O 

gráfico complementar mostra a evolução do erro ao longo do tempo, destacando períodos em 

que o sinal se mantém positivo ou negativo e possíveis padrões de desbalanceamento. 

 

 

O painel também apresenta um resumo dos custos associados ao MPS, considerando os 

parâmetros definidos na etapa de inputs. São mostrados o custo de setup, o custo de manter, o 

custo de ruptura e o custo total relevante, todos calculados a partir da política de produção do 

cenário base. Essa visualização facilita compreender o impacto econômico das decisões 

tomadas e serve como referência para análises posteriores de sensibilidade. 

Figura 28: Painel com Informações sobre o Viés - Cenário Base 

Fonte: Os autores (2025) 

Figura 29: Gráfico Representando Viés da Série Temporal - Cenário Base 

Fonte: Os autores (2025) 
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Além disso, o módulo exibe o comportamento do ATP acumulado ao longo dos meses, 

permitindo avaliar a capacidade de atendimento considerando a disponibilidade futura 

resultante do MPS. O gráfico e a tabela associados mostram o nível de ATP em cada mês e 

indicam se haveria ou não capacidade para absorver uma demanda extra hipotética inserida pelo 

usuário. Essa funcionalidade auxilia na visualização do grau de folga operacional do sistema. 

 

 

 

 

 

 

 

 

 

Figura 31: ATP Acumulado 

Fonte: Os autores (2025) 

 

Figura 30: Custos do MPS - Cenário Base 

Fonte: Os autores (2025) 
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Por fim, a seção apresenta o módulo de simulação das mudanças dos parâmetros 

econômicos no Custo Relevante Total, que permite testar o impacto de alterações nos principais 

parâmetros do modelo, como demanda média, capacidade produtiva, custo de setup, custo de 

manter e tamanho de lote. O usuário pode ajustar esses valores diretamente no painel, e o 

sistema recalcula imediatamente o custo relevante total, a curva C(Q) e a comparação com o 

MPS original. Esse recurso permite explorar cenário alternativos e visualizar seu efeito 

econômico de forma rápida. 

 

 

 

 

 

 

 

 

 

 

 

4.3 Análise de sensibilidade 

Esta seção de análise de sensibilidade tem como objetivo avaliar como variações em 

certos parâmetros do artefato permitem visualização de diferentes cenários, que influenciam 

diretamente os resultados gerados pelos módulos de planejamento (MPS), disponibilidade para 

promessas (ATP) e custos operacionais. A partir de cenários hipotéticos, busca-se demonstrar 

Figura 33: Custos da Simulação e Curva da Sensibilidade 

Fonte: Os autores (2025) 

Figura 32: Painel de Controle dos Parâmetros 

Fonte: Os autores (2025) 
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a robustez do sistema e sua capacidade de apoiar decisões em ambientes sujeitos a incerteza, 

permitindo ao usuário compreender quais variáveis exercem maior impacto nas decisões de 

produção.  

4.3.1 Sensibilidade aplicada ao MPS 

A primeira forma de sensibilidade ocorre diretamente no Módulo 05 – Inputs do MPS, 

onde o usuário pode ajustar os seguintes parâmetros operacionais: política de lote, tamanho de 

lote, estoque inicial, taxa de produção, congelamento de horizonte, estoque de segurança, 

pedidos em carteira e lead-time. Embora a demanda utilizada pelo MPS seja fixa, pois deriva 

da previsão gerada na etapa anterior, as alterações nesses parâmetros permitem avaliar como 

diferentes configurações impactam no MPS. 

Com possibilidade de sensibilidade nestes parâmetros, o usuário pode, por exemplo, 

testar cenários como aumento do custo de setup, redução da capacidade produtiva, baixo 

estoque inicial ou eventos de negócio qualquer, observando como essas condições afetam o 

momento de liberação das ordens e o equilíbrio entre estoque e atendimento da demanda. 

Assim, o módulo demonstra sua utilidade para analisar trade-offs clássicos do PCP e 

compreender como pequenas variações nos parâmetros gerenciais resultam em ajustes no plano 

mestre final. 

Cenário 1: Aumento do tamanho de lote (Q) 

Este cenário avalia como o MPS reage a uma mudança estrutural na política de 

produção, especificamente ao aumento do tamanho do lote fixo. Trata-se de uma situação 

comum em ambientes industriais, onde a empresa opta por produzir lotes maiores para reduzir 

a frequência de setups, aproveitar ganhos de escala ou simplificar a programação da fábrica. 

Para representar esse contexto, o tamanho do lote foi ampliado de 500 (cenário base) para 800 

unidades, mantendo constantes todos os demais parâmetros operacionais. Essa alteração 

permite observar o impacto direto no comportamento das ordens planejadas, no nível de estoque 

ao longo do horizonte e na estabilidade do plano, evidenciando como a política de lotes 

influencia a responsividade e a dinâmica do MPS. 
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Observa-se que o MPS recalcula automaticamente as ordens planejadas, ajustando sua 

distribuição ao longo do horizonte de forma coerente com a nova configuração estabelecida. 

Esse comportamento é evidenciado pelas mudanças nas linhas “Qtde. MPS”, que passa a 

receber um lote fixo maior, impactando em diversas outras linhas do MPS. 

Com o aumento do lote, o plano passa a apresentar ordens menos frequentes e de maior 

volume, o que resulta em variações mais acentuadas no estoque projetado. O MPS também 

altera o momento em que as ordens são liberadas, concentrando a reposição em períodos 

específicos, o que é imediatamente visível na diferença entre as duas simulações. Da mesma 

forma, o ATP acumulado reage a essa nova configuração, passando a indicar maior 

disponibilidade no início do horizonte após a emissão de um lote mais volumoso. 

Cenário 2: Mudança de política de lote (Fixo para Lote-a-lote) 

 Este cenário avalia o impacto da alteração da política de lote utilizada pelo MPS, 

substituindo a abordagem de lotes fixos por uma política de lote por lote. Essa mudança é 

comum quando a empresa busca maior alinhamento entre produção e demanda, redução do 

estoque médio ou maior flexibilidade diante de oscilações previstas no horizonte. Para simular 

essa condição, o tamanho do lote fixo foi desativado e as ordens passaram a ser programadas 

exatamente conforme a necessidade líquida de cada período. A análise desse cenário permite 

observar como o MPS se torna mais responsivo e reduz estoques, ao custo de maior frequência 

de ordens e menor estabilidade do plano.  

 

Figura 34: MPS - Cenário 1 

Fonte: Os autores (2025) 
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A alteração da política de lote gera mudanças diretas na estrutura do MPS, 

especialmente nas linhas que definem as ordens liberadas e o comportamento do estoque. As 

quantidades planejadas passam a acompanhar de forma mais próxima as necessidades de cada 

período, resultando em reposições mais frequentes e distribuídas ao longo do horizonte, o que 

se reflete nas linhas “Qtde. MPS” e “Início MPS”. Em consequência, o “Estoque Projetado” 

apresenta oscilações menores entre os meses, com valores mais alinhados ao consumo previsto, 

reduzindo variações abruptas observadas no cenário base. 

No ATP acumulado, observa-se um comportamento mais gradual, já que as 

disponibilidades passam a ser liberadas em volumes menores, porém de maneira contínua ao 

longo do horizonte. O conjunto dessas alterações evidencia a capacidade da ferramenta de 

ajustar imediatamente o plano mestre quando submetida a uma política de lote diferente, 

refletindo essa mudança tanto nas quantidades produzidas quanto no comportamento dos 

estoques e da disponibilidade futura. 

Cenário 3: Venda de pedido extraordinário (Pedidos em carteira)  

Este cenário simula a entrada de um pedido firme de grande porte. Para representar uma 

situação de alta pressão sobre o planejamento, foi inserido um pedido firme extraordinário de 

1.800 unidades no mês de outubro de 2025, significativamente superior à demanda regular deste 

período. Esse tipo de ocorrência é bastante frequente em empresas que atendem órgãos 

governamentais ou instituições de ensino, em que pedidos concentrados podem demandar 

ajustes expressivos na programação da produção. Ao incorporar esse mega pedido no horizonte, 

vamos ver o impacto dentro do MPS. O objetivo deste cenário é evidenciar como demandas 

atípicas e concentradas impactam de forma direta o equilíbrio entre capacidade, estoque e 

Figura 35: MPS - Cenário 2 

Fonte: Os autores (2025) 
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programação, demonstrando o papel do MPS para administração da produção nesse tipo de 

situação. 

A inclusão de um pedido firme de grande porte altera de forma imediata a estrutura do 

MPS, especialmente na linha “Em carteira”, onde se observa a concentração da demanda no 

mês de outubro. A presença desse volume adicional leva o sistema a recalcular o estoque 

projetado, que passa a apresentar valores significativamente superiores após o atendimento 

desse pedido. Esse ajuste também se reflete nas linhas “Qtde. MPS” e “Início MPS”, que 

mantêm a programação de lotes conforme a política vigente, mas agora em um contexto de 

maior necessidade acumulada no início do horizonte. 

Como consequência, o ATP acumulado passa a refletir um comportamento 

diferenciado, indicando disponibilidade futura somente após o processamento do pedido 

concentrado. Os valores se tornam progressivamente positivos nos meses seguintes, 

acompanhando o escoamento do estoque projetado e a liberação das quantidades planejadas. 

Esse conjunto de alterações evidencia como o artefato ajusta automaticamente o plano mestre 

quando exposto a uma demanda concentrada, permitindo ao usuário visualizar de maneira clara 

os efeitos de um evento de grande impacto sobre o comportamento das ordens, do estoque e da 

disponibilidade para promessas. 

4.3.2 Sensibilidade aplicada aos custos do MPS 

Além das simulações estruturais realizadas diretamente sobre o MPS, o artefato também 

permite ao usuário explorar cenários de sensibilidade voltados aos custos associados ao 

planejamento da produção. Diferentemente da etapa anterior, na qual alterações impactam a 

programação das ordens, nesta seção os parâmetros econômicos influenciam apenas a 

Figura 36: MPS - Cenário 3 

Fonte: Os autores (2025) 
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composição dos custos totais de manter, setup e custo total observado, sem alterar o MPS já 

gerado. Assim, é possível avaliar como mudanças nos custos de setup, de manutenção de 

estoque, no preço unitário ou no custo de falta modificam o comportamento econômico do 

plano, permitindo compreender trade-offs clássicos entre estoque, capacidade, tamanho de lote 

e risco de ruptura. Essa análise é essencial para demonstrar como o artefato pode apoiar decisões 

estratégicas de gestão de custos, auxiliando o usuário a identificar configurações mais 

econômicas em diferentes cenários operacionais. 

Cenário 4: Aumento no custo de setup (A) 

Este cenário simula uma situação comum no ambiente produtivo: o aumento inesperado 

do custo de preparação das máquinas, seja por reajuste de insumos utilizados no setup (como 

tinta, gabaritos de solda ou abrasivos), seja por maior tempo de ajuste decorrente de 

manutenção, ou outros fatores. Para representar esse contexto, o custo fixo de setup foi elevado 

de R$ 300,00 (cenário base) para R$ 600,00 por lote, mantendo todos os demais parâmetros 

constantes. O objetivo é avaliar como o MPS responde a um aumento significativo no custo de 

mudança de lote e de preparação da produção, evidenciando o impacto dessa variação no 

comportamento das ordens planejadas e na estratégia operacional mudança de 

dimensionamento de lotes. 

Ao recalcular a curva de sensibilidade para diferentes tamanhos de lote, o sistema 

atualiza os componentes de custo e evidencia que o aumento no valor de setup provoca 

mudanças perceptíveis na composição das curvas. Isso pode ser observado no comportamento 

da linha “Setup (mês)”, que passa a assumir valores mais elevados ao longo de toda a faixa de 

Q, impactando também a curva do custo total mensal. 

Figura 37: Custos MPS - Cenário 4 

Fonte: Os autores (2025) 
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Na comparação numérica exibida abaixo do gráfico, a ferramenta apresenta de forma 

direta o efeito da alteração: o MPS Simulado passa a registrar um total de R$ 5.080,43, enquanto 

o MPS atual permanece em R$ 6.180,00, gerando uma diferença de –R$ 1.099,57 entre os 

cenários. Esse contraste permite visualizar claramente a sensibilidade do modelo ao parâmetro 

ajustado, destacando como a mudança em A repercute nos valores finais calculados para o 

cenário simulado. 

Cenário 5: Redução da capacidade produtiva (p) 

A redução da capacidade produtiva representa uma situação comum na rotina industrial, 

geralmente associada a paradas de manutenção, indisponibilidade de operadores ou falhas em 

equipamentos críticos. A diminuição da taxa de produção exerce impacto direto sobre o custo 

total do sistema. Com a produção mais lenta, a empresa tende a manter níveis mais elevados de 

estoque de segurança por mais tempo, aumentando o custo de manter unidades armazenadas. 

Além disso, atrasos acumulados podem gerar custos indiretos associados ao risco de falta ou à 

postergação de reposições, mesmo que o plano mestre permaneça estruturalmente inalterado. 

Para simular essa situação, reduziu-se a taxa de produção de 2.500 unidades/mês para 1.500 

unidades/mês, mantendo todos os demais parâmetros constantes. O objetivo é demonstrar como 

restrições de capacidade influenciam a dinâmica econômica do planejamento. 

A redução da capacidade altera diretamente o comportamento das curvas apresentadas, 

e isso pode ser visto especialmente no formato das linhas do gráfico: a curva de setup se reduz 

de forma mais intensa para valores de Q maiores, enquanto a curva de manter apresenta 

inclinações distintas em relação ao cenário base. O efeito consolidado é refletido na linha de 

custo total mensal, que assume um novo padrão ao longo da faixa de tamanhos de lote. 

Figura 38: Custos MPS - Cenário 5 

Fonte: Os autores (2025) 
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Na comparação numérica exibida na seção inferior, essa alteração aparece de forma 

explícita. O MPS Simulado registra um total de R$ 4.847,02, enquanto o MPS atual permanece 

em R$ 6.180,00, resultando em uma diferença de –R$ 1.332,98. Essa visualização direta 

permite identificar como a mudança de capacidade impacta o custo total estimado pelo modelo, 

reforçando a sensibilidade da ferramenta ao ajuste do parâmetro p e evidenciando sua 

capacidade de recalcular automaticamente os valores econômicos com base em novas 

condições operacionais. 

4.3.3 Sensibilidade aplicada ao ATP Acumulado 

A análise de sensibilidade aplicada ao ATP acumulado tem como objetivo avaliar a 

capacidade da empresa de aceitar novos pedidos sem comprometer compromissos já firmados. 

Diferentemente da etapa anterior, o ATP não é recalculado a partir de mudanças nos parâmetros 

produtivos; ele permanece vinculado ao MPS já gerado. Assim, a sensibilidade ocorre 

exclusivamente pela inserção de novos pedidos simulados pelo usuário, permitindo analisar até 

que ponto a disponibilidade futura suporta demandas adicionais. Essa funcionalidade é 

especialmente útil para decisões comerciais, uma vez que possibilita visualizar, de forma direta, 

se a empresa possui capacidade de atendimento ao longo do horizonte ou se novas solicitações 

provocariam atrasos, rupturas ou necessidade de replanejamento. 

Cenário 6: Pedido extraordinário  

Este cenário simula a chegada de um novo pedido de médio porte, não previsto 

originalmente, proveniente de um cliente corporativo ou instituição que necessita de 

atendimento rápido. Para representar esse contexto, foi inserido um pedido adicional de 300 

unidades. Esse tipo de solicitação é comum em empresas de móveis escolares que atendem 

empresas privadas e instituições de ensino que, por vezes, demandam reposição de mobiliário 

de forma emergencial. Ao simular esse pedido sobre a curva de ATP acumulado, o usuário 

consegue identificar se existe disponibilidade suficiente para absorver essa nova demanda sem 

comprometer entregas previamente comprometidas.  
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A ferramenta compara o ATP acumulado de cada período com a demanda extra 

hipotética, indicando de forma visual e tabular os meses em que essa solicitação poderia ser 

atendida. Na simulação apresentada, os meses de novembro, dezembro, janeiro e fevereiro 

apresentam disponibilidade suficiente, enquanto os períodos iniciais do horizonte não possuem 

margem para absorver a demanda adicional. 

Dessa forma, o cenário demonstra a sensibilidade do módulo de ATP ao testar a inclusão 

de novas demandas, permitindo ao usuário avaliar rapidamente a viabilidade de atender pedidos 

emergenciais sem comprometer os compromissos já firmados no MPS. 

4.4 Avaliação do protótipo com especialistas do caso 

A avaliação do artefato desenvolvido teve como objetivo verificar se a solução atendia 

às duas necessidades centrais identificadas pela empresa: prever a demanda individual de um 

produto específico e estimar a demanda agregada de múltiplos itens simultaneamente. Para isso, 

foram conduzidos dois testes distintos, previamente descritos na seção metodológica, e seus 

resultados foram apresentados aos especialistas da organização. Essa etapa buscou não apenas 

confirmar a capacidade técnica do artefato em gerar previsões consistentes, mas também avaliar 

sua adequação prática ao cotidiano da área de PCP, considerando o uso real que a empresa faria 

das informações geradas. 

Os especialistas avaliaram positivamente o artefato, destacando sua utilidade prática e 

a aderência às necessidades da área de produção. Ambos consideraram a solução “muito 

interessante” e ressaltaram que o trabalho estava completo e bem estruturado, especialmente 

pela integração entre a previsão de demanda e as análises exploratórias apresentadas. Um dos 

Figura 39: ATP - Cenário 7 

Fonte: Os autores (2025) 
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pontos reforçados foi a boa capacidade do artefato de oferecer uma visão holística da produção 

ao permitir comparar previsão e resultados efetivos, favorecendo o planejamento por período. 

Os avaliadores também demonstraram interesse em ampliar o uso da ferramenta, questionando 

a possibilidade de aplicá-la a outros produtos além dos testados e sugerindo sua extensão para 

etapas específicas do processo, como a serralheria. Essas observações reforçaram a boa 

aderência do artefato e seu potencial de expansão para apoiar um planejamento mais detalhado 

e segmentado dentro do PCP.  
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5 CONCLUSÕES 

Ao longo deste trabalho, as questões de pesquisa foram endereçadas por meio da revisão 

da literatura e da aplicação prática do artefato desenvolvido. A partir dos problemas 

identificados — previsões imprecisas, decisões empíricas e baixa integração entre demanda e 

PCP — investigamos fundamentos teóricos capazes de orientar soluções mais robustas para a 

manufatura. A literatura destacou a relevância dos modelos de séries temporais para identificar 

padrões estruturais da demanda e fortalecer o processo de previsão, permitindo sua utilização 

dentro do MPS e das rotinas de planejamento. Com base nessas evidências, optou-se por 

integrar tais modelos às ferramentas de PCP no artefato computacional, possibilitando um 

planejamento mais organizado, previsões mais consistentes e maior estabilidade operacional, 

especialmente no balanceamento da produção e na redução das instabilidades observadas no 

sistema atual. 

No estudo de caso realizado na empresa moveleira, demonstrou-se que o artefato 

computacional desenvolvido é capaz de aplicar, integrar e validar previsões de demanda dentro 

das principais ferramentas de PCP. A solução permitiu testar múltiplos modelos de séries 

temporais, selecionar automaticamente aquele com melhor desempenho e incorporar os 

resultados diretamente ao MPS, fornecendo ao gestor uma visão estruturada da demanda futura. 

Essa integração possibilitou reduzir a dependência de tomadas de decisão empíricas, torná-las 

mais consistentes e apoiar o balanceamento da capacidade produtiva. A validação conduzida 

junto aos profissionais de tecnologia e logística da empresa evidenciou que o artefato contribui 

de forma prática para aumentar a estabilidade do planejamento, reduzir incertezas operacionais 

e apoiar decisões mais fundamentadas, reforçando sua aplicabilidade e relevância no dia a dia 

do PCP. 

As implicações teóricas e práticas deste trabalho evidenciam a relevância da integração 

entre previsão de demanda e PCP como solução estruturante para reduzir ineficiências 

operacionais em ambientes de manufatura. Do ponto de vista teórico, o estudo reforça achados 

da literatura ao demonstrar, na prática, que modelos de séries temporais são capazes de capturar 

padrões estruturais da demanda e oferecer previsões mais consistentes para subsidiar decisões 

produtivas, validando autores que defendem a importância de métodos quantitativos em 

contextos de alta variabilidade. Já em termos práticos, o artefato desenvolvido mostrou-se 

aplicável ao cotidiano da empresa moveleira ao padronizar o processo de previsão, automatizar 

a seleção de modelos, integrar resultados ao MPS e oferecer maior visibilidade ao 
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planejamento. Essa abordagem reduziu a dependência de julgamentos empíricos, aumentou a 

estabilidade do sequenciamento e contribuiu para decisões mais fundamentadas, demonstrando 

o potencial de soluções computacionais para fortalecer rotinas de PCP e apoiar gestores na 

organização e no balanceamento da produção. 

Apesar dos resultados positivos, o estudo apresenta limitações importantes relacionadas 

tanto ao artefato quanto ao escopo do planejamento analisado. No módulo de previsão, o usuário 

não possui liberdade para ajustar manualmente os hiperparâmetros, que permanecem restritos 

à configuração pré-definida do sistema, o que reduz a flexibilidade em situações que demandem 

calibração fina ou conhecimento técnico avançado. No módulo de PCP, especificamente na 

construção do MPS, o artefato também impõe restrições: o planejamento é realizado 

exclusivamente em periodicidade mensal, não permitindo desdobramentos semanais ou diários, 

e a escolha do tamanho de lote limita-se às políticas de lote fixo ou lote a lote, restringindo a 

exploração de outras regras comuns em ambientes produtivos. Tais limitações não 

comprometem a utilidade do artefato, mas indicam oportunidades claras de evolução e maior 

aderência às práticas reais de manufatura. 

Como trabalhos futuros, identificam-se diversas oportunidades de aprimoramento e 

ampliação do artefato, visando aumentar sua aderência às práticas industriais e sua robustez 

analítica. Uma das principais evoluções consiste na construção de uma árvore do produto, 

permitindo que o artefato avance para níveis mais detalhados de planejamento e possibilite sua 

integração ao Material Requirements Planning (MRP), ampliando o escopo para o cálculo das 

necessidades de materiais e sincronização entre demanda, produção e suprimentos. Além disso, 

a inclusão de um conjunto mais amplo de modelos de previsão, com maior flexibilidade na 

escolha e customização de hiperparâmetros, permitiria abarcar comportamentos mais diversos 

de demanda e oferecer previsões ainda mais precisas. 

Em resumo, o trabalho mostrou que integrar previsões de demanda ao PCP melhora a 

estabilidade do planejamento e reduz decisões empíricas, especialmente quando apoiado por 

modelos de séries temporais. Apesar das limitações do artefato — como ajustes restritos de 

hiperparâmetros, poucas políticas de lote e planejamento apenas mensal — os resultados 

indicam sua utilidade prática e abrem espaço para evoluções, como integrar uma árvore do 

produto, ampliar modelos de previsão e conectar o sistema ao MRP. 
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7 APÊNDICE 

7.1 Apêndice A – Código Streamlit 

Para garantir transparência, reprodutibilidade e acesso público ao artefato desenvolvido 

neste trabalho, o sistema foi depositado na plataforma Zenodo, um repositório internacional 

voltado ao arquivamento e disseminação de produções científicas. O link abaixo direciona ao 

registro oficial do projeto, contendo os códigos, arquivos e documentação necessários para 

execução e consulta do artefato. Este repositório assegura a preservação digital do material e 

permite que futuros pesquisadores ou profissionais utilizem e expandam a solução proposta. 

DOI gerado no Zenodo: https://doi.org/10.5281/zenodo.17675743 

7.1 Apêndice B – Experimentos 

Link para acesso aos experimentos gerados pelo artefato: 

experimentos_unificado_artefato.xlsx  

Nele, você encontrará todos os resultados produzidos durante a etapa de previsão, 

incluindo as variações de modelos, métricas de desempenho e arquivos exportados 

automaticamente pelo sistema. 
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