
Jerônimo Augusto Soares

Desenvolvimento de Sistema IoT sem Uso de
Baterias

Projeto Final

Tese apresentada como requisito parcial para obtenção do grau
de Bacharel pelo Programa de Graduação em Engenharia da
Computação, do Departamento de Informática da PUC-Rio.

Orientador: Prof. Adriano Francisco Branco

Rio de Janeiro
Junho de 2025

Jerônimo Augusto Soares

Desenvolvimento de Sistema IoT sem Uso de
Baterias

Tese apresentada como requisito parcial para obtenção do grau
de Bacharel pelo Programa de Graduação em Engenharia da
Computação da PUC-Rio. Aprovada pela Comissão Examinadora
abaixo:

Prof. Adriano Francisco Branco
Orientador

Departamento de Informática – PUC-Rio

Rio de Janeiro, 30 de Junho de 2025

Todos os direitos reservados. A reprodução, total ou parcial
do trabalho, é proibida sem a autorização da universidade, do
autor e do orientador.

Jerônimo Augusto Soares

Ficha Catalográfica
Soares, Jerônimo Augusto

Desenvolvimento de Sistema IoT sem Uso de Baterias
/ Jerônimo Augusto Soares; orientador: Adriano Francisco
Branco. – 2025.

42 f: il. color. ; 30 cm

Projeto Final (graduação) - Pontifícia Universidade
Católica do Rio de Janeiro, Departamento de Informática,
2025.

Inclui bibliografia

1. Internet das Coisas. 2. Energy Harvesting. 3. Gerenci-
amento de Energia. 4. Baixo Consumo de Energia. 5. Zephyr
RTOS. 6. nRF52840. 7. IEEE 802.15.4. 8. Device Tree. I.
Branco, Adriano. II. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. III. Título.

CDD: 004

Resumo

Soares, Jerônimo Augusto; Branco, Adriano. Desenvolvimento de
Sistema IoT sem Uso de Baterias. Rio de Janeiro, 2025. 42p. Projeto
Final – Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

Este trabalho detalha o desenvolvimento de um firmware de ultra-baixo
consumo para um sistema IoT, visando a operação sem baterias com energia
do ambiente (Energy Harvesting). Utilizando o SoC nRF52840 e o Zephyr
RTOS, foi criada uma arquitetura orientada a eventos que gerencia recursos
de alto consumo, como o clock de alta frequência, apenas quando necessário.
O projeto superou a falta de documentação da placa ProMicro nRF52840 por
meio da criação de uma configuração de hardware customizada. A validação
experimental quantificou o impacto das ferramentas de debug, cuja desativação
reduziu o consumo em repouso de 1,94 mA para 1,10 mA. Também foi
identificado um custo energético fixo e elevado na inicialização, causado pelo
bootloader da placa. Conclui-se que, embora a estratégia de software seja eficaz,
o hardware de prototipagem limita o desempenho, tornando o projeto de uma
PCB customizada um requisito para uma aplicação final viável.

Palavras-chave
Internet das Coisas; Energy Harvesting; Gerenciamento de Energia;

Baixo Consumo de Energia; Zephyr RTOS; nRF52840; IEEE 802.15.4;
Device Tree.

Abstract

Soares, Jerônimo Augusto; Branco, Adriano (Advisor). Development
of Batteryless IoT System. Rio de Janeiro, 2025. 42p. Final Project
– Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

This work details the development of an ultra-low-power firmware for an
IoT system, aiming for battery-less operation powered by ambient energy (En-
ergy Harvesting). Using the nRF52840 SoC and the Zephyr RTOS, an event-
driven architecture was developed that manages high-consumption resources,
such as the high-frequency clock, on an on-demand basis. The project overcame
the lack of documentation for the ProMicro nRF52840 board by creating a cus-
tom hardware configuration. Experimental validation quantified the impact of
debugging tools, as disabling them reduced the idle current from 1.94 mA to
1.10 mA. A fixed and high energy cost at startup, caused by the board’s boot-
loader, was also identified. It is concluded that although the software strategy
is effective, the prototyping hardware limits performance, making the design
of a custom PCB a requirement for a viable final application.

Keywords
Internet of Things (IoT); Energy Harvesting; Power Management; Low

Power; Zephyr RTOS; nRF52840; IEEE 802.15.4; Device Tree.

Sumário

1 Introdução 9
1.1 A Ascensão da Internet das Coisas 9
1.2 O Problema da Dependência de Baterias 10
1.3 Motivação e Proposta de Solução 10
1.4 Objetivos 11
1.4.1 Objetivo Geral 11
1.4.2 Objetivos Específicos 11
1.5 Desafios do Projeto 12
1.6 Contribuições 12
1.7 Organização do Documento 13

2 Fundamentação Teórica 14
2.1 Nordic nRF52840 14
2.2 Protocolos de Comunicação sem Fio 14
2.2.1 IEEE 802.15.4 15
2.2.2 Zigbee 15
2.2.3 Thread 15
2.2.4 ANT 16
2.2.5 Bluetooth Low Energy 16
2.2.6 2.4 GHz proprietary 16
2.3 Zephyr RTOS 16

3 Análise do Problema e Arquitetura Proposta 18
3.1 Diretrizes de Projeto e Restrições Técnicas 18
3.2 Desafios Identificados 18
3.2.1 Limitações de Hardware 19
3.2.2 Restrições de Documentação 20
3.2.3 Incompatibilidades de Software 20
3.3 Arquitetura Proposta 20
3.3.1 Visão Geral da Solução 20
3.3.2 Arquitetura de Software 21

4 Desenvolvimento e Implementação 22
4.1 Configuração do Ambiente de Desenvolvimento 22
4.1.1 Ferramentas e Tecnologias 22
4.1.2 Desafios na Configuração da PCB ProMicro 23
4.1.2.1 Identificação do Problema e Descoberta da Causa Raiz 23
4.1.2.2 Solução com Device Tree e Configuração Customizada 23
4.2 Implementação do Firmware 25
4.2.1 Orquestração de Tarefas e Fluxo de Execução 26
4.2.2 Módulo de Abstração do Rádio (ieee_sender) 26
4.2.3 Abstrações para ADC e Tarefas Periódicas 26
4.2.4 Gerenciamento de Energia On-Demand : O Controle do HFCLK 27
4.2.5 Estratégias de Compilação para Depuração e Baixo Consumo 28

5 Validação Experimental e Análise de Resultados 30
5.1 Metodologia de Medição de Consumo 30
5.1.1 Configuração Experimental 30
5.2 Análise de Consumo de Energia 31
5.2.1 Consumo em Estado Ocioso: O Impacto da Depuração 31
5.2.2 Investigação da Corrente de Fuga Residual 32
5.2.3 Perfil de Consumo do Ciclo de Operação Ativo 33
5.3 Análise de Comportamentos Não Planejados 33
5.3.1 O Custo Energético do Bootloader 34

6 Conclusão e Trabalhos Futuros 36
6.1 Retrospectiva do Projeto 36
6.2 Conclusões e Atendimento aos Objetivos 37
6.2.1 Implementação de Firmware Otimizado para Baixo Consumo 37
6.2.2 Quantificação do Consumo Energético e Suas Implicações 37
6.2.3 Avaliação da Plataforma de Hardware (PCB ProMicro) 38
6.3 Trabalhos Futuros 38

7 Referências 40

Lista de Abreviaturas

IoT – Internet of Things
EH – Energy Harvesting
SoC – System on a Chip
RTOS – Real-Time Operating System
PCB – Printed Circuit Board
CPU – Central Processing Unit
FPU – Floating-Point Unit
RAM – Random Access Memory
RTC – Real-Time Clock
ADC – Analog-to-Digital Converter
SPI – Serial Peripheral Interface
I2C – Inter-Integrated Circuit
UART – Universal Asynchronous Receiver-Transmitter
WPAN – Wireless Personal Area Network
PHY – Physical Layer
MAC – Medium Access Control
CSMA-CA – Carrier Sense Multiple Access with Collision Avoidance
BLE – Bluetooth Low Energy
ISM – Industrial, Scientific, and Medical
AES – Advanced Encryption Standard
ANT – Adaptive Network Topology
IDE – Integrated Development Environment
SDK – Software Development Kit
USB – Universal Serial Bus
JTAG – Joint Test Action Group
GPIO – General-Purpose Input/Output
DTS – Device Tree Source
HFCLK – High-Frequency Clock
PPK2 – Power Profiler Kit II
VSCode – Visual Studio Code

1
Introdução

1.1
A Ascensão da Internet das Coisas

A Internet das Coisas (IoT) revolucionou a forma como interagimos com
o ambiente, com bilhões de dispositivos conectados em aplicações que vão desde
automação residencial até monitoramento industrial. Com o advento da IoT,
surgiram dispositivos capazes de responder a comandos e transmitir dados,
auxiliando tanto em atividades cotidianas quanto em pesquisas.

O crescimento da Internet das Coisas (IoT) continua em ritmo acelerado,
solidificando sua onipresença no cenário tecnológico global. De acordo com
dados recentes da plataforma de pesquisa IoT Analytics [Sinha 2024], o número
de dispositivos IoT conectados atingiu 16,6 bilhões ao final de 2023, um
aumento de 15% em relação ao ano anterior. As projeções para o final de 2024
indicavam uma expansão contínua de 13%, elevando o total para 18,8 bilhões
de dispositivos. Olhando para o futuro, a expectativa é que o ecossistema de
IoT continue sua expansão massiva, com estimativas apontando para 40 bilhões
de dispositivos conectados até 2030, como ilustrado na Figura 1.1.

Figura 1.1: Previsão de crescimento do mercado de dispositivos IoT conectados
globalmente. [Sinha 2024]

Em geral, esses dispositivos utilizam eletricidade para funcionar, obtida
de fontes conectadas à rede elétrica por cabos ou de baterias e pilhas que
necessitam de recarga ou substituição constante. Esse aumento no número
de dispositivos destaca a urgência de se encontrar soluções energéticas sus-
tentáveis para alimentá-los, e a dependência de fontes de energia tradicionais

Capítulo 1. Introdução 10

representa um dos principais desafios para a expansão e sustentabilidade dos
sistemas IoT.

1.2
O Problema da Dependência de Baterias

A proliferação massiva de dispositivos IoT, com projeções que apon-
tam para dezenas de bilhões de unidades conectadas na próxima década
[Sinha 2024], trouxe consigo um desafio fundamental: a alimentação energé-
tica. Embora a solução predominante continue sendo o uso de baterias, essa
abordagem apresenta uma série de obstáculos que limitam o potencial da IoT
[Chatterjee et al. 2023]. A necessidade de alimentar essa vasta rede de dispo-
sitivos é, de fato, considerada um dos maiores desafios para a concretização da
visão da IoT [Jayakumar et al. 2014].

A dependência de baterias impõe severos desafios operacionais e finan-
ceiros. A substituição frequente em implementações de grande escala não é
apenas cara, mas muitas vezes logisticamente inviável, especialmente em lo-
cais de difícil acesso [Jayakumar et al. 2014]. Pesquisas na área frequentemente
relatam uma “experiência agitada com substituições frequentes de bateria”
[Afanasov et al. 2020].

Além dos entraves operacionais, o impacto ambiental gerado pelo ciclo
de vida das baterias representa uma crise iminente. O alto crescimento de
dispositivos IoT levará a um descarte igualmente massivo de baterias, com
estimativas de que 78 milhões de unidades serão descartadas diariamente até
2025 [EnABLES 2022]. O descarte inadequado representa um risco grave de
contaminação, pois os metais pesados tóxicos presentes nas baterias podem
poluir de forma irreparável o solo e os lençóis freáticos [18]. Agravando o
problema, a taxa de reciclagem de materiais críticos é extremamente baixa;
por exemplo, o lítio, componente chave nas baterias mais comuns para IoT,
possui uma taxa de reciclagem ao fim da vida útil inferior a 1% [Statista 2020].

1.3
Motivação e Proposta de Solução

Diante do cenário de insustentabilidade e dos desafios logísticos impostos
pelas baterias, a busca por fontes de energia alternativas tornou-se um campo
de intensa pesquisa acadêmica e industrial [Ku et al. 2016]. A necessidade de
sistemas IoT autônomos energeticamente é evidente em diversas aplicações,
tais como:

– Monitoramento ambiental em áreas remotas;

– Sensores estruturais em pontes e edifícios;

Capítulo 1. Introdução 11

– Agricultura de precisão;

– Acompanhamento médico hospitalar.

A metodologia de Energy Harvesting (EH), ou coleta de energia, surge
como uma alternativa promissora para viabilizar essas aplicações. Essa aborda-
gem consiste em utilizar um subsistema autônomo capaz de capturar energia de
fontes ambientais — como luz solar, calor, vibrações ou radiofrequência (RF)
— e convertê-la em energia elétrica [Chatterjee et al. 2023, Elahi et al. 2020].
A tecnologia EH é vista como uma “alternativa direta à operação alimentada
por bateria”, com o potencial de “estender a vida útil das implantações, bem
como reduzir a substituição de baterias e os custos gerais de manutenção”
[Afanasov et al. 2020, Bakar e Hester 2018].

Contudo, a ausência de uma fonte contínua de energia apresenta desafios
significativos, destacando problemas como a computação intermitente, a con-
sistência de dados e a necessidade de um gerenciamento de energia eficiente
[Lucia et al. 2017].

Este trabalho se insere, portanto, no esforço de viabilizar sistemas IoT
verdadeiramente autônomos e sustentáveis. A proposta de desenvolvimento de
um sistema IoT sem o uso de bateria está alinhada com as linhas de pesquisa
do laboratório GIST da PUC-Rio, especialmente na área de Energy Harvesting,
onde este projeto foi realizado.

1.4
Objetivos

1.4.1
Objetivo Geral

Com esses desafios em mente, este projeto tem como objetivo explorar e
avaliar possíveis aplicações do Energy Harvesting, desenvolvendo e validando
um sistema IoT capaz de operar exclusivamente com energia coletada do
ambiente.

1.4.2
Objetivos Específicos

1. Implementar firmware otimizado para ultra baixo consumo no microcon-
trolador nRF52840;

2. Desenvolver módulo de comunicação sem fio baseado no protocolo IEEE
802.15.4 com foco em eficiência energética;

Capítulo 1. Introdução 12

3. Quantificar e validar o consumo energético do sistema em diferentes
modos de operação;

4. Avaliar a PCB Pro Micro nRF52840 quanto à viabilidade como plata-
forma para aplicações com Energy Harvesting.

1.5
Desafios do Projeto

Durante o desenvolvimento deste trabalho, diversos desafios técnicos
foram enfrentados, cuja superação representa contribuições significativas:

– Documentação escassa: A PCB ProMicro NRF52840 não possui
suporte oficial, exigindo engenharia reversa;

– Limitações de debugging: Ferramentas de depuração impactam sig-
nificativamente o consumo;

– Gerenciamento de energia: Complexidade na sincronização de peri-
féricos para minimizar consumo.

1.6
Contribuições

Este trabalho apresenta as seguintes contribuições técnicas:

– Port de Software para Hardware Não Suportado: Realização do
porte do Zephyr RTOS para a PCB ProMicro NRF52840, o que incluiu
engenharia reversa para criar uma configuração de placa customizada e
resolver conflitos com o bootloader existente;

– Estratégia de dupla compilação: Proposta e validação de uma
metodologia com duas configurações de build (debug e low-power) para
isolar o impacto energético das ferramentas de depuração e permitir
medições precisas de consumo;

– Quantificação de Sobrecargas Energéticas: Análise e medição do
custo energético de componentes de software auxiliares, como o overhead
do stack USB de depuração e o consumo fixo de um bootloader comercial,
demonstrando seu impacto crítico no orçamento de energia de sistemas
de baixo consumo.

Capítulo 1. Introdução 13

1.7
Organização do Documento

Este documento está estruturado em seis capítulos, que abordam desde a
contextualização do problema até a análise dos resultados e as propostas para
trabalhos futuros.

No Capítulo 2, é apresentada a fundamentação teórica que serve de base
para este trabalho. São descritas as principais tecnologias utilizadas, incluindo
as características do SoC nRF52840, os protocolos de comunicação sem fio de
baixo consumo e a arquitetura do sistema operacional de tempo real Zephyr
RTOS.

O Capítulo 3 detalha a análise do problema e a arquitetura da solução
proposta. São discutidas as diretrizes de projeto, as restrições técnicas enfren-
tadas, e é apresentada a arquitetura de software orientada a eventos, projetada
para minimizar o consumo de energia.

Em seguida, o Capítulo 4 descreve o processo de desenvolvimento
e implementação do firmware. Este capítulo aborda desde a configuração
do ambiente e a superação dos desafios de compatibilidade com a PCB
ProMicro, até a implementação das estratégias de gerenciamento de energia e a
metodologia de compilação dual para depuração e operação de baixo consumo.

O Capítulo 5 apresenta a validação experimental e a análise dos
resultados obtidos. Nele, são detalhadas a metodologia de medição de consumo,
a análise comparativa do perfil energético da aplicação e a discussão sobre
comportamentos não planejados, como o impacto do bootloader no consumo
inicial.

Finalmente, o Capítulo 6 consolida as conclusões do trabalho, reali-
zando uma retrospectiva do projeto e destacando as contribuições técnicas. Ao
final, são apresentadas sugestões e direções para trabalhos futuros, visando a
expansão e o aprofundamento da pesquisa.

2
Fundamentação Teórica

Este capítulo apresenta a base teórica necessária para o entendimento
do projeto, detalhando os três componentes centrais da solução: o hardware,
representado pelo SoC nRF52840 ; os padrões de comunicação sem fio de baixo
consumo, como o IEEE 802.15.4 ; e a plataforma de software, baseada no
Zephyr RTOS.

2.1
Nordic nRF52840

O dispositivo escolhido para este projeto foi o SoC nRF52840 da Nordic
Semiconductor. Dentre as características do nRF52840, destacam-se:

– CPU ARM Cortex-M4 de 64 MHz com FPU

– 1 MB de memória Flash

– 256 KB de RAM

– Suporte nativo para múltiplos protocolos: Bluetooth Low Energy, Blue-
tooth mesh, IEEE 802.15.4, Thread, Zigbee, ANT e protocolos proprie-
tários 2.4 GHz

– Modos de baixo consumo com corrente < 5 µA

– Periféricos otimizados: RTC de baixo consumo, ADC de 12 bits, interfa-
ces SPI/I2C/UART

A escolha deste SoC foi motivada principalmente pelo suporte a protoco-
los de transmissão de dados por rádio de baixo consumo e pela disponibilidade
de modos de operação ultra-baixo consumo, tornando-o candidato viável para
aplicações com Energy Harvesting [nRF52840 - Nordic Semiconductor].

2.2
Protocolos de Comunicação sem Fio

Nesta seção serão abordados alguns protocolos de comunicação suporta-
dos pelo SoC nRF52840.

Capítulo 2. Fundamentação Teórica 15

2.2.1
IEEE 802.15.4

O IEEE 802.15 estabelece normas para redes de área pessoal sem fio
(WPAN), desempenhando um papel importante na conectividade de dispositi-
vos de baixo consumo de energia. Essas diretrizes garantem interoperabilidade
e eficiência, especialmente no contexto de redes que operam com baixas taxas
de transmissão de dados, como sensores sem fio, dispositivos de monitoramento
e automação residencial [Melo 2017].

O padrão IEEE 802.15.4 foi projetado para redes de baixa taxa de trans-
missão de dados, como sensores sem fio, dispositivos de monitoramento e au-
tomação residencial. Ele define especificações para as camadas PHY (Physi-
cal Layer) e MAC (Medium Access Control). A camada PHY é responsável
pela transmissão e recepção de dados através do meio físico. O modelo IEEE
802.15.4 opera em três bandas de frequência não licenciadas: 868 MHz (Eu-
ropa), 915 MHz (América do Norte) e 2,4 GHz (uso mundial), sendo esta
última a banda de operação do SoC nRF52840. Essas frequências permitem a
comunicação sem fio em diferentes regiões geográficas.

A camada MAC controla o acesso à camada PHY, minimizando colisões
e garantindo uma comunicação eficiente. Ela utiliza o protocolo CSMA-
CA (Carrier Sense Multiple Access with Collision Avoidance) para evitar
colisões entre transmissões. Além disso, a camada MAC é responsável pelo
endereçamento dos dispositivos, incluindo o transmissor e o receptor.

O padrão IEEE 802.15.4 é base para as especificações Zigbee e Thread,
suportadas pelo nRF52840.

2.2.2
Zigbee

O Zigbee é um protocolo de comunicação sem fio, com topologia de
malha, que usa como base o IEEE 802.15.4 e é utilizado em aplicações IoT.
Ele se destaca por sua capacidade de transmitir pequenos pacotes de dados
com baixo consumo de energia [Zigbee | Complete IOT Solution - CSA-IOT].

2.2.3
Thread

O Thread é um protocolo de rede sem fio de baixo consumo de energia
que também tem como base o padrão IEEE 802.15.4. Com topologia de malha,
o Thread usa endereçamento IP, sendo compatível com IPv6, com acesso à
nuvem e criptografia AES, além de garantir a ausência de ponto único de falha
nos sistemas que o utilizam [OpenThread].

Capítulo 2. Fundamentação Teórica 16

2.2.4
ANT

ANT (Adaptive Network Topology) é um protocolo de comunica-
ção sem fio de ultra-baixa potência responsável por enviar informações
de um dispositivo para outro de forma robusta e flexível, podendo ope-
rar com topologia ponto a ponto, estrela ou malha. Um dispositivo ANT
pode ser configurado para passar longos períodos de suspensão, podendo
acordar brevemente para se comunicar e retornar ao modo de suspensão
[ANT / ANT+ Defined - THIS IS ANT].

2.2.5
Bluetooth Low Energy

O Bluetooth Low Energy (BLE) é uma variante do Bluetooth pro-
jetada para operação com baixo consumo de energia. Bastante presente
em sensores, dispositivos vestíveis e rastreadores de fitness, o BLE uti-
liza a banda ISM de 2,4 GHz e 40 canais para transmissão. A comunica-
ção por meio do BLE aceita as topologias ponto a ponto, estrela e malha
[Bluetooth Technology Overview | Bluetooth® Technology Website].

2.2.6
2.4 GHz proprietary

O SoC nRF52840 possui suporte para o uso do protocolo proprietário
da Nordic Semiconductor que opera em 2,4 GHz, podendo operar de forma
simultânea com o Bluetooth Low Energy ou outros protocolos suportados
[2.4 GHz proprietary - nordicsemi.com].

2.3
Zephyr RTOS

Para o desenvolvimento do firmware, optou-se pelo Zephyr RTOS, um
sistema operacional de tempo real (RTOS) de código aberto, recomendado
pela fabricante do nRF52840, mantido pela Linux Foundation, projetado para
ser escalável, seguro e flexível [The Zephyr Project 2025]. Sua arquitetura
modular permite que ele seja executado tanto em microcontroladores com
recursos extremamente limitados, quanto em sistemas multi-core complexos
[The Zephyr Project 2025]. A flexibilidade é um de seus pilares, com suporte
nativo para mais de 750 placas de desenvolvimento e centenas de sensores,
o que facilita a prototipagem e a portabilidade de aplicações entre diferentes
hardwares [The Zephyr Project 2025].

Capítulo 2. Fundamentação Teórica 17

Um dos focos principais do Zephyr é o gerenciamento eficiente de energia,
um requisito crucial para dispositivos alimentados por fontes intermitentes.
O objetivo do RTOS é utilizar a menor quantidade de energia possível,
preservando a capacidade de resposta do sistema[The Zephyr Project 2025].
Isso é alcançado através de um kernel tickless, que minimiza o tempo de
atividade da CPU, e de políticas de energia que permitem tanto ao sistema
quanto aos periféricos entrarem em estados de baixo consumo de forma
independente e configurável pelo desenvolvedor[The Zephyr Project 2025].

Este sistema é suportado pela Nordic Semiconductor por meio de uma
extensão para o Visual Studio Code (VSCode), que auxilia no desenvolvimento
com seus chips, possibilitando o uso de bibliotecas, a compilação de código e
o carregamento de firmware.

3
Análise do Problema e Arquitetura Proposta

Com a base teórica estabelecida, este capítulo detalha a tradução dos
objetivos do projeto em uma solução prática. Serão apresentadas as diretrizes
e restrições que nortearam o desenvolvimento, os desafios técnicos de hardware
e software enfrentados e, por fim, a arquitetura orientada a eventos proposta
para atender ao requisito fundamental de ultra-baixo consumo energético.

3.1
Diretrizes de Projeto e Restrições Técnicas

A tradução dos objetivos gerais, definidos na seção 1.4, para uma im-
plementação prática foi guiada por um conjunto de diretrizes de projeto e
restrições técnicas que moldaram a arquitetura final do sistema.

A diretriz funcional primária era clara: o firmware deveria ser capaz
de executar um ciclo de operação completo, consistindo em ler um sensor
periodicamente, processar essa informação e transmiti-la usando um
protocolo sem fio de baixo consumo, como o IEEE 802.15.4.

No entanto, a diretriz não-funcional mais crítica, que se sobrepôs a todas
as outras, foi a minimização extrema do consumo de energia. Este
princípio foi o critério dominante na escolha da arquitetura de software, na
gestão dos clocks do sistema e na forma como os periféricos foram controlados.
O objetivo do projeto não era apenas criar um sistema funcional, mas garantir
que ele o fizesse gastando a menor quantidade de energia possível, maximizando
o tempo em estados de sono profundo e minimizando a duração e a intensidade
dos ciclos ativos.

O desenvolvimento foi conduzido sob restrições bem definidas que influ-
enciaram diretamente o processo. A principal restrição de hardware foi o uso
da PCB ProMicro nRF52840 [ICBbuy 2024], um componente com documen-
tação limitada, o que exigiu esforços de engenharia reversa para viabilizar a
compatibilidade com o firmware. Por fim, a restrição fundamental do projeto
era a não utilização de fontes de energia convencionais, como pilhas ou
baterias, o que direcionou todas as otimizações para um cenário de operação
com Energy Harvesting.

3.2
Desafios Identificados

Capítulo 3. Análise do Problema e Arquitetura Proposta 19

3.2.1
Limitações de Hardware

A PCB ProMicro NRF52840 (Figura 3.1) apresentou diversos desafios:

Figura 3.1: PCB ProMicro NRF52840.

– Falta de suporte oficial: A placa não está na lista de dispositivos
suportados pela Nordic

– Bootloader próprio: Ocupa espaço significativo de memória (0x0000-
0x26000)

– Debug limitado: Ausência de interface JTAG, apenas USB disponível

– Pinout restrito: Com acesso a 21 dos 48 pinos GPIO disponíveis no
nRF52840, conforme mostrado na Figura 3.2

Figura 3.2: Pinout da PCB ProMicro NRF52840.

Capítulo 3. Análise do Problema e Arquitetura Proposta 20

3.2.2
Restrições de Documentação

A documentação encontrada sobre a PCB ProMicro NRF52840 foi es-
cassa:

– Exemplos existentes focados apenas em teclados sem fio, que são alimen-
tados por pilhas ou baterias;

– Ausência de configuração para Zephyr RTOS;

– Necessidade de engenharia reversa para determinar configurações.

3.2.3
Incompatibilidades de Software

O desenvolvimento inicial revelou incompatibilidades significativas:

– Firmware compilado com configurações padrão não executava;

– Conflito entre endereçamento de memória do Zephyr e bootloader ;

– Ferramentas de debug (USB/logs) impactavam drasticamente o consumo;

– Bootloader UF2 com comportamento não documentado.

3.3
Arquitetura Proposta

3.3.1
Visão Geral da Solução

A arquitetura desenvolvida segue o paradigma de computação orientada
a eventos, essencial para minimizar o consumo energético. O ciclo de operação,
ilustrado na Figura 3.3, consiste em:

1. Sleep: Estado de ultra baixo consumo;

2. Wake: Despertar por evento do RTC;

3. Measure: Leitura rápida do ADC;

4. Transmit: Envio dos dados via IEEE 802.15.4;

5. Return to Sleep: Retorno imediato ao modo de baixo consumo.

Capítulo 3. Análise do Problema e Arquitetura Proposta 21

Figura 3.3: Ciclo de operação da aplicação.

3.3.2
Arquitetura de Software

A arquitetura de software, conforme a Figura 3.4 foi estruturada em
módulos:

– Gerenciador de Energia: Controla estados de consumo do clock de
alta frequência (HFCLK)

– Driver ADC: Interface otimizada para leituras rápidas;

– Stack IEEE 802.15.4: Implementação através do Zephyr;

– Agendador RTC: Desperta o sistema periodicamente;

– Aplicação Principal: Orquestra o fluxo de execução.

Figura 3.4: Diagrama de camadas de software.

4
Desenvolvimento e Implementação

Este capítulo descreve a materialização da arquitetura proposta, deta-
lhando o processo de implementação do firmware. Serão abordadas as etapas
práticas, desde a configuração do ambiente de desenvolvimento e a superação
dos desafios de compatibilidade com a PCB ProMicro, até a codificação das
rotinas de gerenciamento de energia e comunicação.

4.1
Configuração do Ambiente de Desenvolvimento

A primeira etapa do desenvolvimento prático consistiu na preparação do
ambiente de trabalho e na configuração da plataforma de hardware para a
execução do firmware.

4.1.1
Ferramentas e Tecnologias

O ambiente de desenvolvimento foi configurado com:

– IDE: Visual Studio Code com a extensão nRF Connect for VS Code

– SDK: nRF Connect SDK v3.0.2 (baseado em Zephyr RTOS)

– Ferramentas auxiliares:

– Python scripts para conversão .hex → .uf2
– Nordic Power Profiler Kit II para análise de consumo
– Terminal serial para debug (quando aplicável)

A escolha do Zephyr RTOS foi fundamental por seu suporte nativo a:

– Gerenciamento de energia integrado;

– APIs de baixo nível para controle fino de hardware;

– Modelo de execução baseado em threads e work queues;

– Suporte oficial da Nordic Semiconductor.

Capítulo 4. Desenvolvimento e Implementação 23

4.1.2
Desafios na Configuração da PCB ProMicro

Para validar a funcionalidade da PCB ProMicro e testar sua operação,
foi desenvolvido um código blinky all GPIO, cuja finalidade é acionar de
maneira intermitente todos os pinos de entrada e saída da placa. Este proce-
dimento visa verificar o correto funcionamento dos pinos e testar a compilação
e gravação de um firmware no dispositivo.

4.1.2.1
Identificação do Problema e Descoberta da Causa Raiz

A primeira abordagem para compilar firmware para a ProMicro utilizou
a configuração da placa nRF52840 DK. Embora a compilação fosse bem-
sucedida, o firmware não executava na PCB. Para validar o hardware, testou-
se com a Arduino IDE [Arduino - Home], que gerou firmware funcional após
conversão para formato .uf2. Esta discrepância indicava um problema de
configuração, não de hardware.

Após análise detalhada, identificou-se a origem do problema: a PCB Pro-
Micro possui um bootloader pré-gravado em sua memória. A função primá-
ria deste bootloader é facilitar o desenvolvimento, permitindo que um novo
firmware (no formato .uf2) seja gravado de forma extremamente simples via
USB (arrastando um arquivo), um processo que é ativado ao conectar o pino
de RESET ao GND duas vezes em menos de meio segundo.

É importante notar que uma alternativa seria utilizar um programador
externo, como um J-Link, para gravar o firmware diretamente na memória do
microcontrolador. No entanto, esse processo sobrescreveria o bootloader exis-
tente, eliminando permanentemente a conveniente funcionalidade de gravação
via USB. Portanto, a decisão de engenharia foi trabalhar com o bootloader,
em vez de removê-lo.

Apesar dessa grande conveniência, a presença deste bootloader impôs o
desafio técnico central. Verificou-se que ele ocupa os endereços de memória
de 0x0000 a 0x26000. O firmware gerado pelo Zephyr, por padrão, tentava
ocupar esta mesma região, causando um conflito que impedia a execução
[Winans 2020]. A solução, portanto, exigia a criação de uma configuração de
hardware customizada para a placa.

4.1.2.2
Solução com Device Tree e Configuração Customizada

A customização de hardware no Zephyr é realizada através do sistema
Device Tree. Trata-se de uma estrutura de dados que descreve a configuração

Capítulo 4. Desenvolvimento e Implementação 24

do hardware disponível em um sistema alvo, como microcontroladores, pinos
e periféricos. O principal objetivo do Device Tree é desacoplar o código da
aplicação dos detalhes específicos do hardware, permitindo que o software se
refira a nós lógicos (ex: &led0, &adc), enquanto o mapeamento para o hardware
físico é definido nos arquivos de configuração.

Com base nesse conceito, e utilizando a configuração da placa
adafruit_itsybitsy_nrf52840 como referência, foi desenvolvido um ar-
quivo de descrição de hardware ProMicro_nrf52840.dts, específico para a
PCB em questão. O trecho a seguir demonstra como as partições de memória
(partitions) foram ajustadas para coexistir com o bootloader, definindo que a
partição da aplicação (code_partition) iniciasse no endereço 0x26000:

// Trecho do arquivo ProMicro_nrf52840.dts
&flash0 {

partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

/* Reservado para o SoftDevice,
embora não usado pelo bootloader UF2 */
reserved_partition_0: partition@0 {

label = "SoftDevice";
reg = <0x00000000 DT_SIZE_K(152)>;

};
/* Início da aplicação em 0x26000 para evitar conflito
com o bootloader */
code_partition: partition@26000 {

label = "Application";
reg = <0x00026000 DT_SIZE_K(796)>;

};

storage_partition: partition@ed000 {
label = "storage";
reg = <0x000ed000 DT_SIZE_K(28)>;

};

boot_partition: partition@f4000 {
label = "UF2";
reg = <0x000f4000 DT_SIZE_K(48)>;

Capítulo 4. Desenvolvimento e Implementação 25

};
};

};

Com a configuração de base da placa resolvida, a customização para
aplicações específicas, como a habilitação de periféricos, é realizada através
de arquivos de overlay (.overlay). Eles permitem modificar ou estender a
configuração do .dts sem alterá-lo diretamente. Para habilitar o conversor
analógico-digital (ADC), por exemplo, pode-se criar o seguinte overlay:

/* Arquivo de overlay: ProMicro_nrf52840_nrf52840.overlay */
&adc {

status = "okay";
#address-cells = <1>;
#size-cells = <0>;

channel@0 {
reg = <0>;
zephyr,gain = "ADC_GAIN_1_6";
zephyr,reference = "ADC_REF_INTERNAL";
zephyr,acquisition-time = <ADC_ACQ_TIME_DEFAULT>;
zephyr,input-positive = <NRF_SAADC_AIN0>;
zephyr,resolution = <12>;

};
};

Este overlay ativa o periférico ADC (alterando seu status para “okay”) e
configura um de seus canais, definindo parâmetros de aquisição e mapeando-o
para um pino físico.

4.2
Implementação do Firmware

A implementação do firmware foi desenvolvida sobre o Zephyr RTOS,
materializando a arquitetura orientada a eventos e de baixo consumo descrita
anteriormente. O objetivo principal foi orquestrar os diferentes periféricos
(RTC, ADC, Rádio) de forma a mantê-los em estado de baixo consumo na
maior parte do tempo, ativando-os apenas quando estritamente necessário. A
seguir, são detalhados os principais componentes de software desenvolvidos e
as estratégias de implementação adotadas.

Capítulo 4. Desenvolvimento e Implementação 26

4.2.1
Orquestração de Tarefas e Fluxo de Execução

O fluxo de execução da aplicação é centrado em um modelo assíncrono,
evitando laços de espera (busy-waiting) para maximizar o tempo em que o
sistema permanece em modo de baixo consumo. O despertar do sistema é
gerenciado pelo módulo periodic_rtc_task, uma abstração sobre o RTC de
hardware que dispara um alarme em intervalos pré-configurados.

Para garantir que a execução de tarefas não ocorra no contexto da
interrupção do RTC, o que é uma má prática em sistemas de tempo real,
o callback do alarme não executa a lógica de medição e envio diretamente. Em
vez disso, ele submete uma tarefa para a fila de trabalho do sistema (system
workqueue) do Zephyr, através da função k_work_submit(). Esta abordagem
delega a execução para uma thread de baixa prioridade, mantendo o sistema
responsivo e evitando o bloqueio de interrupções críticas. A função de trabalho,
adc_and_send_work_handler, encapsula todo o ciclo de operação ativo: ligar
os recursos necessários, ler o ADC, transmitir os dados e, por fim, desligar os
recursos para retornar ao estado de sleep.

4.2.2
Módulo de Abstração do Rádio (ieee_sender)

Para simplificar a comunicação e abstrair as complexidades do controle
direto do periférico de rádio do microcontrolador, foi desenvolvido o módulo
ieee_sender. Inspirado nos exemplos de teste de rádio da Nordic, este módulo
expõe uma interface minimalista com as funções ieee_sender_init() e
ieee_sender_send(), permitindo que a aplicação principal envie pacotes de
dados sem precisar gerenciar registradores de hardware ou interrupções de
rádio.

Internamente, o módulo configura o rádio para o modo IEEE 802.15.4
e utiliza os atalhos de hardware (shortcuts) do periférico para desabilitar
o rádio automaticamente após a conclusão da transmissão, uma otimização
fundamental para a economia de energia. A notificação de que um pacote foi
enviado com sucesso é feita de forma assíncrona, através de uma função de
callback, liberando a aplicação para aguardar a conclusão em um semáforo
(k_sem_take) em vez de policiar o estado do hardware.

4.2.3
Abstrações para ADC e Tarefas Periódicas

Para completar a arquitetura do firmware, dois módulos de abstração
foram utilizados para simplificar a interação com o hardware e o agendamento

Capítulo 4. Desenvolvimento e Implementação 27

de tarefas, mantendo o código da aplicação principal limpo e focado em sua
lógica de orquestração.

O primeiro é a configuração para a leitura do conversor analógico-digital
(ADC). Em vez de codificar pinos e configurações diretamente no código-fonte,
a definição do canal do ADC a ser utilizado é feita através de uma entrada no
arquivo de overlay do Device Tree (ProMicro_nrf52840_nrf52840.overlay).
A aplicação utiliza a macro ADC_DT_SPEC_GET_BY_IDX fornecida pelo Zephyr
para obter a configuração completa do canal em tempo de compilação. Isso
torna o firmware mais portável e fácil de reconfigurar, pois a alteração do pino
do sensor exige apenas uma modificação no overlay, sem necessidade de alterar
o código C.

O segundo módulo, periodic_rtc_task, foi criado para encapsular a
lógica de agendamento de tarefas periódicas. Em vez de interagir diretamente
com a API de counter do Zephyr no main.c, este módulo oferece uma interface
simplificada para iniciar um temporizador baseado no RTC de baixo consumo
que dispara uma função de callback no intervalo desejado. Essa abstração
não só organiza melhor o código, mas também facilita a reutilização dessa
funcionalidade em outros projetos. Juntos, esses módulos, em conjunto com as
estratégias de orquestração e gerenciamento de energia, formam um firmware
robusto, modular e altamente otimizado para operação de baixíssimo consumo.

4.2.4
Gerenciamento de Energia On-Demand : O Controle do HFCLK

Para um dispositivo alimentado por fontes de energia escassas, a simples
utilização de estados de baixo consumo (sleep) não é suficiente. É impera-
tivo minimizar o consumo também durante os curtos períodos de atividade.
A análise de consumo revelou que o Clock de Alta Frequência (HFCLK), ne-
cessário para a operação do rádio e do ADC, é o principal responsável pelo
alto consumo de corrente durante o ciclo de trabalho. Manter este clock ativo
desnecessariamente drenaria rapidamente a energia armazenada.

Para mitigar este problema, foi implementada uma estratégia de ge-
renciamento de energia explícita e sob demanda (on-demand). Em vez
de habilitar o HFCLK na inicialização do sistema, ele permanece desli-
gado por padrão. A ativação ocorre apenas no início da função de tra-
balho (adc_and_send_work_handler), através de uma chamada à função
hfclk_control_request(). Esta função não só solicita a ativação do clock,
mas também aguarda sua estabilização antes de permitir que a execução pros-
siga para a leitura do ADC e a transmissão de rádio.

Imediatamente após a conclusão da transmissão (ou na ocorrência de uma

Capítulo 4. Desenvolvimento e Implementação 28

falha), a última ação executada pela função de trabalho é desabilitar o HFCLK
através da chamada hfclk_control_release(). O uso de um bloco de limpeza
garante que o clock seja desligado mesmo em cenários de erro, evitando que o
sistema permaneça em um estado de alto consumo. Esta abordagem garante
que o componente de maior consumo do sistema esteja ativo apenas por
algumas centenas de milissegundos a cada ciclo de 60 segundos, reduzindo
drasticamente o consumo médio de energia.

4.2.5
Estratégias de Compilação para Depuração e Baixo Consumo

A depuração de firmware em sistemas de baixíssimo consumo apresenta
um desafio inerente: as próprias ferramentas utilizadas para observar o sistema
podem alterar drasticamente seu comportamento energético. A depuração
é tipicamente realizada com o auxílio de ferramentas de log que enviam
mensagens de status via comunicação serial, como a USB. Contudo, o impacto
energético dessas ferramentas precisa ser compreendido e isolado.

Utilizando o Power Profiler Kit II (PPK2), detalhado na Seção 5.2, foi
realizada uma análise do consumo da PCB ProMicro. Verificou-se que, com um
firmware que habilitava a comunicação serial via USB para fins de depuração, o
consumo de corrente em estado ocioso era próximo a 2 mA. Este valor, embora
baixo para aplicações tradicionais, é excessivamente alto para um dispositivo
que visa operar com energia coletada do ambiente. A investigação revelou que
a comunicação USB ativa mantinha o High-Frequency Clock (HFCLK) sempre
ligado, impedindo a validação de rotinas de economia de energia que dependiam
de seu desligamento.

Diante dessa constatação, tornou-se evidente a necessidade de separar a
compilação para depuração da compilação para operação final. A solução foi
criar duas configurações de build distintas no Zephyr, que geram firmwares
com características diferentes a partir do mesmo código-fonte:

1. Configuração de Depuração (prj_debug.conf): Habilita o stack
USB, o console serial e o sistema de logs do Zephyr para permitir a observação
detalhada do comportamento da aplicação.

Habilita logs e console via USB
CONFIG_LOG=y
CONFIG_CONSOLE=y
CONFIG_USB_DEVICE_STACK=y
CONFIG_USB_CDC_ACM=y
CONFIG_UART_CONSOLE=y

Capítulo 4. Desenvolvimento e Implementação 29

2. Configuração de Baixo Consumo (prj_low_power.conf): De-
sativa completamente os subsistemas de log, console e USB, além de outros
periféricos não utilizados, para garantir que a medição de energia reflita o
comportamento real da aplicação em campo.

Desativa logs, console e USB para baixo consumo
CONFIG_LOG=n
CONFIG_CONSOLE=n
CONFIG_UART_CONSOLE=n
CONFIG_USB_DEVICE_STACK=n

Desativa periféricos não utilizados
CONFIG_I2C=n
CONFIG_SPI=n
CONFIG_BT=n

A adoção dessas configurações foi fundamental para a metodologia de
teste do projeto. Com a versão de depuração, foi possível validar a lógica da
aplicação (leitura de ADC, envio de rádio) de forma mais eficiente. Posteri-
ormente, compilando com a versão de baixo consumo, o foco foi direcionado
exclusivamente para a análise do perfil energético, garantindo que as otimi-
zações de software, como o gerenciamento on-demand do HFCLK, surtissem
o efeito desejado. Nessa etapa, a depuração recorria a métodos de menor im-
pacto, como a sinalização visual por meio de um LED.

5
Validação Experimental e Análise de Resultados

Este capítulo apresenta os resultados quantitativos obtidos a partir da
implementação do firmware, com foco principal na análise do consumo de
energia, um fator crítico para a viabilidade de sistemas alimentados por Energy
Harvesting. A seguir, será detalhada a metodologia de medição empregada,
seguida pela apresentação e discussão dos dados coletados. A análise abrange
não apenas o desempenho do sistema em diferentes configurações, mas também
as descobertas e desafios não planejados que surgiram durante o processo de
validação, como o impacto energético do bootloader da placa.

5.1
Metodologia de Medição de Consumo

Para validar de forma rigorosa as estratégias de baixo consumo imple-
mentadas no firmware, foi estabelecida uma metodologia de medição precisa,
capaz de capturar tanto correntes de sleep na ordem de microampères (µA)
quanto picos de transmissão na ordem de miliampères (mA).

5.1.1
Configuração Experimental

O principal instrumento utilizado para a análise energética foi o Nordic
Semiconductor Power Profiler Kit II (PPK2). Esta ferramenta foi esco-
lhida por sua alta resolução e taxa de amostragem (até 100 kS/s), permitindo
a caracterização detalhada do perfil de consumo do dispositivo ao longo do
tempo.

A montagem experimental, ilustrada na Figura 5.1, consistiu em alimen-
tar a PCB ProMicro diretamente através do PPK2, configurado para fornecer
uma tensão estável de 3.3V, simulando uma fonte de energia típica de um
sistema de Energy Harvesting. O PPK2, por sua vez, estava conectado a um
computador para a visualização e gravação dos dados de consumo através do
software nRF Connect for Desktop.

Todos os testes foram realizados para as duas configurações de compila-
ção distintas, detalhadas no capítulo anterior:

– prj_debug.conf: Com o subsistema de log e a comunicação USB
habilitados para depuração funcional.

Capítulo 5. Validação Experimental e Análise de Resultados 31

Figura 5.1: Setup experimental para medição de consumo, mostrando a PCB ProMicro
conectada e alimentada pelo Power Profiler Kit II (PPK2).

– prj_low_power.conf: Com todas as funcionalidades de depuração de-
sativadas para a medição do consumo de energia em um cenário mais
próximo do real.

5.2
Análise de Consumo de Energia

5.2.1
Consumo em Estado Ocioso: O Impacto da Depuração

A primeira e mais impactante descoberta da análise foi a drástica
diferença no consumo de corrente de base (em estado ocioso ou sleep) entre
as duas configurações de compilação. Este resultado validou a necessidade da
estratégia de dupla compilação descrita no capítulo anterior.

Na compilação com a configuração prj_debug.conf, que mantém o
stack USB e os logs ativos, o consumo médio medido foi de 1,94 mA. Em
contraste, ao utilizar a configuração prj_low_power.conf, que desativa estes
subsistemas, o consumo médio foi reduzido para 1,10 mA, representando uma
redução de aproximadamente 43%. As Figuras 5.2 e 5.3 ilustram essa diferença
de forma clara.

Essa diferença substancial é atribuída diretamente à ativação do stack
USB na versão de depuração. Esse componente não apenas consome energia por
si mesmo, mas, de forma mais crítica, impede que o Clock de Alta Frequência
(HFCLK) seja desabilitado, mantendo o sistema em um estado de consumo

Capítulo 5. Validação Experimental e Análise de Resultados 32

Figura 5.2: Modo Debug: consumo médio de 1,94 mA.

Figura 5.3: Modo Low Power : consumo médio de 1,10 mA.

consideravelmente mais alto, mesmo quando a aplicação principal está em
espera.

5.2.2
Investigação da Corrente de Fuga Residual

Apesar da redução significativa, um consumo de 1,10 mA em estado de
repouso ainda é excessivamente alto para uma aplicação que almeja operar com
Energy Harvesting, estando ordens de magnitude acima do valor teórico de 3,16
µA especificado no datasheet do nRF52840 [Nordic Semiconductor 2023]. Isso
motivou uma investigação sobre as possíveis causas para essa corrente de fuga
residual.

A principal hipótese é o consumo de componentes externos na
PCB ProMicro, que não foi projetada com foco em ultra baixo consumo e
possui documentação limitada. É provável que componentes como reguladores
de tensão ou outros circuitos passivos contribuam para um consumo “parasita”
que não pode ser controlado pelo firmware do SoC.

Adicionalmente, explorou-se o potencial de otimizações de software mais

Capítulo 5. Validação Experimental e Análise de Resultados 33

agressivas. Testes com o modo de desligamento total do sistema do Zephyr
(sys_poweroff) resultaram em um consumo de base de aproximadamente 808
µA (conforme a Figura 5.4), ainda alto, mas que demonstra haver margem para
otimizações de software mais profundas na configuração dos modos de sono do
sistema.

Figura 5.4: System poweroff : consumo médio de 808 µA.

5.2.3
Perfil de Consumo do Ciclo de Operação Ativo

A análise do ciclo ativo, quando o dispositivo desperta para ler o sensor e
transmitir os dados, também revelou diferenças notáveis entre os dois modos,
como pode ser visto nas Figuras 5.5 e 5.6.

No modo Debug (Figura 5.5), o pico de atividade dura aproximadamente
9,8 ms, com um consumo médio de 7,80 mA. Em contraste, no modo Low
Power (Figura 5.6), o mesmo ciclo de trabalho é executado em apenas 1,2
ms, com um consumo médio de 4,65 mA. Essa otimização drástica no tempo
e na corrente ocorre porque a versão de baixo consumo não possui o overhead
de processamento e comunicação do sistema de logs, executando apenas as
instruções essenciais.

5.3
Análise de Comportamentos Não Planejados

Além da análise dos ciclos de operação planejados, a medição detalhada
do consumo revelou um comportamento não trivial e de grande impacto para
o orçamento energético do sistema: um período de alto consumo que era
incontrolável pela aplicação.

Capítulo 5. Validação Experimental e Análise de Resultados 34

Figura 5.5: Ciclo ativo no modo Debug.

Figura 5.6: Ciclo ativo no modo Low Power.

5.3.1
O Custo Energético do Bootloader

Finalmente, a análise do momento de inicialização do dispositivo revelou
um comportamento incontrolável pela aplicação. Foi verificado que, imediata-
mente após o dispositivo ser energizado, há um período de consumo elevado
com duração total de aproximadamente 900 ms antes que a primeira tarefa
do firmware seja executada. Dentro deste intervalo, os primeiros 510 ms apre-
sentam um consumo de corrente particularmente intenso e oscilatório, como
ilustra a Figura 5.7.

A fase de consumo mais intenso, correspondente aos primeiros 510 ms,
foi atribuída ao bootloader, que executa suas rotinas antes de ceder o controle
à aplicação. O intervalo de tempo subsequente, até que a primeira tarefa da
aplicação seja executada em 900 ms, representa uma zona de transição. Este
atraso adicional pode ser atribuído a uma combinação de fatores: o final do
processo do bootloader e o tempo de inicialização do próprio kernel do Zephyr
e seus drivers, que ocorre antes que o escalonador execute a primeira instrução
da aplicação.

Capítulo 5. Validação Experimental e Análise de Resultados 35

Figura 5.7: Perfil de consumo no primeiro segundo após a energização. A área
selecionada mostra o período de atividade do bootloader, com duração de 510
ms e consumo médio de 5,13 mA.

Independentemente da causa exata para cada fase, a existência deste
“custo energético de inicialização” total de 900 milissegundos é uma
implicação crítica. Em um cenário de Energy Harvesting onde reinicializações
por falha de energia podem ser frequentes, este custo fixo e incontrolável pela
aplicação precisa ser rigorosamente contabilizado no orçamento energético,
pois pode consumir uma porção significativa da energia coletada e impactar
diretamente a frequência de operação do dispositivo.

6
Conclusão e Trabalhos Futuros

Este capítulo final consolida os resultados e aprendizados obtidos ao longo
do desenvolvimento do projeto. Inicialmente, é apresentada uma retrospectiva
do trabalho, recapitulando os desafios, as soluções implementadas e os resulta-
dos experimentais. Em seguida, são detalhadas as principais conclusões técni-
cas e de engenharia derivadas da análise. Por fim, são delineadas as possíveis
direções para a continuidade e expansão do projeto em trabalhos futuros.

6.1
Retrospectiva do Projeto

O presente trabalho partiu do desafio fundamental de alimentar a cres-
cente massa de dispositivos da Internet das Coisas (IoT) de forma sustentável,
contornando as limitações operacionais e ambientais impostas pelas baterias. O
objetivo central foi, portanto, projetar, implementar e validar um firmware de
ultra-baixo consumo para uma plataforma de hardware real (a PCB ProMicro
com o SoC nRF52840), visando a operação com fontes de energia intermitentes,
como as de Energy Harvesting.

Durante o processo, desafios práticos de engenharia foram superados.
Destaca-se a necessidade de realizar um trabalho de engenharia reversa
na PCB ProMicro, que possuía documentação escassa, a fim de mapear o
espaço de memória e identificar o endereço de início do bootloader. Este
processo investigativo foi crucial para a criação de uma configuração de
hardware customizada no Device Tree, que resolveu o conflito de inicialização.
Adicionalmente, foi desenvolvida uma metodologia de dupla compilação para
isolar o impacto energético das ferramentas de depuração e permitir uma
medição precisa do consumo.

Foi desenvolvida sobre o Zephyr RTOS uma arquitetura de software
orientada a eventos. A implementação se destacou pela criação de módulos
de abstração, como o ieee_sender para a comunicação de rádio, e por uma
estratégia de gerenciamento de energia explícita e on-demand, focada no
controle do Clock de Alta Frequência (HFCLK).

A fase de validação experimental, utilizando o Power Profiler Kit II,
quantificou o sucesso das estratégias de otimização, demonstrando uma redu-
ção drástica no consumo de energia entre os modos de depuração e de baixo
consumo. Adicionalmente, a análise crítica dos resultados permitiu identifi-
car e investigar as fontes de consumo residual e revelou o impacto energético

Capítulo 6. Conclusão e Trabalhos Futuros 37

não trivial do bootloader da placa, uma descoberta crucial para o cálculo do
orçamento energético total do sistema.

6.2
Conclusões e Atendimento aos Objetivos

A partir da implementação e da análise experimental detalhada, o pre-
sente trabalho alcançou os objetivos propostos, permitindo extrair conclusões
técnicas e de engenharia que respondem diretamente às metas estabelecidas.

6.2.1
Implementação de Firmware Otimizado para Baixo Consumo

Em atendimento aos objetivos de implementar um firmware otimi-
zado e desenvolver um módulo de comunicação eficiente, conclui-se que
a arquitetura de software orientada a eventos é uma estratégia fundamental e
bem-sucedida. A abordagem de manter o sistema em sleep e executar tarefas
curtas em resposta a eventos (disparo do RTC), combinada com o gerencia-
mento explícito de recursos caros como o Clock de Alta Frequência (HFCLK),
foi validada como uma técnica crucial para minimizar o consumo total de ener-
gia em dispositivos que operam com fontes intermitentes.

6.2.2
Quantificação do Consumo Energético e Suas Implicações

O objetivo de quantificar e validar o consumo energético do sistema
levou a duas das mais significativas conclusões do trabalho:

1. A configuração de compilação tem um impacto crítico no con-
sumo. Foi quantificado que a simples ativação do subsistema USB para
depuração elevava o consumo de base em 85% (de 1,10 mA para 1,94
mA). Isso demonstra que a validação de consumo deve ser, obrigatoria-
mente, realizada com uma configuração “limpa”, idêntica à da aplicação
final, pois as ferramentas de debug podem mascarar completamente os
resultados das otimizações.

2. Existem custos energéticos fixos e não triviais no hardware de
prototipagem. A análise também quantificou um “custo de inicializa-
ção” de superior a 500 ms imposto pelo bootloader, um fator que não
pertence à aplicação mas impacta diretamente seu orçamento energético.

Capítulo 6. Conclusão e Trabalhos Futuros 38

6.2.3
Avaliação da Plataforma de Hardware (PCB ProMicro)

Finalmente, ao avaliar a viabilidade da PCB ProMicro para apli-
cações com Energy Harvesting, conclui-se que, embora seja uma excelente pla-
taforma para o desenvolvimento e a depuração da lógica do firmware, suas
limitações de hardware impõem um “piso” de consumo elevado. Fatores como
componentes passivos na placa e a presença do bootloader tornam impossível
atingir os valores teóricos de microampères (µA) especificados no datasheet do
SoC.

A análise do bootloader, em particular, destaca um trade-off fundamen-
tal na prototipagem: uma alternativa para mitigar o seu custo energético seria
utilizar um programador externo, como um J-Link, para sobrescrever comple-
tamente a memória do microcontrolador. Contudo, isso eliminaria a conveni-
ente funcionalidade de gravação via USB, que foi essencial para a agilidade no
desenvolvimento. Esta escolha reforça que, para um produto final que busque
atingir os limites teóricos de consumo, o desenvolvimento de uma Placa de
Circuito Impresso (PCB) customizada representa a evolução natural e mais
eficaz do projeto.

6.3
Trabalhos Futuros

O presente trabalho estabelece uma base sólida para o desenvolvimento
de dispositivos IoT autônomos, validando uma arquitetura de firmware e
uma metodologia de análise de consumo. A seguir, são propostas algumas
direções claras para a sua continuidade e evolução, abordando as limitações
identificadas e expandindo o escopo do projeto:

1. Implementação do Sistema Completo de Hardware: A etapa mais
crucial para a validação final do conceito é a integração do hardware que
não foi escopo deste trabalho. Isso inclui:

– Módulo de Energy Harvesting: Projetar ou selecionar um
circuito de coleta de energia, composto por uma fonte (como paineis
solares) e um circuito gerenciador de carga, para alimentar a PCB
e validar a autonomia do sistema em condições reais de iluminação
variável.

– Seleção do Sensor Final: Integrar e validar um sensor de tempe-
ratura de ultra-baixo consumo, analisando seu ciclo de medição e o
impacto real no orçamento energético total do dispositivo.

Capítulo 6. Conclusão e Trabalhos Futuros 39

– Uso de Ferramentas de Depuração Avançada: Adotar um pro-
gramador/depurador externo, como o J-Link, para permitir a depu-
ração a nível de registradores e a remoção completa do bootloader.
Isso não só possibilitaria uma otimização mais fina do firmware,
como também eliminaria o custo energético de inicialização, um ga-
nho significativo para o sistema.

2. Aprofundamento das Otimizações de Firmware: Com base nos
resultados obtidos, há espaço para otimizações adicionais no software:

– Exploração de Modos de Sono Profundo: Investigar e apli-
car configurações de gerenciamento de energia mais agressivas no
Zephyr para tentar reduzir a corrente de fuga residual identificada,
buscando se aproximar dos valores teóricos de consumo em sleep na
casa dos microampères.

– Validação Funcional da Comunicação: Realizar testes de
campo para caracterizar o desempenho do rádio, como o alcance
máximo e a taxa de sucesso de pacotes em diferentes ambientes,
para validar a robustez da comunicação.

3. Desenvolvimento de Hardware Customizado: Conforme concluído,
o hardware de prototipagem impõe um limite de consumo significativo.
O passo mais avançado seria:

– Projeto de uma PCB Otimizada: Desenvolver uma Placa de
Circuito Impresso (PCB) customizada para a aplicação. Esta placa
seria projetada com foco exclusivo em baixo consumo, utilizando
apenas os componentes estritamente necessários, eliminando fontes
de consumo parasita (como LEDs e reguladores ineficientes) e
otimizando o layout para se aproximar dos limites teóricos de
consumo do SoC.

7
Referências

[2.4 GHz proprietary - nordicsemi.com]2.4 GHz propri-
etary - nordicsemi.com. Available from Internet:
<https://www.nordicsemi.com/Products/Wireless/2-4-GHz-proprietary>.
Citado na página 16.

[Afanasov et al. 2020]AFANASOV, M. et al. Battery-less zero-maintenance
embedded sensing at the mithræum of circus maximus. In Proceedings of
the 18th Conference on Embedded Networked Sensor Systems. Virtual Event
Japan: ACM, 2020. p. 368–381. ISBN 978-1-4503-7590-0. Available from
Internet: <https://dl.acm.org/doi/10.1145/3384419.3430722>. Citado 2
vezes nas páginas 10 e 11.

[ANT / ANT+ Defined - THIS IS ANT]ANT / ANT+ Defined - THIS IS
ANT. Available from Internet: <https://www.thisisant.com/developer/ant-
plus/ant-antplus-defined/>. Citado na página 16.

[Arduino - Home]ARDUINO - Home. Available from Internet:
<https://www.arduino.cc/>. Citado na página 23.

[Bakar e Hester 2018]BAKAR, A.; HESTER, J. Making sense of intermittent
energy harvesting. In Proceedings of the 6th International Workshop on
Energy Harvesting & Energy-Neutral Sensing Systems. Shenzhen China:
ACM, 2018. p. 32–37. ISBN 978-1-4503-6047-0. Available from Internet:
<https://dl.acm.org/doi/10.1145/3279755.3279762>. Citado na página 11.

[Bluetooth Technology Overview | Bluetooth® Technology Website]
BLUETOOTH Technology Overview | Bluetooth® Technology Web-
site. Available from Internet: <https://www.bluetooth.com/learn-about-
bluetooth/tech-overview/>. Citado na página 16.

[Chatterjee et al. 2023]CHATTERJEE, A. et al. Powering internet-of-things
from ambient energy: a review. Journal of Physics: Energy, vol. 5, no. 2, p.
022001, fev. 2023. ISSN 2515-7655. Publisher: IOP Publishing. Available from
Internet: <https://dx.doi.org/10.1088/2515-7655/acb5e6>. Citado 2 vezes
nas páginas 10 e 11.

[Elahi et al. 2020]ELAHI, H. et al. Energy Harvesting towards Self-Powered
IoT Devices. Energies, vol. 13, no. 21, p. 5528, out. 2020. ISSN 1996-1073.

Capítulo 7. Referências 41

Available from Internet: <https://www.mdpi.com/1996-1073/13/21/5528>.
Citado na página 11.

[EnABLES 2022]EnABLES. Up to 78 million batteries will be discar-
ded daily by 2025, researchers warn. 2022. Available from Inter-
net: <https://cordis.europa.eu/article/id/430457-up-to-78-million-batteries-
will-be-discarded-daily-by-2025-researchers-warn>. Citado na página 10.

[ICBbuy 2024]ICBBUY. developmentboard:nrf52840
[ICBbuy]. 2024. Available from Internet:
<https://wiki.icbbuy.com/doku.php?id=developmentboard:nrf52840>.
Citado na página 18.

[Jayakumar et al. 2014]JAYAKUMAR, H. et al. Powering the internet
of things. In Proceedings of the 2014 international symposium on
Low power electronics and design. La Jolla California USA: ACM,
2014. p. 375–380. ISBN 978-1-4503-2975-0. Available from Internet:
<https://dl.acm.org/doi/10.1145/2627369.2631644>. Citado na página 10.

[Ku et al. 2016]KU, M.-L. et al. Advances in Energy Harvesting Communica-
tions: Past, Present, and Future Challenges. IEEE Communications Surveys
& Tutorials, vol. 18, no. 2, p. 1384–1412, 2016. ISSN 1553-877X, 2373-745X.
Available from Internet: <https://ieeexplore.ieee.org/document/7317504/>.
Citado na página 10.

[Lucia et al. 2017]LUCIA, B. et al. Intermittent computing: Challenges and
opportunities. August 2017. Citado na página 11.

[Melo 2017]MELO, P. Padrão IEEE 802.15.4 - A base para as especificações
Zigbee, WirelessHart, ISA100.11a e MiWi. 2017. Available from Internet:
<https://embarcados.com.br/padrao-ieee-802-15-4/>. Citado na página 15.

[Nordic Semiconductor 2023]Nordic Semiconductor. nRF52840
Product Specification v1.11. [S.l.], 2023. Acesso em:
30 jun. 2025. Available from Internet: <https://docs-
be.nordicsemi.com/bundle/ps_nrf52840/attach/nRF52840_PS_v1.11.pdf>.
Citado na página 32.

[nRF52840 - Nordic Semiconductor]nRF52840 - Nordic Semiconductor. Avai-
lable from Internet: <https://www.nordicsemi.com/Products/nRF52840>.
Citado na página 14.

[OpenThread]OPENTHREAD. Available from Internet:
<https://openthread.io/>. Citado na página 15.

Capítulo 7. Referências 42

[18]RIBEIRO, J. G. R.; CHAGAS, N. S.; SANTOS, M. F. dos. O
Impacto causado ao meio ambiente pelo descarte incorreto de pi-
lhas e baterias. Tese (Graduação e Especialização) — Faculdade Una
Pouso Alegre - Minas Gerais, jul. 2022. Available from Internet:
<https://repositorio.animaeducacao.com.br/handle/ANIMA/24687>. Ci-
tado na página 10.

[Sinha 2024]SINHA, S. State of IoT 2024: Number of connected IoT devi-
ces growing 13% to 18.8 billion globally. 2024. Available from Internet:
<https://iot-analytics.com/number-connected-iot-devices/>. Citado 2 vezes
nas páginas 9 e 10.

[Statista 2020]STATISTA. End of life recycling rates of bat-
tery metals worldwide, by type. 2020. Available from Internet:
<https://www.statista.com/statistics/1229936/end-of-life-battery-metals-
recycling-rates-by-type/>. Citado na página 10.

[The Zephyr Project 2025]The Zephyr Project. About The Zephyr Pro-
ject. 2025. Available from Internet: <https://www.zephyrproject.org/learn-
about/>. Citado 2 vezes nas páginas 16 e 17.

[Winans 2020]WINANS, N. Fixing the Mysterious Broken Bootloader. 2020.
Available from Internet: <https://zmk.dev/blog/2020/10/03/bootloader-
fix>. Citado na página 23.

[Zigbee | Complete IOT Solution - CSA-IOT]ZIGBEE | Complete IOT So-
lution - CSA-IOT. Available from Internet: <https://csa-iot.org/all-
solutions/zigbee/>. Citado na página 15.

	Desenvolvimento de Sistema IoT sem Uso de Baterias
	Resumo
	Sumário
	Introdução
	A Ascensão da Internet das Coisas
	O Problema da Dependência de Baterias
	Motivação e Proposta de Solução
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Desafios do Projeto
	Contribuições
	Organização do Documento

	Fundamentação Teórica
	Nordic nRF52840
	Protocolos de Comunicação sem Fio
	IEEE 802.15.4
	Zigbee
	Thread
	ANT
	Bluetooth Low Energy
	2.4 GHz proprietary

	Zephyr RTOS

	Análise do Problema e Arquitetura Proposta
	Diretrizes de Projeto e Restrições Técnicas
	Desafios Identificados
	Limitações de Hardware
	Restrições de Documentação
	Incompatibilidades de Software

	Arquitetura Proposta
	Visão Geral da Solução
	Arquitetura de Software

	Desenvolvimento e Implementação
	Configuração do Ambiente de Desenvolvimento
	Ferramentas e Tecnologias
	Desafios na Configuração da PCB ProMicro
	Identificação do Problema e Descoberta da Causa Raiz
	Solução com Device Tree e Configuração Customizada

	Implementação do Firmware
	Orquestração de Tarefas e Fluxo de Execução
	Módulo de Abstração do Rádio (ieee_sender)
	Abstrações para ADC e Tarefas Periódicas
	Gerenciamento de Energia On-Demand: O Controle do HFCLK
	Estratégias de Compilação para Depuração e Baixo Consumo

	Validação Experimental e Análise de Resultados
	Metodologia de Medição de Consumo
	Configuração Experimental

	Análise de Consumo de Energia
	Consumo em Estado Ocioso: O Impacto da Depuração
	Investigação da Corrente de Fuga Residual
	Perfil de Consumo do Ciclo de Operação Ativo

	Análise de Comportamentos Não Planejados
	O Custo Energético do Bootloader

	Conclusão e Trabalhos Futuros
	Retrospectiva do Projeto
	Conclusões e Atendimento aos Objetivos
	Implementação de Firmware Otimizado para Baixo Consumo
	Quantificação do Consumo Energético e Suas Implicações
	Avaliação da Plataforma de Hardware (PCB ProMicro)

	Trabalhos Futuros

	Referências

