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Resumo

Vieira Ferreira, Felipe. Baffa, Augusto. Aplicacao do algoritmo neuro
evolutivo NEAT para diregdo autbnoma. Rio de Janeiro, 2025. 62 paginas.
Relatério Final de Projeto Final de Graduagao — Departamento de

Informatica. Pontificia Universidade Catdlica do Rio de Janeiro.

Este trabalho investiga a aplicagdo do algoritmo NEAT
(NeuroEvolution of Augmenting Topologies) no controle de diregao
autonoma em um ambiente simulado com Pygame. O veiculo virtual
utiliza sensores de distincia para perceber o ambiente e aprende a
navegar sem dados prévios de condutores humanos. O algoritmo
NEAT evolui a topologia e os pesos das redes neurais ao longo das
geracoes. Os testes foram realizados em pistas com diferentes niveis
de dificuldade e obstaculos. Os resultados mostram que a IA
desenvolve estratégias eficazes de navegagao. O NEAT se mostra
uma abordagem promissora para controle autébnomo sem

aprendizado supervisionado.

Palavras-chave:
Inteligéncia artificial, Veiculo autbnomo, Rede neural, Algoritmo genético,
NEAT, Simulador

Abstract

Vieira Ferreira, Felipe. Baffa, Augusto. Application of the neuro-evolutionary
algorithm NEAT for autonomous driving. Rio de Janeiro, 2025. 62 pages.
Undergraduate Thesis Il — Departamento de Informatica. Pontificia

Universidade Catolica do Rio de Janeiro.

This work explores the use of the NEAT (NeuroEvolution of
Augmenting Topologies) algorithm to train artificial neural networks
for autonomous driving in a simulated environment built with
Pygame. The virtual vehicle perceives its surroundings through
distance sensors and learns to navigate without prior human data.
The NEAT algorithm evolves both the structure and weights of the
networks through generations. The simulation tests include varying

track difficulties and obstacle scenarios. Results show that the Al can



learn effective navigation strategies over time. NEAT proves to be a
viable approach for autonomous control where supervised data is

unavailable.

Keywords:
Artificial intelligence, Autonomous vehicle, Neural network, Genetic
algorithm, NEAT, Simulator
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1. Introducgao

Com o avango da tecnologia e da industria automobilistica, novas
tecnologias surgem para tornar a experiéncia de dire¢cdo mais segura. Uma
dessas tecnologias sao os carros inteligentes, também chamados de carros
autbnomos. Segundo Hussain [1], carro autbnomo se refere a um carro que é
controlado por um computador, que consegue se familiarizar com o ambiente ao
seu redor, tomar decisdes e operar sem nenhum auxilio humano. Os principais
motivadores para o surgimento de carros autbnomos incluem a necessidade de
mais motoristas, seguranga, crescimento populacional, aumento do niumero de
veiculos e otimizagcao de tempo e recursos gastos.

Os carros autbnomos modernos sao equipados com uma variedade de
sensores para garantir tanto a seguranca quanto a automacgdo. Entre eles,
destacam-se cameras, radares (Radio Detection and Ranging), LiDARs (Light
Detection and Ranging) e sensores ultrassénicos. Cada tipo de sensor possui
caracteristicas especificas que os tornam mais adequados para diferentes
fungbes no sistema de percepgédo do veiculo [2, 3, 4]. A Figura 1 ilustra um
exemplo da disposigao desses sensores.
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Fig. 1. Exemplo do posicionamento de sensores

As cameras sdo uma das principais tecnologias empregadas na
percep¢ao do ambiente devido ao seu baixo custo e alta qualidade de imagem.
Com um software adequado, elas podem detectar e reconhecer obstaculos

estaticos e moveis dentro de seu campo de visdo, tornando-se uma opgao



eficiente para a identificacdo de placas de transito, semaforos, faixas de transito
e barreiras. Em condicbes de baixa luminosidade, cadmeras infravermelhas,
frequentemente chamadas de visdo noturna, oferecem um desempenho superior
[2].

O radar é um sistema que opera por meio de ondas de radio, emitindo
pulsos eletromagnéticos que refletem em objetos e sdo captados por uma
antena receptora. A partir da analise da frequéncia dos sinais transmitidos e
refletidos, bem como do tempo que o eco leva para retornar, é possivel calcular
a distdncia e a velocidade dos objetos detectados. Uma de suas principais
vantagens é a imunidade a condigdes climaticas adversas e variagdes de
iluminacao, permitindo seu funcionamento eficiente tanto de dia quanto a noite,
além de em situacdes de nevoeiro, chuva ou neve.

O LiDAR é uma tecnologia de sensoriamento remoto que opera emitindo
pulsos de luz infravermelha ou laser em alta frequéncia. Esses pulsos viajam
pelo ambiente, refletem nos objetos e retornam ao sensor. Ao medir o tempo
decorrido entre a emissao e a recepcao do pulso refletido, o sistema calcula com
precisdo a distdncia de cada ponto no espaco. Repetindo esse processo em
multiplas dire¢des, o LIDAR constroi um mapa tridimensional detalhado do
ambiente na forma de uma nuvem de pontos, permitindo a identificagdo da
forma, posicao e estrutura dos objetos ao redor.

Os sensores ultrassbnicos sao dispositivos de curto alcance, ideais para
aplicagbes em baixa velocidade, como manobras e estacionamento. Eles
operam emitindo ondas sonoras em frequéncia ultrassénica, que refletem nos
objetos ao redor e retornam ao sensor. Com base no tempo que essas ondas
levam para retornar, o sistema calcula com preciséo a distancia até o obstaculo.
Devido a sua eficiéncia na detecgdo de objetos préximos, esses sensores sao
amplamente utilizados em sistemas de assisténcia ao estacionamento e em
tecnologias de prevencéao de colisdes em baixas velocidades.

A definicdo dos niveis de automacao dos veiculos autbnomos é essencial
para os reguladores minimizarem o impacto dessa tecnologia em outros usuarios
das vias, como outros veiculos, pedestres e ciclistas. O grau de automacéo de
um veiculo autbnomo depende da complexidade da tecnologia empregada, do
alcance da percepg¢ao ambiental e do nivel de intervengdo do condutor humano
no processo de dire¢do, o que estd diretamente relacionado a seguranca do
veiculo [5].

Diferentes organizagbes estabelecem classificacbes para os niveis de

automacédo. A definicdo mais amplamente adotada é a da Society of Automotive



Engineers (SAE), que divide a automacao veicular em seis niveis (0 a 5), com
base na responsabilidade do condutor humano e do sistema automatizado em
quatro tarefas principais, controle de diregdo e aceleragio/frenagem,
monitoramento do ambiente, capacidade de assumir o controle em situagdes

imprevistas e nivel de automagao em diferentes condi¢cdes de condugao.
Os niveis definidos pela SAE sao[2, 5]:

o Nivel 0 (Sem Automacgiao): O motorista realiza todas as tarefas de
condugao, podendo contar apenas com sistemas auxiliares, como
controle de estabilidade e freios ABS.

e Nivel 1 (Assisténcia ao Motorista): O sistema pode controlar
aceleragao ou dire¢do, mas o condutor mantém o controle geral do
veiculo. Exemplos incluem controle de cruzeiro adaptativo e assisténcia a
manutencéao de faixa.

e Nivel 2 (Automacao Parcial): O veiculo pode assumir simultaneamente
aceleracao/frenagem e dire¢cao, mas o motorista deve permanecer atento
e pronto para intervir. Tecnologias como frenagem automatica de
emergéncia se enquadram nesse nivel.

o Nivel 3 (Automagao Condicional): O sistema pode conduzir o veiculo
sob determinadas condicdes e alertara o motorista caso precise de
intervencao. O motorista deve estar disponivel para assumir o controle
quando solicitado.

e Nivel 4 (Automacgao Alta): O veiculo pode operar de forma autbnoma
em areas previamente mapeadas. A intervengao do motorista é opcional,
e o sistema pode adotar medidas de seguranga caso ocorra uma falha.

e Nivel 5 (Automagao Completa): O veiculo opera de forma autbnoma em
qualquer ambiente ou condigido, sem necessidade de um motorista

humano, mas ainda podendo tomar o controle caso queira.

A evolucao da automacao traz desafios para a seguranga, pois nos niveis
intermediarios (2 a 4), a interagao entre humano e maquina pode ser um ponto
critico. Ja nos niveis mais altos, a confiabilidade do software e hardware se torna
essencial para garantir a seguranca do sistema. Com o avango da tecnologia,
torna-se fundamental estudar potenciais falhas para garantir a confiabilidade dos
veiculos autbnomos no futuro.

De acordo com o Departamento de Veiculos Motorizados do Estado da

Califérnia, a maioria dos acidentes envolvendo veiculos autbnomos é causada



por outros usuarios das vias publicas, como motoristas, ciclistas e pedestres. Em
muitos casos, esses acidentes ocorrem devido a comportamentos imprevisiveis,
como agdes bruscas, desatencao ou até estados de embriaguez e irritagcao, que
podem representar desafios até mesmo para motoristas humanos [5].

Entre 2014 e 2018, o Departamento de Veiculos Motorizados da
Califérnia registrou 128 acidentes envolvendo veiculos autbnomos. Dos
acidentes analisados, 36.7% ocorreram enquanto o veiculo estava em modo
manual, e 63.3% aconteceram durante a condugdo autbénoma. Além disso,
apenas 6.3% dos acidentes totais foram causados pelos veiculos auténomos,
enquanto 93.7% resultaram da acao de outros usuarios da via, como motoristas,
ciclistas e pedestres [5].

Os veiculos autdbnomos oferecem diversas vantagens para a sociedade,
com destaque para o aumento da seguranga e a redugdo do impacto ambiental.
Em [6], Kopelias, Demiridi, Vogiatzis, Skabardonis e Zafiropoulou analisam os
efeitos desses veiculos na emissédo de gases de efeito estufa e no consumo de
energia. A tecnologia auténoma pode mitigar as emissbes ao otimizar a
eficiéncia do combustivel por meio de estratégias como condugdo
ecologicamente eficiente (eco-driving), redugcdo de congestionamentos e
formacgado de comboios (platooning), que minimizam a resisténcia ao ar. Além
disso, a eletrificagdo dos veiculos autdnomos pode ampliar significativamente a
reducdo de emissbes, especialmente quando aliada a fontes de energia
renovaveis. A adocao de modelos de mobilidade sob demanda também pode
diminuir a frota circulante, reduzindo congestionamentos e o consumo de
combustivel. No entanto, para que esses beneficios sejam plenamente
alcancados, é fundamental uma ampla adogao dos veiculos auténomos.

Embora os veiculos auténomos oferecam diversas oportunidades para a
sociedade, sua implementacdo também traz desafios significativos. Um dos
principais desafios € o impacto no mercado de trabalho, com a substituicdo de
trabalhadores por veiculos auténomos, afetando especialmente pessoas com
menor nivel de escolaridade e renda, que podem perder seus empregos. Além
disso, a aceitacdo e a confianga da populacdo nessa tecnologia representam
outro obstaculo, uma vez que muitos usuarios ainda tém receios quanto a
segurancga e a confiabilidade dos sistemas auténomos [7].

O objetivo deste projeto foi desenvolver uma Inteligéncia Artificial, através
da utilizagdo de Redes Neurais, para controlar a diregdo de um carro autbnomo.
Para isso, foi utilizado o algoritmo NEAT(Neuroevolution of augmenting

topologies) para treina-la e encontrar uma boa topologia. O treinamento foi feito
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em um simulador utilizando a linguagem Python para fazer a légica e a biblioteca
Pygame para fazer a interface do mesmo. A rede neural foi implementada

utilizando a biblioteca neat-python
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2. Situacao Atual

O desenvolvimento de veiculos autbnomos envolve uma série de desafios técnicos
que podem ser categorizados em diferentes camadas. Segundo You [8], estes problemas
foram agrupados em trés partes principais, percepcdo, planejamento e controle, como
ilustrado na figura 2. A camada de percepgao consiste em coletar e filtrar os dados do
ambiente e seu objetivo é transformar os dados brutos em informagdes Uteis para a tomada
de decisao. A coleta é feita a partir de diversos sensores que fornecem informacgdes sobre o
carro e o ambiente. O filtro trabalha nos dados para torna-los o mais limpo possivel. A
camada de planejamento, por sua vez, é responsavel por definir o plano de missao, tomar
decisOes estratégicas e definir a trajetdria a ser seguida com base nos dados recebidos. Por
fim, a camada de controle executa os comandos gerados pela etapa de planejamento,

ajustando em tempo real os movimentos do veiculo.

Sensoring

Filtering
< =
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>|<Perceti0n >{

[ Mission Planning ]

[ DecisionMaking]
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[ Path Planning J

<
Path Tracking Control

oK

[ System Maodelling ]
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N

Fig. 2. Arquitetura de controle autdnomo em diferentes niveis [3]

Campbell, Egerstedt, How e Murray [9] propéem uma divisdo similar, porém com a
inclusao de uma quarta camada, a detecg¢ao, que antecede a percepgdo, como mostrado na
figura 3. A camada de deteccdo coleta os dados brutos provenientes dos sensores,
enquanto a de percepcao € encarregada de transformar esses dados em informagdes
significativas sobre o ambiente e o proprio veiculo. As etapas de planejamento e controle

mantém as mesmas fungdes descritas anteriormente.
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Fig. 3. Arquitetura de sistema de alto nivel para condugdo urbana [4]

Atualmente, o maior desafio técnico encontra-se na camada de planejamento, com
diversas abordagens sendo propostas para otimizar essa etapa, muitas das quais envolvem
0 uso de inteligéncia artificial (IA) e, em particular, de técnicas de aprendizado de maquina
(Machine learning, ML)[8].

O Machine learning é um subcampo da area de |IA que visa desenvolver algoritmos
capazes de melhorar seu desempenho em tarefas especificas por meio da experiéncia. O
ML é dividido em trés principais categorias: aprendizado supervisionado, aprendizado nao
supervisionado e aprendizado por reforgo [10].

O aprendizado supervisionado € utilizado para tarefas com o objetivo de
projetar/classificar as informag¢des de interesse, em que o treinamento € feito com dados
previamente rotulados. O aprendizado nao supervisionado tem o objetivo de encontrar
relacbes/aglomeracdes nos dados e é treinado com informagdes nao rotuladas [10-12]. Por
fim, o aprendizado por reforgo € voltado a tomada de decisbes sequenciais, nas quais um
agente aprende a interagir com o ambiente por meio de tentativa e erro, com o objetivo de
maximizar uma recompensa cumulativa [10, 12].

Para Kiran [10], os métodos tradicionais de aprendizado supervisionado ndo séo
uma possibilidade para a diregdo autbnoma, dado o alto numero de tarefas que
representam um espaco dimensional muito grande devido ao numero de configuracdes

unicas sob as quais o agente e o ambiente sdo observados. E que o aprendizado por
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reforco seria uma boa opcéo, dado que ele é pensado para aprender a se comportar da
melhor maneira possivel no ambiente a cada instante.

Segundo Chen [13], a abordagem mais adotada atualmente para o treinamento de
tomada de decisdo de um carro autbnomo & o aprendizado por imitagdo, em que o modelo
aprende a partir de dados coletados de motoristas humanos. Apesar de sua simplicidade e
relativa eficacia, esse método apresenta limitagdes significativas, como a falta de exposicao
a situacbes de alto risco e a impossibilidade de superar o desempenho humano, uma vez
que o modelo apenas imita comportamentos ja existentes. Nesse contexto, o aprendizado
por reforco surge como uma alternativa promissora, ja que o carro autbnomo poderia
aprender sozinho qual a melhor decisdo em cada momento através de tentativa e erro, o
que poderia torna-lo superior ao ser humano. Além disso, ele também poderia ser exposto a
diversas situagcdes perigosas dentro de simuladores sem que nenhuma vida seja posta em
risco.

Markov decision process (MDP) é uma estrutura matematica que modela
probabilisticamente a interagdo entre um agente e o ambiente [8]. Ela pode ser
representada por uma tupla de pelo menos 4 elementos, sendo eles o conjunto de estados
possiveis S, o conjunto de agdes A, Uma fungdo de transicdo T e uma fungdo de
recompensa R. Algumas outras possibilidades de elementos sdo o factor de desconto v,
uma distribuicdo de estados iniciais, etc [8, 10, 12, 14].

O principal objetivo do MDP € encontrar a politica 6tima 1, ou seja, o conjunto de
tomadas de decisdao que maximiza a recompensa. O aprendizado por reforco € uma 6tima
forma de encontrar essa politica, e seus métodos séo: Programacgao dindmica, Monte Carlo
e diferencas temporais. A programacao dindmica exige que se tenha o conhecimento total
do ambiente, o que n&o é possivel em diversos casos, mas consegue atualizar sua politica
de decisdo durante um episdédio. Monte Carlo ndo necessita do conhecimento perfeito do
ambiente, porém precisa concluir o episddio para conseguir atualizar sua politica. Ja
diferencas temporais nao necessita do conhecimento total do ambiente e também consegue
atualizar sua politica durante o episéddio, porém sao algoritmos mais complexos [8, 10, 12].

Os dois principais algoritmos de diferencas temporais sdo o Sarsa e o Q-learning,
sua principal diferenca é que o Sarsa define o valor de uma agdo com base na acgao atual e
na acao seguinte seguindo a mesma politica, fazendo dele um algoritmo on-policy, ja o
Q-learning define o valor da agdo apenas com base nela, fazendo dele um algoritmo
off-policy.

Além das abordagens baseadas em aprendizado por reforgo, pesquisas recentes
tém explorado os algoritmos neuroevolutivos, que combinam principios de redes neurais e
algoritmos genéticos para evoluir agentes inteligentes. Comparagbes entre essas

abordagens indicam que os algoritmos neuroevolutivos podem apresentar melhor
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desempenho e convergéncia mais rapida em certos contextos, especialmente quando se

deseja otimizar simultaneamente a estrutura e os pardmetros de uma rede neural [15-18].
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3. Fundamentos

Nesta secdo, sdo apresentados os principais fundamentos para o desenvolvimento do
algoritmo NeuroEvolution of Augmenting Topologies (neat). Este algoritmo utiliza uma rede
neural feedforward treinada através de um algoritmo evolutivo que define tanto sua
arquitetura quanto seus pesos sinapticos. Assim, a rede pode evoluir suas caracteristicas

através da adigao de novas conexdes, camadas e neurdnios intermediarios.

3.1. Neurénio Artificial

O neurénio artificial, ou perceptron, foi desenvolvido em 1958 por Rosenblatt para
resolver problemas na area de reconhecimento de caracteres. Ele € uma unidade
fundamental em redes neurais artificiais, modelada para tentar imitar de modo simplificado o
funcionamento de um neurbénio no cérebro humano [19-22]. Na figura 4 temos uma
representacao de um neurdnio artificial e observamos que ele é dividido em 6 partes:

1. Entradas: Similar a como um neurdnio biolégico recebe sinais de outros neurdnios
ou do ambiente, um neurénio artificial recebe multiplas entradas, entdo cada uma é
multiplicada por um peso especifico.

2. Pesos: Para cada entrada, um peso é associado a ela, representando a importancia
relativa dessa entrada para a resposta do neurdnio.

3. Viés (Bias): Um neur6nio artificial também possui um viés. Ele € um parédmetro
adicional que nao esta associado a nenhuma entrada especifica, permitindo ao
neurbnio aprender uma constante que pode afetar a ativagdo do neurbnio,
independentemente das entradas. A soma ponderada mais o viés é entdo passada
para a fungao de ativacao.

4. Soma Ponderada: As entradas multiplicadas pelos pesos sdo somadas para produzir
uma soma ponderada. Esta soma é entdo submetida a uma fungao de ativagao.

5. Fungao de Ativacdo: A soma ponderada passa por uma fungao de ativacdo, que
determina se o neurdnio deve ser ativado ou ndo.

6. Saida: A saida do neurbnio, apds a aplicagdo da funcdo de ativacdo, é entdo

utilizada para interagir com o ambiente.
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Fig. 4. Estrutura de um neurénio artificial

3.2. Rede neural

As redes neurais artificiais foram desenvolvidas com o propdsito de simular o
funcionamento do cérebro humano, utilizando diversos neurénios organizados em camadas,
e suas conexodes. Devido a utilizagao de multiplos neurdnios e varias possiveis arquiteturas,
eles sdo capazes de realizar tarefas muito mais complexas do que um perceptron. Elas
podem ser classificadas a partir de uma ou mais de suas caracteristicas, sendo algumas
delas a fungdo ao qual foram desenvolvidas, seu grau de conectividade e diregdo ao qual a
informacao percorre [19-22]. Na figura 5 temos alguns de seus principais tipos:

1. Rede Neural feedforward: E a forma mais simples de rede neural, onde a informacéo
se move em uma unica direcdo, da camada de entrada para a camada de saida,
sem ciclos ou loops.

2. Rede Neural Recorrente: Permite a existéncia de loops nas conexdes entre
neurénios, permitindo que a rede mantenha uma memoaria de estados anteriores.

3. Rede Neural Convolucional: Especializada no processamento de dados em grade,
como imagens. Usa camadas convolucionais para identificar padrdes locais e

camadas de pooling para reduzir a dimensionalidade.
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Camadas intermediarias Camadas intermediarias

Camada Camada

entrada de saida entrada de saida

Rede neural feedforward totalmente conectada Rede neural feedforward parcialmente conectada

Camadas intermedidrias

Camada

entrada

Rede neural recorrente

Fig. 5. Exemplos de redes neurais

3.3. Algoritmos genéticos

Os algoritmos genéticos foram inspirados no processo de sele¢cao natural proposto
por Darwin. Eles funcionam criando uma populagdo inicial de individuos que irdo interagir
com o ambiente e entdo serdo submetidos a uma avaliacdo por meio de uma funcao fitness,
que quantifica sua aptidao ao ambiente. A etapa seguinte envolve a reproducgao, nela os
individuos mais bem adaptados possuem maior probabilidade de gerar descendentes. Essa
abordagem simula o conceito evolutivo de transmitir caracteristicas vantajosas a prole,
promovendo assim a busca eficiente por solu¢gdes mais adaptadas ao contexto do problema

em questdo.

3.4. NeuroEvolution of augmenting topologies (NEAT)

NEAT representa uma abordagem dentro do campo da neuroevolugdo, uma subarea
dos algoritmos genéticos dedicada ao aprimoramento de redes neurais. Desenvolvido por
Kenneth Stanley em 2002, o algoritmo busca resolver desafios presentes em outros
métodos desse dominio, incluindo a evolugédo simultdnea da topologia da rede neural e dos

seus pesos [16].
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3.4.1. Genoma

As redes neurais sao frequentemente concebidas como grafos direcionados, em que
cada neurbnio € mapeado para um vértice, e as conexdes entre neurbnios sdo expressas
por arestas direcionadas. A representacao codificada desse grafo é comumente referida
como genoma, dependendo de como foi feita a codificagdo podem surgir problemas.

O problema das convengdes concorrentes [16, 23], também conhecido como
“‘competing conventions problem”, € uma das principais € amplamente conhecidas
dificuldades nos algoritmos neuroevolutivos. Este problema se manifesta quando dois
genomas representam redes neurais idénticas, porém com codificagbes distintas. Em tais
casos, a aplicacdo de cruzamento (crossover) entre esses genomas pode resultar na
geracao de descendentes com falhas.

Em geral, em uma rede com n vértices ocultos (camadas intermediarias) existem n!
maneiras distintas de representa-la. Na figura 6, encontram-se duas redes neurais idénticas,
cada uma com 3 vértices ocultos, no entanto, com codifica¢des inversas: [A, B, C] e [C, B,
A]. Uma abordagem simples de realizar o crossover durante a reproducao é empregar o
“single-point crossover”, no qual um ponto aleatdrio é selecionado para dividir cada genoma
em duas partes, sendo uma delas substituida pela correspondente do outro genoma.

Ao aplicar esse método as redes representadas na figura 6, obtemos dois
descendentes: [A, B, A] e [C, B, C]. Entretanto, essas opg¢des nao sao ideais, pois perderam
um terco das informacdes presentes nos pais, destacando a limitacdo desse processo de

cruzamento em preservar integralmente as caracteristicas genéticas das redes originais.

AC_ B

ro—p

[ABC]
X[CB.A]

Crossovers: [A.BA]  [CBC]

(both are missing information)

Fig. 6. The competing conventions problem
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Para resolver problemas de alinhamento de genes correspondentes, o NEAT utiliza

um método de codificagdo que organiza o genoma em duas listas: uma para vértices e outra

para conexdes [16, 23]. A figura 7 apresenta uma representagéo destas listas.

1. Lista de Vértices:
a. Define quais nés estao presentes na rede neural.

b. Atribui a cada né uma funcgao especifica, como entrada, saida ou oculto.

2. Lista de Conexoes:

a. Define as conexodes entre nos.

b.

Inclui propriedades como peso da conexdo, numero de inovagédo e se a

conexao esta ativa ou ndo.

Genome (Genotype)

Innov K: 1

Node 1 Node 2 Node 3 MNode 4 Node 5
Imput Input Imput Output Hidden
Node Genes
In: 1 In: 2 In: 3 In: 2 In:§ In: 1 In: 4
Out: 4 Out: 4 Out: 4 Out: 5 Out: 4 Qut: 5 Out: 5
Weight: 0.7 Weight: -0.5 Welghl 0.5 Welghl. 0.2 Weight: 0.4 Weight: 0.6 Weight: 0.6
Enabled Dissabled Enabled Enabled Enabled Enabled Enabled
Innov Id: 2 Innov Id: 3 Innov Id: 4 Innov Id: 5 Innav Id: 6 Innav Id: 11

Connection Genes

Fig. 7. Modelo de codificagdo do NEAT

Network (Phenotype)

\

\

O numero de inovagao é uma marca histérica crucial para o algoritmo. Ele é usado

para alinhar as conexdes durante a operacao de crossover. O numero de inovagao ajuda a

garantir que as conexdes sejam alinhadas corretamente durante o crossover. Isso facilita a

transferéncia eficiente de informagdes genéticas relevantes entre os genomas parentais.

Em resumo, o uso do numero de inovagcdo no NEAT resolve o problema de

alinhamento de genes correspondentes, permitindo que o algoritmo evolua redes neurais de

forma mais eficiente, preservando caracteristicas importantes ao longo das geracoes.

Na figura 8 temos uma representagao do alinhamento dos genes durante a operagao

de crossover do NEAT.



20

Parent1 Parent2

1 1 3 4 5 5 1 2 3 4 5 6
I->4 | 2324 | 3—>4 [ =5 | =4 | 1—=5 1-=4 |1 2= F=d | 2-=5 | 524 | F=6| =4 35| 1->6
Al IDISA 11]

i
-
=
=]

disjoint

5 8
Parentl | |~y |24 | 324 [ 25 | 5—=4 1->5
ISAB

1 2 3 4 5 6 7 9 1
1—=4 | 2524 | 34| 25 =6 | 6—=4 3—=5| 1—=6

54
p1sAB DISAR

Parent2

disjointdisjoint EXCASSEANCBS:

7 ] 9 10
6—=4| 1-=5| 3=5| 1-=6

Offspring

Fig. 8. Alinhamento do genoma no NEAT

3.4.2. Especiagao

A evolugido topoldgica da rede introduz um desafio significativo na avaliagao
imparcial da inovagdo genética. Quando um individuo desenvolve um novo neurénio, ocorre
a formacado de duas novas conexdes, cujos pesos sao inicialmente atribuidos de maneira
aleatdria. Devido a auséncia de ajustes por meio da selegéo natural, esses novos genomas
geralmente apresentam uma desvantagem genética em comparagao com os descendentes
que ja foram submetidos ao processo seletivo.

Para superar esse desafio, o algoritmo NEAT propde a estratégia de especiagao,
que visa proteger as inovagdes genéticas por um periodo, permitindo que se ajustem por
meio da competicdo intra espécie. Essa abordagem consiste em dividir a populagdo em
grupos distintos com base em sua semelhanga genética. A separagao ocorre com base na
distdncia genética entre os genomas, tendo em vista que quanto mais genes nao
correspondentes apresentam entre si, maior é a distancia entre eles.

Essa distancia 8 pode ser calculada através de uma simples combinacao linear entre
0 numero de genes em excesso E, genes nao correspondentes no final do genoma, e

disjuntos D, genes nao correspondentes no meio do genoma, além da média da diferenca

dos pesos entre os genes correspondentes IW:
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cE c.D

1 2
8_N+N

+ c3W (1)

Os coeficientes c;, ¢, e c; permitem ajustar a importancia relativa de cada fator e N, numero
de genes no maior genoma, serve para normalizar de acordo com o tamanho do genoma.
Ao empregar a distancia 8 para a segmentacéo das espécies, torna-se viavel estabelecer
um limite de compatibilidade 8, entre os individuos pertencentes ao mesmo grupo.

A cada geracdo, os genomas sao percorridos sequencialmente, e alocados a
primeira espécie em que sejam compativeis com o representante. Cada espécie é
representada por um genoma aleatério dentro das espécies da geragado anterior. Se um
individuo ndo se encaixar em nenhuma espécie, ele se tornara o representante de uma

nova espeécie.

3.4.3. Fitness

Ao término de cada geragao, todos os individuos passam por uma avaliagao
baseada em sua aptidao por meio de uma fungéo fitness. Com o intuito de impedir que uma
espécie prevalega sobre as demais, o NEAT emprega a técnica de explicit fitness sharing,
na qual todos os individuos pertencentes a mesma espécie devem compartilhar o mesmo
fitness. Isso assegura que um grupo nao seja capaz de predominar na populagdo, mesmo
que varios de seus membros apresentem elevada aptiddo. O fitness ajustado de cada

espécie € o fitness médio da espécie.

3.4.4. Reproducéo

Apods a determinacao do fitness ajustado para cada espécie, é atribuido a cada uma
delas um limite de descendentes proporcional a sua aptidao relativa. O processo de
reproducdo se inicia eliminando inicialmente os individuos menos aptos da populagdo. Em
seguida, a totalidade da populacdo € substituida pela prole dos individuos que

permaneceram.

3.4.4.1. Crossover

No decorrer do processo de crossover, dois cromossomos da mesma espécie sao
selecionados de forma aleatéria, e seus genes sdo alinhados com base nos numeros de
inovacao atribuidos. Os genes correspondentes, identificados pelo mesmo numero de
inovagdo, sdo aleatoriamente herdados de um dos progenitores. Ja os genes nao
correspondentes s&o transmitidos a partir do progenitor com maior aptiddo. Se ambos os

progenitores possuirem o mesmo fitness, os genes ndo correspondentes sdo herdados
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filhos, de acordo com o fitness.

0S genomas dos pais e de seus possivels
1 2 3 4 5 6 9 10 1 2 3 4 5 T 8 11
1-4 24 34 1-5 5-4 25 36 6-4 1-4 24 3-4 1-5 5-4 27 7-4 37
peso: 0.5 | peso: 0,7 | peso: 0,3 | peso: 0,3 | peso: 0,5 | peso: 0,8 | peso: 1,0 | peso: 0,5 peso: 0.5 peso: 06 peso: 0,3 | peso: 0,4 | peso: 0,4 | peso: 0,2 | peso: 0,9 | peso: 0,3
DISAB DISAB DISAB  DISAB

1 2 3 4 5 6 9 10
PAI1 1-4 2-4 3-4 1-5 5-4 2-5 3-8 6-4
peso: 0.5 | peso: 0,7 | peso: 0,3 | peso: 0,3 | peso: 0.5 | peso: 0,8 peso: 1,0 | peso: 0.5
DISAB DISAB
1 2 3 4 5 T 8 "
A2 1-4 2.4 3-4 1.5 5-4 2.7 7-4 3.7
pesc: 0.5 | peso: 0,6 | peso: 0,3 | peso: 0,4 | peso: 0.4 pesc: 0,2 | peso: 0,9 peso: 0.3
DISAB DISAB
Fig. 9. Alinhamento dos genomas dos pais
1 2 3 4 5 6 9 10
FILHO 1 14 2-4 34 1-5 5-4 2-5 36 6-4
peso: 0.5 | peso: 0,7 | peso: 0,3 | peso: 0,4 | peso: 0.4 | peso: 0.8 peso: 1,0 | peso: 0,5
DISAB DISAB
Fitness
PAI 1> PAI 2
1 2 3 4 7 1
FILHO 2 14 24 34 1-5 5-4 2.7 74 3.7
peso: 05 | peso: 06 | peso 0,3 | peso: 0,4 | peso: 0,5 peso 0,2 | peso: 0,9 peso 0,3
DISAB | DISAB
—~
(+)
Fitness
PAI 1 <PAl 2 /L\
(s)(7)
N
\\
1) (2 (3)
(v} “\._/) —
1 2 3 4 5 6 7 8 9 1
FILHO 3 14 24 34 15 5-4 25 27 74 36 37
peso. 0.5 | peso: 0.6 | peso: 0.3 | peso: 0,3 | peso: 0.4 | peso: 0,8 | peso: 0,2 | peso: 0.9 | peso: 1,0 peso: 0,3
DISAB | DISAB
Fitness
PAI1=PAI2

Fig. 10. Filhos de acordo com o fitness dos pais
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3.4.4.2. Mutacao

Existem 5 tipos de mutagédo que podem ocorrer no NEAT: (1) Adigdo de neurdnio, (2)
Adicao de conexao, (3) Remocgao de neurénio, (4) Remogao de conexao e (5) Perturbagéo
na rede[24].

Ao realizar a adigdo de um neurdnio, uma conexao aleatéria é selecionada e
desativada. Um novo neurbnio é entdo introduzido, acompanhado por duas novas
conexdes. A primeira dessas conexdes estabelece uma ligacdo do ponto de origem da
conexao selecionada até o novo neurdnio, enquanto a segunda conecta o novo neurdnio ao
destino da conexao original. A figura 11 mostra um exemplo dessa adic¢ao.

O peso da conexado que se conecta ao novo nd é fixado em 1, enquanto o peso da
conexao que parte do novo né é estabelecido como igual ao peso da conexado desativada.

Esses valores foram escolhidos com o intuito de minimizar o impacto inicial da mutacio.

1 2 1 2 3 4
1-3 2-3 1-3 2-3 2-4 4-3
peso:0.5 | peso: 0.5 peso:0.5 | peso: 0.5 | peso:1 | peso0,5

DISAB

Fig. 11. Adicdo de um novo neurénio na rede

Da mesma forma, ao introduzir uma nova conexao, dois neurénios sem uma ligagao
prévia sao selecionados de maneira aleatdria, € a nova conexao & estabelecida com um

peso também aleatério, como mostrado na figura 12.

1 2 3 4 1 2 3 4 5
1-3 2-3 2-4 4-3 1-3 2-3 2-4 4-3 1-4
peso:0,5 | peso: 05 | pesol 1 | peso0.5 peso05 | peso 05| pesoi1 | peso0,5 |peso 0.3
DISAB DISAB

Fig. 12. Adicdo de uma nova conexao a rede
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Para a remocdo de uma conexdo, uma aresta é selecionada aleatoriamente e

removida da rede. A figura 13 mostra essa mutagao.

1 2 3 4 5 2 3 4 5
1-3 2-3 2-4 4-3 1-4 2-3 2-4 4-3 1-4
peso0.5 | pesol 0,5 | pesol 1 | peso:0,5 | peso: 03 peso: 0.5 | peso 1 | pesod.5 | peso: 0.3
DISAB DISAB

£ T 4

Fig. 13. Remogao de conex&o da rede

)

A exclusdo de um neurbénio na rede segue um procedimento semelhante ao da
conexao, exigindo, no entanto, que o veértice ndo esteja conectado a nenhum outro vértice.

A perturbacdo na rede pode ser realizada tanto nos neurdnios quanto nas conexdes,
no entanto, cada um desses elementos possui atributos de tipos distintos que séao
perturbados de maneiras semelhantes, embora nao idénticas.

As conexdes apresentam dois atributos: o peso, de natureza numérica, e o estado
de ativacdo, que é do tipo booleano (verdadeiro ou falso). Por sua vez, os neurbnios
possuem os atributos de viés (bias) e resposta (response), ambos de natureza numeérica,
além das funcdes de ativagao e agregacao, representadas por textos.

A perturbagdo nos atributos numéricos € realizada através da adic&o, ao valor atual,
de um numero aleatério proveniente de uma distribuicdo normal centrada em zero. Ja nos
atributos dos tipos booleano e texto, a perturbacdo ocorre pela selegdo aleatoria de um

valor, incluindo o atual, a partir de sua lista de possibilidades.
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4. Projeto e especificagao do sistema

Este projeto teve como objetivo desenvolver uma inteligéncia artificial capaz de
aprender a pilotar um veiculo do zero, sem utilizar dados previamente coletados do
comportamento humano, como videos de motoristas dirigindo, nem incentivar a imitacdo da
conducao humana. A abordagem adotada buscou minimizar a quantidade de informagdes
fornecidas a IA, permitindo que ela aprendesse autonomamente a se comportar na diregao.
Além disso, o projeto visou avaliar a viabilidade desse método de aprendizagem.

Para o desenvolvimento do projeto foi utilizada a linguagem de programagéo Python
com as bibliotecas neat-python, para a implementagao do algoritmo NEAT, e pygame, para
a implementacao dos elementos graficos.

Os testes foram realizados em seis ambientes distintos, combinando trés niveis de
dificuldade, com a presenca ou auséncia de obstaculos. O objetivo dos testes era verificar a

capacidade de aprendizagem da IA e o tempo necessario para o treinamento.

4.1 Descricao das classes

Esta secao descreve as principais classes implementadas no simulador, abordando
seus atributos, responsabilidades e métodos. A figura 14 apresenta o diagrama de classes,

que inclui as classes IA, Game, Car, Background, Obstacle e Sensor.



Game

display

clock

4

= 1A

train_ai()
calculate_fitness()

test_ai()

set_background()
add_sprite()
add_obstacle()
colision()
handle_colisions()
loap()

update_ui()
get_dist()

start()

Imagem
Posicdo
Mascara
Velocidade
Aceleracio
Rotacio
Angulo da roda

Andado

Sensor

add_sensor()
gel_keys()
freeze()
get_wheels()
get_center_circle)

update()

Background

Imagem

Méscara

draw()

= [

Imagem
Posicio

Mascara

draw()

Fig. 14. Diagrama de classes

4.1.1. Classe IA

Posicdo

Angulo relativo

get_dist()
update()

26

A classe IA é responsavel por todos os aspectos relacionados a inteligéncia artificial,

incluindo a tomada de decisao, o processo de treinamento e a fase de testes. Sua fungao

central é controlar os veiculos de forma autbnoma com base em redes neurais evolutivas.

Métodos principais:

e train_ai(): realiza o treinamento da IA, gerenciando o ciclo de vida de cada rede

neural envolvida no processo evolutivo;

e calculate_fitness():

desempenho dos veiculos durante a simulagao;

calcula a aptidao (fitness) de cada rede com base no

e test_ai(): testa a rede neural vencedora em um ambiente de simulacao alternativo,

validando sua capacidade de generalizagao.

4 .1.2. Classe Game

A classe Game gerencia a execugao geral do simulador, sendo responsavel por

coordenar o fluxo principal da aplicagcdo. Entre suas fungdes estdo o controle do tempo de

simulagdo, a atualizacdo dos elementos graficos, a verificagcdo de colisdes e a interagdo

entre os componentes do sistema.
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Atributos principais:
display: superficie grafica onde todos os elementos da simulagc&o s&o renderizados;

clock: mecanismo de controle do tempo de execugao.

Métodos implementados:

set_background(): define o circuito a ser utilizado na simulagéo;

add_sprite(): adiciona veiculos ao ambiente simulado;

add_obstacle(): insere obstaculos no circuito;

handle_colisions() e colision(): responsaveis por verificar e tratar colisbes entre os
veiculos e os demais elementos do cenario;

loop(): executa um ciclo completo da simulagdo, incluindo movimentagao,
atualizagao de estados e verificagao de eventos;

update_ui(): atualiza os elementos graficos da interface e gerencia a légica principal
do lago de execugao;

get_dist(): coleta os valores dos sensores de todos os veiculos presentes na
simulacéo;

start(): inicializa o simulador, definindo o estado inicial do ambiente e dos elementos

envolvidos.

4.1.3. Classe Car

A classe Car representa o veiculo controlado pela IA dentro do ambiente simulado.

Seus principais atributos sao:

imagem: representacgao visual do carro no simulador;

mascara: estrutura auxiliar para verificagdo de colisdes;

posigao: coordenadas que indicam a localizagao atual do veiculo no ambiente;
velocidade: valor da velocidade de deslocamento do carro;

aceleracgao: taxa de variacido da velocidade;

rotagao: angulo de orientagédo do veiculo;

angulo da roda: representa o quanto as rodas estdo giradas, influenciando a
direcao do movimento;

andado: valor acumulativo que indica a distancia percorrida e a intensidade do

deslocamento.

Métodos implementados:
add_sensor(): adiciona sensores de distancia ao veiculo;
get_keys(): processa comandos de entrada e atualiza os atributos correspondentes;

freeze(): desativa o veiculo em caso de colisao;
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get_wheels() e get_center_circle(): métodos auxiliares que calculam propriedades
relacionadas a geometria da curva;
update(): atualiza a posicdo e a rotacdo do carro com base nos comandos

recebidos.

4.1.4. Classe Background

A classe Background representa o circuito onde o veiculo se desloca. Seus

principais atributos sao:

imagem: representacdo visual do ambiente no simulador;

mascara: estrutura que permite verificar colisdes entre o veiculo e o circuito.

Método:
draw(): responsavel por renderizar o circuito na interface do simulador.

4 1.5. Classe Obstacle

A classe Obstacle define os elementos do ambiente que representam obstaculos ao

movimento do carro. Possui os seguintes atributos:

imagem: representacao visual do obstaculo no simulador;
mascara: estrutura auxiliar para verificagdo de colisdes;

posi¢ao: coordenadas que definem a localizagdo do obstaculo no circuito.

Método:

draw(): renderiza o obstaculo no ambiente grafico.

4.1.6. Classe Sensor

A classe Sensor representa os sensores de distancia instalados no carro, permitindo

a percepgao do ambiente ao redor. Possui os seguintes atributos:

posig¢ao: ponto central do carro ao qual o sensor esta vinculado;

angulo relativo: angulo do sensor em relagao a orientagao do veiculo.

Métodos:
update(): atualiza a posi¢ao do sensor com base na movimentagao do carro;
get_dist(): calcula a distancia detectada entre o sensor e o0s obstaculos no

ambiente.
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5. Implementacao e avaliacao

Esta secdo descreve o processo de desenvolvimento, treinamento e avaliagdo da
inteligéncia artificial para diregdo auténoma utilizando o algoritmo NEAT. S&o apresentados
o simulador criado em Pygame, os detalhes de modelagem do carro e do ambiente, a
implementacdo dos sensores de distancia, a configuracdo do NEAT-Python e a definicdo da
funcao de fithess. Por fim, sdo analisados os resultados obtidos durante o treinamento e os

testes em diferentes cenarios, avaliando a eficacia do modelo proposto.

5.1. Simulador

O desenvolvimento do simulador utilizado no treinamento e teste da rede neural foi
realizado por meio da biblioteca Pygame. Esta ferramenta permitiu a criacdo tanto da
interface visual quanto de componentes essenciais da ldgica do simulador. O simulador
consiste de uma perspectiva top-down de um carro percorrendo um circuito automobilistico

e “enxergando” seus arredores através de sensores de distancia.

5.1.1. Carro

O maddulo inicial desenvolvido para o simulador foi o do carro, uma vez que este
representaria a entidade sob o controle da rede neural. No decorrer do desenvolvimento,
identificou-se que o carro possuia a capacidade de girar em torno do proprio eixo sem
avancar, o que comprometia a realidade simulada. Diante disso, introduziu-se a condigdo de
que o veiculo sé poderia efetuar giros quando estivesse em movimento. No entanto, ainda
se fazia necessario aprimorar a capacidade de ajuste do &4ngulo da curva.

Para solucionar esse desafio, foi realizado um estudo sobre o comportamento das
curvas em carros [25]. Durante essa analise, constatou-se que, para realizar curvas sem
derrapagens indesejadas, o centro da circunferéncia descrita pela trajetéria do veiculo deve
ser alinhado com o eixo traseiro do carro. Além disso, o angulo formado entre a direcao da

roda e o centro da circunferéncia deve ser 90 graus. Assim como mostrado na figura 15.
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([

R,

A

Fig. 15. Funcionamento da curva de um carro

Dessa forma, ao incorporar esse conhecimento ao simulador, garantimos uma

representacdo mais precisa e realista do comportamento do veiculo durante curvas,

contribuindo para a eficacia do treinamento e teste da rede neural.
Com os vetores perpendiculares, A e B, as rodas internas da curva, é simples

encontrar o centro da circunferéncia e o raio da curva, relativo ao centro do carro.

Sabendo que a equagao da reta é
aX +b=Y (D

e que a representa a inclinacdo dela, podemos encontrar a através da divisdo do
componente vertical, dos vetores, pelo componente horizontal. Sabendo o valor de a e as

coordenadas das rodas internas, podemos substituir os valores em (1) e encontrar b.
Com as duas equacgbes das retas encontramos a coordenada O através das

equacoes
_ b2-b1
Xo = al—a2
Yo = alX + bl

E o raio da curva é a distancia entre o centro do carro e o ponto O. A figura 16

mostra a representagdo da curva no simulador.
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Fig. 16. Calculo da curva no simulador

Além de fazer o carro percorrer a circunferéncia, também €& preciso rotacionar a
imagem para que o movimento do carro faga sentido. Para isso, precisamos achar o angulo
entre a posi¢ao anterior e nova do veiculo. Usando a fungéo

a’ =b" + ¢’ — 2bc * COS(A)

Chegamos a equagéao

A = ARCCOS(Z=2=<
= e )

Onde a é a distancia entre as posigdes do carro e b e ¢ sao as distancias entre o
centro da circunferéncia e as posi¢cdoes do carro, ou seja, o raio da circunferéncia. Com o
angulo A, sabemos o quanto o carro percorreu da circunferéncia e podemos rotacionar a
imagem no valor correto.

Foi tomada a decisdo de incorporar o modelo de aceleragdo e desaceleracdo ao
comportamento do carro no simulador, em vez de manter uma velocidade constante,
visando aumentar a fidelidade com a realidade.

Quando o veiculo ndo recebe nenhum comando de aceleragao ou freio, ele inicia um
processo de desaceleragdo gradual devido a resisténcia do ar e outros fatores fisicos,
simulando de forma realista o comportamento de um carro em condigdes normais. Esse
processo é representado por uma pequena aceleragéao negativa.

Quando um comando de aceleragao é acionado, um valor pré-definido é adicionado
a velocidade atual do veiculo, impulsionando-o até atingir uma velocidade maxima também
pré-definida. Esse mecanismo reproduz o aumento de velocidade progressivo que ocorre

em um carro real.
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No caso do freio, o processo é semelhante, porém inverso. Um valor pré-definido é
subtraido da velocidade do carro, resultando em uma desaceleragao controlada até que o
veiculo pare completamente. Essa abordagem de simulacdo de freio garante uma resposta

realista ao comando de frear.

5.1.2. Ambiente

O ambiente no qual a entidade ira interagir foi elaborado em duas partes distintas: o
cenario e os obstaculos. O cenario foi construido a partir de imagens com uma perspectiva
top-down de pistas automobilisticas, oferecendo trés niveis de dificuldade distintos.

O primeiro circuito, representado na figura 17, apresenta o formato mais simples,
composto por apenas duas curvas suaves no mesmo sentido.

No segundo circuito, ilustrado na figura 18, as curvas suaves sdo distribuidas em
ambos os sentidos, proporcionando um desafio adicional ao piloto virtual.

Por fim, o terceiro circuito, representado na figura 19, € o mais complexo de todos,
caracterizado por curvas acentuadas em ambos os sentidos, além de curvas de 90 e 180

graus.

Fig. 17. Circuito de dificuldade facil
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Fig. 18. Circuito de dificuldade normal

Fig. 19. Circuito de dificuldade dificil

Para aumentar ainda mais o desafio do simulador, foram introduzidos obstaculos
opcionais em cada um dos circuitos, com posi¢cdes pré-definidas. Os obstaculos foram
posicionados ao longo dos circuitos, seguindo uma regra simples: ndo devem impedir a
passagem do carro de forma que se torne impossivel progredir.

Ao enfrentar esses obstaculos opcionais, a |A é incentivada a aprimorar suas

habilidades de conducgédo e tomar decisdes estratégicas que n&o a fagam colidir com os
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obstaculos. A figura 20 apresenta a imagem do obstaculo e as figuras 21, 22 e 23

apresentam os circuitos com seus respectivos obstaculos.

&

Fig. 20. imagem do obstaculo

Fig. 21. circuito facil com obstaculos

Fig. 22. Circuito médio com obstaculos
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Fig. 23. Circuito dificil com obstaculos

Caso o veiculo saia minimamente do percurso, colida com algum obstaculo ou fique
muito tempo parado, ele & considerado “eliminado” e ndo consegue mais se mover,

terminando sua trajetéria.

5.1.3. Sensor

Para habilitar a inteligéncia artificial a "ver", foi desenvolvido um sensor de distancia
utilizando o método de Ray casting. Esse método envolve "langar" um raio em uma diregao
especifica até que ele atinja um obstaculo, permitindo assim a medigdo da distancia até
esse objeto.

Os sensores sao integrados ao veiculo para criar um campo de visao de 180 graus a
frente do carro, com intervalos regulares de angulo para garantir uma cobertura equilibrada
em todas as dire¢des. Além disso, foi estabelecido uma distancia maxima que o raio pode
percorrer, simulando assim o comportamento de sensores de proximidade reais.

Essa abordagem de sensoriamento proporciona a IA uma percepcado mais realista
do ambiente ao seu redor, tendo em vista que em uma situacao real, a IA ndo consegue
saber a posi¢cao exata de todos os objetos no ambiente, seja por limitagbes fisicas ou de
hardware. As figuras 24 e 25 apresentam o veiculo com, respectivamente, 17 e 5 sensores.
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Fig. 24. Veiculo com 17 sensores

Fig. 25. Veiculo com 5 sensores

Para otimizar o método, foi priorizada a velocidade em detrimento da precisdo. Em
vez de percorrer cada pixel individualmente, o raio realiza passos maiores inicialmente.
Caso haja uma colisdo durante um desses passos, ele retrocede para encontrar o ponto
exato da colisdo, evitando assim o processamento de todos os pixels.

Essa estratégia possibilita uma deteccao agil de obstaculos, mesmo que haja uma
leve redugéo na precisdo em comparagcado com a verificagdo de todos os pixels. O aumento
na velocidade é notavel e resulta em uma redugao significativa no tempo de treinamento
necessario para a IA.

Verificando todos os pixels, para uma distancia maxima de 300, no pior caso sao
realizados 300 passos. Em contrapartida, caso os passos iniciais sejam de 10 pixels, no pior
caso sao realizados 40 passos, 30 para se atingir a distAdncia maxima e mais 10 para

refazer o Ultimo passo percorrendo os pixels individualmente.

5.2 1A

A IA desenvolvida para controlar os veiculos foi realizada através do método de
redes neurais e treinada utilizando o algoritmo genético NEAT. Como o objetivo do projeto
nao era desenvolver e/ou aprimorar o método, foi utilizado a biblioteca NEAT-Python para
diminuir a chance de erros provenientes da implementacao do algoritmo.

O NEAT-Python é uma biblioteca open source robusta, que ja estd no mercado a

anos e que nao requer nenhuma dependéncia além do Python, oferecendo ao usuario total
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liberdade para definir os pardmetros da rede neural e de todas as etapas do algoritmo. Além
de permitir a criacao e integracdo de novas fungdes de ativagcdo e agregacao, diferentes
tipos de genoma e métodos personalizados de especiacao, estagnagao e reproducao, caso

as op¢odes ja integradas nao atendam as necessidades especificas do projeto.

5.2.1 Diferengas NEAT-Python

O NEAT-Python [26] realiza algumas alteragbes sutis em relagdo ao artigo original
do NEAT. Uma dessas diferencas é em relagcao a diferenciacdo dos genes em excesso e
disjuntos, na pratica eles representam a mesma coisa, genes(No6s) que so estado presentes
em um dos pais, porém no momento de codificar a rede neural, alguns ficam no meio e
outros no final do genoma. Dessa forma, ao invés de utilizar dois coeficientes diferentes
para calcular a distancia genética entre dois individuos, ele utiliza apenas um para os genes
em excesso e disjuntos.

Outra diferenga entre o processo de especiagdo no NEAT original e no NEAT-Python
€ como é escolhido o genoma representante de uma espécie na transi¢ao entre geragoes.
No NEAT original, esse representante é selecionado aleatoriamente entre os genomas da
espécie da geracao anterior. Em contrapartida, o NEAT-Python adota uma abordagem mais
refinada, escolhendo o genoma da geracao atual que esta mais proximo do representante

da geracgao anterior.

Original Python

Ml

Representante da geraco anterior % ' Representante da geracio atual

Teaut

Fig. 26. Comparagao entre o representante do NEAT original e o NEAT-Python

Ainda nas diferencas relacionadas a especiagdo no NEAT-Python, surge um cenario

interessante em que um genoma pode estar dentro da distdncia genética 8t de dois
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representantes de espécies distintas. No NEAT original, esse genoma seria alocado a
espécie que aparece primeiro na lista de espécies existentes. Em contraste, o NEAT-Python
adota uma abordagem diferente, optando por aloca-lo a espécie em que o genoma tem a
menor distancia genética 8 em relacdo ao representante. Essa escolha provavelmente visa
evitar favorecimentos entre espécies, mantendo um equilibrio na evolugao do algoritmo. No
caso da figura 26, no exemplo do Python, o genoma entre os representantes das espécies
azul e vermelha poderia ter sido alocado a espécie azul caso ela aparecesse antes na lista
de espécies e fosse alocada na primeira espécie possivel.

Outras distingbes surgem no processo de reprodugdo. No NEAT original, os genes
correspondentes sdo herdados aleatoriamente dos pais, enquanto os genes disjuntos sao
herdados do pai com o maior fitness; em situacbes de empate, a herangca também é
aleatoria. Por outro lado, no NEAT-Python, os genes correspondentes também sao
herdados aleatoriamente, mas os genes disjuntos s&o obrigatoriamente herdados de
apenas um dos pais, mesmo que ambos tenham o mesmo fitness.

Outra diferenca notavel esta no processo de mutagdo dos genes. No NEAT original,
um neurdnio s6 pode ser removido se ndo estiver conectado a nenhum outro neurénio.
Porém, no NEAT-Python, essa restricdo ndo € considerada; caso um neurdnio com
conexdes seja removido, suas conexdes também sdo eliminadas. Essa flexibilidade
introduzida pelo NEAT-Python pode ter implicagdes significativas na estrutura e na
capacidade de adaptacao das redes neurais.

Além disso, o NEAT-Python introduz uma modificagdo estrutural nos nés da rede
neural ao incluir um novo atributo chamado response. Esse parametro atua como um fator
de amplificagdo aplicado ao valor resultante da fungdo de agregagéo dos inputs, antes da
soma com o viés. A equagao que representa essa operacao é:

activation(bias + (response * aggregation(inputs)))

Essa alteragdo nao é explicada na documentacao oficial do NEAT-Python, mas pode
ter sido implementada com o intuito de oferecer maior controle sobre a sensibilidade dos
neurdnios. Com esse ajuste, cada né pode modular a intensidade do sinal que recebe, o
qgue potencialmente amplia a expressividade da rede neural e sua capacidade de adaptacao

a contextos mais complexos.

5.2.2 Pré-processamento dos dados

O processo de treinamento de uma rede neural pode ser muito demorado
dependendo da complexidade do problema e dos dados envolvidos. Uma solugéo para esse

desafio € a normalizacdo dos dados de entrada, que traz uma série de beneficios adicionais
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[27]. A aplicagdo desta técnica no simulador é facil, pois os limites minimos e maximos dos
dados podem ser rapidamente determinados.

A férmula basica para a normalizacao de dados entre 0 e 1 é:

norm =

Onde norm é o valor normalizado, x é o valor original e x ex. sdo os valores

minimo e maximo da variavel no conjunto de dados.

Os beneficios da normalizacdo incluem a facilidade de comparacédo dos dados, ja
que, estando em uma escala comum, torna-se mais simples definir a importancia relativa
dos diferentes dados para o modelo, facilitando a interpretacédo dos resultados. Além disso,
a normalizacdo contribui para a estabilidade do treinamento, resultando em uma
convergéncia mais rapida para a solugdo 6tima. Com uma escala mais uniforme, é mais
facil evitar grandes discrepancias nos pesos durante o processo de otimizagao.

Outra vantagem é a reducao do overfitting, ja que a normalizagdo impede que a rede
neural se concentre excessivamente em caracteristicas especificas dos dados que possam
nao ser generalizaveis para outros casos, tornando-a mais robusta diante da variagdo nos
dados.

A rede neural desenvolvida possui dois tipos de entradas: sensores de distancia e
angulo de rotacdo da roda do veiculo. Cada um desses tipos foi normalizado
individualmente para garantir uma escala apropriada. Para os sensores de distancia, que

possuem valores entre 0 e 300, a normalizagao foi realizada utilizando a seguinte férmula:

X
norm = —g- — 0.5

Ja para o angulo de rotagdo da roda, cujos valores variam entre -25 e 25, a
normalizagao foi feita da seguinte maneira:

x=(=25)
—0 —— 0.5

norm =

A subtracdo de 0.5 foi incorporada apds testes iniciais, que demonstraram uma
melhora no tempo de convergéncia ao normalizar os dados no intervalo [-0.5, 0.5], em vez
de [0, 1]. Isso ajudou a centralizar os valores em torno de zero, facilitando o treinamento da

rede neural.

5.2.3 Funcéo fithess

A funcao fithess desempenha um papel fundamental nos algoritmos genéticos,
sendo essencial para avaliar e validar possiveis solugdes em relacdo ao problema em
questado. Ela atribui pontuagdes que orientam o algoritmo em dire¢do a solugédo 6tima. A
definicdo da funcgao fitness € um ponto crucial na otimizagdo do algoritmo. Uma definigao

muito especifica pode resultar na captura do algoritmo em minimos ou maximos locais,
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limitando sua capacidade de encontrar solugbes mais eficazes. Por outro lado, uma funcao
muito ampla pode dificultar a convergéncia do algoritmo para solugbes satisfatorias, levando
a uma eficiéncia reduzida [28].

No contexto deste projeto, onde o objetivo € maximizar a distancia percorrida dentro
de um circuito, inicialmente foi adotada a distancia percorrida pelo veiculo como a primeira
funcao fitness. A medida era calculada somando a velocidade atual do veiculo a variavel
"distancia_percorrida" a cada passo da simulagdo. No entanto, essa abordagem
apresentava a limitagdo de nao levar em consideragao o tempo necessario para percorrer a
distancia total, o que poderia gerar avaliagdes imprecisas do desempenho do veiculo. A

férmula utilizada para calcular o fitness era:
n
fitness =d = Y v,
n i=1 L
Onde, dn representa a distancia total percorrida, v, é a velocidade do veiculo no

passo i e n € o numero total de passos da simulacio.

Por isso, houve a necessidade de revisar o calculo da distancia percorrida para
valorizar veiculos com maior velocidade. Em vez de simplesmente somar a velocidade a
cada passo da simulagao, a solugao adotada foi somar o quadrado da velocidade, conforme

a seguinte formula:
n

fitness = dn =Yv
=1

Onde dn, v,ien representam os mesmos valores da fungao anterior.

Essa alteracao foi feita para dar maior peso a velocidades mais altas, incentivando
veiculos mais rapidos. No entanto, essa modificacdo trouxe um efeito colateral: os veiculos
passaram a priorizar velocidades excessivamente altas, muitas vezes negligenciando a
necessidade de reduzir a velocidade para evitar colisbes. Como resultado, muitos veiculos
comecgaram a realizar curvas em velocidade maxima e desviar de obstaculos de forma
inadequada, comprometendo sua capacidade de navegacéo eficiente.

Esse problema destacou a necessidade de um critério de avaliagdo mais
equilibrado, que considerasse tanto a velocidade quanto a seguranga na condugdo. Para
evitar a priorizacdo excessiva de velocidades maximas sem controle, a abordagem foi
ajustada. A nova métrica de fitness passou a somar a velocidade ponderada, em que o
peso & sua velocidade relativa, normalizando-a em relacédo a velocidade maxima possivel.

Dessa forma, a formula adotada foi:

v,
. _ _ L
fitness = dn =Y - v



41

Onde dn, v, i e n representam os mesmos valores e v € a velocidade maxima

permitida. Essa modificagdo garantiu que velocidades mais altas ainda fossem incentivadas,
mas de forma controlada, reduzindo a tendéncia de manter sempre a velocidade maxima
sem considerar o contexto. Com isso, os veiculos passaram a equilibrar melhor a
velocidade e a seguranca, resultando em uma navegacao mais eficiente e reduzindo o
numero de colisdes.

A figura 27 mostra a comparagao entre diferentes fungbes de fitness adotadas ao
longo do desenvolvimento. Cada curva representa uma abordagem distinta para avaliar o
desempenho do veiculo com base na velocidade e na distancia percorrida.

A curva azul representa a funcao de fitness que soma o quadrado da velocidade,
favorecendo velocidades mais altas, mas potencialmente incentivando o comportamento
descontrolado. A curva vermelha representa a soma linear da velocidade, onde a distancia
percorrida é diretamente proporcional a velocidade, sem amplificar seu impacto. A curva
verde representa a funcdo ponderada, que busca equilibrar velocidade e seguranga ao

normalizar o impacto da velocidade maxima.

10 J

8
5 /

— X
x"2
-4
/ X/Xmax*X
2
-~
__.-/
0 2 4 8 10

Fig. 27. Comparagéo dos métodos de calculo da distancia percorrida

5.2.4 Arquivo de configuragao

O arquivo de configuracao do NEAT-Python define diversos aspectos do algoritmo,
abrangendo desde os paradmetros dos genomas até as configuragdes da populagdo como

um todo. Ele segue o formato descrito na documentacdo do Python configparser, que é
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baseado na estrutura de arquivos INI do Windows. Esses arquivos s&o organizados em
sec¢des nomeadas, onde cada seg¢do contém um conjunto de chaves e valores, facilitando a
leitura e a modificagdo das configura¢des. Esse formato simples e padronizado permite
definir par@metros de forma estruturada e intuitiva.

A figura 28 mostra parte do arquivo, ele é dividido em cinco sec¢bes: NEAT,
Stagnation, Reproduction, SpeciesSet e Genome. Dentre elas, apenas a se¢do NEAT é
obrigatéria. As demais sdo necessarias apenas se as classes padrdo do NEAT-Python
forem utilizadas, o que foi feito neste caso para reduzir a probabilidade de erros na
implementacao do algoritmo.

A maioria das configuragdes nao possui valor padrdao e, portanto, devem ser
explicitamente definidas no arquivo. Essa abordagem minimiza o risco de alteragdes
inesperadas no projeto devido a mudancas no cédigo-fonte da biblioteca. Por esse mesmo
motivo, mesmo as configuracbes que possuem valores padrdo foram explicitamente

especificadas no arquivo de configuracao.

[NEAT]

fitness criterion = max
fitness threshold = 55000
no fitness termination = False
pop_size = 500
reset on extinction = False
[DefaultStagnation]

species fitness func = max
max stagnation = 20
species_elitism = 2
[DefaultReproduction]

elitism =1
survival threshold = 0.25

min species size =2

[DefaultSpeciesSet]
compatibility threshold = 3.0

[DefaultGenome]
# node activation options
activation default = tanh

Fig. 28. Parte do arquivo de configuragao

5.2.4.1 Secado NEAT

Nessa secdo sao definidos os parametros especificos do algoritmo NEAT.
e fitness_criterion
A funcdo usada para definir se a populagdo alcangou o critério de

encerramento do treinamento.
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A funcéo definida foi max, tendo em vista que basta um individuo alcangar o
critério de encerramento para ele ser considerado apto ao ambiente.

o fitness_threshold
O valor que deve ser alcancado pela funcao definida em fitness_criterion
para encerrar o treinamento.
O valor foi definido como 55000, que equivale a mais ou menos 10 voltas na
pista dificil sem obstaculos, sendo um valor ndo muito baixo que possa ser
alcancado com sorte nem um valor muito alto que possa causar overfitting ou
muito tempo para ser alcangado.

e no_fitness_termination
Se o valor for True, entdo fitness_criterion e fitness_threshold sao
ignorados para o encerramento € o numero de geragdes deve ser definido.
O valor foi definido como False pois caso um individuo alcance o critério do
fitness, a populagéo concluiu o treinamento.

® pop_size
Define o numero de individuos em cada geragao.
Foi definido como 500.

e reset_on_extinction
Se definida como True, uma nova populacdo aleatéria sera gerada sempre
que ocorrer uma extingdo total devido a estagnacdao. Caso contrario, a
excecao CompleteExtinctionException sera acionada.
Ela foi configurada como False, pois ha uma protegdo para algumas

espécies, impedindo sua extingao.

5.2.4.2 Segao Stagnation

Essa segao define os parametros de estagnacgao de cada espécie da populagao.
e species_fitness_func
Define a funcao utilizada para verificar se a espécie esta estagnada.
A funcao definida foi max para proteger a espécie com o melhor individuo.
e max_stagnation
Define o numero de geragbes necessarias, sem melhora, para assumir a
espécie estagnada e removida.
Foi definido como 20.

e species_elitism
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Define o numero de espécies que serdo protegidas da estagnacao,
principalmente para evitar extingdes totais caso todas as espécies se tornam
estagnadas antes do surgimento de novas espécies.

Foi definido como 2, assim os dois melhores individuos, de espécies

diferentes, terdo suas espécies protegidas da exting¢ao.

5.2.4.3 Secao Reproduction

Essa secao especifica os parametros relativos a classe de reproducéo.

o elitism
Define a quantidade de individuos com melhor fithess que serao preservados
para a proxima geracgao.
Foi configurado como 1 para garantir a prote¢cdo do melhor individuo de cada
espécie.

e survival_threshold
A fracdo de individuos de cada espécie que tem permissdo para se
reproduzir a cada geracgao.
Foi definido como 0.25.

® min_species_size
O ndmero minimo de individuos, por espécie, apds a reproducéio.

Foi definido como 2.

5.2.4.4 Secao SpeciesSet

Essa secao é responsavel por definir os parametros da classe espécie.

e compatibility threshold
Individuos com uma distancia genética menor que esse limite séo
considerados da mesma espécie.

Foi definido como 3.0.

5.2.4.5 Secao Genome

Nessa secao sao definidos os parametros da classe Genome.

e activation_default
Define a funcéo de ativagao padrao que é associada a novos nos.
Foi definida como tanh, pois foi a fungdo que teve o melhor desempenho
durante os testes iniciais.

e activation_mutate_rate
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Define a probabilidade que uma mutacao altere a fungcdo de ativagao por
uma aleatoriamente selecionada dentre as activation_options.
Definido como 0.0, assim a fungao de ativacido sera sempre a definida como
padrao.
activation_options
Lista de funcao de ativacdo que podem ser utilizadas.
Definida como tanh.
aggregation_default
Define a fungao de agregagao padrao associada a novos nos.
Foi definida como sum, por ser a padrao do NEAT-python e a mais
comumente usada.
aggregation_mutate_rate
Define a probabilidade que uma mutacao altere a funcédo de agregacgao por
uma aleatoriamente selecionada dentre as aggregation options.
Definida como 0.0, assim a fungdo de agregacado sera sempre a definida
como padrao.
aggregation_options
Lista de funcdo de agregacao que podem ser utilizadas.
Foi definida como sum.
bias_init_mean
Define a média da distribuicio de possiveis valores do viés.
Definido como 1.0.
bias_init_stdev
Define o desvio padrao da distribuicio de possiveis valores do viés.
Configurado como 1.0.
bias_init_type
Define o tipo de distribui¢gdo dos valores do viés.
Foi definido como Gaussiana.
bias_max_value
Define o valor maximo do viés de um no.
Definido como 30.0.
bias_min_value
Define o valor minimo do viés de um né.
Definido como -30.0.
bias_mutate_power
Define o desvio padrao de uma distribuicdo normal centrada em zero do qual

o valor de mutacao do viés é selecionado.
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Definido como 0.5.

bias_mutate_rate
A probabilidade de uma mutagao alterar o valor do viés somando outro valor
aele.
Definido como 0.7.

bias_replace_rate
A probabilidade de uma mutagdo alterar o valor do viés por um
completamente novo.
Definido como 0.1.

compatibility_disjoint_coefficient
Define o coeficiente dos genes distintos e em excesso para o calculo da
distancia genética.
Definido como 1.0.

compatibility_weight_coefficient
Define o coeficiente dos pesos dos genes correspondentes para o calculo da
distancia genética.
Definido como 0.5.

conn_add_prob
A probabilidade de uma mutagdo adicionar uma conexdo entre nos ja
existentes.
Definido como 0.5.

conn_delete_prob
A probabilidade de uma mutagao remover uma conexao existente.
Definido como 0.5.

enabled_default
Define o estado inicial de uma nova conexao, podendo comecar ativada ou
desativada.
Definido como True (ativada).

enabled_mutate_rate
Probabilidade de uma mutagao tentar alterar o estado de uma conexao, com
uma probabilidade de 50% tanto para ativada quanto para desativada.
Definido como 0.01.

feed_forward
Define se a rede neural é feedforward ou recorrente.
Definido como True (feedforward).

initial_connection
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Determina a conectividade inicial da rede neural, podendo ser unconnected,
nenhuma conexao inicial; fs_neat_nohidden, um né de entrada aleatério é
conectado a todos os nés de saida; fs _neat hidden, um né de entrada
aleatdrio é conectado a todos os nos ocultos e de saida; full_nodirect, todos
0s nos de entrada sao conectados a todos 0s nds ocultos e todos os nds
ocultos sdo conectados a todos os nés de saida, caso nao exista né oculto
0s nos de entrada sao conectados diretamente aos nés de saida; full _direct,
todos os nés de entrada sao conectados a todos os nés ocultos e de saida e
todos os nods ocultos também sdo conectados a todos os nés de saida;
partial_nodirect #, semelhante ao full_nodirect porém cada conexao tem uma
probabilidade de estar presente determinado por um numero entre 0.0 e 1.0;
partial_direct #, semelhante ao full_direct porém cada conexdo tem uma
probabilidade de estar presente determinado por um numero entre 0.0 e 1.0.

Definido como full_nodirect.

node_add_prob

A probabilidade de uma mutagao adicionar um novo no.

Definido como 0.2.

node_delete_prob

A probabilidade de uma mutagao remover um no.

Definido como 0.2.

num_hidden

Define o nimero inicial de nds ocultos da populacéo.

Definido como 0.

num_inputs

Define o niumero de nés entrada da populacéo.
Definido como 6, 5 sensores e dire¢cao da roda, quando ndo ha obstaculos e

como 18, 17 sensores mais dire¢do da roda, quando existem obstaculos.

num_outputs

Numero de nés saida da populacgéo.

Definido como 4, virar para esquerda ou direita e acelerar ou frear.

response_init_mean

Define a média da distribuicdo de possiveis valores do response.

Definido como 1.0.

response_init_stdev

Define o desvio padrao da distribuicdo de possiveis valores do response.
Definido como 0.0, desse modo o response sempre comega com o valor

definido como a média.
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response_init_type
Define o tipo de distribuicao dos valores do response.
Definida como gaussiana.
response_max_value
O valor maximo permitido para o response.
Definido como 30.0.
response_min_value
O valor minimo permitido para o response.
Definido como -30.0.
response_mutate_power
Define o desvio padrdao de uma distribuicdo normal centrada em zero do qual
o valor de mutagao do response é selecionado.
Definido como 0.5.
response_mutate_rate
A probabilidade de uma mutagao alterar o valor do response somando outro
valor a ele.
Definido como 0.7.
response_replace_rate
A probabilidade de uma mutagdo alterar o valor do response por um
completamente novo.
Definido como 0.1.
single_structural_mutation
Define se é possivel ocorrer mais de uma mutagdo em um mesmo genoma
na mesma geragao.
Definido como False, pode ocorrer mais de uma mutagdo no genoma.
structural_mutation_surer
Se definido como True, ao tentar adicionar um né em um genoma sem
conexdes uma conexdo sera adicionada no lugar. Ou uma tentativa de
adicionar uma conexao ja existente ira defini-la como ativada.
Definido como default, tera o mesmo valor de single_structural_mutation
(False).
weight_init_mean
Define a média da distribuicdo de possiveis valores do peso.
Definido como 0.0.
weight_init_stdev
Define o desvio padréo da distribuicdo de possiveis valores do peso.

Definido como 1.0.
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e weight_init_type
Define o tipo de distribuicdo dos valores do peso.
Definida como gaussiana.
e weight_max_value
O valor maximo permitido para o peso.
Definido como 30.0.
e weight_min_value
O valor minimo permitido para o peso.
Definido como -30.0.
e weight_mutate_power
Define o desvio padrdao de uma distribuicdo normal centrada em zero do qual
o valor de mutacgéo do peso é selecionado.
Definido como 0.5.
e weight_mutate_rate
A probabilidade de uma mutacéo alterar o valor do peso somando outro valor
aele.
Definido como 0.8.
e weight_replace_rate
A probabilidade de uma mutacdo alterar o valor do peso por um
completamente novo.

Definido como 0.1.

5.3 Resultados

O veiculo auténomo foi treinado e avaliado em seis ambientes distintos, combinando
trés niveis de dificuldade, com a presenca ou auséncia de obstaculos. Para cada cenario,
foram realizadas 20 iteracbes de ftreinamento, permitindo uma andlise robusta do
desempenho do algoritmo e minimizando a ocorréncia de valores discrepantes. Durante o
treinamento, foi estabelecido um limite de tempo de trés minutos por geragédo, uma vez que
alguns individuos demonstraram uma adaptagdo tdo eficiente ao ambiente que
permaneceram operando indefinidamente, sem atingir um estado de falha ou término

natural.
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5.3.1 Treinamento

Tabela 1. Resumo dos resultados

AMBIENTE GNIIEi[:éCJ))EES DDE\SSV(LZIZQESQ(S) FITNESS MAXIMO
1 1.6 0.73 201661
2 50.9 17.09 124721
3 14.4 3.41 190321
4 71.4 19.66 121091
5 28.2 11.40 186061
6 300 0 25891

A tabela 1 apresenta a média e desvio padrao do numero de geragcdées e 0 maior
fitness obtido ao longo de todas as 20 iteragbes do treinamento.

Os ambientes 1, 3 e 5 correspondem, respectivamente, aos niveis facil, médio e
dificil sem obstaculos, enquanto os ambientes 2, 4 e 6 representam os mesmos niveis de
dificuldade com obstaculos.

Como previsto, a ordem crescente de dificuldade observada foi: 1, 3, 5, 2, 4, 6
evidenciada pelo aumento progressivo da média e do desvio padrao das geracdes, bem
como pela diminuicdo dos valores de fithess maximo.

Entretanto, um resultado inesperado foi a alta dificuldade do ambiente 6. Nenhum
individuo conseguiu concluir o treinamento dentro do numero maximo de geragdes
estabelecido. Apesar disso, verificou-se durante os testes que o circuito ndo era impossivel,
ja que alguns individuos conseguiram completar uma ou mais voltas.

A figura 29 apresenta um grafico com os dados ordenados por nivel de dificuldade.

As tabelas 2 a 7 apresentam os resultados completos do treinamento, exibindo o
numero de geragdes e fithess médio e maximo de cada iteragdo. As tabelas sao separadas

por ambiente de treinamento.
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Fig. 29. Desempenho por ambiente

Tabela 2. Ambiente facil sem obstaculos

ITERAGAO g%“;i';%g: FITNESS MEDIO FITNESS MAXIMO
1 3 547 189531
2 1 442 201661
3 1 1195 199221
4 3 1220 180171
5 3 823 175771
6 1 422 192681
7 1 626 191901
8 1 765 189941
9 1 793 187171
10 2 784 178931
11 1 1152 185191
12 2 845 178261
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Tabela 2. Ambiente facil sem obstaculos

13 2 832 177741
14 2 879 177501
15 1 422 191931
16 2 800 180721
17 1 822 193961
18 1 452 199541
19 2 801 181421
20 1 451 194141

Tabela 3. Ambiente facil com obstaculos

ITERAGAO "é%“;i';%:g FITNESS MEDIO FITNESS MAXIMO
1 70 1217 78421
2 51 1093 124721
3 23 678 122861
4 34 794 66961
5 59 1174 57391
6 56 1151 122960
7 66 1169 72251
8 47 1106 118991
9 40 907 123617
10 41 1103 70771
11 41 1099 115141
12 74 1049 65931
13 95 1518 112811
14 47 872 104100




Tabela 3. Ambiente facil com obstaculos

15 67 1501 115621
16 28 601 60214
17 53 1050 72111
18 42 864 124001
19 53 925 71931
20 31 783 59711

Tabela 4. Ambiente médio sem obstaculos

ITERAGAO "é%“;i';%:: FITNESS MEDIO FITNESS MAXIMO
1 15 1202 184501
2 15 1274 184501
3 18 961 70411
4 18 1056 91901
5 19 1042 90251
6 13 702 190321
7 24 1459 190291
8 13 686 187831
9 14 804 183161
10 12 658 181291
11 17 1156 184881
12 11 685 143321
13 14 979 181781
14 8 414 89381
15 14 757 176241
16 12 723 171361




Tabela 4. Ambiente médio sem obstaculos

17 14 926 182731
18 12 687 185891
19 11 488 90681

20 14 1084 172371

Tabela 5. Ambiente médio com obstaculos

ITERAGAO g%“;ig%g: FITNESS MEDIO FITNESS MAXIMO
1 43 772 59961
2 60 964 118187
3 89 1673 110571
4 74 1464 92691
5 66 877 08886
6 75 1119 109042
7 82 1067 104961
8 45 784 96799
9 112 1282 91961
10 78 1181 74421
11 47 684 62661
12 70 1231 117271
13 80 976 111231
14 53 814 121091
15 118 1071 95271
16 53 718 68541
17 82 1013 118871
18 65 1015 97191




Tabela 5. Ambiente médio com obstaculos

19 57 763 55041

20 79 956 56601

Tabela 6. Ambiente dificil sem obstaculos

ITERAGAO "é%'ﬁi';%:: FITNESS MEDIO FITNESS MAXIMO
1 20 871 92831
2 16 835 144321
3 30 1368 176991
4 21 1265 176950
5 32 1058 105031
6 17 720 81171
7 29 1068 109541
8 44 1567 184331
9 39 1072 57381
10 31 1323 98271
11 17 748 63491
12 22 944 80511
13 58 1378 186061
14 28 1218 180081
15 27 1170 176861
16 14 938 151501
17 45 1499 152359
18 21 865 121211
19 16 881 81101
20 37 1519 167491
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Tabela 7. Ambiente dificil com obstaculos

ITERAGAO "é%'ﬁi';%:: FITNESS MEDIO FITNESS MAXIMO
1 300 818 25891
2 300 681 4641
3 300 760 11361
4 300 691 15441
5 300 733 4421
6 300 760 9751
7 300 729 4691
8 300 718 3530
9 300 630 2141
10 300 690 4201
11 300 760 9941
12 300 1006 13861
13 300 648 3991
14 300 601 4201
15 300 705 2581
16 300 818 15509
17 300 632 5821
18 300 763 20373
19 300 672 10211

20 300 617 4161
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5.3.2 Testes

Esp: Passar
N Obt: Passou

Esp: Passar
m Obt: Passou

Esp: Passar
Obt: Passou

1A Treinada no Ambiente

Esp: Passar
0 Obt: Passou

Esp: Passar
° Obt: Passou

Esp: Nao passar
Obt: Nao passou

Esp: Nao passar
Obt: Nao passou

Esp: Nao passar
Obt: Nao passou

Esp: Nao passar
Obt: No passou

Esp: Passar
Obt: Passou

Esp: Nao passar
Obt: Nao passou

Esp: Nao passar
Obt: Nao passou

Esp: Nao passar
Obt: Nao passou

Esp: Nao passar
Obt: Nao passou

Ambiente de Teste

: N&o passar
: Ndo passou

Fig. 30. Heatmap dos testes da IA com resultados esperados e obtidos

: Nao passar
: Ndo passou

: Nao passar
: Ndo passou

: Néo passar
: Ndo passou

: Nao passar
: Ndo passou

: Nao passar
: Ndo passou
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Os testes apresentados foram conduzidos com o individuo de maior aptidao (fitness)

obtido apds 20 iteragbes de treinamento em cada ambiente. O objetivo era observar seu

desempenho ao ser testado em ambientes diferentes daquele em que foi treinado. A figura

30 exibe um heatmap com os resultados observados e os resultados esperados para cada

combinacdo de treinamento e teste. Células verdes indicam acertos (comportamento

conforme o esperado), enquanto células vermelhas indicam erros (resultado diferente do

previsto). Cada célula também informa o resultado esperado e o resultado obtido.

Abaixo, segue a analise individual de cada modelo:

e |A treinada no ambiente 1

Como foi treinada no ambiente mais simples, n&o se esperava que conseguisse lidar

com os desafios dos demais. O comportamento observado foi compativel com essa

expectativa: ela falhou em todos os outros ambientes.

e |A treinada no ambiente 2

Era esperado que ela tivesse desempenho satisfatério apenas no ambiente 1, que é

menos complexo. Apesar de os ambientes 3 e 5 serem tecnicamente mais simples

em obstaculos, sua estrutura geométrica era significativamente diferente, o que
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impunha outro tipo de dificuldades. O comportamento do agente confirmou essa

previsao.

IA treinada no ambiente 3

Prevista para passar apenas no ambiente 1, ja que os outros apresentavam desafios
mais intensos e exigiam maior capacidade de percep¢ao. Com apenas 5 sensores,
essa |A tinha limitagdo na deteccao de obstaculos. Seu desempenho correspondeu

as expectativas.

IA treinada no ambiente 4

Como foi treinada para contornar obstaculos, era esperada uma boa generalizagao
nos ambientes 1, 2 e 3, que apresentam menor complexidade. De fato, ela teve
sucesso na maioria dos casos, exceto no ambiente 2, onde falhou, indicando uma

possivel fragilidade de generalizacao.

IA treinada no ambiente 5
Esperava-se que conseguisse percorrer os ambientes 1 e 3, que possuem layouts
mais simples e ndo contém obstaculos. O agente teve sucesso parcial, falhando no

ambiente 3, o que sugere limitacdo na adaptacao a circuitos diferentes.

IA treinada no ambiente 6

Apesar de nao ter concluido satisfatoriamente seu préprio treinamento, essa IA
chegou a completar algumas voltas durante o processo. Por isso, hipotetizou-se que
ela poderia ter desempenho razoavel em ambientes mais simples. Contudo, os
testes mostraram que nao foi capaz de se adaptar, falhando em praticamente todos

0s ambientes testados.
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6. Consideracoes finais

Este trabalho teve como objetivo desenvolver uma inteligéncia artificial capaz de
aprender, de forma autbnoma, a dirigir um veiculo dentro de um ambiente simulado,
utilizando o algoritmo neuroevolutivo NEAT. Para isso, foi implementado um simulador
completo, com diferentes niveis de dificuldade e obstaculos, no qual o carro, controlado pela
IA, deveria se adaptar sem qualquer tipo de imitagdo do comportamento humano.

Os resultados obtidos demonstraram a eficacia do algoritmo NEAT no aprendizado e
adaptacdo do agente em diferentes cenarios, especialmente nos ambientes sem
obstaculos. Houve, no entanto, limitagbes na capacidade de generalizagdo dos modelos
treinados, as IAs que foram treinadas em ambientes com obstaculos ndo conseguiram se
adaptar satisfatoriamente a outros circuitos também com obstaculos, indicando uma
sensibilidade a distribuicao e detecgdo dos elementos do ambiente. Em contrapartida, essas
mesmas |As foram capazes de se adaptar ao mesmo circuito quando os obstaculos eram
removidos, evidenciando que a topologia do circuito em si havia sido aprendida.

A abordagem adotada, de fornecer o minimo de informacdes a |A e permitir que ela
aprendesse por tentativa e erro, mostrou-se promissora. Mesmo sem dados prévios ou
comportamento humano como base, a IA foi capaz de desenvolver estratégias eficientes de
navegacao em contextos variados.

Como trabalho futuro, recomenda-se explorar ajustes mais avangados nos
parametros do algoritmo NEAT, a integracdo de sensores com diferentes tipos de dados
(como cémeras simuladas) e a aplicagdo da IA em ambientes tridimensionais ou com
multiplos veiculos interagindo. Além disso, a combinagdo com outras técnicas de
aprendizado, como o aprendizado por refor¢o, pode ser uma alternativa interessante para
aumentar a capacidade de generalizagdo da |A diante de ambientes novos e mais

dindmicos.
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