
Vinícius Souza Martins

Eye-Tracking the Impact of Code Smells on
Developer Comprehension

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática, do Departamento de Informática of PUC-Rio in
partial fulfillment of the requirements for the degree of Mestre
em Informática.

Advisor : Profª Juliana Alves Pereira
Co-advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
April 2025

Vinícius Souza Martins

Eye-Tracking the Impact of Code Smells on
Developer Comprehension

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Profª Juliana Alves Pereira
Advisor

Departamento de Informática – PUC-Rio

Prof. Alessandro Fabricio Garcia
Co-advisor

Departamento de Informática – PUC-Rio

Prof. Anderson Gonçalves Uchôa
Departamento de Informática – UFC

Prof. Eduardo Magno Lages Figueiredo
Departamento de Informática – UFMG

Rio de Janeiro, April 30th, 2025

All rights reserved.

Vinícius Souza Martins
I am an MSc student in Computer Science at Pontifical
Catholic University of Rio de Janeiro (PUC-Rio, Brazil). I
holds a bachelor’s degree in Naval Science from the Brazilian
Naval Academy and served aboard ships of the Brazilian Navy
before seizing the opportunity to advance his knowledge in
Software Engineering.

Bibliographic data
Martins, Vinícius Souza

Eye-Tracking the Impact of Code Smells on Developer
Comprehension / Vinícius Souza Martins; advisor: Juliana
Alves Pereira; co-advisor: Alessandro Fabricio Garcia. – Rio
de janeiro: PUC-Rio, Departamento de Informática, 2025.

v., 86 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Software Engineering – Teses. 2. Engenharia de soft-
ware;. 3. Qualidade do código;. 4. Code smells;. 5. Esforço
cognitivo;. 6. Eye tracker;. 7. Revisão de código;. 8. Compre-
ensão de código.. I. Pereira, Juliana Alves. II. Garcia, Ales-
sandro Fabricio. III. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. IV. Título.

CDD: 004

Acknowledgments

I would like to begin by expressing my deepest gratitude to my family, whose
encouragement and understanding have made all the difference. To my wife,
Julianne, thank you for your unwavering support, patience, and for standing by
me through moments of stress and quiet; your belief in my work has been my
greatest source of motivation. I also extend my heartfelt thanks to my father,
Renato, who has always supported me despite our occasional disagreements.
To my sister, your positivity and willingness to help at any moment have been
a constant reminder that I am never alone on this journey. Above all, I want
to acknowledge my mother, who, together with God above, continues to watch
over and guide me every step of the way.

I owe a special debt of gratitude to my advisors, Prof. Dr. Juliana Alves and
Prof. Dr. Alessandro Garcia, for their invaluable guidance. Prof. Dr. Juliana,
your patience in correcting my mistakes and your keen insight helped me
navigate challenging moments of writing both this dissertation and related
articles. To Prof. Dr. Alessandro, thank you for the discussions, feedback, and
willingness to help whenever I needed it. I am also grateful to Prof. Mograbri
for generously providing the eye tracker that made this study possible, and to
Prof. Kalinowski for recommending me for the Master’s program.

My thanks also go to my colleagues at the AISE Lab and UFC, especially
to Prof. Anderson Uchôa, for their collaboration and support throughout
this research. Furthermore, I want to acknowledge PUC-Rio for the excellent
resources and environment that allowed me to concentrate on my studies and
grow as a researcher. Each of you has played a part in this achievement, and
I extend my gratitude from the bottom of my heart.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Thank you.

Abstract

Martins, Vinícius Souza; Pereira, Juliana Alves (Advisor); Garcia,
Alessandro Fabricio (Co-Advisor). Eye-Tracking the Impact of
Code Smells on Developer Comprehension. Rio de Janeiro,
2025. 86p. Dissertação de mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Code smells negatively impact software maintainability and evolution
by harming developers’ ability to comprehend programs effectively. This
dissertation investigates how code smells affect developers’ program com-
prehension, analyzing their reading patterns, visual focus using eye-tracking
technology, and qualitative feedback. Key eye-tracking metrics, including fi-
xation duration and fixation count, are leveraged to quantify the cognitive
effort required to analyze well-structured versus poorly structured code snip-
pets. Qualitative analysis of developers’ explanations provides insights into
the perceived difficulty and comprehension strategies. By analyzing these
metrics across different types of code smells – such as Data Class, Long
Method, and Feature Envy – we identify which smells demand more cog-
nitive effort from developers. This dissertation contributes to the field of
software engineering by providing empirical evidence on the impact of code
smells on software comprehension and proposing practical improvements in
Integrated Development Environments (IDEs) to reduce developers’ cogni-
tive load when dealing with complex code.

Keywords
Software engineering; Code quality; Code smell; Cognitive effort; Eye

tracker; Code review; Code comprehension.

Resumo

Martins, Vinícius Souza; Pereira, Juliana Alves (Orientador); Gar-
cia, Alessandro Fabricio (Co-Orientador). Acompanhamento Vi-
sual do Impacto de Code Smells na Compreensão do De-
senvolvedor. Rio de Janeiro, 2025. 86p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Code smells impactam negativamente a manutenibilidade e a evolução
do software, prejudicando a capacidade dos desenvolvedores de compreen-
der o código de forma eficaz. Esta dissertação investiga como code smells
afetam a compreensão do código pelos desenvolvedores, analisando seus pa-
drões de leitura, foco visual usando tecnologia de rastreamento ocular e
feedback qualitativo. Métricas-chave de rastreamento ocular, incluindo mé-
dia das durações e contagem de fixações, são utilizadas para quantificar o
esforço cognitivo necessário para analisar trechos de código bem estrutu-
rados versus mal estruturados. A análise qualitativa das explicações dos
desenvolvedores fornece insights sobre a dificuldade percebida e as estraté-
gias de compreensão. Ao analisar essas métricas em diferentes tipos de code
smells — como Data Class, Long Method e Feature Envy — identificamos
quais exigem mais esforço cognitivo dos desenvolvedores. Esta dissertação
contribui para o campo da engenharia de software, fornecendo evidências
empíricas sobre o impacto dos code smells na compreensão do software e
propondo melhorias práticas em Ambientes de Desenvolvimento Integra-
dos (IDEs) para reduzir a carga cognitiva dos desenvolvedores ao lidar com
código complexo.

Palavras-chave
Engenharia de software; Qualidade do código; Code smells; Esforço

cognitivo; Eye tracker; Revisão de código; Compreensão de código.

Table of contents

1 Introduction 12
1.1 Problem Statement and Limitations of Related Work 13
1.2 Main Contributions 14
1.3 Summary of Methodology and Key Finding 16
1.3.1 Methodological Overview 16
1.3.2 Key Results and Contributions 17
1.4 Dissertation Structure 17

2 Background and Related Studies 19
2.1 Code Smells 19
2.1.1 Types of code smells 20
2.1.2 Impacts of Code Smells on Software Quality 20
2.1.3 Detection of Code Smells 21
2.2 Eye Tracker 22
2.3 Related Studies 23
2.4 Summary 26

3 Eyes on Code Smells: Analyzing Developers’ Responses During Code Snippet
Analysis 27

3.1 Introduction 27
3.2 Study Design 30
3.2.1 Preparation of the Experiment 30
3.2.2 Selection of a State-of-the-Art Dataset 31
3.2.3 Selection of the Code Snippets 32
3.2.4 Pilot Study 33
3.2.5 Call for Volunteers 33
3.2.6 Experiment 33
3.2.6.1 First Phase: Introduction to Code Smells 34
3.2.6.2 Second Phase: Analysis of Code Snippets 34
3.2.6.3 Third Phase: Collecting Participant Background Data 34
3.2.7 Data Analysis 35
3.2.7.1 Research Questions 35
3.2.8 Data Collection and Availability 37
3.3 Results 37
3.3.1 Participants Contextualization 37
3.3.2 RQ1: Fixation Time 38
3.3.3 RQ2: Most Examined Code Sections 40
3.3.4 RQ3: Fixation Patterns 41
3.4 Discussion 43
3.5 Threats to Validity 44
3.6 Conclusion 45
3.7 Summary 46

4 Reading between the Smells: Eye-Tracking Developer Responses to Code Smells 47
4.1 Introduction 48
4.2 Study Design 49
4.2.1 Research Questions 50

4.2.2 Preparation of the Experiment 51
4.2.3 Selection of a State-of-the-Art Dataset 52
4.2.4 Selection of the Code Snippets 53
4.2.5 Conducting the Pilot Study 54
4.2.6 Call for Participants 54
4.2.7 Execution of the Experiment 55
4.2.7.1 First Phase: Introduction to Code Smells 55
4.2.7.2 Second Phase: Analysis of Code Snippets 55
4.2.7.3 Third Phase: Collecting Participant Background Data 56
4.2.8 Data Analysis 56
4.2.8.1 Qualitative Coding of Developer Responses 57
4.2.8.2 Cognitive Effort 59
4.2.8.3 Mental Models and Reading Patterns 59
4.2.9 Data Collection and Availability 61
4.3 Results 61
4.3.1 Impact of Code Smells on Developers’ Perceived Comprehension Difficulty 61
4.3.1.1 The Most Cited Categories of Self-admitted Code Comprehension Difficulty 63
4.3.1.2 Distribution of Code Smells Grouped by Comprehension Difficulty Cate-

gories and Self-admitted Difficulty 64
4.3.1.3 Code Smells Frequency Grouped by Level of Comprehension and Self-

admitted Difficulty 65
4.3.2 Impact of Code Smells on Developers’ Cognitive Load 66
4.3.3 Impact of Code Smells on Developers’ Reading Behavior 68
4.3.3.1 Mental Models: Bottom-up vs. Top-down 68
4.3.3.2 Reading Patterns: Top-to-bottom vs. Bottom-to-top 69
4.3.3.3 Reading Patterns: Sectionally vs. Disorderly 70
4.3.3.4 Reading Patterns: Thorough vs. Skimming 71
4.3.3.5 Reading Patterns: Correct and Incorrect Classifications 71
4.4 Threats to Validity 72
4.5 Conclusion 74
4.6 Summary 74

5 Conclusion 76
5.1 Summary of Contributions 76
5.2 Implications of our Findings 77
5.3 Future Works 78
5.4 Conclusion 79

Bibliography 80

List of figures

Figure 3.1 Overview of our research methodology. 30
Figure 3.2 Participants’ familiarity with the concept of smells. 38
Figure 3.3 Participants’ degree. 38
Figure 3.4 Boxplot of AFD * FC per smell type. 39
Figure 3.5 Stacked bar of AFD * FC per smell type. 40
Figure 3.6 TOP 10 arrowed list for the hightest AFD*FC (minutes) for

all developers. 41
Figure 3.7 Count of the most frequent syntactic categories in the 10

arrowed list of Figure 3.6. 42
Figure 3.8 Stacked bar of normalized FC count for right (purple) and

wrong (blue) answers for all code snippets. 43
Figure 3.9 Boxplot of AFD * FC by smell type for right answers. 44
Figure 3.10 Boxplot of AFD * FC by smell type for wrong answers. 44

List of tables

Table 3.1 Total Count and Percentage of Right and Wrong Answers for
All Code Snippets. 42

Table 4.1 Levels of Understanding of Code Functionality 58
Table 4.2 Categories and Quote Samples for Difficulty in Understanding 58
Table 4.3 Distribution of Code Smells grouped by Comprehension Diffi-

culty Categories and Self-admitted Difficulty 62
Table 4.4 Code Smells Frequency grouped by Level of Comprehension

and Self-admitted Difficulty 65
Table 4.5 Multiple Comparison of Means - Tukey HSD, FWER=0.05 67
Table 4.6 Test Results for Cognitive Effort - Correct X Incorrect 68
Table 4.7 Comparison of Mental Models (Bottom-up vs Top-down) for

Different Code Smell Types 69
Table 4.8 Comparison of Reading Patterns (Top-to-bottom vs Bottom-

to-top, Sectionally vs Disordely, Thorough vs Skimming) for Different
Code Smell Types by Developers Perception 70

Table 4.9 Comparison of Reading Patterns (Top-to-bottom vs Bottom-
to-top, Sectionally vs Disordely, Thorough vs Skimming) for Different
Code Smell Types by Developers’ Answer Correctness 72

Table 4.10 Test Hypothesis Compared for Reading Patterns 73

List of Abreviations

AFD Average Fixation Duration
AOI Area of Interest
CAAE Certificate of Presentation for Ethical Appreciation
CEP Research Ethics Committee
CDD Cognitive Driven Development
DC Data Class
DECOR Detection of Code Smells by Rules
FC Fixation Count
FE Feature Envy
GQM Goal-Question-Metrics
Hz Hertz
IDE Integrated Development Environment
IQR Interquartile Range
JDeodorant Java Code Smell Detection and Refactoring Tool
LM Long Method
MFD Mean Fixation Duration
MLCQ Madeyski Lewowski Code Quest (dataset)
ms Milliseconds
OBS Open Broadcaster Software
PMD Programming Mistake Detector
RQ Research Question
SBES Brazilian Symposium on Software Engineering
SLR Systematic Literature Review
SUPR-Q Standardized User Experience Percentile Rank Questionnaire
TCLE Free and Informed Consent Form
TOSEM Transactions on Software Engineering and Methodology (journal)
TX300 Tobii TX300 Eye Tracker
XML Extensible Markup Language
iPlasma Code Smell Detection Tool
iTrace Integrated Traceability Environment
iTrace-Toolkit iTrace Data Processing Toolkit

1
Introduction

Software plays a critical role in modern society, permeating nearly every aspect
of daily life. As software systems evolve, maintenance becomes an essential activity
to ensure their functionality, adaptability, and quality over time [1]. Software main-
tenance tasks include modifying existing features, implementing new functionalities,
and fixing defects, all of which require an in-depth understanding of the source code.
A major challenge in this context is the presence of code smells, which are indica-
tors of suboptimal design and implementation choices that can negatively impact
the comprehensibility of software systems [2].

Code smells, such as Long Method, Feature Envy, and Data Class, have
been widely recognized as factors that hinder code comprehension by introducing
unnecessary complexity and making it more difficult for developers to navigate and
modify the codebase [2, 3]. Poorly structured code can lead to increased maintenance
effort, higher costs, and decreased developer productivity, ultimately affecting the
overall quality and sustainability of the software product [4]. Addressing code smells
through their timely identification is crucial for enhancing maintainability and
reducing the effort required to comprehend complex code structures [2].

Eye-tracking technology provides valuable insights into developers’ reading
patterns and visual attention during code analysis, offering an objective means to
assess the cognitive effort exerted when dealing with smelly code [5, 6]. By analyzing
eye-tracking metrics, such as fixation count and duration, researchers can identify
which code elements demand more cognitive effort and understand the challenges
faced by developers in interpreting smelly code [7]. Thus, this dissertation seeks
to employ eye-tracking technology to analyze developers’ responses to code snip-
pets with and without code smells, ultimately contributing to the understanding of
which and how certain code structures affect developers’ program comprehension.
This involves not only quantifying cognitive effort through metrics but also explor-
ing developers’ reasoning and subjective experiences during comprehension tasks,
contributing to a deeper understanding of which and how certain code structures
affect developers’ program comprehension. Also, this work adopts open science and
study replicability practices. All data, scripts and materials used in the research are
available for other researchers who wish to explore or extend the results[8, 9].

Chapter 1. Introduction 13

1.1
Problem Statement and Limitations of Related Work

The presence of code smells in software systems poses significant challenges
to program comprehension and maintenance. Code smells, such as Long Method,
Feature Envy, and Data Class, can obscure the logical structure of the code, making
it more difficult for developers to understand and modify software effectively. Despite
the extensive research conducted on the detection and classification of code smells,
there is a lack of empirical evidence on how these smells impact developers’ cognitive
effort and reading behavior. Understanding how developers interact with smelly
code and the cognitive load imposed is crucial to developing effective strategies for
refactoring and software quality improvement.

This dissertation aims to address the following research problem:

"How do different types of code smells impact the cognitive effort and
perception of developers during code comprehension tasks?"

To address this research problem, we looked at the limitations in prior research
to underscore the need for this dissertation’s investigations. Drawing from systematic
analyses of state-of-the-art studies, we identified six limitations addressed by our
study:

1. Lack of Integrated Quantitative and Qualitative Analysis: To the best
of our knowledge, there is a lack of approaches combining quantitative eye-
tracking data with qualitative developer insights to understand code smell
comprehension. Thus, we investigate how developers’ own perceptions and
classifications of code relate to their cognitive load.

2. Overreliance on Synthetic/Automated Code Smell Datasets: Many
studies rely on synthetic or automatically labeled datasets that may not reflect
the complexity of real-world software development scenarios [10].

3. Overreliance on static code metrics: Traditional static code metrics fail to
capture dynamic cognitive processes developers engage with while reviewing
code, as presented by Da Costa et al.[11].

4. Limited understanding of cognitive impacts of code smells: Prior
work focused on long-term maintenance impacts but neglected real-time
cognitive processes during code comprehension, which restricts understanding
the impact of developers’ cognitive effort for processing smelly codes during
analysis.

5. Lack of code smell-specific eye-tracking studies: While the literature
includes numerous eye-tracking studies in software engineering, none were
found that specifically investigated code smells.

Chapter 1. Introduction 14

6. Gap in application of eye-tracking tools for smell analysis: While
exists tools, like the iTrace that we used in this dissertation, to the best of
our knowledge, there is no studies that utilize these tools to explore cognitive
effort and reading behavior in code with smells.

This dissertation addresses the identified research gaps through two sequen-
tial studies with eye-tracking investigations that integrate experimental software
engineering with cognitive effort analysis. In the first study, Eyes on Code Smells:
Analyzing Developers’ Responses During Code Snippet Analysis that was published
at 38th Brazilian Symposium on Software Engineering (SBES), present in Chapter
3, was implemented a controlled experimental protocol where 12 developers engaged
in analyzing 13 real-world Java code snippets without or with smells (data class,
long method or feature envy) selected from the MLCQ dataset that was manually
validated by experience developers using a Tobii TX300 eye tracker Eclipse IDE
with iTrace plugin and iTrace-Toolkit. Participants performed code comprehension
tasks while fixation metrics (Average Fixation Duration and Fixation Count) were
quantitatively analyzed against expert-validated smell labels to understand the cog-
nitive effort by these developers. Although post-task surveys captured subjective
impressions, the analysis focused exclusively on objective eye-tracking data.

Next, the second study, Reading between the Smells: Eye-Tracking Developer
Responses to Code Smells submitted to Transactions on Software Engineering
and Methodology (TOSEM), present in Chapter 4, do an in-depth analysis with
qualitative and quantitative data with focus on how developer-perceived smells
rather than pre-defined labels. The study was conducted with 27 developers. They
examined the same artifacts presented in the first study. For qualitative analysis,
it is explored 132 developers’ explanations about how they perceived difficulty
correlates with their smell classification. For quantitative analysis, we perform the
same analysis for cognitive effort present in the first study with statistics tests.
Moreover, we also explore the mental models and reading patterns developers use
during program comprehension tasks.

1.2
Main Contributions

The main contributions of this research are as follows:

Empirical Evidence on Cognitive Effort with Code Smells. This dissertation
provides detailed empirical evidence on the cognitive impact of different types of code
smells. In the study presented in Chapter 3, we used eye-tracking metrics, such as
fixation count and avarage fixation duration, to quantify the cognitive effort required
to analyze code snippets with and without code smells. The results show that Long
Method and Feature Envy impose a significantly higher cognitive load compared
to Data Class, with Long Method being the most demanding due to its structural

Chapter 1. Introduction 15

complexity. In Chapter 4, we confirmed that this cognitive load is correlated with
developers’ perceptions of the presence of code smells, regardless of the accuracy
of their classifications, highlighting the relevance of subjective impressions in the
comprehension process.

Insights into Developers’ Visual Attention and Reading Patterns. The
analysis of eye-tracking data revealed distinct patterns of visual attention and
reading. In Chapter 3, we identified that developers spend more time fixating on
elements such as names and control structures when analyzing Long Method and
Feature Envy, indicating that these elements are crucial for comprehension. In
Chapter 4, we observed that Long Method and Feature Envy lead to bottom-up
mental models, where developers adopt a detailed, line-by-line approach, while Data
Class encourages more organized and sectional reading patterns. These findings
enhance the understanding of how developers visually interact with code smells,
paving the way for targeted IDE and refactoring tool improvements.

Recommendations for Improving Integrated Development Environments
(IDEs). The results of both studies generated practical recommendations for
enhancing IDEs. In Chapter 3, we suggested that tools could use eye-tracking data
to propose decomposition strategies for Long Methods and visualize dependencies
in Feature Envy. In Chapter 4, we added the recommendation to prioritize the
refactoring of code smells that most impact comprehension, such as Long Method,
based on developers’ perceptions of difficulty. These improvements aim to reduce
cognitive load and enhance productivity when dealing with complex code.

Pioneering the Use of Eye Tracking for Code Smell Analysis. This research
is pioneering in applying eye-tracking technology to investigate the relationship
between code smells and program comprehension. In Chapter 3, we introduced
a novel experimental framework that combines software artifact analysis with
physiological metrics, establishing a quantitative benchmark for the complexity
induced by code smells. Chapter 4 complements this approach with qualitative data,
enriching the analysis with developers’ perspectives. The proposed framework can
serve as a valuable tool for practitioners and researchers to validate the impact of
other types of code smells, enabling a more systematic and evidence-based approach
to improving code quality and developer experience. Moreover, it offers a new
paradigm for assessing cognitive effort in real time.

Foundational Work for Future Research. The studies establish a foundation
for future investigations by proposing the integration of additional metrics, such as
pupil dilation, and by identifying the need to explore other types of code smells.
The progression from quantitative (Chapter 3) to qualitative (Chapter 4) suggests

Chapter 1. Introduction 16

a path for more holistic research on code comprehension, contributing to open new
avenues for interdisciplinary research combining software engineering with cognitive
science and human-computer interaction.

Advancing the Understanding of Code Smell Refactoring. This dissertation
advances the understanding of refactoring by empirically demonstrating that Long
Method and Feature Envy are among the most cognitively demanding and perceptu-
ally complex code smells. These smells consistently impose a higher mental load on
developers, affecting their ability to comprehend and navigate code efficiently. The
combined quantitative and qualitative evidence from both studies underscores the
importance of prioritizing these smells during refactoring efforts. It also highlights
the need for development best practices and supportive tools that can proactively
identify and mitigate such smells, ultimately enhancing code maintainability and
reducing developer fatigue. These findings have the potential to influence both aca-
demic research and industry standards, advancing the state of the art in software
engineering.

1.3
Summary of Methodology and Key Finding

This section presents the key elements of the experimental design, analytical
procedures, and the most significant results, offering the reader a comprehensive
understanding of how the research objectives were pursued and achieved.

1.3.1
Methodological Overview

This dissertation employed a two-stage empirical approach to investigate the
impact of code smells on developer comprehension. Our approach integrates both
quantitative and qualitative analyses grounded in controlled experimentation. In
the first study, a controlled experiment was conducted with 12 developers, who
analyzed 13 real-world Java code snippets - containing or not containing code smells
such as Long Method, Feature Envy, and Data Class. These smells were selected
from the manually validated MLCQ dataset. Using a Tobii TX300 eye tracker in
conjunction with the Eclipse IDE equipped with the iTrace plugin and iTrace-
Toolkit, we recorded detailed eye-tracking metrics, focusing primarily on Average
Fixation Duration (AFD) and Fixation Count (FC). These metrics were used to
objectively quantify the cognitive effort required to analyze each code snippet.
The experimental procedure included a preparatory introduction, the presentation
and analysis of code snippets, and post-task questionnaires to capture subjective
developer impressions. In the second study, we expanded the number or subjects
with 27 participants and incorporated qualitative analysis by examining 132 textual
explanations provided by the developers. This phase focused on how participants

Chapter 1. Introduction 17

perceived and classified code smells, their reported difficulty, and the mental models
and reading patterns employed during comprehension. Statistical analyses were
conducted to compare cognitive effort across smell types and to relate subjective
difficulty to objective eye-tracking data. These analyses offered a comprehensive view
of the interplay between code structure, developer perception, and comprehension
strategy.

1.3.2
Key Results and Contributions

The results revealed that code smells exert a impact on both the cognitive load
and reading strategies of developers. Quantitative analysis demonstrated that Long
Method and Feature Envy significantly increase cognitive effort, as evidenced by
higher fixation durations and counts, compared to Data Class, which demanded
less cognitive resource allocation. Notably, Long Method was identified as the
most cognitively demanding smell, attributed to its structural complexity and the
necessity for more exhaustive, line-by-line reading approaches. Feature Envy also
posed substantial challenges, especially when dependencies were distributed across
multiple contexts, making their correct identification difficult for many participants.
In contrast, Data Class smells elicited more organized and sectional reading patterns
with lower cognitive load. Qualitative analysis further indicated that developers’
subjective perceptions of difficulty were often aligned with increased eye-tracking
metrics, regardless of their accuracy in smell identification. The study also identified
specific visual attention patterns. For instance, there was increased fixation on
code elements such as function names and control structures in the presence of
more complex smells. These findings highlight the relevance of considering both
objective physiological data and subjective developer feedback in assessing the
impact of code smells. This dissertation’s empirical evidence lays the groundwork
for improvements in IDE tooling, prioritization of refactoring activities, and further
research into developer cognition, ultimately contributing to enhanced software
quality and maintainability.

1.4
Dissertation Structure

This dissertation is structured into five chapters, each addressing different
aspects of the study conducted to investigate the impact of code smells on developer
comprehension using eye-tracking technology. The organization of the dissertation
is designed to provide a logical progression from background concepts to empirical
findings and conclusions, ensuring a comprehensive understanding of the research
problem and its contributions.

Chapter 2 presents the background and related works. The background
introduces fundamental concepts related to code smells, cognitive effort in software

Chapter 1. Introduction 18

comprehension, and eye-tracking technology. The related works section reviews
existing studies on code smells and eye-tracking applications in software engineering.

Chapter 3, titled Eyes on Code Smells: Analyzing Developers’ Responses
During Code Snippet Analysis, presents the first study conducted in this research.
This chapter details the study design, data collection procedures, and analysis
methods employed to understand how developers respond to code snippets with
and without code smells. It also discusses key findings related to cognitive effort,
reading patterns, and developers’ perceived difficulty in comprehending smelly code,
providing empirical evidence on the impact of code smells.

Chapter 4, titled Reading between the Smells: Eye-Tracking Developer Re-
sponses to Code Smells, builds upon the findings from the previous chapter by incor-
porating qualitative analyses of developers’ explanations and responses. This study
investigates the relationship between developers’ reading behavior, cognitive load,
and their ability to accurately identify code smells. The chapter provides a deeper
understanding of how different code smells influence comprehension strategies and
mental models, offering insights into the challenges developers face when analyzing
smelly code.

Chapter 5 presents the conclusions and future work, summarizing the key
contributions of the dissertation and discussing their implications for software engi-
neering research and practice. It outlines the limitations of the study and suggests
directions for future research, such as exploring additional code smells, incorporat-
ing different developer experience levels, and refining eye-tracking methodologies for
code comprehension analysis.

2
Background and Related Studies

This chapter presents the background of this dissertation. Section 2.1 intro-
duces basic concepts of code smells, and specific types of code smells as well as
discusses related work in the field. It discusses the definition and classification of
code smells, highlighting the three smell types analyzed in this study: Long Method,
Feature Envy, and Data Class. Furthermore, Section 2.2 explores how eye-tracking
technology is utilized to measure cognitive effort and attention allocation in software
engineering tasks. Next, Section 2.3 discusses existing studies on code comprehen-
sion and eye-tracking applications in software engineering, synthesizing foundational
research and recent advancements to contextualize the current state-of-the-art in the
field. Finally, Section 2.4 concludes this chapter.

2.1
Code Smells

Code smells are structural or design patterns in software systems that indicate
potential quality issues, often leading to increased maintenance complexity. Intro-
duced by Fowler et al. [2], code smells are symptoms of violations of object-oriented
design principles, such as high coupling, low cohesion, or functional redundancy.
They hinder code evolution, raising maintenance costs and defect risks [12].

According to the literature, code smells negatively affect software maintain-
ability and evolution [13, 14]. Empirical studies associate their presence with chal-
lenges in code comprehension, increased cognitive load for developers, and higher
error-proneness during modifications [15]. For instance, Long Method are frequently
cited as barriers to readability and modularity [16].

They can also be classified according to their granularity, reflecting the scope
and impact of the design problems they indicate within a software system. In the
literature, code smells are typically categorized into different levels of granularity:
implementation smells (method level), design smells (class level), and architecture
smells (component or system level) [17]. In this study, we focus on method-level
and design-level smells. Method-level smells, such as Long Method and Feature
Envy, represent the smallest granularity and typically affect code readability and
maintainability at a localized scope [17]. Class-level smells, such as God Class and
Data Class, have a broader impact and often indicate violations of object-oriented
design principles [17]. These different granularities help developers understand the
severity and scope of potential design issues.

Chapter 2. Background and Related Studies 20

2.1.1
Types of code smells

In this study, we focus on the following three types of code smells [18]:

– Long method: a method with many lines of code and multiple responsibilities.
It may hinder code comprehension by overwhelming developers with excessive
information and multiple concerns in a single code block. Conversely, they
might enhance comprehension by keeping related concerns together, reducing
the need to navigate between multiple methods.

– Feature envy: a method that shows more interest in data of other class(es) than
in the one in which it is currently located. It could harm code comprehension
by violating the principle of encapsulation, increasing class coupling and
making it harder to understand each class’s responsibilities. Conversely, it
might improve comprehension by centralizing related operations within the
calling method, which might reduce the need for navigation across multiple
classes when properly designed.

– Data class: a class that only serves as a container for data fields. This smell
may negatively impact code comprehension by encouraging procedural-style
programming in an object-oriented context, leading to a disconnect between
data and behavior. On the other hand, they could enhance comprehension by
providing a clear and simple structure for data organization, making it easier
to understand the core entities in the system.

We selected these three types of smells as (i) they are quite different from each
other in terms of structural problems they represent; (ii) these different structural
problems may stimulate the experiment participant in a wide variety of different
ways; (iii) choosing more smell types would make our experiment too complex – for
instance, Data Class’ structural may encourage holistic class-level analysis, while
Feature Envy’s inter-class dependencies may force developers to track cross-class
method calls; and (iv) complex experiments tend to make the subjects feel very
tired, demotivated or stressed, which would unavoidably interfere in the results. In
future research, studies can replicate our experiments using other smell types.

2.1.2
Impacts of Code Smells on Software Quality

Code smells negatively impact software quality, particularly in maintainability
and developers’ cognitive effort. Empirical studies, such as those by Yamashita
and Moonen [19], demonstrate that classes or methods with code smells (e.g., God
Class, Feature Envy) are strongly associated with maintenance challenges, including
increased defect rates and higher effort during code modifications. For instance, God
Class and Feature Envy were frequently linked to code comprehension difficulties and
unintended side effects during evolution due to their widespread dependencies [19].

Chapter 2. Background and Related Studies 21

Metrics-based studies, such as those by Marinescu [12], highlight that design
flaws like God Class violate fundamental principles such as cohesion and coupling,
enabling targeted detection of problematic code structures. These violations are
quantified through composite metrics, facilitating the identification of classes re-
quiring design improvements. The study presented by Palomba et al. [20] demon-
strates that methods affected by Feature Envy tend to co-change more frequently
with methods of external classes, suggesting excessive reliance on external data. This
behavior aligns with the definition of Feature Envy, where methods violate encap-
sulation principles, potentially increasing maintenance challenges due to heightened
interdependencies.

Furthermore, code smells significantly affect developer productivity. Ya-
mashita and Moonen [19] observed that systems with smells like God Class required
substantially more effort to modify compared to smell-free code, with a higher like-
lihood of defect introduction. This aligns with findings from the SLR, which empha-
sizes that smell such Long Method are among the most detrimental to maintenance
efficiency, partly due to their prevalence in large-scale systems [21]

2.1.3
Detection of Code Smells

The detection of code smells can be performed manually or automatically.
Manual detection involves code inspection by developers, who identify smells based
on their expertise and domain knowledge. However, this approach is impractical for
large systems due to the time and effort required.

Automated detection leverages static code analysis techniques, including soft-
ware metrics, machine learning algorithms, and search-based methods. Widely
adopted tools include DECOR [22], which uses domain-specific rules for smells like
Blob and Spaghetti Code; JDeodorant tool [23], which specializes in refactoring op-
portunities for smells such as Feature Envy; and iPlasma [24], a metrics-based tool
for detecting design flaws. Popular metric-based tools are PMD [25], Checkstyle [26],
and SonarQube [27] that apply predefined thresholds to metrics such as cyclomatic
complexity and cohesion to identify smells. Moreover, Machine Learning (ML) ap-
proaches [28], often implemented with frameworks like Weka or libraries such as
scikit-learn, employ algorithms like decision trees and support vector machines to
classify code smells dynamically.

The problem is that automated detection faces challenges, like subjectivity
in smell definitions, lack of consensus on metric thresholds, and variability in
effectiveness across different smell types and system contexts. These limitations
highlight the need for hybrid approaches combining metrics, historical data, and
visualization to improve accuracy.

Chapter 2. Background and Related Studies 22

2.2
Eye Tracker

Eye-tracking technology offers a deep understanding of how people interact
with visual elements. They collect data on how they navigate reading material [29]
and respond to visual prompts when searching [30]. This technology is particularly
helpful for understanding the cognitive processes involved in comprehension and
problem solving. As cognitive functions direct one’s gaze, analyzing eye movements
can offer valuable insights into the cognitive efforts employed during various soft-
ware engineering activities. This aspect of eye tracking makes it a powerful tool
for studying how individuals interact cognitively with different stimuli. The way
someone moves their eye gaze can reveal much about their thought process.

The relation between eye gaze and cognitive processing is based on two
assumptions from the theory of reading: the immediacy assumption and the eye-
mind assumption [31]. The immediacy assumption proposes that interpretation of
the stimuli begins immediately as a participant sees it, e.g., as soon as a reader reads
a word. The eye-mind assumption states that participants fix their attention only on
the part of the stimulus that is being processed currently [31]. These two assumptions
are the foundation of how eye gaze represents the participant’s cognitive processes.
Eye gaze data indicate both the target of the participant’s attention and the effort
(or lack thereof) and length of time used to understand the stimulus. Furthermore,
based on physiological studies [32], psychologists assume that participants do not
have conscious control over many attributes of their eye gaze, e.g., their pupil size,
other than the location of their attention.

In the context of software development, an eye tracker becomes a powerful tool
for assessing a developer’s attention and cognitive processes. By capturing the precise
gaze and movements of the eyes, an eye tracker allows researchers and developers
to understand how individuals interact with visual stimuli on a screen [29, 30]. By
analyzing which elements attract the most attention, developers can gain a deeper
understanding of the visual hierarchy within a codebase, helping prioritize essential
components and optimize code readability.

When working with an eye tracker, we can analyze several metrics, such as
saccade, pupil dilation, constriction, areas of interest, and fixation [33]. For this
study, we will focus on developers’ fixations and, from there, explore how they
analyze code snippets with or without code smells. Fixations are the areas of the
stimulus where the participant’s visual attention is concentrated, leading to cognitive
processes. Most fixations last between 100 and 600 milliseconds, but this varies
greatly based on context and other relevant factors [33].

As a practical example of the application of the eye-tracking metrics adopted
in this study, consider the code snippet presented below, which was included in the
experiment to evaluate the cognitive effort of developers.

Chapter 2. Background and Related Studies 23

1 @AutoValue . Builder

2 abstract static class Builder <T> {

3 abstract Builder <T> setHosts (List <String > hosts);

4 abstract Builder <T> setPort (Integer port);

5 abstract Builder <T> setKeyspace (String keyspace);

6 abstract Builder <T> setEntity (Class <T> entity);

7 abstract Builder <T> setUsername (String username);

8 abstract Builder <T> setPassword (String password);

9 abstract Builder <T> setLocalDc (String localDc);

10 abstract Builder <T> setConsistencyLevel (String

consistencyLevel);

11 abstract Builder <T> setMutationType (MutationType

mutationType);

12 abstract Write <T> build ();

13 }

The presented snippet exhibits typical characteristics of the Data Class smell.
During the experiment, participants analyzed similar code snippets while their
visual interactions were recorded using metrics such as Fixation Count (FC) and
Average Fixation Duration (AFD). These metrics allowed the identification of
reading patterns and the estimation of the cognitive load required to comprehend
this type of structure.

2.3
Related Studies

In this section, we conducted a narrative literature review based on structured
keyword searches in selected scientific databases. The process involved defining
specific search strings relevant to eye trackers and code comprehension. We reviewed
the literature over the past ten years (2014-2024), aiming to identify research gaps
and potential contributions of this study. Our goal is to understand the state-of-
the-art in this area and evaluate how eye-tracking technology has been applied to
analyze the cognitive processes involved in reading and reviewing code.

We defined two search strings that combine terms related to eye tracking, code
comprehension and code smell to search in three databases: ScienceDirect, IEEE
and ACM. The reason for having two string is that ScienceDirect have limited use
of booleans. The primary search string used for ScienceDirect was:

– ("code smell" OR "design flaw") AND ("eye tracker" OR "eye tracking") AND
("cognitive effort" OR "code comprehension")

For ACM Digital Library and IEEE Xplore, we applied a more detailed version
of the search string:

Chapter 2. Background and Related Studies 24

– ("code smell" OR "code smells" OR "bad smell" OR "design flaw") AND ("eye
tracking" OR "eye tracker" OR "gaze tracking" OR "visual attention") AND
("cognitive effort" OR "mental load" OR "developer comprehension" OR "code
comprehension")

The searches were conducted within the full text of the publications and
filtered to include academic research articles and journals. The results showed the
identification of 7 papers in ScienceDirect and 8 papers in the ACM Digital Library,
but no relevant work was found in IEEE Xplore.

After analyzing the abstracts and contents of the retrieved papers, we selected
11 studies related to our topic. We highlight their findings, relevant contributions,
and main differences in comparison with this research.

We grouped the studies by common themes using a clustering strategy to
identify shared objectives. This approach allowed us to classify the works into specific
research areas, facilitating the analysis of trends in studies on code comprehension,
cognitive effort, and code smells.

The results indicate that few studies directly address the impact of code smells
on code comprehension using physiological metrics. Most of the retrieved articles
focus on general analyses of cognitive processes in software maintenance and code
review tasks, often without explicitly mentioning code smells. This highlights the
relevance of our investigation, which aims to provide a deeper integration between
eye tracking, cognitive load, and structural elements of source code.

Next, we present a detailed synthesis of the related works, grouped by areas of
interest. We highlight their methodologies, key findings, and relevant contributions
to our research.

Feitelson [34] highlights that traditional complexity metrics often fail to predict
code comprehension accurately, emphasizing the need to account for human factors
and context. While his study explores how code complexity influences comprehension
through experimental evaluations, it does not specifically focus on the role of code
smells.

Politowski et al. [35] examine the effects of anti-patterns (Blob and Spaghetti
Code) on program comprehension. The researchers analyzed data from 372 tasks
completed by participants across multiple universities, measuring time spent, ac-
curacy, and effort during comprehension activities. Their findings reveal that while
single instances of these anti-patterns have minimal impact, multiple occurrences
increase task completion time and effort, with Spaghetti Code leading to a 39%
increase in time spent and a 25% reduction in correctness.

Pinto et al. [36] introduce Cognitive Driven Development (CDD), a technique
aimed at reducing cognitive load by limiting complexity in code units. Through a
one-year case study at Zup Innovation, the researchers found that CDD maintained
small class sizes, improved testing practices, and guided evidence-driven refactoring.

Chapter 2. Background and Related Studies 25

The study provides empirical evidence on how limiting the cognitive load in code
units can improve code comprehension and refactoring practices.

Müller et al. [37] investigate the role of biometric measures, including eye track-
ing, in identifying developers’ emotions and progress during software maintenance
tasks. Their study demonstrates that emotions such as frustration and happiness
are closely linked to perceived progress and that biometric indicators, including eye-
tracking metrics like fixation, can effectively predict emotional states. They achieved
71.36% of accuracy in distinguishing between positive and negative emotions.

Da Costa et al. [11] conducted an eye-tracking study to investigate the
impact of code transformations on the comprehension of novice programmers
across three programming languages (C, Python, and Java). The study found
that certain transformations, such as Extract Method, significantly improved task
performance by reducing visual effort and increasing comprehension accuracy. Their
results underscore the limitations of static code metrics in capturing dynamic
cognitive processes, emphasizing the value of visual metrics like fixation duration
and regressions. Our work focuses on developers’ responses to pre-existing code
smells rather than applied refactorings.

Li et al. [38] explore the use of eye tracking to evaluate the impact of augmented
visualization cues on pilots’ monitoring performance in aviation. The study assessed
how augmented primary flight displays affected fixation patterns and pupil dilation,
finding that these enhancements led to shorter fixation durations and smaller pupil
dilatations, indicating reduced cognitive load. The context differs from software
engineering but the study demonstrates the effectiveness of eye-tracking in evaluating
visual attention and cognitive workload.

Andaloussi et al. [39] proposed a novel approach to estimate the cognitive load
of developers at a fine-grained level using eye tracking and machine learning models.
Their study demonstrated that by analyzing metrics such as fixations, saccades, and
pupil reactions, it is possible to identify mentally demanding code fragments with
high accuracy (F1: 85.65%).

Although not directly related to software engineering, Albaghli et al. [40] in-
vestigate web usability in Kuwaiti universities using eye-tracking with Standard-
ized User Experience Percentile Rank Questionnaire (SUPR-Q) metrics. The study
combined fixation durations and qualitative feedback to identify design issues that
increased cognitive load during navigation tasks. Websites with poor layouts exhib-
ited longer fixation durations, reflecting higher mental effort. While focused on web
design, this study demonstrate the use of eye tracker for analyzing cognitive load
and visual attention and correlating fixation metrics with user performance.

Merino et al. [41] present a systematic literature review on software visual-
ization evaluation, analyzing 181 studies. The review notes that only 29% of these
studies employed experimental methods, with eye-tracking mentioned as a data col-
lection technique in a small subset. It calls for more robust evaluation practices
integrating quantitative and qualitative data. Although centered on visualization

Chapter 2. Background and Related Studies 26

tools, the study highlights the importance of a mixed-methods approach, combining
different data collection methods.

2.4
Summary

This chapter has laid the groundwork for understanding the core concepts
and related research that support this dissertation. We introduced the notion of
code smells, focusing on three specific types – Long Method, Feature Envy, and
Data Class – and discussed their implications for software quality and maintenance.
Additionally, we explored the role of eye-tracking technology in capturing developers’
cognitive processes during code comprehension tasks, highlighting its potential to
reveal insights into how code smells affect visual attention and effort. The review of
related studies contextualized our work within the broader landscape of software
engineering research, identifying gaps that our empirical investigations aim to
address. Together, these elements provide a solid foundation for the subsequent
chapters, where we present controlled experiments designed to analyze developers’
responses to code smells using eye-tracking metrics and qualitative feedback.

3
Eyes on Code Smells: Analyzing Developers’ Responses Dur-
ing Code Snippet Analysis

A key challenge in software maintenance is understanding the impact of code
smells on developers’ cognitive effort during code comprehension. Code smells are
indicators of potential design or implementation flaws that can significantly hinder
comprehension. Analyzing how developers interact with code that may present code
smells, seeking to understand their difficulties and mental effort, is essential for
improving software quality.

Limited attention has been given to how developers visually engage with code
snippets containing these smells and how their cognitive effort varies. To address this
gap, this chapter presents the paper "Eyes on Code Smells: Analyzing Developers’
Responses During Code Snippet Analysis", published and presented at the 38th
Brazilian Symposium on Software Engineering (SBES).

This dissertation reports on a controlled experiment designed to assess the
cognitive effort imposed by three types of code smells: Long Method, Feature Envy,
and Data Class, due to a combination of theoretical rationale and practical consid-
erations (see Chapter 2.1). We use eye-tracking metrics, fixation count and fixation
duration, to quantify developers’ cognitive load while analyzing code snippets with
and without code smells. Another metric is Area of Interest, where we use the syn-
tactic categorization functionality based on the syntactic categories of the code (see
Section 3.2.7.1).

The results indicate that Long Method and Feature Envy impose a higher
cognitive burden compared to Data Class, reinforcing findings that structural
complexity affects comprehension. Specifically, developers spent more time fixating
on code snippets containing Long Method and Feature Envy, whereas Data Class
smells resulted in shorter fixation durations, indicating lower cognitive demands. We
also show that developers invested much time in understanding the names within
the code, which demonstrates the importance of good and clear nomenclature even
for tinier elements, for the sake of supporting code readability and maintainability.

3.1
Introduction

Code smells are claimed to be a key influencing factor in harming program
comprehension, as they are symptoms of poor design and implementation deci-
sions [2]. Thus, addressing code smells is important for companies to avoid rework,

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 28

increased costs, and decreased productivity in software development projects [4].
This highlights the need to thoroughly understand the impact of code smells on
program comprehension.

Eye tracking is a sophisticated technology used to monitor eye movements
and gaze patterns, providing a valuable tool for examining the effects of code
smells on program comprehension [33]. By using eye-tracking technology, researchers
can explore developers’ physiological responses during program analysis, identifying
which parts of the code they focused on, which elements cause distraction, and
how long certain stimuli or triggers capture attention. Analyzing eye movements
is essential to understand the cognitive process, as they guide and orient visual
attention to regions of interest, which are subsequently processed by the brain [5].

Eye trackers have been widely used in research to develop new insights into
how developers interact with software systems over a wide variety of tasks [5]. Sharafi
et al. [5] highlight that this non-invasive technology leverages metrics such as pupil
diameter, saccade patterns, scanning paths, and fixation points, allowing researchers
to achieve pioneering discoveries and advancements in software engineering research.
However, currently there is no empirical study on using eye trackers to understand
the impact of code smells on program comprehension activities.

In this context, this paper reports on a study in which we have used an
eye tracker to investigate the influence of code smells on developers’ program
comprehension. The eye tracker was used to monitor participants’ visual attention,
enabling a quantitative evaluation of their visual efforts while they engaged with
analytical tasks on code snippets. During the experiment, participants performed
tasks on code snippets with and without code smells, allowing us to examine their
interactions with the code. Specifically, we utilized eye-tracking information such
as fixation duration and areas of interest (AOI) to understand how the presence of
code smells influenced developers’ program analysis. Fixation duration assesses the
cognitive effort expended by developers during the analysis of code snippets. This
metric indicates in which part of the code and for how long developers are focusing
their attention. For the metric AOI, we use the syntactic categorization functionality
of iTrace based on the syntactic categories of the code.

To capture and analyze data, we used the iTrace Eclipse Plugin [6], iTrace-
Toolkit [42] and OBS Studio1. Additionally, questionnaires were administered to
gather complementary information from participants. By analyzing eye-tracking
data while developers reviewed code snippets with and without code smells, this
study identifies the key aspects that developers focus on during their analysis
and compares their responses. Through this detailed analysis, our aim was to
gain a deeper understanding of how specific code attributes influence developers’
perceptions and responses to structural problems within the code. These insights
are crucial to improving the development of more effective tools and practices for

1https://obsproject.com/pt-br

https://obsproject.com/pt-br

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 29

code refactoring and software maintenance.
Our key findings and related implications are as follows:

1. We observed that the smell Data Class leads to a lower cognitive effort, while
the smells Feature Envy and Long Method imposed a considerably higher
effort. That explains, for instance, why recent studies have reported that the
refactoring of Feature Envies and Long Methods has been much more common
across projects [1, 43, 44, 45].

2. Long methods were smells that clearly yielded the greatest effort. Knowing
which code smell demands the most from the developer can help one formulate
best practices. Moreover, IDE features should better equip developers with
clues to support (re)writing of Long Methods and help developers prioritize
refactoring efforts. For example, IDE support could automatically suggest
which parts of a long method could be further decomposed into two, three, or
more methods, taking eye-tracking measures to support the decision.

3. We observed that most participants struggled to correctly identify the presence
of Feature Envies in the programs they analyzed. Some participants did
it right. However, the ones that did wrong, engaged in complex cognitive
processes as they were looking all around to understand all the dependencies.
For them, it was difficult to determine if the "envy" should or not be moved
to another class. The difficulty comes from the fact that: (i) there were
many dependencies with different weights and responsibilities all around,
and (ii) each dependency carried a different semantics, which could only be
inferred after analyzing varying context-specific variables. Existing IDEs and
refactoring tooling should indicate which dependencies were better conditioned
to be removed.

4. Our findings also highlight the importance of good and clear nomencla-
ture for code readability and maintainability. Certain categories such as
function_decl and if indicate a deeper analysis of functions and control
flow structures, likely due to their complexity and potential impact on pro-
gram execution.

Audience and contribution. The audience for this paper is researchers and
professionals in the field of software engineering, particularly those involved in code
refactoring, software quality assessment, and software maintenance and evolution,
who seek a deeper understanding of the cognitive processes and behavioral responses
of developers during code comprehension. Eye-tracking measures can be leveraged in
real time as developers write, review, or understand the source code. By integrating
eye-tracking technology into development environments, tools can identify the
cognitive patterns developers exhibit in response to specific code smells, leading

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 30

to more nuanced and precise detection algorithms that surpass traditional static,
dynamic, and repository-based measures (e.g., change history metrics) commonly
reported in the literature. This integration enables tools to provide immediate
feedback by alerting developers to high cognitive loads, highlighting problematic
areas of code, and suggesting prioritization strategies. Moreover, it can prompt
developers to take breaks or seek help, thereby improving overall productivity and
well-being. This paper aims to advance the field of software engineering by inspiring
further research and the development of more effective tools for identifying and
refactoring code smells.

3.2
Study Design

In this study, we investigate how developers react to code smells by analyzing
their cognitive responses during code review. To capture these responses, we used
an eye tracker, aiming to identify the behavioral patterns developers present during
code analysis. This approach allows us to detect code sections that are difficult to
understand and, consequently, more likely to contain code smells.

To ensure the success of the experiment, we divided our research methodology
into 7 stages (see Figure 3.1): (1) preparation of the experiment, (2) selection of a
state-of-the-art dataset, (3) selection of the code snippets, (4) pilot study, (5) call
for volunteers, (6) execution of the experiment, and (7) data analysis.

Figure 3.1: Overview of our research methodology.

3.2.1
Preparation of the Experiment

It should be noted that the experiment in question was submitted and
approved by the research ethics committee (CEP) through the Plataforma Brasil
under the Certificate of Presentation of Ethical Appreciation (CAAE) number
74286223.4.0000.5235. Any data or elements that could identify the participant, such
as their name or image, have not been and will not be disclosed or exposed, being
kept anonymous. If the participant agreed to participate, they agreed with the "Free
and Informed Consent Form" (TCLE), a document containing all the information
regarding data collection and how their data will be treated.

The study took place at PUC-Rio; it lasted approximately 1 hour, depending
on the level of experience and detail in which the developer analyzed the code
snippets and responded to the survey carried out together. It was carried out in
an isolated room, away from noise and interruptions. Information was provided

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 31

before the experiment for developers to familiarize themselves with the materials (eye
tracker, keyboard, mouse, and IDE where the developers analyze the code snippets),
instructions on how they have to experiment, and any questions they may have. We
emphasize to the participant that everyone has their own way of approaching when
solving coding problems. The interest lies in observing their distinct perspectives,
and they should not concern themselves with the correctness of their answers or the
time taken to analyze each code file. They are encouraged to take the necessary time.
The primary objective is to observe the answers they gave for the tasks presented,
where there are no incorrect answers.

The eye tracker was calibrated with the participant (see Section 3.2.6).
Participants also had a brief introductory discussion with the study authors to
familiarize themselves with the eye-tracking equipment used. This dialogue was
supposed to calm down the subjects so that their emotional state would be neutral,
which would only make them concentrate on the experiment task of code smell
identification and classification. This preparatory step is crucial to minimize any
external influences on the data collected through the eye tracker.

3.2.2
Selection of a State-of-the-Art Dataset

There are several code smells datasets available, such as the one published
by Palomba et al. [16], which contains 243 instances of five types of code smells
and another containing 17,350 instances of 13 types of code smells. There are also
two datasets developed by Fontana et al. that work with binary classification [28]
and severity scale [46]. The reason for not using these datasets is that they were
either labeled automatically by software tools or by students and researchers, missing
developers working in the industry.

Thus, we choose to use the dataset called "MLCQ" (Madeyski Lewowski
Code Quest) developed by Lech Madeyski and Tomasz Lewowski [10], which was
manually labeled with the support of 26 developers from industry who participated in
reviewing the code snippets. All developers were actively involved in activities related
to code smells. In total, 4,770 code samples from 792 open-source and industry-
relevant projects were reviewed, totaling 14,739 reviews. Moreover, the authors
provided detailed information about the background of the reviewers involved in
the labeling process. This provided us with a detailed level of information when
evaluating the data. The reviewers focused on 4 code smells: Feature Envy and Long
Method at the method level; and Data Class and Blob at the class level. These were
chosen due to a literature review carried out by the authors as the most popular
code smells present in the literature. They also classified code smells according to
4 severity degrees based on knowledge and experience. The 4 severity degrees are:
none, minor, major, and critical. We must emphasize that none is the classification
given when the developer did not see the presence of the smell attributed to the
code snippet. A minor code smell means a relatively low-impact issue in the code.

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 32

A major code smell suggests a more significant issue in the code that could impact
maintainability and readability. A critical code smell indicates a severe issue that can
significantly impact the software’s maintainability and readability. A questionnaire
with 59 questions was applied to the 26 reviewers, of which 20 responded. The
authors carefully selected the number of questions to allow a detailed understanding
of the background of the reviewers participating in the study, to obtain a more
comprehensive and in-depth view of their skills and experience. For more details on
how the dataset was developed, see the original study [10] and access the dataset at
https://zenodo.org/records/3666840.

3.2.3
Selection of the Code Snippets

To select the code snippets from MLCQ, it was decided to filter by the
background of the reviewers who manually labeled the code snippets. To do this, we
applied the following inclusion criteria (IC):

(IC1) Experience in software development greater than 3 years.

(IC2) Experience in the software industry greater than 3 years.

(IC3) Experience with the Java language greater than 1 month.

Moreover, we applied the following exclusion criteria (EC):

(EC1) Developers who did not answer any questions related to the code smells that
were presented.

(EC2) Code snippets longer than 44 lines.

Although the iTrace Eclipse Plugin allows developers to use the scroll bar,
we chose to consider EC2 for two main reasons: (1) Keeping the snippets more
readable on standard screen resolutions, without the need for constant scrolling
within the IDE (but allowing participants to explore the complete code file). (2)
Longer code snippets would require more time for developers to analyze from a
total of 13 code snippets. These factors were confirmed in a pilot experiment, where
developers spent over two hours finishing the experiment, guiding our decision to
limit the code snippet length, and ensuring a balance between data quality and
participant workload.

We selected a total of 13 code snippets. 1 code snippet was selected for the
participant to become familiar with the presentation format, while the remaining 12
were used for data collection. For these 12 snippets, we randomly selected 4 snippets
related to each code smell, except for the Blob code smell. We decided to eliminate
Blob because including 16 code snippets would take too much of the participants’
time, as highlighted in the pilot study (Section 4.2.5).

Before starting the experiment, two researchers evaluated these 13 code
snippets to ensure their clarity and comprehensibility.

https://zenodo.org/records/3666840

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 33

3.2.4
Pilot Study

We piloted the survey with two practitioners to estimate its length and clarity.
The pilot study was carried out based on the guidelines provided by Sharafi et
al. [32]: (i) we ensured that the eye tracker and room were set up correctly; (ii) we
verified that the recording process properly acquired and saved data to disk; (iii)
we checked the quality of the recorded data to ensure that the lighting conditions
were appropriate for capturing eye movements; (vi) we observed how the participant
reacted to the research questions, setup, and tasks; (v) we recorded the time taken
by the participant to complete the study; and (vi) we analyzed the data to evaluate
the results and prevent any data loss.

The first participant took 90 minutes to analyze 16 code snippets and noted
fatigue, discomfort with the chair, and errors found in the forms to be filled out.
This feedback led to minor adjustments. Due to the extensive duration of the pilot,
we decided to focus on 3 code smells and select 12 code snippets. As a result, the
duration of the second pilot was reduced to 60 minutes, including the time allocated
for completing a questionnaire on the researcher’s background, which was conducted
after the code snippet analysis.

3.2.5
Call for Volunteers

We selected participants under a few constraints: (i) participants must have
contact with Java or other similar syntax programming language, and (ii) partic-
ipants must have heard about code smells. With these minimum requirements, we
seek to ensure that the participants have a minimum understanding of the code
snippet and software quality assurance. We seek participants from universities and
companies. We use the snowballing strategy [47], asking each participant to refer
our survey to colleagues with similar experiences and interest in joining.

3.2.6
Experiment

The survey was carried out via Google Forms, containing both multiple-
choice and free-text questions. It begins by outlining the survey’s purpose and
research goals, emphasizing the confidentiality of participants’ responses. The survey
is divided into three phases: before, during, and after the experiment.

The first phase presents the definition and types of code smells. The second
phase involves analyzing the code snippets using the eye tracker. Finally, in the third
phase, participants are asked about their feelings during and after the analysis and
their perceptions regarding the use of biosensors. Additionally, to better understand
their background, participants’ knowledge of the software engineering area is col-

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 34

lected. All responses were supplemented by audio and video recordings. The survey
is available in our supplementary material [48].

3.2.6.1
First Phase: Introduction to Code Smells

In the first phase, the developer is introduced to the concept of code smell
and 7 types of code smells (Long Method, Data Class, Duplicate Code, Data Clumps,
Feature Envy, Refused Bequest, and Message Chains). We include a wider variety
of code smells to ensure no bias in the responses. These measures were adopted to
establish a knowledge base, as many are aware of code smells but do not know how
to identify or classify them correctly. Thus, the participant can be more confident
evaluating the code snippets.

3.2.6.2
Second Phase: Analysis of Code Snippets

In this phase, the developers performed the analysis of the code snippets. The
first code snippet was an example so that the participant could clarify any doubts
with the researcher. In subsequent sections, the participant carried out the analysis
without any interference, aiming for the integrity of the data. We presented the
code snippets in the same order for all participants. To mitigate the risk of order
effects, such as learning or mental fatigue, we diversified the types of code smells
throughout the experiment. We show in our supplementary material [48] that there
was no significant variation in the time taken or fixation metrics for code snippets
placed at the end of the questionnaire, indicating that neither learning effects nor
mental fatigue significantly impacted the results.

During the analysis of each code snippet, participants were asked to (i)
describe how the code snippet works, (ii) whether it was difficult or not to
understand and explain why, (iii) if it has a code smell and, if so, what is its
severity and why choose this severity, and, lastly, (iv) how the participant felt when
analyzing the code snippet on a scale of 1 to 5. Knowing that each participant has
their own style and approach to solving coding problems, the authors were interested
in seeing each participant’s perspective. Attention check questions were also included
to identify whether the participant remained attentive during the experiment.

3.2.6.3
Third Phase: Collecting Participant Background Data

In the third phase, the participant responded to a subset of questions derived
from the original MLCQ article [10]. This inclusion is intended to allow future
research to establish a link between both studies. The questions focused on the
participant’s history as a developer and to understand their development experience.
In particular, we explored aspects such as the duration of their programming career,

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 35

their experience with software development, the programming languages they are
familiar with, and their knowledge of the concept of code smells, among others. The
objective of this phase is to segment the data more precisely and to contextualize
the analysis based on the participants’ backgrounds. The background information
was collected at the end of the experiment, rather than at the beginning, to avoid
any impact of participant fatigue on the eye-tracking data. Collecting background
data at the end ensured that participants could perform the main experimental
tasks without prior cognitive fatigue, thus preserving the reliability of physiological
measures. Additionally, we solicited the participants’ opinions on the utility of the
data gathered by the eye tracker in understanding their assessments.

3.2.7
Data Analysis

In the Data Analysis, we conducted a thorough investigation into the develop-
ers’ responses while analyzing code snippets, using advanced tools for precise data
collection and analysis. The primary tool used was the iTrace-core software [6]. This
software, when employed in the experiments, generated detailed XML files, allowing
us to understand where each participant was looking at specific times, the duration
of their gaze, and the specifics of the code being analyzed.

In addition to iTrace-core, we also used the iTrace ToolKit[42], a complemen-
tary tool to process raw data. This toolkit was crucial in creating a database and
calculating fixations. Among all collected data, the fixation and syntactic categories
were of particular importance. We chose to work with fixation because it is a proven
metric related to the cognitive process [32], which indicates where developers are
focusing their attention in the code and is derived from time. We chose the I-VT
algorithm [42], to calculate fixation duration, recommended for eye trackers with a
refresh rate higher than 200Hz aligning with our equipment (see Section 3.2.8).

Data preparation initially consisted of analyzing the fixation durations and
eliminating outliers. To do this, we used boxplots to visualize the severities and
determined the upper and lower limits as 1.5 times the Interquartile Range (IQR).
For our analysis, we utilized several eye-tracking metrics, including Average Fixation
Duration (AFD), also known as Mean Fixation Duration (MFD), which calculates
the average duration of all fixations within the area of interest (AOI); and fixation
count (FC), which measures the total number of fixations in each AOI [7].

3.2.7.1
Research Questions

To investigate how developers react and comprehend code snippets, we focused
on analyzing the following research questions (RQs):

RQ1 What is the average time that developers spend when analyzing code snippets
with potential code smells?

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 36

RQ2 Which sections of the code are most frequently examined by developers when
analyzing code snippets?

RQ3 How do fixation patterns differ between developers who accurately identify
code smells, and those who do not?

The data collected through the eye tracker were analyzed to identify patterns
in the developer’s behavior and answer the research questions above. This analysis
took into account physiological responses, time spent on each code snippet, and the
developer’s reading pattern according to its accuracy in detecting the code smell
and code smell type.

Analysis of RQ1. Developers often spend time reviewing and analyzing code
snippets, either their own or those of others, to identify refactoring opportunities.
The time spent on this process can vary widely based on several factors, including the
complexity of the code, the developer’s familiarity with the codebase, the presence
and nature of the code smells, and the developer’s experience level. In this context,
this research question seeks to analyze how developers’ fixations behave during
the analysis of code snippets, calculating the Average Fixation Duration (AFD)
multiplied by the Fixations Count (FC). A high amount of fixations indicates that
more effort is required to maintain and evolve the system [49, 50, 51]. Knowing which
code smell demands the most from the developer can help formulate best practices
for writing code and help prioritize refactoring efforts.

Analysis of RQ2. This research question aims to discover the regions of the
code that receive the most attention from developers. Understanding these Areas
of Interest (AOI) can shed light on critical aspects of the code that require closer
analysis for effective code smell detection. For this analysis, we used a syntactic
hierarchical model extracted from the database generated by the iTrace ToolKit.
The syntactic context column stores an arrowed list of tags that describes where
the text is located contextually [42]. Using AFD times FC, we calculated the time
in minutes for the syntactic categories that developers spent the most time looking
at. After identifying the 10 categories, we break the chain to identify which abstract
synthetic information appears most within the 10 identified categories.

Analysis of RQ3. This research question aims to explore the relationship between
developers’ fixation patterns and their ability to identify code smells. The goal is
to determine whether there is a significant difference in fixation patterns between
developers who successfully identified smells and those who did not. First, we verified
the smelly and non-smelly instances reviewed by professionals. Then, we compared
the fixation count between these reviews. To carry out this analysis, we performed a
Min-Max normalization. We also analyzed the AFD ∗ FC boxplots, so that we can
understand if the pattern of fixations varies for each code smell.

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 37

3.2.8
Data Collection and Availability

To collect data from participants, the Tobii TX300 eye tracker was used. Ac-
cording to its manufacturer, combination of 300Hz sampling rate, very high precision
and accuracy, robust tracking and compensation for large head movements extends
the possibilities for unobtrusive research of oculomotor functions and human behav-
ior [52]. In addition, we use Eclipse IDE2 to present the code excerpt in conjunction
with Itrace Eclipse plugin and Open Broadcaster Software (OBS Studio)3 to record
our experiment. Google Forms was also used to collect participants’ responses.

All files we used for the elaboration of the study and to display the graphics
and data tables present in this paper can be accessed at our GitHub repository [48].

3.3
Results

In this section, we will discuss the participants’ characterization and the
research questions based on the results obtained from the data collected by the
eye tracker.

3.3.1
Participants Contextualization

In total, we carried out 11 valid survey responses and 12 experiments where
we collected valid data via eye tracker.

Careful Data Sanitization. To analyze the validity of the data, we first checked
the completeness of the collected data; i.e., we checked whether all the questions
were appropriately answered, ensuring that there were no missing entries that could
impact the integrity of the analysis. Also, after the experiment and generation of the
databases, it was checked whether the data collected via eye tracker were consistent.
We checked for (ab)normality bases with little data, discrepancies in the size of the
generated database file, and few fixations. All data collected via the eye tracker were
also validated, except for experiment 10, code snippet 2, as the eye tracker was not
working due to an iTrace error.

The difference between the number of experiments and surveys was due to
1 of the surveys not being saved due to internet connection problems. Moreover,
among the 11 surveys collected, experiment 1, code snippet 12; and experiment 2,
code snippet 13, were not collected due to errors. Thus, when data analysis was
directly related to these code snippets or responses missing from the survey, data
were disregarded.

2https://www.eclipse.org/ide/
3https://www.obsproject.com/

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 38

Figure 3.2 shows that most participants, either already heard about code
smells (54.55%) or know what they are (36.36%). Only a few participants (9.09%)
only heard about the concept during the experiment. Figure 3.3 shows that more
than 50% of the participants have at least a bachelor’s degree in Science or
Engineering.

Figure 3.2: Participants’ familiarity with the concept of smells.

Figure 3.3: Participants’ degree.

3.3.2
RQ1: Fixation Time

The process involves a detailed analysis aimed at understanding the relation-
ship between developers’ attention (AFD) and their cognitive load (FC) while they
analyze code snippets, particularly those with potential code smells. We assume that
more time and more fixations correlate with greater difficulty or complexity.

Figure 3.4 shows the frequency of different levels of cognitive load for AFD ∗
FC in milliseconds per smell type. The code smell Data Class has the median lower
than the boxplots of the other code smells and code snippets without code smells
(None). It is also observed that the third quartile is lower than the second quartile
of the other code smells.

Notice that for Long Method, the opposite of the smell Data Class occurs,
with the median, third quartile and upper limit above the other boxplots. Both

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 39

Figure 3.4: Boxplot of AFD * FC per smell type.

interquartile ranges are also smaller when compared to the other boxplots. This
indicates that the code smell Data Class may not be as impactful as the other
code smell types, suggesting that these may be less problematic in relation to the
complexity of the code, while the smell Long Method presents greater complexity
during its analysis. The smaller interquartile range also indicates that the values
are more consistent and less variable than the other two boxplots (Feature Envy
and None) presented. This consistency may imply that both code smells are more
predictable and potentially more manageable compared to Feature Envy.

The stacked bar chart in Figure 3.5 presents the cognitive load (AFD ∗ FC)
for each code snippet. With a higher count for Data Class at the beginning of the
plot, we see that this smell type presents a lower cognitive effort when compared to
the other code smells. Whereas the Long Method smells led to a higher effort.

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 40

Figure 3.5: Stacked bar of AFD * FC per smell type.

To demonstrate our results, we used normalized qualitative data about the
perceived complexity of the code snippet by the participants and quantitative
fixation data from the eye tracker. Our results indicate that the code snippets
considered more complex by the developers required more fixations, resulting in
higher cognitive effort [48]. This is particularly evident in the case of the Long
Method smells. Additionally, we noted that the Data Class smell presents a lower
cognitive effort compared to other code smells, as reflected by lower fixation values.

Our data revealed a consensus among the participants’ explanations when
there was no code smell or when a specific type of code smell, such as the Data
Class smell, was present. This consensus is further reflected in the lower perceived
complexity for None and Data Class. For Long Method, which has higher perceived
complexity, participants’ explanations were more varied and less consistent.

3.3.3
RQ2: Most Examined Code Sections

To answer this research question, we need to understand the granularity of
the syntactic categories involved. block, class, or unit are very broad categories,
making them cover significant parts of the code concerning their scope and organi-
zational structure. On the other side, there are much more granular categories such
as name, if, decl, and call. They are related to the specific elements of the code
inside each statement like variables, conditionals operations, declarative operations,
and function calls.

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 41

One of the types of data that we can collect from the database generated using
eye tracker data is syntactic_category. This column stores an arrowed list that
presents syntactic categories and shows where in the code the fixation was performed
contextually. Thus, we identified 10 arrows lists that presented the highest AFD*FC
in minutes for all developers (Figure 3.6). From these 10 arrowed lists, we counted
all syntactic categories that are present within the arrowed lists to identify which
ones have the greatest representation.

Figure 3.6: TOP 10 arrowed list for the hightest AFD*FC (minutes) for all
developers.

Figure 3.7 shows the syntactic categories that appeared the most in the 10
arrowed lists with high AFD*FC. We observe that developers pay fair attention to
both, i.e., the general and the specific categories of the code while inspecting code
snippets. The categories that are more general, like block, class, and unit, are the
first three; they allow one focusing on understanding the architectural organization
and program layout. Surprisingly, the granular category name comes in with an
equivalent count of "function" despite its low scope. This shows that developers invest
much time in understanding the names within the code. This highlight demonstrates
the importance of good and clear nomenclature even for tinier elements, for the
sake of supporting code readability and maintainability. Other categories such as
function_decl and if indicate a deeper analysis into functions and control flow
structures, likely due to their complexity and potential impact on program execution.

3.3.4
RQ3: Fixation Patterns

When analyzing Table 3.1, we noticed that there is no huge difference between
right and wrong answers regarding the identification or not of code smells.

Figure 3.8 distinguishes the stacked bar of normalized FC count for right
(purple) and wrong (blue) answers for all code snippets. It also presents a higher
count for the right answers at the lowest values of normalized FC; the wrong
answers present a distribution more centralized. This may indicate that developers
who correctly identified code smells did so with fewer fixations, possibly indicating

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 42

Figure 3.7: Count of the most frequent syntactic categories in the 10 arrowed
list of Figure 3.6.

Table 3.1: Total Count and Percentage of Right and Wrong Answers for All
Code Snippets.

Answer Type Count Percentage (%)
Right 51 43.22
Wrong 67 56.78

a greater level of knowledge and familiarity with the code smell, which can be
interpreted as a greater efficiency in the analysis process.

Increasing the granularity of the analysis, we plot boxplots for AFD * FC in
milliseconds for each group of code snippets with or without code smells. Figure
3.9 shows the bloxplots for the right answers, and Figure 3.10 shows the bloxplots
for the wrong answers for the same scale. First, comparing the medians, we notice
that the code smell Feature Envy stands out with a median with a higher value
for wrong answers, while the other boxplots do not have that much difference.
Analyzing the distribution of the data, we noticed a different tendency for Long
Method and None when compared to Feature Envy. While Long Method and None
have longer interquartile ranges and larger upper whiskers for correct answers in
relation to incorrect answers, Feature Envy has the opposite trend, having a very
narrow interquartile range and small upper and lower whiskers for correct answers
in relation to wrong answers.

Thus, for Feature Envy, developers who correctly identified the smell demon-

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 43

Figure 3.8: Stacked bar of normalized FC count for right (purple) and wrong
(blue) answers for all code snippets.

strated greater efficiency and consistency in identifying this specific type of code
smell compared to those who did not. For the Long Method smell, the results showed
that a more detailed analysis accurately identified it, which is expected since this
smell is defined by the excessive length of the code.

3.4
Discussion

The implications of the findings in the results section are significant for code
review practice and the development of software tools for code smell detection. The
recognition that Long Method smells require more cognitive resources suggests that
new developers may need targeted training to better recognize and manage these
smells. Furthermore, attention to general and specific syntactic categories in code
review indicates that tools and checklists should be designed to guide developers in
inspecting macro and micro elements of code.

Future research could explore the development of custom training modules for
identifying code smells, focusing on smells that are more cognitively demanding. The
data collected also provides information that can assist in future research focused
on individual differences between developers – such as, level of experience in code
refactoring, tools they use and length of experience – could generate more insights
into how to support developers in the review process of code.

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 44

Figure 3.9: Boxplot of AFD * FC by smell type for right answers.

Figure 3.10: Boxplot of AFD * FC by smell type for wrong answers.

3.5
Threats to Validity

Another threat to the validity of the study is the duration of the experiment.
The participants needed to remain in their position so that the data captured by the
eye tracker was reliable, but they had the freedom to make natural movements to look
at the screen. With a duration of up to 1 hour and 30 minutes, some participants may
no longer be as comfortable as they were at the beginning, which could compromise
the data collected due to loss of eye tracker calibration. It was also observed that
some participants were more restless than others, which could also affect the data
collected.

As external threats to the validity, we have the number of participants who
carry out the study and the selection of short code snippets. The number of
participants may be limited due to the fact that the study is carried out in a
specific location, requiring participants to travel to the location, which may not
be feasible for all potential interested participants. Furthermore, the duration of the

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 45

study, which can vary from 30 minutes to 1 hour and 30 minutes, and the number
of code smells to be analyzed, asking participants for detailed explanations about
their analysis, may deter some participants, potentially impacting the diversity of
the sample. The choice of Java as the language for the study, despite its current
lower popularity, was a deliberate decision, but it may also limit the generalization
of the results to other more current programming languages. The use of smaller
code snippets was necessary to maintain a reasonable duration of the experiment,
considering that the evaluation of all three code smells, and their four severities
already takes a significant amount of time. Expanding to larger code snippets could
make the experiment impractical in terms of duration and inaccurate data.

We chose to work only with metrics related to fixations, however other metrics
such as pupil diameter and eye blinks can also provide valuable data for analyzing
cognitive effort. The choice not to use these metrics was because it might be
influenced by external factors, such as ambient lighting and emotional states, making
its interpretation more complex and less accurate. In future work, we aim to explore
more deep these metrics, as they could provide additional insights into the cognitive
effort of developers during code analysis. Moreover, we also plan to conduct a more
in-depth examination of the qualitative data collected during the study with a larger
number of participants to further develop our conclusions.

3.6
Conclusion

This study explores the physiological responses of developers when analyzing
code snippets with and without the presence of code smells. By analyzing eye
tracker data, we identified specific categories of developer focus and their responses
during code smell analysis. The implications of the findings are significant for code
review practice and the development of software tools for code smell detection.
The recognition that Long Method smells require more cognitive resources suggests
that new developers may need targeted training to better recognize and manage
these smells. Also, attention to general and specific syntactic categories in code
review indicates that tools and checklists should be designed to guide developers in
inspecting macro and micro elements of code.

Overall, our findings contribute to the broader field of human-computer inter-
action by demonstrating the value of eye-tracker data in understanding developers’
cognitive processes imposed by code smells. Participants highlighted the utility of
specific features such as fixation duration, which was a key metric in our analy-
sis. Additionally, participants mentioned saccade length, pupil dilation, and gaze
location. Participants also offered rationales for their perceptions, suggesting that
these additional metrics could provide a more comprehensive view of their cognitive
processes and difficulties encountered during code analysis.

The results obtained so far are promising and suggest that the continuation of
this research, whether by better exploring the data and responses from developers

Chapter 3. Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis 46

who participated in the experiment, can offer valuable contributions to the area of
Software Engineering. Future research could explore the development of custom
training modules for identifying code smells, focusing on smells that are more
cognitively demanding. The data collected also provides information that can assist
in future research focused on individual differences between developers – such as,
level of experience in code refactoring, tools they use and length of experience – to
generate more insights into how to support developers in the code review process.

3.7
Summary

In this chapter, we investigated how code smells impact developers’ cognitive
effort and reading behavior using eye-tracking technology. Cognitive effort were
analyzed using eye-tracking metrics (AFD and FC), which indicate the level of
attention and cognitive load required to process specific code elements. Reading
behaviors were explored by identifying AOIs, revealing which syntactic elements
of the code demanded the most attention. Our findings indicate that code smells
such as Long Method and Feature Envy impose a significantly higher cognitive load
than Data Class. This reinforces the initial hypothesis that more complex structural
issues require additional cognitive resources, which in turn may explain why recent
studies have found that refactoring Long method and Feature envy smells is much
more common across projects [1, 43, 44, 45]. We also investigated which syntactic
categories developers tend to focus on when code smells are present. Our findings
indicate that they spend a significant amount of time understanding the names
used in the code. This observation highlights the importance of clear and effective
naming, especially for functions and control flow structures, given their complexity
and potential impact on program execution.

The study presented in this chapter has some limitations. While the sample
size is representative, it could be expanded to improve the generalizability of the
findings, and statistical results were not presented to further support the outcomes.
Additionally, we did not analyze the developers’ responses collected during the
experiment. Furthermore, only fixation metrics were considered in this study, leaving
out other potentially valuable metrics such as pupil diameter and eye blinks. In the
next chapter, to address part of these limitations, we expand the dataset by including
more responses by developers and introducing new research questions to explore
developers’ explanations and their cognitive effort. This complementary study also
aims to deepen our understanding of the findings presented in this chapter and
explore the mental models and reading patterns developers exhibit when analyzing
code snippets with or without smells.

4
Reading between the Smells: Eye-Tracking Developer Re-
sponses to Code Smells

Understanding developers’ perceptions and cognitive processes when analyz-
ing smelly code is essential for improving code comprehension and maintenance
practices. While quantitative studies provide valuable insights into cognitive effort
through eye-tracking metrics, they often lack an in-depth exploration of developers’
thinking reasoning processes. To address this limitation, it is crucial to combine
quantitative and qualitative data, enabling a more comprehensive understanding of
how developers perceive and interpret code snippets with or without code smells.

In the previous chapter, we conducted an initial investigation into the cognitive
effort imposed by three common code smells – Long Method, Feature Envy, and
Data Class – by analyzing developers’ eye-tracking data. The results demonstrated
that different code smells demand varying levels of cognitive resources, with Long
Method and Feature Envy imposing higher cognitive loads compared to Data Class.
However, the previous study primarily focused on quantitative eye-tracking metrics,
such as fixation duration and areas of interest (AOIs), without exploring developers’
qualitative reasoning and perceptions about code smells.

To address this limitation, this chapter presents a study submited to the
Transactions on Software Engineering and Methodology (TOSEM) to explore both
quantitative eye-tracking data and qualitative responses from developers, offering a
more holistic understanding of the cognitive and perceptual challenges posed by code
smells. Thus, we aim to explore how developers perceive and classify code smells
based on their self-reported comprehension difficulty, cognitive load, and reading
strategies. By combining these approaches, we provide deeper insights into how
different types of code smells influence developers’ cognitive processes and decision-
making.

In summary, this chapter expands upon the previous findings in Chapter 3 by
introducing several key improvements: (i) a larger dataset, allowing for a broader
and more generalizable analysis of developers’ interactions with code smells; (ii) new
research questions, focusing on developers’ mental models and reading behaviors, to
better capture the nuances of comprehension strategies; and (iii) a mixed-methods
approach, which triangulates quantitative and qualitative data to gain richer insights
into the impact of code smells.

While Section 4.2 contain some overlapping foundational content with Chapter
3, it is recommended to read these sections in full for the best understanding of

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 48

this study. They contain improvements, including expanded literature coverage,
enhanced methodological details for eye-tracking analysis, and new contextual
elements from our qualitative coding framework.

Our results confirm and extend the observations from the previous study,
revealing intricate relationships between eye-tracking metrics and developers’ quali-
tative responses. The findings emphasize that the interplay between visual attention
and self-reported comprehension difficulty provides valuable information for improv-
ing code quality tools and comprehension strategies. These findings contribute di-
rectly to addressing the research problem outlined in Section 1.1, particularly in
relation to understanding how cognitive effort and reading behavior are influenced
by different types of code smells.

4.1
Introduction

Code smells, often described as symptoms of poor design or implementation
choices, are known to hinder program comprehension and degrade code quality, ulti-
mately impacting software maintainability, software evolution and productivity [2].
In particular, complex and error-prone code segments with smells such as Long
Method, with excessive lines of code and multiple responsibilities, or Feature Envy,
with methods that show more interest in other classes than their own, may tend to
demand more cognitive effort from developers [53], making it challenging to interpret
and modify code effectively.

Although extensive research has been conducted on identifying code smells
and understanding their influence on software quality, empirical investigation is still
needed into how these smells affect developers’ cognitive and behavioral patterns
during code comprehension tasks. Despite advances in detection techniques and
classification systems [54], there are still gaps in understanding the real-time cogni-
tive impacts these smells impose on developers. We lack comprehensive knowledge
about how different categories of smells might affect different aspects of program
comprehension, such as mental models or reading patterns. The relationship between
specific code smell types and their effects on cognitive load, developer attention, and
comprehension efficiency remains largely unexplored.

To explore this gap, this study investigates how the presence of code smells
impacts developers’ perception of comprehension difficulty through qualitative anal-
ysis of free-form developer responses and quantitative analysis of cognitive load and
reading behaviors data by leveraging eye-tracking technology. Eye tracking offers
unique advantages in software engineering research by providing real-time insights
into developers’ cognitive processes that would remain hidden with traditional meth-
ods alone. Unlike self-reported measures, which can be subject to recall bias, eye
tracking reveals unconscious attention patterns and mental effort expended when
encountering different code structures [32]. With the eye tracker, we performed a
detailed analysis of eye movements, fixation patterns, and visual attention alloca-

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 49

tion, providing valuable data on the cognitive processes involved in code review
tasks [32]. In addition, we conducted a Grounded Theory analysis of developers’
free-form explanations through open and axial coding [4], identifying 14 distinct
categories of comprehension challenges. Through the analysis of both quantitative
eye tracking data and qualitative responses, we aim to capture how developers re-
spond to code with and without smells, and different types of smells, highlighting
the aspects of code that demand greater focus or induce cognitive strain. By an-
alyzing the free-form developer responses about the comprehension challenges and
metrics such as fixation count (FC) and average fixation duration (AFD), we provide
a nuanced understanding of the mental models and reading patterns that developers
form when confronted with smelly code.

The goal of this study is to provide a deeper understanding of how developers
perceive, engage in cognitive effort, and mentally process code with varying levels
of ’smelliness’ through mental models and reading patterns. To the best of our
knowledge, this is the first study to systematically investigate different types of
code smells and their unique effects on comprehension, supported by eye-tracking
technology.

We provide significant empirical contributions regarding the cognitive and
behavioral effects of three specific types of code smells - Long Method, Feature
Envy, and Data Class - on developers’ code comprehension. Specifically, we demon-
strate that Long Method and Feature Envy substantially increase cognitive load and
are frequently associated with developers’ self-reported comprehension difficulties,
particularly those related to code length, logical complexity, and confusing nam-
ing conventions. Conversely, Data Class exhibits a comparatively lower cognitive
burden. By leveraging eye-tracking technology, we identify predominant bottom-up
mental models, as well as top-to-bottom and skimming reading patterns, revealing
specific strategies developers adopt when analyzing smelly code. These results offer
actionable insights to improve tool support and refactoring practices, particularly
benefiting novice developers.

4.2
Study Design

We build this study upon on our previous research [53]. The experiment was
carried out with 27 participants, significantly expanding the previous study’s sample
size and allowing us to address new research questions. To structure our research,
we applied the Goal-Question-Metrics (GQM) approach [55] as follows:

– Goal. Our goal is to analyze Java code snippets containing code smells for the
purpose of understanding how they affect developers’ behavior; with respect to
comprehension difficulty, cognitive effort, and reading patterns; in the context
of code review tasks performed by developers.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 50

– Question. How do different types of code smell impact developers’ visual
engagement and code comprehension?

– Metrics. We collected both qualitative and quantitative metrics. Qualitative
metrics were gathered through surveys, capturing developers’ self-reported
perceptions regarding code comprehension difficulty, code functionality un-
derstanding, and identification of code smells with their reasoning. Quantita-
tive metrics were obtained via eye-tracking, focusing on fixation-based data
such as Fixation Count (FC) and Average Fixation Duration (AFD). These
quantitative metrics were used to analyze cognitive load, mental models, and
reading patterns employed by developers. A description with more detail of
these metrics is detailed in Section 4.2.8.

4.2.1
Research Questions

To structure our investigation, we formulate three research questions (RQs)
based on the Goal-Question-Metrics framework presented earlier:

RQ1: How does the presence of code smells affect developers’ perception of
code comprehension difficulty?

Code smells, like overly large classes, can vary in both presence (whether they
exist in a given code snippet) and severity (the degree to which they affect code
quality). By examining developers’ perceptions of difficulty in understanding code
with different types of smells, this question aims to reveal whether and to what
extent these smells make code harder to understand, which could ultimately affect
productivity, code quality, and maintainability.

RQ2: Does the presence of code smells influence the cognitive effort required
for developers to analyze code snippets?

To investigate the cognitive effort that code smells impose on developers, we
analyze average fixation duration (AFD) and fixation count (FC) as key metrics.
AFD reveals how long developers focus on specific elements within the code, while
FC indicates the frequency of visual attention shifts. By examining variations in
these metrics in response to different types of code smells, we aim to determine
whether certain smells intensify the cognitive load on developers. It enables us to
identify particular coding patterns that make code review more mentally demanding.

RQ3: How does the presence of code smells influence developers’ reading
behavior when analyzing code snippets?

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 51

This question investigates whether developers’ reading patterns – such as
their eye movements, focus points, and scanning order – are affected by the presence
of code smells. Inspired by the work developed by Abid et al. [56], we identify the
mental models and reading patterns of developers who classified code snippets with
and without code smells. By analyzing reading patterns, such as the time spent on
certain lines, areas of the code that receive the most attention, and the frequency
of backtracking, we can understand how code smells impact the natural flow of
code review. Uncovering these behavioral patterns can reveal whether certain smells
cause developers to revisit code sections, or spend extra time in (or out) the scope
of the code snippets to interpret complex areas.

To address these research questions, we designed the experiment to systemati-
cally capture both qualitative and quantitative data, and divided our study method-
ology into seven steps, which are described in the following sections.

4.2.2
Preparation of the Experiment

Our experiment followed all required ethical guidelines and was submit-
ted to the research ethics committee (CEP) through the Brazil Platform un-
der the Certificate of Presentation for Ethical Consideration (CAAE) number
74286223.4.0000.5235. The personal data of the participants, including names and
images, were kept strictly confidential, and all participants were required to sign a
"Free and Informed Consent Form" (TCLE).

The experiment was conducted in an isolated room at PUC-Rio to minimize
distractions, with clear instructions and proper eye tracker calibration provided
to all participants beforehand. Each session lasted approximately 1 hour, with
variations depending on participants’ experience and familiarity with the task. To
accommodate this, participants were encouraged to proceed at their own pace,
ensuring comfort and focus. This approach minimized the impact of session duration
variability on data quality. Clear instructions were provided to all participants, and
the eye tracker was carefully calibrated before the analysis to ensure consistent data
capture.

Moreover, information was provided before the experiment for developers to
familiarize themselves with the materials (eye tracker, keyboard, mouse and IDE
where the developers analyzed the code snippets). We emphasize to the participant
that everyone has their own way of approaching and solving coding problems. The
interest lies in observing their distinct perspectives, and they should not concern
themselves with the correctness of their answers or the time taken to analyze each
code file, which further mitigated performance pressure.

Participants also had a brief introductory discussion with the researchers about
the study. This discussion was designed to reduce participant anxiety and ensure a
neutral emotional state, thereby minimizing potential biases. This preparatory step

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 52

was crucial to minimize any external influences on the data collected through the
eye tracker.

4.2.3
Selection of a State-of-the-Art Dataset

We carefully chose the MLCQ (Madeyski Lewowski Code Quest) dataset for
the experiment, which was manually labeled by 26 professional developers from the
software industry [10]. This dataset provides 4,770 code samples from 792 open-
source and industry-relevant projects, totaling 14,739 reviews. The programming
language of the dataset is Java, which was chosen because of its extensive popu-
larity [57] and widespread use for the development of code smells datasets [58]. All
these dataset characteristics increase the practical applicability of the findings. The
dataset also offers detailed background information about the reviewers, allowing a
deeper analysis of their skills and experience.

The dataset contains four labeled code smells: Feature Envy and Long Method
at the method level; and Blob and Data Class at the class level. They labeled
code smells according to four severity degrees based on their knowledge and
experience [10]:

– Critical: indicates a code smell that can have a severe impact on maintain-
ability and readability.

– Major : indicates a code smell that can have a high impact on maintainability
and readability.

– Minor : indicates a code smell that can slightly impact maintainability and
readability.

– None: indicates no presence of the smell in the code snippet.

We must emphasize that the developers were free to label the severity of
the code smells on this four-level scale without any specific training or imposed
thresholds, leaving the interpretation up to the individual developers based on their
professional experience and judgment.

We selected the MLCQ dataset because of its unique manual labeling process,
conducted by experienced industry developers, which stands in contrast to other
datasets that rely on automated labeling techniques [16, 28, 46, 59]. The smells
in the MLCQ dataset represent distinct types of design issues that could engage
participants in different ways, providing valuable insights into their comprehension
processes. Additionally, MLCQ provides a distinct advantage over other manually
labeled datasets by including severity labels for code smells as well as detailed
background information about the reviewers. This context allows for a more nuanced
analysis of code quality issues, informed by the professional expertise and severity
assessments provided by the dataset. For a comprehensive description of the dataset’s
development process, the reader should refer to [10]. The dataset is publicly
accessible at https://zenodo.org/records/3666840.

https://zenodo.org/records/3666840

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 53

4.2.4
Selection of the Code Snippets

We selected a total of 13 code snippets for this study. To familiarize partici-
pants with the presentation format, one of these code snippets was used as a warm-
up exercise, while the remaining 12 snippets were used for data collection. These 12
snippets were carefully chosen to represent three specific types of code smells (Long
Method, Feature Envy and Data class). These three types of smells (out of the four)
were chosen due to the following combination of theoretical rationale and practical
considerations:

1. (1) Long Method: Addresses issues of code length and complexity, requiring
developers to navigate and understand larger code blocks;

2. (2) Feature Envy: Involves inter-class dependencies, highlighting challenges
related to the lack of cohesion and complex class interactions;

3. (3) Data Class: Relates to data encapsulation, focusing on artificial simplicity
and the absence of data-related behavior in the same class.

The diversity of the selected smells allowed us to study a broad spectrum of
cognitive and behavioral responses, enriching the insights derived from the analysis.
Initially, we considered including a fourth code smell category, Blob, but removed
it to avoid overwhelming participants with a total of 16 snippets, as our pilot study
(Section 4.2.5) highlighted potential fatigue and undesirably exceeded the limits of
time constraints.

For each smell types analyzed, we included one snippet from each severity
level: None, Minor, Major, and Critical; with the None category representing “clean”
code. Thus, our study included 3 clean code (None) and 9 snippets contained code
smells. This study design allowed us to analyze differences in cognitive and behavioral
responses.

To ensure the quality and relevance of the selected code snippets, we applied
specific inclusion and exclusion criteria based on the MLCQ dataset’s reviewer back-
grounds. For the inclusion criteria (IC), we selected code snippets labeled by review-
ers who met the following qualifications: (IC1) Professional experience in software
development of more than 3 years; (IC2) Professional experience in the software in-
dustry of more than 3 years; (IC3) Familiarity with the Java language. These criteria
ensured that the selected snippets were diverse and evaluated by professionals with
substantial expertise in software development and Java programming, increasing the
reliability of the manual labels associated with each snippet and the relevance of the
data collected for our study.

Additionally, we applied the following exclusion criteria (EC) to refine the
selection of code snippets: (EC1) Exclusion of developers who did not respond to
any questions related to their background; (EC2) Exclusion of code snippets longer

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 54

than 44 lines. Although the iTrace Eclipse Plugin allows developers to scroll through
the full file within the IDE, we opted to limit the length of the snippets to balance
readability and workload: (1) to improve readability on standard screen resolutions,
minimizing the need for frequent scrolling while still allowing participants to view the
complete code file as needed; and (2) to reduce participant fatigue, as longer snippets
extended analysis time and compromised data quality. These considerations were
confirmed during a pilot study, where participants spent over two hours to complete
the task set when reviewing longer snippets. This finding guided our decision to limit
the code snippet length to ensure a balance between data quality and participant
workload.

Before beginning the experiment, two researchers - a Ph.D. and a master’s
student - independently reviewed the selected snippets for clarity and relevance,
resolving disagreements with a third reviewer. This diverse review team ensured
that each snippet was suitable for data collection while benefiting from different
levels of academic and practical expertise.

4.2.5
Conducting the Pilot Study

We designed a survey to collect developers’ background information and
their perceptions while reviewing a code snippet. We piloted this survey with two
practitioners to estimate its length and clarity. The pilot study was carried out based
on the guidelines provided by Sharafi et al. [32]: (i) we ensured that the eye tracker
and room were set up correctly; (ii) we verified that the recording process properly
acquired and saved data to disk; (iii) we checked the quality of the recorded data to
ensure that the lighting conditions were appropriate for capturing eye movements;
(vi) we observed how the participant reacted to the setup and tasks; (v) we recorded
the time taken by the participant to complete the study; and (vi) we analyzed the
data to evaluate the results and prevent any data loss.

The first participant took 90 minutes to analyze 16 code snippets and noted
fatigue, discomfort with the chair, and errors found in the forms to be filled out.
This feedback led to minor adjustments. Due to the extensive duration of the pilot,
we decided to focus on 3 code smells and select 13 code snippets. As a result, the
duration of the second pilot was reduced to 60 minutes, including the time allocated
for completing a questionnaire on the researcher’s background, which was conducted
after the code snippet analysis.

4.2.6
Call for Participants

We selected participants under two constraints: (i) they must have contact
with Java or other similar syntax programming language, and (ii) they must have
been in contact with the topic of code smells. With these minimum requirements,

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 55

we seek to ensure that the participants could achieve a minimum understanding
of the code snippet. They would also have a comprehension of the importance of
software quality assurance practices. Recruitment spanned universities, companies,
and a snowballing strategy [47], where participants referred qualified peers from their
professional networks. We use the snowballing strategy [47], asking each participant
to refer our survey to colleagues with similar experiences and interest in joining.
The final sample included developers with programming experience ranging from a
few months to over a decade. Detailed participant data, including demographics and
experience, is provided in the supplementary material [9].

4.2.7
Execution of the Experiment

The survey was carried out via Google Forms, containing both multiple-
choice and free-text questions. It begins by outlining the survey’s purpose and
research goals, emphasizing the confidentiality of participants’ responses. The survey
is divided into three phases. The first phase presents the types of code smells and
the corresponding definitions. The second phase involves analyzing the code snippets
using the eye tracker. In the third phase, participants are asked about their feelings
during and after the analysis and their perceptions regarding the use of biosensors.
Additionally, to better understand their background, participants’ knowledge of the
software engineering area is collected. The data collected in the third phase are little
explored in this study and can be explored in future researches. The survey and all
collected data are available in our supplementary material [9]. We detail each of the
three phases as follows.

4.2.7.1
First Phase: Introduction to Code Smells

In the first phase, the developer is introduced to the concept of code smell and
seven types of code smells, namely Long Method, Data Class, Duplicate Code, Data
Clumps, Feature Envy, Refused Bequest, and Message Chains. We include a wider
variety of code smells to ensure no bias in the responses. Thus, the participants could
also look for these smells in the code snippets of the experiment. These measures
were also adopted to establish a knowledge base, as many are aware of code smells
but do not know how to name them correctly. Thus, we ensured that all participants
had the same view of what is considered to be each smell type.

4.2.7.2
Second Phase: Analysis of Code Snippets

In this phase, the developers performed the analysis of the code snippets. The
first code snippet was an example so that the participant could clarify any doubts
with the researcher. In subsequent sections, was carried out the analysis without any

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 56

interference, aiming for ensuring the experimental integrity of the data. We presented
the code snippets in the same order for all participants. To mitigate the risk of
potential order effects, such as increased learning or mental fatigue, we diversified
the types of code smells and their severities, throughout the experiment. We also
added attention-check questions throughout the experiment to ensure participants
remained engaged and attentive during the experiment. Consistent response patterns
across metrics, such as time taken and fixation values, indicated that neither learning
effects nor mental fatigue significantly influenced the results.

During the analysis of each code snippet, participants were asked to (i)
describe how the code snippet works, (ii) whether it was difficult or not to
understand and explain why, (iii) if it has any code smell and, if so (one or more),
what is its severity and why this severity was chosen, and, lastly, (iv) how the
participant felt (1 for very uncomfortable to 5 for very comfortable) when analyzing
the code snippet.

4.2.7.3
Third Phase: Collecting Participant Background Data

In the third phase, the participant responded to a subset of questions derived
from the original MLCQ article [10]. We explored aspects such as the duration
of their programming career, their experience with software development, the
programming languages they are familiar with, and their knowledge of the concept of
code smells, among others. This data is intended to allow future research to establish
a link between both studies. The background information was collected at the end
of the experiment, rather than at the beginning, to avoid any impact of participant
fatigue on the eye-tracking data. Collecting background data at the end ensured
that participants could perform the main experimental tasks without prior cognitive
fatigue, thus preserving the reliability of physiological measures. Additionally, we
ask participants’ opinions on the utility of the data gathered by the eye tracker in
understanding their assessments.

4.2.8
Data Analysis

The data analysis for this study combines quantitative and qualitative ap-
proaches to address each of the RQs established in Section 4.2.1. The developers’
responses, gathered through a structured Google Form (see Section 4.2.7.2), provide
valuable qualitative insights into their subjective experiences and perceived com-
prehension difficulties when analyzing code snippets. This information is crucial for
answering RQ1, as it captures developers’ impressions of code complexity and dif-
ficulty, especially concern the presence of code smells. Additionally, objective data
collected through an eye tracker – such as fixation duration, fixation count, and
scan paths – enables us to address RQ2 and RQ3, focusing on the cognitive and be-

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 57

havioral aspects of code review. For these questions, we use the statistical analysis
techniques that will be present in detail in each research question.

It is important to note that developers could classify code snippets with any
code smell type (Section 4.2.7.1), including those beyond the three main types we
focused on (Long Method, Feature Envy, and Data Class). Consequently, when a
participant identified a code smell that did not fall within the types we focused on, we
categorized it under "Others" for data analysis purposes. This categorization allowed
us to maintain a clear focus on our primary set of smell types while acknowledging
additional code smells that developers perceived as present and impactful. In the
remaining of this section, we outline our methodology for analyzing both qualitative
and quantitative data, systematically detailing the steps taken to address each
research question.

4.2.8.1
Qualitative Coding of Developer Responses

To address RQ1, which investigates the relationship between developers’
perceived difficulty in code comprehension and the presence of code smells, we
conducted a qualitative coding analysis of developers’ open-ended responses. We
analyze the answer to how the code snippet works, whether and why it was difficult
or not to understand, and whether there is a code smell.

We employed a qualitative coding process guided by principles of the Grounded
Theory approach, specifically following the processes of open and axial coding [4].
While our analysis was inspired by Grounded Theory, we did not implement the full
methodology, such as theoretical sampling or the iterative development of theory.
Instead, we applied key Grounded Theory techniques, such as thematically coding
open-ended responses, categorizing participants’ explanations for comprehension
difficulty, and analyzing the frequency of these factors in relation to specific code
smells. Three experienced Java developers contributed to the open coding phase.

Specifically, to analyze the level of understanding of each participant based
on their responses to the following question: Please, describe how the code snippet
works, we identified four fine-grained categories of understanding levels of the
code’s functionality, ranging from no understanding to full comprehension. Table 4.1
summarizes the four levels. Concerning the question: Why was it difficult or not to
understand?, we identified 14 categories based on participants’ responses. Table 4.2
summarizes these categories, including their descriptions and quote samples.

After completing the open coding, we progressed to axial coding. Axial coding
helped us on establishing relationships between the codes, allowing us to form an
integrated structure of categories and subcategories that reflect the key factors
influencing code comprehension. This iterative coding process allowed us to identify
recurring themes in developers’ responses, highlighting patterns in how code smells
impact comprehension difficulty and providing insights into the specific aspects of
code that developers find challenging.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 58

Table 4.1: Levels of Understanding of Code Functionality
Level of Understanding Description
No Understanding The individual did not demonstrate understanding of

the basic functions of the code, its syntax, or logic,
or stated that they did not understand it.

Basic The individual understands the basic function of the
code, its objective, and what it does at a high level,
but does not describe how this is implemented.

Intermediate The individual described what the functions or meth-
ods do, demonstrating knowledge of the basic flow of
execution (loops, conditionals) but did not describe
the code in detail for more complex scenarios.

Full The individual describes the functionality of the
code in depth, including aspects of performance,
optimization, and maintainability.

Table 4.2: Categories and Quote Samples for Difficulty in Understanding
Category Description Quote Sample
Application Domain
Knowledge

Mentions the necessary understanding
of the domain or specific area in which
the software is being developed.

[...] code is difficult to understand, es-
pecially with little knowledge of the
application domain. [...]

Class or Method Cohe-
sion and Responsibility

Mentions when a class or method is
doing too many things at once or when
a responsibility is poorly distributed.

[...] since it has more functionality than
just writing content to a file.

Code Length Mentions about the size of the method
or class.

code is extremely verbose [...]

Coding Style Inconsis-
tency

Refers to inconsistencies in coding
style, such as different conventions or
patterns within the same code seg-
ment.

[...] lines are squished together without
following standard indentation [...]

Complex Control
Structure

Mentions comments on control struc-
tures (if-else, switches, loops, etc.) that
are difficult to follow.

[...] has multiple specific conditions

Confusing Names Mentions confusing names or those
that do not follow clear conventions,
such as variable, method, or bad class
names.

variables are poorly named

Use of Encapsulation Comments on the use of encapsulation,
making it difficult to understand the
behavior of the code.

contains too much encapsulation [...]

Complex Dependencies
and Inter-class Interac-
tions

Difficulty understanding dependencies
or relationships between classes, and
chain of calls.

[...] the use of so many methods that
are not part of the class left me con-
fused.

Excessive Variables or
Parameters

Mentions code with "too many vari-
ables" or "excessive parameters", indi-
cating that the code is overloaded.

The ’filename’ variable requires several
things to be initialized [...]

Lack or Absence of Ad-
equate Comments

Mentions the absence of comments or
comments that are confusing or out-
dated.

[...] the comments were not very en-
lightening

Language Syntax Mentions a lack of knowledge about
the more complex rules and structures
of the language.

lack of experience with the language
and unfamiliarity with methods used
makes me a bit confused

Logical Complexity Mentions related to internal logic be-
ing difficult to follow or understand,
such as the presence of multiple nested
loops, complex conditionals, or code
branching.

[...] following a more complex path
than necessary for writing to a file

Use of Polymorphism Comments on the use of polymor-
phism, making it difficult to under-
stand the behavior of the code.

Java syntax allows methods with the
same name but different signatures

Use of Recursion Comments on the use of recursion,
making it difficult to understand the
behavior of the code.

[...] potential infinite recursion [...]

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 59

4.2.8.2
Cognitive Effort

To answer RQ2, which investigates developers’ cognitive effort while analyzing
code snippets with and without code smells, we analyzed two primary metrics:
Average Fixation Duration (AFD) and Fixation Count (FC) [32]. By multiplying
these metrics (AFD * FC), we derived an estimate of cognitive load, which reflects
the level of mental effort developers expend while reviewing code.

To ensure the accuracy of our cognitive load data, we conducted a thorough
preprocessing and outlier treatment on all fixation and AFD * FC data points.
Guided by Songwon Seo’s flowchart for outlier detection [60], we first assessed the
asymmetry of the fixation data distribution by applying the medcouple skewness
statistic, which identifies potential skewness and the need for adjusted thresholds.
Following this, we used an adjusted boxplot to detect and mark outliers, a method
that allows for refined thresholds based on the skewness level identified. Once this
initial analysis was complete, we applied the same outlier detection procedure to the
combined AFD * FC data, refining the measurement of cognitive load. Finally, all
identified outliers were winsorized [61], a method that replaces extreme values with
a set threshold to reduce the influence of anomalous data points without distorting
the dataset’s overall structure. This approach allowed us to identify which code
snippets classified as code smells imposed a higher cognitive load on developers,
offering insights into specific code characteristics that demand greater mental effort.

We conducted statistical analyses to compare cognitive load between code
snippets with and without code smells. First, we applied Levene’s test to assess
variance equality between groups. Based on these results, we employed the Mann-
Whitney U test to analyze differences in cognitive metrics between snippets with and
without smells. Additionally, we conducted ANOVA to examine differences across
all code smell types and clean code. When ANOVA indicated significant differences,
we performed Tukey’s HSD post-hoc test to identify which specific pairs of smell
types exhibited meaningful differences in cognitive load.

4.2.8.3
Mental Models and Reading Patterns

To answer RQ3, we were inspired by the framework proposed by Abid et
al. [56], which explores the mental models and reading patterns developers use during
program comprehension tasks. This approach allowed us to analyze how developers
process and interpret code.

For examining mental models, we analyzed developers’ gaze movements across
chunks. Chunks are defined as continuous segments of code representing a cohesive
unit or functionality within a method or function. These chunks are normally at most
10 LOC and allow us to segment developers’ reading behavior, providing insights into
how they navigate through different parts of the code and identify key areas of focus.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 60

Each chunk was manually defined to ensure it represented a logical block of code,
facilitating the analysis of developers’ transitions between different code sections.
An illustration of these chunks can be found in our supplementary material [9].

We focused on two mental models for program comprehension: the top-down
and bottom-up models [62]. Given that our study involved code snippets embedded
within larger Java files, we categorized gaze patterns based on whether they occurred
inside or outside the code snippet. This distinction created four categories of mental
model interactions:

– Top-Down Inside. Movements between chunks within the target code snippet,
indicative of an exploratory reading strategy.

– Bottom-Up Inside. Fixations within the same chunk of the target code snippet,
reflecting a detailed and focused reading approach.

– Top-Down Outside. Movements to areas outside the target code snippet,
potentially to gather additional contextual information.

– Bottom-Up Outside. Fixations outside the target code snippet, indicating an
examination of related code sections.

It is important to highlight that the framework proposed by Abid et al. [56]
provides a simplified method for associating reading patterns with cognitive models,
distinguishing between top-down and bottom-up approaches. However, this model
does not capture the full complexity of cognitive processes during program compre-
hension. For instance, while chunk-to-chunk transitions are classified as top-down
behaviors, they may also reflect exploratory navigation rather than hypothesis test-
ing. Similarly, within-chunk fixation patterns do not necessarily indicate a sequential
and detailed bottom-up examination. These limitations shows the exploratory nature
of this framework in our study and emphasize the need for caution when interpreting
the results.

For examining reading patterns, we adopt three approaches [63]:

– Top-to-Bottom vs. Bottom-to-Top. Reflects the directionality of reading. Top-
to-bottom reading flows naturally from the beginning to the end of the code,
line by line. Bottom-to-top reading, moves in reverse, as the developer reads
upwards through the code lines.

– Skimming vs. Thorough. Indicates reading depth. Skimming is a quick scan,
where the developer briefly glances over lines, focusing selectively on certain
cues or sections. Thorough reading involves careful inspection of each line
within a segment. We used a 1,000ms fixation threshold: fixations shorter than
1,000ms indicate skimming, while longer fixations suggest thorough reading.

– Disorderly vs. Sectionally. Reflects reading organization. Disorderly reading is
marked by non-linear jumps across code sections, suggesting a less structured
approach. Sectionally reading involves systematically inspecting contiguous

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 61

blocks of code. For this study, sections were defined as groups of three
consecutive lines.

To address RQ3, we applied the same data processing and cleaning approach
used for RQ2. This included steps for identifying and handling outliers, normalizing
data points, and ensuring data reliability. Thus, it facilitated meaningful comparisons
between cognitive effort and reading patterns across different code snippets.

4.2.9
Data Collection and Availability

To collect data from participants, the Tobii TX300 [52] eye tracker was used
along with iTrace-core software [6]. In addition, we use Eclipse IDE1 to present the
code snippet with iTrace Eclipse plugin [6]. We also used the iTrace ToolKit [42],
a complementary tool to process raw data. This toolkit was crucial in creating a
database and calculating fixations2. Google Forms was used to collect responses
from developers who participated in the experiment and information about their
background. All files we used for the elaboration of the study and to display the
graphics and data tables present in this paper can be accessed at our GitHub
repository [9].

4.3
Results

The dataset reveals a heterogeneous sample that ranges from individuals with
secondary-level education to those holding doctoral degrees, and from novices with
minimal coding experience to professionals boasting over two decades of expertise
in roles such as junior developer, software engineer and project manager. Also,
while most participants demonstrate familiarity with code review practices and with
associated tools (including SonarQube, PyLint, ESLint, and various static analysis
software) used to identify code smells, only a minority consistently engage in formal,
systematic code review processes.

In this section, we discuss the results of the research questions, focusing on how
the presence of code smells influence developers’ comprehension difficulty, cognitive
effort, and reading behavior.

4.3.1
Impact of Code Smells on Developers’ Perceived Comprehension Difficulty

To answer RQ1, we characterized: (i) the levels of understanding of code
functionality (see Table 4.1); and (ii) the reasons described by developers why the
code snippet was difficult or not to understand (see Table 4.2). Table 4.3 summarizes

1https://www.eclipse.org/ide/
2We used the I-VT algorithm [42], recommended for eye trackers with a refresh rate

higher than 200Hz aligning with our equipment.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 62

the analysis performed on developers’ perceptions of difficulty in understanding code
with different types of smells. The 1st column lists each code comprehension difficulty
category according to Table 4.2. The 2nd column shows the total number of times
each difficulty category was mentioned by participants, regardless of the number
of code smells identified. The 3rd to 7th columns represent mentions of specific
code smells, Data Class (DC), Long Method (LM), Feature Envy (FE), as well as
Others and None. The 8th column aggregates only the mentions of specific code
smells (DC+LM+FE), excluding None and Others. Finally, the 9th column gives the
total number of mentions, including all categories (smells and non-smells). A single
response could include multiple mentions of different code smells, which explains
why the total in the 9th column may differ from the value in the 2nd column.

Table 4.3: Distribution of Code Smells grouped by Comprehension Difficulty
Categories and Self-admitted Difficulty

Self-admitted Difficulty (Yes)

Category #cited DC LM FE Others None
Total

Smells
Only

Total
All

Application Domain Knowledge 2 1 0 0 0 1 1 2
Class or Method Cohesion and Responsibility 9 2 5 2 3 2 9 14
Code Length 17 0 15 5 0 1 20 21
Coding Style Inconsistency 6 0 0 1 1 4 1 6
Complex Control Structure 3 0 3 0 0 0 3 3
Confusing Names 15 2 3 3 4 6 8 18
Use of Encapsulation 2 1 1 1 0 0 3 3
Complex Dependencies and Inter-class Inter-
actions

7 0 2 2 1 3 4 8

Excessive Variables or Parameters 5 1 3 2 1 1 6 8
Lack or Absence of Adequate Comments 11 0 3 3 3 3 6 12
Language Syntax 10 0 1 0 3 6 1 10
Logical Complexity 20 2 6 4 1 10 12 23
Use of Polymorphism 2 0 1 0 1 0 1 2
Use of Recursion 2 0 1 0 1 0 1 2
Total 111 9 44 23 19 37 76 132

Self-admitted Difficulty (No)

Category #cited DC LM FE Others None
Total

Smells
Only

Total
All

Application Domain Knowledge 0 0 0 0 0 0 0 0
Class or Method Cohesion and Responsibility 0 0 0 0 0 0 0 0
Code Length 4 0 1 0 0 2 1 3
Coding Style Inconsistency 0 0 0 0 0 0 0 0
Complex Control Structure 1 0 1 0 0 0 1 1
Confusing Names 1 1 0 0 0 0 1 1
Use of Encapsulation 2 0 0 0 0 0 0 0
Complex Dependencies and Inter-class Inter-
actions

0 0 0 0 0 0 0 0

Excessive Variables or Parameters 0 0 0 0 0 0 0 0
Lack or Absence of Adequate Comments 4 2 1 1 0 2 4 6
Language Syntax 1 0 0 0 0 1 0 1
Logical Complexity 7 2 2 1 2 2 5 9
Use of Polymorphism 0 0 0 0 0 0 0 0
Use of Recursion 1 0 0 1 0 0 1 1
Total 21 5 5 3 2 7 13 22

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 63

4.3.1.1
The Most Cited Categories of Self-admitted Code Comprehension Diffi-
culty

By analyzing Table 4.3, we observe that among developers who self-admitted
difficulty (yes), the top-3 most common comprehension difficulty categories are as
follows: Logical Complexity was the most cited, with 20 instances, 12 DC+LM+FE
and 23 in total (code snippet with or without code smell). The Code Length was
the second most mentioned category, with 17 instances, 20 DC+LM+FE and 21 in
total. Finally, the Confusing Names also appears prominently with 15 instances, 8
DC+LM+FE and 18 in total. The last one, suggest that unclear naming conventions
represent a common struggle.

Among developers who did not self-admitted difficulties to understand
the code snippet, Logical Complexity remained the most cited (7 instances, 5
DC+LM+FE, 9 total), followed by Code Length (4 instances, 1 DC+LM+FE, 3
total), and Lack of Adequate Comments (4 instances, 4 DC+LM+FE, 6 total). This
suggests that even those who did not explicitly report difficulties still encountered
comprehension challenges. Code Length was cited 4 times (1 LM and 3 in total) and
Lack or Absence of Adequate Comments category appears as a non-difficulty issue
mentioned 4 times (4 DC+LM+FE and 6 in total). This suggests that some devel-
opers may perceive this as a less critical problem. Even though there is a discrepant
amount between the developers who self-admitted difficulty and the developers who
did not, Logical Complexity and Code Length are present in both, which demon-
strates that the developer may come across the presented categories. For Logical
Complexity a developer who self-admitted difficulty said "actions and checks contain
a lot of information making it difficult to understand each one" and the developer
who did not self-admitted difficulty said "Despite having several conditionals, the
logic is relatively simple".

Table 4.3 highlights notable differences between groups. Confusing Names was
cited 15 times (18 total) by those who self-admitted difficulty, compared to just once
in the other group, indicating that developers who struggle with code smells are
more likely to recognize naming issues. Lack of Adequate Comments was mentioned
11 times (12 total) in the self-admitted difficulty (Yes) group but only 4 times
(6 total) in the other group. This indicate that comments play a crucial role in
comprehension for developers facing challenges, i.e. who admit difficulty may view
comments as decisive: they are either more important or problematic. Code Length
was cited 17 times (21 total) by those reporting difficulty, versus only 4 times in the
other group, reinforcing that long code fragments contribute to cognitive overload.

Some categories showed minimal differences or no mentions in the group that
did not report difficulties, as the case of Application Domain Knowledge, Class
or Method Cohesion and Responsibility, Coding Style Inconsistency, and Complex
Dependencies and Inter-class Interactions, indicating these were not perceived as
major obstacle. Similarly, Use of Polymorphism and Use of Recursion categories

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 64

were rarely cited in this group.

Developers who self-admitted difficulty reported more instances of code smells,
especially those smells related to logical complexity, code length and naming.
Confusing Names was a major challenge for developers who self-admitted
difficulty, but was rarely mentioned by those who did not, suggesting that
struggling developers are more sensitive to unclear naming conventions.

4.3.1.2
Distribution of Code Smells Grouped by Comprehension Difficulty Cate-
gories and Self-admitted Difficulty

Referring back to Table 4.3, we can observe that LM is the most frequent
code smell across categories in the (Yes) group, especially Code Length (15), Logical
Complexity (6), and Class or Method Cohesion and Responsibility (5). The FE
smell also appears frequently in the Code Length (5), Logical Complexity (4), and
Confusing Names (3) categories.

DC appears most prominently in Confusing Names (2), Logical Complexity
(2), and Class or Method Cohesion and Responsibility (2) categories, showing a
more distributed pattern compared to other smell types. The Others category is
most frequently associated with Confusing Names (4), followed by Class or Method
Cohesion and Responsibility (3), Lack or Absence of Adequate Comments (3), and
Language Syntax (3).

We observe that Code Length has a strong association with both LM (15)
and FE (5), which suggests that extensive code is often perceived as problematic
due to these specific smell types. Similarly, Logical Complexity shows significant
occurrences across LM (6), FE (4), and even in code without smells (10), indicating
that complexity challenges comprehension regardless of the presence of specific code
smells.

Confusing Names appears as a difficulty category across all smell types (DC:
2, LM: 3, FE: 3, Others: 4), as well as in code marked as having no smells (6). This
consistent presence suggests that naming conventions pose a universal challenge to
code comprehension that transcends specific code smell categories. In the case of
LM, extended implementations could result in generic or inconsistent naming as
developers attempt to encapsulate multiple responsibilities within a single method.
For FE, the reliance on external class data or behavior could lead to ambiguous
names that fail to clearly convey the method’s intent, reflecting its focus on cross-
class interactions rather than cohesive functionality.

Despite the widespread impact of Confusing Names and Comments on code
comprehension, state-of-the-art tools such as Organic [64], Designate [65], and
PMD [25] do not explicitly consider naming and comment issues in their detec-
tion approach (mainly for DC, LM and FE). These tools primarily focus on struc-
tural aspects of the code, such as method length, class cohesion, and coupling, while

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 65

overlooking the cognitive challenges posed by inconsistent or ambiguous naming con-
ventions. Our findings highlight the need for future research and tool enhancements
that incorporate naming-related factors into automated analysis, improving support
for developers in identifying and mitigating comprehension difficulties.

LM appears frequently among developers with difficulties related to Code
Length, Logical Complexity, and Class or Method Cohesion and Responsibility.
FE appears frequently with Code Length, Logical Complexity, and Confusing
Names. This suggests that focusing on these categories of difficulties to detect
such smells may yield significant benefits, as they may compound cognitive
challenges, such as increase comprehension times and mental strain.

4.3.1.3
Code Smells Frequency Grouped by Level of Comprehension and Self-
admitted Difficulty

Table 4.4 shows the distribution of the code smells characterized by developers’
level of comprehension and their self-admitted difficulty. The 1st column indicates
the level of comprehension, ranging from No Understanding to Full (see Table 4.1).
The 2nd column specifies the smell type identified. The 3nd column represents the
number of instances where a developer self-admitted difficulty and identified the
code smell. Finally, the last column indicates the number of instances where the
developer did not self-admitted difficulty and identified the code smell.

Table 4.4: Code Smells Frequency grouped by Level of Comprehension and
Self-admitted Difficulty

Level of Comprehension Code
Smell Type

Self-admitted
Difficulty (Yes)

Self-admitted
Difficulty (No)

No Understanding

None 13 2
DC 5 5
LM 20 3
FE 8 2

Others 5 0

Basic

None 5 2
DC 2 0
LM 17 1
FE 10 0

Others 6 1

Intermediate

None 12 3
DC 0 0
LM 6 1
FE 4 1

Others 5 0

Full

None 0 0
DC 0 0
LM 1 0
FE 1 0

Others 4 1

We can observe that LM is the most frequently reported code smell across
all levels of comprehension, especially in the No Understanding (with 20 instances

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 66

in the difficulty group), and Basic (with 17 instances in the difficulty group). This
might suggest that LM is a key factor in the comprehension difficulties to developers
who do not understand the code or with a basic understanding. A similar behavior
applies to the FE smell. DC appears less frequently when compared to all types,
which suggests that DC may be less perceptible or considered less influential to
code comprehension.

We also can observe that developers with No Understanding and Basic level of
comprehension reported more difficulties across almost all code smells compared to
those who marked (No) difficulty. This might indicate a strong correlation between
code smells and perceived difficulty at these levels. Regarding the Intermediate level
of comprehension there is a slightly lower frequency of self-admitted difficulty in
comparison to the Basic level, suggesting an improved comprehension that may
mitigate some issues caused by code smells. Finally, in the Full comprehension
level, we can observe that few smells are noted, and the difficulty (yes) is minimal,
indicating that code comprehension may reduce the perceived impact of code smells.

None is also present in all levels of comprehension, except for level Full. While
the No Understanding (with 13 instances in the difficulty group) level suggest a lack
of knowledge of the developers, the Intermediate (with 12 instances in the difficulty
group) level suggest that even when the code snippet do not have smells in their
opinion, they can have trouble to understand the code.

LM stands out, especially at lower comprehension levels, 20 at No Understanding
and 17 at Basic levels with self-admitted difficulty. FE is similar but with a lower
frequency. Overall, self-admitted difficulty decreases across all smell types when
the comprehension level increases from Basic to Full, suggesting experienced
developers can better navigate smelly code. Removing LM and FE requires
increased support for the affected code comprehension, particularly for novice
developers or team members unfamiliar with the codebase. DC may be less
perceptible or considered less influential to code comprehension.

4.3.2
Impact of Code Smells on Developers’ Cognitive Load

To answer RQ2, we analyzed the influence of code smells on the cognitive effort
required for developers to analyze code snippets. Initially, we conducted Levene’s
test to assess the equality of variances between code snippets with and without
code smells. The null hypothesis (H0) for Levene’s test states that there is no
variances difference between these two groups. With a test statistic of 5.109 and
a p-value of 0.0245, we reject the null hypothesis, indicating that the variances are
statistically different between the groups. This result allowed us to proceed with a
Mann-Whitney U test. The null hypothesis (H0) for the test states that there is
no significant difference between AFC*FC of these groups. The test yielded a test

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 67

statistic of 15290.0 and a p-value of 0.00018, leading us to reject the null hypothesis.
This finding demonstrated a significant difference in cognitive load between code
snippets containing smells and those without smells, indicating that the presence
of code smells generally increased cognitive effort. This finding is supported by a
follow-up ANOVA test comparing different smell types and no smell, which yielded
an F-statistic of 5.83 and a p-value of 0.00072. This result confirms significant
differences in cognitive load across code smell types and/or clean code, prompting
further analysis to identify which types of smells contributed most to higher cognitive
effort.

Table 4.5: Multiple Comparison of Means - Tukey HSD, FWER=0.05
group1 group2 meandiff p-adj lower upper reject

DC FE 22947.33 0.702 -26107.38 72002.03 False
DC LM 46419.84 0.037 1798.79 91040.89 True
DC None 2215.44 0.999 -35441.38 39872.25 False
DC Others 59478.78 0.003 14451.13 104506.44 True
FE LM 23472.51 0.631 -22663.65 69608.66 False
FE None -20731.89 0.601 -60172.26 18708.47 False
FE Others 36531.45 0.200 -9998.07 83060.97 False
LM None -44204.40 0.004 -77971.50 -10437.31 True
LM Others 13058.94 0.912 -28770.12 54888.01 False
None Others 57263.35 <0.001 22960.75 91565.94 True

To identify which specific pairs of groups exhibit significant differences in
cognitive load, we applied Tukey’s HSD test (see Table 4.5). The results revealed
that the LM smell type led to a significantly greater cognitive load compared to
both the None category (p = 0.004) and the DC type (p = 0.037). This suggests
that LM smells demand more cognitive effort, likely due to the extended or complex
logic often present in lengthy methods. The None category showed significantly
lower cognitive load compared to Others (p < 0.001), highlighting that code
without smells is easier for developers to process than code with ambiguous or
less specific structural indicators. Furthermore, the Others group imposed a higher
cognitive load than DC (p = 0.003), indicating that smells categorized as Others
also contribute to increased cognitive demands, possibly due to their varied and
potentially ambiguous structures. This finding also motivates further research studies
involving the comparison of more code smell types. For FE, there was no evidence
when compared with others smells.

Although this study was conducted with the goal of understanding developers’
perceptions, we also performed statistical tests to assess whether the developers’
classifications were correct or incorrect. This analysis allows us to examine whether
cognitive effort differs between those who correctly identified the presence of code
smells and those who did not. To this end, we evaluated the variance between the
two groups and, based on the results, applied either the Mann-Whitney U test or

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 68

the t-test to verify the null hypothesis (H0), using the same null hypothesis applied
in the previous analysis.

The results of these statistical tests are presented in Table 4.6. In all cases,
the null hypotheses were not rejected, suggesting that the cognitive effort required
to analyze the code does not significantly differ between developers who correctly
identified the code smells and those who did not. This finding indicates that the
way developers perceive the presence of code smells in the code is what primarily
influences their cognitive effort, regardless of the accuracy of their classification.

Table 4.6: Test Results for Cognitive Effort - Correct X Incorrect
Smell Test statistic p-value reject

LM Mann-Whitney U 270.0 0.588 False
DC t-test -1.3482 0.186 False
FE t-test -0.3693 0.714 False
None t-test -0.8658 0.387 False

LM smells substantially increase the cognitive effort required for analysis,
whereas DC smells do not impose a similar burden. Also, developers’ perception
of code smells plays a key role in cognitive effort, regardless of classification
accuracy.

4.3.3
Impact of Code Smells on Developers’ Reading Behavior

To answer RQ3, we analyze how the presence of code smells influences
developers’ reading behavior when analyzing code snippets. Thus, we evaluated the
mental models and reading patterns learned by developers when classifying different
smell types and their absence in the code snippets. Additionally, we applied the
Wilcoxon test to validate the results. The null hypothesis (H0) states that for each
smell category (LM, DC, FE, Others, and None), there is no significant difference
in the proportion of time spent in each of the following: (4.3.3.1) mental model
(bottom-up vs. top-down); (4.3.3.2) reading direction (top-to-bottom vs. bottom-to-
top); (4.3.3.3) organizational reading pattern (sectionally vs. disorderly); (4.3.3.4)
depth of reading (thorough vs. skimming).

4.3.3.1
Mental Models: Bottom-up vs. Top-down

Table 4.7 presents the detailed results of the Wilcoxon signed-rank test
comparing the time spent using Bottom-up versus Top-down mental models for
each perceived code smell category. The table shows the smell, the hypothesis, the

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 69

metric used for comparison, the mental model, the sample size (n), the test statistic
(T) for each model, the Z-score (Z), and the p-value (p).

The results indicated that the H0 was rejected for LM, DC, FE, and Others,
suggesting that developers when analyzing smelly code go through the bottom-
up mental model. This indicates that developers may need detailed, line-by-line
comprehension due to the increased complexity or ambiguity associated with these
smells. For the None category, where no code smells were identified by developers, the
hypothesis was not rejected, indicating no significant preference between bottom-up
and top-down approaches in the absence of code smells.

Table 4.7: Comparison of Mental Models (Bottom-up vs Top-down) for Differ-
ent Code Smell Types

Smell H Metric Model n T Z p

LM H0 Fix. Bottom-up 49 3618.0 -8.49 <0.001
Top-down 49 1233.0

DC H0 Fix. Bottom-up 37 2000.0 -6.99 <0.001
Top-down 37 775.0

FE H0 Fix. Bottom-up 33 1603.0 -6.65 <0.001
Top-down 33 608.0

None H0 Fix. Bottom-up 148 31263.0 -13.73 <0.001
Top-down 148 12693.0

Others H0 Fix. Bottom-up 47 3329.0 -8.31 <0.001
Top-down 47 1136.0

4.3.3.2
Reading Patterns: Top-to-bottom vs. Bottom-to-top

Table 4.8 provides the detailed statistical results (Wilcoxon test: n, T, Z, p) for
the comparisons of the three reading pattern pairs based on the developers’ overall
perception of the code smell type.

For all categories, H0 was rejected. This suggests that the presence of code
smells and even the no presence affects the directional pattern of reading, with
developers more frequently adopting a top-to-bottom approach. This likely reflects
an attempt to gain an initial high-level understanding before diving into more
detailed sections of the code. In other words, developers tend to follow the natural
execution flow of the code, regardless of smell presence, indicating that the sequential
nature of program comprehension remains consistent even when facing potentially
problematic code structures.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 70

Table 4.8: Comparison of Reading Patterns (Top-to-bottom vs Bottom-to-top,
Sectionally vs Disordely, Thorough vs Skimming) for Different Code Smell
Types by Developers Perception

Smell Type Metric Reading Pattern n T Z p

LM

Fix. Top-to-bottom 49 1224 -6.030 <0.001Bottom-to-top 49 0

Fix. Sectionally 49 486 -1.258 0.212Disordely 49 739

Fix. Thorough 49 0 -6.092 <0.001Skimming 49 1225

DC

Fix. Top-to-bottom 37 703 -5.302 <0.001Bottom-to-top 37 0

Fix. Sectionally 37 153 -2.969 0.003Disordely 37 549

Fix. Thorough 37 0 -5.302 <0.001Skimming 37 703

FE

Fix. Top-to-bottom 33 561 -5.011 <0.001Bottom-to-top 33 0

Fix. Sectionally 33 260 -0.366 0.724Disordely 33 301

Fix. Thorough 33 1 -4.994 <0.001Skimming 33 560

None

Fix. Top-to-bottom 148 11025 -10.517 <0.001Bottom-to-top 148 0

Fix. Sectionally 148 4743 -1.473 0.140Disordely 148 6283

Fix. Thorough 148 0 -10.553 <0.001Skimming 148 11026

Others

Fix. Top-to-bottom 47 1128 -5.968 <0.001Bottom-to-top 47 0

Fix. Sectionally 47 761 -2.084 0.036Disordely 47 367

Fix. Thorough 47 0 -5.968 <0.001Skimming 47 11026

4.3.3.3
Reading Patterns: Sectionally vs. Disorderly

H0 was rejected for DC and Others, indicating that developers adopt a more
sectionally organized approach for these types. For DC, this may be due to its data-
driven structured nature, as it often contains straightforward data containers with
minimal logic, allowing developers to follow a sequential, organized reading pattern
without frequent cross-referencing. This approach is clearly different from smells like
FE that may require more "disorderly" navigation, due to the nature of this smell
that show more interest in other classes than their own, forcing developers to jump
back and forth between multiple code locations to understand the relationships and
dependencies. For LM, FE, and None, the hypothesis was not rejected, suggesting
no consistent preference between sectionally and disorderly reading for these smells.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 71

4.3.3.4
Reading Patterns: Thorough vs. Skimming

H0 was rejected for all code smell types, indicating a significant difference
between thorough and skimming patterns. The rank sums show a clear preference
for skimming across all code smells, suggesting that developers more frequently
engaged in a quick scanning approach, selectively focusing on certain cues or sections
rather than inspecting each line in detail. For example, when encountering an
LM smell, developers tends to spend brief periods scanning through the method
structure before diving deeper into specific areas of interest. This behavior suggests
an initial approach where developers first identify key structural elements and
potential problem areas before committing to a more detailed analysis.

4.3.3.5
Reading Patterns: Correct and Incorrect Classifications

We also analyzed the reading patterns when developers correctly and incor-
rectly classified the code snippet as having a smell, aiming to understand whether
there are differences in the analyzed results when assessed solely based on their
responses, without considering the dataset classification.

The test results can be found in Table 4.9. This table presents the Wilcoxon
test statistics (n, T, Z, p) for each reading pattern pair side-by-side for instances
where developers provided Correct Answers versus Incorrect Answers. In Table 4.10,
we summarize the outcomes (Reject/Not Reject H0) of the Wilcoxon tests for
each reading pattern pair across three perspectives: overall developer perception
(Developers Perception), instances associated with developers’ correct classifications
(Correct), and instances associated with incorrect classifications (Incorrect). The
main difference observed is in the Disordely vs. Sectionally reading pattern for the
DC smell. While the null hypothesis was rejected in the overall analysis, indicating
a more structured reading approach, it was not rejected when considering only
incorrect classifications. This finding suggests that there is no significant evidence to
indicate a consistent preference for an organized reading approach among developers
who misclassified the smell. For the other reading patterns, the results remained
consistent with the general perception.

Developers who classify code snippets with LM, DC, and FE smells use a
bottom-up mental model. DC encourages a sectionally organized reading pattern
and developers predominantly use skimming across all smells, preferring a quick
overview over a detailed inspection.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 72

Table 4.9: Comparison of Reading Patterns (Top-to-bottom vs Bottom-to-top,
Sectionally vs Disordely, Thorough vs Skimming) for Different Code Smell
Types by Developers’ Answer Correctness

Smell Type Reading Pattern Correct Answers Incorrect Answers

n T Z p n T Z p

LM

Top-to-bottom 35 629.0 -5.09 <0.001 14 105.0 -3.29 <0.001Bottom-to-top 35 0.0 14 0.0

Sectionally 35 227.0 -1.44 0.1535 14 54.0 -0.09 0.95Disordely 35 403.0 14 51.0

Thorough 35 630.0 -5.16 <0.001 14 105.0 -3.29 <0.001Skimming 35 0.0 14 0.0

DC

Top-to-bottom 28 406.0 -4.62 <0.001 9 45.0 -2.66 0.0039Bottom-to-top 28 0.0 9 0.0

Sectionally 28 329.0 -2.86 0.0043 9 16.0 -0.77 0.49Disordely 28 76.0 9 29.0

Thorough 28 406.0 -4.62 <0.001 9 45.0 -2.66 0.0039Skimming 28 0.0 9 0.0

FE

Top-to-bottom 6 21.0 -2.20 0.03125 27 378.0 -4.54 <0.001Bottom-to-top 6 0.0 27 0.0

Sectionally 6 14.0 -0.73 0.5625 27 185.0 -0.09 0.93Disordely 6 7.0 27 193.0

Thorough 6 21.0 -2.20 0.03125 27 377.0 -4.51 <0.001Skimming 6 0.0 27 1.0

None

Top-to-bottom 49 1225.0 -6.09 <0.001 99 4949.0 -8.59 <0.001Bottom-to-top 49 0.0 99 0.0

Sectionally 49 612.5 0.0 1.0 99 1967.0 -1.77 0.076Disordely 49 612.5 99 2983.0

Thorough 49 1225.0 -6.09 <0.001 99 4950.0 -8.63 <0.001Skimming 49 0.0 99 0.0

4.4
Threats to Validity

Our study focused on exploring participants’ perceptions and cognitive re-
sponses to code snippets, rather than validating their feedback against the anno-
tations provided in the MLCQ dataset. This reliance on participants’ subjective
identification of code smells introduces a potential threat to validity, as their per-
ceptions (as expected) may not fully align with the predefined annotations. Future
studies could address this by systematically comparing participants’ feedback with
the MLCQ dataset annotations, providing a deeper understanding of discrepancies
between the perceived against the perception of more experinced engineers (who
annotated the dataset).

There are many possible reasons to explain these possible discrepancies. Thus,
the different programming skills, experience, and individual physiological conditions
of developers can influence their responses to biosensors. To mitigate these threats,
several measures were implemented, including ensuring participants had knowledge
of the Java language, presenting the concept and types of smells prior to the analysis,
and following a protocol designed to keep participants calm during the experiment.

Another threat to the validity of the study is the duration of the experiment,

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 73

Table 4.10: Test Hypothesis Compared for Reading Patterns
Smell Type Reading Pattern Developers Perception Correct Incorrect

LM
Top-to-bottom vs. Bottom-to-top Reject Reject Reject
Disordely vs. Sectionally Not Reject Not Reject Not Reject
Skimming vs. Thorough Reject Reject Reject

DC
Top-to-bottom vs. Bottom-to-top Reject Reject Reject
Disordely vs. Sectionally Reject Reject Not Reject
Skimming vs. Thorough Reject Reject Reject

FE
Top-to-bottom vs. Bottom-to-top Reject Reject Reject
Disordely vs. Sectionally Not Reject Not Reject Not Reject
Skimming vs. Thorough Reject Reject Reject

None
Top-to-bottom vs. Bottom-to-top Reject Reject Reject
Disordely vs. Sectionally Not Reject Not Reject Not Reject
Skimming vs. Thorough Reject Reject Reject

which can vary from 1 hour to 1 hour and 30 minutes. The participants needed to
remain in their position so that the data captured by the eye tracker was reliable.

Another significant threat lies in the potential for over-interpretation of results.
Given the controlled nature of the experiment and the limited scope of analyzed
snippets (12), generalizing findings to broader programming contexts or larger-scale
software systems must be approached cautiously. The study’s conclusions should be
framed as exploratory, providing insights rather than definitive answers.

The choice of Java as the language for the study may also limit the general-
ization of the results to other programming languages. Results would be different
for smells in programming languages following other programming paradigms. By
focusing on Java developers, we aim to explore the extent to which code smells
influence the cognitive load and overall comprehension within a popular program-
ming context. The structure of the code snippets would be quite similar if they were
written in other object-oriented languages, such as C#.

Furthermore, the subjectivity inherent in participants’ identification of code
smells introduces variability in the data. This variability is particularly notable when
comparing participant-identified smells to oracle annotations, which could affect the
interpretation of cognitive and behavioral metrics. Future work should include a
systematic comparison between these perspectives to validate and refine the findings.

The use of smaller code snippets was necessary to maintain a reasonable
duration of the experiment, considering that the evaluation of all three types of code
smells, and their severities already takes a significant amount of time. Expanding to
larger code snippets could make the controlled experiment impractical in terms of
duration and inaccurate data.

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 74

4.5
Conclusion

This study presents significant practical and theoretical implications for soft-
ware engineering, particularly concerning program comprehension. Practically, our
findings reveal the substantial cognitive load imposed by code smells like LM and
FE. IDEs should thus prioritize detecting these smells and offer automated recom-
mendations to ease cognitive strain. Also, confusing naming conventions frequently
aggravate comprehension issues, highlighting the need for explicit naming standards
and targeted developer training.

Observed reading behaviors revealed that developers typically adopt bottom-
up mental models and engage predominantly in skimming, reflecting distinct com-
prehension patterns. This indicates a need for training programs tailored to encour-
age more structured and thorough reading strategies, especially benefiting novice
developers. Organizations can leverage these insights to enhance onboarding and
mentoring processes focused on managing cognitive challenges related to code smells.

By combining qualitative insights with quantitative eye-tracking data, we
provide a comprehensive understanding of developers’ cognitive interactions with
smelly code. The methodological approach presented sets a foundation for future
cognitive research in software comprehension. Future investigations should further
examine developers’ subjective perceptions alongside objective cognitive metrics,
ultimately contributing to improved software quality and maintainability practices.

4.6
Summary

In this chapter, we expanded our investigation into the impact of code smells
on developer comprehension by incorporating a qualitative analysis of developers’
responses, in addition to the analysis of eye-tracking data. By employing qualitative
coding techniques, we identified key themes and patterns in developers’ explana-
tions, providing deeper insights into how code smells influence their comprehension
processes. Our findings confirm and extend the results presented in Chapter 3, re-
inforcing that code smells such as Long Method and Feature Envy impose higher
cognitive effort compared to Data Class, which is perceived as less challenging by
developers. Furthermore, the qualitative analysis revealed that developers frequently
cite factors such as method complexity, dependency relationships, and naming con-
ventions as critical elements affecting their comprehension. These insights offer a
more comprehensive understanding of the cognitive challenges posed by code smells.

Despite these contributions, the study has certain limitations, such as the
subjectivity inherent in qualitative coding and the potential influence of individual
experience levels on the perceived difficulty of code snippets. Future work should
consider expanding the dataset and refining the coding framework to improve
the generalization of the findings. In the next chapter, we summarize the main

Chapter 4. Reading between the Smells: Eye-Tracking Developer Responses to
Code Smells 75

contributions of this dissertation, discussing how our findings contribute to the
broader field of software engineering and present the key challenges identified
throughout the study and outline opportunities for future research, including the
development of improved code comprehension tools and strategies to mitigate the
negative impact of code smells on developers’ cognitive effort.

5
Conclusion

Code smells are widely recognized as indicators of poor design and implemen-
tation choices, significantly impacting developers’ ability to comprehend and main-
tain software systems. While extensive research has been conducted on identifying
and refactoring code smells, there remains a critical need to understand how these
smells influence developers’ cognitive processes and reading behaviors during code
comprehension tasks. This dissertation addresses this gap by employing eye-tracking
technology to empirically investigate the impact of code smells on developers’ reason-
ing and subjective experiences during comprehension tasks, cognitive effort, visual
attention, and reading patterns. The findings provide valuable insights into the cog-
nitive challenges posed by three types of code smells and offer practical implications
for improving software development tools and practices.

5.1
Summary of Contributions

This dissertation makes several key contributions to the field of software
engineering, particularly in the areas of code quality, program comprehension,
and developer tooling support. Below, we summarize these contributions and their
significance:

Contribution 1: A Framework for Eye-Tracking Analysis of Code
Smells. This dissertation introduces a novel framework for studying the impact
of code smells on developers’ cognitive processes using eye-tracking technology. By
monitoring developers’ visual attention, fixation durations, and reading patterns,
we were able to quantify the cognitive effort required to analyze code snippets with
and without code smells. This framework, detailed in Chapter 3 and improved in
Chapter 4, provides a robust methodology for future studies aiming to explore the
cognitive dimensions of software development tasks.

Contribution 2: Empirical Evidence on the Cognitive Impact of
Code Smells. Through a series of controlled experiments, we collected empiri-
cal data on how different types of code smells – such as Long Method, Feature Envy,
and Data Class – affect developers’ cognitive load and comprehension. The results,
presented in Chapter 4, reveal that Long Method and Feature Envy significantly in-
crease cognitive effort, while Data Class imposes a comparatively lower burden. Our
findings suggest that refactoring strategies for Long Method could prioritize extract-
ing smaller, cohesive methods and enhancing naming clarity to reduce complexity,

Chapter 5. Conclusion 77

as this smell’s extended logic was shown to demand prolonged fixations and higher
cognitive load. These findings contribute to a deeper understanding of how specific
code smells challenge developers and highlight the need for targeted code refactoring
strategies.

Contribution 3: Insights into Developers’ Reading Patterns and
Mental Models. Our analysis of eye-tracking data uncovered distinct reading pat-
terns and mental models adopted by developers when analyzing smelly code. For in-
stance, developers tended to use a bottom-up mental model when encountering Long
Method and Feature Envy smells, focusing on detailed, line-by-line comprehension.
In contrast, Data Class encouraged a more sectionally organized reading pattern. To
support these patterns, an IDE feature could highlight critical code sections, such
as method signatures in Long Method and dependencies in Feature Envy scenarios,
with visual cues to guide developers toward key comprehension points, reducing the
cognitive effort observed in our study. These insights, discussed in Chapter 4, pro-
vide a foundation for designing tools that support developers in navigating complex
code structures, improving code readability and maintainability.

5.2
Implications of our Findings

The findings of this dissertation have important implications for researchers,
tool developers, and practitioners in the field of software engineering. Below, we
discuss these implications.

Implications for Researchers. The studies in this dissertation demonstrate
the value of eye-tracking technology in understanding the cognitive processes in-
volved in code comprehension. Researchers can build on this work by exploring addi-
tional metrics, such as pupil dilation and saccade length, to gain a more comprehen-
sive view of developers’ cognitive effort. Furthermore, the experimental framework
developed in this dissertation can be applied to study other code smells, consider
additional program languages; as well to study various other aspects of software
development, such as debugging and code review.

Implications for Tool Developers. The empirical evidence gathered in this
study provides a strong case for integrating cognitive load metrics into development
tools. For instance, IDEs could use real-time eye-tracking data to identify code
sections that require excessive cognitive effort and suggest refactoring opportunities.
Additionally, tools could be developed to train developers in recognizing and
addressing code smells, particularly those that impose the highest cognitive burden.

Implications for Practitioners. For software development teams, the find-
ings of this study underscore the importance of writing clean, well-structured code to
reduce cognitive load and improve maintainability. Practitioners can use the insights
from this research to prioritize refactoring efforts, focusing on code smells that are
most detrimental to comprehension. Additionally, the study highlights the impor-
tance of clear naming conventions and modular design in enhancing code readability.

Chapter 5. Conclusion 78

5.3
Future Works

In this section, we describe several avenues for future research:

– Expansion to Other Code Smells: This study focused on three types of
code smells (Long Method, Feature Envy, and Data Class). Future work could
explore the cognitive impact of other common smells in industrial projects,
such as Duplicate Code or God Class.

– Application to Different Programming Languages: The experiments in
this study were conducted using Java code snippets. Future research could
investigate whether the findings hold for other programming languages, such
as Python, Lua or C++.

– Integration of Additional Metrics: Incorporating metrics such as pupil
dilation and blink rate could provide a more nuanced understanding of
developers’ cognitive states during code comprehension tasks.

– Longitudinal Studies: Conducting longitudinal studies to observe how
developers’ cognitive patterns evolve over time could provide insights into
the long-term effects of code smells on software maintenance and evolution.

– Analysis of Participants’ Background with other data: Future studies
could investigate how developers’ level of experience, educational background,
or familiarity with programming paradigms influence their cognitive responses
to code smells. Integrating these data with eye-tracking metrics may provide
deeper insights into how different developer profiles handle problematic code.

– Validation in Industrial Settings: While this study was conducted in a
controlled environment, future research could validate the findings in real-
world industrial settings to ensure their applicability to large-scale software
projects.

Limitations This study has several limitations that should be addressed
in future work as was presented in the Chapters 3 and 4. First, the use of
small code snippets may not fully capture the complexity of real-world software
systems. Second, the reliance on participants’ subjective identification of code smells
introduces variability in the data. Finally, the study’s focus on Java developers may
limit the generalizability of the findings to other programming contexts.

Chapter 5. Conclusion 79

5.4
Conclusion

This dissertation advances our understanding of how code smells impact
developers’ cognitive processes during code comprehension tasks. By leveraging eye-
tracking technology, we have provided empirical evidence on the cognitive effort
required to analyze smelly code and identified specific reading patterns and mental
models adopted by developers. These findings have important implications for the
design of development tools and the improvement of software maintenance practices.
Future research can build on this work to further explore the cognitive dimensions
of software development and develop more effective strategies for managing code
quality.

Data availability statement

All scripts and data used in this study are available in the package [9].

Bibliography

[1] OLIVEIRA, D.; ASSUNÇÃO, W. K. G.; GARCIA, A.; BIBIANO, A. C.; RIBEIRO,
M.; GHEYI, R. ; FONSECA, B.. The untold story of code refactoring
customizations in practice. In: 2023 IEEE/ACM 45TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 108–120, 2023.

[2] FOWLER, M.; BECK, K.. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Longman Publishing Co., Inc., USA, 1999.

[3] MÄNTYLÄ, M. V.; LASSENIUS, C.. Subjective evaluation of software
evolvability using code smells: An empirical study. Empirical Software
Engineering, 11:395–431, 2006.

[4] DAS, D.; MARUF, A. A.; ISLAM, R.; LAMBARIA, N.; KIM, S.; ABDELFATTAH,
A. S.; CERNY, T.; FRAJTAK, K.; BURES, M. ; TISNOVSKY, P.. Technical
debt resulting from architectural degradation and code smells: a
systematic mapping study. SIGAPP Appl. Comput. Rev., 21(4):20–36, jan
2022.

[5] SHARAFI, Z.; SOH, Z. ; GUÉHÉNEUC, Y.-G.. A systematic literature review
on the usage of eye-tracking in software engineering. Information and
Software Technology, 67:79–107, 2015.

[6] SHAFFER, T. R.; WISE, J. L.; WALTERS, B. M.; MÜLLER, S. C.; FALCONE, M.
; SHARIF, B.. Itrace: Enabling eye tracking on software artifacts within
the ide to support software engineering tasks. In: PROCEEDINGS OF
THE 2015 10TH JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGI-
NEERING, ESEC/FSE 2015, p. 954–957, New York, NY, USA, 2015. Association
for Computing Machinery.

[7] SHARAFI, Z.; SHAFFER, T.; BONITA, S. ; GUÉHÉNEUC, Y.. Eye-tracking
metrics in software engineering. In: PROCEEDINGS OF THE 22ND ASIA-
PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC ’15. IEEE CS Press,
2015.

[8] MARTINS, V.; RAMOS, P. L. V.; NEVES, B. B.; LIMA, M. V.; ARRIEL, J.;
GODINHO, J. V.; RIBEIRO, J.; GARCIA, A. ; PEREIRA, J. A.. Eyes on
Code Smells: Analyzing Developers’ Responses During Code Snippet
Analysis. https://github.com/aisepucrio/EoCS, 2024. Accessed: 2024-07-
25.

https://github.com/aisepucrio/EoCS

Bibliography 81

[9] Reading between the smells: Eye-tracking developer responses to
code smells. https://github.com/aisepucrio/EoS-emse2025, 2025.

[10] MADEYSKI, L.; LEWOWSKI, T.. MLCQ: Industry-relevant code smell
data set. In: PROCEEDINGS OF THE EVALUATION AND ASSESSMENT IN
SOFTWARE ENGINEERING (EASE ’20), p. 342–347, New York, NY, USA, 2020.
Association for Computing Machinery.

[11] SILVA DA COSTA, J. A.; GHEYI, R.. Evaluating the code comprehension
of novices with eye tracking. In: PROCEEDINGS OF THE XXII BRAZILIAN
SYMPOSIUM ON SOFTWARE QUALITY, SBQS ’23, p. 332–341, New York, NY,
USA, 2023. Association for Computing Machinery.

[12] MARINESCU, R.. Detection strategies: metrics-based rules for detect-
ing design flaws. In: 20TH IEEE INTERNATIONAL CONFERENCE ON SOFT-
WARE MAINTENANCE, 2004. PROCEEDINGS., p. 350–359, 2004.

[13] PEREPLETCHIKOV, M.; RYAN, C.. A controlled experiment for evaluat-
ing the impact of coupling on the maintainability of service-oriented
software. IEEE Transactions on Software Engineering, 37(4):449–465, July 2011.

[14] BAVOTA, G.; QUSEF, A.; OLIVETO, R.; DE LUCIA, A. ; BINKLEY, D.. An
empirical analysis of the distribution of unit test smells and their
impact on software maintenance. In: 2012 28TH IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE (ICSM), p. 56–65, Sep. 2012.

[15] SANTOS, J. A. M.; ROCHA-JUNIOR, J. B.; PRATES, L. C. L.; NASCIMENTO,
R. S. D.; FREITAS, M. F. ; MENDONÇA, M. G. D.. A systematic review on
the code smell effect. Journal of Systems and Software, 144:450–477, 2018.

[16] PALOMBA, F.; DI NUCCI, D.; TUFANO, M.; BAVOTA, G.; OLIVETO, R.;
POSHYVANYK, D. ; DE LUCIA, A.. Landfill: An open dataset of code
smells with public evaluation. In: 2015 IEEE/ACM 12TH WORKING
CONFERENCE ON MINING SOFTWARE REPOSITORIES, p. 482–485, 2015.

[17] XU, W.; ZHANG, X.. Multi-granularity code smell detection using deep
learning method based on abstract syntax tree. In: PROCEEDINGS OF
THE 33RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
KNOWLEDGE ENGINEERING (SEKE), p. 503–509, 2021.

[18] MÄNTYLÄ, M.. Bad Smells in Software - A Taxonomy and an Empirical
Study. PhD thesis, Helsinki University of Technology, 2003.

[19] YAMASHITA, A.; MOONEN, L.. To what extent can maintenance prob-
lems be predicted by code smell detection? – an empirical study.
Information and Software Technology, 55(12):2223–2242, 2013.

https://github.com/aisepucrio/EoS-emse2025

Bibliography 82

[20] PALOMBA, F.; BAVOTA, G.; DI PENTA, M.; OLIVETO, R.; DE LUCIA, A. ;
POSHYVANYK, D.. Detecting bad smells in source code using change
history information. In: PROCEEDINGS OF THE 28TH IEEE/ACM INTER-
NATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE
’13, p. 268–278. IEEE Press, 2013.

[21] SOBRINHO, E. V. D. P.; DE LUCIA, A. ; MAIA, M. D. A.. A systematic
literature review on bad smells–5 w’s: Which, when, what, who,
where. IEEE Transactions on Software Engineering, 47(1):17–66, 2021.

[22] MOHA, N.; GUEHENEUC, Y.-G.; DUCHIEN, L. ; LE MEUR, A.-F.. Decor: A
method for the specification and detection of code and design smells.
IEEE Transactions on Software Engineering, 36(1):20–36, 2010.

[23] TSANTALIS, N.; CHAIKALIS, T. ; CHATZIGEORGIOU, A.. Jdeodorant: Iden-
tification and removal of type-checking bad smells. In: 2008 12TH EU-
ROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEER-
ING, p. 329–331, 2008.

[24] MARINESCU, C.; MARINESCU, R.; MIHANCEA, P.; RATIU, D. ; WETTEL, R..
iplasma: An integrated platform for quality assessment of object-
oriented design. p. 77–80, 01 2005.

[25] PMD. PMD Source Code Analyzer, 2025. Available in https://github.

com/pmd/pmd/tree/main. Accessed March 12, 2025.

[26] Checkstyle. https://checkstyle.sourceforge.io/checks.html, 2025. Ac-
cessed: March 16, 2025.

[27] Sonarqube. https://www.sonarqube.org/, 2025. Accessed: March 16, 2025.

[28] ARCELLI FONTANA, F.; MÄNTYLÄ, M.; ZANONI, M. ; OTHERS. Compar-
ing and experimenting machine learning techniques for code smell
detection. Empirical Software Engineering, 21:1143–1191, 2016.

[29] RAYNER, K.. Eye movements in reading and information processing:
20 years of research. Psychological Bulletin, 124(3):372–422, 1998.

[30] CROSBY, M.; SCHOLTZ, J. ; WIEDENBECK, S.. The roles beacons play in
comprehension for novice and expert programmers. 07 2002.

[31] JUST, M. A.; CARPENTER, P. A.. A theory of reading: From eye fixations
to comprehension. Psychological Review, 87(4):329–354, 1980.

[32] SHARAFI, Z.; SHARIF, B.; GUÉHÉNEUC, Y.-G.; BEGEL, A.; BEDNARIK, R. ;
CROSBY, M.. A practical guide on conducting eye tracking studies in
software engineering. Empirical Softw. Engg., 25(5):3128–3174, sep 2020.

https://github.com/pmd/pmd/tree/main
https://github.com/pmd/pmd/tree/main
https://checkstyle.sourceforge.io/checks.html
https://www.sonarqube.org/

Bibliography 83

[33] PAUSZEK, J. R.. An introduction to eye tracking in human factors
healthcare research and medical device testing. Human Factors in
Healthcare, 3:100031, 2023.

[34] FEITELSON, D. G.. From code complexity metrics to program compre-
hension. Commun. ACM, 66(5):52–61, Apr. 2023.

[35] POLITOWSKI, C.; KHOMH, F.; ROMANO, S.; SCANNIELLO, G.; PETRILLO,
F.; GUÉHÉNEUC, Y.-G. ; MAIGA, A.. A large scale empirical study of
the impact of spaghetti code and blob anti-patterns on program
comprehension. Information and Software Technology, 122:106278, 2020.

[36] PINTO, G.; DE SOUZA, A.. Cognitive driven development helps software
teams to keep code units under the limit! J. Syst. Softw., 206(C), Dec.
2023.

[37] MÜLLER, S. C.; FRITZ, T.. Stuck and frustrated or in flow and happy:
sensing developers’ emotions and progress. In: PROCEEDINGS OF
THE 37TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING -
VOLUME 1, ICSE ’15, p. 688–699. IEEE Press, 2015.

[38] LI, W.-C.; HORN, A.; SUN, Z.; ZHANG, J. ; BRAITHWAITE, G.. Aug-
mented visualization cues on primary flight display facilitating pilot’s
monitoring performance. International Journal of Human-Computer Studies,
135:102377, 2020.

[39] ABBAD-ANDALOUSSI, A.; SORG, T. ; WEBER, B.. Estimating developers’
cognitive load at a fine-grained level using eye-tracking measures.
In: 2022 IEEE/ACM 30TH INTERNATIONAL CONFERENCE ON PROGRAM
COMPREHENSION (ICPC), p. 111–121, 2022.

[40] ALBAGHLI, R.; BEIDAS, A. ; ATTAR, N.. Eyes on higher education:
Evaluating web usability in kuwaiti private universities using eye-
tracking and supr-q metrics. Journal of Engineering Research, 2024.

[41] MERINO, L.; GHAFARI, M.; ANSLOW, C. ; NIERSTRASZ, O.. A systematic
literature review of software visualization evaluation. Journal of Systems
and Software, 144:165–180, 2018.

[42] BEHLER, J.; WESTON, P.; GUARNERA, D. T.; SHARIF, B. ; MALETIC, J. I..
itrace-toolkit: A pipeline for analyzing eye-tracking data of software
engineering studies. In: 2023 IEEE/ACM 45TH INTERNATIONAL CONFER-
ENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-
COMPANION), p. 46–50, May 2023.

Bibliography 84

[43] BIBIANO, A. C.; UCHÔA, A.; ASSUNÇÃO, W. K.; TENÓRIO, D.; COLANZI,
T. E.; VERGILIO, S. R. ; GARCIA, A.. Composite refactoring: Representa-
tions, characteristics and effects on software projects. Information and
Software Technology, 156:107134, 2023.

[44] PAIXÃO, M.; UCHÔA, A.; BIBIANO, A. C.; OLIVEIRA, D.; GARCIA, A.; KRINKE,
J. ; ARVONIO, E.. Behind the intents: An in-depth empirical study
on software refactoring in modern code review. In: PROCEEDINGS
OF THE 17TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE
REPOSITORIES, MSR ’20, p. 125–136, New York, NY, USA, 2020. Association
for Computing Machinery.

[45] CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.; DE MELLO,
R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ, A.. Understanding the impact
of refactoring on smells: a longitudinal study of 23 software projects.
In: PROCEEDINGS OF THE 2017 11TH JOINT MEETING ON FOUNDATIONS
OF SOFTWARE ENGINEERING, ESEC/FSE 2017, p. 465–475, New York, NY,
USA, 2017. Association for Computing Machinery.

[46] ARCELLI FONTANA, F.; ZANONI, M.. Code smell severity classification
using machine learning techniques. Knowledge-Based Systems, 128:43–58,
2017. Università degli Studi di Milano-Bicocca, Milan, Italy.

[47] PARKER, C.; SCOTT, S. ; GEDDES, A.. Snowball Sampling. SAGE Publica-
tions, Inc., London, 2019. Accessed on January 16, 2024.

[48] MARTINS, V.; RAMOS, P. L. V.; NEVES, B. B.; LIMA, M. V.; ARRIEL, J.;
GODINHO, J. V.; RIBEIRO, J.; GARCIA, A. ; PEREIRA, J. A.. Eyes on code
smells: Analyzing developers’ responses during code snippet analysis.
https://github.com/aisepucrio/EoCS, 2024. Accessed: 2024-07-25.

[49] BEDNARIK, R.. Expertise-dependent visual attention strategies de-
velop over time during debugging with multiple code representations.
International Journal of Human-Computer Studies, 70(2):143–155, 2012.

[50] SHARIF, B.; FALCONE, M. ; MALETIC, J.. An eye-tracking study on the
role of scan time in finding source code defects. In: PROCEEDINGS
OF THE SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS,
ETRA’12, p. 381–384, New York, 2012. ACM.

[51] BINKLEY, D.; DAVIS, M.; LAWRIE, D.; MALETIC, J.; MORRELL, C. ; SHARIF,
B.. The impact of identifier style on effort and comprehension.
Empirical Software Engineering, 18(2):219–276, 2013.

[52] Tobii tx300 eye tracker. https://www.spectratech.gr/Web/Tobii/pdf/

TX300.pdf. Acessado em: 17 de janeiro de 2024.

https://github.com/aisepucrio/EoCS
https://www.spectratech.gr/Web/Tobii/pdf/TX300.pdf
https://www.spectratech.gr/Web/Tobii/pdf/TX300.pdf

Bibliography 85

[53] MARTINS, V.; RAMOS, P.; NEVES, B.; LIMA, M.; ARRIEL, J.; GODINHO, J.;
RIBEIRO, J.; GARCIA, A. ; PEREIRA, J.. Eyes on code smells: Analyzing
developers’ responses during code snippet analysis. In: ANAIS DO
XXXVIII SIMPóSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE, p. 302–
312, Porto Alegre, RS, Brasil, 2024. SBC.

[54] LACERDA, G.; PETRILLO, F.; PIMENTA, M. ; GUÉHÉNEUC, Y. G.. Code
smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software, 167:110610, 2020.

[55] VAN SOLINGEN, R.; BERGHOUT, E.. The goal/question/metric method:
a practical guide for quality improvement of software development.
1999.

[56] ABID, N. J.; MALETIC, J. I. ; SHARIF, B.. Using developer eye movements
to externalize the mental model used in code summarization tasks.
In: PROCEEDINGS OF THE 11TH ACM SYMPOSIUM ON EYE TRACKING
RESEARCH & APPLICATIONS, ETRA ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[57] CASS, S.. The top programming languages 2024. IEEE Spectrum, Aug.
2024. Accessed: 2025-01-07.

[58] ZAKERI-NASRABADI, M.; PARSA, S.; ESMAILI, E. ; PALOMBA, F.. A sys-
tematic literature review on the code smells datasets and validation
mechanisms. ACM Comput. Surv., 55(13s), July 2023.

[59] SANTANA, A.; FIGUEIREDO, E. ; PEREIRA, J. A.. Unraveling the impact
of code smell agglomerations on code stability. In: INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME),
p. 461–473, 2024.

[60] SEO, S.. A review and comparison of methods for detecting outliers
in univariate data sets. Master’s thesis, University of Pittsburgh, August 2006.

[61] BIXLER, R.; D’MELLO, S.. Automatic gaze-based user-independent
detection of mind wandering during computerized reading. User
Modeling and User-Adapted Interaction, 26:33–68, 2016.

[62] VON MAYRHAUSER, A.; VANS, A. M.. Program comprehension during
software maintenance and evolution. Computer, 28(8):44–55, Aug. 1995.

[63] RODEGHERO, P.; MCMILLAN, C.. An empirical study on the patterns
of eye movement during summarization tasks. In: PROCEEDINGS
OF THE 2015 ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL
SOFTWARE ENGINEERING AND MEASUREMENT (ESEM), volumen 00, p. 1–
10. ACM/IEEE, 2015.

Bibliography 86

[64] CEDRIM, D.; SOUSA, L.. Organic, 2017. Available in https://github.com/

diegocedrim/organic. Accessed February 5, 2025.

[65] SHARMA, T.; MISHRA, P. ; TIWARI, R.. Designite: A software design
quality assessment tool. In: INTERNATIONAL WORKSHOP ON BRINGING
ARCHITECTURAL DESIGN THINKING INTO DEVELOPERS’ DAILY ACTIVI-
TIES, p. 1–4, 2016.

[4] CORBIN, J.; STRAUSS, A.. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Thousand Oaks, 3:1–
400, 2008.

https://github.com/diegocedrim/organic
https://github.com/diegocedrim/organic

	Eye-Tracking the Impact of Code Smells on Developer Comprehension
	Resumo
	Table of contents
	Introduction
	Problem Statement and Limitations of Related Work
	Main Contributions
	Summary of Methodology and Key Finding
	Methodological Overview
	Key Results and Contributions

	Dissertation Structure

	Background and Related Studies
	Code Smells
	Types of code smells
	Impacts of Code Smells on Software Quality
	Detection of Code Smells

	Eye Tracker
	Related Studies
	Summary

	Eyes on Code Smells: Analyzing Developers’ Responses During Code Snippet Analysis
	Introduction
	Study Design
	Preparation of the Experiment
	Selection of a State-of-the-Art Dataset
	Selection of the Code Snippets
	Pilot Study
	Call for Volunteers
	Experiment
	First Phase: Introduction to Code Smells
	Second Phase: Analysis of Code Snippets
	Third Phase: Collecting Participant Background Data

	Data Analysis
	Research Questions

	Data Collection and Availability

	Results
	Participants Contextualization
	RQ1: Fixation Time
	RQ2: Most Examined Code Sections
	RQ3: Fixation Patterns

	Discussion
	Threats to Validity
	Conclusion
	Summary

	Reading between the Smells: Eye-Tracking Developer Responses to Code Smells
	Introduction
	Study Design
	Research Questions
	Preparation of the Experiment
	Selection of a State-of-the-Art Dataset
	Selection of the Code Snippets
	Conducting the Pilot Study
	Call for Participants
	Execution of the Experiment
	First Phase: Introduction to Code Smells
	Second Phase: Analysis of Code Snippets
	Third Phase: Collecting Participant Background Data

	Data Analysis
	Qualitative Coding of Developer Responses
	Cognitive Effort
	Mental Models and Reading Patterns

	Data Collection and Availability

	Results
	Impact of Code Smells on Developers' Perceived Comprehension Difficulty
	The Most Cited Categories of Self-admitted Code Comprehension Difficulty
	Distribution of Code Smells Grouped by Comprehension Difficulty Categories and Self-admitted Difficulty
	Code Smells Frequency Grouped by Level of Comprehension and Self-admitted Difficulty

	Impact of Code Smells on Developers' Cognitive Load
	Impact of Code Smells on Developers' Reading Behavior
	Mental Models: Bottom-up vs. Top-down
	Reading Patterns: Top-to-bottom vs. Bottom-to-top
	Reading Patterns: Sectionally vs. Disorderly
	Reading Patterns: Thorough vs. Skimming
	Reading Patterns: Correct and Incorrect Classifications

	Threats to Validity
	Conclusion
	Summary

	Conclusion
	Summary of Contributions
	Implications of our Findings
	Future Works
	Conclusion

	Bibliography

