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Abstract

Duarte, Diego Santos; Menezes, Ivan Fabio Mota de (Advisor).
Topology optimization of plate and shell structures using
polygonal finite elements. Rio de Janeiro, 2025. 136p. Tese de
Doutorado — Departamento de Engenharia Mecéanica, Pontificia
Universidade Catolica do Rio de Janeiro.

Plates and shells are thin-walled structures with thicknesses that are
small relative to their other dimensions. While plates primarily resist loads
applied perpendicular to their mid-plane through bending, shells carry loads
mainly via membrane forces along their curved surfaces. Their structural beha-
vior is often studied using numerical methods, notably the Finite Element
Method (FEM). Several types of finite elements have been developed, gene-
rally with triangular or quadrilateral geometries, for modeling these structures.
More recently, polygonal elements have been proposed to provide greater geo-
metric flexibility and mitigate numerical instabilities commonly encountered in
topology optimization techniques, such as checkerboard patterns and one-point
connection problems. This work presents a topology optimization framework
for plate and shell structures using arbitrary polygonal finite elements. The
primary motivation is to extend open-source educational software, such as
PolyMesher and PolyTop, to include Reissner-Mindlin plate and shell formula-
tions. The main numerical challenge lies in mitigating shear and /or membrane
locking, which can lead to an overestimated stiff response in thin structu-
res. For plates, a locking-free formulation is adopted that applies Timoshenko
beam assumptions along element edges; for shells, a degenerated curved ele-
ment with assumed shear and membrane strain fields is employed. The polygo-
nal elements are validated using benchmark problems, and compliance-based
topology optimization is then performed for both structural types. Additio-
nally, this work presents local stress-constrained volume minimization results
for plates via the Augmented Lagrangian method. The formulations are ro-
bust for both thick and thin structural regimes and also support structured
quadrilateral meshes. A guideline for code modification is also provided to ex-
tend PolyTop for plate analysis, encouraging further research and educational

applications of the proposed software.

Keywords
Topology Optimization; Plate and Shell; Polygonal Elements; Shear and

Membrane Locking; Stress Constraint.



Resumo

Duarte, Diego Santos; Menezes, Ivan Fabio Mota de. Otimizagao
topolégica de estruturas de placas e cascas usando elemen-
tos finitos poligonais. Rio de Janeiro, 2025. 136p. Tese de Douto-
rado — Departamento de Engenharia Mecanica, Pontificia Univer-
sidade Catélica do Rio de Janeiro.

Placas e cascas sao estruturas delgadas, cujas espessuras sao pequenas
em comparagao com suas outras dimensoes. Enquanto as placas trabalham
predominantemente a flexdo, quando submetidas a carregamentos perpendi-
culares ao seu plano médio, as cascas operam principalmente por meio de
esforcos de membrana ao longo de sua superficie curva. Frequentemente, o
estudo do comportamento estrutural dessas estruturas é realizado por meio
de métodos numéricos, notadamente o Método dos Elementos Finitos (MEF).
Diversos tipos de elementos finitos foram desenvolvidos, geralmente com ge-
ometrias triangulares ou quadrilaterais, para a modelagem dessas estruturas.
Mais recentemente, elementos poligonais foram propostos com o objetivo de
oferecer maior flexibilidade geométrica e evitar instabilidades numéricas co-
mumente observadas na aplicagdo de técnicas de otimizacao topoldgica, como
o problema do “tabuleiro de xadrez” e o das conexoes pontuais. Este traba-
lho apresenta uma metodologia para otimizacao topologica de estruturas de
placas e cascas utilizando elementos finitos poligonais arbitrarios. A principal
motivagdo é a extensao de softwares educacionais de codigo aberto, como o
PolyMesher e o PolyTop, para inclusao das formulacoes de placas e cascas de
Reissner-Mindlin. O principal desafio numérico é a mitigacao do travamento
por cisalhamento e/ou por esfor¢os de membrana, que pode levar a superesti-
macao da rigidez em estruturas finas. Para placas, é utilizada uma formulacao
livre de travamento que aplica as hipdteses de viga de Timoshenko ao longo
das bordas dos elementos; para cascas, emprega-se um elemento curvo dege-
nerado com campos assumidos de deformagao por cisalhamento e membrana.
Os elementos poligonais sao validados por meio de exemplos representativos
da literatura e a otimizacao topoldgica visando a diminuicao da complacéncia
estrutural é realizada para ambas as estruturas. Além disso, sao apresenta-
dos resultados de minimizagao de volume com restri¢oes locais de tensao para
placas, utilizando o método do Lagrangiano aumentado. As formulagoes sao
robustas tanto para estruturas espessas quanto finas e também suportam ma-
lhas quadrilaterais estruturadas. Um guia para modifica¢ao do cédigo também
¢ fornecido para estender o PolyTop para a analise de placas, incentivando

pesquisas futuras e aplicagoes educacionais do software proposto.
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1
Introduction

Thin-walled structures appear in numerous engineering applications, such
as lightweight aircraft and vehicle fuselages, pressure vessels and pipelines, flat
and curved roofs, vibration actuators, and so on. The main difference between
these structures and a generic solid one is their relatively small thickness, when
compared to other body dimensions. These structures are technically named
plates if their geometries are flat or shells, in case of general three-dimensional
configuration, comprising both flat and curved surfaces. Additionally, plates
are restricted to transversal forces and/or bending loads, while shells may have
loads associated with all degrees of freedom. In this work, our aim is to explore,
contribute, and share some developments in the field of numerical simulation

and design of plate and shell structures.

1.1
Structural Optimization

Optimization problems aim to typically minimize functions, called ob-
jective or cost functions, under possible constraints. Structural optimization
uses parameters as the function domain in which at least one of these domain
parameters will be related to the structure of the studied body. In cases where
there is more than one objective, the optimization will have a multi-objective
function that can translate the relevance of each parameter in the expected
result, e.g., through weighted computations [1, 2, 3].

There are mainly three types of structural optimization [1]:

— Sizing Optimization: also known as parametric optimization, this type

is limited to the optimization of body dimensions, such as the width or

thickness of a beam with a predefined profile;

— Shape Optimization: this class of optimization aims to minimize the cost

function through the shape of the body and, therefore, allowing changes

on its boundaries;

— Topology Optimization: it can change the entire domain to obtain the

optimum material distribution, that is, topological perturbations (mate-
rial inclusions or removals) can be executed both on the boundary and

inside the domain.
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Optimization methodologies often combine the types mentioned simultane-
ously. Table 1.1 illustrates how the three classes of structural optimization

would work for a simply-supported body example.

Table 1.1: Structural optimization types and examples. Adapted from [1].

Sizing

Shape

Topology

1.1.1
Topology Optimization

Topology optimization is a widely known application that can use Finite
Element Method (FEM) in order to compute objective functions, sensitivities
and constraints. In general, a topology optimization problem aims to find
a material distribution for a certain body minimizing an associated cost
function. Hence, applications include the basic minimization of mass, while
maintaining structural performance (the well-known structural compliance
problem); the synthesis of complex compliant mechanisms; fluid-structure
interaction; natural frequencies and modal analysis; and so on. There are many
established and emerging methods in the topology optimization literature,
but some of the most recurrent are the SIMP (Solid Isotropic Material with
Penalization) [1], BESO (Bi-directional Evolutionary Structural Optimization)
[4] and topological derivative [5, 3] methods.

In the paper disclosing the PolyTop software [6], the combination of the
SIMP topology optimization method [1] with an arbitrary polygonal mesh
from PolyMesher [7] is proposed for membrane finite elements through an
educational code. The SIMP method maps the material domain through a
density parameter p(x) bounded by lower and upper limits (p < p(x) < p).
Density values mimic void to full-material regions, comprising intermediate
regions (gray scales) — whose physical interpretation is a frequent subject of
study [8]. In order to regularize the resultant topology into a well-defined black-
and-white pattern, a penalty p is introduced in the SIMP method, in which
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an interpolation is proposed based on the Ersatz material model as following
E(x) = [e+ (1 —e)p(x)"] Eo(x) , (1-1)

where FEj is the solid material Young’s modulus and ¢ << 1 is the Ersatz
parameter. For plane stress bi-dimensional problems, the value p = 3 is usually
adopted to achieve well-defined topologies, as shown in the following equation

developed in [9]

2 4
pzmax{,} , (1-2)
1—V0 1+V0

where vy is the material Poisson ratio, which is often taken as 1/3 for
engineering purposes (steel properties).

Finally, a sensitivity filtering scheme is an additional strategy to over-
come the lack of consistent topology optimization solutions and numerical
instabilities, such as the checkerboard pattern [1]. In this scheme, a filtering
weight is computed based on the distances between element centroids and an

input filtering radius.

1.2
Motivation and relevance

Linear elastic plate and shell structures are often described via Reiss-
ner—Mindlin, for thick structures, or Kirchhoff-Love theories, for the thin
cases. There has been a trend in the literature to tackle both thickness cases
in a finite-element robust algorithm based on a single theory. However, the
well-known shear-locking phenomenon commonly appears in many Reissner-
Mindlin plate and shell finite elements, overestimating their stiffness when the
span-to-thickness ratio (L/h) increases. For traditional quadrilateral meshes,
integration techniques are popular solutions. However, it is known that if one
tries to apply these methods for arbitrary polygonal meshes, the locking pre-
vention fails since the shear constraints will not vanish. These types of mesh, as
the one disclosed by Talischi et al. [7] for the educational software PolyMesher,
can provide an organic and enhanced distribution of elements even in complex
real-world geometries, tracking a standardization — or even customization — of
the element average sizes. In this work, we refer to arbitrary polygonal meshes
as unstructured meshes composed of convex m-gons, which are not necessar-
ily regular, with n varying throughout the domain. In other words, triangles,
quadrilaterals, pentagons, hexagons, and so on are possible to be seen in such
meshes.

These meshes have emerged in several contexts using numerical methods.
For membrane elements, there exist uncountable applications and educational

codes available for both arbitrary polygonal and regular meshes (linear quadri-
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lateral and triangular). In the field of topology optimization, polygonal meshes
generally prevent some numerical instabilities as the checkerboard pattern or
hinged connections, once one-node element interfaces are rare in this kind of
mesh — see the educational software PolyTop [6] that is built with PolyMesher
[7]. After PolyTop, many other contributions were developed in related areas
using this code as a basis, such as for fluid flow [10], multi-material bodies
[11], dynamic loads [12], stress-constrained optimization [13], and plasticity
[14], showing advantageous evidence in disclosing accessible codes. All of these
studies utilize membrane or three-dimensional solid finite elements.

The present work is mainly motivated to add up to these contributions
by expanding the coverage of the polygonal software for both plate and shell
finite elements. The relevance of developing such simulation and topology op-
timization software is based on the proper approach to thin-walled structures,
since plate and shell finite elements perform better, in some cases computation-
ally cheaper, than the three-dimensional solid element [15]. Although polyg-
onal plate finite elements have been launched, we could not find open codes
available in the literature. Meanwhile, polygonal shell finite element should be
treated as curved elements, whose development can be much more complex
than flat elements. Hence, even though shear and membrane locking have al-
ready been treated for polygonal elements, open codes are still absent. Along
the next Chapters of this thesis, literature reviews driven towards each specific
field will shed a light on the state-of-the-art gaps, raising additional aspects
regarding the novelty and relevance of the present work. In summary, the fi-
nite element and topology optimization developments of plates and shells using

polygonal meshes are somehow recent and open in the literature.

1.3
Thesis contributions

There are two major contributions provided by this thesis: one regarding
polygonal plate elements and the other, polygonal shell elements, both using
the PolyTop software [6] as a base MATLAB® code. As already mentioned,
although the Reissner-Mindlin theory (thick structures) is used to formulate
plates and shell elements, the hereinafter contributions attempt to follow the
literature trend in making codes robust to either thick or thin plates. In these
major contributions, we list below related achievements in face of the state-of-
the-art:

— PolyTop versions for both plates and shells are developed. Each software
performs compliance minimization, properly circumventing shear and/or

membrane locking, for any thickness case with no adjustments required.
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— The PolyTop version for plates is shared with the academic community
in a conference paper [16], while the shell version will be released in due
course as the final derivations of this thesis. The PolyTop version for
plates is achieved with a very simple sequence of steps to change the

original PolyTop free software. These steps are described in Appendix

A.

— A recent development for local stress-constrained topology optimization
via the Augmented Lagrangian method [13], an aggregation-free process,
is also adapted and tested for the first time in the literature to the con-
text of plate structures — see [17]. This code is also suitable for both plate
thickness cases and comprises either regular quadrilateral or polygonal
meshes. This software can be generated following straightforward instruc-
tions to adjust the original PolyStress code [13]. The procedure is quite
the same as described in Appendix A, but utilizing the PolyStress code.

— The PolyTop version for shells unveils the topology optimization made
with a mesh fully composed of arbitrary polygonal elements — current
literature only applies polygonal elements on the boundaries of the shell

topology.

1.4
Thesis Outline

The core of this thesis is organized in the following five Chapters, divided
in two main parts: plates and shells. For each of these parts, there will be a
Chapter for the finite element and locking treatment methods and another for
the topology optimization itself. The literature review is fragmented along
the thesis, where each Chapter begins with the respective state-of-the-art
discussion.

Therefore, in Chapter 2, the plate finite element and shear locking
methods will be evaluated, modeled, and tested. The resulting element will be
used in Chapter 3 for the topology optimization of plate structures. The same
framework applies for shell structures, in which Chapter 4 stands for the finite
element and locking treatment developments, while Chapter 5 proceeds with
the topology optimization of shell structures. Then, we conclude by discussing
the main contributions, advantages and drawbacks, and suggestions for future

improvements of the present study in Chapter 6.



2
Finite Element Method for plate structures

2.1
Literature review

Considering the plate finite element, the aforementioned conventional
quadrilaterals and triangles have been widely studied along with many finite
element method applications — which includes the topology optimization.
For any general plate finite element, the three nodal degrees of freedom are
stated as the rotations around z and y axes plus a deflection in z axis.
The phenomenon of shear locking is encountered in elements derived from
the Reissner-Mindlin plate theory, also referred to as the “First-order Shear
Deformation plate Theory” (FSDT). Although Reissner-Mindlin represents a
thick model, there is an effort to build robust tools that encompasses both
thickness cases. Such cases are generally categorized by a ratio between a
characteristic length (L) of the plate domain and its thickness (h), for which
a suggested practice is to take L/h > 100 for thin case and L/h < 10 for thick
case [18]. Reissner-Mindlin theory is a widely used approach, also implemented
in commercial finite element packages, such as ABAQUS® and ANSYS® [19].
This can be attributed to the fact the FSDT requires only C° functions to
represent the displacement and rotational fields, while Kirrchoff-Love models
require the C! type (i.e., besides fields, their first derivatives also need to be
continuous).

Shear locking is an underestimated displacement response of the plate
when decreasing its thickness, and it arises from the integration of the shear
terms. In other words, as the plate becomes thinner, the plate elements based
on the FSDT fails to satisfy the Kirchhoff constraint, i.e., Vw — 8 = 0 (where
w is the transverse displacement and [ is the rotation) [19]. That is, for
thin plates, shear effects should be insignificant (Kirchhoff-Love assumption)
and, therefore, shear locking is the abnormal behavior when these effects are
overestimated.

A concern commonly addressed mutually with locking phenomenon is
the occurrence of the so-called spurious zero-energy (hourglass) modes, which

represent instabilities in the element to properly represent rigid-body motions.
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In practice, the spurious modes can be detected with element tests. For
example, the ellipticity condition test evaluates the zero eigenvalues of the
stiffness matrix of one unsupported element model. If the number of eigenvalues

exceeds the physical rigid-body modes, spurious modes are detected [20, 21].

2.1.1
Locking-Free Techniques for Quadrilateral Plate Elements

Figure 2.1 summarizes some classical locking-free techniques for quadri-
lateral elements. The selective integration technique (S) is a very common way
to solve shear locking in linear quadrilateral meshes, due to its simplicity. It
consists in reducing the order of the Gaussian quadrature numerical integra-
tion from 2 x 2 points to one point at the element center only in the shear
terms, while maintaining the full integration in the bending terms of the equa-
tions. Reduced integration technique (R) reduces the integration order on both
shear and bending terms, while the full integration (F) stands for the 2 x 2
points traditional method [22, 23]. It is evident from Fig. 2.1 that the selec-
tive integration presents the best performance comparing to the latter ones
for quadrilateral elements. Heterosis [24] and second-order elements have ef-
fective locking-free performance, but requires more computational effort than
the bilinear elements, due to their additional side nodes (strong drawback in
nonlinear and dynamic applications). For a more detailed discussion about

these techniques, see [15, 25].

Figure 2.1: Center deflection w for shear locking evaluation — a uniformly
loaded square plate of side length L, thickness ¢, with all edges clamped,
modeled by an 8-by-8 mesh. Taken from [15].
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Another particularly effective solution that has emerged within the finite
element community to address the challenges associated with shear locking in
Reissner-Mindlin plate elements is the MITC (Mixed Interpolation of Tensorial
Components) technique. Introduced by Brezzi et al. [26], this methodology
has enabled the construction of numerous plate element formulations, such as
the well-known MITC3 and MITC4 elements, that successfully avoid locking-

related issues.

2.1.2
Locking-Free Techniques for Arbitrary Polygonal Plate Elements

Although several contributions were proposed to deal with shear locking
on conventional meshes, none of the simplest classical techniques, such as the
reduced or selective integration, solve the issue on arbitrary polygonal meshes.
If one tries to implement it for polygonal elements, this will not perform with
the same effect as in quadrilateral element meshes. This is due to the fact
that the intention of reducing the integration order when computing the shear
terms is to also reduce the impact of imposed shear constraints in the stiffness
matrix [15]. However, when dealing with polygonal elements, we have much
more Gaussian points per element compared to the linear quadrilateral ones.
Therefore, even when the integration order is reduced, the shear constraints
persist.

Consequently, over the past years, some methods started emerging to cir-
cumvent locking in polygonal meshes. A pathbreaking technique was proposed
by Nguyen-Xuan [27] based on a generalization of an assumed strain field im-
posed over the polygonal edges under the Timoshenko beam assumption [28],
which naturally solves the shear locking drawback. In his work, many shape
functions were tested, such as Wachspress [29], mean-value [30] and Laplace
[31] functions, but a piecewise-linear function was proposed. This method has
also been applied to laminated composite plates [32] and an improvement
for geometrically nonlinear functionally-graded porous plates was proposed by
Nguyen et al. [33].

Later, Videla et al. [19] utilized an approach based on the discrete
Kirchhoff Mindlin theory and the assumed shear strain fields with Wachspress
shape functions [29]. Meanwhile, Katili et al. [34] proposed a polygonal locking-
free plate element for smoothed finite element method, while Wu et al. [35]
addressed the problem for polygonal Hybrid Displacement-Function (HDF)
element method. More recently, Nguyen et al. [36] adapted the first proposed
technique [27] by imposing a factor o (whose appropriate value was chosen to

be 0.5) onto the assumed rotations and shear strains. Right after, Nguyen and
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Phan [37] proposed a readjustment on the methods by Nguyen-Xuan [27] and
Nguyen et al. [33] to include a selective element domain interpolation.
Additionally, the Virtual Element Method (VEM) utilizing polygonal
meshes has emerged as an approach for analyzing Reissner-Mindlin plates
[38, 39, 40]. Inspired by the formulation of MITC elements, this method offers
distinct advantages over the traditional FEM, such as its ability to manage
hanging nodes in non-conforming meshes and its robustness to high mesh
distortion. However, VEM is also pointed by some authors to present an
increased mathematical complexity and higher computational expenses [41].
Table 2.1 summarizes the aforementioned techniques, briefly providing the

distinguishing details.

Table 2.1: Locking-free techniques for arbitrary polygonal plate elements.

Designation Approximation Shape Year
by authors Method Functions
PRMn [27] FEM Piecewise-Linear 2017
Wachspress +
(Not specified) [33] FEM p. _ 2018
Serendipity
(Not specified) [38] VEM - 2018
DKM-ngon [19] FEM Wachspress 2019
Smoothed Wachspress +
SDKMn-gon [34] n 2019
FEM Serendipity
Bilinear +
HDF-PE [35] HDF o 2021
Quadratic-Linear
aARS-Poly [36] FEM Piecewise-Linear 2023
SI-ARS-Poly [37] FEM Piecewise-Linear 2023

In the following Sections, we will present the problem statement, the
finite element formulation, and the locking-free treatment, which is inspired by
Nguyen-Xuan [27], with the Wachspress shape functions as originally utilized
in PolyTop [6].
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2.2
Reissner-Mindlin plate modeling

Let © € R? be a bounded domain defined as the midplane of an isotropic
Reissner-Mindlin plate. The governing equations for this model are (using
Voigt notation) [27]

V -DPk(0) +Ghy =0  inQ,
GhV -v=0p in €,
w=w, 0=80 on 02, (2-1)

where w and 7 = [6,,0,] are the transversal displacement and the rotations

about y and x axes, respectively (see Fig. 2.2). The plate is under the
transversal load p(z,y) per unit area, G = % is the shear modulus, with

k® = 5/6 being the shear correction factor, F is the Young’s modulus and v is

the Poisson ratio. The bending (DP) and shear (D®) matrices are defined as

0 X
y I R Al 7 Ih
Z // ///
//// p /’//
,,,’ l lll ! midplane
o, [
QX VW
Figure 2.2: Reissner-Mindlin plate model.
S 10
DP= " Iy 1 0 . D*=Gh : (2-2)
12(1 — v?) 0 1
00 (1-v)/2

where h is the plate thickness. The bending (k) and shear () strains are
1
k=g (Vo +veo'); ~=Vuw-0, (2-3)
where V = [0/8z,8/dy]" is the gradient operator. Let us define V and Vj as

V ={[w,0]:we H(Q),0 ¢ H(Q%);w=wW,0 = 0 on 09},
Vo = {[6w,008] € V;6w = 0,00 = 0 on OS2}, (2-4)
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where H'(Q) is a Hilbert space that is defined for a displacement field [dw, §6].
We also define u” = (w,0) as the displacement vector of any point in the

domain.

2.2.1
Finite element discretization

The discrete weak form of Eq. 2-1 can be obtained as: find a discrete
solution (w", ") € V", such that

/Q sk DP M dO+ /Q 54" D" d) = /Q Swp d),  V(ow",50M) € Vi, (2-5)

in which V* C V and V{* C Vj, are the finite element approximation spaces.

The displacement field within each finite element can be stated as
ue(xv y) = Z (ﬁf(I, y)d?7 (2_6>

where i is the index for the number of polygonal vertices, u®(z,y) is
the displacejrpent vector at (z,y), ¢$(x,y) are the shape functions and d§ =
{Wf, 02, HZJ is the ¢*" nodal displacement vector of element e.’ Therefore, we

will be able to write

kS = B v =3 Bid}, (2-7)
where Db
0 5= 0 o 4 g
BP*=0 0 9%, B¢ = | (2-8)
v 9% b
0 % Op; dy ¢
Oy ox

Finally, we have
KoU =F, (2-9)

where
Ne

Ko=) |[ B"'DPBPed+ [ BIDBee der,
e Qe

e=1

F:;/mpq& 40, (2-10)

where > "¢, denotes the assembly procedure.

fThe Finite Element Method for arbitrary polygonal elements, including the numerical
integration strategy, shape functions, derivatives, and other relevant details, is described in
the PolyMesher [7] and PolyTop [6] papers.
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2.2.2
Locking-free technique

The locking-free technique proposed by Nguyen-Xuan [27] is utilized in
this work, except for the shape function. As the PolyTop (or PolyStress)
software is used as the basis code in this study, the shape functions remain
unchanged for simplicity, i.e., the Wachspress functions are retained. Nguyen-
Xuan [27] proposed a piecewise-linear shape function that led to the devel-
opment of the so-called PRMn-PL element and evaluated its performance
against various other functions for arbitrary polygonal elements, including
Wachspress [29] (PRMn-W), mean-value [30] (PRMn-M), and Laplace [31]
(PRMn-L) functions. Notably, he demonstrated that all PRMn elements suc-
cessfully passed patch tests, with particular emphasis on the performances of
PRMn-PL and PRMn-W. While PRMn-PL was reported to have certain ad-
vantages over PRMn-W| the differences were generally minor and are unlikely

to consistently affect optimization results.

2.2.2.1
Original idea

The original idea applies Timoshenko beam formulation to each edge
of a triangular element [28]. The formulation is summarized in Fig. 2.3. The
deflection w(§), rotation B(£) and shear () strain fields are taken as the
following cubic, quadratic and constant functions, respectively

A Wi W}

—
_v

Figure 2.3: The Timoshenko’s beam element and corresponding degrees of
freedom.
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wW(6) = wi(l = &) + w;€ + anlé(1 — &) + alé(1 = €)(1 —26) onT¥,
B(&) = Bi(l = &) + B;€ + azé(1 =€) on I'¢,
7€) =0 on I,
w=w; and 3 = f3; at £ =& =0,
w=w; and 8 = 3; at§ =¢ =1,

(2-11)
where ay(w, ), as(w,3), as(w, ), and (w, 5) are unknown. Substituting

Eq. 2-11 into the shear strain of the Timoshenko beam [28], we obtain

_ Ldw(©)

=0 =7 i +B(§)
Z(W+a1+a2+@> + (—20q — 60y — B; + B +a3) &
+ (6o — a3) & (2-12)
Therefore
1 1 1
o = 5(—51' +55), a=7- o9 as=0 (”Yo - 2@) (2-13)

where | = &; — & (beam length) and p = 2@ + i + B;. Now, Nguyen-
Xuan [27] considers the curvature of the Timoshenko beam by using constant

a3 as follows

o — }d@f) :H0+6Z°(1—2g> (2-14)

with kg = 8; — B; — 3p(1 — 2£). Then, we need to find ~o(w, 3) through the

following minimization of strain energy
min Uy (2-15)
0

where Uy, is defined by

l !
I :—/Db2d —/Dszd
TPE = 5 | K £+2r£ - d§
I 6" I
:5/0 Dbmgdx—T(%p—vg)%——D 2 (2-16)

2

with D* = Eh3/12(1 — v?) and D* = Gh being bending and shear stiffness,

respectively. The minimization generates

6D°

Yo = D5l2—|— 12Dbp:X@
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where y = WQZU_W Finally, substituting a1, as, ag, and 7 into Eq. 2-11,

we have

w(€) =wi(l =& +wiE+ (=8 +5) (1 —¢)

—50(1 = 2x)€(1 = &)(1 - 2¢),
BE) = Bi(1 =&+ B —3p(1 —2x)E(1 =),
1)  =xp,

(2-17)
When A — 0, x — 0 and the shear strain v — 0. Therefore, the shear

locking is eliminated.

2.2.2.2
Generalization of the original idea for n-gons

The procedure to generalize the original idea for an arbitrary polygon
(Fig. 2.4) is organized in the following steps according to the work of Nguyen-
Xuan [27]. In the first 3 steps, we tackle the shear strains (v), while the

remaining stands for the bending strains (k):

(1) Shear strains along each edge

Let us describe the normal and tangent directions for an edge ¢ (see Fig. 2.4)

Figure 2.4: Arbitrary polygonal element: normal and tangential vectors on the
edges.

L osi=—le —b]" (2-18)
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with .
1 =1,2,...,n,
i =23,...,n1,
Eo=3,...,n1,2
where b; = y; — Yy, ¢; =z, — 5, [; = [|&¢; — ||, with n being the number

of nodes in an element e. From Eq. 2-17, the shear strains on the tangent

direction of the ith edge are

Vo k() = X:0; (2-19)
where

3 = ZQ (=w; +wi) +si- [(Bog + Bor) (8,5 + ﬁy.fg)r

1 (2-20)
= {2 (w4 wi) =i (8o +Bar) + (85 + 8,4)}
The relation between 7, and (7, v,) along each edge gives
= T
Y5k n% Va ik —
{ o ] = [ . ] [ o ] = 50 = Vi — iy i (2-21)
Vs.jk S Vy.jk

(2) Nodal shear strains
There are two edges sharing the same node 2 (m% and i}), as can be seen in
Fig. 2.4. From Egs. 2-19 and 2-20, the assumed nodal shear strain (7, ;, :yy.g)

can be represented by constant shear strains along i and 77, 7, .; and Vsiis

as ~
Voi | _ 1 —bn b4 liXa$q (2-22)
Vy.i Cinbg — Cabim | —ca ¢4 L X $rm
with G=n—1,n12 .. n—2
m=n1,2...n—1

(3) Approximation of shear strains
Now, shape functions are used to interpolate the assumed nodal shear strains

(V25> ,) obtained in step (2) to form the element assumed shear strains

5 (3595
5 = [%‘Z _ _ [Zgéﬁ?}.a ]
Yy 3 i

[ bmd; %
c:bp—cp b: c:bs—c: b
- Z ' Crn®; ' ]Clj¢f: ’ [lixipi](nxl) (2_23)
%,j,k,m L C%bﬁL7C7;Lb% Cjbifcib]" (2><n)
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where ¢f is the shape function evaluated at the node i

(4) Edge normal and tangent rotations for bending strains

The normal rotation Bn]k along an edge jl% is approximated as
B = (%5@); 6+ (Buit), 4 (2-24)

where (6”3.,;)3 and (Bmk)k are the normal rotations along edge 572: at nodes

7 and k, respectively. The tangent rotation BS% is determined by the second

equation in Eq. 2-17, i.e.
Boji = (55.5;;)5 ¢; + (55.3/;),; o5, + 3 (1 = 2x;) 0id;9; (2-25)

where (68'5,;)5 and (55'3,;)]; are the tangent rotation along edge 57% at nodes J

and ;J, respectively. Analogously to shear strain process
{ﬁ:wk] _ {HT] {@c.g@} _ [@c.jk]zl{_bi G ] {ﬁ:njk]
By i s | | Bysi By | G| = —b || B
(

Furthermore, (f,,3,) at nodes j and k are expressed as

— B ; _ _ 1 _ —b; ¢ 11 (Bnﬁfc); _

[ B ] L b | (B |

o | . b ] [ (B | (2-27)
| By | Gl = =b ]| (Bosi), |

Rearranging Eqs. 2-24, 2-25 and 2-26 into Eq. 2-27, we obtain

Ba s Bosb; + Boidi + 1 (1= 2x;) 90505
] == K3

30
51/.31%

: (2-28)
By %5 + Byiti — T (1= 2x3) 9,050

(5) Approzimation of rotation fields in the element

Like the interpolation performed with the shape functions to obtain shear
strains in step (3), we approximate the assumed rotation field within the
polygonal element from Eq. 2-28, leading to

[ Be ] _ [ 25 Bt + ik ST (1 —2x;) 930595, ] . (2.20)
L

By i Byi05 — iz (11— 2x) 030505



Chapter 2. Finite Element Method for plate structures

Finally, the curvature field of the polygonal element can be expressed as

Brw
KT = By
_/By,x+6x,y
[ 0 3c: [ O¢: b
Zﬂxz@il—i_z,j T J¢k+ ¢k¢ (1_2X§)p€
3b, ( 0¢; 9
i 8,5 — Tagh 1 (B0 + 5205 ) (1= 2x) g5
Zzﬁx@gz;—i_z Bylaqjsl % zay(bk zad;k(b) <1_2X2)p€"'
0¢ d
_Z%J,f“lg;(18;¢k+b13¢;k¢>(1_

(6) Matrix representation of the shear and bending strains

Eqgs. 2-23 and 2-30 can be rewritten in matrix form as

37

(2-30)

2X;) 95

7¢ = B®°d® = HI°G d°, (2-31)
RS o= k4R = (B"* 4+ BP°)d° = (B" + HPI"G)d°, (2:32)
T 7T
where d® = [d'i coodg } and
. [ O
3A‘ ( ¢]¢k+a¢k¢)
09 d
Hb(3><n) = Z{JAJQ ( ngk + ¢k¢ ) s
3 99 99
? |:<Czayk_ zaxk)¢ + ( zay_bz{);p>¢fc]
Ib(nxn) = 511(1 - 2X£)7
bing;  bidp ]
C%bmfcmb% c«b;‘.fciba
HS(2><n) - Z%ﬁ k.m Cm¢5 B ’ C]‘is;; ’ 9
C%bmfcfnbg Cjbifc%bj_
Is(nxn) 5;;)(%7
G(n><3n) = Z%,j _22,33'—2 G3j—-1 — b%,3j_ + Z%,i} 21 3k—2 G 3k—1 b%,?)fc} )
(2-33)
with .
i =1,2,...,n
7 =23,...,n1
o =3,4,...,n1,2
m =n,1,2,....n—1
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2.2.2.3
Locking-free stiffness matrix

The present locking-free technique turns the local stiffness matrix of Eq.

2-10 into the following expression
A T A ~ o~
K(e) :/ (Bb,e +Bb,e) Db (Bb,e +Bb,e) dQe + BS’eTDSBS’edﬁe, (2_34>
e Qe
where B¢ and BP* are defined in Egs. 2-31 and 2-32, respectively.
2.2.3

Stress measure on plates

Since stresses will be evaluated for plate structures in this work, let
us define the stress measure adopted. The Cauchy stress vector (using Voigt

notation) at a given point can be expressed as

_am_ [ 1 v 0 ] _5:,;_
oy % v 1 0 0 Ey
=] (00 (w2 | (239)
Tys 0 G 0 Vyz
T 0 G| [Yee)

since o, is negligible over the other stress components in plate bending.
Moreover, the transverse shear stresses 7,, and 7., are also usually small
comparing to o,, o, and 7., [15]. Therefore, in this work, we compute the

stress vector as

O o 1 v Er
Uy p— m V 1 O gy (2‘36)
Tay 00 (1-v)/2 Vay

or

o = De. (2-37)

Because we are interested in the maximum absolute stress values at a given

element centroid, we shall consider z = £h/2 (at plate top or bottom surface),

ie.

e = 2|, B™ed®. (2-38)

Given the finite element solution, we note that the locking-free strain-

displacement matrices are unnecessary once no integration is performed and
no numerical instability is expected in the stress quantification.

Additionally, the von Mises stress will be calculated from now on at the

centroid of an element e as

ol =+/oI'Vvo,, (2-39)
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where o, = De€ and

1 —-1/2 0
VY= |-1/2 1 0f. (2-40)
0 0 3
2.3
Validation

In this Section, we conduct several numerical experiments to validate the
performance of the polygonal plate element when calculating displacements,
moments, and stresses. In addition to these results, the reader is referred to
the work of Nguyen-Xuan [27], who studied the locking-free performance of
various elements, including the one used herein (PRMn-W), by evaluating

finite element responses across different span-to-thickness ratios (L/h).

2.3.1
Plates under point load

Figures 2.5(a) and 2.5(b) illustrate a simply-supported plate and a
clamped plate under a centered concentrated load, respectively. The normal-
ized displacement at the center of an L x L plate, where a central load P is

applied, can be determined as [25]

ER3
= . 2-41
VT P -n)" (2-41)

The mesh was discretized into 16,000 arbitrary polygonal elements. The
parameters adopted were L = 20, E = 30 x 10°, P = —10% h = 0.1 (thin
plate) and v = 0.3.

(a) Simply-supported (b) Clamped

Figure 2.5: Plate boundary conditions.

Table 2.2 presents the results, while Fig. 2.6 demonstrates the simulated
plate deformations for each case. We included tests for the traditional selective

integration method [22, 23] to show its inefficiency in solving the locking
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anomaly on polygonal elements (Figs. 2.6(c) and 2.6(d)). However, by applying
the technique proposed by Nguyen-Xuan [27], adopted in this study, we
successfully avoided shear locking in the finite element module of the PolyTop
code adapted for plates. It is important to note that quadrilateral or triangular
meshes (called herein as conventional meshes) are also suitable to be used with

the present technique.

Table 2.2: Finite Element normalized central deflections W of square plates:
shear locking effects.

Boundary No locking Selective Locking Reference
condition treatment integration treatment value [25]
Simply 0.0082885 0.0087925 0.011618 0.011601
supported
Clamped 0.0039949 0.0042308 0.0056304 0.0056012
2.3.2

Plates under uniformly distributed load

Other FE benchmarks available in the literature are the class of square
plates under uniformly distributed load. These examples will be distinguished
by four capital letters, where each letter represents the Dirichlet boundary
condition on each plate’s edge. For example, “SSFC” means that two parallel
sides are simply supported (S), while the remaining are free (F) and clamped
(C). With these examples, we will also evaluate moments and/or stresses. For

all cases, the polygonal meshes are arbitrarily generated with 16,000 elements.

2.3.2.1
SSSS plate

An L x L square plate with all sides simply supported is investigated
again, but under a uniformly distributed load g. The Poisson ratio is 0.25.
According to Reddy [42], reference values of normalized maximum deflection

w and normalized maximum stresses ¢ are obtained as [42]

E 3
L <q£4102> W, (2-42)

_ h?
o = <qLQ> o. (2-43)
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(a) Simply supported plate (no locking  (b) Clamped plate (no locking treatment)
treatment)

(c) Simply supported plate (Selective Inte-  (d) Clamped plate (Selective Integration)
gration) [22, 23] (22, 23]

(e) Simply supported plate (Locking-Free (f) Clamped plate (Locking-Free Technique)
Technique) [27] [27]

Figure 2.6: Deformations of square plates under a centered concentrated load:
shear locking effects.

The polygonal mesh generated for this example is illustrated in Fig. 2.7. Results
are depicted in Table 2.3, where small relative errors are seen for maximum
transverse deflection and stresses. Figure 2.8 displays the configuration of the
deformed plate and the stress maps. From now on, we choose to hide elements’

edges to make the plots cleaner.
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Figure 2.7: SSSS plate mesh.

Table 2.3: SSSS plate example — Normalized maximum deflection and stresses
under uniformly distributed load.

Present Reference Relative

Method Value [42] Error
W 4.578 4.570 0.1731%
O 0.27617 0.27620 0.00995%
oy 0.2771 0.2762 0.3249%
T, 0.2099 0.2085 0.6694%
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. Tiﬂy Ovon Mises
Plate deformation

Figure 2.8: SSSS plate example — deformation and stress results.

2.3.2.2
CCCC plate

An L x L square plate with all sides clamped is investigated, this time
under a uniformly distributed load (¢ = 10.0 kN/m?). The Young’s modulus is
E=20x108 kN/r1127 the Poisson ratio is 0.3, L = 1.0 m, and the thickness is
h = 0.004 m. Reference values for central deflection w and bending moments
(m, and m,) are taken from Radwanska et al. [18], in which moments are

given in Nm/m, and were determined herein from stresses calculated in the

FE routine by [18] 52

Table 2.4 demonstrates that the results are in good agreement with the
reference values. Figure 2.9 shows a 50-times amplified configuration of the

deformed plate and the stress maps.

Table 2.4: CCCC plate example — Deflection (m) and bending moments
(Nm/m) at the center of the plate under uniformly distributed load.

Present Reference Relative

Method Value [18] Error
A% 0.0108 0.0107 0.8116%
My 230.6 231.0 0.1603%

my, 230.5 231.0 0.2058%
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Plate amplified deformation (x50) Tay @von Mises

Figure 2.9: CCCC plate example — deformation and stress results.

2.3.2.3
SSFF plate

The last example is an L x L square plate under uniformly distributed
load with two parallel sides simply supported and the others free. The Poisson
ratio is equal to 0.3 again. Reference values of normalized maximum deflection

w and normalized maximum moments M are obtained as [43]

e () 2

Table 2.5 lists the results quite consonant to the literature, along with

the plots exhibited in Fig. 2.10, where the deformed configuration of the plate
was amplified by a factor of 500. It is still important to note that the reference
values from [43] are not analytical, but numerically simulated with the namely

“QUADY* element”, an assumed strain 9-node Lagrangian element.
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Table 2.5: SSFF plate example — Normalized maximum deflection and moments
of a square plate under uniformly distributed load.

Present Reference Relative
Method Value [43] Error
w 0.0152 0.0151 0.8836%
M, 0.0274 0.0273 0.5216%
M, 0.1319 0.1317 0.1200%
M,, 0.0214 0.0218 1.7007%
Oy Oy
Plate amplified deformation (x500) Tay Ovon Mises

Figure 2.10: SSFF plate example — deformation and stress results.
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Topology optimization applied to plate structures

Each Section of this Chapter will be divided into two parts: one for
the compliance topology optimization and the other for the stress-constrained

topology optimization.

3.1

Literature review

3.1.1
Compliance topology optimization of plates

As earlier discussed, polygonal finite element methods for thick-thin
plates are quite recent or are still being studied. As a consequence, topology
optimization of plates using arbitrary polygonal meshes is even more recent in
the literature. In 2022, Pham and Phan [44] were the first to study topology
optimization of thick-thin plate structures using the PRMn-PL element [27],
where the classical compliance minimization was adopted. From the best of
our knowledge, this was the sole topology optimization work available that
uses polygonal plate FE formulation. In the same year but using a polygonal
shell FE formulation, Ho-Nguyen-Tan and Kim [45] conducted a level-set
based topology optimization for compliance and stress minimization of shell
structures, which included some plate examples. Although shell approach is
mostly able to simulate plates, we will discuss this latter methodology by Ho-
Nguyen-Tan and Kim further in the Chapters for shells.

One may identify this scenario as an open field for investigations in topol-
ogy optimization of plates using arbitrary polygonal meshes. In this work, we
will first present the basic compliance optimization of plate structures, compar-
ing some examples with the available references. However, as an opportunity to
explore further gaps in the literature, we also carry out a topology optimization

of plates considering local stress constraints.
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3.1.2
Stress-constrained topology optimization of plates

The outcomes from regular topology optimization may not be adequate
since sharp or re-entrant regions can emerge and cause undesired stress concen-
tration. At the same time, topology optimization considering stress constraints
involves classical numerical challenges, such as the singular optima [46, 47, 48],
which appears as the stress measure is defined microscopically. Therefore, it
does not vanish in regions without material (design variable near zero), which
is physically incorrect. The global optimum is at a subspace disconnected from
the solution space, so traditional gradient-based optimization techniques can-
not achieve it. Some strategies emerged to include the degenerated subspace
into the solution space, such as the ¢ relaxation [49] and the ¢-p relaxation
[50], along with a vast variation thereof.

Another drawback is the high number of constraints since stresses are lo-
cal measures generally linked to at least the number of elements, requiring ex-
pensive computational effort. Most works focus on global stress quantification
strategies, both on membrane and plate elements. These strategies are known
as aggregation techniques, wherein local stress measures are computed into a
single and smooth quantity, such as the p-norm [51, 52, 53, 54], and the KS
norm [55]. The first evidence in the literature addressing the stress-constrained
topology optimization for plate structures was only in 2016 [56] with global ag-
gregation, the same approach utilized by the subsequent works [57, 58, 59, 45].
The main concern of aggregation methods is that global quantification can still
leave behind regions of highly concentrated stress (as evidenced by Guo et al.
[60]). Le et al. [54] and Paris et al. [61] enhanced the aggregation techniques by
clustering sets of elements into regions to evaluate. Even though the clustering
improves the method, the decision on the number of clusters and their spatial
delimitation turns the process problem- and mesh-dependent.

Silva et al. [62] performed a consistent comparison between local and
global methodologies, concluding that the topic should be addressed with local
strategies. Guo et al. [60], Duysinx and Bendsge [63], and Bruggi and Duysinx
[64] used a procedure only to consider some stress constraints when they are
close to being violated, which they call the active-set method. Although it
shows interesting outcomes, this strategy may still be expensive for large-scale
problems or highly loaded structures. Pereira et al. [65], James et al. [66],
Emmendoerfer Jr and Fancello [67, 68], and da Silva et al. [69] adopted the
Augmented Lagrangian method [70, 71], in which the optimization problem
becomes unconstrained by adding a penalization term to the objective function.

Senhora et al. [72] first disclosed an aggregation-free local stress-constrained
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topology optimization using an adapted Augmented Lagrangian method for
arbitrary membrane and solid polygonal meshes. Then, an educational software
developed by Giraldo-Londonio and Paulino [13], PolyStress, extended this
approach for nonlinear materials with further adjustments. In the evaluation
conducted by Silva et al. [62], the Augmented Lagrangian methods were shown
to be promising and preferable to other techniques due to their superior
efficiency in solving medium- and large-scale problems. To the best of our
knowledge, the literature still lacks a local stress constraint approach for
topology optimization of plate structures, disregarding the element geometry.

In the next Sections, we carry out two types of topology optimization.
First, the compliance minimization, which is already established by [44], is
validated. Then, for the first time in the literature, an aggregation-free topology

optimization with local stress constraints is investigated for plate structures.

3.2
Compliance minimization

Before proceeding straight to the topology optimization problem, we
introduce some topics, specifically those that will be set differently for the

upcoming stress-constrained optimization.

3.2.1
Filter operator

To avoid numerical instabilities, a filter operator matrix is applied

according to the linear hat filter [6]

w; ||
P=—"17 _ 3-1
’ 2221 wie|Qe| ( )
where *
wi; = max <0, 1 W) , (3-2)

€2;] is the area of the jth element, ||z} — ]|, is the distance between ith and
jth element centroids (x} and @}, respectively), and R is the filter radius.
Let us now define the vector of design variables z = {z.}.<;, with
0 < 2z, < 1. For the interpolation functions, discussed in the following topic,
PolyTop utilizes the vector y of filtered densities, which contains the values of

p at each element centroid in the form
y = Pz, (3-3)

where P is the filtering matrix defined in Eq. 3-1.
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3.2.2
Volume and material interpolation functions
The volume interpolation function used in this work follows the same of

the original PolyTop software, i.e., simply

V=my(y)=y. (3-4)

A material interpolation function according to the SIMP method used in

PolyTop is also reproduced herein
E=mp(y) =e+(1—¢) [mv(y), (3-5)

where € << 1 is the Ersatz parameter and p is the SIMP penalization factor,
usually taken around 3 for a well-defined output topology, depending on the
material Poisson ratio [9]. Equation 3-5 may be adapted to incorporate other
material representation methods, such as RAMP, as seen in PolyTop [6].
From Egs. 2-34, 3-3 and 3-5, the final global stiffness matrix will be

traditionally assembled as

K =3 ma(y, K. (3-6)

3.2.3
Problem statement

The topology optimization problem in the context of compliance mini-

mization is stated as

min F'U, (3-7)
ATmy(y) V<0

s.t ATl - (3-8)
0<2. <1, e=1,...,n

with: KU =F,

where A = {|Q|}7<,, || is the element volume and V is the volume constraint
value. Other aspects, such as meshing, sensitivity analysis and optimization
method, remain the same as in PolyTop [6], except for the continuation

method, which will be replaced by a constant penalization value of p = 3.
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3.24
Compliance minimization results

3.24.1
Square plates

Square plates are a classical benchmark problem in plate bending. In
this Section, we will demonstrate the code efficiency by running topology
optimization of simply supported and clamped plates, both on thick and thin
cases. This example has been studied by [44] and [73]. The 1x1 plate has a unit
load acting on its center — see Figs. 2.5(a) and 2.5(b). The Young’s modulus
is £ = 1,092,000 and the Poisson ratio 0.3. The number of elements is set as
16,000 (same as in [44]), the filter radius is 0.0135, and the constraint volume
fraction is 50% of the domain total volume. The Dirichlet boundary conditions
apply for all plate sides, i.e., each side will be either simply supported or
clamped, depending on each case. For thick approach, we set h = 0.1, and, for
thin case, h = 0.001. Since the domain is symmetric, only one quarter of the
plate will be considered in the optimization process.

Results are shown in Figs. 3.1(a) and 3.1(b), for simply-supported plates,
and in Figs. 3.2(a) and 3.2(b), for clamped plates, where the whole plates
are assembled with the four symmetric pieces. As we can see, the optimized

topologies become very different when the thickness changes.

(a) Thick plate (this work)  (b) Thin plate (this work)

(c) Thick plate from [44] (d) Thin plate from [44]

Figure 3.1: Simply-Supported Square Plate Topology Optimization Results.
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(a) Thick plate (this work)  (b) Thin plate (this work)

(c) Thick plate from [44] (d) Thin plate from [44]

Figure 3.2: Clamped Square Plate Topology Optimization Results.

Although there is a slight difference between the simply-supported thin
plate topology of this work (Fig. 3.1(b)) and the one presented in [44] (Fig.
3.1(d)), we can see in Fig. 3.3 from [73] that, as the plate thickness decreases,
the resulting topology approaches the topology of the present work. It is also
noted that, for sufficiently thick plates, the results remain unaffected even

without the application of any locking treatment.

Figure 3.3: Optimal topologies for various simply-supported plate thicknesses,
using different plate elements (Discrete Kirchhoff Quadrilateral - DKQ; As-
sumed Natural Strains - ANS; Selective Reduced Integration - SRI; SRI with
Hourglass Control - SRI HC), taken from [73].
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3.24.2
A Hook Plate

The hook example, illustrated in Fig. 3.4, was studied as a plate problem
by Pham and Phan [44] and is an appropriate geometry to take advantage of
the polygonal meshes’ power. The domain is given in Fig. 3.4(a), where the
eyelet circle is clamped and a transversal unit force acts on the hook end. The
parameters remain the same as the previous examples, except for filter radius
(2.0) and volume fraction (27.5%). The thickness for the thick case is h = 25,
while h = 0.01 for the thin case.

Figures 3.4(b) and 3.4(c) present out results for thick and thin hook
topology optimization, which are notably similar to the literature topologies
(Figs. 3.4(d) and 3.4(e)). Again, the results differ from each other when distinct

values of plate thickness are used.

o

(a) Hook plate model

(b) Thick hook plate (this (¢) Thin hook plate (this
work) work)
(d) Thick hook plate from [44] (e) Thin hook plate from [44]

Figure 3.4: Hook Plate Topology Optimization Results.
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3.3
Stress-constrained volume minimization

As mentioned in Section 3.1, we propose an extension to linear elastic
Reissner-Mindlin plates of the aggregation-free methodology for local stress-
constrained topology optimization through the Augmented Lagrangian method
by Giraldo-Londono and Paulino [13]. The original algorithm’s finite element
method, optimization, and sensitivity analysis Sections are adapted to the
context of plates. In this problem, the PolyStress [13] software is used
as the basis code, where the locking-free technique previously described is
implemented together with the modifications necessary to change the finite
elements from membrane to plate version.

Any other detail not mentioned hereinafter is taken as unaltered from
PolyStress. Several numerical examples are performed to investigate the
methodology’s efficiency and coverage. The approach is appropriate for any
plate polygonal finite element in meshes made entirely of the same polygon

(structured) or composed of random polygonal elements (unstructured).

3.3.1
Filter operator

As stated by Giraldo-Londono and Paulino [13], to enforce the problem
into a well-posed one, the filter operator matrix is applied according to the
following [74, 75]

Py=—"" 3-9
’ Zil wie|Qe| ( )
where * x|\ 4

wi; = max (o, 1 W) (3-10)

and ¢ is a filter exponent. In case ¢ = 1, the linear hat kernel will be invoked (as
in Eq. 3-1), but a nonlinear kernel is preferred to stress-constrained topology

optimization so that the topologies may have more precise boundaries.

3.3.2
Volume and material interpolation functions

The volume interpolation function, for a clear black-and-white definition,

is the threshold projection function [76]

m (y ) _ tanh(ﬁﬁ) + tanh(B(Ye - 77))
Vel ™ fanh(8n) + tanh(B(1 — 7))’

with # and 7 being adjustable input parameters. The material interpolation

(3-11)

function is according to the SIMP method, as in Eq. 3-5.



Chapter 3. Topology optimization applied to plate structures 54

3.3.3
Polynomial vanishing constraints

The PolyStress code presented a variation of the traditional vanishing
stress constraint [77], the so-called polynomial vanishing constraints [78], which

takes the following form

9;(2,U) = mp(y;)A;(AF +1) <0, (3-12)

where e
Aj=—L —1, (3-13)

Olim

o is accounted for according to Eq. 2-39, and oy, is the imposed stress limit.
The polynomial vanishing constraints appropriately act like the traditional
ones (A;) when of/oym — 1. However, when the constraint is violated
(0 /0m >> 1), this function assumes a cubic behavior (A?) that leads the
optimizer to a lower overall stress solution. Giraldo-Londofnio and Paulino [13]
argued that the polynomial vanishing constraint drives the solution toward an
overall lower stress state more quickly than the traditional one and that no
struggles with the nonlinear behavior are seen. The number of stress constraints
in this study is chosen to equal the number of elements in the discretized

domain.

3.3.4
Topology optimization problem

The topology optimization problem considering local stress constraints

can be originally stated as follows

AT
w10 =2
gi(z, U) =mp(y,)A;(A2+1)<0, j=1,...,n.
i §(2,U) = mp(y;)A; (A +1) (3-14)

0<z2.<1, e=1,...,n,

with: KU =F,

where A = {|Q|}o2,, my and mpg are respectively defined in Egs. 3-11 and
3-5, y is obtained according to Eq. 3-3 (wherein P must now be taken from
Eq. 3-9), z is the design variable vector, and A; is defined in Eq. 3-13. The
problem stated in Eq. 3-14 is valid for one load case only — for multiple load

cases, refer to the work of Senhora et al. [72].
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3.3.5
The Augmented Lagrangian method

As mentioned in Section 3.1.2, one of the main drawbacks of local
stress constraints in topology optimization is the large number of constraints.
The Augmented Lagrangian (AL) method [70, 71] is a promising method for
tackling the problem. The AL method turns the original problem into a set of

unconstrained optimization problems, each of them pursuing the minimization
of its k"-step AL function J,u (z, A¥)). This k™ sub-problem is stated as [13]

. 1
min S (2,AY) = f(z) + neP /(2,0), (3-15)
where P®*)(z, U) is the penalization term, expressed as
P®) (z,U) i [)\(’“ )+ @h»(z U)Ql (3-16)
9 I\ )
=1

h;(z,U) are the equality constraints

NG
h;(z,U) = max [gj(z,U), _,u](’f)] , (3-17)

k) = {)\gk 1 is the Lagrange multiplier estimator vector, and p®) >0 is a

quadratic penalty factor, both updated as

k k
A =AW B0 U, (3-18)

(k+1)

1 = min {ozu(k), umax} : (3-19)

where o > 1 and . are an update factor and an upper bound to avoid
numerical instabilities.

The normalization factor 1/n. in the second term of the right-hand side
of Eq. 3-15 avoids numerical instabilities for large-scale problems, otherwise
P®) would govern over f(z) as n. becomes large. A pseudo-code is provided
in Algorithm 1, where a version of the Method of Moving Asymptotes (MMA)
[79] is employed to solve each AL sub-problem. In Algorithm 1, Tol and TolS
are input tolerances for change in the design variables and stress constraints,

respectively, while zgi)l and zgk)

are consecutive MMA solution vectors in a
k" AL sub-problem. The process runs over two main loops, both limited to
prescribed maximum numbers of iterations, i.e., MaxIter for the outer and
MMA_TIter for the inner loop. Moreover, PolyStress adopts a continuation of
the penalization parameter § of the threshold projection function in Eq. 3-
11. For further comments on the initial parameter calibration, the reader is

referred to the original PolyStress paper [13].
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Algorithm 1 AL-based stress-constrained topology optimization [13]

1: Read input parameters
2: Initialize k = 0, A, ;©
3: while (k < MaxIter) and

[nisum zg?l — zl(k)‘ > Tol or max () /0ym) — 1 > TolS}
do ’

4: =k+1

5: for j=[1,...,MMA_Iter] do

6: Compute AL function according to Eq. 3-15

7: Use MMA to find the new z*)

8: Solve finite element equations based on new z*)

9: Compute ¢ based on new z*

10: if [niesum zgi)l — zgk)‘ < Tol} and [max (;i) —1< TolS} then
11: break
12: end if

13: end for

14: Update A 1) according to Eq. 3-18
15: Update p**Y according to Eq. 3-19
16: Run continuation of £ in Eq. 3-11
17: end while

18: Output: final optimized topology 2*

3.3.6
Sensitivity analysis

Although the present sensitivity analysis for plates has only a tiny
different detail (in Eq. 3-30) from the one in PolyStress, we will reproduce the
whole process for a better understanding. Since our optimization algorithm is
gradient-based, we need the sensitivity of the AL function in Eq. 3-15 to guide
the problem in Eq. 3-14 towards minimization. Therefore, we use the chain

rule

WA OFS WA VS WAL
iz 0z dB | 0z AV~
_8E<8f 18P("‘)> av(8f+1ap<k>>
0z oV n, OV |’

(3-20)

9E ' n. OE

0z

where E = mg(y) and V = my (y). Then, depicting each term from the above

equation OFE oV
Oz 0z
with J,,, = diag (mfs(y,), .., mig(y,,)) and Jp, = diag (mf, (v1), ..., m}(v,,)).
Based on Eqgs. 3-14 and 3-16, we also verify that
of _ of _ A

— 0 and i 3.99
OE, ame oy T AT (3-22)

= PTJmE (y) and = PTJmV (Y)a (3_21)
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oP®)
v =0 (3-23)
The term OP® /OF) is expressed as
opk) - e (*) Oh;(z,U)  0Oh;(z,U) oU
: -24
IE, g[ (e U)H 0, T ou om| T

We use the adjoint method to properly find OU/JFE; without high
computational cost [80]. From Eq. 3-14

dK dU
—U+K— =0. 3-25
aE - TN aE (3-25)
We may write
dK dU
' (dElU+KdEl> =0 (3-26)

with & being the adjoint vector variable, so that we may add this zero term
into Eq. 3-24 to obtain

8P( e (k) 8hj(Z, U) ahj<Z, U) ou
o, = X+ (2, 0) [ 0B, | oU 0k
dK U
+ €7 <dElU+KdEl> (3-27)

Now, we choose & such that all terms multiplying OU/JE; vanish from
Eq. 3-27 and the following less-expensive adjoint problem emerges
8hj (Z, U)

K¢ = =3 [N+ u®hy(a. 0)] =L

=1

(3-28)

According to Eq. 3-17, 0hj(z,U)/0U = 0 when g;(z) < —)\gk)/,u(k) and

0h;(z,U)/0U = 0g;(z,U)/0U otherwise, i.e.
ahj . 89] 80';) 80']'
OU 00! 0o; OU"

(3-29)

The terms dg;/0c} and dof /0o ; are straightforwardly obtained from Eqs. 3-12
and 2-39, respectively. The last term is computed as
% _ Jo; 0¢’
oU  9ei OU

from which the adjoint vector can be found. Finally, the penalization term

= 2|, DB"*, (3-30)

derivative becomes

o P
0FE,

e Oh;(z,U) ,dK
=3 AP 4 192, ) TR YA (3-31)

J=1

where 0h;(z,U)/OE,; is obtained directly from Egs. 3-17 and 3-12, while
0K /OE; from Eq. 3-6.
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3.3.7
Stress-constrained volume minimization results

Several numerical experiments are conducted to investigate different as-
pects of the proposed methodology. In addition to demonstrating the algo-
rithm’s efficiency and scalability, we employ arbitrary polygonal and rectangu-
lar meshes, analyze both thick and thin plate scenarios, compare results from
local stress-constrained topology optimization with compliance optimization,
and utilize complex geometries to emphasize the capabilities of PolyMesher
[7].

A set of relevant optimization parameters is outlined in PolyStress [13],
with minor adjustments made in this study — see Table 3.1. These parameters
are maintained across all examples unless otherwise indicated. Some of the
following examples are roughly replicated from existing literature; however,
they may not correspond to the exact same cases due to variations in mesh

types and sizes.

Table 3.1: Input optimization parameters from PolyStress [13]

Parameter Value
Initial Lagrange multiplier estimators - A(©) 0
Initial penalty factor - p(?) 10
Maximum penalty factor - fiyax 10,000
Penalty factor update parameter - « 1.10
SIMP penalization factor - p 3.5
Nonlinear filter exponent - ¢ 3
Ersatz parameter - € 1078
MMA iterations per AL step - MMA_Iter 5

Initial threshold projection penalization factor® - 3

Maximum threshold projection penalization factor® - fp.x 10

Threshold projection density - 7 0.5
Initial guess - z() 0.5
Convergence tolerance on design variables - Tol 0.0002
Convergence tolerance on stress constraints - TolS 0.003
Maximum number of AL steps - MaxIter 150

23 starts as 1 and increases by 1 every 5 AL iterations up to its maximum

value Bpax.

Additionally, the von Mises stress maps are processed using a standard

normalization technique, i.e.
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5V = B, (3-32)

3.3.7.1
Cantilever plates

The initial examples consist of rectangular cantilever plates fixed along
one edge and subjected to a uniformly distributed transverse load on the
opposite edge. Two cases are replicated from the literature, differing only in
their aspect ratio.

(i) A long-and-narrow cantilever plate

Figure 3.5 summarizes the example of Goo et al. [56], where a force of
0.1 N is uniformly distributed across three central nodes to mitigate stress
concentration. The boundary conditions restrict all degrees of freedom at the
clamped edge. To replicate the original experiment, Young’s modulus is set at
1 GPa, and the Poisson’s ratio is 0.3. The plate dimensions are 60 x 20 mm
with a thickness of 0.5 mm, qualifying it as a thin plate. A mesh consisting
of 10,092 traditional Q4 elements' is generated to implement the proposed
methodology. In this study, we will vary the thickness of the cantilever plate
examples. To obtain significant stress values, we propose an increased force of
10 N for a thickness of 10 mm (thick case). A stress limit of 16 MPa is imposed

for both thickness configurations, and a filter radius of 5 mm is employed.

plu/gé\&

Y

60 mm

[ >
h g

Figure 3.5: Long-and-narrow cantilever plate example as presented by Goo et

al. [56].

Figure 3.6(a) displays the resulting topology for the thin case, consistent
with the results of Goo et al. [56] (see Fig. 3.6(c)). Aggregation methods,
particularly those utilizing the p norm, require careful selection of appropriate
p values, as variations can significantly impact the final topology. The present
method yields a unique output, although certain key factors, such as mesh
size, may influence the results from other methods. The normalized von Mises

I Although the quadrilateral element by the polygonal framework still has four nodes

(a linear element), the PolyTop algorithm will numerically integrate the element stiffness
matrix with 3 x 4 Gauss points per element.
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stress map indicates that the stress constraints are satisfied throughout the
domain. A final material volume of approximately 26.5% of the total domain
is achieved. For the thick case, illustrated in Figure 3.6(b), a similar topology
is obtained, albeit with a reduced material volume of about 11.4% of the
domain total volume. Thanks to the locking-free technique, no additional
modifications are required to execute thin or thick cases. It is important to
note that Goo et al. [56] conducted this experiment solely for a thin plate.
For both thickness configurations, the objective function (material volume
fraction) and the maximum normalized von Mises stress are plotted across
each AL iteration, as shown in Figure 3.7. The results indicate that the initial
topology (linked to the initial guess) already satisfies the stress criterion in
both cases. However, optimization may still be advantageous for conducting
a trade-off analysis between minimizing material volume and stress constraint

conformity.

(a) Thin case (b) Thick case

(c) Reference for thin case [56)

Figure 3.6: Long-and-narrow cantilever plate — Final topologies for thin (a)
and thick (b) cases, with the corresponding normalized von Mises stress maps;
Goo et al. [56] results for the thin case in (c), with stress scale not normalized.
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Figure 3.7: Long-and-narrow cantilever plate — Evolution of material volume
fraction and maximum normalized von Mises stress for both thickness cases.

(ii) A short-and-wide cantilever plate

The second cantilever plate example, proposed by Liu et al. [57], is similar
to the previous one but features dimensions of 30 x 90 mm and a thickness of
0.5 mm (thin case) — refer to Fig. 3.8. A force of 25 N is uniformly distributed
across six neighboring elements. The material properties are defined as £ = 210
GPa and v = 0.3. Additionally, we present a thicker plate variation for this
example, with a thickness of 5 mm and a total applied force of 250 N. For both
cases, the stress limit is set at 358 MPa, and the filter radius at 5 mm. A mesh

of 10,092 Q4 elements was used once again.

< 30 mm

>
>

Figure 3.8: Short-and-wide cantilever plate example as proposed by Liu et al.
[57].

The results depicted in Figs. 3.9(a) and 3.9(b) demonstrate clear topolo-
gies. In the thin case, the results are in good agreement with those reported
by Liu et al. [57] (Fig. 3.9(c)). Figure 3.10 illustrates the evolution of material
volume fraction and maximum normalized von Mises stress throughout the op-
timization process. Final material volumes of approximately 36.5% and 6.8%

of the domain total values are achieved for thin and thick cases, respectively.
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(a) Thin case (b) Thick case

(c) Reference for thin case [57]

Figure 3.9: Short-and-wide cantilever plate — Final topologies for thin (a) and
thick (b) cases, with the corresponding normalized von Mises stress maps; Liu
et al. [57] results for the thin case in (c), with stress scale not normalized.
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Figure 3.10: Short-and-wide cantilever plate — Evolution of material volume
fraction and maximum normalized von Mises stress for both thickness.
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3.3.7.2
T-shaped plate

Similar to the L-shaped beam or Corbel design benchmarks for membrane
stress-constrained topology optimization, the T-shaped plate example features
a re-entrant corner geometry that induces stress concentrations, which must be
mitigated. This example was investigated by Goo et al. [56] and Ho-Nguyen-
Tan and Kim [45] in the context of thin plates. We adopted the parameters used
by Goo et al. [56], namely Young’s modulus of 1 GPa, Poisson’s ratio of 0.3,
and thickness of 0.5 mm. A force of 0.1 N was uniformly distributed across
three central nodes to minimize stress concentration effects. The boundary
conditions, dimensions, and force location are shown in Fig. 3.11. A mesh with
40,000 Q4 elements, a filter radius of 4.0 mm, and an initial guess of (%) = 0.25
were employed. We replicated the study by Goo et al. [56], applying stress
limits of 12, 20, and 30 GPa.

20 mm

Figure 3.11: T-shaped plate example by Goo et al. [56].

Figure 3.12 demonstrates that the final topologies successfully avoid
replicating the re-entrant corner present in the initial domain. These results,
which are consistent with those from the literature [56, 45] (Fig. 3.13), reveal
the expected trend of decreasing the characteristic width of the final plate
topologies as the stress limit increases. Specifically, the final material volume
fractions are 15.8% (Fig. 3.12(a)), 11.3% (Fig. 3.12(b)) and 9.9% (Fig. 3.12(c)).
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(a) olm = 12 M Pa

(b) Olim = 20 M Pa

(¢) olim = 30 M Pa

Figure 3.12: Final topologies of the T-shaped plate for various stress limits,
along with the corresponding normalized von Mises stress maps.

Algorithm’s scalability assessment

We use the T-shaped plate example with o, = 12 M Pa to evaluate
the scalability of the proposed algorithm.? In this evaluation, we consider
five different meshes, all configured with the same parameters as previously
described for this example, except for the distribution of the transversal load,
the convergence tolerance for the design variables (Tol = 107'°), and the
maximum number of Augmented Lagrangian (AL) steps (MaxIter = 55). The
load is applied to nodes within a fixed distance of 0.8 mm from the edge-

midpoint neighborhood. We significantly reduce the Tol parameter and adjust

2This experiment was conducted using Matlab 2024a (Linux) on a computer with a Dual
Xeon E5 2640 V4, 256 GB RAM, and an onboard video running on a CentOS 7 64-bit
operating system.
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Figure 3.13: Results of Goo et al. [56] for the T-shaped plate example (stress
scale is not normalized).

the MaxIter parameter to force the algorithm to terminate after a maximum
number of iterations instead of based on the tolerance criterion. The maximum
number of AL iterations was previously determined to ensure that each mesh
converges at the usual tolerance value, i.e., Tol = 0.0002, as shown in Table 3.1.
This approach allows us to evaluate different mesh sizes using a standardized
comparison method. The meshes consist of 10,000; 50,176; 99,856; 200,704; and
300,304 Q4 elements, which correspond to the number of local stress constraints
imposed.

The normalized von Mises stress maps for each mesh are depicted in
Fig. 3.14, along with a plot of degrees of freedom (DOF) versus time. A brief
time breakdown of the time required is provided in Table 3.2, where times are
rounded to one decimal place and presented in seconds. The Precomputations
time includes mesh generation, computation of the filter matrix, initial finite
element calculation, assembly procedures, and other preliminary steps before
running Algorithm 1. Optimization time refers to the duration Algorithm 1
takes to complete 55 AL iterations (or 275 MMA iterations). The Others
time accounts for additional minor tasks, such as data recording and plotting.
As shown, the contribution of Precomputations time (as a percentage of the
Total time) increases with mesh size, while the Others time decreases, as
the Optimization time remains dominant for all mesh sizes. Similar to how
the AL algorithm for membrane and solid finite elements has been shown
to be scalable by Senhora et al. and Giraldo-Londono and Paulino [72, 13],
this study demonstrates that the proposed methodology for plate elements is
also computationally feasible. However, it is important to note that the times
presented in Table 3.2 could be further reduced. One way to achieve this would
be by using a filter radius that adapts to the mesh size so that each element

considers a fixed number of neighboring elements at each iteration. To obtain
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similar topologies, we kept the filter radius constant at 4 mm for all mesh sizes,
which led to an increasing number of neighboring elements being considered,
thus resulting in longer computational times. It is also worth noting that we
intentionally exceeded the usual convergence number of iterations associated
with the standard Tol parameter (as shown in Table 3.1), which would have
resulted in significantly faster runtimes (e.g., the total time for the largest

mesh with the standard tolerance was 2983.4 seconds).

7000 T T T T T

6000 - A

5000

4000

3000 -

Total time (s)

2000 -

(99,856)

1000

ok (50.176) (number of constraints) |

(10,000)
1 1 1 1 1

0 2 4 6 8 10
Number of degrees of freedom x10°

Figure 3.14: Scalability assessment — resulting normalized von Mises stress
maps for the T-shaped plate example with oy, = 12 M Pa considering different
mesh sizes (number of constraints in parentheses).

Table 3.2: Scalability assessment — time breakdown (in seconds) for the T-
shaped plate example with oy, = 12 M Pa considering different mesh sizes.

Number of DOF 30,753 152,211 301,941 605,475 905,025

) 9.2 60.4 109.2 296.6 652.0
Precomputations
(11.5%) (12.0%) (9.6%) (10.5%) (12.5%)
o 63.0 435.3 1014.0 2492.5 4520.6
Optimization
(79.2%) (86.5%) (89.4%) (88.7%) (86.9%)
7.4 7.5 11.5 22.3 31.1
Others
(9.3%) (1.5%) (1.0%) (0.8%) (0.6%)

Total 79.5 203.2 1134.7 2811.4 5203.6
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3.3.7.3
Hook plate domain

This example is again an adaptation of the hook domain, initially
introduced by Talichi et al. [6] for plane stress application. Pham and Phan
[44] modified this numerical experiment for plate applications, where the hook’s
eyelet is fully clamped, and a transverse concentrated load is applied. This plate
version of the hook example was previously only considered for compliance
minimization, as validated herein in Section 3.2.4.2. Then, we extend the
experiment to a stress-constrained approach. The only minor modification is
the transverse load redistribution along three neighboring nodes centered at the
original location shown in Fig. 3.15 to avoid stress concentration singularities.
To replicate the examples provided by Pham and Phan [44], we use the same
parameters: Young’s modulus of 1,092,000 and Poisson’s ratio of 0.3. The total
applied force is 1, and the thicknesses are 0.01 for the thin case and 25 for the
thick case. The filter exponent is set to ¢ = 1, and the SIMP penalization
factor is p = 3. The dimensions are based on the work by Talischi et al. [6].
Stress limits are chosen to ensure that the final volume fractions obtained
will generate similar topologies to those by Pham and Phan [44], where these
fractions will be used as input parameters for the compliance minimization
problem. The selected stress limits are 250,000 for the thin case and 0.045 for
the thick case. A polygonal mesh with 16,000 elements was generated using
PolyMesher (7], and a filter radius of 2.0 is applied.

The compliance minimization problem is conducted to replicate the re-
sults from Pham and Phan [44] and to compare them with the outcomes from
the present method. The settings for the compliance problem differ from Sec-
tion 3.2.4.2 and are established as follows. The volume constraints are set
at approximately 0.281 for the thin case and 0.262 for the thick case, corre-
sponding to the final volume fractions obtained from the stress-constrained
approach. The implementation of the volume and material interpolation func-
tions follows Eqgs. 3-11 and 3-5, respectively, with a maximum of 150 MMA
iterations. The threshold projection continuation on  follows the same frame-
work used in this study, except for the update frequency, which is adjusted to
25 MMA iterations. This adjustment is based on the 5 MMA iterations per 5
AlL-iteration frequency specified in Table 3.1. All other parameters were kept

consistent with those used in the stress-constrained problem.
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O

Figure 3.15: Hook plate example.

Figure 3.16 depicts the results for the thin hook plate under stress-
constrained optimization (Fig. 3.16(a)) and compliance minimization (Fig.
3.16(b)), with the latter showing again good agreement with the results from
Pham and Phan [44] (Fig. 3.4). Both topologies are similar, with final volume
fractions approximately equal at 28.1%; however, even a minor disparity can
result in stresses above the threshold. The final topologies for the thick hook
plate are shown in Fig. 3.17, where the compliance result (Fig. 3.17(b)) also
aligns with those from Pham and Phan [44] (Fig. 3.4). In contrast to the thin
case, noticeable shape differences appear between the two methods, with the
compliance output exceeding the stress limit by approximately a factor of two.
It can be suggested that the topologies from the stress-constrained approach
could be enhanced through the calibration of certain optimization parameters.
However, we limited the parameters to ensure the reproduction of topologies

similar to those in the compliance counterpart from the literature.
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Figure 3.16: Final topologies of the thin hook plate example along with the
corresponding normalized von Mises stress maps.
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Figure 3.17: Final topologies of the thick hook plate example along with the
corresponding normalized von Mises stress maps.
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3.3.74
Plate with curved boundaries

The final example consists of a flat, thin plate with curved boundaries,
as proposed by Liu et al. [57], in which bilinear and biquadratic NURBS iso-
geometric elements were employed. The shape and dimensions of the plate are
illustrated in Fig. 3.18, which considers two separated transversal load loca-
tions, A and B, while the opposite straight edge is fully clamped. Although
the initial design used Non-Uniform Rational B-Splines (NURBS), we approx-
imate the curved boundaries through image processing and point acquisition
techniques. The parameters adopted are consistent with those from the liter-
ature: a Young’s modulus of 1 GPa, a Poisson ratio of 0.3, a plate thickness
of 0.5 mm, and a stress limit of 90 MPa. A total transverse force of 1 N is
distributed over six neighborhood elements (regions A or B) to reduce stress
concentrations, as highlighted in Fig. 3.18. The convergence tolerance for the
design variables is set to Tol = 0.002; the filter radius is 10 mm, and the initial
guess is 2(?”) = 0.7. The mesh was generated using PolyMesher, consisting of

16,000 arbitrary polygonal elements.

150 mm

300 mm

< >
< >

Figure 3.18: Plate with curved boundaries example.

Figures 3.19(a) (load location case A) and 3.19(b) (load location case B)
present results in good agreement with those of Liu et al. [57] (Fig. 3.19(c)),
despite the geometry being designed using approximation methods. Case B
appears to be more sensitive to minor variations in parameters. The final
material volume fractions are approximately 32.8% for case A and 28.3% for
case B, with maximum von Mises stresses remaining within the acceptable

range for both cases.
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(a) Load location case A (b) Load location case B

(c) Reference results [57] for load locations A (left) and B (right)

Figure 3.19: Final topologies of the plate with curved boundaries by Liu et al.
[57] for load location A (a) and B (b), with respective normalized von Mises
stress maps; Liu et al. [57] results for both load cases in (c), with stress scale
not normalized.



4
Finite Element Method for shell structures

4.1
Literature review

Shell methodologies are quite as recent as the plate proposals for arbitrary
polygonal elements, but the modeling of three-dimensional shell structures
may be more involved depending on the approach. Two alternative ways to
model shell structures prevail in the finite element literature: the flat and
curved approaches. The flat shell element simply consists of superposing
the degrees of freedom of the classic membrane and plate elements, plus
an optional drilling (normal) rotation. Once there are properly established
locking-free polygonal membrane and plate elements, the flat shell approach
shall be straightforward. However, according to Zienkiewicz et al. [25], only
flat quadrilateral and triangular meshes can model cylindrical shapes, while
spherical or any other doubly-curved shells are only feasible to be discretized
by flat triangles. Then, an alternative solution for polygonal meshes can be the
curved element approach, which is indeed more complex than the flat option.
These curved shell elements are based on a degeneration of the 3D solid finite
element and must also be adjusted to circumvent shear and membrane locking
behaviors.

If one tries to transform an arbitrary two-dimensional polygonal mesh,
like PolyMesher [7], into a shell surface, it cannot be guaranteed that the ele-
ments will remain flat — in fact, they will certainly be warped. Although recog-
nizing this warping effect, Wu et al. [81] proposed a polygonal flat shell element
based on the hybrid stress/displacement-function finite element method for lin-
ear and nonlinear analyses by merging membrane and plate elements with a
drilling degree of freedom. Indeed, it is demonstrated that warping effect did
not render significant errors, but only one type of example (a single-curved
cylindrical surface) was evaluated, with variations of quadrilateral-pentagonal
and hexagonal meshes, all somehow structured. Then, there is still a persistent
issue to ensure that the element’s flat geometry approximation would succeed
for wider variations of surface curvature and polygonal mesh arbitrariness.

For that reason, we believe that polygonal shell elements should be modeled
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without neglecting their spatial distortion, and the curved shell finite element

approach should be preferred.

4.1.1
Conventional curved shell finite elements

Since the approach further used in polygonal curved elements is inspired
by the conventional solutions (for triangular and quadrilateral meshes), a brief
discussion is first reviewed herein.

Shells with general geometries can actually be modeled using tree-
dimensional solid elements that typically have a thickness much smaller than
its other dimensions (as illustrated in Fig. 4.1(a)). However, if the shell is not
thick enough to be treated as a solid, assigning three nodes along the thickness
direction at each element corner introduces too many unnecessary degrees of
freedom. By removing the midsurface nodes, one obtains the configuration in
Fig. 4.1(b). In this setup, lines along the thickness direction remain straight
but are allowed to rotate relative to the shell midsurface, which aligns with

the Reissner-Mindlin theory for plates and shells.

(a) 20-node solid ele- (b) 16-node element (c) degenerated shell el-

ment ement

Figure 4.1: Degenerated shell element idea: the 20-node solid element (a) gener-
ates a 16-node element after elimination of midpoints in thickness direction (b),
which finally converges to the linear degenerated shell element (c). Adapted
from Cook et al. [15].

As the element becomes thinner in Figs. 4.1(a) and 4.1(b), the stiffness
components in the thickness direction increase significantly, leading to poor
conditioning of the stiffness matrix [15]. To address this, one can enforce that
each pair of nodes along a thickness line shares the same displacement in that
direction, resulting in five DOF per node pair. Eventually, this leads to the
simplified configuration shown in Fig. 4.1(c), where surface nodes are replaced
by midsurface nodes, each having three translational and two rotational degrees
of freedom. We adapted the original figure in Cook et al. [15] to purposely

show a linear degenerated shell element (Fig. 4.1(c)), as studied in the present
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work (i.e., the merged pair of nodes at the edge midpoints were removed). As
with other elements based on the Reissner-Mindlin theory, challenges such as
spurious modes or shear locking can emerge.

The MITC (Mixed Interpolation of Tensorial Components) approach was
originally introduced to mitigate shear locking in the 3- and 4-node degenerated
shell elements based on continuum mechanics, known as MITC3 and MITC4
[82, 83, 20]. Instead of interpolating the transverse shear strains (7,. and
Vyz) directly from the displacement field, they enforce constant covariant
transverse shear strains along element edges by assuming that these constant
values are the ones at the tying points (barycenter for MITC3 and midside
points for MITC4). Commercial finite element packages commonly use the
Assumed Shear Strains (ASS) by the MITC elements [84]. However, when the
original MITC elements are applied to curved geometries using unstructured
meshes, membrane locking may also occur. Then, higher-order triangular and
quadrilateral elements were developed to reduce these anomalies (the MITC9,
MITC16, and MITCG6 shell elements) [85, 86, 87, 88]. Hereinafter, we will focus
on the MITC4 variants, once the polygonal techniques will take advantage
especially of these quadrilateral elements.

Alternatively to higher-order elements, linear options have been proposed
to alleviate membrane locking in the original MITC4 element. Ko et al.
[89] proposed the so-called “MITC4+" element, in which membrane locking
is especially mitigated when elements are geometrically distorted in curved
geometries. By using the concept of the MITC method, the tying membrane
strains are obtained from four triangular domains which subdivide the shell
mid-surface of the 4-node quadrilateral element. Sequentially, the same authors
proposed a “new MITC4+" element [90] to improve the membrane efficiency of
the previous “MITC4+" element, again in the context of distorted elements. In
this new version, they represented strains in terms of characteristic geometry
and displacement vectors, with the membrane strain field designed upon ideas
by Choi and Paik [91] and Kulikov and Plotnikova [92]. Right after, the same
authors launched one more option, namely the “improved MITC4+" element
[93], where they further improved the last variant by utilizing the assumed
strain field of a 2D solid element (“2D-MITC4” element) for the membrane
behavior (maintaining the performance in bending and transverse shearing).

In 2024, Cui et al. [94] decreased the computational cost of the
“MITC4+" element by proposing a stabilization technique that allowed a re-
duced numerical integration, from 2 x 2 to 1 Gauss point. Right after, Choi
and Lee [84] disclosed a “simplified MITC4+" element, an updated version
of the “improved MITC4+"” approach, where a simplified assumed strain field
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is obtained by merging the tying points into the element center, as well as
the adoption of a geometry-dependent Gauss integration scheme [95]. Lastly,
in 2025, Ko et al. [96] transformed the MITC4 and the “improved MITC4+"
elements into 6-DOF versions with an extra drilling rotation at the nodes (the
“MITC4/D” and “MITC44-/D” elements). The inclusion of this degree of free-
dom enables the connection of shells to beam elements and further increases

the element membrane efficiency.

4.1.2
Polygonal curved shell finite elements

In 2018, Ho-Nguyen-Tan and Kim [97] opened a pathway developing
a pentagonal curved shell element with Assumed Natural Strains (ANS) to
tackle shear locking inspired by the same idea of the MITC elements. It is well
known that shear locking governs the element error over the membrane locking,
and that is the reason why some elements with no membrane treatment still
reverberate in the literature. The overall motivation of Ho-Nguyen-Tan and
Kim [97] was to transform curved boundaries of quadrilateral meshes, which
are originally pixelated, into more rounded, smoother curved boundaries. The
idea consists of trimming each quadrilateral element on a curved boundary,
from which pentagons may emerge. Another motivation of this methodology
regards the topology optimization, in which new body boundaries will arise
throughout the process, allowing well-defined topologies.

An year later, the same authors extended the pentagonal approach
for any arbitrary polygonal shell element, with the addition of a membrane
locking-free technique [98]. A strategy of splitting the polygonal elements into
quadrilateral subdomains was used to relieve the membrane locking, where
each quadrilateral subdomain was treated as a “new MITC4+" element [90]
to build the Assumed Membrane Strains (AMS). The same motivation of
trimming quadrilaterals on boundaries remains, but this time any polygon
may be addressed, not only pentagons. More recently, an enriched virtual
element (VEM) was proposed by Yang et al. [99] for a membrane shell model,
whose approach disregards bending moments. From the best of our knowledge,
no updates following the constant development of the MITC4 variations are
found in the literature, and no other polygonal curved finite element has been
detected since then. Therefore, the present study will employ the most up-
to-date methodology [98] to handle arbitrary polygonal curved shell finite

elements.
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4.2
Continuum-based degenerated shell elements

The Reissner-Mindlin theory for shells and plates is governed by similar
constitutive equations, as both account for transverse shear deformation and
employ independent rotational degrees of freedom. However, the shell formu-
lation generalizes the plate theory to curved surfaces by introducing curvilin-
ear coordinates, covariant derivatives, and additional in-plane displacements.
While the stress relations maintain the same physical structure, their math-
ematical expressions in shell theory are adapted to the geometry of the shell
midsurface [42, 43, 100, 101]. The difference, therefore, lies not in the con-
stitutive behavior, but in the geometric framework and associated degrees of
freedom, as will be discussed below.

Figure 4.2 shows a continuum-based degenerated polygonal shell element.

The geometry of an n-gon element is described by
z(&,1,¢) = Z¢> (& m)x hZfb’ &) (4-1)
=1

where ¢%(£,n) are the two-dimensional shape functions at each node i of
the element (Wachspress type [29]), @’ are the position vectors of the shell
midsurface (¢ = 0) at each node 7 in the global Cartesian coordinates (x,y, z),
h is the shell thickness, and V% are the unit direction vectors at each node
i. Vectors Vi are not necessarily normal to the shell midsurface, but in this
work we will in general model surface geometry with normal V% vectors.

The displacement vector field is then
w(&,n, €)= Y 6 (€, mu' + hzwn( Vid +Vig), (42
=1

where u' = [uf v' w']" are the nodal translational displacement vectors at the
midsurface, V' and V' are the other unit direction vectors, from which o’ and
(¢ are defined as rotations of Vé about V! and V%, respectively. The nodal
displacement vector is then written as d’ = [u' v' w' o/ $]". One common

way to determine vectors V% and V' is by the following cross product

VZl:HZiinH and Vi = Vi x V1, if Vi It ea; w3)
. Vi . . . . . a
Vi = |V27:2|| and V| =V, x V7§, if Vi | es.

The thickness-direction vector V% can also be represented as the coordinates

of the direction cosines, i.e.,
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Figure 4.2: The continuum-based degenerated shell element with n sides.

V=4 mj T YT Yk (s (4-4)
n zj — 2,

where (z;,y;,2;) and (2, yx, 2) represent the coordinates of the top (¢ = 1)
and bottom (¢ = —1) surface vertices at node 7, respectively (see Fig. 4.2). We
may also write V! = [Ii,m?,ni] and V', = [}, m},nb]. These vectors can be
interpolated to any point inside the element (e.g., a Gauss point) as

n n

Vi=> o'V Vo= ¢'Vy  Vi=) Vi  (45)
i=1 i=1 i=1
The linear, Green-Lagrange version of the covariant® strain components,

defined with respect to the element natural coordinate system, are [102]

1
€ij = B (gi-u; +8g-u,),

(4-6)

where
i

ox ou

= and w; = — with & = = = (. 4-7
agl » 851’ fl 5752 77753 C ( )
!Covariant coordinates refer to a system of curvilinear coordinates defined on a surface,

where the basis vectors vary from point to point and are tangent to the geometry, enabling
the formulation of strain and stress components relative to this surface shape [100, 101, 102].
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In other words,

Z?:l Qb?z (wj + %hVé) ) ifi=1,2;
by VY, if i =3,

g; (4-8)

and

il W §h (<Viel s Vi)] i =12

T (4-9)
by ¢ (—Vied + VBT, ifi = 3.

Vectors g; are also called the covariant basis vectors. The displacement-based

covariant strain components may be written as
€ij = BZ]U (4—10)

We can transfer the covariant strain components directly to the global

Cartesian coordinate system simply by
€ = €5 (g’ ® gj) y (4_11)

where g = 9¢;/0x, or the contravariant basis vectors (Einstein summation
notation is valid). All strains in the following Sections are covariant strain
components, unless otherwise stated.

The local constitutive tensor (D’) for linear elastic, isotropic material is

obtained from

O¢ 1 v O 0 E¢
oy 5 |V 10 0 0 En
1—12
0 00 0

Ten 000 (1-v)/2 Ven

Tn¢ 0 G 0 Tn¢
Tee] | 0 G| [

or
o' =D¢, (4-13)

where G = 2“SE is the shear modulus with k* = 5/6 being the shear correction

(1+v)
factor. Note that we enforce o = 0 in Eq. 4-12 to have plane stress conditions
in each thickness-direction layer. We introduce the stress-strain transformation

matrix (T.) as
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l% m% n% l1m1 mimny ’I’Llll
l% m% ng lgmg mono nzlg
lg m% TL?)’ l3m3 msans nglg

2l1l2 2m1m2 2711%2 l1m2 + lgml miNg + Mony nllg + ngll

2l2l3 2m2m3 2n2n3 l2m3 + l3m2 MaNg + Mana n2l3 + n312

2[3[1 2m3m1 271377,1 l3m1 + l1m3 msnyi + mins ngll + 7’L1l3
(4-14)
where [l,, m,, n,] are the direction-cosines components of the vector V', as per

Eq. 4-5. The transformation of the constitutive tensor from local (D’) to global

(D) reference is performed through
D =T/D'T, (4-15)

Finally, the element stiffness matrix of the polygonal degenerated shell

element is stated as

K = / B”DBd* (4-16)

det (J
(&:mj,Cr)

where W are the Gauss weights and N gp is the number of Gauss points used

Ngpe Ngpn Ngp¢

> Y > B'DB

i=1 j=1 k=1

Q

Win Wi,
(&ivm5:Ck)

for £ (analogous to n and (). Ngpe and N gp, follows the same triangularization
framework as in PolyTop (or quadrangularization, as further discussed), and
Ngp¢ is integrated in this work with two Gauss points in the thickness
direction. With Eq. 4-7, the Jacobian matrix J can be computed as follows
_ g{ _
J=|— gl —|, (4-17)
_ gg _

while its inverse can be built with the contravariant basis vectors as

.
Jh=1g' g g*|. (4-18)

Whenever necessary, the above approach requires a proper definition of

V', at nodes where the shell surface is sharp to avoid ambiguity.

4.2.1
Shear locking treatment

In this study, the technique to alleviate transverse shear locking in the
polygonal shell is based on Ho-Nguyen-Tan and Kim [98]. These authors claim

that it is possible to find some points at which the transverse shear strains
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may represent the average distribution of the transverse shear strain fields
at a particular region. Also, they state that, for thin shells, even though
the transverse shear strains do not vanish at all points, the average value
of the transverse shear strains over the element tends to zero. Therefore,
an Assumed Shear Strain (ASS) field, constructed from the transverse shear
strains evaluated at specific locations, referred to as “tying points”, that
represent the average values can be used to vanish spurious transverse shear
strains within the element [103]. In the MITC method [82, 20], this ASS field

can be defined as

Nip
ey =y ey (€, mp,) withi=1,2and j =3, (4-19)

k=1
where (ffp, nfp) is the location of a tying point k, ny, is the number of tying
points within an element, and v* is the interpolation function of the tying point
k. As proposed by Ho-Nguyen-Tan and Kim [98], the interpolation utilized is

a simple polynomial, such that

Eec = FP(€,Q) -

a
(4-20)
Enc = F7(E,0) - b
where
FOEn) =[1¢&m,. ] (4-21)
———

is the isotropic basis vector of degree p on the Pascal’s triangle in (£,7)

coordinates (see Fig. 4.3), and p = [n/2] —1 and m = Y% i. The utilization of

these isotropic polynomials of Pascal’s triangle guarantees geometric isotropy

of the element. The unknown coefficient vectors (a and b) are defined as
a=[ar,as, ... am]"

(4-22)
b=1[b,bs,....0n]" .

The tying point (g'p,n}:p) is placed at the midpoint of the polygonal
element edge i, as in the original MITC4 element [82]. The transverse shear

strains at the tying points on a general inclined edge, eg? (ftip, n§p>, are

es (&pomiy) = et (&,0miy) cos @ + el (&,,mi, ) cos p? (4-23)

where @ and p are the angles of the inclined edge i with respect to & and 7
axes, respectively, and ¢ indicates the direction of the inclined edge tangent axis
(see Fig. 4.4). Spurious transverse shear strains can be avoided by assuming
constant transverse shear strain conditions along the edges of the element. To
ensure these conditions are met along edge ¢, the assumed shear strains g

q
along the element edge must match the transverse shear strain 61(1? evaluated
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Figure 4.3: The isotropic polynomial basis vectors of Pascal’s triangle in (£, )
coordinate system (adapted from [98]).

at the corresponding tying points, i.e.

qg (Shmh) = 6 (ftp,ntp) h=12,...n, (4-24)

where (&;,7;) are equally spaced positions, starting from the vertex, along the
element edge i and n, = [n/2] is the required number of these positions to
satisfy the constant transverse shear strain conditions (see Fig. 4.4). Combining
Eqgs. 4-20, 4-23, and 4-24, we obtain

£ (Ghomi) cos @] - @+ [£9 (&, ) cos ] - b = el (o) (425)

£ (&€ m2)cosp® P (&2,1n2) cos p?

W

q

£ ) cos @ FP(E n2) cos p? . el?
[ ] = 1(] gt:mntp

or
_ . o)
£ cos®  fP (el nt) cos pV) e‘ZC (& mi,) |
1
£ m) cos® P (¢l nd) cos p) et (&b,
1
£ (k) cos e £ (gL nl ) cos pV €t (étp,ntlp
2
¢ Eét[n
2

)
)
)
)
)

£ (67 con g £ (€, 2) o gt,,,ntp

£ (€ ) cosp™ £ (g ) cos p™) el (ghomi) |
(4-26)
For n > 3, the number of unknowns (2xm) is always less than the number
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Figure 4.4: Tying points, angles and equally spaced positions for the ASS field
of polygonal shell elements (adapted from [98]).

of equations (n X n.). Therefore, a pseudoinverse is applied through the least
square method to find an optimal solution to the constant transverse shear
strain conditions. Consequently, the ASS field is a least square fitting of the
constant transverse shear strains on element edges to the isotropic polynomials

of Pascal’s triangle.

4.2.2
Membrane locking treatment

From equation 4-6, the in-plane strains is rewritten as a combination of
the membrane strains at the shell midsurface (¢ = 0) with terms depending

on ¢ due to bending deformations [89, 90], i.e.

eij = el + Celt + (Pely, with i, j = 1,2 (4-27)
where

m _ 1 (0xm , Oum Oxp | Oum
Cj = 2 (? og; T o 06 )
bl _ 1 (Omw  OQuy | Omm  Oup | Oxp  Jum | Oy , Dum a
€j =2 ( 96 T 0E T og, o0& T o0& og, T o0& 8&) (4-28)
eb2 — 1 (8% L Ouy | Oz 8ub)
ij T 2\ 09 0 08 0&
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with
LI , 1 .
=Y dEm . @ = > he'(En)Vy (4-29)
i=1 i=1
=Y e w=g 3 he'(En) (Vi + VIS (4-30)
=1 i=1

It is well-established that the degenerated shell elements on curved
geometries may exhibit membrane locking. This issue arises because such
elements fail to reproduce pure bending modes or inextensional motions of
the shell’s midsurface without inadvertently generating spurious membrane
strains [55]. To mitigate this undesired behavior, Ho-Nguyen-Tan and Kim
[98] introduced an Assumed Membrane Strain (AMS) field by partitioning the
polygonal shell element into a set of non-overlapping quadrilateral subdomains.
These subdomains are constructed using the centroid of the polygonal element
and the midpoints of its edges, as illustrated in Fig. 4.5. The centroid of the

polygonal shell element, considering only n > 4, is defined as

an x', (4-31)

an u', (4-32)

Figure 4.5: Subdivision of the polygonal shell element into quadrilateral
subdomains to build the AMS field (adapted from [98]).

Now, looking at a quadrilateral subdomain £, the membrane geometry is

interpolated as

4
¥ (En) = ¢"(En) (4-33)

I=1
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where x!/(®) is the position vector of the point I of the kth quadrilateral
subdomain, ¢'(£,7) = 1/4(1 4+ £€)(1 + #4) is the interpolation function of
point I in € and 7 coordinates, with £/ = (—1,1,1,—1) and ! = (=1, —1,1,1),
and (€,7) is the element natural coordinates for the quadrilateral subdomains.
Then, we can write 4
ay (60) = 3 o' (€ ™. (4-34)
As shown in Fig. 4.5, the displacer;ilt vectors at the edge midpoints are
computed by a linear interpolation of the displacements of the two neighboring
nodes. Therefore, the membrane strains in a quadrilateral subdomain & can be

expressed as

(k) LAk A(k) Ak) (K
6z'j( ) = 2 (gg : 'u,(j) +gj(' : u(z)> ’ (4-35)
where
i (k) o'k R A
gV =" and Al = ;"fm with & =€, & =14, and g = gs.
(4-36)
From Eq. 4-33, we obtain
oy (k) w  OFY ) s
T o= x +nxy,, m =z +&x 4-37
8§ é nx, 877 n g d ( )
(k) 1&gy I(k)
k 1
g = 3 qpla®, (4-38)
413
(k) 1 prar 1k
Lq = 1 Zf ﬁ r ( )7

T
)

where :%ék) and ﬁ:gﬂ) are the characteristic geometry vectors and :f:((jk) is the

distortion vector of the quadrilateral subdomain k& (see Figs. 4.6(a) and 4.6(b)).
Analogously, from Eq. 4-34, we have

oay) (k) w®  0uy  wy s
T = a; +nu,’, =, +&u 4-39
85 d 677 n ( )
~ (k) } A, 1(k)
'u,é = 4;5 u' ",
1
ﬁ%k) = =Y i u®, (4-40)
4 I=1
(k) L& prar 1k
Uy = =7 ZS 77 u ( )7
4 I=1

(k)

- - (k) )
where & ¢ Zy

NG T
, and :1:2 are the characteristic displacement vectors.
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Figure 4.6: The characteristic geometry vectors on a quadrilateral subdomain

k of the polygonal shell element: two in-plane vectors :iék), :%,%k) and normal

vector A% (a), the distortion vector :chik) (b), tying positions A, B,C, D and

E of a quadrilateral subdomain (c), and the dual in-plane basis vectors )

£
and m;’“) (d). (Adapted from [98]).

An AMS field can be formulated using the characteristic geometry and
displacement vectors to diminish spurious membrane strains that arise in
curved shell elements subjected to pure bending deformation [90]. In this
methodology, linear terms are incorporated into the in-plane shear strain
expressions to ensure the patch test is satisfied. Furthermore, the bending
performance is enhanced by adopting the strategy proposed by Kulikov and
Plotnikova [92]. Ho-Nguyen-Tan and Kim [98] utilized this same approach
within each quadrilateral subdomain to formulate the AMS field for the
polygonal shell elements. Specifically, the membrane strains calculated at the
five tying points in the quadrilateral reference element [90] are used to establish
the AMS field within each subdomain k, such that
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ke
)
2) o) (4-41)
)
)

_|_

)
)
+= (1= 200 + € + 20c€) g (4-42)
)
)

)
)

(7 + 4pcén) e (4-43)
)

Ul
+ (14 péi)en®,

where the tying points of the quadrilateral subdomam (A, B,C,D and F) can

be seen in Fig. 4.6(c), while the geometric coefficients are given as

(e

YA = 2d )
Cé (Cé —+ 1)
T
ale—1) (4-44)
900 - 2d 9
_ Gy (ch+1)
YD = 2d y
oy — QCéCn
d )
ith . A
wi ¢ = mék) _ a:&k),
Cy = mgc) 2P, (4-45)
d= Czc + c% — 1.

(k)

on the plane formed by two vectors & i (k)

) and &'

The dual basis vectors m 2
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(see Fig. 4.6(d)) are defined as

A(k) ( i ) k) A 54— _
mel X 5], me =0 with,j=1,2 (4-46)

and A" —wA P x @z A<k k)H

To transfer the membrane strains from the quadrilateral subdomains to
the polygonal shell element (in the final element natural coordinate system),

we calculate

¥ =P (gi-8") (g;-8"). ij=12andn =12 (4-47)

where g"-g; = 0,;. When the geometry of the quadrilateral subdomains is flat,
the AMS field described in Eqs. 4-41, 4-42, and 4-43 becomes equivalent to that
of standard two-dimensional plane elements [90]. It should be noted that Ho-
Nguyen-Tan and Kim [98] emphasize that the linearized covariant membrane
strains in each quadrilateral subdomain cannot be exactly transformed into
the linearized covariant strains defined in the polygonal shell elements by a
simple coordinate transformation. As a result, the proposed polygonal shell
element may not pass membrane patch tests due to the use of different basis
vectors in the polygonal domain and the quadrilateral subdomains. However,
these authors also state that the numerical results indicate that the AMS
field defined in Eq. 4-47 remains effective in practice for significantly reducing
membrane locking in polygonal shell elements.

Finally, enforcing assumed membrane strains in Eq. 4-27 yields

&ij = € + (et + (Pely, with i, j =1,2. (4-48)

lj7

Polygons with 3 or 4 edges are not subdivided into quadrilateral subdomains
and are equal to the “MITC3” [20] and “new MITC4+” [90] elements.
Triangular elements also do not suffer from membrane locking due to its
flat geometry [98]. For other polygonal elements (n > 4), the quadrilateral
subdomains are used as the integration domains, once the AMS field is built by
using these subdomains. The ASS field is also continuous in each quadrilateral
subdomain. Although this polygonal shell element does not pass all patch
tests unrestrainedly, four-point integration for each quadrilateral subdomain

demonstrated good performance in numerical experiments [98].

4.3
Surface mesh generation

It is well known that mesh properties influence the convergence and
accuracy of numerical approximation methods such as FEM. This is valid for

any type of mesh, either 2D or 3D cases. Speaking of which, this work is even
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inspired by the fact that different meshes may present improvements in relation
to others — in particular, we are motivated by the expansion in the coverage of
the optimized 2D polygonal mesh PolyMesher by Talischi et al. [7], once it has
several advantages as discussed in the previous Chapters. However, it is seen
that meshes modeling three-dimensional curved surfaces deserve even deeper
investigation than the in-plane meshes already established. The creation of an
arbitrary polygonal mesh with standardized element size and aspect ratio may
be a complex task. Recalling that mesh generation is not the main focus of this
work and considering the significance of this topic, which we believe warrants
dedicated attention, a simple mesh generation approach is employed in this
work. This approach consists of taking advantage of the consolidated 2D mesh
generator PolyMesher and post-processing its planar result to transform it into
a three-dimensional mesh. It should be noted that a mesh generated directly
on the three-dimensional domain was not investigated in this study.

The first idea that arises is to orthogonally project the nodes on a param-
eterized surface. However, elements may suffer from stretching in steep regions,
as demonstrated in Table 4.1, which yields poor finite element accuracy. An
alternative is to perform a pre-processing step to adapt the node locations in
order to concentrate them in the 2D domain according to surface slopes and
then proceed to the orthogonal projection. However, it is still a challenge to
propose a generic adaptation scheme that works for a variety of surface shapes.
Therefore, we adopt the following surface parameterization to post-process the
2D mesh.

Consider a node position vector & = [x,v, 2|7 that belongs to the shell

surface. Let ¥ : IR? — IR® be a parameterization function defined by
\Il(u”l}) = [‘rayVZ]T? (4_49>

where (u,v) is the parameterization position vector in the 2D domain. The
approach consists of first generating the 2D mesh in PolyMesher and then
parameterizing & = [z,vy, 2]7 with (u,v) to the desired surface. We note that
some parameterizations may cause FE node-numbering inversion and need
to be corrected (here, we artificially multiply the FE force vector by —1).
Indeed, this approach is only suitable for a set of parameterizable surfaces
and can be involved depending on the shell shape, but when practicable, the
mesh uniformity obtained is quite satisfactory (see Tab. 4.1). At the same
time, orthogonal projection also cannot model any type of surface, especially
those with multiple nodes on the same vertical direction. The last two rows of
Tab. 4.1 show examples where it is not adequate to generate surface meshes

using each of the approaches discussed. The parameterization functions and
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2D domains will be specified for each shell example in the next Section.
Finally, the Vé vectors in Eq. 4-4 can be easily obtained by
T x W

W (4-50)

Vi—

i

Figure 4.7 illustrates some examples of shell meshes with the plotting of V7

vectors.

Figure 4.7: Examples of shell meshes with Vé vectors as per Eq. 4-50.
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Table 4.1: Surface mesh generation — each mesh presents 900 elements.

Mesh

domain

Orthogonal
projection

Surface
parameterization

2D

3D

2D

3D

2D

3D

2D

3D
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4.4
Validation

In this Section, we showcase the efficiency of the polygonal degenerated
shell elements and the proposed meshing approach. Both thick and thin cases
are addressed, as well as shells with point and distributed loads, single- and
doubly-curved surfaces, and flat shells modeling plate cases. For all examples,
we utilize a 2D mesh generated by PolyMesher [7] with the same parameter
setting as originally published, except for the maximum number of Lloyd
iterations, which we increase to 500 to guarantee good mesh uniformity. Further
discussion can be found in [98], including an analysis of the element’s locking-

free performance across multiple span-to-thickness ratios (L/h).

44.1
Pinched cylinders

The pinched cylinder examples comprise a cylindrical body with diamet-
rically opposite compressive loads, as illustrated in Fig. 4.8. The softer version
of this example has free ends, while the most common version has diaphragm

restrictions on both cylinder ends.

Figure 4.8: Pinched cylinder model.

Each mesh corresponds to one symmetric octant of the cylinder and has

900 elements with the following parameterization function (as per Eq. 4-49)

Rcos (%)

v = v , for all cases, (4-51)

Rsin (%)

where u € [O, %} and v € [O, %}, i.e., the 2D mesh domain is a % X %
rectangle. Examples of these 2D mesh domains can be seen in the first row of

Tab. 4.1.
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44.1.1
Pinched cylinder with free ends

In this example, we will analyze the behavior of the element with
variation in thickness. Ashwell and Sabir [104] performed both thick and thin
cases for this example. Material and geometric parameters are summarized in
Tab. 4.2.

Table 4.2: Pinched cylinder with free ends — Material and geometric parameters
by [104] (Note: AF is an amplification factor to apply on the deformation
results).

Parameter Thin Thick
Case Case

E (Ibf/in?) 10.5x10% 10.5x10°

v 0.3125 0.3125

L (in) 10.35 10.35

R (in) 4.953 4.953

h (in) 0.01548 0.094

P (1bf) 0.1 100

AF 10 10

Table 4.3 displays the maximum deflection in the direction of the loads
along with the reference values and relative errors. As can be seen, both
thickness cases demonstrate satisfactory results. Figure 4.9 shows the amplified

deformation behavior of the shells.

Table 4.3: Pinched cylinder with free ends — Maximum deflection results (in).

Case Winax Reference Relative
value [104] error
Thin 0.02459 0.02439 0.8127%

Thick 0.1138 0.1139 0.1303%




Chapter 4.

S

s

NSNS
R R S e e R
SRR
R
S

=
SR >
=
S S St

i
7y

Y

%
05— \%
0]
— T
T —T U
—
5

T — 4
T 3
2
3 4 , 2
x ¥

(a) Thin case

Finite Element Method for shell structures 93

=
S

o
ST RN
4 R T

RS =

(b) Thick case

Figure 4.9: Pinched cylinder with free ends — Amplified deformation results on

one symmetric octant of the cylinder.

44.1.2

Pinched cylinder with diaphragm ends

This version of the cylinder is most commonly seen in the literature,

where rigid diaphragms restrict both cylinder ends [105, 106]. The restriction

fixes all translations in the plane of the circular ends and the rotation about

the cylinder axial direction, but the translational DOF normal to this plane

and other rotational DOFs are set free. Table 4.4 gives the parameters utilized.
The results are displayed in Tab. 4.5 and in Fig. 4.10.

Table 4.4: Pinched cylinder with diaphragm ends — Material and geometric
parameters by [105, 106] (Note: AF' is an amplification factor to apply on the

deformation results).

Parameter

Value

E
v
L
R
h
P

AF

3.0 x 108
0.3
600
300

5.0 x 108
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Table 4.5: Pinched cylinder with diaphragm ends — Maximum deflection results
and reference values from [105, 106].

W Reference Relative
max

value error

1.838 x 107> 1.825 x 107>  0.7354%

300 —

250 —

200

N 150 —

100 ~

Figure 4.10: Pinched cylinder with diaphragm ends — Amplified deformation
results on one symmetric octant of the cylinder.

4.4.2
Scordelis-Lo roof

The Scordelis-Lo roof is a well-known established benchmark with dis-
tributed load, recently encouraged by Krysl and Chen [107], who criticized the
use of FE shell benchmarks with point loads. This example comprises a roof
in the form of a cylindrical section, with both ends restricted by diaphragms,
and a uniformly distributed load (q) applied over the shell surface (refer to
Fig. 4.11). The parameters are given in Tab. 4.6. The simulation domain is the
one-quarter symmetric segment of the roof, with a mesh of 3,600 elements. The
parameterization function remains the same as in Eq. 4-51, but with u € [0, %9}

Rf

and v € [0, ﬂ, i.e., the 2D mesh domain is a 5> X % rectangle.
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Figure 4.11: Scordelis-Lo roof — uniformly distributed load over the roof.

Table 4.6: Scordelis-Lo roof — Material and geometric parameters by [107]
(Note: AF' is an amplification factor to apply on the deformation results).

Parameter Value

E (Ibf/ft2) 4.32x 108
v 0.0

L (ft) 50

R (ft) 25

h (ft) 0.25

0 80°

q (Ibf/ft2) 90

AF 10

The results are shown in Tab. 4.7 and Fig. 4.12, where displacements
in x and z directions are measured at the midpoint of the lateral edge of the
roof. Although good correlation can be verified for this case where distributed
load is employed, errors typically range from 0.1% to 2.1%. The reason is
that we approximate the distributed load by simply dividing the total load
by the number of nodes, instead of conducting the numerical integration and
assembling of the FE force vector. Therefore, this approximation depends on
the number of nodes and nodal distribution over the surface. The Scordelis-Lo
roof has not yet been tested with arbitrary polygonal elements in the literature,
but here we demonstrate that these elements are also capable of effectively

addressing this type of shell benchmark.
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Table 4.7: Scordelis-Lo roof — Displacement results (ft) at the midpoint of the
lateral edge and reference values from [107].

This Reference Relative
work value error
u —0.160 —0.159 0.433%
w  —0.3028 —0.3024 0.1466%

30 —

25 —

~
20 —

10
v

15
x 20 0

Figure 4.12: Scordelis-Lo roof — Amplified deformation results on a symmetric
one-quarter segment of the roof.

4.4.3
Hemispheres

In order to evaluate the finite element behavior on a doubly-curved shell,
the hemisphere examples are usually considered. The first case was introduced
by Belytschko et al. [105] with a full hemispherical shell only restrained from
presenting rigid body motions and subjected to compressive and tractive loads
shifted by 90°. Then, a variation of this case was proposed by Simo et al.
[106], with the same configuration, but with an 18° opening at the top of the
hemisphere. Figure 4.13 shows both cases in detail and the parameters listed
in Tab. 4.8 are the same for the two examples. In Fig. 4.13, the indicated
“z-fixed” points are imposed to prohibit rigid body motions [98]. The mesh of
each hemisphere case represents one symmetric quarter of the entire domain

and has 900 elements with the parameterization function for both cases given

by R cos (%) Ccos ( v—u/2 5)

¥ = | Rcos (%) sin( v—u/2 1) : (4-52)

Rsin ()
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where (u,v) is delimited by the 2D mesh domain represented in Fig. 4.13 for

each case.
f z-fixed point

Symmetry I Symmetry

Symmetry \ Symmetry \

P P
— j(—
P / P / z-fixed point
(a) Full hemisphere (b) Open hemisphere
v v
T[T RET
RE 2
|
| |
| |
! 1
| |
Cu ! u
0 T 0 2
RE R?
(¢) Full hemisphere - 2D mesh (d) Open hemisphere - 2D mesh
domain domain

Figure 4.13: Hemisphere models and respective 2D mesh domains.

Table 4.8: Hemispheres — Material and geometric parameters by [105, 106].

Parameter Value

E 6.825 x 107
v 0.3

R 10

h 0.04

P 2

AF 10

The measurement analyzed for both cases is the displacement at any
load point in the direction of the applied force at this point, whose result

and reference values are summarized in Tab. 4.9. Figure 4.14 exhibits the



Chapter 4. Finite Element Method for shell structures 98

deformation behavior of each shell example. Results emphasize the polygonal

shell element efficiency in modeling doubly-curved surfaces.

Table 4.9: Hemispheres — Displacement results at a load point and respective
load direction, with reference values from [105, 106].

Hemisphere Uload Reference Relative
case value error
Full 0.0920 0.0924 0.492%
Open 0.093 0.094 1.0%
(a) Full hemisphere (b) Open hemisphere

Figure 4.14: Hemispheres — Amplified deformation results on one symmetric
quarter of the hemisphere.

4.4.4
Twisted beam

Another benchmark is the twisted beam problem, where elements are
tested in handling the warping of their own surfaces to accommodate the
pretwist of the structure. Krysl and Chen [107], inspired by Belytschko et
al. [105] and Simo et al. [106], also recommended this example in the sense
of stimulating the use of distributed loads. As shown in Fig. 4.15, the body
is clamped on one of its ends and is continuously twisted until its opposite
end is shifted by 90°, where two load cases can be applied separately. The
difference between the two load cases regards vertical versus horizontal force
direction, both uniformly distributed along the final edge. The literature also
encompasses two thickness cases for this shell example, whose parameters are
found in Tab. 4.10. Again, a mesh with 900 elements is utilized, with the

parameterization function, also applied to all cases, given as
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u
¥ = | vcos (%g) : (4-53)
v sin (%g)
where u € [0, L,] and v € [—%, %}, i.e., the 2D mesh domain is a L, X L,

rectangle (see third row of Tab. 4.1).

Clamped
L
)yé/ Pz

Figure 4.15: Twisted beam model.

Table 4.10: Twisted beam — Material and geometric parameters by [107] (Note:
AF is an amplification factor to apply on the deformation results).

Thin Thick

Parameter
Case Case
E (psi) 20 x 10° 29 x 10°
v 0.22 0.22
L, (in) 12 12
L, (in) 1.1 1.1
h (in) 0.0032 0.32
P, = P, (Ibf) 1.0 1.0x1076
AF 100 100

The displacement is evaluated at the midpoint of the loaded edge, in the
direction of the load case. As mentioned for the Scordelis-Lo roof problem,
the twisted beams have also not been tested for arbitrary polygonal elements
before, therefore, after investigation, we showcase the element satisfactory per-
formance in another challenging benchmark. Table 4.11 and Fig. 4.16 display

the results with relative errors and deformed configurations, respectively.
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Table 4.11: Twisted beam — Displacement results (in) at the midpoint of the
loaded edge in the direction of the load case, with reference values from [107].

Load Thickness Uload Reference Relative
case case (1073) value error
p Thin 1.291 1.294 0.2465%
Y Thick 1.748 1.754 0.3546%
P Thin 5.244 5.256 0.2347%
: Thick 5.4146 5.424 0.1726%

(a) Py load - thin case

(c) P, load - thin case

(b) P, load - thick case

(d) P, load - thick case

Figure 4.16: Twisted beam — Amplified deformation results.

4.4.5
Shell as a plate example

Finally, we take the opportunity to show that the code also appropriately

works for flat surfaces, i.e., plate structures. The example reproduced is

the clamped square plate with a concentrated central load as described in
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Section 2.3.1 and Fig. 2.5(b). The mesh is generated with 900 polygonal
shell elements and no post-processing is necessary, once the structure is
two-dimensional (lIl = [u,v, O]T). Table 4.12 and Fig. 4.17 confirm that the
degenerated polygonal shell elements succeed at addressing flat structures.
Even though the error is greater than the one in Section 2.3.1 (0.52132%), the
shell elements show rapid convergence performance, once the error difference
is minor considering the disparity in the number of elements (16,000 plate

elements were used in Section 2.3.1).

Table 4.12: Shell as a plate example — Normalized central deflection W, with
reference value from [25].

W Reference Relative
value error
0.0056437 0.0056012 0.75943%

5 20
10 15 20 b

Figure 4.17: Shell as a plate example — Amplified deformation results.
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Topology optimization applied to shell structures

In this Chapter, we first discuss the state-of-the-art scenario and then
apply the validated polygonal shell element to the compliance topology opti-

mization.

5.1
Literature review

The first evidence of topology optimization for shell structures with a
polygonal element was found in 2020 by Chandrasekhar et al. [108]. In their
work, a mesh of structured hexagonal elements was employed, where quadri-
lateral and triangular elements were used to allow straight boundaries not
practical with structured hexagons. Although degenerated curved shell ele-
ments were used, with rational fraction shape functions, no locking treatments
were discussed. Compliance topology optimization was performed therein with
the Evolutionary Swarm Intelligence Firefly Algorithms (ESIFA) using opti-
mality criteria, but only plates and a single-curved cylindrical shell roof were
simulated.

Ho-Nguyen-Tan and Kim [45], the same authors who created the polyg-
onal finite element utilized in the previous Chapter [98], conducted in 2022
a level-set topology optimization for compliance and stress minimization of
shell structures using trimmed quadrilateral shell meshes. These meshes are
obtained during the optimization process by intersecting a background quadri-
lateral shell mesh with the zero-isolines of a level set function (see Fig. 5.1).
Along the boundaries of the shell structures, where the trimmed quadrilat-
eral elements are formed, the polygonal shell elements with assumed strains of
the last Chapter were employed. In this study, a p-norm aggregation method
is applied to globally handle the stress constraints. In the same year, these
authors disclosed a method for shape and topology optimization of shell struc-
tures [109] utilizing the trimmed quadrilateral meshing approach (same as
in Fig. 5.1). Lastly, a year later, the same authors performed a level-set
stress-constrained concurrent two-scale topology optimization of functionally
graded cellular structures [110], where the trimmed quadrilateral mesh was

employed again.
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O

Figure 5.1: Trimmed quadrilateral meshes by Ho-Nguyen-Tan and Kim [45] —
the way polygonal elements have been used for topology optimization in the
literature (adapted from [109]).

From the best of our knowledge, there is no evidence of any sort of
topology optimization applied to shell structures using arbitrary polygonal el-
ements throughout the entire design domain. Although the trimmed quadrilat-
eral mesh is a prospective alternative to provide clear boundaries, the trimming
methodology and mesh adaptivity may be involved. In addition, as discussed
in the previous Chapters, arbitrary polygonal meshes avoid the checkerboard
pattern and hinged-connection instabilities, often occurring in quadrilateral
meshes. Therefore, in this Chapter, we present topology optimization results
for shell structures using only arbitrary polygonal meshes, which we believe
deserves dedicated consideration as available for membrane [6], plate [44] and
3D solid [72, 111] elements.

5.2
Compliance minimization

In this Section, we first introduce the optimization problem and then
we emphasize some small but important modifications necessary to adjust the

algorithms.

5.2.1
Problem statement

The topology optimization problem to minimize the structural compli-

ance in shells is formulated as
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where A = {|Q2.]}2¢,, V¢ is the element volume and V is the volume constraint

value.

5.2.2
Minor modifications in PolyTop and PolyFilter codes

The compliance minimization problem is configured in the same overall
form as done for plate structures in Sec. 3.2, which in turn follows almost the
same pattern of PolyTop [6]. In other words, despite the finite element and
meshing procedure defined in the previous Chapter, the filter matrix, sensi-
tivity analysis, interpolation functions, elimination of the SIMP penalization
factor continuation, and any other aspect not mentioned hereinafter are main-
tained the same. However, we shall emphasize some minor extra modifications
necessary to adjust the codes for a three-dimensional curved surface domain.

The first regards the three-dimensionality of the mesh when computing
the element centroids (ElemCtrd in PolyFilter code). We point out that one
should not forget to update the number of centroid coordinates from two to

three, as well as the calculation of these coordinates, which we propose as

e, (5-3)

Although this may seem obvious, the way it was originally computed in

simply as follows

PolyTop is only suitable for two-dimensional domains. Still in PolyFilter
code, the original search for element centroids inside a circle with the input
filter radius is no longer valid, since the circle is a two-dimensional locus.
Then, we propose that a sphere of input filter radius is used to determine the
element centroids affected by the filtering scheme. In other words, dist{ in the
DistPntSets function, which accounts for the distance between the element e

and ¢ centroids, is calculated as

distS = /(@ — %)’ + @ —7,)° + (= — 7). (5-4)

Lastly, in PolyTop code, each element area |€2.| must be computed to be
used in Eq. 5-2. Again, the original form of this calculation is only valid for

2D domains. Therefore, we propose an element area approximation in the FE
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numerical integration routine by including

|Qe‘:/ﬂe Jdr Ox

o " o
where dxz/0¢ and dx/0n can be determined by the first and second rows of
the Jacobian matrix (Eq. 4-17) evaluated at ¢ = 0, i.e., the shell element

midsurface area.

d€dn, (5-5)

5.3
Validation and case studies

Several examples are proposed to illustrate the efficiency of arbitrary
polygonal meshes in topology optimization applied to shell structures. The
goal of conducting the following case studies is to validate and exploit the
advantages of such meshes. For all experiments, the SIMP penalization factor is
p = 3, the convergence tolerance on design variables is 0.01, and the maximum
number of optimization iterations is 150. The MMA optimization parameters
remain unchanged from PolyTop [6], i.e., the allowable move step as 0.2 and

the exponent noc = 0.5 in the Optimality Criteria (OC) update scheme.

5.3.1
Shell roof

The first example consists of a single-curved cylindrical roof recently
proposed by Wen et al. [112]. The geometry and load information are described
in Fig. 5.2(a), where all five loads have the same value P and the roof is
simply supported at its four corners. Other material, optimization and mesh
parameters are given in Tab. 5.1. Due to symmetry, only one quarter of
the structure is optimized. The reference result is available in Fig. 5.2(b)
for comparison with the resulting topology from the present work in Fig.
5.2(c), which shows a similar result. Figure 5.2(d) shows the process evolution,
which took 38 iterations to achieve the convergence tolerance in 27 seconds!,

rendering a final volume fraction of 0.3 of the domain total volume.

1Using MATLAB® 2023a on a MacBook Air M1 2020, 8 Core CPU and GPU, 8GB RAM
and 512 SSD, with an operating system macOS Sequoia 15.5.



Chapter 5. Topology optimization applied to shell structures 106

Table 5.1: Shell roof — Material, optimization and mesh parameters by Wen
et. al [112].

Parameter Value
E 2100
v 0.3
h )
P 100
v 0.3
Netements 5,000
Ryilter 0.3
Zinit 1
(a) Boundary conditions (b) Reference (c) Present work

(d) Convergence plot

Figure 5.2: Shell roof topology optimization — boundary and loading conditions
(a), reference results (b), topology from the present work (c) and the evolution
of compliance objective function and material volume constraint (d). Figs. (a)
and (b) were taken from Wen et al. [112].
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5.3.2
Curved square shell

Curved square shell examples are one of the most prevalent benchmark
for topology optimization of shells [113, 114, 115, 116]. Sometimes this surface
is parameterized as an elliptic paraboloid, a portion of the two-sheeted hyper-
boloid or even spherical surfaces. We reproduce in this work the hyperbolic
shell example by Pan et al. [117], where all shell edges are simply supported
and five equal loads are applied (see Fig. 5.3(a)). However, the exact geometric
characteristics are not made available by the authors, so we herein utilize a

surface approximation guess as follows

u
v = v , (5-6)
—(1£)? = (5)* +12.5

where u, v € [-25,0], i.e., the 2D mesh domain is a 25 x 25 square. Indeed, this
three-dimensional mesh generation is an orthogonal projection, not a surface
parameterization as discussed before. However, since there are no highly steep
regions on the surface in Fig. 5.3(a), the qualitative results of the topology

optimization should not be compromised.
The mesh generated respresents one symmetric quarter of the shell. Table
5.2 summarizes the information utilized to run this case. As Figs. 5.3(b)
and 5.3(c) demonstrate, the algorithm also accomplishes desired topologies
for doubly-curved shells. The values of the objective and constraint functions

during the optimization process is plotted in Fig. 5.3(d).

Table 5.2: Curved square shell — Material, optimization and mesh parameters
by Pan et al. [117].

Parameter Value
E 2100

v 0.3

h 5

P 100

1% 0.3
Netements 5,000
Rritter 0.01

Zinit 0.3
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(a) Boundary condi- (b) Reference (¢) Present work

tions

(d) Convergence plot

Figure 5.3: Curved square shell topology optimization — boundary and loading
conditions (a), reference results (b), topology from the present work (c) and
the evolution of compliance objective function and material volume constraint
(d). Figs. (a) and (b) were taken from Pan et al. [117].

5.3.3
Twisted beam

The twisted beam, as studied in the previous Chapter, has also been
optimized by Long et al. [73]. The differences from the FE example are the
load and the beam aspect ratio (now, it is 1 x 1) — refer to Fig. 5.4(a). Table 5.3
shows the input parameters, while Figs. 5.4(c) and 5.4(d) show the topology
similarity with the reference result (5.4(b)) and the optimization evolution,
respectively. Note that we purposely utilize a coarse mesh in this example
to reproduce the same resolution from the reference article (same number of

elements are employed).
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Table 5.3: Twisted beam — Material, optimization and mesh parameters by
Long et al. [73].

Parameter Value
E 2.1 x 108
v 0.3
h 0.01
P 1
v 0.5
Netements 1,600
Ritter 0.05
Zinit 1
(a) Boundary conditions (b) Reference (¢) Present work

(d) Convergence plot

Figure 5.4: Twisted beam topology optimization — boundary and loading
conditions (a), reference results (b), topology from the present work (c) and
the evolution of compliance objective function and material volume constraint
(d). Fig. (b) was taken from Long et al. [73].
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5.3.4
Saddle shell

Another common benchmark is the saddle shell [118, 117, 112], defined
by a hyperbolic paraboloid surface. We attempt to replicate the example by
Pan et al. [117], as in Fig. 5.5(a), with the parameters stated as in Tab. 5.4.
All edges of the saddle shell are clamped and the optimization domain is one
symmetric quarter of the structure. Again, the geometry information is not

available in the referred article, so the surface was approximated here by

U
U = v , (5-7)
(75)° = (3)°
where u, v € [—25, 0], that is, the 2D mesh domain is a 25X 25 square. Although

orthogonal projection is used again, and now with a surface having quite steep

regions, Figs. 5.5(b) and 5.5(c) still present consonant results.

Table 5.4: Saddle shell — Material, optimization and mesh parameters by Pan
et al. [117].

Parameter Value
E 2100

v 0.3

h 5t

P 100

1% 0.3
Netements 10,000
Ryitter 0.05

Zinit 1
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(a) Boundary conditions (b) Reference (c) Present work

(d) Convergence plot

Figure 5.5: Saddle shell topology optimization — boundary and loading con-
ditions (a), reference results (b), topology from the present work (c) and the
evolution of compliance objective function and material volume constraint (d).
Figs. (a) and (b) were taken from Pan et al. [117].

5.3.5
Hemisphere

Wen et al. [112] studied the topology optimization on one quarter of the
hemisphere shell, as shown in Fig. 5.6(a). The hemisphere corners are fixed (all
DOFs restrained) and three concentrated loads are applied. Other information
is outlined in Tab. 5.5. This is a particular result that the topology outcome
from the present work (Fig. 5.6(c)) is not much similar to the reference result
(Fig. 5.6(b)). This may occur because the reference article utilizes meshes
that are adaptively and locally refined along the density boundaries, enabling
distinct topological paths. However, we still consider the results to be somehow
comparable and a strict comparison should only be made upon same techniques

being employed.
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Table 5.5: Hemisphere — Material, optimization and mesh parameters by Wen
et. al [112].

Parameter Value
E 2100
v 0.3
h D
P 100
v 0.3
Netements 10,000
Ryitter 0.5
Zinit 1
(a) Boundary conditions (b) Reference (c) Present work

(d) Convergence plot

Figure 5.6: Hemisphere topology optimization — boundary and loading con-
ditions (a), reference results (b), topology from the present work (c) and the
evolution of compliance objective function and material volume constraint (d).
Figs. (a) and (b) were taken from Wen et al. [112].
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5.3.6
Leaf-shaped shell

The last example is a case study proposed in this work to demonstrate
the advantages of PolyMesher [7] in modeling non-Cartesian domains, such as
the curved boundaries of a leaf-inspired shell. First, a two-dimensional (2D)

domain is generated with the dimensions shown in Fig. 5.7(a), resulting in the
2D mesh presented in Fig. 5.7(b).

(a) Dimensions (b) 2D mesh

Figure 5.7: Leaf-shaped shell — 2D domain.

Then, the shell surface is parameterized using the following function

Ry sin <%)
v = Y1 ) (5-8)
Ry cos (”’}202‘2) ﬁl(m
with
T = U,
y1 = Rysin (%), (5-9)

z1 = Ry cos (%) ,
where u and v belong to the 2D domain shown in Fig. 5.7, with R; = 4, Ry = 5,
a; = 47/9, and ay = 7/2. The resulting surface is illustrated in Fig. 5.8(a),
along with the boundary conditions: the blue nodes are fixed, and a point load
P is applied along the symmetry axis at a horizontal distance of 3.5 from the
upper clamped edge of the shell. Auxiliary views are provided in Figs. 5.8(b)
and 5.8(c) for better visualization. The parameters used in this example are

summarized in Table 5.6.
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(a) Generated surface

(b) Side view (c) Front view

Figure 5.8: Leaf-shaped shell — surface with the boundary and loading condi-
tions (a) and auxiliary views (b) and (c).

Table 5.6: Leaf-shaped shell — Material, optimization and mesh parameters.

Parameter Value
E 2100

v 0.3

h 0.5

P 10

v 0.3
Netements 5,000
Rriter 0.2
Zinit 1

The resulting topology is shown in Fig. 5.9(a). It can be observed that

a larger branch develops to stiffen the structure in the region where the
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membrane effects of the shell are likely to be more pronounced, due to the
surface slope and the load direction. The plot in Fig. 5.9(b) shows that
the process converges rapidly to the final topology but continues until the

maximum iteration limit because of small oscillations around the tolerance.

(a) Resulting topology (b) Convergence plot

Figure 5.9: Leaf-shaped shell topology optimization — final topology obtained
in the present work (a) and the evolution of compliance objective function and

material volume constraint (b).
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Conclusions

In this work, we aimed at the topology optimization for plate and shell
structures utilizing arbitrary polygonal finite elements, while the main moti-
vation was to empower easy-to-use, open-source educational codes developed
from the well-known PolyTop software [6]. To do so, the main obstacle arises
from the finite element perspective, since shear and/or membrane locking over-
estimate the element stiffness when the span-to-thickness ratio (L/h) increases,
artificially stiffening the structure. The arbitrary polygonal mesh from the
open-source PolyMesher code [7] has the advantages of shaping complex ge-
ometries and avoiding numerical instabilities in topology optimization, such as
the checkerboard pattern and hinged connections. To systematically address

this subject, we divided the study into plate and shell developments.

6.1
Remarks on plate structures

To circumvent shear locking in the polygonal plate finite elements, many
solutions have been proposed in the literature over the past few years. We
utilized the technique proposed by Nguyen-Xuan [27], in which the Timoshenko
beam assumptions are enforced on each edge of a polygonal element. Nguyen-
Xuan [27] originally proposed an element with the so-called piecewise-linear
shape functions (the PRMn-PL element), but also investigated many other
shape functions, such as the Wachspress utilized in PolyTop (the PRMn-W
element). Although this author demonstrated that PRMn-PL slightly performs
better than PRMn-W, the latter still passes all patch tests and shows a good
convergence behavior. The PRMn-W element was successfully tested in this
work in providing the displacement, moment and stress measurements for
linear elastic isotropic plates.

The topology optimization of plates using the PRMn-W elements was
then conducted first for the compliance minimization. Although this type
of topology optimization of plates was already done in the literature with
PRMn-PL element, the computational implementation was not available yet.
Therefore, we disclosed simple instructions to modify the PolyTop code in order

to enable the proper utilization in both thick and thin plate arrangements.
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Then, we proceeded to investigate and fulfill a gap in the literature regarding
the stress-constrained topology optimization of plates considering local stress
constraints. The local nature of stress definition and existing literature suggest
that a local methodology is the most effective approach to addressing the
stress-constrained topology optimization problem.

By taking advantage of open-source codes once again, we proposed an
extension of the Augmented Lagrangian method, previously demonstrated
to be efficient for membrane and solid elements in the PolyStress code
[13], to accommodate local stress-constrained topology optimization for plate
elements. Any convex-polygon plate mesh can be considered using the proposed
approach, including the quadrilateral and arbitrary polygonal meshes, which
yielded consistent results and demonstrated viable scalability. Furthermore, the
locking-free technique facilitated the evaluation of both thick and thin plate
cases using the same algorithm without requiring additional adjustments.

Indeed, the Augmented Lagrangian (AL) method for local stress-
constrained topology optimization applied to plates is computationally more
expensive than its application to two-dimensional membrane problems in
PolyStress, primarily due to the additional degree of freedom per node. How-
ever, global techniques yield competitive results only when the p values (from
p-mean aggregation in a p-continuation scheme) exceed 100. They become com-
parable to the AL method only when the p value reaches 300, which demands
significantly greater computational effort compared to the AL method (see [62]
for further discussion). Although these values originally pertain to membrane
elements, they reasonably suggest a similar discrepancy in efficiency for plate

applications.

6.2
Remarks on shell structures

The literature still lacks more options for addressing polygonal shell
elements, which must alleviate both shear and membrane locking. Considering
the three-dimensional distortion of a polygonal element lied on a surface,
we adopted a degenerated curved shell element with assumed shear and
membrane strain fields, as proposed by Ho-Nguyen-Tan and Kim [98] for
polygonal elements. The numerical implementation is more involved than for
plate elements and an open-source code would probably be welcomed by the
academic and scientific community. Another obstacle was to keep the mesh
generation as simple as possible by using available and easy-to-use software.
We proposed the utilization of PolyMesher to generate a 2D mesh and, then,

post-process it into a 3D mesh through a surface parameterization that avoids
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the stretching of elements over steep regions. We first validated the code by
efficiently tackling cylindrical and doubly-curved shells.

Subsequently, the topology optimization for shell structures was exam-
ined in the context of compliance minimization. In addition to the modifica-
tions made in the FE Section of PolyTop, we provided some extra, but small
adjustments relative to the filter scheme and the computation of the curved
element areas. We emphasize, from the best of our knowledge, that there is no
investigation reported in the literature regarding the topology optimization of
shells fully meshed with arbitrary polygonal elements. Therefore, several shell
arrangements were topologically optimized, either validated with the state-of-
the-art results or evaluated as a case study. Although the code for the shell
version of PolyTop is not available in this text, it will be released to the aca-
demic and scientific community in due course as the final derivations of this

study.

6.3
Prospective research

Throughout the present study, many challenges and drawbacks emerged.
We conclude this work suggesting further improvements and developments for
each of the studied structures. First, a framework to enrich the methodology
for material and geometric nonlinear behaviors is hugely relevant, as well as
encompassing composite structures. With the validated codes provided by
this work, the development of further investigations of topology optimization
for plates and shells is simplified. A few specific suggestions are separately

organized in the following Sections.

6.4
Plate developments

— Implement and assess all available locking-free methods for polygonal

plate elements;

Apply the approach for dynamic topology optimization based on the
PolyDyna [12], envisioning the design of plate damping layers;

— Tackle multi-material topology optimization of plates; and

Evaluate the compliance minimization of plates under both local-stress

and volume constraints.
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6.5

Shell developments

— Develop strategies to reduce the computational cost of numerical inte-

gration, considering that each polygon is subdivided into n quadrilat-
eral subdomains, with 2 x 2 Gauss points per subdomain, resulting in
a total of 4 X n integration points per polygon. This is higher than the
3 X n integration points originally proposed in PolyTop, which uses a

triangulation-based approach;

Formulate a generic and easy-to-implement method for generating a

regular polygonal mesh;

Test the “graded seeds” methodology utilized in PolyMesher and
PolyDyna to concentrate seeds by a mathematical procedure that takes

the surface gradient into account for detecting slopes;

Incorporate the most up-to-date MITC4 alternatives in the quadrilat-
eral subdomains of the polygonal shell elements to enhance membrane

behavior; and

Include the drilling degree of freedom to enable connections with beams,

applied moments or normal rotational boundary conditions.
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A
PolyTop version for plates

In this appendix, we present the main code modifications on the original
PolyTop code provided by Talischi et al. [6] for compliance minimization. As
the MATLAB® software has been updated several times since the publication
of the original PolyTop article, an updated version of this code has been made
available on the website of one of the authors [119], under the name of PolyTop
v1.1, which will be the software considered hereinafter. We note that, since the
following modifications will constantly change the line numbers, these numbers
will be always updated accordingly to the previous changes already made

Therefore, the reader must strictly follow the sequence proposed below.

A.l
PolyScript.m

Replace line 19 by the following lines:

'h',0.1,... % Plate Thickness

"kappa',5/6, ... % Shear correction factor (rectang
. section)

'Reg',0 ... % Tag for regular meshes

Delete lines 44 and 47, and replace line 43 by:

penal = 3;

A.2
PolyTop.m

Replace line 63 by:

fem.ElemNDof = 3xcellfun(@length,fem.Element); % # of DOFs per

element

Replace line 71 by:

eDof = reshape([3+xfem.Element{el}—2;3xfem.Element{el}—1;3*xfem
.Element{el}],NDof,1);

Replace lines 80 to 82 by the following lines:
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fem.F = zeros(3xfem.NNode,1l); %external load vector
fem.F(3xfem.Load(1:NLoad,1)—2) = fem.Load(1l:NLoad,2); %w crdnt

fem.F(3xfem.Load(1:NLoad,1)—1) = fem.Load(1l:NLoad,3); %
thetax—crdnt

fem.F(3xfem.Load(1:NLoad, 1)) = fem.Load(1l:NLoad,4); %thetay
crdnt

Replace lines 85 and 86 by:

FixedDofs = [fem.Supp(l:NSupp,2).*(3«fem.Supp(1:NSupp,1l)—2);
fem.Supp(1:NSupp,3).*x(3«fem.Supp(1:NSupp,1)—1);
fem.Supp(1l:NSupp,4).*x(3+xfem.Supp(1:NSupp,1))];

Replace lines 89 and 94 respectively by:

AllDofs = 1:3xfem.NNode;
U = zeros(3*xfem.NNode, 1) ;

Replace line 99 by:

G = fem.EOQ/(2x(1+fem.Nu®)); Ds = [G 0;0 G];

nn=length(eNode); Ke=zeros(3*nn,3+nn);

Insert the following line after line 104:

N = fem.ShapeFnc{nn}.N(:,:,q);

Replace lines 107 to 112 by:

Bb = zeros(3,3x*nn);

Bb(1,2:3:3«xnn) = dNdx(:,1)";

Bb(2,3:3:3%nn) dNdx(:,2)"';

Bb(3,2:3:3%xnn) = dNdx(:,2)";

Bb(3,3:3:3«nn) = dNdx(:,1)"';

[BbT,BsT] = TimoAssumed(fem,nn,N,dNdx, fem.Node(eNode, :));

Ke = Ke + fem.h”3/12%(Bb+BbT) '*D*(Bb+BbT)*W(q)*det(JO) + ...
fem. kappaxfem.h*BsT'*Ds*BsT+W(q)=*det(J0O);

After line 116, insert the following lines to add the locking-free technique
by Nguyen-Xuan [27]:

e TIMOSHENKO LOCKING
FREE MATRICES

function [BbT,BsT] = TimoAssumed(fem,nn,N,dNdx,xy)

jkm = [2:nn 1; 3:nn 1 2; nn 1l:nn—1]"';
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¢ = xy(jkm(:,2),1)—xy(jkm(:,1),1); b = xy(jkm(:,1),2)—xy(jkm(:,2)
y2);
1 = sqrt(c.”2 + b."2);

chi = (fem.h./1).72./(2«(fem.h./1)."2+fem.kappa*x(1l—fem.Nu@));
Ib = zeros(nn); Is = Ib; G = zeros(nn,3*nn);
Hb = zeros(3,nn); Hs = zeros(2,nn);
for 1 = 1:nn
j = jkm(i,1); k = jkm(i,2); m = jkm(i,3);
Ib(i,i) = 1-2xchi(i);
Is(i,i) = chi(i);
G(i,3%xj—2:3%xj) = [-2 c(i) —b(i)];
G(1i,3%k—2: 3*k) [2 c(i) —Db(i)];
Hb(:,1) = 3/1(1)"2*x[c(i)*(dNdx(j,1)*N(k)+dNdx(k,1)*N(j));
—b(1)*(dNdx(j,2)*N(k)+dNdx(k,2)*N(j));
(c(i)*dNdx(k,2)—b(i)*dNdx(k,1))*N(j)+(c(i
)*dNdx (j,2)-b(i)*dNdx(j,1))*N(k)];
Hs(:,i) = [b(m)/(c(i)*b(m)—c(m)*b(i))=*N(j) — b(j)/(c(j)*b(i)—
c(1)*b(3))*N(K);
c(m)/(c(i)*b(m)—c(m)*xb(i))=*N(j) — c(j)/(c(j)=*b(i)—
c(1)*b(j))=*N(k)1;
end
BbT = Hb*xIbxG; BST = Hs*xIsx*G;

A3
New domain examples

The domains for the numerical examples in Section 3.2.4 are defined

herein.

A.3.1
SquarePlateDomain.m

Copy the original MbbDomain.m content, paste into the new
SquarePlateDomain.m file and adapt according to the following instruc-
tions.

Replace lines 6 and 7 by:

function [x] = SquarePlateDomain(Demand,Arg)
BdBox = [0 0.5 0 0.5];

For a simply supported plate, replace lines 20 to 28 by:
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LeftEdgeNodes = find(abs(Node(:,1)—BdBox(1l))<eps); %x=0 (y
parallel)

RightEdgeNodes = find(abs(Node(:,1)—BdBox(2))<eps); %x=Lx (y—
parallel)

BottomEdgeNodes = find(abs(Node(:,2)—BdBox(3))<eps);
parallel)

o®
<
1l

o
X

UpperEdgeNodes = find(abs(Node(:,2)—BdBox(4))<eps); Sy=Ly (x—
parallel)

FixedNodes = [LeftEdgeNodes;BottomEdgeNodes;RightEdgeNodes;
UpperEdgeNodes];

Supp = zeros(length(FixedNodes),4); Supp(:,1l)=FixedNodes;

div = length([LeftEdgeNodes;BottomEdgeNodes]);

Supp(1l:div,2)=1; % w =0 at left &
bottom edges

Supp(1l:length(LeftEdgeNodes),4)=1;

o°

at left edge,

theta_y = 0

Supp(length(LeftEdgeNodes)+1:div,3)=1; % at bottom edge,
theta_x = 0

Supp(div+1l:div+length(RightEdgeNodes),3)=1; % in y-parallel sym
., theta_x =0

Supp(div+length(RightEdgeNodes)+1:end,4)=1; % in x—parallel sym
., theta_y =0

UpperRightNode = find(abs(Node(:,1)—BdBox(2))<eps & abs(Node
(:,2)-BdBox(4))<eps);
Load = [UpperRightNode,—1/4,0,0];

After implementing for simply supported plates, the reader may adapt
the domain for a clamped plate by replacing lines 26 to 31 by:

divl = length([LeftEdgeNodes;BottomEdgeNodes]);

div2 length([LeftEdgeNodes;BottomEdgeNodes;RightEdgeNodes]);
Supp(1l:divl,2:4)=1; % all dof fixed at left & bottom edges
Supp(divl+1l:div2,3)=1; % in y-parallel sym., theta_x = 0

Supp(div2+l:end,4)=1; % in x-parallel sym., theta.y = 0

A.3.2
HookPlateDomain.m

Similarly, copy the original HookDomain.m content, paste into

HookPlateDomain.m file and then replace lines 33 to 40 by:
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UpperCircleNodes = find(abs(sqrt(Node(:,1).”2+(Node(:,2)...
—80.6226) .72)—10)<eps) ;

Supp = ones(size(UpperCircleNodes,1),4);

Supp(:,1) = UpperCircleNodes;

EndHookNode = find(abs(Node(:,1)+27.0406)<eps & abs(Node(:,2)
—8.0406)<eps) ;

while isempty(EndHookNode)
eps=eps*1.1;
EndHookNode = find(abs(Node(:,1)+27.0406)<5xeps & abs(Node

(:,2)—8.0406)<5+eps);

end

EndHookNode = EndHookNode(find(Node (EndHookNode,2)==max(Node (
EndHookNode,2))));

Load = [EndHookNode,—1,0,0];
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