

Danmer Paulino Maza Quinones

Elastohidrodinâmica do Processo de Revestimento por Extrusão com Cilindro Deformável

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Márcio da Silveira Carvalho

Danmer Paulino Maza Quinones

Elastohidrodinâmica do Processo de Revestimento por Extrusão com Cilindro Deformável

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Márcio da Silveira Carvalho

Orientador

Departamento de Engenharia Mecânica - PUC-Rio

Profa. Angela Ourivio Nieckele

Departamento de Engenharia Mecânica - PUC-Rio

Dr. Oldrich Joel Romero Guzmán

Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – Puc-Rio

Rio de Janeiro, 08 de Abril de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Danmer P. Maza Quinones

Graduou-se em Engenharia Mecânica-Elétrica na UNI (Universidad Nacional de Ingeniería - Lima, Perú) em 2001.

Ficha catalográfica

Quinones, Danmer P. Maza

Elastohidrodinâmica do processo de revestimento por extrusão com cilindro deformável / Danmer P. Maza Quinones ; orientador: Márcio da Silveira Carvalho. – Rio de Janeiro : PUC-Rio, Departamento de Engenharia Mecânica, 2005.

93 f.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas

1. Engenharia mecânica – Teses. 2. Processo de revestimento. 3. Elastohidrodinâmica. 4. Superfície livre. 5. Método de elementos finitos. I. Carvalho, Márcio da Silveira. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Agradecimentos

Gostaria de agradecer a todas as pessoas que tornaram possível a elaboração deste trabalho, em especial:

Aos meus irmãos e a toda minha família por terem me incentivado a realizar este curso de Mestrado.

Ao professor Márcio da Silveira Carvalho pela orientação, pela sua paciência e pelo constante incentivo na pesquisa.

Aos Professores membros da banca, pela participação, comentários e sugestões feitas ao trabalho apresentado.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio e ao pessoal do grupo de REOLOGIA, tanto pelos momentos compartilhados, quanto pelos conselhos e dicas a nível acadêmico.

À CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

À todas as pessoas que de uma ou outra forma me deram apoio durante a minha estada neste país.

Resumo

Maza Quinones, Danmer P.; Carvalho, Márcio. **Elastohidrodinâmica do Processo de Revestimento por Extrusão com Cilindro Deformável**. Rio de Janeiro, 2005. 93p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O processo de revestimento por Extrusão é amplamente usado nos processo de manufatura de diferentes produtos. Em geral a mínima espessura de filme que pode ser obtida é proporcional à distância entre a barra de revestimento e o substrato (usualmente apoiado por um cilindro rígido) e inversamente proporcional à viscosidade do líquido. Na prática, existe uma distância mínima de operação, tipicamente em torno de 100 µm, abaixo da qual o processo torna-se perigoso com o risco de colisão do cilindro de apoio com a barra e de quebra do substrato. Consequentemente, existe um limite da menor espessura de filme que pode ser depositada, principalmente no caso de líquidos de alta viscosidade. Uma solução comum é usar um cilindro rígido de apoio coberto com uma camada de borracha, que se deforma durante a operação. O líquido na região de aplicação produz uma pressão suficiente para deformar a camada elástica, mudando a geometria do escoamento, caracterizando uma interação elastohidrodinâmica. Apesar de muito usado na indústria, o conhecimento fundamental deste processo é bastante limitado. O entendimento desta interação líquido/sólido é vital para a otimização deste processo de revestimento. Um modelo teórico para descrever este processo deve considerar o escoamento viscoso, a deformação do cilindro e os efeitos da superfície livre a fim de predizer o comportamento do escoamento e consequentemente os limites de operação do processo. Uma análise teórica é apresentada neste trabalho, que consiste em resolver a equação de Navier-Stokes para descrever escoamento com superfície livre acoplado a um arranjo de molas para modelar a deformação da camada elástica. O sistema de equações foi resolvido pelo método Galerkin/MEF. O sistema de equações algébrica não-linear resultante foi resolvido pelo método de Newton. Os resultados indicam como os parâmetros de operação, as propriedades do líquido e da cobertura do cilindro afetam os limites de operação do processo.

Palavras-chave

Processo de revestimento, elastohidrodinâmica, superfície livre, método de elementos finitos.

Abstract

Maza Quinones, Danmer P.; Carvalho, Márcio. **Elastohydrodynamics of Slot Coating Process with Deformable Roll**. Rio de Janeiro, 2005. 93p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Slot coating is largely used in the manufacturing process of many products. In general, the minimum thickness that can be coated is proportional to the gap between the coating die and the substrate (usually backed-up by a rigid roll) and inversely proportional to the liquid viscosity. Therefore, in order to obtain thin films with liquid of high viscosity, a very small gap would be necessary. In practice, the clearance between the die and the web has to be large enough to avoid the risk of clashing two hard surfaces. A common solution is the use a backup rolls covered with an elastomeric layer. The liquid in the coating bead develops high enough pressure to deform the resilient cover, which changes the geometry of the flow, characterizing an elastohydrodynamic action. understanding of the flow is vital to the optimization of this widely used coating method. Theoretical model has to take into account the viscous flow, the roll deformation and the free surface effects in order to predict the flow behavior. A theoretical analysis is presented here, that consisted of solving the Navier-Stokes equation to describe the free surface flow coupled with an array of springs to model the elastic cover deformation. The equation system was solved by the Galerkin / Finite element method. The resulting set of non-linear algebraic equations was solved by Newton's method. The results indicate how different operating parameters, liquid and roll cover properties affect the flow.

Keywords

Slot coating, elastohydrodynamics, free boundary problem, finite element method.

Sumário

1 Introdução	20	
1.1 Generalidades sobre processos de revestimento		
1.2 Método de Revestimento por Extrusão		
1.2.1 Descrição geral do processo de revestimento por Extrusão	23	
1.2.2 Descrição dos equipamentos no processo de revestimento por		
Extrusão	24	
1.2.3 Principais características do método de revestimento por Extrusão)	
com lábios uniformes	29	
1.3 As forças que agem no processo de revestimento	31	
1.3.1 Fundamentos básicos de forças viscosas em escoamentos de		
revestimento	31	
1.3.2 Fundamentos básicos da ação de tensão superficial em		
escoamentos de revestimento	32	
1.4 A Janela de Operação do Processo	34	
1.5 Escoamento em Superfícies Deformáveis	35	
1.6 Escopo e Roteiro da Tese	38	
2 Formulação Matemática	39	
2.1 Equações de Conservação	39	
2.2 Condições de contorno para resolver as equações de conservação	40	
2.2.1 Deformação da superfície do cilindro - Modelo unidimensional de		
molas	42	
2.2.2 Parâmetros que governam o problema	44	
2.3 Escoamento viscoso em processos de revestimento por Extrusão	44	
2.3.1 Relação entre o Vácuo e a longitude da região de aplicação	46	
2.4 Solução de Problemas com superfícies livres e deformáveis	47	
2.4.1 Geração de Malha Elíptica	50	
2.4.2 Condições de contorno para a Geração da Malha	52	
3 Modelagem computacional do escoamento com superfícies livres e		
deformáveis	55	
3.1 Solução do sistema de equações pelo método de Galerkin/ Elemen	tos	

Finitos	55
3.1.1 Representação dos campos através de funções base	57
3.2 Solução do sistema de equações não lineares pelo método de New	∕ton
	58
3.3 Estratégia de continuação para obter o ponto de dobra	59
4 Resultados Numéricos	60
4.1 Validação do código computacional	60
4.2 Teste de malha	62
4.3 Problemas preliminares	64
4.3.1 Caso com superfície rígida:	65
4.3.2 Caso com superfície deformável:	66
4.4 Resultados da modelagem utilizando cilindro com superfície rígida,	
considerando Vazão constante	67
4.4.1 Resultados considerando Vazão constante	67
4.5 Resultados da modelagem utilizando cilindro com superfície rígida	
considerando Vazão mínima	75
4.6 Resultados da modelagem utilizando cilindro com superfície	
deformável	80
4.6.1 Comparação da geometria tipo "A" de lábios médios e "C" de lábi	os
curtos usando o método de Molas	87
5 Comentários Finais e sugestões	89
5.1 Comentários finais	89
5.2 Sugestões	90
6 Bibliografia	91

Lista de figuras

Figura 1.1 - Revestir é deslocar o gás da superfície pelo líquido, assim	
durante todo processo de molhamento interagem três fases: Sólido	
Líquido e Gás.	20
Figura 1.2 – Alguns métodos de revestimento: (a) por extrusão, (b) por	
cortina, (c) de rotação direta, (d) tipo faca raspadora, (e) de imersão.	22
Figura 1.3 - Esquema típico do processo de revestimento por Extrusão,	,
mostrando seus parâmetros mais importantes: Q* é a vazão de	
alimentação; P_E , P_M , P_J são as pressões nas diferentes regiões de	
aplicação; P_0 , P_1 são as pressões à montante e à jusante.	23
Figura 1.4 - Esquema bi-dimensional do processo de revestimento por	
Extrusão (secção de corte mostrado na Figura 1.3).	24
Figura 1.5 - Esquema dos equipamentos básicos que estão vinculados	
com o processo revestimento por Extrusão.	25
Figura 1.6 - Esquema geométrico da barra de revestimento com cavida	ıde
única. a) Vista de planta; b) Vista frontal. As setas na cavidade e ao lon	ıgo
da fenda indicam a predominância do escoamento nessas direções.	26
Figura 1.7 - Configurações externas da barra de revestimento: a) lábio	à
jusante divergente, b) lábio á jusante convergente, c) lábio à jusante co	m
duas zonas convergente/divergente e d) lábio à jusante	
convergente/divergente.	27
Figura 1.8 - Configurações externas da barra de revestimento: A1 de	
lábios uniformes, A2 tipo "Overbite".	28
Figura 1.9 - Esquema de revestimento por extrusão num processo de	
duas camadas e a presença de uma cobertura no cilindro por uma	
camada deformável.	28
Figura 1.10 - Esquema da aplicação do vácuo no processo de	
revestimento por extrusão.	29
Figura 1.11 - Principais características e nomenclatura no revestimento)
por Extrusão de camada única.	30

rigura 1.12 - Regiões do escoamento no processo de revestimento por	
extrusão: 1 região de escoamento retilíneo, escoamento de pressão; 4	
também de escoamento retilíneo mas com superposição dos	
escoamentos de arrasto e de pressão; 2, 3 e 5 escoamento curvado.	31
Figura 1.13 - Janela de operação no plano P_{VAC} vs H/t .	35
Figura 1.14 - Esquemas de alguns sistemas de revestimento que fazem	1
uso da ação elastohidrodinâmica, (a) revestimento por faca raspadora e	9
(b) revestimento por membrana flexível.	36
Figura 1.15 - Esquema do sistema usado por Carvalho e Scriven (1997)
para o analise da elastohidrodinâmica entre cilindro rígido e cilindro	
deformável. (a) com espaçamentos positivos e (b) com espaçamentos	
negativos.	37
Figura 2.1 - Esquema mostrando a numeração utilizada para descrever	as
condições de contorno para a equação de quantidade de movimento	
linear.	42
Figura 2.2 - Esquema do modelo de molas.	42
Figura 2.3 - Esquema da deformação da superfície com o modelo de	
molas.	43
Figura 2.4 - Esquema dos perfis de velocidade no processo de	
revestimento por extrusão.	45
Figura 2.5 - Esquemas dos escoamentos de Couette e Poiseuille entre	
duas placas paralelas.	46
Figura 2.6 - Esquema do método dos Splines.	49
Figura 2.7 - Esquema mostrando o processo de mapeamento.	52
Figura 2.8 - Representação das condições de contorno para a geração	da
malha: a) η da eq. (2-25), b) ξ da eq. (2-24).	52
Figura 2.9 - Condição de contorno das equações de geração de malha	
elíptica. A condição de pontos nodais fixos é apropriada para contornos	;
cuja localização é fixa e conhecida. A condição de não penetração é	
apropriada para superfícies livres. A condição de ângulo prescrito,	
distribuição nodal prescrita, e a equação prescrita dos contornos (ponto	S
nodais que podem deslizar) são apropriadas para contornos conhecidos	S
tanto quanto contornos cuia localização forma parte do problema	54

Figura 4.1 - Diferentes configurações geométricas analisadas no proces	sso
de revestimento por Extrusão.	61
Figura 4.2 - Detalhe do domínio da malha da geometria de lábios curtos	s:
a) M2, b) M2S.	62
Figura 4.3 - Representação das Malhas M3, M4 e M5 analisadas no	
processo de revestimento por Extrusão para valores iguais de H e Pvad	С.
	64
Figura 4.4 - Primeiro caso preliminar para a solução de problemas de	
superfícies livres, a face C e D é considerada como parede deslizante.	65
Figura 4.5 - Segundo caso preliminar para a solução de problemas de	
superfícies livres, a face D já é considerada como superfície livre mas a	а
face C ainda continua como parede deslizante.	66
Figura 4.6 - Caso considerando superfícies livres nos meniscos a	
montante e a jusante.	66
Figura 4.7 - Mostra-se um caso na qual aplicou-se o modelo de Molas.	66
Figura 4.8 - Janela de Operação de Processos da Geometria tipo "A" de	е
lábio médio, para dois valores de vazão constantes ${\bf Q}$ e ${\bf 2Q}$ e limitados	
pelas P_{VAC} = -3kPa e -1 kPa.	68
Figura 4.9 - Estes gráficos correspondem ais pontos "a" e "c" da Figura	
4.8. a) Inicio do processo onde o escoamento é bem comportado, b)	
Representação do mecanismo de falha do processo pela invasão no	
menisco à montante.	69
Figura 4.10 - Caminho da solução representada pela posição da linha o	de
contato dinâmica para diferentes velocidades do substrato, com vazão	
constante 2Q e pressão de vácuo P_{VAC} = -3kPa, para a geometria de lá	bio
médio.	69
Figura 4.11 - Caminho da solução adimensional representada pela	
posição da linha de contacto dinâmica para diversas velocidades do	
substrato, com vazão constante 2 Q e uma pressão de vácuo P_{VAC} = -	
3kPa Geometria Tipo "A" de lábio médio.	70
Figura 4.12 - Perfis de pressão ao longo do substrato para uma vazão e	е
um vácuo constante de 0,10mm2/s e de -3 kPa respectivamente para	
$Ca(V_W)$ de 0,04; 0,08; 0,1 e 0,11 Geometria Tipo "A" de lábio médio.	71

Figura 4.13 - Linnas de corrente e de pressão presentes no caso la le ic
da Figura 4.10 e Figura 4.11 mostrando a presença de recirculação e
pontos de estagnação para a barra de lábio médio. 72
Figura 4.14 - Acima: Linhas de corrente e de pressão, no caso de P_{VAC} =
1kPa mantendo a mesma vazão 2Q; embaixo: perfis de velocidade do
mesmo caso. 73
Figura 4.15 - Janelas de Operação de Processo para a Geometria tipo "A"
para diferentes valores de viscosidade considerando uma faixa de vazão
entre Q e 2Q. 73
Figura 4.16 - As Janelas de Operação de Processo da Geometria tipo "B"
para diferentes valores de viscosidade considerando uma faixa de vazão
entre Q e 2Q. 74
Figura 4.17 - As Janelas de Operação de Processo da Geometria tipo "C"
para diferentes valores de viscosidade considerando uma faixa de vazão
entre Q e 2Q. 75
Figura 4.18 - Janela de operação de processos da barra de revestimento
tipo "A" de lábio médio, dado uma <i>Ca</i> = 0,5 e um distância da
barra/substrato $H = 100 \mu m$. 76
Figura 4.19 - Janela de operação de processos da barra de revestimento
tipo "C" de lábio curto, dado uma <i>Ca</i> = 0,5 e um uma distância da
barra/substrato $H = 100 \mu m$. 77
Figura 4.20 - Comparação dos perfis do menisco à jusante das duas
configurações A e C da barra de revestimento para <i>Ca</i> de 0,1;0,5 e 1,0.78
Figura 4.21 - Janela de operação de processos da barra de revestimento
tipo "C", para Ca = 0,1; 0,5 e 1,0 e com uma distância da barra de
revestimento ao substrato H = $100\mu m$. 78
Figura 4.22 - Janela de operação de processos da barra de revestimento
tipo "A", para <i>Ca</i> = 0,1; 0,5 e 1,0 e com uma distância da barra/substrato
$H = 100 \mu m.$ 79
Figura 4.23 - Limite de vazão mínima no plano número de capilaridade Ca
e da inversa da espessura de filme H_S/t , obtidos para as duas
configurações A e C. 79
Figura 4.24 - Janelas de operação no plano número de elasticidade Ne e

a inversa da espessura de filme, considerando o modelo de molas de u	m
sistema elastohidrodinâmico – Configuração da barra "C" de lábios curt	os.
	81
Figura 4.25 - Região à montante e à jusante dos pontos a", b" e c" da	
Figura 4.24 – Configuração da barra "C" de lábios curtos.	82
Figura 4.26 - Padrão do escoamento dos pontos a', b' e c'- Configuração	ão
da barra "C" de lábios curtos.	83
Figura 4.27 - Padrão do escoamento dos pontos r , s e t do gráfico da	
figura 4.24 onde Ne = 2x10 ⁻⁶ . Configuração da barra "C" de lábios curto	S.
	84
Figura 4.28 - Gráfico da pressão do fluido que age na face da superfície	Э
deformável para as diferentes distâncias barra/revestimento –	
Configuração da barra "C".	85
Figura 4.29 - Janelas de operação que mostra o comportamento das	
diferentes distâncias barra/substrato da barra de lábio curto para	
diferentes valores de número de capilaridade.	86
Figura 4.30 - Detalhe das linhas de corrente da barra tipo "C" de lábio	
curto, considerando números de capilaridade $Ca = 0.012$ e $Ca = 0.005$	
para uma relação H/H_S = 0,33.	87
Figura 4.31 - Gráfico comparativo das Janelas de operação para as dua	as
configurações da barra "A" e "C", no plano Ne e a inversa da espessura	a
do filme.	88

Lista de tabelas

Tabela 1 - Faixas típicas dos parâmetros de operação em processos de revestimento por extrusão - Gates, (1999).

Tabela 2. - Número de elementos e incógnitas das diferentes malhas usadas para resolver o escoamento no processo de revestimento por Extrusão, onde mostra a independência do número de elementos para obter a espessura *t*, nas mesmas condições de operação.

Nomenclatura

Símbolos Romanos

t espessura media de filme depositado

 t_{min} espessura mínima de filme depositado

Q* vazão de alimentação

Q vazão de alimentação por unidade de comprimento

W comprimento da barra

 H_M distância da separação barra/substrato na região à montante

H_J distância da separação barra/substrato na região à jusante

H distância barra/substrato para caso de lábios uniformes

*H*_S altura da fenda de alimentação

A área da secção característica da cavidade

L_f comprimento característico da fenda

L_M longitude do lábio da barra à montante

*L*_J longitude do lábio da barra à jusante

P_C pressão na câmara de distribuição

P_E pressão na região de aplicação

 P_0 pressão de ar próxima ao menisco à montante

 P_M pressão na região de aplicação sob o lábio à montante

P_J pressão na região de aplicação sob o lábio à jusante

 P_1 pressão de ar próxima ao menisco à jusante

P_{atm} pressão atmosférica

P_{VAC} pressão subatmosférica

Vac diferença de pressão atmosférica e pressão subatmosférica

K constante de proporcionalidade da mola

K curvatura da superfície livre

E modulo de elasticidade

Ne número adimensional de elasticidade $\left(Ne \equiv \frac{\mu V_W}{KH_s^2}\right)$

Re número de Reynolds	$\left(\operatorname{Re} = \frac{\rho V_W H}{\mu} \right)$
-----------------------	---

Ca número de capilaridade
$$\left(Ca = \frac{\mu V_W}{\sigma}\right)$$

 \vec{n} vetor normal na interface líquida

 $\vec{n}_{\scriptscriptstyle W}$ vetor normal à superfície sólida

 X_0 , Y_0 posição de um ponto da parede no seu estado não deformado.

 \vec{N}_0 vetor normal unitário de uma superfície sólida não deformada

 $\frac{dt}{ds}$ curvatura do menisco

s coordenada medida ao longo da superfície livre

 \vec{x} vetor posição no domínio físico

x,y coordenada horizontal e vertical respectivamente

 x_q posição horizontal fixa numa quina

T tensor das tensões

J matriz jacobiana do método de Newton

J_{ij} componentes da matriz jacobiana do método de Newton

p é a pressão

 \vec{v} vetor velocidade

u,v componente horizontal e vertical da velocidade respectivamente

 $V_{\scriptscriptstyle W}$ velocidade do substrato

 \vec{R} vetor de resíduos ponderados

Rci resíduos da equação da continuidade

*Rm*ⁱ resíduos da equação da quantidade de movimento linear

Rxⁱ resíduos da equação de geração da malha

 \vec{c} vetor solução

 \vec{p} vetor de parâmetros

 \vec{W} vetor resíduo ponderado

 J_T jacobiano de transformação de coordenadas

U_j velocidade horizontal no nó j

V_j velocidade vertical no nó j

 $P_{
m j}$ pressão no nó j $X_{
m j}$ coordenada horizontal no nó j $Y_{
m j}$ coordenada vertical no nó j $D_{
m j}$ tensor dos coeficientes de difusão coeficiente de difusão da coordenada η $D_{
m g}$ coeficiente de difusão da coordenada arphi

Símbolos Gregos

σ	tensão	superficial

- θ_d , θ_e angulo de contato dinâmico e estático
- β coeficiente de deslizamento de Navier
- μ viscosidade newtoniana
- μ_c e μ_f viscosidades dentro da cavidade e da fenda respectivamente
- ρ massa especifica do fluído
- (η, ξ) coordenadas do domínio de referencia (horizontal, vertical)
- Γ simboliza o contorno do domínio físico
- Ω simboliza o interior do domínio físico
- $\overline{\Gamma}$ simboliza o contorno do domínio de referencia
- $\overline{\Omega}$ simboliza o interior do domínio de referencia
- Γ_{def} simboliza o contorno do domínio físico deformável
- $d\Omega$ área diferencial do domínio físico
- $d\overline{\Omega}$ área diferencial do domínio de referência
- ϕ_i funções peso da equação da conservação da quantidade de

movimento

- χ_i funções peso da equação de continuidade
- ϕ_i funções base para as velocidades e de geração da malha
- χ_i funções base da pressão
- $\nabla \vec{u}$ gradiente de velocidade
- δ_i funções Delta Dirac