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Resumo 

Martins, Matheus Nazareth; Cirone, Alessandro (Orientador). 

Implementação do modelo constitutivo CASM e sua aplicação em análise 

tensão-deformação para avaliação do fator de segurança. Rio de Janeiro, 

2024. 136p. Dissertação de Mestrado − Departamento de Engenharia Civil e 

Ambiental, Pontifícia Universidade Católica do Rio de Janeiro. 

Os desastres de Mariana, em 2015, e Brumadinho, em 2019, evidenciaram 

que barragens de rejeitos de mineração são estruturas geotécnicas complexas. 

Compostas por lentes arenosas e argilosas em seu interior, devido ao processo de 

disposição, essas estruturas apresentam desafios na modelagem de seu 

comportamento. Neste contexto, este estudo tem por objetivo apresentar a 

formulação e implementar o modelo constitutivo CASM (Clay and Sand Model) no 

software de elementos finitos PLAXIS 2D. O modelo constitutivo CASM, modelo 

unificado para argila e areia, permite a modelagem dos materiais sob condições 

drenadas e não drenadas. A implementação do modelo é validada comparando 

trajetórias de ensaios triaxiais com os resultados disponíveis na literatura. Para 

avaliar uma estrutura geotécnica mais complexa foi realizada a comparação dos 

modelos constitutivos CASM e HS para a construção de uma barragem de rejeitos 

alteada a montante. Como objetivo adicional, o estudo visa determinar o fator de 

segurança por meio de análise de tensão-deformação. Usando como fonte de 

inspiração o método de Sarma, é proposta uma metodologia para avaliação do fator 

de segurança adotando aceleração horizontal pseudo-estática e parâmetros 

modificados do CASM. Os resultados obtidos mostram uma aproximação 

polinomial satisfatória para o talude analisado. 

 

 
Palavras-chave 

Modelagem numérica; CASM; modelos constitutivos; fator de segurança. 
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Abstract 

Martins, Matheus Nazareth Martins, Matheus Nazareth; Cirone, Alessandro 

(Advisor). Implementation of the CASM constitutive model and its 

application in stress-strain analysis for safety factor evaluation. Rio de 

Janeiro, 2024. 136p. Dissertação de Mestrado − Departamento de Engenharia 

Civil e Ambiental, Pontifícia Universidade Católica do Rio de Janeiro. 

The Mariana disasters in 2015 and Brumadinho in 2019 highlighted that 

mining tailings dams are complex geotechnical structures. Composed of sandy and 

clayey lenses within, due to the deposition process, these structures present 

challenges in modelling their behaviour. In this context, this study aims to present 

the formulation and implementation of the CASM (Clay and Sand Model) 

constitutive model in the finite element software PLAXIS 2D. The CASM 

constitutive model, a unified model for clay and sand, allows the modelling of 

materials under drained and undrained conditions. The model implementation is 

validated by comparing triaxial test paths with results available in the literature. To 

evaluate a more complex geotechnical structure, a comparison of the CASM and HS 

constitutive models was carried out for the construction of a tailings dam raised 

upstream. As an additional objective, the study aims to determine the safety factor 

through stress-strain analysis. Using Sarma's method as inspiration, a methodology 

is proposed for evaluating the safety factor by adopting pseudo-static horizontal 

acceleration and modified CASM parameters. The results obtained show a 

satisfactory polynomial approximation for the researched slope.  

 

 

 
Keywords 

Numerical modelling; CASM; constitutive model; safety factor. 
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1. 
Introdução 

No Brasil, barragens de rejeitos de mineração foram construídas por 

diferentes técnicas, dentre elas: à montante, à jusante, linhas de centro e etapa única. 

A técnica de alteamento a montante foi amplamente utilizada por ser viável 

economicamente, por ter, relativamente, a construção mais rápida e apresentar 

baixo custo de implantação. Contudo, muitas estruturas foram executadas de forma 

inadequada por essa técnica, sem o devido controle de lançamento dos rejeitos e do 

nível d’água no reservatório, fatores essenciais para o sucesso da metodologia de 

construção. 

Atualmente há preocupações quanto à estabilidade de estruturas construídas 

nas décadas de 70 e 90, pelo método construtivo de alteamento a montante, devido 

à ausência de informação sobre os processos construtivos e operacionais utilizados 

e devido aos acontecimentos recentes dos acidentes relatados. Algumas dessas 

barragens ultrapassam mais de 30 anos de vida útil e possuem vários alteamentos, 

o que aumenta significativamente as tensões na fundação (rejeitos) dos alteamentos 

iniciais da estrutura. 

Soma-se às preocupações, os danos e perdas nas regiões a jusante de 

barragens de rejeitos existentes, sobre o meio ambiente e, principalmente às vidas 

humanas. Órgãos regulamentadores estabeleceram a proibição da operação, 

alteamentos ou construção de novas estruturas pelo método de alteamento a 

montante, o que demonstra o aumento do vigor normativo com o surgimento de 

normas e procedimentos (legislação) a partir dos acontecimentos catastróficos. 

Adicionalmente, estruturas existentes, que fizeram uso dessa técnica de 

alteamento, devem ser extintas em prazo consensual para cada estrutura entre o 

dono do empreendimento e o órgão regulamentador, determinado a partir do grau 

de complexidade e com base em estudos fundamentados e abrangentes de 

estabilidade, incluindo-se a análise de suscetibilidade à liquefação dos rejeitos e 
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avaliação dos potenciais gatilhos em todas as etapas, de forma a oferecer total 

segurança no decorrer das atividades. 

Devido à complexidade das equações de tensões e deformações necessárias 

para utilizar modelos realistas para prever o comportamento dos solos e, 

consequentemente dessas estruturas, inicialmente eram utilizadas análises 

tradicionais através de estabilidade ou um problema de deformação  

Posteriormente foram incorporadas análises que consideravam plasticidade 

rígida ou elasticidade linear para o comportamento do solo, e com a evolução dos 

computadores e, consequentemente, da análise computacional, nas últimas décadas, 

tornou-se possível realizar análises de tensão-deformação de estruturas geotécnicas 

que envolvem geometrias e materiais com comportamento complexos. 

Para prever o comportamento dessas estruturas, que devido ao processo de 

deposição formam lentes arenosas e argilosas, há uma busca por modelos 

constitutivos mais sofisticados. Além disso, com esses modelos há a possibilidade 

de identificar os possíveis gatilhos que ocasionaram a ruptura das barragens citadas 

e utilizar esses modelos para projetos geotécnicos futuros. 

É de conhecimento geral que não há um limite definido de quando uma 

argila arenosa deixará de se comportar como uma argila e passará a se comportar 

como uma areia, na medida em que a distribuição do tamanho das partículas muda, 

além da semelhança qualitativa na resposta macroscópica dos materiais. Modelos 

constitutivos clássicos baseados na teoria do estado crítico (Cam-clay, Cam-Clay 

modificado, NorSand, etc.), não descrevem de forma unificada o comportamento 

de argilas e areias. 

De forma a suprir a problemática identificada o modelo constitutivo CASM 

(Clay and Sand Model) é unificado para argila e areia baseado na teoria do estado 

crítico. A principal característica desse modelo é que um único conjunto de função 

de escoamento e potencial plástico é utilizado para modelar o comportamento da 

argila e da areia sob as condições drenadas e não drenadas. 

Esta dissertação focou principalmente na formulação e implementação de 

um modelo unificado para argila e areia (CASM) através do software comercial de 

elementos finitos (PLAXIS 2D da Bentley), que permite prever o comportamento 
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de estruturas existentes e a serem executadas, além de contribuir para projetos de 

descaracterização ou descomissionamento de barragens de rejeitos.  

A implementação do modelo é validada comparando trajetórias de ensaios 

triaxiais com os resultados disponíveis na literatura. Na sequência foi realizada a 

comparação do modelo CASM com o modelo HS para a construção de uma 

barragem de rejeito alteada a montante, para análise de uma estrutura geotécnica 

mais complexa. Posteriormente, com o modelo constitutivo CASM implementado, 

como fonte de inspiração o método de Sarma (1973) [1], é proposta uma 

metodologia para avaliação do fator de segurança adotando aceleração horizontal 

pseudo-estática e parâmetros modificados do CASM.  

 

1.1. 
Objetivos 

Dois são os objetivos principais do trabalho: (i) implementação de modelo 

unificado de estado crítico (CASM) em código de elementos finitos, (ii) comparar 

a previsão dos modelos constitutivos CASM e HS para a construção uma barragem 

de rejeitos alteada a montante e (iii) realizar a avaliação do fator de segurança 

estático de um talude através de análises tensão-deformação com a utilização do 

modelo constitutivo CASM. 

Nesse contexto, os seguintes objetivos específicos foram perseguidos como 

estratégia de se atingir os objetivos centrais estabelecidos:  

• Avaliação da modificação do potencial plástico proposto por Yu (1998) 

[2] para o proposto por Cirone (2020) [3], com base nas relações tensão-

dilatância de Nakai and Hinokio (2004) [4] e Kim e Lade (1988) [5]; 

• Verificação e validação da implementação através da comparação de 

trajetórias de ensaios triaxiais com resultados disponíveis na literatura 

a partir do recurso soil test do software PLAXIS 2D; 

• Calibração do modelo HS a partir de ensaio triaxial hipotético com os 

parâmetros do modelo CASM e do recurso soil test do software 

PLAXIS 2D, considerando o processo de construção uma barragem de 

rejeitos alteada a montante; 
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• Avaliação de coeficientes horizontais pseudo-estáticos (KH) limites 

para convergência do modelo através da análise tensão-deformação 

para diferentes valores do parâmetro n do modelo constitutivo CASM; 

• Determinação do fator de segurança estático de um talude, inspirado no 

método proposto por Sarma (1973) [1], a partir dos coeficientes pseudo-

estáticos limites obtidos e dos fatores de segurança relacionados ao 

parâmetro n do CASM; 

 

1.1.1. 
Estrutura da dissertação 

Esta dissertação está estruturada em sete capítulos, iniciando com este 

introdutório, que apresenta o tema fundamental do trabalho e seus objetivos. 

O Capítulo 2 explicita conceitos básicos da modelagem constitutiva, com 

destaque para a formulação do modelo CASM, que serão amplamente abordados 

nos capítulos subsequentes. Sua implementação em código comercial de elementos 

finitos é delineada. 

O Capítulo 3 apresenta conceitos gerais da teoria da integração numérica 

das equações constitutivas para implementação do modelo, com detalhes de 

algoritmos de integração elastoplástica. O esquema de mapeamento de retorno para 

a integração de equações constitutivos sob controle de deformações é apresentado. 

O Capítulo 4 cobre detalhes da validação da implementação abordada em 

relação a uma série de testes laboratoriais. Compara as trajetórias de ensaios 

triaxiais de referência, as trajetórias obtidas por Yu (1998) [2] e as trajetórias 

obtidas com a implementação da presente dissertação. 

O Capítulo 5 realiza a comparação do modelo CASM com o modelo HS 

para a construção de uma barragem de rejeito alteada a montante, de maneira a 

avaliar uma estrutura geotécnica mais complexa e identificar as vantagens do 

modelo CASM. 

O Capítulo 6 fornece a proposta de avaliação do fator de segurança estático 

de um talude, onde plota-se um gráfico com os fatores de segurança provenientes 
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da variação do parâmetro 𝑛 do CASM versus os valores de coeficiente de aceleração 

horizontal (KH) críticos (não convergência do modelo). O fator de segurança 

estático é obtido ao extrapolar a curva determinada de maneira a encontrar a 

interseção com o eixo vertical (KH = 0). 

Finalmente, o Capítulo 7 apresenta as conclusões finais e encaminha 

sugestões para desdobramentos futuros da pesquisa.  
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2. 
CASM: um modelo de parâmetro de estado unificado para 
argila e areia 

Aspectos fundamentais abordados na modelagem constitutiva são 

brevemente revisados com atenção especial à teoria da plasticidade e do estado 

crítico para o modelo constitutivo CASM. Nesse contexto são apresentadas as 

formulações para a implementação do modelo constitutivo CASM.  

Yu (1998) [2] descreve que a teoria do estado crítico foi utilizada pela 

primeira vez para desenvolver modelos de plasticidade para solos à mais de 40 anos. 

A partir dessa data, modelos elastoplásticos baseados no conceito de estado crítico 

têm sido usados com sucesso para descrever características importantes do 

comportamento do solo. 

O modelo original Cam-clay foi desenvolvido por Roscoe e Schofield 

(1958) [6] e mais tarde Roscoe e Burland (1968) [7] propuseram o modelo Cam-

Clay modificado e sua generalização para três dimensões. 

O modelo Cam-Clay Original vem sofrendo modificações nos últimos 30 

anos, entre essas modificações se destacam: (a) superfície de escoamento para argila 

fortemente sobreadensada, (b) modelagem do estado crítico do comportamento de 

areia, (c) superfícies de escoamento anisotrópicas para solos consolidados 

unidimensionalmente, (d) inclusão de deformação plástica para solos sujeitos a 

carregamentos cíclicos internos à superfície de escoamento, (e) formulações do 

estado crítico 3D e (f) modelagem do comportamento das argilas sob diferentes 

taxas de deformação ou carregamento. 

Yu (1998) [2] ressalta que apesar de grande parte do sucesso na modificação 

do modelo Cam-Clay, os seguintes problemas ainda permanecem: 

• As superfícies de escoamento adotadas em muitos modelos baseados no 

estado crítico superestimam significativamente a ruptura do “lado seco” 

ou “lado dilatante”, geralmente essa limitação é superada utilizando a 
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superfície de Hvorslev como função de escoamento para essa região. O 

problema é que haverá duas superfícies de escoamento separadas para 

endurecimento e amolecimento, e essa descontinuidade na superfície de 

escoamento causará dificuldades numéricas significativas; 

• Muitos modelos baseados no estado crítico assumem regra de fluxo 

associada e, portanto, são incapazes de prever uma característica 

importante do comportamento comumente observada em testes não 

drenados em areia solta e argilas normalmente adensadas não 

perturbadas, que é um pico na tensão desviadora antes de se alcançar o 

estado crítico. Além disso, como mostrado por Vermeer (1982) [8], 

nenhuma bifurcação é possível no regime de endurecimento se uma 

regra de fluxo associada for usada, o que contradiz as observações 

experimentais; 

• O conceito de estado crítico teve muito menos sucesso na modelagem 

de materiais granulares. O principal problema reside no fato de que os 

modelos de Cam-clay existentes não conseguem prever o amolecimento 

e a dilatação observados em areias densas e a resposta não drenada de 

areias muito soltas. A falta de sucesso em desenvolver um modelo de 

estado crítico para areia também se deve às dificuldades experimentais 

em obter as linhas de estado crítico e de consolidação normal. Até muito 

recentemente, poucos dados sobre as linhas de estado crítico e de 

consolidação normal de areias estavam disponíveis. Além disso, os 

dados experimentais para areias parecem apoiar uma visão diferente das 

superfícies de escoamento em comparação com aquelas observadas 

para argilas. 

Além desses fatos Gens and Potts (1988) [9] confirmaram as seguintes 

observações: 

• Materiais modelados com base na teoria do estado crítico parecem estar 

limitados a materiais argilosos e siltosos saturados. Argilas duras 

sobreadensadas geralmente não parecem ser modeladas com 

formulações do estado crítico, este fato provavelmente está relacionado 

a baixa representatividade dos modelos do estado crítico para solos no 

“lado seco” ou “lado dilatante”; 
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• Os materiais granulares raramente são modelados por modelos 

baseados na teoria do estado crítico. Apesar do fato de vários modelos 

de areia de “duplo endurecimento” estarem disponíveis à anos, não 

parecem ter sido amplamente utilizados em análises numéricas. Isto se 

deve parcialmente ao fato de que as duas superfícies de escoamento 

separadas são usadas nesses modelos para modelar o endurecimento (ou 

escoamento consolidado) e amolecimento (ou escoamento cisalhante), 

o que tende a causar dificuldades numéricas. Outra razão pode ser que 

um grande número de constantes (algumas delas não tendo significado 

físico claro) precisam ser determinadas antes que esses modelos possam 

ser aplicados. 

É notório com o passar dos anos a tendência em aumentar o número de 

constantes constitutivas, muitas delas sem significado físico próprio, como 

observado por Scott (1988) [10]. Apesar de algumas dessas constantes de material 

terem um significado físico claro, há a dificuldade de que a representação de um 

fenômeno específico seja governada por várias constantes. 

A formulação de um modelo constitutivo não é feita para prever 

perfeitamente o comportamento tensão-deformação de um material, mas sim, 

respeitar fielmente os aspectos físicos fundamentais, como o princípio de 

invariância em relação ao sistema de referência ou a conservação da energia, e a 

representação do comportamento esperado do material. Ensaios e monitoramento 

que forneçam medidas adequadas e realistas se tornam elementos fundamentais 

nessa análise, para validação dos resultados obtidos. 

Mesmo que alguns modelos sejam considerados muito bem-sucedidos na 

modelagem do comportamento do solo, o grande número de constantes de material 

exigidas torna sua aplicação a problemas práticos muito difícil. Em contraste com 

essa situação Yu (1998) [2] propõe o modelo CASM onde as constantes de material 

exigidas pelo modelo são facilmente mensuráveis, possivelmente convencionais. 

Ao contrário de muitos modelos de estado crítico existentes que utilizam 

funções de escoamento e potenciais plásticos distintamente diferentes para argila e 

areia, uma única função de escoamento e potencial plástico são usados por Yu 

(1998) [2] tanto para argila quanto para areia. Como será mostrado, isso pode ser 
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alcançado usando uma relação geral de estado de tensão para derivar uma superfície 

de limite de estado unificada. 

 

2.1. 
Teoria da plasticidade 

Yu (2006) [11] descreve que antes que a teoria das relações de tensão-

deformação plástica fosse desenvolvida para metais, o conceito de plasticidade 

perfeita já havia sido utilizado para resolver problemas de estabilidade geotécnica 

envolvendo pressões do solo e paredes de contenção por Coulomb (1773) e Rankine 

(1857).  

Entretanto, sem uma relação tensão-deformação, não é possível utilizar a 

teoria da plasticidade para estimar a deformação. Por isso, nas fases iniciais do 

desenvolvimento da mecânica dos solos e da engenharia geotécnica, quase todos os 

cálculos estavam relacionados com a estabilidade de estruturas e obras de terra. 

Nessas análises, o solo era considerado como um sólido rígido perfeitamente 

plástico, e cálculos simples levavam a uma estimativa da carga máxima que a 

estrutura pode suportar antes do colapso. 

Modelos numéricos que analisam problemas da deformação plástica 

demandam grande esforço computacional, porém, apresentam como principal 

vantagem a avaliação de mecanismos de ruptura, cargas de colapso e de 

deformações permanentes através da adoção de comportamento não linear. 

Nos modelos elastoplásticos o comportamento do solo é caracterizado pela 

existência de deformações elásticas e plásticas, sendo a elasticidade um mecanismo 

de deformação conservativo que não dissipa energia, ou seja, reversível e a 

deformação plástica um fenômeno dissipativo irreversível. 

É de conhecimento comum que a teoria da plasticidade adotada para solos 

admite o material com comportamento elástico-perfeitamente plástico, com base 

nos seguintes elementos: 

(1) Relações constitutivas elásticas (elastic constitutive relationships); 

(2) Função de escoamento (yield function); 
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(3) Potencial plástico (plastic potencial); 

(4) Lei de fluxo (flow rule); 

(5) Lei de endurecimento/amolecimento (hardening/softening rule). 

 

2.1.1. 
Introdução 

O modelo CASM proposto por Yu (1998) [2] utiliza o conceito de parâmetro 

de estado e uma regra de fluxo não associada. Yu (1998) [2] afirmou que, como o 

parâmetro de estado pode ser facilmente determinado tanto para argila quanto para 

areia, pode ser considerada um parâmetro melhor do que a razão de 

sobreadensamento (OCR) para descrever a resposta do solo sob várias condições 

de carga. 

O parâmetro de estado (𝜓) pode ser obtido com uma simples função de 

acordo com outros parâmetros: 

 𝜓 = 𝑣 + 𝜆𝑐𝑙𝑛𝑝′ − Γ  (2-1) 

Onde 𝑣 é o volume específico (1 + 𝑒), 𝜆𝑐 é a inclinação da linha de estado 

crítico, 𝑝′ é a tensão efetiva média e Γ é a interseção da linha de estaco crítico com 

o eixo das ordenadas para 𝑝′ = 1 kPa. 

O parâmetro de estado de referência (𝜓𝑅) denota a distância vertical entre 

a linha de estado crítico (CSL) e a linha de consolidação de referência (RCL). 

É possível observar que 𝜓 é zero no estado crítico, positivo no “lado úmido” 

ou “lado contrátil” e negativo no “lado seco” ou “lado dilatante”. As definições do 

parâmetro de estado, do parâmetro de estado de referência e das constantes de 

estado crítico podem ser encontradas na Figura 2.1. 
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Figura 2.1 – Parâmetro de estado, parâmetros de referência e contantes do estado crítico 

(Modificado de Yu, 2019) [12]. 

 

2.1.2. 
Função de escoamento 

A função de escoamento (𝑓) pode ser definida como o limite do espaço de 

tensão de uma região dentro da qual é razoável descrever as deformações como 

elásticas e recuperáveis. 

Habitualmente é uma função do estado de tensão 𝜎𝑖 e das variáveis internas 

ℎ𝑘, comumente conhecidas como parâmetros de endurecimento/amolecimento, que 

controla seu tamanho. Em termos matemáticos, exprime-se: 

 𝑓 = 𝑓(𝜎𝑖, ℎ𝑘) (2-2) 

Ressalta-se que para plasticidade perfeita ℎ𝑘  é constante, logo, a superfície 

de escoamento é de tamanho constante. Para a plasticidade com endurecimento ou 

amolecimento, ℎ𝑘 varia com a deformação plástica para representar como a 

magnitude do estado de tensão no escoamento muda. Como já citado, essa função 

divide o comportamento puramente elástico do comportamento elastoplástico. 
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Caso o endurecimento ou amolecimento se relacione à magnitude das 

deformações plásticas, o modelo é conhecido como “strain hardening/softening” e 

caso se relacione com a magnitude do trabalho plástico o modelo é conhecido como 

“work hardening/softening”. 

A Figura 2.2 mostra a equação (2-2) no espaço das tensões principais, que 

nesse espaço representa a superfície de escoamento. Essa superfície delimita o 

domínio elástico, onde 𝑓 < 0, e o regime elastoplástico, onde 𝑓 = 0. O espaço 

externo, onde 𝑓 > 0, é dito impossível.  

Nessa figura também é possível observar que para permanecer no regime 

elastoplástico o ponto que representa o estado tensional deverá permanecer na 

superfície de escoamento, ou seja, não pode sair da superfície de escoamento. Sendo 

assim, o ponto apenas pode se mover, permanecendo na superfície, de modo a 

respeitar 𝑓 = 0, que pressupõe também 𝑓̇ = 0, condição chamada de consistência 

plástica. 

 

Figura 2.2 – Ponto de tensão movendo-se sobre a função de escoamento no espaço das 

tensões principais. (Cirone, 2023) [15]. 

A função de escoamento do CASM pode ser expressa em termos triaxiais 

convencionais da seguinte maneira: 

 𝑓 = (
𝑞

𝑀𝑐𝑝′
)
𝑛

ln 𝑟 + ln 𝑝 − 𝑙𝑛𝑝′0 (2-3) 

Na equação (2-3), 𝑛 e 𝑟 são os dois novos parâmetros introduzidos no 

CASM, 𝑞 é a tensão de desvio, 𝑀𝑐 é a inclinação da linha de estado crítico, 𝑝 é a 

tensão efetiva média e 𝑝′0 a pressão de pré-adensamento.  
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O expoente 𝑛 é um parâmetro utilizado para especificar a forma da 

superfície de escoamento, com efeito sobre a forma da função de escoamento 

apresentado na Figura 2.3. Nessa figura o valor de 𝑟 foi mantido constante e igual 

a 4. 

A partir dessa figura também é possível observar que diferentemente dos 

modelos Cam-Clay, o estado crítico não ocorre necessariamente na tensão 

desviadora máxima. Como Khong (2004) [13] especifica isso reproduz uma 

importante característica da superfície de escoamento de materiais arenosos, onde 

a tensão desviadora atinge muitas vezes um pico local antes de se aproximar do 

estado crítico. 

A função de escoamento pode ser modificada e adaptada, através do 

expoente (𝑛), para impor o grau desejado de amolecimento não drenado. 

 

Figura 2.3 – Função de escoamento do CASM – Sensibilidade do modelo para o coeficiente 

de forma (𝑛). 

O parâmetro 𝑟 é a razão de razão de espaçamento, distância entre a linha de 

compressão virgem e a linha de estado crítico, usada para controlar o ponto de 

interseção da linha de estado crítico e a superfície de escoamento. com efeito sobre 

a forma da função de escoamento apresentado na Figura 2.4. Nessa figura, o valor 

de 𝑛 foi mantido constante igual a 3. 

É importante notar que o modelo Cam-clay original pode ser obtido com o 

CASM ao considerar os parâmetros n = 1 e r = 2,7183. De modo adicional, o “lado 
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úmido” (contrátil) do Cam-clay modificado também pode ser retornado com 

precisão utilizando o CASM, ao utilizar r = 2 em conjunto com um valor de n 

adequado (normalmente entre 1,5-2 dependendo do material). 

 

Figura 2.4 – Função de escoamento do CASM – Sensibilidade do modelo para a razão de 

espaçamento (𝑟). 

Destaca-se que a partir dessas figuras é possível observar que o expoente 𝑛 

influencia na curvatura da função de escoamento, tornando o pico mais acentuado 

conforme aumenta, contudo, não altera o ponto de interseção com a linha do estado 

crítico, logo, altera a resistência de pico e conserva a resistência no estado crítico 

(residual). 

De outra forma, a razão de espaçamento 𝑟 afeta tanto a “altura” da função 

de escoamento, quanto sua interseção com a linha de estado crítico, que permite 

concluir que altera tanto a resistência de pico quanto a resistência no estado crítico 

(residual). 

Nas figuras acima também foram representadas as máximas tensões 

desviadoras, que ocorrem no seguinte ponto: 

 
𝜂𝑌

𝑀𝑐
= (𝑛 𝑙𝑛𝑟)−

1
𝑛 (2-4) 

Onde 𝜂𝑌 é a obliquidade do ponto mais alto da superfície de escoamento. 
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A função de escoamento apresentada foi generalizada para o espaço de 

tensão tridimensional definindo a inclinação da linha de estado crítico, 𝑀𝑐, como 

uma função do ângulo de Lode, de acordo com o critério de falha de Lade-Duncan, 

sugerido por Van Eekelen (1980) [14]: 

 𝑀 = 𝑀𝑐 (
1 − 𝐵

1 + 𝐵𝑠𝑖𝑛3𝜃
)
1 4⁄

 (2-5) 

Onde: 

 𝐵 = 1 − (
3

3 + 𝑠𝑖𝑛𝜙′𝑐
)
4

 (2-6) 

É um parâmetro do modelo que controla a curvatura do critério de falha no 

plano octaédrico e: 

 𝑀𝑐 =
6𝑠𝑖𝑛𝜙′𝑐

3 − 𝑠𝑖𝑛𝜙′𝑐
 (2-7) 

É a inclinação da linha de estado crítico na compressão triaxial e 𝜙′𝑐 o 

respectivo ângulo de atrito efetivo. Segundo Van Eekelen (1980) [14], o modelo é 

convexo se B < 0,756, esse é sempre o caso. 

 

2.1.3. 
Decomposição aditiva 

Khong (2004) [13] cita que para solos existe uma superfície de escoamento 

(𝑓) onde a resposta do solo muda de rígida para menos rígida. Para mudanças de 

tensões dentro da superfície de escoamento escolhida a resposta é elástica. Assim 

que a mudança do estado de tensões atinge a superfície de escoamento e nela 

permanece, ocorre uma combinação de respostas elásticas e plásticas. No entanto, 

esses modelos não incluem os efeitos do tempo como os modelos visco-

elastoplásticos. De maneira resumida: 

 

𝑓 < 0 𝑒𝑠𝑡𝑎𝑑𝑜 𝑒𝑙á𝑠𝑡𝑖𝑐𝑜 

(2-8) 
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𝑓 =  0 𝑒𝑠𝑡𝑎𝑑𝑜 𝑒𝑙𝑎𝑠𝑡𝑜 𝑝𝑙á𝑠𝑡𝑖𝑐𝑜 

𝑓 > 0 𝑒𝑠𝑡𝑎𝑑𝑜 𝑖𝑚𝑝𝑜𝑠𝑠í𝑣𝑒𝑙  

A decomposição aditiva é uma hipótese fundamental da teoria da 

plasticidade que separa a taxa de deformação total entre as parcelas elásticas e 

plásticas, geralmente aceita para problemas de pequenas deformações, conforme 

mostrado a seguir: 

 𝜖𝑖̇𝑗 = 𝜖𝑖̇𝑗
𝑒 + 𝜖𝑖̇𝑗

𝑝
 (2-9) 

Onde 𝜖𝑖̇𝑗 é a taxa de deformação total, 𝜖𝑖̇𝑗
𝑒  é a taxa da parcela elástica e 𝜖𝑖̇𝑗

𝑝
 é 

a taxa da parcela plástica. A relação constitutiva elástica que será apresentada no 

item 2.1.5 só é válida para a parcela elástica. 

Logo, quando 𝑓 < 0 o regime é dito elástico e 𝜖𝑖̇𝑗 = 𝜖𝑖̇𝑗
𝑒 , quando 𝑓 = 0 o 

regime é elastoplástico e 𝜖𝑖̇𝑗 = 𝜖𝑖̇𝑗
𝑒 + 𝜖𝑖̇𝑗

𝑝
. A condição 𝑓 > 0 é inadmissível pela 

teoria da plasticidade, contudo, é abordada na teoria da viscoplasticidade.  

 

2.1.4. 
Potencial plástico e lei de fluxo 

No domínio elastoplástico, onde 𝑓 = 0, ocorrem as deformações elásticas e 

plásticas e para especificar as magnitudes relativas de vários componentes da 

deformação plástica é necessário a utilização do potencial plástico (𝑔): 

 𝑔 = 𝑔(𝜎𝑖 , 𝛽) (2-10) 

Geralmente o potencial plástico é função do estado de tensão 𝜎𝑖 e do vetor 

de parâmetros de estado (𝛽), sendo este vetor imaterial e dependente do estado de 

tensões. 

Ainda no regime elastoplástico, a taxa de deformação plástica é calculada 

pela lei de fluxo: 
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 𝜖𝑖̇
𝑝 = 𝜆̇

𝜕𝑔

𝜕𝜎𝑖
 (2-11) 

Onde 𝜆̇ é a taxa do multiplicador plástico, que fornece o módulo da 

deformação plástica, enquanto o gradiente 𝜕𝑔/𝜕𝜎𝑖  fornece sua direção e define o 

campo dos vetores do fluxo plástico, sendo o multiplicador plástico e sua respectiva 

taxa nunca negativos. De maneira geral, na plasticidade o multiplicador é obtido ao 

impor a condição de consistência plástica, com abordagens diferentes na 

viscoplasticidade, onde é determinado pela função do núcleo viscoso e na 

termodinâmica, onde coincide com a deformação plástica equivalente. 

Para compressão triaxial a lei de fluxo pode ser descrita da seguinte maneira: 

 
𝜕𝜖𝑣

𝑝

𝜕𝜖𝑠
𝑝 =

𝜕𝑔
𝜕𝑝′⁄

𝜕𝑔
𝜕𝑞⁄

 (2-12) 

Onde 𝛿𝜖𝑣
𝑝
 é a taxa de deformação volumétrica plástica, 𝛿𝜖𝑠

𝑝
 é a taxa de 

deformação cisalhante plástica, 
𝜕𝑔

𝜕𝑝′⁄  a derivada do potencial plástico em relação 

a tensão efetiva média (𝑝′) e 
𝜕𝑔

𝜕𝑞⁄  a derivada do potencial plástico em relação a 

tensão de desvio (𝑞). 

O vetor de deformação plástica incremental em um determinado estado de 

tensão será normal à superfície do potencial plástico que passa por esse ponto do 

estado de tensão que permite obter uma expressão matemática do potencial plástico 

derivada a partir de uma relação entre tensão e dilatância (𝑑 = 𝑑𝜖𝑣
𝑝 𝑑𝜖𝑠

𝑝⁄ ) como 

feita por Lagioia et. al. (1996) [16] e apresentada na sequência: 

 𝑑 =
𝑑𝜖𝑣

𝑝

𝑑𝜖𝑠
𝑝 = −

𝑑𝑞

𝑑𝑝
 (2-13) 

Por substituição, como mostra Desai e Siriwardane (1984) [17] [Cap. 11, 

p.290], têm se: 
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𝑑𝑝

𝑝
= −

𝑑𝜂

𝑑 + 𝜂
 (2-14) 

Quando a função de escoamento (𝑓) é igual ao potencial plástico (𝑔) o fluxo 

é dito associado e a direção do vetor de deformação plástica é normal a superfície 

de escoamento, onde é válida a condição de normalidade à superfície de 

escoamento. Quando 𝑓 ≠ 𝑔 o fluxo é dito não associado. Na Figura 2.2, o vetor que 

representa os incrementos de deformação plástica é chamado de vetor de fluxo 

plástico. 

Cirone (2023) [15] menciona que muitos materiais com comportamento 

dependente da pressão confinante, da deformação volumétrica plástica e do atrito, 

tipicamente solos e rochas, apresentam comportamento não associado. Além disso, 

o modelo é dito termodinamicamente admissível quando são respeitadas as 

condições de continuidade, convexidade da superfície de escoamento e da 

normalidade do fluxo ao potencial plástico. Além do que podem existir múltiplas 

superfícies de escoamento, como exemplo o modelo de Mohr-Coulomb com 

dilatância não associada. 

O potencial plástico utilizado no CASM proposto por Yu (1998) [2] segue 

a relação tensão-dilatância de Rowe (1962) [18][19], desenvolvida originalmente a 

partir de considerações de energia mínima de deslizamento de partículas e obteve 

maior sucesso na descrição da deformação de areias e outros materiais granulares.  

Para compressão triaxial a lei de fluxo pode ser escrita como:  

 
𝛿𝜖𝑣

𝑝

𝛿𝜖𝑠
𝑝 =

𝜕𝑔
𝜕𝑝′⁄

𝜕𝑔
𝜕𝑞⁄

=
9(𝑀𝑐 − 𝜂)

9 + 3𝑀𝑐 − 2𝑀𝑐𝜂
 (2-15) 

Onde 𝛿𝜖𝑣
𝑝
 é a taxa de deformação volumétrica (ou média) plástica e 𝛿𝜖𝑠

𝑝
 é a 

taxa de deformação cisalhante (ou desviadora) plástica, 𝑀𝑐 é a inclinação da linha 

de estado crítico e 𝜂 = 𝑞/𝑝′ é a obliquidade. 

Integrando a partir da equação (2-14), o potencial plástico (g) assume a 

seguinte forma: 
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𝑔(𝜎, 𝛽) = 3𝑀𝑐(𝑙𝑛𝑝′ − 𝑙𝑛𝛽) + 

(3 + 2𝑀𝑐) ln (
2𝑞 + 3𝑝′

𝑝′
) − (3 − 𝑀𝑐) ln (

3𝑝′ − 𝑞

𝑝′
) = 0 

(2-16) 

Destaca-se que o presente trabalho propôs uma modificação no potencial 

plástico baseado na tensão-dilatância de Rowe (1962) [18][19]. 

Dessa forma, para a implementação do presente trabalho, foi utilizada a 

relação de tensão-dilatância de Cirone (2020) [3] que se baseou nas relações de 

tensão dilatância de Nakai and Hinokio (2004) [4] e Kim e Lade (1988) [5], 

apresentada abaixo: 

 
𝛿𝜖𝑣

𝑝

𝛿𝜖𝑠
𝑝 =

𝜕𝑔
𝜕𝑝′⁄

𝜕𝑔
𝜕𝑞⁄

=
(𝑀𝑐

2 − 𝜂2)(𝜂2 + 𝛼)

𝛽𝜂
 (2-17) 

Impondo a condição de “cut-off” na compressão triaxial, onde 𝑑(𝜂 = 3) =

 −3, obtém-se: 

 𝛽 = −
1

9
(𝑀𝑐

2 − 9)(9 + 𝛼) (2-18) 

A partir da integração da relação de tensão-dilatância o potencial plástico 

utilizado no presente trabalho é dado por: 

𝑔 ∶ (
𝛼1 + 𝜂2

𝛼2 − 𝜂2
) (

𝑝

𝑝0
)
𝑢

=
𝛼1

𝛼2
 (2-19) 

Esse potencial plástico é uma simplificação da versão proposta por Kim e 

Lade (1988) [5], onde também é possível demonstrar a existência de uma simples 

relação entre os parâmetros (𝑀𝑐, 𝛼, 𝛽) e (𝛼1, 𝛼2, 𝑢). 

𝛼1 =
𝑀𝑐

2𝛼

9
=

1

2
[√(𝑀𝑐

2 + 𝛽 − 𝛼)2 + 4𝑀𝑐
2𝛼 − (𝑀𝑐

2 + 𝛽 − 𝛼] (2-20) 

𝛼2 = 9 = 𝑀𝑐
2 + 𝛽 − 𝛼 + 𝛼1 (2-21) 
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𝑢 =
2

𝛽
(
𝑀2𝛼

9
+ 9) =

2

𝛽
(𝛼1 + 𝛼2) (2-22) 

De posse de ensaios de compressão triaxial drenada, os ensaios podem ser 

calibrados ajustando a relação de dilatância explicitada equação (2-17) com os 

dados experimentais, por meio de um gráfico exemplificado na Figura 2.5, que 

também apresenta o efeito de 𝛼 no potencial plástico. 

 

Figura 2.5 – Influência do parâmetro 𝛼 no potencial plástico. a) Contornos no plano 

triaxial. b) Relação tensão-dilatância com M = 1. 

(Cirone, 2020) [3]. 

Alternativamente, a calibração do parâmetro 𝛼 pode ser realizada sob 

condições de carregamento edométrico, impondo o valor de 𝐾0 (coeficiente de 

empuxo em repouso) desejado. Dessa forma, sua estimativa é dada por: 

 𝛼 ≈
3

2
(1 −

𝜆

𝜅
)

𝛽𝜂0

𝑀𝑐
2 − 𝜂0

2 − 𝜂0
2 (2-23) 

Onde 𝜂0 = 3(1 − 𝐾0)/(1 + 2𝐾0) é a obliquidade correspondente ao trecho 

virgem de carregamento edométrico. Por ser implícita em 𝛼 (no segundo membro, 

𝛽 também é função de 𝛼), a (2-23) é resolvida por meio de procedimento iterativo. 

 

2.1.5. 
Relações constitutivas elásticas 

Cirone (2023) [15] descreve que um material se diz elástico se o trabalho 

interno independe da trajetória de deformação, mas apenas das condições iniciais e 

final. Nesse caso, configura-se a existência de um potencial elástico (𝑔𝑒) que define 
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as relações constitutivas elásticas entre a densidade do material (𝜌) as tensões (𝜎𝑖𝑗)e 

as deformações elásticas (𝜖𝑖𝑗
𝑒 ), da seguinte maneira: 

 𝜎𝑖𝑗 = 𝜌
𝜕𝑔𝑒

𝜕𝜖𝑖𝑗
𝑒   (2-24) 

Destaca-se que tradicionalmente a equação (2-24) define os materiais 

hiperelásticos, estes materiais apresentam como característica chave que nenhuma 

energia pode ser gerada através de ciclos de carga, portanto, as leis da 

termodinâmica são sempre satisfeitas.  

As objeções quanto à teoria da hiperelasticidade se dão pela teoria exigir 

muitas constantes do material e de não modelar a dependência do histórico de 

tensões, pois a formulação desse modelo implica que os módulos tangentes do 

material são iguais na carga e na descarga. 

Para os materiais elásticos o comportamento é descrito através de 

generalizações da Lei de Hooke, devido à existência da proporcionalidade entre 

incrementos de tensão (Δ𝜎𝑖𝑗) e de deformação (Δ𝜖𝑗): 

 Δ𝜎𝑖𝑗 = 𝐷𝑖𝑗
𝑒 Δ𝜖𝑗  (2-25) 

O tipo mais simples de modelo utilizado para definir as relações 

constitutivas elásticas é o linear isotrópico, para este modelo a equação (2-25) pode 

ser escrita de forma extensa como: 

[
 
 
 
 
 
 
Δ𝜎𝑥

Δ𝜎𝑦

Δ𝜎𝑧

Δ𝜏𝑥𝑦

Δ𝜏𝑦𝑧

Δ𝜏𝑥𝑧]
 
 
 
 
 
 

=
𝐸

(1 + 𝜇)(1 − 2𝜇)

[
 
 
 
 
 
 
 
 
 
1 − 𝜇 𝜇 𝜇 0 0 0
𝜇 1 −  𝜇 𝜇 0 0 0
𝜇 𝜇 1 −  𝜇 0 0 0

0 0 0
1 − 2𝜇

2
0 0

0 0 0 0
1 − 2𝜇

2
0

0 0 0 0 0
1 − 2𝜇

2
 ]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
Δ𝜖𝑥

Δ𝜖𝑦

Δ𝜖𝑧

Δ𝛾𝑥𝑦

Δ𝛾𝑦𝑧

Δ𝛾𝑥𝑧]
 
 
 
 
 
 

 (2-26) 

No comportamento elástico linear, os módulos de rigidez são constantes e 

existem as seguintes identidades: 

 𝐺 =
𝐸

2(1 + 𝜇)
, 𝐾 =

𝐸

3(1 − 2𝜇)
 (2-27) 
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Em que E é o módulo de Young, G é o módulo de cisalhamento, K é o 

módulo volumétrico (ou de Bulk) e 𝜇 é o coeficiente de Poisson. Os modelos mais 

comuns são formulados utilizando-se os pares E, 𝜇 ou K, G. 

No caso da elasticidade totalmente anisotrópica a matriz 𝐷𝑖𝑗
𝑒  se tornará 

completamente preenchida com 36 parâmetros, entretanto, considerações de 

deformações termodinâmica feitas por Love, mostram que a matriz 𝐷𝑖𝑗
𝑒  é simétrica, 

portanto, o número total de parâmetros anisotrópicos independentes é reduzido para 

21. 

Na implementação de modelos constitutivos pode se tornar útil trabalhar em 

termos de invariantes triaxiais, neste caso as relações elásticas se expressam da 

seguinte forma: 

 

Δ𝑝 = 𝐾Δ𝜖𝑣 

Δq = 3𝐺Δ𝜖𝑠 
(2-28) 

Embora os modelos elásticos sejam muito simples e fáceis de utilizar, eles 

não preveem o comportamento dos solos de maneira real, além do solo não 

apresentar comportamento linear e módulos elásticos constantes. Por essa razão são 

introduzidas leis elásticas não lineares, que frequentemente assumem a dependência 

entre os parâmetros do material e o nível de tensão e/ou deformação. 

A maior parte dos modelos elásticos não lineares atualmente adotam 

comportamento isotrópico. É comum expressar estas leis em incrementos 

infinitesimais ou taxas: 

 𝑑𝜎𝑖𝑗 = 𝐷𝑖𝑗
𝑒 𝑑𝜖𝑗   (2-29) 

Os materiais hipoelásticos tradicionalmente são definidos pela equação 

(2-29), onde os módulos contidos na matriz 𝐷𝑖𝑗
𝑒  variam continuamente ao longo da 

integração e são interpretados como módulos elásticos tangentes. Deve-se notar que 

na hipoelasticidade não é garantido que as leis da termodinâmica sejam sempre 

satisfeitas, no entanto, este tipo de modelo não linear é amplamente utilizado em 

análises geotécnicas. 
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Para incrementos finitos de tensão e deformação a equação (2-29) se 

transforma em: 

 Δ𝜎𝑖𝑗 = 𝐷̅𝑖𝑗
𝑒 Δ𝜖𝑗  (2-30) 

Onde 𝐷̅𝑖𝑗
𝑒  contém os módulos elásticos secantes. A Figura 2.6 mostra a 

diferença entre os módulos elásticos tangente e secante ao longo da curva de tensão-

deformação. Notadamente a diferença observada será mais marcada quanto maior 

for o incremento de deformação imposto. 

 

Figura 2.6 – Diferença entre módulo tangente e módulo secante. (Cirone, 2023) [15]. 

O comportamento elástico do modelo CASM adotado no presente trabalho 

é o mesmo dos modelos Cam-clay com o módulo volumétrico (𝐾′) e o módulo de 

cisalhamento (𝐺′) sendo definidos pelo seguinte conjunto de expressões (com 

coeficiente de Poisson (𝜇) constante): 

 𝐾′ =
𝜕𝑝′

𝜕𝜖𝑣
𝑒 =

1 + 𝑒

𝜅
𝑝′ =

𝑣𝑝′

𝜅
 (2-31) 

 

𝐺′ =
3(1 − 2𝜇)𝐾

2(1 + 𝜇)
=

3(1 − 2𝜇)

2(1 + 𝜇)

𝑣𝑝′

𝜅
 

(2-32) 
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2.1.6. 
Lei de endurecimento/amolecimento 

A equação (2-33) apresenta uma expressão geral da lei de 

endurecimento/amolecimento, que descreve a forma como a deformação plástica 

está relacionada com a mudança de tamanho da superfície de escoamento: 

 ℎ̇𝑘 =
𝜕ℎ𝑘

𝜕𝜖𝑗
𝑝 𝜖𝑗̇

𝑝
 (2-33) 

Como pode ser observado, essa lei prescreve como as variáveis internas (ℎ𝑘) 

se modificam com a deformação plástica. Em conjunto com o potencial plástico 

essa lei fornece a magnitude das deformações plásticas. As variáveis internas (ℎ𝑘), 

ou parâmetros de endurecimento, podem ser escalares ou tensores. 

Caso haja expansão da superfície de escoamento 𝑓 ocorre endurecimento, 

no caso do encolhimento da superfície, há amolecimento. O endurecimento é dito 

isotrópico no caso dos parâmetros de endurecimento serem grandezas escalares e 

cinemático quando estes parâmetros são grandezas tensoriais. 

Cirone (2023) [15] mostrou os efeitos dos dois padrões de endurecimento 

através da Figura 2.7, em que o tensor de “backstress” 𝐵𝑖𝑗 atua como parâmetro de 

endurecimento que rastreia a posição da superfície de escoamento. 

 

Figura 2.7 – Representação do endurecimento isotrópico e cinemático. (Cirone, 2023) [15]. 

Nos modelos elásticos perfeitamente plásticos, ou plasticidade rígida, não 

há expansão ou contração da superfície de escoamento, que permanece fixa no 

espaço de tensões, portanto, depende apenas das tensões e o parâmetro de 

endurecimento é uma constante. Os modelos de Tresca, Von Mises, Mohr-Coulomb 

e Drucker-Prager são exemplos dessa categoria. 
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Nos modelos elastoplásticos onde ocorrem deformações reversíveis (ou 

elásticas) e irreversíveis (ou plásticas) a teoria da elastoplasticidade tem sido a base 

para o desenvolvimento de diferentes modelos de solo a partir de várias 

combinações das funções de escoamento, potenciais plásticos e leis de 

endurecimento. Nos últimos 30 anos se notabilizaram modelos constitutivos 

baseados na teoria do estado crítico iniciado por Roscoe (1958) [6].  

Por ser a lei que estabelece como a resistência do material se modifica 

(aumenta ou diminui) em função das variáveis internas, que representam o estado 

interno do material, a lei de endurecimento/amolecimento é a componente do 

modelo elastoplástico que carece de maior atenção no desenvolvimento de modelos 

constitutivos, Cirone (2023) [15]. De maneira complementar, a lei de 

endurecimento afetará o módulo de endurecimento e o comportamento do material 

no regime das grandes deformações, que pode até fornecer resultados 

inconsistentes. 

Para o modelo CASM, o tamanho da superfície de escoamento, que é 

governado pela pressão de pré-adensamento (𝑝0
′ ) é considerado como parâmetro de 

endurecimento e está relacionado à deformação volumétrica plástica (𝜖𝑣
𝑝) através 

da seguinte equação: 

 𝜕𝑝0
′ =

(1 + 𝑒)

(𝜆𝑐 − 𝜅)
𝑝0

′𝜕𝜖𝑣
𝑝
 (2-34) 

As leis de endurecimento que relacionadas às deformações plásticas 

volumétrica e cisalhante são conhecidas como do tipo strain-harderning, os 

modelos Cam-Clay e, inicialmente, para o CASM foi utilizada apenas deformação 

volumétrica plástica para descrever o endurecimento do material. Esta hipótese, 

porém, não condiz com os resultados experimentais obtidos em areia, pela qual a 

distorção plástica influencia sensivelmente sua reposta em termos de 

endurecimento ou amolecimento. 

Nesse sentido Khong (2004) [13] modificou o modelo CASM para 

considerar a influência da deformação volumétrica cisalhante, entretanto, o presente 

trabalho irá trabalhar com a lei de endurecimento inicial do modelo CASM para 

facilitar a implementação matemática. Além desse fato, Khong (2004) [13] 



46 

 

 

descreve que a modificação da lei de endurecimento do CASM de forma a 

considerar a influência da deformação volumétrica cisalhante necessita de 

modificações para obter resultados satisfatórios que atinjam o estado crítico. 

Portanto, a lei de endurecimento adotada no presente trabalho com base na 

equação (2-34) é dada por: 

 𝑝′0 = 𝑝′0
𝑡 exp [

1 + 𝑒

𝜆𝑐 − 𝜅
Δ𝜖𝑣

𝑝] (2-35) 

 

2.2. 
Parâmetros do Modelo 

Ao longo do presente item foram apresentadas as equações governantes do 

modelo CASM e seus parâmetros. Pode-se observar que o modelo original possui 

um total de 7 constantes de material: 𝜆, 𝜅, 𝜇,𝑀𝑐 (𝜙𝑐
′), Γ, 𝑛 𝑒 𝑟  e o modelo que será 

implementado no presente trabalho necessita adicionalmente da constate (𝛼) para 

o potencial plástico. A Tabela 2-1 lista os parâmetros do modelo. 

Tabela 2-1 – Resumo do CASM implementado: parâmetros, descrição e calibração 

Parâmetro Descrição Calibração/Observação 

𝜆𝑐 
Inclinação da linha do estado 

crítico no plano (e-lnp') 

Ensaios Trixaiais. 

Tipicamente entre 0,01-0,05 para areias e 

entre 0,1-0,2 para argilas. 

𝜅 

Inclinação da linha de 

descarregamento-recarregamento 

no plano (e-lnp') 

Ensaios de laboratório: compressão 

edométrica ou hidrostática. 

Tipicamente valores de 0,005 para areias 

e entre 0,01 e 0,06 para argilas. 

Não pode ser maior que 𝝀𝒄. 

𝜇 Coeficiente de Poisson 
Tipicamente entre 0,10 e 0,35. 

Para condição não drenada 0,5. 

𝜙𝑐
′  

Ângulo de atrito no estado crítico 

(para compressão triaxial) 

Ensaios de laboratório (TX ou DSS). 

Tipicamente entre 28-35° para areias e 

entre 20-26° para argilas. 

𝑛 Coeficiente de forma 
Ensaios triaxiais. 

Tipicamente entre 1,0-5,0. 

𝑟 Razão de espaçamento 

Tipicamente entre 1,5-3,0 para argilas e 

muito maior para areias. Coop et. al 

(1993) [21] Crouch et al. (1994) [22]. 

𝛼 Parâmetro do potencial plástico Ajuste de 𝐾0 pela equação (2-23)(2-21) 

Γ 
Altura da linha do estado crítico 

(1+e na tensão p' = 1 kPa) 

Tipicamente entre 1,8-4,0 para vários 

solos. 



47 

 

 

De maneira complementar, a Tabela 2-2 explicita o comparativo dos 

elementos do modelo CASM implementado no presente trabalho com os 

implementados no modelo original de Yu (1998) [1] e o notório trabalho de Arroyo 

e Gens (2021) [23] da análise computacional do rompimento da Barragem I da mina 

Córrego de Feijão, em Brumadinho, feito no “International Centre for Numerical 

Methods in Engineering” (CIMNE), na Universidade Politécnica da Catalunha, 

Barcelona. 

Tabela 2-2 – Comparação dos elementos do modelo constitutivo implementado no presente 

trabalho e referências bibliográficas. 

Elemento 
Yu  

(1998) [1] 

Arroyo e Gens  

(2021) [23] 

Presente 

Trabalho 

COMP. 

ELÁSTICO 

𝐾′ = (1 + 𝑒)
𝑝′

𝜅
 

𝐺′

𝐾′
=

3(1 − 2𝜇)

2(1 + 𝜇)
 

IGUAL IGUAL 

FUNÇÃO 

DE ESC. 

𝑓 = (
𝑞

𝑀𝑐𝑝′
)

𝑛

ln 𝑟 + ln 𝑝

− 𝑙𝑛𝑝′0 

IGUAL IGUAL 

POTENCIA

L 

PLÁSTICO 

𝑔: 3𝑀𝑙𝑛𝑝′/𝛽 + 

(3 + 2𝑀)  ln (2𝑞/𝑝′ + 3) 

−(3 − 𝑀)  ln (3 − 𝑞/𝑝′ ) 

𝑔 ∶  (
√3𝐽

𝑝𝑀𝜃

)

𝑚

+ 𝑚 

−(𝑝𝑐(𝑚 − 1))/𝑝 − 1 

𝑔: (
𝛼1 + 𝜂2

𝛼2 − 𝜂2
) (

𝑝

𝑝0

)
𝑢

 

−
𝛼1

𝛼2

 

LEI DE 

END. 
𝑝′0 = 𝑝′0

𝑡 exp [
1 + 𝑒

𝜆𝑐 − 𝜅
Δ𝜖𝑣

𝑝
] IGUAL IGUAL 

VISCO-

PLAST. 
NÃO CONSIDERA 

CONSIDERA 

ATRAVÉS DOS 

PARÂMETROS 

𝑁 𝑒 𝜂 (PERZYNA, 

1966) 

NÃO 

CONSIDERA 

 

2.2.1. 
Inicialização 

Para implementar o modelo constitutivo CASM ainda são necessários os 

parâmetros de índice de vazios inicial (𝑒0) e a pressão de pré-adensamento (𝑝′0). 

No entanto, esses parâmetros podem ser derivados de outros, portanto, dependendo 

dos dados disponíveis, um par diferente de parâmetros podem ser empregados. 
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Visto que atualmente a avaliação do estado de rejeitos em barragens de 

mineração tende a discutir o parâmetro de estado do material, para determinar seu 

comportamento, a presente dissertação adotará a implementação a partir do 

parâmetro de estado inicial (𝜓0), onde:  

 1 + 𝑒0 = Γ + 𝜓0 − 𝜆𝑙𝑛𝑝′ (2-36) 

 𝑝′0 = 𝑟𝑝′𝑒𝑥𝑝 (−
𝜓0

𝜆 − 𝜅
) (2-37) 

O Anexo C – Inicialização CASM apresenta a dedução da equação (2-37), 

utilizada para inicializar o modelo CASM no presente trabalho. 

 

2.3. Resistência ao cisalhamento não drenado do modelo CASM no 
estado crítico 

Sob condições drenadas, se existir um valor positivo de parâmetro de estado 

(𝜓), é necessária uma contração de volume para atingir o valor CSL. Da mesma 

forma, sob condições não drenadas, a CSL é alcançada após um aumento da pressão 

da água nos poros. 

Durante o cisalhamento não drenado, o estado de um solo se move em 

direção à linha de estado crítico (CSL) e finalmente atinge seu estado crítico 

quando: 

 𝑝𝑢
′ = 𝑝𝑖

′ exp (−
𝜓

𝜆
) (2-38) 

Onde 𝑝𝑢
′  é a tensão média efetiva final no estado crítico, 𝑝𝑖

′é a tensão média 

efetiva inicial, 𝜓 o parâmetro de estado inicial e 𝜆 a inclinação da linha de estado 

crítico. 

O estado crítico é definido como a condição em que a resistência do solo se 

torna constante, que caracteriza um estado último e estacionário. A resistência ao 

cisalhamento não drenado no estado crítico pode ser estimada da seguinte maneira: 



49 

 

 

 𝑞𝑢 = 𝑀𝑐𝑝𝑢
′  (2-39) 

 𝑆𝑢(𝑙𝑖𝑞) =
𝑞𝑢

2
 (2-40) 

Substituindo as equações (2-39) e (2-40) na equação (2-38), retorna-se a 

conhecida expressão de razão de resistência não drenada liquefeita, como 

apresentada em Jefferies e Been (2015) [24]: 

 
𝑆𝑢(𝑙𝑖𝑞)

𝜎𝑣0
′ =

1 + 2𝐾0

6
𝑀𝑐 exp (−

𝜓

𝜆
) (2-41) 

Onde 𝑝′ = 𝜎𝑣0
′ (1 + 2𝐾0)/3, 𝐾0 o coeficiente de empuxo em repouso, 

𝑆𝑢(𝑙𝑖𝑞) é a resistência não drenada liquefeita, 𝜎𝑣0
′  a tensão vertical efetiva, , 𝑀𝑐 é a 

razão de tensão no estado crítico (inclinação), 𝜓 o parâmetro de estado inicial e 𝜆 a 

inclinação da linha de estado crítico. 

A equação (2-41) explicita que a resistência liquefeita do material depende 

apenas do parâmetro de estado do material, as condições in situ de tensões 𝐾0, do 

ângulo do estado crítico (através da inclinação 𝑀𝑐) e da inclinação da linha de 

estado crítico 𝜆. 

No ensaio de compressão triaxial não drenado de uma amostra de solo 

saturado, caso nenhuma deformação volumétrica ocorra, isso implica que a soma 

das componentes elástica e plástica da deformação volumétrica é nula:  

 𝑑𝜖𝑣 = 𝑑𝜖𝑣
𝑒 + 𝑑𝜖𝑣

𝑝 = 0 (2-42) 

A deformação volumétrica elástica (𝜖𝑣
𝑒) está relacionada à tensão média 

efetiva (𝑝′) de acordo com a expressão: 

 𝑑𝜖𝑣
𝑒 = 𝜅

𝑑𝑝′

𝜇𝑝′
 (2-43) 

Onde 𝜅 é a inclinação da linha de descarregamento-recarregamento no 

espaço 𝑙𝑛𝑝′x 𝜈. A deformação volumétrica plástica pode ser expressa pela seguinte 

lei de endurecimento isotrópico: 
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 𝑑𝜖𝑣
𝑝 = (𝜆 − 𝜅)

𝑑𝑝0
′

𝜇𝑝0
′  (2-44) 

Ao substituir as equações (2-43) e (2-44) na equação (6-5), têm-se: 

 𝜅
𝑑𝑝′

𝑝′
+ (𝜆 − 𝜅)

𝑑𝑝0
′

𝑝0
′ = 0 (2-45) 

A equação (2-45) estabelece uma relação entre a tensão média efetiva (𝑝′) e 

o tamanho da superfície de escoamento vinculado a 𝑝0
′  (tensão de pré-

adensamento). 

Essa relação indica que decréscimos de 𝑝′ são acompanhados por uma 

expansão elástica, o que requer uma contração volumétrica plástica, levando a uma 

expansão do limite de escoamento 𝑑𝑝0
′ > 0. 

Ao impor a condição de consistência plástica (𝑓̇ = 0) para a superfície de 

escoamento do CASM, explicitada na equação (2-1), têm-se: 

 𝑓̇ = 𝑛 (
𝜂

𝑀𝑐
)

𝑛−1 𝑑𝜂

𝑀𝑐
𝑙𝑛𝑟 +

𝑑𝑝′

𝑝′
−

𝑑𝑝0
′

𝑝0
′ = 0    (2-46) 

Ao igualar 𝑑𝑝0
′ /𝑝0

′  nas equações (2-45) e (2-46), obtém-se a forma 

diferencial da trajetória de tensões efetivas: 

 −
𝑑𝑝′

𝑝′
=

𝜆 − 𝜅

𝜆
𝑛 (

𝜂

𝑀𝑐
)
𝑛−1 𝑑𝜂

𝑀𝑐
𝑙𝑛𝑟    (2-47) 

Integrando a equação (2-47) com a condição final, 𝑝′ = 𝑝𝑢
′  e 𝜂 = 𝑀𝑐, têm-

se: 

 𝑙𝑛
𝑝′

𝑝𝑢
′

= 
𝜆 − 𝜅

𝜆
[1 − (

𝜂

𝑀𝑐
)
𝑛

] 𝑙𝑛𝑟  (2-48) 

Uma expressão análoga foi apresentada por Yu (1998) [2] que a nomeou 

como superfície limite do estado constante 𝜇. Fato que vale a pena destacar é que 

para encontrar a trajetória de tensão explicitada na equação (2-48) não foi 

necessário empregar uma regra de fluxo, sendo utilizadas apenas a função de 
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escoamento e a lei de endurecimento, portanto, o potencial plástico não afeta a 

forma da trajetória de tensões, conforme mencionado anteriormente no presente 

trabalho. 

Com parâmetros (𝜆 − 𝜅)/𝜆 = 0,8, 𝑀𝑐 = 1,20 , 𝑛 = 3, 𝑟 = 2 e 𝑝𝑢
′ =

50 𝑘𝑃𝑎, na equação (2-48), a Figura 2.8 ilustra a trajetória de tensões efetivas no 

espaço 𝑝′ x 𝑞 durante uma compressão triaxial não drenada, com escoamento e 

deformações plásticas ocorrendo. Para estados de tensão efetiva dentro da 

superfície de escoamento, o caminho de tensão efetiva deve inicialmente subir a 

uma 𝑝′ constante até que ocorra o escoamento. 

Outro aspecto importante é que o caminho de tensão efetiva difere da 

expressão da função de escoamento de escoamento, embora a diferença não seja tão 

acentuada. Além disso, apenas estados fofos apresentam um pico na tensão 

desviadora antes de alcançar o estado crítico.  

Conforme explicitado por Lade (1992) [25] a resistência de cisalhamento de 

pico está associada ao início da liquefação e está localizada na linha de 

instabilidade. Observe que, para estados onde 𝜂 < 𝑀𝑐 a tensão média efetiva tende 

a diminuir, indicando que o caminho de tensão efetiva se curva para a esquerda. O 

oposto ocorre quando 𝜂 > 𝑀𝑐, sugerindo que o caminho de tensão se curva para a 

direita. As seções seguintes focam apenas no primeiro caso, que é antecipado em 

amostras de solo com parâmetro de estado positivo. 
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Figura 2.8 – Caminhos de tensão efetiva típicos previstos pelo modelo CASM em 

compressão triaxial não-drenada. 

 

2.3.1. 
Linha de instabilidade 

A obliquidade 𝜂 é definida como a razão entre a tensão desviadora (𝑞) e a 

tensão média efetiva (𝑝′), então: 

 𝑑𝜂 =  𝑑 (
𝑞

𝑝′
) =

𝑑𝑞

𝑝′
−

1

𝑝2
𝑞𝑑𝑝 =  

𝑑𝑞

𝑝′
−

𝜂

𝑝
𝑑𝑝 (2-49) 

Substituindo a equação (2-49) na equação (2-47), têm-se: 

 
𝑑𝑞

𝑑𝑝
= −

[1 −
𝜆 − 𝜅

𝜆
𝑛𝑙𝑛𝑟 (

𝑛
𝑀𝑐

)
𝑛

]

[
𝜆 − 𝜅

𝜆
𝑛𝑙𝑛𝑟
𝑀𝑐

(
𝑛
𝑀𝑐

)
𝑛−1

]
 (2-50) 

Impondo a condição 𝑑𝑞/𝑑𝑝 = 0: 

 [1 −
𝜆 − 𝜅

𝜆
𝑛𝑙𝑛𝑟 (

𝑛

𝑀𝑐
)
𝑛

] = 0 (2-51) 

 (
𝑛

𝑀𝑐
)
𝑛

=
𝜆

𝜆 − 𝜅

1

𝑛𝑙𝑛𝑟
   (2-52) 



53 

 

 

Logo a linha de instabilidade (𝑛𝐼𝐿) é definida por: 

 
𝑛𝐼𝐿

𝑀𝑐
= (

𝜆

𝜆 − 𝜅

1

𝑛𝑙𝑛𝑟
)

1
𝑛

= (𝑛
𝜓𝑟

𝜆
)
−

1
𝑛
  (2-53) 

Onde 𝜓𝑟 = (𝜆 − 𝜅)𝑙𝑛𝑟. Destaca-se que a equação da linha de instabilidade 

é diferente da equação da linha de máxima desviadora apresentada na equação 

(2-4). A linha de instabilidade conecta as resistências de cisalhamento de pico dos 

caminhos de tensão efetiva não-drenados em compressão triaxial. 

A Figura 2.9 mostra o fato de que a resistência de pico não ocorre no ponto 

mais alto da superfície de escoamento, onde é feita uma comparação entre a linha 

de estado crítico (CSL), a linha de instabilidade (IL) e a linha de máximo 𝑞 para a 

superfície de escoamento (Y). A figura também mostra a diferença entre um 

caminho de tensão efetiva típico não-drenado, conforme previsto pela equação 

(2-48) e a superfície de escoamento do modelo CASM, dada na equação (2-3). 

 

Figura 2.9 – Características das linhas do modelo CASM – CSL = Linha de Estado Crítico, 

IL = Linha de Instabilidade e Y = Linha de máxima tensão desviadora. 

 

2.3.2. 
Resistência Não Drenada de Pico 

Através da (2-48) a trajetória efetiva de um ensaio não drenado pode ser 

escrita da seguinte forma: 



54 

 

 

 𝑝′ = 𝑝𝑢
′ exp {

𝜆 − 𝜅

𝜆
[1 − (

𝜂

𝑀𝑐
)
𝑛

] 𝑙𝑛𝑟}  (2-54) 

Multiplicando ambas as parcelas por 𝜂 = 𝑞/𝑝′, obtém-se uma expressão 

para a tensão desviadora: 

 𝑞 = 𝑝𝑢
′ 𝜂 exp {

𝜆 − 𝜅

𝜆
[1 − (

𝜂

𝑀𝑐
)

𝑛

] 𝑙𝑛𝑟}  (2-55) 

Para o pico de resistência, a obliquidade atinge um valor crítico, ou seja, 

𝜂 =  𝜂𝐼𝐿. Substituindo 𝜂𝐼𝐿, apresentado na equação (2-53), na equação (2-55): 

 𝑞𝑝𝑖𝑐𝑜 = 𝑝𝑢
′ 𝑀𝑐 (𝑛

𝜓𝑟

𝜆
)
−

1
𝑛
exp [

𝜓𝑟

𝜆
−

1

𝑛
]  (2-56) 

Introduzindo o valor de 𝑝𝑢
′  da equação (2-38): 

 𝑞𝑝𝑖𝑐𝑜 = 𝑝𝑖
′ 𝑀𝑐 (𝑛

𝜓𝑟

𝜆
)

−
1
𝑛
exp [

𝜓𝑟 − 𝜓

𝜆
−

1

𝑛
] (2-57) 

A resistência ao cisalhamento não drenado no pico pode ser definida da 

seguinte maneira: 

 𝑆𝑢(𝑝𝑖𝑐𝑜) =
𝑞𝑝𝑖𝑐𝑜

2
 (2-58) 

Então: 

 
𝑆𝑢(𝑝𝑖𝑐𝑜)

𝜎𝑣0
′ =

1 + 2𝐾0

6
𝑀𝑐 (𝑛

𝜓𝑟

𝜆
)

−
1
𝑛
exp [

𝜓𝑟 − 𝜓

𝜆
−

1

𝑛
] (2-59) 

Onde 𝑝𝑖
′ = 𝜎𝑣0

′ (1 + 2𝐾0)/3, 𝐾0 o coeficiente de empuxo em repouso, 

𝑆𝑢(𝑝𝑖𝑐𝑜) é a resistência não drenada de pico, 𝜎𝑣0
′  a tensão vertical efetiva, , 𝑀𝑐 é a 

razão de tensão no estado crítico (inclinação), 𝜓 o parâmetro de estado inicial, 𝜓  o 

parâmetro de estado de referência, n o coeficiente de forma da superfície de 

escoamento e 𝜆 a inclinação da linha de estado crítico. 
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3. 
Integração numérica de equações constitutivas na 
plasticidade 

As equações constitutivas apresentadas no Capítulo 2 devem ser integradas 

localmente nos pontos de Gauss através do chamado algoritmo de integração. 

Cirone (2023) [15], descreve que o problema consiste em atualizar as tensões 𝜎𝑖
𝑡, e 

as variáveis internas, ℎ𝑘
𝑡 , para seus valores atuais 𝜎𝑖

𝑡+Δ𝑡, ℎ𝑘
𝑡+Δt, dados os 

incrementos de deformação total, Δ𝜖𝑗. No processo descrito, as deformações totais 

são impostas, calculadas diretamente dos deslocamentos decorrentes do equilíbrio 

global. 

A presente dissertação adota esquema de integração explícita, por se tratar 

de um método mais simples, onde as equações constitutivas são integradas por meio 

de fórmulas diretas, sem a necessidade de iterações. Na sequência, são descritos os 

esquemas de integração e o método explícito com subincrementação automática 

utilizados. 

 

3.1. 
Esquema de integração 

Grande parte dos materiais geológicos podem ser descritos por modelos 

constitutivos elastoplásticos caracterizados pelas seguintes relações constitutivas: 

 Δϵ𝑗 = Δϵ𝑗
𝑒 + Δϵ𝑗

𝑝
 (decomposição aditiva) (3-1) 

 Δ𝜎𝑖𝑗 = 𝐷̅𝑖𝑗
𝑒 Δ𝜖𝑗 (elasticidade não-linear) (3-2) 

 Δϵ𝑗
𝑝 = Δ𝜆𝑏𝑗 (lei de fluxo) (3-3) 

 ℎ𝑘 = ℎ𝑘(𝜖𝑗
𝑝) (lei de endurecimento) (3-4) 
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 𝑓𝑡+Δ𝑡 = 0 (consistência plástica) (3-5) 

Como pode se observar, as equações (3-1), (3-2) e (3-3) são definidas em 

incrementos finitos de tensão e deformação, as tensões são calculadas em função 

das equações constitutivas elásticas. 

Os parâmetros de endurecimento, podem ser calculados analiticamente de 

maneira exata dado o valor de deformação plástica. 

Por fim, as deformações plásticas são obtidas ao se aproximar a lei de fluxo 

por algum esquema de integração numérica. Como apresentado na equação (2-11) 

o fluxo plástico, por sua vez, depende do multiplicador plástico, 𝜆̇, e do gradiente 

do potencial plástico 𝜕𝑔/𝜕𝜎𝑗 . 

As deformações plásticas, introduzidas na equação (3-3) na forma de 

incrementos discretos, resultam da lei de fluxo aproximada pelo esquema de 

integração numérica geralmente chamado de 𝜃-method, onde a equação (3-6) 

representa a resolução do problema através da regra dos trapézios e a equação (3-7) 

através da regra do ponto médio: 

 Δ𝜖𝑗
𝑝 = ∫ 𝜆̇

𝜕𝑔

𝜕𝜎𝑗
𝑑𝑡 ≈ Δ𝜆 [(1 − 𝜃)

𝜕𝑔𝑡

𝜕𝜎𝑗
+ 𝜃

𝜕𝑔𝑡+Δ𝑡

𝜕𝜎𝑗
]

𝑡+Δ𝑡

𝑡

 (3-6) 

 Δ𝜖𝑗
𝑝 = ∫ 𝜆̇

𝜕𝑔

𝜕𝜎𝑗
𝑑𝑡 ≈

𝑡+Δ𝑡

𝑡

Δ𝜆
𝜕𝑔𝑡+𝜃Δ𝑡

𝜕𝜎𝑗
 (3-7) 

Para 𝜃 = 0, obtém-se o método Euler explícito; para 𝜃 = 1/2, o método de 

Crank-Nicholson (ou das diferenças centrais); para 𝜃 = 2/3, o método de Galerkin; 

e para 𝜃 = 1, o método de Euler implícito. 

Para a presente dissertação foi utilizado o método explícito (𝜃 = 0), por se 

tratar de um método mais simples onde as equações constitutivas são integradas por 

meio de fórmulas diretas, sem a necessidade de iterações. 

No esquema explícito, o incremento de deformação aplicado é 

automaticamente dividido em subincrementos usando uma estimativa do erro local 

e tenta controlar o erro de integração global nas tensões. Para um certo esquema 
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dado, o número de subpassos utilizados é uma função da tolerância ao erro 

especificada, da magnitude do incremento de deformação imposto e da não 

linearidade das relações constitutivas, como mencionado por Cirone (2020) [3], 

exemplos notáveis são o esquema de Euler modificado com subpassos de tamanhos 

variável e o esquema clássico de Runge-Kutta. 

3.2. 
Método explícito com subincrementação automática 

Algoritmos explícitos para integrar relações constitutivas elastoplásticas 

podem ser encontrados em Sloan (1987) [26], Sloan and Brooker (1992) [27] e 

Sloan et al. (2001) [28]. 

As equações constitutivas podem ser reescritas na forma de taxas, como: 

 𝜎̇𝑖 = 𝐷𝑖𝑗
𝑒 𝜖𝑗

𝑒̇ = 𝐷𝑖𝑗
𝑒 (𝜖𝑗̇ − 𝜆̇𝑏𝑗) (3-8) 

 ℎ̇𝑘 = 𝐵𝑘𝑗𝜖𝑗̇
𝑝 = 𝜆̇𝐵𝑘𝑗𝑏𝑗 (3-9) 

Onde, 𝜆̇ é a taxa do multiplicador plástico, que fornece o módulo da 

deformação plástica, 𝐵𝑘𝑗 = 𝛿ℎ𝑘 𝛿𝜖𝑗
𝑝⁄  é a matriz de conformidade do 

endurecimento e 𝑏𝑗 =  𝜕𝑔/𝜕𝜎𝑗  é o gradiente do potencial plástico. 

Na plasticidade o multiplicador plástico é obtido ao se impor a condição de 

consistência plástica: 

 𝑓̇ =  
𝜕𝑓

𝜕𝜎𝑖
𝜎̇𝑖 +

𝜕𝑓

𝜕ℎ𝑘
ℎ̇𝑘 = 0 (3-10) 

Ao substituir as Equações (3-8) e (3-9) na equação (3-10), obtém-se a 

fórmula explícita da taxa do multiplicador plástico: 

 𝜆̇ =  
𝑎𝑖𝐷𝑖𝑗

𝑒 𝜖𝑗̇

𝑎𝑖𝐷𝑖𝑗
𝑒 𝑏𝑗 + 𝐻

 (3-11) 

Onde:  
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 𝑎𝑖 = 
𝜕𝑓

𝜕𝜎𝑖
 (3-12) 

São as derivadas parciais da função de escoamento com relações às tensões, 

enquanto o módulo de endurecimento é dado por: 

 𝐻 = −
𝜕𝑓

𝜕ℎ𝑘
𝐵𝑘𝑗𝑏𝑗  (3-13) 

Cirone (2023) [15] descreve que ao multiplicar as Equações (3-8), (3-9) e 

(3-11) por um intervalo de pseudo-tempo Δt os incrementos Δ𝜆, Δ𝜎𝑖 e Δℎ𝑘 são 

obtidos a partir da taxa de deformação 𝜖𝑗̇ = Δϵ𝑗/Δ𝑡, que é assumida constante no 

intervalo Δt. 

O objetivo ao adotar da técnica de subincrementação é de controlar o erro 

de integração e, ao mesmo tempo, contornar o problema da estabilidade condicional 

dos esquemas explícitos. 

Cirone (2023) [15] informa que o algoritmo de subincrementação utiliza um 

fator de tempo adimensional, uma grandeza escalar T(t) =0 e T(t+ Δt)=1. Desta 

forma, o n-ésimo subincremento é calculado como Δϵn = Δ𝑇𝑛Δ𝜖. Na primeira 

tentativa (n=1), aplica-se todo incremento Δ𝑇1 = 1. Se o erro de integração for 

maior que a tolerância estabelecida, uma nova tentativa é realizada, mas com um 

passo menor, ou seja, adotando Δ𝑇n = 𝑞Δ𝑇n, onde q é automaticamente calculado 

com base na tolerância especificada e no erro obtido, onde se repete o processo até 

se obter sucesso. À medida que a integração progride em direção à condição final, 

o tamanho dos subincrementos é controlado até atingir sua dimensão ótima. O 

algoritmo de subincrementação com controle automático de erro é detalhado no 

diagrama de fluxo apresentado no Anexo B – Algoritmo de subincrementação com 

controle automático de erro. 

O método obriga a localizar o ponto de interseção do preditor elástico com 

a superfície de escoamento, quando ocorre a transição do regime elástico para 

elastoplástico, conforme ilustrado na Figura 3.1(a).  
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O ponto de interseção pode ser obtido por diversas maneiras, sendo os 

métodos Pegasus (Dowell, M. and Jarratt, P. (1972) [29] e Newton-Raphson 

(Crisfield, M. A. (1991)) [30] os procedimentos mais recomendados. Na 

determinação do ponto de interseção, os parâmetros de endurecimento são fixos, 

uma vez que as deformações plásticas não são ativadas nesse procedimento.  

A partir da Figura 3.1(b), é possível observar que após a localização do 

ponto de interseção, a deformação excedente é dividida em subincrementos à 

medida que a integração avança em direção à condição final. No final do passo, é 

possível que o estado de tensão tenha desviado da superfície de escoamento, 

resultando em uma violação da consistência plástica. 

Cirone (2023) [15] explicita que o problema do desvio ocorre porque o 

esquema explícito considera apenas a condição 𝑓̇ = 0, enquanto omite 𝑓 = 0. 

Geralmente, é recomendado corrigir esse desvio (Sloan et al. (2001)) [28], 

podendo-se efetuar o retorno na superfície de escoamento pelo esquema consistente 

descrito por Potts e Gens (1985) [31] ou pelo método cutting-plane (Ortiz e Simo 

(1986)) [32]. 

 

Figura 3.1 – Representação esquemática do método explícito. Fases do algoritmo: (a) 

Localização do ponto de interseção; (b) Sub-incrementação com posterior retorno na 

superfície de escoamento. (Cirone, 2023) [15]. 

Para implementar o modelo constitutivo CASM na presente dissertação foi 

utilizado o método de Runge-Kutta, RK3(2), identificado pela sigla RKq(p), em 

que q é a ordem do método e p é a ordem da solução integrada que é utilizada para 

estimar o erro de integração e o retorno da superfície de escoamento pelo método 

cutting-plane (Ortiz e Simo (1986)) [32], que serão descritos na sequência. É 
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importante ressaltar que os métodos de ordem maior necessitam de mais avaliações, 

porém produzem menores erros na integração. 

3.2.1. 
Métodos de Runge-Kutta 

Os métodos de Runge-Kutta constituem uma família de métodos explícitos 

amplamente utilizados para a integração de sistemas de equações diferenciais do 

tipo 𝑦̇ = 𝑓(𝑡, 𝑦). Os métodos consistem em avaliações sucessivas de 𝑦̇ = 𝑓(𝑡, 𝑦) 

para calcular o valor da função no final do passo, 𝑦𝑛+1, fornecendo o respectivo erro 

de integração, 𝑒𝑛+1. 

O método de Bogacki-Shampine (1989) [33] ou RK3(2) é um método 

explícito de terceira ordem com estimativa do erro baseada na solução integrada de 

segunda ordem. Necessita de três avaliações de 𝑦̇ = 𝑓(𝑡, 𝑦) para calcular o valor da 

função yn+1, no final do passo: 

 

𝑠1 = 𝑓(𝑡𝑛, 𝑦𝑛) 

𝑠2 = 𝑓(𝑡𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑠1) 

𝑠3 = 𝑓(𝑡𝑛 +
3

4
ℎ, 𝑦𝑛 +

3

4
ℎ𝑠2) 

𝑡𝑛+1 = 𝑡𝑛 + ℎ 

𝑦𝑛+1 = 𝑦𝑛 +
1

9
ℎ(2𝑠1 + 3𝑠2 + 4𝑠3) 

(3-14) 

O cálculo do erro de truncamento necessita de uma última avaliação, de 

acordo com as seguintes expressões: 

 

𝑠4 = 𝑓(𝑡𝑛+1, 𝑦𝑛+1) 

𝑒𝑛+1 =
1

72
ℎ(−5𝑠1 + 6𝑠2 + 8𝑠3 − 9𝑠4) 

(3-15) 

O método de Bogacki-Shampine (1989) [33] necessita de quatro estágios, 

mas usa apenas três avaliações por passo, pois possui a característica FSAL (First 

Same As Last), pela qual a primeira avaliação é igual à última do passo anterior. 
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3.2.2. 
Algoritmo Cutting Plane 

Ortiz e Simo (1986) [32] propuseram o algoritmo cutting plane no qual o 

retorno a superfície de escoamento é realizado de maneira gradativa. Cirone (2023) 

[15] descreve que em cada iteração, a função de escoamento é linearizada por meio 

da expansão em série truncada de Taylor em torno dos valores atuais de tensões e 

variáveis internas, com: 

 𝑓 + 𝑑𝑓 = 𝑓 +
𝜕𝑓

𝜕𝜎𝑖
𝑑𝜎𝑖 +

𝜕𝑓

𝜕ℎ𝑚
𝑑ℎ𝑚 (3-16) 

Através da decomposição aditiva, torna-se possível descrever os 

incrementos de tensão em função do multiplicador plástico: 

 𝑑𝜎𝑖 = 𝐷𝑖𝑗
𝑒 𝑑𝜖𝑗

𝑒 = −𝐷𝑖𝑗
𝑒 𝑏𝑗𝑑𝜆 (3-17) 

Complementarmente é possível explicitar a lei de endurecimento  

 𝑑ℎ𝑚 =
𝜕ℎ𝑚

𝜕𝜖𝑗
𝑝 𝑑𝜖𝑗

𝑝 =
𝜕ℎ𝑚

𝜕𝜖𝑗
𝑝 𝑏𝑗𝑑𝜆 (3-18) 

Substituindo as equações (3-17) e (3-18) na equação (3-16), e rearrumando, 

obtém-se a correção iterativa do multiplicador plástico: 

 𝑑𝜆 =
𝑓

𝑎𝑖𝐷𝑖𝑗
𝑒 𝑏𝑗 + 𝐻

 (3-19) 

Onde: 

 𝑎𝑖 =
𝜕𝑓

𝜕𝜎𝑖
 (3-20) 

 𝐻 = −
𝜕𝑓

𝜕ℎ𝑚

𝜕ℎ𝑚

𝜕𝜖𝑗
𝑝 𝑏𝑗 (3-21) 
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De acordo com as equações constitutivas, as tensões, variáveis internas, 

deformações elásticas e plásticas são corrigidas com a consideração da correção 

iterativa do multiplicador plástico. Cirone (2023) [15] explicita que as correções 

nas tensões e variáveis internas são obtidas ao substituir o valor de 𝑑𝜆 nas seguintes 

equações: 

 𝜎𝑖
(𝑘+1)

= 𝜎𝑖
(𝑘)

− 𝑑𝜆𝐷𝑖𝑗
𝑒 𝑏𝑗 (3-22) 

 ℎ𝑚
(𝑘+1)

= ℎ𝑚
(𝑘)

+ 𝑑𝜆
𝜕ℎ𝑚

𝜕𝜖𝑗
𝑝 𝑏𝑗 (3-23) 

As iterações são interrompidas ao reestabelecer a condição de consistência 

plástica dentro da tolerância estabelecida, tipicamente, entre 10-6 e 10-9. 

A fase de correção consiste na relaxação das tensões sobre a superfície de 

escoamento atualizada (conforme mostrado na Figura 3.2), seguindo uma trajetória 

controlada, ponto a ponto, pelos valores dos gradientes locais. Obviamente, a fase 

de correção plástica só é realizada quando o estado de tensões viola o critério de 

escoamento.  

Por fim, Cirone (2023) [15] alega que a principal limitação do algoritmo é 

o alto erro de integração produzido ao aumentar o passo de integração, 

especialmente em presença de fortes não linearidades, mas é extremamente 

vantajoso para implementar modelos constitutivos complexos, pois não requer a 

solução de um sistema de equações nem o cálculo das derivadas de segunda ordem 

para realizar o retorno na superfície de escoamento. 

 

Figura 3.2 – Representação esquemática do algoritmo Cutting Plane (modelo associado). 

(Cirone, 2023) [15].  
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4. 
Testes de Validação 

A implementação numérica do CASM é certificada por meio de diferentes 

testes numéricos. Neste capítulo, o desempenho do CASM será avaliado através da 

previsão do comportamento de argila e areia nos ensaios triaxiais. Os resultados do 

software de elementos finitos PLAXIS 2D serão comparados com dados de uma 

série clássica de testes triaxiais realizados por Yu (1998) [2] e Khong (2004) [13], 

ao todo serão verificados 11 testes, além da influência das condições iniciais no 

comportamento tensão-deformação. 

Para todos os ensaios triaxiais simulados pelo CASM será utilizado o 

recurso soil test do PLAXIS 2D. O número de incrementos (passos) para cada 

análise é aumentado até que um resultado estável seja obtido. 

De maneira a observar a diferença do potencial plástico implementado por 

Yu (1998) [2] do implementado na presente dissertação, nos gráficos que serão 

apresentados na sequência, serão analisadas trajetórias com diferentes valores do 

parâmetro 𝛼 (constante do potencial plástico). 

Por serem utilizados os mesmos parâmetros do solo, com a calibração do 

parâmetro 𝛼 do potencial plástico, os resultados dos ensaios triaxiais descritos neste 

capítulo são semelhantes aos relatados em Yu (1998) [2] e Khong (2004) [13], 

portanto, validam a implementação. 

 

4.1. 
Influência das condições iniciais no comportamento tensão-
deformação calculado 

De maneira similar a Yu (1998) [2], antes propriamente de utilizar o modelo 

CASM para prever o comportamento de curvas de tensão-deformação individuais, 

será avaliada a influência das condições iniciais nas relações tensão-deformação 
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calculadas para argila e areia sob condições de carregamento drenadas e não 

drenadas. 

Inicialmente, para a avaliação da previsão do comportamento de argilas para 

diferentes valores de OCR (ou parâmetro de estado inicial) serão utilizadas as 

constantes da argila de Londres, que são: 

 
𝜆𝑐 = 0,161, Γ = 2,759, 𝜇 = 0,30, 𝜅 = 0,062 

𝑀𝑐 = 0,888, 𝑟 = 3,0, 𝑛 = 2,0 
 

De modo adicional serão avaliadas trajetórias variando o valor de 𝛼, desde 

um valor baixo (𝛼 = 1 𝑜𝑢 3) até um valor demasiadamente elevado (𝛼 = 1𝑒6), de 

maneira a observar os impactos da modificação do potencial plástico proposta na 

presente dissertação. 

Yu (1998) [2] afirma que as trajetórias obtidas para os diferentes valores de 

OCR (ou parâmetro de estado inicial), que serão apresentadas nas figuras seguintes 

através das linhas pretas, estão geralmente de acordo com as observações 

experimentais. 

A Figura 4.1 e a Figura 4.2 expõem aspectos da previsão do comportamento 

da argila durante ensaios de compressão triaxial sob condições drenadas para 

diferentes valores de OCR.  

As respostas das trajetórias de tensão desviadora do ensaio drenado com 

OCR =1, OCR = 2, na Figura 4.1, assemelham-se com a alcançadas por Yu (1998) 

[2] para valores mais baixos de 𝛼. Para OCR = 4 e OCR = 16 a diferença das 

trajetórias obtidas variando o parâmetro 𝛼 diminuem. 

Fato este que também é alcançado nas trajetórias de deformação axial (𝜖1) 

versus deformação volumétrica (𝜖𝑣) (Figura 4.2). Enfatiza-se que valores mais 

elevados de 𝛼 conduziram a deformações volumétricas mais elevadas para menores 

valores de OCR, que indica uma previsão de solo mais compressível (ou 

deformável). 
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Figura 4.1 – Efeito do OCR = 1 e 2 em ensaios de compressão triaxial drenados em argila – 

𝜖1 (%) 𝑥 𝑞 (𝑘𝑃𝑎) – Comparação com as trajetórias obtidas por Yu (1998) [2]. 

 

Figura 4.2 – Efeito do OCR em ensaios de compressão triaxial drenados em argila – 

𝜖1 (%) 𝑥 𝜖𝑣 (%) – Comparação com as trajetórias obtidas por Yu (1998) [2]. 
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Para a previsão do comportamento de argilas em ensaios triaxiais drenados 

é possível concluir que existe um parâmetro 𝛼 que pode ser calibrado que 

representará maior assertividade e concordância com o modelo.  

Esse efeito também pode ser identificado para a argila durante ensaios de 

compressão triaxial sob condições não drenadas para diferentes valores de OCR 

(Figura 4.3 e Figura 4.4).  

Para o ensaio não drenado a diferença das trajetórias de tensão desviadora 

observadas com a variação do parâmetro 𝛼 foi apenas para a condição de OCR = 1, 

enquanto nas outras condições não houve variação significativa das trajetórias de 

tensão desviadora com a mudança do parâmetro 𝛼. 

Tal comportamento também é aferido nas trajetórias de deformação axial 

(𝜖1) versus excesso de poropressão (Δ𝑢), onde valores mais elevados de 𝛼 

conduziram a excessos de poropressões mais elevados para o menor valor de OCR 

(OCR = 1). 

Assim como para os ensaios triaxiais drenados, para os ensaios triaxiais não 

drenados também é possível concluir que existe um parâmetro 𝛼 que pode ser 

calibrado que representará maior assertividade e concordância com o modelo. Para 

ambos os casos a calibração deve ser realizada comparando as trajetórias previstas 

com dados de ensaios laboratoriais, como será abordado na sequência da presente 

validação. 
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Figura 4.3 – Efeito do OCR em ensaios de compressão triaxial não drenados em argila – 

𝜖1 (%) 𝑥 𝑞 (𝑘𝑃𝑎) - Comparação com as trajetórias obtidas por Yu (1998) [2]. 

 

Figura 4.4 – Efeito do OCR em ensaios de compressão triaxial não drenados em argila – 

𝜖1 (%) 𝑥 Δ𝑢 (𝑘𝑃𝑎) - Comparação com as trajetórias obtidas por Yu (1998) [2]. 
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Para a avaliação da previsão do comportamento de areias para diferentes 

valores de parâmetro de estado inicial (𝜓0) serão utilizadas as constantes da areia 

de Ticino, que são: 

 
𝜆𝑐 = 0,024, 𝛤 = 1,986, 𝜇 = 0,30, 𝜅 = 0,008 

𝑀 = 1,29, 𝑟 = 108,6, 𝑛 = 2,0 
 

Assim como para os ensaios em argilas, através da comparação das 

trajetórias obtidas variando o parâmetro 𝛼, desde um valor baixo (𝛼 = 1 𝑜𝑢 3) até 

um valor demasiadamente elevado (𝛼 = 1𝑒6). 

Yu (1998) [2] conclui que para alcançar uma melhor concordância com os 

dados experimentais em testes de compressão não drenados em areia em um estado 

mais fofo que o crítico, o parâmetro de estado de referência da amostra tem de ser 

considerado igual o parâmetro de estado inicial (ou seja, 𝜓𝑅 = 𝜓0). 

A Figura 4.5 e a Figura 4.6 exibem aspectos da previsão do comportamento 

da areia durante ensaios de compressão triaxial sob condições drenadas.  

As respostas das trajetórias de obliquidade do ensaio drenado com 𝜓0 = -

0,15, 𝜓0 = -0,075 e 𝜓0 = 0,025 , na Figura 4.5, assemelham-se com a alcançadas 

por Yu (1998) [2] para valores mais elevados de 𝛼. Já para o estado mais fofo da 

areia, 𝜓0 = 0,075, o valor de 𝛼 para calibração do modelo tende a ser mais baixo. 

Conclui-se que é possível calibrar um parâmetro 𝛼 representativo do material e da 

condição de parâmetro de estado inicial analisada. 

Outro fato interessante que pode ser apreciado é o pico de obliquidade 

acentuado conforme menor o parâmetro de estado da amostra e para maiores valores 

de parâmetros de estado o material se comporta como fofo, onde não se percebe 

mais o pico de tensão.  
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Figura 4.5 – Efeito do parâmetro de estado inicial em ensaios de compressão triaxial 

drenados em areia – 𝜖1 (%) 𝑥 𝜂 – Comparação com as trajetórias obtidas por Yu (1998) [2]. 

A Figura 4.6 mostra que em altas deformações axiais não há variação na 

tensão desviadora, indicativo de que o estado crítico foi atingido. Fato este que 

também pode ser identificado nas curvas estabilizadas de deformação volumétrica 

versus deformação axial.  

Além disso, essa figura também comprova o fato de que materiais com 

parâmetro de estado positivo (acima da linha do estado crítico) tendem a contrair e 

com parâmetro de estado negativo (abaixo da linha de estado crítico) tendem dilatar, 

diferenciando os comportamentos contráteis e dilatantes das areias. 
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Figura 4.6 – Efeito do parâmetro de estado inicial em ensaios de compressão triaxial 

drenados em areia – 𝜖1 (%) 𝑥 𝜖𝑣 – Comparação com as trajetórias obtidas por Yu (1998) 

[2]. 

Esses aspectos podem ser observados para ensaio de compressão triaxial sob 

condições não drenadas para os valores de parâmetro de estado inicial (𝜓0) na 

Figura 4.7 e na Figura 4.8, contudo, para calibração do ensaio não drenado as 

trajetórias do ensaio necessitam de um parâmetro 𝛼 mais baixo. 

A Figura 4.7 permite observar que quanto menor o valor do parâmetro de 

estado associado a um parâmetro 𝛼 mais elevado identifica picos acentuados nas 

tensões desviadoras, característica essa interessante e observada em alguns 

materiais, entretanto, para o caso analisado são necessários valores de 𝛼 mais baixos 

para convergência do comportamento. 

Na Figura 4.8 além de identificar o estado crítico, as trajetórias p’ versus q 

comprovam resultados conhecidos nas bibliografias, em que parâmetros de estados 

iniciais positivos tendem a ter um comportamento de perda de resistência e 

contração (redução de volume), enquanto, parâmetros de estados negativos tendem 

a apresentar comportamento de ganho de resistência e dilatação (aumento de 

volume), até atingirem o estado crítico.  
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Essas figuras também mostram que o modelo CASM não prevê a redução 

da tensão média efetiva um pouco antes de aumentar até atingir o estado crítico para 

areias em estado mais denso que o crítico, padrão frequentemente observado em 

ensaios, além do fato que o valor de 𝛼 não influenciou na trajetória p’ x q. 

É de conhecimento geral que os materiais contráteis estão ligados a 

susceptibilidade a liquefação, portanto, com os parâmetros calibrados através de 

ensaios o modelo é capaz de identificar o comportamento do material analisado. 

Assim como para os ensaios triaxiais drenados, para os ensaios triaxiais não 

drenados também é possível concluir que existe um parâmetro 𝛼 que pode ser 

calibrado que representará maior assertividade e concordância com o modelo.  

Para ambos os casos a calibração deve ser realizada comparando as 

trajetórias previstas com dados de ensaios laboratoriais, como será abordado na 

sequência da presente validação. 

As trajetórias obtidas para os diferentes valores de 𝜓0, mostradas nas figuras 

indicam uma concordância com os valores obtidos por Yu (1998) [2], representada 

através das linhas pretas. 
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Figura 4.7 – Efeito de 𝜓0 em ensaios de compressão triaxial não drenados em areia – 

𝜖1 (%) 𝑥 𝑞 (𝑘𝑃𝑎) – Comparação com as trajetórias obtidas por Yu (1998) [2]. 

 

Figura 4.8 – Efeito do 𝜓0 em ensaios de compressão triaxial não drenados em areia – 

𝑝′(𝑘𝑃𝑎)𝑥 𝑞 (𝑘𝑃𝑎) – Comparação com as trajetórias obtidas por Yu (1998) [2]. 
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O efeito das constantes do CASM r e n no comportamento das trajetórias de 

compressão triaxiais drenadas é ilustrado na Figura 4.9 e na Figura 4.10. Ao variar 

os valores de n e r, além de ficar claro que o modelo CASM pode ser utilizado de 

forma satisfatória para modelar materiais com diferentes respostas de 

amolecimento, comprova de maneira inicial a validação da implementação 

realizada. 

Constata-se que para a variação dos parâmetros n e r avaliados no gráfico 

de deformação axial (𝜖1) versus a obliquidade (𝜂) para haver concordância entre o 

comportamento previsto pelo CASM implementado na presente dissertação com o 

apresentado por Yu (1998) [2] o valor de 𝛼 tem de ser baixo. 

Adicionalmente, para o gráfico deformação axial (𝜖1) versus deformação 

volumétrica (𝜖𝑣) percebe-se que o valor de 𝛼 deveria ser um pouco mais alto que o 

considerado. Logo, é possível concluir que existe um parâmetro 𝛼 que pode ser 

calibrado que representará maior assertividade e concordância com o modelo. 

 

Figura 4.9 – Efeito das constantes do modelo 𝑟 e 𝑛 na resposta de amolecimento calculada 

em testes de compressão triaxial drenados em areia densa – 𝜖1 (%) 𝑥 𝜂 – Comparação com 

as trajetórias obtidas por Yu (1998) [2]. 
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Figura 4.10 – Efeito das constantes do modelo 𝑟 e 𝑛 na resposta de amolecimento calculada 

em testes de compressão triaxial drenados em areia densa – 𝜖1 (%) 𝑥 𝜖𝑣 (%) – Comparação 

com as trajetórias obtidas por Yu (1998) [2]. 

A partir dos resultados apresentados no presente item, conclui-se que o 

CASM é capaz de reproduzir grande parte do comportamento de tensão-

deformação das argilas e areias observadas em laboratório. 

Devido a limitação associada ao endurecimento por deformação 

volumétrica, onde nenhuma deformação plástica é permitida dentro da superfície 

de escoamento, Yu (1998) [2] menciona que a única exceção da representatividade 

do CASM talvez seja para testes não drenados em areia em um estado mais denso 

que o crítico, como já mencionado, onde ensaios mostram que a tensão média 

efetiva tende a diminuir um pouco antes de aumentar até atingir o estado crítico.  

Por fim, Yu (1998) [2] ressalta que essa dificuldade pode ser facilmente 

superada introduzindo algumas deformações plásticas adicionais dentro da 

superfície de escoamento. A penalidade é que tal modificação certamente exigiria 

mais algumas constantes do material, como proposto por Khong (2004) [13] no 

modelo denominado CASM-d. 
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4.2. 
Comportamento drenado e não drenado de argilas normalmente 
adensadas e sobreadensadas 

Para avaliar o desempenho do CASM para argila, foram utilizados dados de 

testes da série clássica realizados no Imperial College, Londres, na argila Weald 

remoldada (Bishop and Henkel [34]).  

Dos quatro testes apresentados e discutidos, dois são drenados e dois são 

não drenados, enquanto dois dos testes realizados são em argilas normalmente 

adensadas (OCR = 1) e duas em amostras fortemente sobreadensadas (OCR = 24). 

As constantes do modelo CASM usadas na previsão do comportamento do 

material foram as seguintes: 

 
𝜆 = 0,093, 𝛤 = 2,06, 𝜇 = 0,30, 𝜅 = 0,025 

𝑀 = 0,9, 𝑟 = 2,714, 𝑛 = 4,5 
 

Yu (1998) [2] menciona ainda que a NCL foi utilizada como RCL, então, o 

parâmetro de estado de referência 𝜓𝑅 é igual ao parâmetro de estado inicial 𝜓0 da 

amostra normalmente adensada.  

Da Figura 4.11 a Figura 4.14 se apresentam as comparações das previsões 

do modelo e do comportamento medido para compressão drenada e não drenada 

das Weald Clay normalmente adensada e sobreadensadas.  

Além disso, essas figuras apresentam a previsão do modelo Cam-clay, bem 

como a implementação do CASM feita por Yu (1998) [2], ambos representados 

pelas linhas pretas.  

Para ocorrer harmonização dos comportamentos do CASM implementado 

na presente dissertação e os ensaios de laboratório o parâmetro 𝛼 tende a ser um 

valor próximo de 5 para a argila normalmente adensada (OCR = 1), como exibido 

na Figura 4.11.  

Adicionalmente, a presente implementação com esse parâmetro se chega 

mais próximo dos resultados de laboratório que o modelo CASM original, que 

mostra a eficiência na modificação do potencial plástico.  
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Figura 4.11 – Previsão do modelo CASM do presente trabalho – Compressão Drenada – 

Weald Clay (OCR = 1, v0 = 1,632 e p’i = 207 kPa) - Comparação com as trajetórias obtidas 

por Yu (1998) [2]. 

A Figura 4.12 mostra que para o ensaio drenado de argilas sobreadensadas 

o modelo Cam-clay fornece uma previsão excessiva do pico de tensão desviadora 

e dilatância do solo. 

Para argilas sobreadensadas existe pouca variabilidade com a variação do 

parâmetro 𝛼, para as curvas de deformação axial (𝜖1) versus tensão desviadora (q), 

contudo, há grande variação na curva de deformação axial (𝜖1) versus deformação 

volumétrica (𝜖𝑣). Para chegar próximo aos dados de laboratório de deformações 

volumétricas (𝜖𝑣), tem de ser utilizado um parâmetro 𝛼 próximo de 20. 
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Ao utilizar este parâmetro, as deformações volumétricas obtidas com o 

modelo CASM implementado na presente dissertação chegam mais próximas aos 

resultados de laboratório que o modelo CASM original, outra vez que mostrando a 

eficiência na modificação do potencial plástico. 

Ressalta-se, entretanto, que tanto o modelo CASM implementado na 

presente dissertação, quanto o original não foram capazes de prever a suavização 

da tensão desviadora com o aumento da deformação, embora tenham alcançado 

uma tensão de desvio de pico próxima aos resultados de laboratório. 

 

Figura 4.12 – Previsão do modelo CASM do presente trabalho – Compressão Drenada – 

Weald Clay (OCR = 24, v0 = 1,617 e p’i = 34,5 kPa) - Comparação com as trajetórias 

obtidas por Yu (1998) [2]. 
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Embora não identificado nos ensaios não drenados da argila remodelada de 

Weald estudada, a Figura 4.13 mostra que o CASM prevê um amolecimento em 

direção ao estado crítico após alcançar o pico de resistência. No entanto, Yu (1998) 

[2]que evidências convincentes levaram Bishop (1972) [36] a concluir que o solo 

atingir um pico de resistência antes de se aproximar do estado crítico é um 

comportamento esperado para testes não drenados em amostras normalmente 

adensadas de muitos solos coesos não perturbados.  

Como já mencionado para os ensaios drenados, para os ensaios não 

drenados o valor de 𝛼 também tende a ser um valor próximo de 5 para a argila 

normalmente adensada (OCR = 1), visto que é um parâmetro do material e não da 

condição. Inclusive, com esse valor se obtém praticamente a mesma curva obtida 

por Yu (1998) [2], outros dois fatos que são identificados são: o maior valor de 𝛼 

retorna o comportamento identificado pelo modelo Cam-Clay e menores valores de 

𝛼 se aproximaram mais aos valores de excesso de poropressão identificados no 

laboratório. 
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Figura 4.13 – Previsão do modelo CASM do presente trabalho – Compressão Não-Drenada 

– Weald Clay (OCR = 1, v0 = 1,632 e p’i = 207 kPa) - Comparação com as trajetórias 

obtidas por Yu (1998) [2]. 

Para os testes não drenados a Figura 4.14 explicita que o Cam-clay 

subestima a deformação de cisalhamento no pico de resistência e superestima a 

tensão negativa de excesso de poropressão. De maneira geral, o CASM é capaz de 

prever razoavelmente bem o comportamento geral da argila sobreadensada 

observada em laboratório. 

Outro fato importante de se observar nessa figura é que o modelo CASM, 

implementado no presente trabalho, mostra uma tendência similar ao modelo Cam 

Clay de não apresentar variação de tensão desviadora ao se aproximar do estado 

crítico, em elevadas deformações. Consequentemente, também é observada um 
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comportamento de estabilização no excesso de poropressão identificado nos ensaios 

não drenados estudados. 

 

Figura 4.14 – Previsão do modelo CASM do presente trabalho – Compressão Não-Drenada 

– Weald Clay (OCR = 24, v0 = 1,617 e p’i = 34,5 kPa) - Comparação com as trajetórias 

obtidas por Yu (1998) [2]. 

A partir dessas figuras, verifica-se que o Cam-clay é um modelo razoável 

para modelar argilas normalmente adensadas, entretanto, não modela as argilas 

sobreadensadas de maneira similar as obtidas nos ensaios.  
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4.3. 
Comportamento drenado de areias fofas, médias e densas 

Para avaliar o desempenho do CASM para areia, foram utilizados dados de 

testes da série clássica relatados por Been et. al (1991) [20] e Jefferies (1993) [35] 

em uma areia predominantemente quartzosa com vestígios de iodo, conhecida como 

Erksak 330/0,7. 

Três testes foram selecionados para comparação com o CASM, na amostra 

mais densa D667 (com um índice de vazios inicial de 0,59 e pressão inicial efetiva 

na célula de 130 kPa), a amostra de densidade média D662 (com índice de vazios 

inicial de 0,677 e pressão inicial efetiva na célula de 60 kPa) e a amostra mais solta 

D684 (com um índice de vazios inicial de 0,82 e pressão inicial efetiva na célula de 

200 kPa). 

As constantes do modelo CASM usadas na previsão do comportamento do 

material foram as seguintes: 

 
𝜆 = 0,0135, Γ = 1,8167, 𝜇 = 0,30, 𝜅 = 0,005 

𝑀 = 1,2, 𝑟 = 6792, 𝑛 = 4,0 
 

Observações mostram que a tensão desviadora crítica para areias é muito 

menor do que o valor de pico. Portanto, o valor de 𝑟 nesta análise foi escolhido de 

maneira a ser elevado e poder prever esse comportamento (𝑟 = 𝑝0
′ 𝑝𝑥

′⁄ , onde 𝑝0
′  e 

𝑝𝑥
′  são as pressões de pré-adensamento e a tensão efetiva média crítica).  

Para permitir a previsão do comportamento da areia desde o seu estado mais 

solto até o estado mais denso, o parâmetro do estado de referência (𝜓𝑅) é assumido 

como igual ao parâmetro de estado inicial da amostra mais solta D684.  

Da Figura 4.15 a Figura 4.17 se apresentam as comparações das previsões 

do modelo e do comportamento medido para compressão drenada da areia 

conhecida como Erksak 330/0,7 para diferentes estados iniciais (denso, médio e 

fofo). Além disso, essas figuras apresentam a previsão do modelo CASM feita por 

Yu (1998) [2], representada pelas linhas pretas.  
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Com base na Figura 4.15 e Figura 4.16 é possível identificar que o 

parâmetro 𝛼 que melhor se assimila para o comportamento do laboratório é de 24 

para as condições densa e média. 

Novamente, ressalta-se que tanto o modelo CASM implementado na 

presente dissertação, quanto o original não foram capazes de prever a suavização 

da tensão desviadora com o aumento da deformação, embora tenham alcançado 

uma tensão de desvio de pico próxima aos resultados de laboratório para as 

condições densa e média. 

 

Figura 4.15 – Previsão do modelo CASM do presente trabalho – Compressão Drenada - 

Areia Muito Densa Erksak 330/0,7 (D667, v0 = 1,59 e p’i = 130 kPa) - Comparação com as 

trajetórias obtidas por Yu (1998) [2]. 
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Figura 4.16 – Previsão do modelo CASM do presente trabalho – Compressão Drenada - 

Areia Média Erksak 330/0,7 (D662, v0 = 1,677 e p’i = 60 kPa) - Comparação com as 

trajetórias obtidas por Yu (1998) [2]. 

Para a amostra fofa a adoção do parâmetro 𝛼 igual a 3 se assemelha com a 

previsão realizada por Yu (1998) [2] (Figura 4.17) para as curvas de deformações 

axiais (𝜖1) versus obliquidade (𝜂) valores de , além de se aproximar da trajetória de 

deformações axiais (𝜖1) versus deformações volumétricas (𝜖𝑣) obtidas em 

laboratório. 

Ainda nesta figura, mesmo a trajetória de deformações axiais (𝜖1) versus 

obliquidade (𝜂) obtida com 𝛼 de 24 se assemelhando bastante com os valores de 

laboratório, com esse parâmetro a curva de deformações axiais (𝜖1) versus 

deformações volumétricas (𝜖𝑣) diverge bastante quando comparado aos valores de 
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laboratório. Portanto, para o material fofo se indica um 𝛼 igual a 3 para calibração 

do material. 

 

Figura 4.17 – Previsão do modelo CASM do presente trabalho – Compressão Drenada - 

Areia Fofa Erksak 330/0,7 (D684, v0 = 1,82 e p’i = 200 kPa) - Comparação com as 

trajetórias obtidas por Yu (1998) [2]. 

 

4.4. 
Comportamento não drenado de areias muito fofas 

Yu (1998) [2] utilizou o termo muito fofa para descrever a areia em um 

estado mais fofo que o estado crítico, ou seja, acima da linha de estado crítico, que 

irá se comportar como contrátil. 
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Esse comportamento contrátil é conhecido de areias muito soltas que podem 

colapsar e amolecer durante o carregamento monotônico não drenado e, finalmente, 

atingir um estado crítico (ou estacionário). Durante o carregamento não drenado 

monotônico, a areia muito fofa atinge um pico de resistência e, em seguida, sofre 

rápida deformação de amolecimento até um estado estacionário, condição 

necessária para que ocorra a liquefação. 

Conforme explicitado anteriormente e exposto por Yu (1998) [2], a maioria 

dos modelos de estado crítico existentes, como Cam-clay e Nor-Sand, são incapazes 

de modelar este comportamento. 

Portanto, Yu (1998) [2], demonstra a aplicabilidade do CASM para modelar 

o comportamento não drenado de uma areia muito fofa através de dados de testes 

obtidos por Sasitharan et. al. (1994) [37] na areia de Ottawa.  

Dessa maneira quatro testes foram selecionados para comparação com 

CASM. Esses testes são realizados em amostras com índices de vazios iniciais de 

0,793 e 0,804 com diferentes tensões efetivas médias inicias. 

As constantes do modelo CASM usadas na previsão do comportamento do 

material foram as seguintes: 

 
𝜆 = 0,0168, Γ = 1,864, 𝜇 = 0,30, 𝜅 = 0,005 

𝑀 = 1,19, 𝜓𝑟 = 𝜓0, 𝑛 = 3 
 

Novamente, por se tratar de ensaios não drenados em areias fofas, para 

alcançar uma melhor concordância com os dados experimentais, o parâmetro de 

estado de referência das amostras foi considerado igual o parâmetro de estado 

inicial. (ou seja, 𝜓𝑅 = 𝜓0). 

Essa suposição se mostra satisfatória para as trajetórias dos ensaios triaxiais 

não drenados nas amostras de areias fofas apresentadas da Figura 4.18 a Figura 

4.21. Além disso, essas figuras apresentam a previsão do modelo CASM feita por 

Yu (1998) [2], representada pelas linhas pretas.  

Com base nessas figuras é possível identificar que o parâmetro 𝛼 que melhor 

se assimila para o comportamento do laboratório é de 3 para todas as condições. De 
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modo complementar, nota-se que as trajetórias p’ x q não são modificadas com a 

variação do parâmetro 𝛼, como de se esperar, já que esse parâmetro influência no 

potencial plástico e não na superfície de escoamento. 

 

Figura 4.18 – Previsão do modelo CASM do presente trabalho – Compressão Não Drenada 

- Areia Muito Fofa Ottawa (v0 = 1,793 e p’i = 475 kPa) - Comparação com as trajetórias 

obtidas por Yu (1998) [2]. 
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Figura 4.19 – Previsão do modelo CASM do presente trabalho – Compressão Não Drenada 

- Areia Muito Fofa Ottawa (v0 = 1,793 e p’i = 348 kPa) - Comparação com as trajetórias 

obtidas por Yu (1998) [2]. 
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Figura 4.20 – Previsão do modelo CASM do presente trabalho – Compressão Não Drenada 

- Areia Muito Fofa Ottawa (v0 = 1,804 e p’i = 350 kPa) - Comparação com as trajetórias 

obtidas por Yu (1998) [2]. 
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Figura 4.21 – Previsão do modelo CASM do presente trabalho – Compressão Não Drenada 

- Areia Muito Fofa Ottawa (v0 = 1,804 e p’i = 550 kPa) - Comparação com as trajetórias 

obtidas por Yu (1998) [2]. 

A partir dessas imagens, conclui-se que em particular, o CASM prevê que 

o pico de resistência é alcançado com uma deformação axial muito pequena 

deformação e depois a resposta mostra um acentuado abrandamento da tensão 

desviadora com aumento da deformação axial antes de se aproximar do estado 

crítico. 

Os resultados obtidos para o comportamento não drenado de areia muito 

fofa são satisfatórios, inclusive mostram com exatidão a tendência das trajetórias p' 

x q da presente implementação com a realizada por Yu (1998) [2], mesmo com a 

modificação do potencial plástico. 
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Assim como na avaliação das condições iniciais, complementarmente, em 

todos os testes apresentados foram utilizados diferentes valores do parâmetro 𝛼 

(constante do potencial plástico) para validação dos ensaios. 

Em particular, o CASM implementado na presente dissertação é capaz de 

prever o comportamento observado no laboratório para todos os testes avaliados 

para os diferentes valores de 𝛼, parâmetro do potencial plástico que controla a 

dilatância e a condição K0, que variaram de forma a apresentar diferentes respostas 

para os testes realizados. 

De modo adicional é possível identificar uma deficiência do CASM que é a 

de subestimar a tensão de cisalhamento máxima. Além disso, as curvas produzidas 

pelo CASM não são tão suaves quanto as curvas observadas. Conforme já exposto, 

isto se deve ao fato de que, como Cam-clay, o CASM não permite que qualquer 

deformação plástica se desenvolva dentro da superfície limite de escoamento. 

Yu (1998) [2], através das comparações com dados experimentais, sugere 

que o CASM é capaz de capturar o comportamento geral de argilas e areias sob 

condições drenadas e não drenadas de carregamento e, portanto, representa uma 

extensão muito útil do Cam-Clay que se sabe ser válido apenas para argilas 

normalmente adensadas. 
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5. 
Comparação entre os modelos CASM e HS (hardening soil) 
para a construção de uma barragem de rejeitos alteada a 
montante 

De maneira a avaliar uma estrutura geotécnica mais complexa e identificar 

as vantagens do modelo CASM, o presente capítulo abordará a comparação dos 

resultados do comportamento da construção de uma barragem de rejeito alteada a 

montante entre os modelos constitutivos CASM e HS (hardening soil). 

Na sequência são apresentadas informações adicionais sobre as condições 

iniciais, seção analisada, malha, fases de construção, parâmetros de análise, 

metodologia e resultados.  

 

5.1.Parâmetros 

Para avaliação da estrutura as constantes do modelo CASM tiveram como 

base os parâmetros do rejeito grosso exposto por Arroyo e Gens (2021) [23], com 

índice de vazios inicial de 1,20, expostos a seguir: 

 

𝜆 = 0,040, Γ = 2,27, 𝜇 = 0,30, 𝜅 = 0,007, 𝑛 = 7,5 

𝑀 = 1,40, 𝑟 = 5 (𝜓𝑟 = 0,050), 𝛼 = 1𝑒6 
 

Além dessas constantes, os pesos específicos seco e saturado do rejeito 

foram considerados iguais a 22 kN/m³ e 27 kN/m³, respectivamente para as 

condições saturada e não saturada. Adicionalmente, como recomendado por Yu 

(1998) [2], o parâmetro de estado inicial da amostra (𝜓0) foi considerado igual ao 

parâmetro de referência (𝜓𝑅). 

A Tabela 5-1 resume os parâmetros do CASM adotados na presente análise:  
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Tabela 5-1 – Parâmetros do Modelo CASM – Rejeitos Grossos. 

Parâmetro Unidade Valor 

𝛾𝑑 kN/m³ 22,0 

𝛾𝑠𝑎𝑡 kN/m³ 27,0 

𝜆 - 0,040 

𝜅 - 0,007 

Γ - 2,27 

𝜇 - 0,30 

𝑛 - 7,5 

𝑟 - 5 

𝛼 - 1E6 

𝜓0 - 0,050 

𝑀𝑐  - 1,40 

Ledesma et. al. (2022) [39] cita que a modelagem das fases de construção 

de modo drenado é representativo para barragens de rejeitos alteadas a montante, 

pois apresentam baixas taxas de disposição. Essa abordagem será considerada na 

presente dissertação. Adicionalmente, o processo de disposição de rejeitos em 

reservatórios de barragens se assemelha a carregamentos edométricos. 

Dessa maneira os parâmetros dos rejeitos grossos para o modelo 

constitutivo HS serão calibrados com base em trajetórias triaxiais isotrópicas 

drenadas (CID) e adensamento edométrico com auxílio do recurso soil test do 

PLAXIS2D geradas com os parâmetros do CASM, devido ao processo construtivo 

da barragem que será simulado.  

Destaca-se que como o objetivo do presente item é de apresentar a 

comparação entre os modelos CASM e HS a calibração foi realizada apenas por 

meio de trajetórias simuladas no software com os parâmetros do CASM e, 

posteriormente importadas para o soil test onde foi realizada a calibração do modelo 

HS, portanto, não foram avaliados ensaios do material para validação da calibração 

do modelo HS, como será descrito na sequência. 

Inicialmente para os rejeitos grossos como dados de entrada os parâmetros 

do modelo constitutivo HS foram arbitrados de acordo com a Tabela 5-2, onde 

foram mantidos os pesos específicos saturado e seco, além de considerar uma 
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coesão praticamente nula e ângulo de atrito próximo a 33° (por se tratar de rejeitos 

grossos). 

Tabela 5-2 – Parâmetros iniciais para calibração do Modelo HS – Rejeito Grosso. 

Parâmetro Unidade Valor 

𝛾𝑢𝑛𝑠𝑎𝑡 kN/m³ 22,0 

𝛾𝑠𝑎𝑡 kN/m³ 27,0 

𝐸50
𝑟𝑒𝑓

 kN/m² 15,0E3 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 kN/m² 15,0E3 

𝐸𝑢𝑟
𝑟𝑒𝑓

 kN/m² 200,0E3 

𝑝𝑜𝑤𝑒𝑟 (𝑚) - 0,20 

𝑐𝑟𝑒𝑓
′  kN/m² 0,1 

𝜙′ ° 33,0 

𝜇𝑢𝑟 - 0,20 

𝑝′𝑟𝑒𝑓 kN/m² 200,0 

𝐾0
𝑛𝑐 - 0,4554 

𝑅𝑓 - 0,9 

Na tentativa inicial além dos parâmetros acima, informam-se os intervalos 

esperados dos parâmetros para calibração do software. Os únicos parâmetros 

iniciais conhecidos foram os pesos específicos, ademais, por se tratar de rejeitos 

grossos o intercepto coesivo foi mantido praticamente nulo. Os demais parâmetros 

foram selecionados para serem otimizados, conforme explicitado na Figura 5.1. 

 

Figura 5.1 – Parâmetros de entrada e intervalos para calibração inicial dos rejeitos grossos – 

Modelo Constitutivo HS. 
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Além dos parâmetros e intervalos iniciais devem ser informadas como 

dados de entrada as curvas de referência para calibração do software. Essas curvas 

foram obtidas ao simular ensaios triaxiais drenados (CID) com tensões confinantes 

de 200 e 800 kPa, respectivamente, com o modelo com o modelo constitutivo 

CASM através da ferramenta soil test, onde foram considerados 1000 passos e 

deformação axial máxima de 20%. 

A Figura 5.2 apresenta as curvas de referência de deformação axial versus 

tensão desviadora e deformação axial versus deformação volumétrica, ressalta-se 

que as tensões confinantes escolhidas para calibração do modelo tiveram como base 

a altura total da estrutura e o peso específico do material, onde as tensões efetivas 

horizontais (confinantes) alcançam valores máximos de aproximadamente 1000 

kPa. 

 

Figura 5.2 – Trajetórias CASM - Ensaio CID – 𝜎3
′ = 200 𝑘𝑃𝑎 e 𝜎3

′ = 800 𝑘𝑃𝑎. 
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Os resultados da calibração inicial do modelo HS através das trajetórias dos 

ensaios triaxiais isotrópicos drenados (CID) simulados com os parâmetros do 

CASM, com tensões confinantes de 200 e 800 kPa, respectivamente, intensidade de 

busca moderada e tolerância relativa de 1 x 10-3, podem ser observados na Figura 

5.3.  

Essa figura detalha que o erro relativo dos parâmetros ficou em 21,7% e os 

parâmetros com maiores sensibilidade para calibração foram o 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 e o 𝑝𝑜𝑤𝑒𝑟(𝑚) 

com 100% de sensibilidade, os demais parâmetros apresentaram sensibilidade 

praticamente nula.  

Nota-se de maneira complementar que as curvas calibradas (laranja) 

apresentam boa concordância com as curvas do CASM (azul) para tensões a tensão 

confinante de 200 kPa, ao observar o ensaio com tensão confinante de 800 kPa há 

uma leve diferença na calibração, que poderá implicar em resultados divergentes na 

comparação do modelo em altas tensões. 

  

Figura 5.3 – Parâmetros de Calibração HS - Ensaio CID – 𝜎3
′ = 200 𝑘𝑃𝑎 e 𝜎3

′ = 800 𝑘𝑃𝑎. 

De posse dos parâmetros otimizados através do ensaio triaxial, procedeu-se 

a segunda etapa da calibração através das trajetórias dos ensaios edométricos. Essas 

trajetórias foram alcançadas através da simulação de ensaios edométricos com 

tensões confinantes de 200 e 800 kPa, respectivamente, considerando o modelo 

constitutivo CASM com o auxílio da ferramente soil test do PLAXIS 2D, onde 

foram considerados 1000 passos e acréscimos de deformação axial máxima de 3%.  
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A Figura 5.4 apresenta as curvas de referência de tensão vertical efetiva 

versus deformação volumétrica dos ensaios edométricos, como esperado, as curvas 

apresentam o mesmo formato, que indica os mesmos parâmetros de 

compressibilidade. 

 

Figura 5.4 – Trajetórias CASM - Ensaio Edométrico – 𝜎𝑣
′ = 200 𝑘𝑃𝑎 e 𝜎𝑣

′ = 800 𝑘𝑃𝑎. 

De maneira similar a sequência executada incialmente, a Figura 5.5 

apresenta os parâmetros dos rejeitos grossos selecionados para a calibração do 

modelo constitutivo HS através da trajetória do ensaio edométrico simulada com os 

parâmetros do CASM. 

 

Figura 5.5 – Parâmetros de entrada e intervalos para calibração dos rejeitos grossos através 

do ensaio edométrico – Modelo Constitutivo HS. 
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Os resultados da calibração do modelo HS através das trajetórias dos ensaios 

edométricos simuladas com os parâmetros do CASM, com intensidade de busca 

moderada e tolerância relativa de 1 x 10-3, podem ser observados na Figura 5.3.  

Essa figura detalha que o erro relativo dos parâmetros ficou em 4,51% e os 

parâmetros com maiores sensibilidades para calibração foram o 𝑝𝑜𝑤𝑒𝑟(𝑚) e o 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 com 100% e 48,4% de sensibilidade.  

Nota-se de maneira complementar que as curvas simuladas (laranja) 

apresentam ótima concordância com as curvas do CASM (azul), entretanto, essas 

curvas se distanciam da curva de referência (verde) obtida com os parâmetros de 

entrada baseados na calibração do ensaio triaxial. 

 

Figura 5.6 – Parâmetros de Calibração HS - Ensaio Edométrico – 𝜎3
′ = 200 𝑘𝑃𝑎 e 𝜎3

′ =
800 𝑘𝑃𝑎. 

A disposição de rejeitos em uma barragem ocorre de forma gradual, 

resultando na formação de uma praia de rejeitos. Com o passar do tempo, esse 

processo se torna semelhante ao ensaio edométrico, no qual a deposição contínua e 

lenta leva à consolidação do material sob sua própria carga e a sobrecargas 

adicionais. 
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No ensaio edométrico, o carregamento é aplicado de maneira incremental e 

unidimensional, restringindo a deformação lateral, enquanto a amostra de solo é 

submetida a uma pressão vertical crescente, simulando a compactação e o 

comportamento sob carregamentos de longo prazo. 

Desse modo, os parâmetros do modelo HS adotados para o rejeito grosso 

com base na calibração são explicitados na Tabela 5-3. 

Tabela 5-3 – Parâmetros iniciais para calibração do Modelo HS – Rejeito Grosso. 

Parâmetro Unidade Valor 

𝛾𝑢𝑛𝑠𝑎𝑡 kN/m³ 22,0 

𝛾𝑠𝑎𝑡 kN/m³ 27,0 

𝐸50
𝑟𝑒𝑓

 kN/m² 18120 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 kN/m² 10620 

𝐸𝑢𝑟
𝑟𝑒𝑓

 kN/m² 201000 

𝑝𝑜𝑤𝑒𝑟 (𝑚) - 0,9784 

𝑐𝑟𝑒𝑓
′  kN/m² 0,1 

𝜙′ ° 32,44 

𝜇𝑢𝑟 - 0,2465 

𝑝′𝑟𝑒𝑓 kN/m² 200,0 

𝐾0
𝑛𝑐 - 0,4636 

𝑅𝑓 - 0,9078 

Para o dique de partida e o alteamento foi adotado o modelo constitutivo 

Mohr-Coulomb com os parâmetros na exibidos na Tabela 5-4. 

Tabela 5-4 – Parâmetros do Modelo Mohr-Coulomb – Dique de Partida e Alteamento. 

Parâmetro Unidade Valor 

𝛾𝑢𝑛𝑠𝑎𝑡 kN/m³ 19,0 

𝛾𝑠𝑎𝑡 kN/m³ 19,0 

𝐸′ kN/m² 70000 

𝑐𝑟𝑒𝑓
′  kN/m² 10,0 

𝜙′ ° 30,0 

𝜇𝑢𝑟 - 0,30 



99 

 

 

De modo a não influenciar na análise a fundação foi modelada como linear 

elástica, como mostra a Tabela 5-5, com parâmetros semelhantes aos do solo 

residual proposto por Arroyo e Gens (2021) [23]. 

Tabela 5-5 – Parâmetros do Modelo Linear Elástico – Fundação 

Parâmetro Unidade Valor 

𝛾𝑢𝑛𝑠𝑎𝑡 kN/m³ 20,0 

𝛾𝑠𝑎𝑡 kN/m³ 20,0 

𝐸′ kN/m² 470,0E3 

𝜇 - 0,3 

5.2. 
Condições iniciais, seção analisada e malha 

A Figura 6.2 exibe a seção da barragem de rejeito alteada a montante 

analisada construída no software PLAXIS 2D. Como condições de contorno foram 

impostas restrições de deslocamentos horizontais nos contornos laterais, bem como 

restrições de deslocamentos verticais e horizontais no contorno inferior do modelo.  

 

Figura 5.7 – Seção de Análise – Barragem de rejeitos alteada a montante.  

A malha de elementos finitos adotada tem 650 m de comprimento por 110 

m de altura, é composta por elementos triangulares de 15 nós (Figura 5.8) e 

apresenta 943 elementos e 7759 nós (Tabela 5-6). Os elementos tem tamanho médio 

de 12,13 m, com tamanho mínimo de 3,34 m e máximo de 22,17 m.  

Nota-se a predominância da cor verde na qualidade da malha exposta na 

Figura 5.8, com valor máximo de 100% e mínimo de 51,91%, que indica boa 

qualidade da geometria dos elementos. 
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Tabela 5-6 – Quantidade de elementos em malha – Barragem de rejeitos alteada a montante. 

Quantidade de Elementos Quantidade de Nós 

943 7759 

 

Figura 5.8 – Seção de Análise – Barragem de rejeitos alteada a montante - Malha de 

elementos finitos e qualidade dos elementos. 

 

5.3. 
Fases de construção 

Para simular a construção foram executadas 17 etapas, iniciando-se na etapa 

de induçao do valor K0 = 0,5 na fundação. Posteriormente, foram zerados os 

deslocamentos devido a simulação da etapa inicial e modelada a construção do 

dique de partida segregado em camadas de 10 m até atingir a geometria final do 

dique. Na sequência foi simulada a disposição de rejeitos em camadas de 10 m até 

atingir a cota final prevista. Por fim, foi construído o alteamento e as disposições 

posteriores, também divididas em cadas de 10 m, até  se atingir a configuração final 

da estrutura.  

A sequência da construção é modelada como drenada, de maneira a evitar o 

acúmulo de poropressões induzidas por tensões, onde para cada etapa se habilita a 

condição de ignorar as poropressões induzidas. Este fato é representativo em 

barragem de rejeitos construídas a montante que apresentam baixas taxas 

disposição, como citado por Ledesma et. al. (2022) [39]. 
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Mesmo sendo consdierada condições drenadas nas etapas de construção, o 

nível d’água para cada etapa foi adotado de maneira a simular uma saturação 

praticamente total do reservatório de rejeitos e condição de praia, com distância de 

aproximadamente 70,0 m do dique de partira ou alteamento. 

Para avaliação através do modelo CASM, devido as baixas tensões de 

confinamento que podem não convergir, em cada fase de disposição de rejeito de 

10,0 m foi adotado incialmente o modelo Mohr-Coulomb e na fase seguinte o 

modelo incialmente adotado como Mohr-Coulomb foi alterado para o CASM. Para 

o modelo Hs não foi necessário a utilização desse artifício. 

Como explicitado por Bortolli (2023) [38] essa adoção estaria em 

inconformidade com a realidade de uma barragem de rejeitos, entretanto, o 

propósito de simulação de fases de construção é o estabelecimento de tensões e 

poropressões induzidas na estrutura. 

Algumas das principais etapas da construção são mostradas na Figura 5.10 

a Figura 5.11, sendo todas as etapas após a condição incial modeladas através de 

análises elastoplásticas drenadas. 

 

Figura 5.9 – Exemplos de etapas de construção – Barragem de rejeitos alteada a montante - 

(a) Condição Inicial – Fundação, (b) Início da Construção do Dique de Partida e (c) Dique 

de Partida Finalizado. 

(a) 

(b) 

(c) 
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Figura 5.10 – Exemplos de etapas de construção – Barragem de rejeitos alteada a montante 

-(d) Condição Intermediária – Disposição de Rejeitos e (e) Disposição de Rejeitos – 1° 

Alteamento. 

 

Figura 5.11 – Exemplos de etapas de construção – Barragem de rejeitos alteada a montante 

- (f) Construção do Alteamento, (g) Construção do Alteamento – Finalizada, (h) Condição 

Intermediária – Disposição de rejeitos e (i) Condição Final – Disposição de Rejeitos. 

 

5.4. 
Resultados e discussões 

Para comparar os resultados obtidos durante a construção da barragem de 

rejeitos alteada a montante, foram consideradas três etapas principais: (i) 

Disposição do rejeito até a elevação do dique de partida, (ii) Construção do 

alteamento e (iii) Condição final da estrutura. Além disso na as escalas das figuras 

foram padronizadas para facilitar a comparação entre os modelos. 

(d) 

(f) 

(g) 

(i) 

(e) 

(h) 
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A comparação das previsões de comportamento durante a fase de disposição 

do rejeito até a elevação do maciço principal é ilustrada na Figura 5.12 e na Figura 

5.13. De modo geral, observa-se que o comportamento converge para a fase 

analisada.  

O somatórido dos deslocamentos horizontais (∑𝑃u𝑥) nesta fase indica uma 

concentração de deslocamentos positivos logo abaixo do nível d’água, enquanto os 

negativos se localizam na região próxima entre o rejeito e o dique de partida, em 

ambos os modelos. No modelo HS o somatório dos deslocamentos horizontais 

máximo e mínimo foram de 0,0850 m e -0,1055 m, respectivamente. No modelo 

CASM, esses valores foram de 0,0948 e -0,0985 m.  

Em relação aos somatório dos deslocamentos verticais (∑𝑃u𝑦), ambos os 

modelos apresentaram comportamento similar, com maior concentração de 

deslocamentos negativos na parte superior das camadas de rejeito. No entanto, o 

modelo HS mostrou maiores deslocamentos em camadas mais profundas, enquanto 

o modelo CASM concentrou esses deslocamentos em uma camada intermediária. 

Os valores máximos e mínimos no modelo HS foram de 0,008 m e -0,8857 m, 

enquanto no CASM foram de 0,008 m e -0,8344 m. Ambos os modelos 

apresentaram propagação semelhante dos deslocamentos verticais para o dique de 

partida e a fundação. 

Na previsão do HS o somatório dos deslocamentos verticais máximo e 

mínimo da fase foram de 0,008 m e -0,8857 m, respectivamente, enquanto que para 

o CASM foram de 0,008 e -0,8344 m. Ambos os modelos são bastante semelhantes 

na propagação de somatório de deslocamentos verticais para o dique de partida e 

fundação. 

O comportamento da variação volumétrica total (𝜖𝑣) segue o padrão 

observado no somatório dos deslocamentos verticais, com valores negativos 

concentrados nas camadas superiores do rejeito. As variações volumétricas totais 

de ambos os modelos estão na mesma ordem de grandeza, com valores mínimos de 

-0,0813 para o HS e -0,0642 para o CASM, correspondendo a 8% e 6% de 

deformação, respectivamente. Os valores máximos em ambos os modelos são 

praticamente nulos. 
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A mesma semelhança foi observada nas distorções angulares totais (𝛾𝑠), com 

valores máximos de 7% para o HS e de 5% para o CASM. Ambos os modelos 

apresentaram a mesma distorção angular no dique de partida, uma vez que os 

parâmetros desse material foram mantidos constantes nas análises. 

Em resumo, os valores comparados entre os dois modelos apresentaram 

ordens de grandeza similares, assim como uma tendência geral de comportamento. 

 

Figura 5.12 – Previsões HS - Fase de disposição do rejeito até a elevação do dique de 

partida (a) Somatório dos Deslocamentos Horizontais da Fase, (b) Somatório dos 

Deslocamentos Verticais da Fase, (c) Deformação Volumétrica Total e (d) Deformação 

Cisalhante Total. 

(a) 

(b) 

(d) 

(c) 
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Figura 5.13 – Previsões CASM - Fase de disposição do rejeito até a elevação do dique de 

partida (a) Somatório dos Deslocamentos Horizontais da Fase, (b) Somatórios dos 

Deslocamentos Verticais da Fase (c) Deformação Volumétrica Total e (d) Deformação 

Cisalhante Total. 

A Figura 5.14 e a Figura 5.15 trazem os resultados da modelagem para a 

fase de construção do alteamento da barragem de rejeitos sobre o reservatório. 

Semelhante à fase anterior, observa-se que, de maneira geral, o comportamento 

converge para esta etapa. 

Os valores do somatório dos deslocamentos horizontais da fase (∑𝑃u𝑥) 

estão concentrados em valores negativos na base do talude de montante do 

alteamento, em ambos os cenários, devido à adoção do mesmo modelo constitutivo 

para o material. Nota-se uma semelhança evidente na distribuição dos 

deslocamentos horizontais no reservatório de rejeitos, nos diques de partida e na 

fundação. 

(a) 

(b) 

(c) 

(d) 
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Adicionalmente, ao comparar os modelos CASM e HS para o rejeito, 

percebe-se que o somatório dos deslocamentos horizontais apresenta uma 

propagação bastante semelhante ao longo da estrutura, com valores de mesma 

ordem de grandeza. Os deslocamentos máximos e mínimos são de 0,1462 m e -

0,1928 m para o modelo HS, e 0,1419 m e -0,1875 m para o CASM, 

respectivamente. 

A construção do alteamento sobre o reservatório permite inferir que tensões 

são induzidas no rejeito o que afeta diretamente o somatório dos deslocamentos 

verticais da fase (∑𝑃u𝑦).  Para o modelo HS, os deslocamentos verticais máximos 

e mínimos foram de 0,008 m e -1,682 m, enquanto para o CASM esses valores 

foram de 0,008 m e -1,594 m, respectivamente. 

Há uma concentração de deslocamentos verticais negativos na base do 

alteamento, uma vez que este se encontra sobre rejeitos compressíveis. Observa-se 

uma pequena diferença na disseminação dos deslocamentos entre os modelos HS e 

CASM, sendo que o HS apresenta uma propagação de maior magnitude em 

profundidade em comparação com o CASM. Nota-se também uma semelhança 

evidente na propagação dos deslocamentos verticais no reservatório, com valores 

em torno de -0,50 m.  

O comportamento da variação volumétrica total (𝜖𝑣) segue o padrão 

observado no somatório dos deslocamentos verticais. As variações volumétricas 

totais em ambos os modelos estão na mesma ordem de grandeza, com valores 

mínimos de -0,0988 para o HS e -0,0873 para o CASM, correspondendo a 10% e 

9% de deformação, respectivamente. Os valores máximos em ambos os modelos 

são praticamente nulos. 

A mesma semelhança foi observada nas distorções angulares totais (𝛾𝑠), com 

valores máximos de 8% para o HS e de 7% para o CASM. Ambos os modelos 

apresentaram a mesma distorção angular no dique de partida e alteamentos, uma 

vez que os parâmetros desse material foram mantidos constantes nas análises. 

Como esperado os valores máximos de distorções angulares (𝛾𝑠) estão 

localizados na região logo abaixo do alteamento, devido à indução de tensões e à 
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alta compressibilidade do material de fundação (rejeitos), o que resulta em 

deslocamentos de maior magnitude em comparação com outras áreas. 

Em síntese, os valores comparados entre os dois modelos apresentaram 

magnitudes similares, bem como uma tendência de comportamento semelhante. 

 

Figura 5.14 – Previsões HS - Fase de construção do alteamento (a) Somatório dos 

Deslocamentos Horizontais da Fase, (b) Somatórios dos Deslocamentos Verticais da Fase 

(c) Deformação Volumétrica Total e (d) Deformação Cisalhante Total. 

(a) 

(b) 

(c) 

(d) 



108 

 

 

 

Figura 5.15 – Previsões CASM - Fase de construção do alteamento (a) Somatório dos 

Deslocamentos Horizontais da Fase, (b) Somatórios dos Deslocamentos Verticais da Fase 

(c) Deformação Volumétrica Total e (d) Deformação Cisalhante Total. 

Na etapa final da geometria da barragem de rejeitos alteada a montante, a 

comparação das previsões de comportamento é apresentada  Figura 5.16 e na Figura 

5.17. Assim como nas fases anteriores, observa-se que o comportamento geral dos 

modelos converge para a fase analisada, com resultados bastante similares aos 

observados durante a construção do alteamento, conforme será descrito a seguir. 

De modo geral, a configuração da geometria final da barragem revela uma 

concentração significativa de somatório dos deslocamentos horizontais da fase 

(∑𝑃u𝑥) positivos na região sob o alteamento e no paramento de montante do dique 

de partida, enquanto os deslocamentos negativos, menos acentuados, concentram-

se próximos ao paramento de montante do talude do alteamento. Observa-se uma 

(a) 

(b) 

(c) 

(d) 
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clara semelhança na distribuição dos deslocamentos horizontais no reservatório de 

rejeitos, nos diques de partida e na fundação. 

No modelo HS, os deslocamentos horizontais máximos e mínimos para esta 

fase foram de 0,1892 m e -0,1261 m, respectivamente. Para o modelo CASM, os 

valores foram de 0,2048 m e -0,1248 m. As figuras indicam que o somatório dos 

deslocamentos horizontais no rejeito pode sinalizar uma movimentação (início de 

uma superfície de ruptura) em ambos os modelos. 

A geometria final da estrutura também apresentou valores de somatório de 

deslocamentos verticais da fase (∑𝑃u𝑦) semelhantes aos da fase anterior, com 

máximos e mínimos de 0,008 m e -1,803 m no modelo HS, e de 0,008 m e -1,667 

m no modelo CASM. Os valores máximos ocorrem na camada de rejeito localizada 

abaixo do alteamento, devido à indução de tensões nessa região. 

Novamente, observa-se que ambos os modelos concentram os 

deslocamentos verticais negativos nas camadas superiores de rejeitos, com menores 

valores nas camadas superficiais, sendo que o modelo HS apresenta uma 

concentração mais acentuada em profundidade. Mais uma vez, destaca-se a 

semelhança na propagação dos deslocamentos verticais até os limites do 

reservatório, com valores próximos de -1,0 m para as camadas de rejeito. 

Assim como na fase anterior, ambos os modelos se mostraram semelhantes 

na propagação dos deslocamentos verticais e horizontais para o dique de partida e 

a fundação. 

O comportamento da variação volumétrica total (𝜖𝑣) seguiu o padrão 

observado no somatório dos deslocamentos verticais. As variações volumétricas 

totais de ambos os modelos estão na mesma ordem de grandeza, com valores 

mínimos de -0,1103 para o HS e -0,08937 para o CASM, correspondendo a 11% e 

9% de deformação, respectivamente. Os valores máximos em ambos os modelos 

são praticamente nulos. 

A mesma similaridade foi observada nas distorções angulares totais (γ_s), 

com valores máximos de 9% para o modelo HS e 7% para o CASM. Ambos os 

modelos exibiram a mesma distorção angular nos diques de partida e alteamentos, 

já que os parâmetros do material foram mantidos constantes nas análises. 
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Como esperado os valores máximos de distorções angulares (𝛾𝑠) estão 

localizados na região imediatamente abaixo do alteamento, devido à indução de 

tensões e à alta compressibilidade do material de fundação (rejeitos), o que resulta 

em deslocamentos de maior magnitude em comparação com outras áreas. 

Em resumo, os valores comparados entre os dois modelos apresentaram 

magnitudes semelhantes, além de uma tendência de comportamento similar. 

 

Figura 5.16 – Previsões HS - Condição final da estrutura (a) Somatório dos Deslocamentos 

Horizontais da Fase, (b) Somatórios dos Deslocamentos Verticais da Fase (c) Deformação 

Volumétrica Total e (d) Deformação Cisalhante Total. 

(a) 

(b) 

(c) 

(d) 
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Figura 5.17 – Previsões CASM - Condição final da estrutura (a) Somatório dos 

Deslocamentos Horizontais da Fase, (b) Somatórios dos Deslocamentos Verticais da Fase 

(c) Deformação Volumétrica Total e (d) Deformação Cisalhante Total. 

Por fim, através da análise comparativa entre os modelos constitutivos 

CASM e HS realizada no presente item, conclui-se que inicialmente a calibração 

realizada do modelo CASM para o modelo HS foi satisfatória, vide os 

comportamentos, valores de deslocamentos identificados e justificativas 

apresentadas. 

Julga-se que o objetivo da comparação entre o modelo CASM com o modelo 

HS foi concluído com êxito e corrobora a implementação realizada na presente 

dissertação, devido ao fato do modelo HS ser amplamente reconhecido, utilizado 

para modelagem de barragens e abordado em diversas referências bibliográficas, 

(a) 

(b) 

(c) 

(d) 
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6. 
Determinação do Fator de Segurança de um talude através 
de análise tensão-deformação 

Com o CASM implementado e validado, nesse capítulo será proposta uma 

metodologia para avaliação do fator de segurança, tendo como fonte de inspiração 

o método de Sarma (1973) [1], adotando aceleração horizontal pseudo-estática e 

parâmetros modificados do CASM. 

Na sequência são apresentadas informações adicionais sobre os parâmetros 

para análise, aspectos acerca da definição de fator de segurança fator de segurança, 

a concepção do método, condições inciais e metodologia para determinação do fator 

de segurança estático de um talude através de análise tensão-deformação. 

 

6.1. 
Parâmetros - CASM 

As constantes do modelo CASM do material utilizadas para avaliação do 

talude foram as mesmas utilizadas no capítulo anterior, com base no trabalho de 

Arroyo e Gens (2021) [23] para rejeitos grossos, resumidas na Tabela 6-1. 

Tabela 6-1 – Parâmetros do Modelo CASM – Rejeitos Grossos. 

Parâmetro Unidade Valor 

𝛾𝑑 kN/m³ 22,0 

𝛾𝑠𝑎𝑡 kN/m³ 27,0 

𝜆 - 0,040 

𝜅 - 0,007 

Γ - 2,27 

𝜇 - 0,30 

𝑛 - 7,5 

𝑟 - 5 

𝛼 - 1E6 

𝑀𝑐  - 1,40 
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O item 2.3.2 apresentou uma abordagem para definição da resistência não 

drenada de pico de materiais fofos (contráteis) através dos parâmetros do CASM e 

do parâmetro de estado inicial do material. Por esse motivo, o parâmetro de estado 

inicial do solo adotado foi de 𝜓 = 0,039. 

Além disso o parâmetro de estado de referência de acordo com os 

parâmetros acima adotados é 𝜓𝑅 = (𝜆 − 𝜅)𝑙𝑛𝑟 = (0,040 − 0,007)𝑙𝑛5 = 0,050. 

 

6.2. 
Fator de redução da resistência 

A avaliação da estabilidade de taludes é geralmente quantificada com a 

utilização do fator de segurança, que está aproximadamente associado à 

confiabilidade de um projeto específico.  

Há várias maneiras de definir fatores de segurança em termos de engenharia 

geotécnica, notoriamente se destacam o método dos valores admissíveis e o método 

dos valores de cálculo. 

No método dos valores de cálculo, fatores de redução de resistência são 

aplicados ao longo dos parâmetros analisados, de forma que o fator de segurança 

global final da análise se dá por meio da combinação dos fatores de redução da 

resistência parciais da seguinte maneira: 

 𝑅𝑑 =
𝑅𝑘

𝛾𝑚
≥ 𝛾𝑓𝑆𝑘 = 𝑆𝑑 (6-1) 

 𝐹𝑆 =  𝛾𝑚𝛾𝑓 (6-2) 

Os programas de métodos de elementos finitos na engenharia geotécnica 

geralmente implementam o método de redução 𝜙′ − 𝑐′ que se assemelha com o 

método dos valores de cálculo e ao sistema de cálculo de fatores de segurança como 

convencionalmente adotado em análises de estabilidade de acordo com a seguinte 

equação: 



114 

 

 

 ∑𝑀𝑠𝑓 =
tan(𝜙𝑒𝑛𝑡𝑟𝑎𝑑𝑎)

tan(𝜙𝑟𝑒𝑑𝑢𝑧𝑖𝑑𝑜)
=

𝑐𝑒𝑛𝑡𝑟𝑎𝑑𝑎

𝑐𝑟𝑒𝑑𝑢𝑧𝑖𝑑𝑜
 (6-3) 

 

6.3. 
Concepção do método 

Este método, inspirado no trabalho de Sarma (1973) [1] e baseado no 

conceito de fator de segurança utilizando valores de cálculo, com fatores de redução 

da resistência parciais nos parâmetros do modelo, visa determinar o fator de 

segurança estático de um talude por meio do coeficiente pseudo-estático crítico 

(KH) e da variação do parâmetro 𝑛 do modelo CASM, com etapas descritas na 

sequência: 

• Definição dos parâmetros do CASM: Primeiramente, os parâmetros do 

material do modelo CASM são definidos; 

• Variação do parâmetro 𝒏 do modelo CASM: À medida que o valor de 𝑛 

aumenta, a resistência não drenada de pico também aumenta. Para cada 

novo valor de 𝑛, compara-se a resistência não drenada de pico ajustada com 

a resistência inicial do modelo, e calcula-se o fator de redução da resistência 

para cada variação de 𝑛. Esse fator de redução representa a razão entre a 

resistência não drenada inicial e a resistência não drenada modificada; 

• Aplicação gradual do Coeficiente Pseudo-Estático (KDepois de ajustar o 

parâmetro 𝑛, aplica-se um coeficiente pseudo-estático horizontal (KH) de 

forma gradual ao modelo. Esse coeficiente é incrementado 

progressivamente até que o modelo desenvolva superfícies de ruptura e 

falhe em convergir. Esse valor de KH, no qual o modelo atinge o limite de 

estabilidade, é denominado KH crítico; 

• Coleta de dados para cada valor de 𝒏:Ao final dessa etapa, para cada 

valor de 𝑛, temos dois dados importantes: (i) o fator de redução da 

resistência associado à variação de 𝑛, e (ii) o valor de KH crítico, obtido com 

a aplicação incremental de KH até que o modelo atinja a não convergência; 

• Construção do Gráfico e Extrapolação: Um gráfico é gerado relacionando 

os fatores de redução da resistência (devidos à variação do parâmetro 𝑛) 
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com os valores de KH crítico. O objetivo é extrapolar essa relação para 

determinar o fator de segurança estático do talude. Para isso, a curva 

ajustada deve ser estendida até interceptar o eixo vertical, ou seja, até o 

ponto onde KH =0 (condição estática, sem forças pseudo-estáticas); 

• Ajuste da Equação Polinomial: A extrapolação é feita utilizando uma 

equação polinomial ajustada ao conjunto de dados, sendo que o coeficiente 

de determinação R², deve ser próximo de 1, o que assegura a 

representatividade e precisão do ajuste. O valor do fator de segurança 

estático é dado pelo coeficiente independente da equação polinomial, 

representado pela constante “c”. 

A Figura 6.1 exibe um resumo visual demonstrando como o coeficiente 

pseudo-estático (KH) é aplicado no talude, mobilizando as resistências no ponto A 

até o desenvolvimento de superfícies de ruptura.  

O gráfico resultante da relação entre os fatores de redução de resistência e 

os valores de (KH) críticos é utilizado para extrapolar o fator de segurança estático, 

obtido quando KH = 0 

 

Figura 6.1 – Esquema do método para obtenção do fator de segurança do talude. 
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6.4. 
Condições iniciais, seção analisada e malha 

A Figura 6.2 mostra o modelo da seção de analisada, construído no software 

PLAXIS 8.2, que apresenta um talude de 5,0 m de altura e inclinação 5H:1V e 

condição de nível d’água, praticamente com a saturação total do talude. Como 

condições de contorno foram impostas apenas restrições de deslocamentos de 

deslocamentos verticais no contorno inferior do modelo. 

 

Figura 6.2 – Seção de Análise - Condição inicial: geometria e condições de nível d’água.  

A malha de elementos finitos adotada tem 125 m de comprimento por 35 m 

de altura, é composta por elementos triangulares de 15 nós (Figura 6.3) e apresenta 

2315 elementos e 18863 nós (Tabela 6-2).  

Tabela 6-2 – Quantidade de elementos em malha para a seção analisada. 

Quantidade de Elementos Quantidade de Nós 

2315 18863 

 

Figura 6.3 – Seção de Análise - Malha de elementos finitos. 

Para obter os níveis de tensões das condições iniciais do talude e evitar 

adversidades na fase inicial devido as baixas tensões de confinamento que podem 

não convergir para o modelo CASM, nesta fase foi adotado o modelo constitutivo 

Mohr-Coulomb e cálculo das tensões através do método gravítico, utilizado para 

5,0 m 

25,0 m 
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camadas não horizontais. As tensões efetivas cartesianas provenientes da etapa 

inicial são expostas na Figura 6.4. O valor máximo da tensão efetiva cartesiana no 

eixo y foi de 601,9 kPa e para os eixos x e z 258,0 kPa.  

 

 

 

Figura 6.4 – Seção de Análise – Tensões efetivas cartesianas (a) verticais, (b) horizontais – 

x e (c) horizontais - z 

 

6.5. 
Redução da resistência 

A formulação da resistência não drenada de pico do modelo CASM foi 

apresentada no 2.3.2 através da equação (2-59). A partir desta equação serão 

determinados os fatores de redução de resistência (𝐹𝑅𝑅) do modelo CASM para o 

modelo CASM através da a modificação do coeficiente de forma da superfície de 

escoamento (𝑛), mantendo-se os demais parâmetros constantes. 

(a) 

(b) 

(c) 
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O coeficiente de forma da superfície de escoamento do solo adotado para o 

presente item foi de 7,5 (𝑛 = 7,5), dessa maneira o fator de redução da resistência 

(𝐹𝑅𝑅) será obtido ao comparar a resistência não drenada de pico de entrada, 

referente ao coeficiente de forma de 7,5, com as demais resistências não drenadas 

de pico obtidas, da seguinte maneira: 

 𝐹𝑅𝑅 =
S𝑢(𝑝𝑖𝑐𝑜)(𝑛 = 7,5)

S𝑢(𝑝𝑖𝑐𝑜)(𝑛 = 𝑣𝑎𝑟𝑖á𝑣𝑒𝑙)
 (6-4) 

A Tabela 6-3 apresenta aos valores de razão de resistência não drenada 

𝑆𝑢/𝜎𝑣
′  para os diferentes valores de coeficiente de forma da superfície de 

escoamento (n), obtida pela equação (2-59), além dos fatores de redução da 

resistência quando comparado ao valor de referência do coeficiente de forma da 

superfície de escoamento (𝑛 = 7,5) adotado. 

Salienta-se que o fator de redução da resistência apresentou valores 

inferiores a unidade uma vez que a resistência não drenada de pico do coeficiente 

de forma de entrada do solo de 7,5 (𝑛 = 7,5) foi de 0,44 e com o aumento do 𝑛 a 

resistência não drenada do modelo aumentou. 

Por fim, destaca-se que a escolha por aumentar o coeficiente de forma 𝑛 se 

dá de maneira ao modelo ter resistência mínima para convergência nas análises que 

serão realizadas, ao passo que com coeficiente de forma reduzido, menor que 7,5, 

o modelo não apresentou convergência.  

Tabela 6-3 – Razão de resistência de pico e fatores de redução da resistência devido à redução da 

resistência do coeficiente da superfície de escoamento (n) – CASM. 

Coeficiente de 

forma (n) 

𝑺𝒖,𝒑𝒊𝒄𝒐

𝝈𝒗
′  

Fator de Redução da 

Resistência 

7,5 0,41 1,00 

10 0,44 0,92 

12,5 0,47 0,87 

15 0,49 0,84 

20 0,51 0,80 

30 0,54 0,75 
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6.6. 
Obtenção do fator de segurança estático do talude 

Definida a condição inicial e os fatores de redução da resistência a partir da 

modificação do coeficiente de forma da superfície de escoamento (𝑛) do CASM, 

inicialmente a seção foi analisada na condição não drenada através do modelo 

constitutivo CASM para o material do talude com diferentes valores coeficiente da 

superfície de escoamento (𝑛), como mostra a Figura 6.5. 

 

Figura 6.5 – Condições Analisadas - Parâmetros do CASM adotados e diferentes valores 

coeficiente de forma da superfície de escoamento (n). 

A partir da inspiração do método de Sarma (1973) [1] para os diferentes 

cenários de fator de forma da superfície de escoamento (𝑛) foram aplicados 

coeficientes pseudo-estáticos de maneira gradativa, sempre acrescentando 1/10 da 

aceleração pseudo-estática anterior, até a não convergência do modelo. 

Ressalta-se que a não convergência do modelo pode estar atrelada a 

diferentes condicionantes, nos resultados buscou-se evidenciar potenciais 

superfícies de ruptura que possam vir ser mobilizadas. O método empregado 

depende fortemente da propagação dos deslocamentos e poropressões induzidas 

pela consideração do coeficiente pseudo-estático (KH). 
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De forma adicional por apresentar uma não convergência os módulos dos 

deslocamentos que serão apresentados podem conter valores relativamente baixos 

para indicar uma mobilização completa da superfície de ruptura. A determinação 

do coeficiente pseudo-estático crítico para cada valor do coeficiente de forma da 

superfície de escoamento se deu de maneira a identificar o gatilho inicial da possível 

superfície que depois se desenvolveria por completo. 

A Figura 6.6 e a Figura 6.7 mostram o módulo do deslocamento total (|u|) 

para os diferentes cenários de coeficiente de forma da superfície de escoamento (𝑛) 

e os valores dos coeficientes pseudo-estáticos críticos para a não convergência do 

modelo para cada valor de 𝑛. A diferença entre as duas figuras é que a primeira as 

escalas foram mantidas a de cada cenário específico e a segunda as escalas foram 

padronizadas com base nos maiores valores obtidos para facilitar a comparação 

entre os cenários.  

Como esperado, devido ao aumento da resistência não drenada, percebe-se 

que os valores dos coeficientes pseudo-estático críticos para não convergência do 

modelo são mais elevados de acordo com o aumento do valor de 𝑛. O mesmo 

comportamento é identificado para os deslocamentos totais, onde para os maiores 

valores de 𝑛, foram identificados os maiores deslocamentos totais. A Tabela 6-4 

mostra o coeficiente de aceleração pseudo-estática crítica e o deslocamento total do 

modelo obtidos para cada valor do coeficiente de forma 𝑛. 

Tabela 6-4 – Coeficiente de aceleração pseudo-estática limite (KH) e deslocamento total de acordo 

com o coeficiente da superfície de escoamento (n) – CASM. 

Coeficiente de 

forma (𝒏) 

Coeficiente de aceleração 

pseudo-estática crítico (KH) 

Deslocamento total 

(mm) 

7,5 0,0070 2,506 

10 0,0100 4,237 

12,5 0,0140 5,906 

15 0,0170 7,576 

20 0,0220 13,69 

30 0,0300 19,04 

Nessas figuras estão destacadas as potenciais superfícies de rupturas que 

poderiam ser mobilizadas tanto no paramento do talude analisado quanto em 

profundidade.  
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Os valores de deslocamento encontrado são da ordem de milímetros, visto 

que o talude apresenta um desenvolvimento horizontal de 25,0 m e altura de 5,0 m 

é notório que a superfície de ruptura não ocorreu, entretanto, conforme indicado 

anteriormente, o objetivo da análise é identificar a não convergência do modelo 

para um determinado valor de coeficiente pseudo-estático, esse mencionado de 

crítico. 

A não convergência do modelo faz com que a etapa de cálculo seja 

interrompida e não concluída, portanto, os valores absolutos dos deslocamentos 

podem não representar o valor real esperado. 

 

Figura 6.6 – Deslocamento total |u| – Coeficientes de aceleração pseudo-estática críticos 

(KH) - CASM - Diferentes valores coeficiente de forma da superfície de escoamento (n) – 

Escala Livre 
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Figura 6.7 – Deslocamento total |u| – Coeficientes de aceleração pseudo-estática críticos 

(KH) - CASM - Diferentes valores coeficiente de forma da superfície de escoamento (n) – 

Escala Unificada. 

A Tabela 6-5 resume os coeficientes de aceleração pseudo-estática críticos 

(KH) alcançados para os cenários avaliados e os fatores de segurança referenciados 

no item 6.5, de acordo com o coeficiente de forma da superfície de escoamento (𝑛). 

Tabela 6-5 – Coeficiente de aceleração pseudo-estática crítico (KH) e fator de segurança de acordo 

com o coeficiente da superfície de escoamento (n) – CASM. 

Coeficiente de 

forma (n) 

Fator de Redução da 

Resistência 

Coeficiente de aceleração 

pseudo-estático crítico (KH) 

7,5 1,00 0,0070 

10 0,92 0,0100 

12,5 0,87 0,0140 

15 0,84 0,0170 

20 0,80 0,0220 

30 0,75 0,0300 

Baseado nos valores do fator de redução da resistência e dos coeficientes de 

aceleração pseudo-estática críticos foi possível gerar o gráfico exibido na Figura 

6.8, que relaciona o coeficiente de aceleração pseudo-estática crítico com o fator de 

redução da resistência através da seguinte equação polinomial de tendência, com 

R² = 0,9965, representando uma ótima aderência da equação polinomial: 

 𝐹𝑆 = −21827(𝐾𝐻)3 + 1586,4(𝐾𝐻)2 − 44,001(𝐾𝐻) + 1,234 (6-5) 
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Figura 6.8 – Coeficiente de aceleração pseudo-estática crítico (KH) x fator de segurança – 

Equação polinomial de tendência. 

O fator de segurança estático da estrutura ocorre quando o coeficiente de 

aceleração pseudo-estática é nulo, ou seja, KH = 0. Ao aplicar a condição na 

Equação (6-5), têm-se: 

 𝐹𝑆 = 1,234 (6-6) 

Logo, conclui-se que foi possível determinar o fator de segurança estático 

do talude analisado através da análise de tensão-deformação inspirado no método 

de Sarma (1993) [1]. Importante destacar que a equação polinomial utilizada 

apresentou boa aderência (R² = 0,9965), para diferentes situações de análise, 

recomenda-se ajuste na equação polinomial, onde não necessariamente será uma 

função do terceiro grau. 

Ressalta-se ainda que as condições de contorno e nível d’água para cada 

análise devem ser avaliadas individualmente para entender a aplicabilidade do 

método proposto, tendo em vista que esses aspectos possam apresentar uma 

desvantagem na obtenção dos coeficientes pseudo-estáticos limites e em 

comparação aos métodos clássicos para análises de estabilidade. 
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7 
Conclusões 

O trabalho descrito nesta dissertação teve como objetivo implementar o 

modelo constitutivo CASM (Clay and Sand Model) no software de elementos 

finitos PLAXIS 2D, além de determinar o fator de segurança de um talude por meio 

de análise tensão-deformação e comparar o modelo CASM com o modelo HS 

(hardening soil) para a construção de uma barragem de rejeitos alteada a montante. 

Ao fazê-lo, cinco tópicos principais foram abordados, de maneira inicial 

foram revisadas criticamente as formulações fundamentais do modelo CASM, seus 

parâmetros e o processo de integração numérica das equações constitutivas.  

Na sequência, o trabalho se concentrou na validação da implementação do 

modelo CASM comparando os resultados com trajetórias de ensaios triaxiais 

existentes na literatura, apresentando uma boa concordância, o que corrobora a 

eficácia do modelo para aplicação em materiais argilosos e arenosos nas condições 

drenadas e não drenadas.  

Posteriormente, foi realizada a comparação entre os modelos CASM e HS 

para a construção de uma barragem de rejeitos alteada a montante. Por fim foi 

explanada a proposta a determinação do fator de segurança de um talude através da 

ideologia proposta por Sarma (1993) [1]. 

Os principais resultados obtidos durante esta pesquisa de mestrado estão 

resumidos a seguir, com observações finais e recomendações para trabalhos futuros. 

O estado da arte do modelo constitutivo CASM e das integrações numéricas 

de equações constitutivas na plasticidade incluída nesta dissertação está longe de 

ser completo ou mesmo abrangente, mas pretende ser representativo para a 

implementação do modelo CASM. Inicialmente uma diferença importante em 

relação ao modelo CASM implementada no presente trabalho, comparado com o 

modelo original foi descrita, através da modificação do potencial plástico.  
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Dessa forma, durante a validação da implementação a modificação proposta 

do potencial plástico que introduziu o parâmetro 𝛼 no modelo foi avaliada e 

apresentou boa aderência para aproximar as trajetórias dos ensaios obtidas com a 

implementação com as disponíveis na literatura. O trabalho culminou com a 

implementação do modelo CASM no software comercial de elementos finitos 

PLAXIS 2D. 

Os resultados obtidos demonstraram que o modelo CASM é capaz de prever 

com precisão o comportamento tensão-deformação de solos sob condições drenadas 

e não drenadas, possibilitando a análise de possíveis modos de falha em estruturas 

geotécnicas.  

O modelo CASM se comportou de maneira bastante similar ao modelo HS, 

bastante utilizado e conhecido na literatura, além de identificar aspectos para a 

construção de barragens de rejeitos alteadas a montante, sendo o mais notório a 

possível identificação de superfícies de ruptura. De maneira final, a aproximação 

polinomial usada para avaliar o fator de segurança também se mostrou satisfatória, 

sugerindo que o método proposto pode ser uma ferramenta útil para avaliar a 

estabilidade de taludes. 

Apesar dos resultados positivos, algumas limitações foram identificadas. A 

principal delas se refere à simplificação dos parâmetros do modelo e da estrutura 

analisada feitas no presente trabalho, que podem não capturar todas as 

variabilidades de um cenário real.  

Outra limitação identificada foi a variabilidade do método de fator de 

segurança proposto frente as condições de contorno que são adotadas no modelo 

numérico, para superar essa limitação devem ser avaliadas potenciais superfícies de 

ruptura de acordo com o aumento gradativo do coeficiente pseudo-estático (KH) 

proposto no método para cada situação específica de modo a verificar a 

aplicabilidade do método. 

Além disso, na implementação realizada na presente dissertação, o modelo 

CASM não permite que qualquer deformação plástica se desenvolva dentro da 

superfície limite de escoamento. Yu (1998) [2] ressalta que essa dificuldade pode 

ser facilmente superada introduzindo algumas deformações plásticas adicionais 
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dentro da superfície de escoamento. A penalidade é que tal modificação certamente 

exigiria mais algumas constantes do material, como proposto por Khong (2004) 

[13] no modelo denominado CASM-b. 

 

7.1. 
Trabalhos futuros 

Os estudos realizados nesta dissertação trataram da idealização, formulação, 

implementação, verificação do modelo constitutivo CASM, determinação do fator 

de segurança de um talude e comparação com o modelo constitutivo HS para a 

construção de uma barragem de rejeitos alteada a montante. 

Um recurso adicional foi implementado, modificando o potencial plástico 

do CASM de acordo com o proposto por Cirone (2020) [3], com base nas relações 

tensão-dilatância de Nakai and Hinokio (2004) [4] e Kim e Lade (1998) [5]. 

Ainda são possíveis melhorias adicionais e considerações de modificações 

recentes no modelo CASM, como exemplo as modificações propostas por Khong, 

2004) [13], que incluíram elasticidade não linear para argilas, influência da 

deformação plástica cisalhante no endurecimento (CASM-d), superfície 

delimitadora (CASM-b) e nova superfície de escoamento cíclica (CASM-c). 

Em termos de melhorias no modelo CASM mais recentemente se destacam 

os notórios trabalhos de Arroyo e Gens (2021) [23] e Mánica et. al. (2021) [40] com 

a adição do comportamento viscoplástico que confere aos solos um comportamento 

que depende da fluência. O primeiro trabalhou abordou a análise de falha da Mina 

do Córrego do Feijão em Brumadinho e a identificação dos gatilhos de liquefação 

para explicação da ruptura ocorrida e o segundo realizou análises hidromecânicas 

acopladas para investigar o desencadeamento de liquefação devido aos efeitos de 

fluência ou taxa. 

A partir da inclusão das melhorias citadas no modelo CASM, os resultados 

obtidos são cada vez mais satisfatórios para materiais argilosos e arenosos, além da 

identificação de potenciais gatilhos para liquefação. Essas melhorias só são 

possíveis devido ao avanço computacional e principalmente pelo entendimento do 
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modelo constitutivo. Baseado nessas melhorias, ainda pode ser realizado 

futuramente a expansão do estudo atual com a utilização do PLAXIS 3D, que 

permitiria analisar taludes e barragens de forma tridimensional, oferecendo uma 

visão mais completa das condições de estabilidade e comportamento do solo. 

Para a validação desta dissertação foram utilizados dados de testes 

laboratoriais disponíveis na literatura e proposta de fator de segurança para uma 

geometria simplificada de um talude. Pesquisas futuras poderiam ser direcionadas 

para a aplicação dessa proposta para problemas geotécnicos de grande escala, 

principalmente relacionados a mineração e identificação de gatilhos, validar as 

previsões numéricas em relação aos dados de monitoramento de campo e realizar 

ensaios laboratoriais adicionais para calibrar modelo CASM em diferentes tipos de 

solo, ampliando sua aplicação em contextos geotécnicos variados e considerar 

efeitos como anisotropia e heterogeneidade do solo, proporcionando maior precisão 

nas análises. 

Outro fato não abordado na presente dissertação para a avalição da 

estabilidade do talude é a influência da precipitação ou a variação do nível freático 

que podem ser analisados e verificados como afetam a estabilidade de taludes 

utilizando o modelo CASM e posteriormente serem expandidos para estruturas 

geotécnicas mais complexas. 

No contexto da análise de estabilidade proposta é interessante notar que por 

se tratar de um modelo constitutivo unificado para argilas e areias, o CASM pode 

ser considerado para os materiais de barragem de mineração.  

Além da comparação com o modelo constitutivo HS, realizada na presente 

dissertação, o CASM poderia ser comparado com novos modelos constitutivos, 

como o NorSand e Cam-Clay, para diferentes tipos de solos, especialmente em 

estruturas críticas como barragens de rejeito. 

Por fim, o modelo pode ser testado em outras situações geotécnicas, como 

fundações profundas, para avaliar sua robustez em diferentes contextos, de modo a 

comparar deslocamentos, tensões e deformações obtidos para essas estruturas com 

dados experimentais ou analíticos, caso disponíveis para verificar se o CASM é 

capaz de capturar o comportamento realista desses cenários. 
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Anexos 

Anexo A 

A.1. Derivadas da função de escoamento 
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A.2. Derivadas dos invariantes de tensão 
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A.3. Derivadas do potencial plástico 
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A.4. Derivadas da lei de endurecimento 
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Anexo B – Algoritmo de subincrementação com controle automático 

de erro 
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Anexo C – Inicialização CASM 

Na sequência são apresentadas as equações necessárias para inicialização do modelo, que 

foi baseada na pressão de pré-adensamento (𝑝0
′ ) e do parâmetro de estado inicial (𝜓0): 

1 + 𝑒0 = 𝛤 + 𝜓0 − 𝜆𝑙𝑛𝑝′ 

𝑝′0 = 𝑟𝑝′𝑒𝑥𝑝 (−
𝜓0

𝜆 − 𝜅
) 

𝑝′𝑢 = 𝑝′𝑒𝑥𝑝 (−
𝜓0

𝜆
) 

No caso de RCL (referential consolidation line) sendo a NCL (normal consolidation line), 

têm se: 

𝑝′0𝑐𝑠 = 𝑝0
′ 𝑒𝑥𝑝 (

𝜖𝑣
𝑝

𝜆∗ − 𝜅∗
) 

Onde: 

𝜖𝑣
𝑝

= −𝜖𝑣
𝑒 = −𝜅∗ ln (

𝑝𝑢

𝑝
) 

𝜅∗ =
𝜅

1 + 𝑒0

 

𝜆∗ =
𝜆

1 + 𝑒0

 

Então: 

𝑝′𝑢 = 𝑝′𝑒𝑥𝑝 (−
𝜓

𝜆
) 

𝜖𝑣
𝑝

= −𝜖𝑣
𝑒 = 𝜅∗ ln (

𝑝

𝑝𝑢

) 

𝑟𝑝′𝑢 = 𝑝0
′ exp (

𝜖𝑣
𝑝

𝜆∗ − 𝜅∗
) 

𝑝0
′ = 𝑟𝑝′𝑢 exp (−

𝜖𝑣
𝑝

𝜆∗ − 𝜅∗
) 

𝑝0
′ = 𝑟𝑝′𝑢 exp (−

𝜅∗

𝜆∗ − 𝜅∗
ln (

𝑝

𝑝𝑢

)) = 𝑟𝑝′
𝑢
(
𝑝𝑢

𝑝
)

𝜅∗

𝜆∗−𝜅∗

 

𝑝0
′ = 𝑟𝑝

′(
𝑝𝑢
𝑝

)
1+

𝜅∗

𝜆∗−𝜅∗

=  𝑟𝑝′ (
𝑝𝑢

𝑝
)

𝜆∗

𝜆∗−𝜅∗
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𝑝0
′ = 𝑟𝑝

′(
𝑝𝑢
𝑝

)

1
Λ

= 𝑟𝑝′ exp (−
𝜓

𝜆𝛬
) 

𝑝0
′ = 𝑟𝑝

′(
𝑝𝑢
𝑝

)

1
Λ

= 𝑟𝑝′ exp (−
𝜓

𝜆 − 𝜅
) 

Onde: 

𝛬 =
𝜆∗

𝜆∗ − 𝜅∗
 


