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Abstract

Baruque, Gabriel; Caarls, Wouter (Advisor). Classification with
Missing and Costly Features. Rio de Janeiro, 2024. 114p. Tese
de Doutorado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

In the field of Machine Learning, classification problems remain among
the most relevant issues as they are present in a wide variety of scenarios and
environments, such as in industry, retail companies, and healthcare. Virtually
every company needs to solve a classification problem at some point in their
solution or service, whether it be a simple day-to-day issue or a data-driven
problem with significant impact.

Different types of problems arise from the concept of classification. One
such problem is classification with a budget, or classification with costly featu-
res. This problem is characterized by the cost required to collect information
for classification, where each piece of information (feature) has an associated
cost, whether related to time, money, or any scarce resource.

To solve classification problems in general, Machine Learning methods
such as artificial neural networks, decision trees, Bayesian-based methods, deep
learning, and others have seen a significant increase in use in recent years due
to their high performance in predictions for most use cases. The specific case
of Classification with Costly Features has not been the target of extensive
research, and thus, few methods have been developed to overcome this problem.

One possible way to handle the Classification with Costly Features
problems is by modeling it as a sequential decision-making problem, and
applying Reinforcement Learning, as done in some works. However, research
that approaches this problem with Reinforcement Learning usually does not
train the model in a problem-oriented way, or apply different models for
different objectives in this context.

In order to be suitable for more complex problems, Deep Learning
techniques were incorporated into Reinforcement Learning methods, what is
called Deep Reinforcement Learning.

The objective of this thesis is to develop and enhance Deep Reinforcement
Learning methods in problems of Classification with Costly Features, in a
flexible way so that the model can be used on different datasets with little
or no modification to its parameters, and with problem-oriented and efficient
training, leveraging already known information.

To achieve this goal, two Deep Reinforcement Learning methods were
developed to classify six different datasets. In the course of the research, an
additional classification method for samples with missing values was developed



as a proof of concept. Reference methods were used for comparison with the
proposed ones.

The results achieved demonstrate that the proposed methods for Clas-
sification with Costly Features have better or comparable outcomes to the
reference methods. The method for classification with missing values, in gene-
ral, outperformed the reference methods.

Keywords
Costly Features; Reinforcement Learning; Transformers; Classification;

Missing Values.



Resumo

Baruque, Gabriel; Caarls, Wouter. Classificação com Caracte-
rísticas Faltantes e Custosas. Rio de Janeiro, 2024. 114p. Tese
de Doutorado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Na área de Aprendizado de Máquina, problemas de classificação ainda
permanecem como um dos mais relevantes problemas, uma vez que estão
presentes em uma grande variedade de cenários e ambientes, como na indústria,
empresas de varejo, e na área da saúde. Virtualmente, toda empresa necessita
resolver um problema de classificação em algum ponto de sua solução ou
serviço, seja um problema simples do dia-a-dia ou um baseado em dados com
grande impacto.

Em termos de classificação, surgem diferentes tipos de problema advindos
desse conceito. Um deles é a classificação com orçamento, ou classificação
com informações custosas. Esse problema é caracterizado pelo custo necessário
para coletar informações para a classificação, onde cada pedaço de informação
(atributo) possui um custo atrelado, seja relacionado a tempo, dinheiro, ou
qualquer recurso escasso.

Para solucionar problemas de classificação em geral, métodos de Apren-
dizado de Máquina como redes neurais artificiais, árvores de decisão, métodos
baseados em Bayes, aprendizado profundo, e outros, têm visto um grande au-
mento em sua utilização nos últimos anos, devido ao seu alto desempenho em
predições na maioria dos casos de uso. O caso específico da Classificação com
Informações Custosas não tem sido alvo de inúmeras pesquisas, e por isso,
poucos métodos foram desenvolvidos para superar esse problema.

Uma possível forma de lidar com problemas de Classificação com In-
formações Custosas é modelá-los como um problema de tomada de decisão
sequencial e aplicar Aprendizado por Reforço, como feito em algumas pesqui-
sas. No entanto, a pesquisa que aborda esse problema com Aprendizado por
Reforço geralmente não treina o modelo de forma orientada ao problema, e
aplica modelos diferentes para diferentes objetivos dentro desse contexto.

De modo a ser utilizado em problemas mais complexos, técnicas de
Aprendizado Profundo foram incorporadas em métodos de Aprendizado por
Reforço, o que é chamado de Aprendizado por Reforço Profundo (Deep
Reinforcement Learning – DRL).

O objetivo desta tese é desenvolver e aprimorar métodos de Aprendizado
por Reforço Profundo em problemas de Classificação com Características Cus-
tosas, de forma flexível, para que o modelo possa ser utilizado em diferentes
conjuntos de dados com pouca ou nenhuma modificação em seus parâmetros,



e com um treinamento eficiente e orientado ao problema, aproveitando infor-
mações já conhecidas.

Para alcançar tal objetivo, dois métodos de DRL foram desenvolvidos
para classificar seis conjuntos de dados diferentes. No decorrer da pesquisa,
mais um método de classificação para amostras com valores faltantes foi
desenvolvido como prova de conceito. Métodos de referência foram utilizados
para comparação com os propostos.

Resultados alcançados demonstram que os métodos propostos para
CwCF possuem resultados melhores ou comparáveis aos métodos de referência.
O método de classificação com valores faltantes se mostrou, em geral, superior
aos métodos de referência.

Palavras-chave
Informações Custosas; Aprendizado por Reforço; Transformers; Clas-

sificação; Valores Faltantes.
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1
Introduction

In our daily tasks, we often need to give something a label. For instance,
a physician needs to label the symptoms of a patient to provide a diagnosis;
a marketing employee may be tasked to divide a company’s customers into
a few groups based on how much they are willing to spend; a logistic team
in a delivery company needs to label the products in three groups, based on
their probability of getting lost during transportation. Those examples are
classification tasks.

Predicting the label based on the subject’s available information is
important: one could be prepared for the outcome beforehand. However, this
is not always an easy task as the patterns that map from information to
the desired outcome may be hard for humans to see. This process can be
automated with Machine Learning (ML) classification models, as information
is increasingly available in the form of datasets. These models aim to classify
new data based on previously available information, learning patterns that
may be used to predict the labels.

In the real world, gathering features, or in other words, information, is
mandatory to predict the label about specific data. With no information about
a subject, it is infeasible to believe that any better-than-chance prediction is
achievable. Gathering those features often requires a cost in terms of scarce
resources, which can be a quantifiable one, such as time and money, or resources
that are harder to quantify, such as discomfort, e.g. in patient examinations.

1.1
Classification with Costly Features

ML models are usually designed to receive all available features at
once without considering the acquisition cost for the information received.
However, creating models that do account for real-world limitations has been
increasingly important for the ML community. This increasing importance is
the consequence of ML models being used more often in real-life applications,
where limited resources, e.g. time and money, are crucial for service provider
companies, healthcare providers, etc. Specific scenarios can be, for instance,
automated medical diagnosis [1, 2], and text classification with a budget in
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terms of the number of words used at test-time [3], imposing a cost-sensitive
scenario in both cases.

This problem can be found in the literature under different names:
Budgeted ML, Resource Constraint Learning, and Test-time Cost-sensitive
Learning [93, 94]. Classification with Costly Features (CwCF) is the name
given to a specific case of that scenario, where each feature of a dataset has its
respective cost to be "measured" (used) [13, 14]. If a model uses all available
features from a dataset, the final cost is the sum of all individual feature costs.
If, after some feature selection phase, the same model uses only half of the
features, the cost will be the sum of the respective used features only.

Studies addressing the CwCF problem have been present in the literature
since 2002 [84] and 2007 [85]. While these approaches ultimately achieve the
goal of executing a sequence of decisions that includes feature selection and
data classification, they do have limitations. Specifically, [84] employs a Q-
learning-based approach alongside Bayesian decision-making problems. This
method uses three different networks for various objectives, resulting in a
complex model where the final outcome is contingent upon the intermediate
results from each network, allowing for error propagation. In contrast, [85]
interprets the problem as a Partially Observable Markov Decision Process
(POMDP), necessitating the training of a Hidden Markov Model to overcome
challenges posed by this modeling, such as state discretization and the inability
to avoid repeated actions. In contrast, the models proposed in this thesis do
not require an auxiliary model and, depending on the problem formulation,
are capable of avoiding repeated actions

It is important to note that creating efficient models that do account for
test-time constraints regarding limited resources narrows down the distance
between ML and real-world applications, ranging from requiring less expensive
hardware, time, or information [5, 6, 93, 94]. These are examples of applications
that can fit many different problems, in different fields of real-world scenarios.
To solve this kind of problem, ML algorithms must not only be trained to
achieve the best possible performance for the task (e.g. classification) but also
be trained to consume/require the least amount of a limited resource as possible
[5, 14, 46, 93, 94].

Currently, some algorithms that address the problem of test-time budget
constraints can use structured prediction [4], decision trees or random forests
[5, 6, 7] and Reinforcement Learning [8, 9, 10, 11, 12], recently achieving State-
of-the-Art (SOTA) performance in [13, 14].

Existing methods designed for CwCF problems [84, 85, 13, 14] usually
employ standard strategies for action selection and target updates, overlooking
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the specific characteristics of the problem at hand. In this regard, the models
proposed in this thesis aim for efficient training concerning both action
exploration and target updates, while also implementing promising models [36]
with a natural representation of the problem within a Reinforcement Learning
(RL) framework.

In light of the scenario described, the primary contribution of this the-
sis is to develop and train novel state-of-the-art models for CwCF problems,
capable of dynamically selecting features or classifying with gathered informa-
tion. In addition, the secondary objective is to construct three distinct models:
the first leverages Deep Reinforcement Learning (DRL) specifically tailored
for CwCF challenges, the second employs Transformers to provide a natural
representation of the same problem, and the third serves as an intermedi-
ary step, utilizing a Transformer-based model for classification tasks involving
missing features. The research involved data collection and preprocessing, rig-
orous training protocols, and thorough evaluation using relevant performance
metrics. The proposed models were benchmarked against existing methods to
demonstrate their performance.

1.2
Motivation

The motivation for this research started in the area of healthcare, aiming
to decrease costs and provide a personalized policy of examinations. However,
this setup can be applied not only in healthcare, but also in many different
scenarios, as long as the main objective is classifying with a lower cost of
some scarce resource. For instance, still in the healthcare example, with more
examinations a physician has more information to provide a diagnosis, however
it incurs in more expenses, which ultimately are more likely to fall on the
patient, leading to increased healthcare costs and potential financial burden
for those seeking medical care.

In this paradigm, the examinations provide the features, and it is
important to weigh the cost in terms of monetary value against the final well-
being of the patient in terms of providing a correct classification for treatment.
This setup can be applied not only for monetary cost, but many other factors,
for instance, examination risks, patient discomfort, time spent, and more.

1.3
Contributions

This thesis aims to achieve better performance on test-time constrained
problems, specifically in classification with costly features (CwCF), using Deep
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Reinforcement Learning (DRL) applications. This research contributes with
two novel DRL approaches for CwCF problems. One approach is achieved
using a supervised learning paradigm concurrent with the training of a Deep Q
Network (DQN) agent. The other leverages the power of Transformers to train
a DQN agent for CwCF. As an additional contribution, a transformer was also
trained to classify instances with missing values using only supervised learning,
as a way of validating its capability to deal with incomplete information.

The first novel approach brings attention to the possibility of joining
together two usually separate ML paradigms, Reinforcement Learning and
Supervised Learning. By doing so, a sequential decision problem (e.g. choosing
the best features dynamically), can be solved along with a supervised problem
(e.g. classification) while the constrained resource is being considered during
training. This approach allows for efficient training, allowing the usage of
information known a priori, and implementing an efficient training policy.

The second novel approach tackles the same problem, but this time we
use a transformer model instead of feed-forward neural networks. Transformers
are particularly suited for handling irregularly-sized inputs such as samples
with missing data. In this approach, the power and flexibility of transformers
are used to solve the CwCF problem, handling the sequential decision-making,
usually designed as a Markov Decision Process (MDP), as a fixed sequence
per sample. To the best of our knowledge, this is the first time a transformer
model has been used to handle a CwCF problem.

Each proposed model is compared agains a set of baselines, comprising
well established models. For the first model, a two-step classifier baseline was
developed, where the first step is a feature selection process and the second
step is a Neural Network classifier. For the intermediate model, the transformer
classifier is compared against XGBoost [15], and a combination of Multiple
Imputation by Chained Equations (MICE) [16, 17] and a classifier. Lastly,
for the transformer model, the same baseline used with the first model is
considered.

1.4
Organization

This thesis is organized as follows: Chapter 2 presents a literature
review of Reinforcement Learning (RL) and Deep Learning (DL) methods
used throughout the research. In Chapter 3, the RL model for CwCF is
proposed. Chapter 4 focuses on the development of the transformer model
for classification with missing values. Chapter 5 discusses the integration of
the transformer model within an RL framework for CwCF. Each of Chapters
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3 through 5 includes its own related work, baselines, methodologies, and
experimental results. Finally, Chapter 6 provides the conclusion of the thesis.



2
Background

This chapter gives a formal explanation of the Deep Learning (Neural
Networks) and Reinforcement Learning (RL) methods used in this research,
based on literature about the topics.

2.1
Neural Networks

Artificial Neural Networks (ANN) [18] have been used in machine learn-
ing for many decades, being now a reliable approach in many different use
cases. They are inspired by biological brains, where neurons integrate informa-
tion coming from senses or other neurons, depending on the synaptic weight
of their connection.

The solid performance achieved by ANNs makes them a good tool
for many tasks, such as classification, regression, temporal series prediction,
decision support, and other types of applications. One of the greatest strengths
of ANNs is their ability to deal with complicated inputs, serving not only as
a function approximator but also as a powerful feature extractor, especially in
the case of Deep Neural Networks [19], which integrate many layers of neurons.
In that case, information is extracted automatically during training, and not
handcrafted. For instance, shapes and colors in a medical image do not need
to be filtered manually to be fed to the Deep Learning model, instead, the
image is fed as it is and the model is responsible for extracting the features,
learned during the training process. Due to this characteristic, they are used
to learn patterns from many different data inputs, such as tabular datasets,
time series, audio, images, videos, electric/electronic signals, and virtually any
kind of data, given appropriate pre-processing and an appropriate architecture
related to the data type.

As ANN improvements and new applications were developed throughout
the years, today this technology is suited for a myriad of different objectives.
Face recognition [20], fraud detection [21], cloud classification using clustering
[22, 23], and financial time-series forecasting [24, 25] are just a few examples.
To suit different objectives, ANN architectures can change drastically, ranging
from feed-forward, recurrent, and convolutional. As in the current thesis we
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do not use image data, convolutional networks will not be discussed. Similarly,
as measurement vectors have a fixed context length, we consider transformers
instead of recurrent networks to process them.

2.1.1
Feed Forward Neural Networks

Feed Forward Neural Networks (FFNN) are the simplest architectures
for an ANN, however, they are still largely used today due to their easy
implementation and reliable performance in many real-world problem-solving
tasks. This architecture is especially used with tabular datasets, since each
feature from a data instance can be directly used as an input for the FFNN.
They are also known to be general function approximators, since they can
approximate any mathematical function, with more or less accuracy, depending
on a set of parameters, such as activation functions and amount of nodes and
weights.

The general architecture of FFNNs is composed of three main parts, as
shown in Fig.2.1: the input, a layer of nodes fed with the data instance fea-
ture values; the output layer, which receives the ANN intermediate response
as an internal input and outputs the actual estimated desired value (e.g. clas-
sification or regression result); and the hidden layer(s), which are responsible
for increasing the network complexity and mapping the inputs to the desired
output, lying in between the input and output layers.

Hidden and output layers are composed of weights, biases, and nodes
with a sum block and an activation function. From a FFNN with L layers,
let’s consider layer l with dimension J , and layer l− 1 with dimension D. The
output of a node in layer l is denoted by

xl
j = F

(
D∑

d=1
xl−1

d wl
dj + wl

0j

)
(2-1)

where xl
j is the output of node j in layer l, xl−1

d is the output of node d in
layer l − 1, wl

dj is the weight between the output of node d in layer l − 1 and
node j in layer l, wl

0j is the bias associated with node j in layer l, and F (·)
represents the activation function. In other words, the output of a node is the
weighted sum of the previous layer nodes’ activations, adding a bias term, and
then applying an activation function.

Note that in this notation x can represent both the output of a node in
layer l, as in xl

j, and the input values of that node in the same layer, which are
also the outputs of the previous layer, as in xl−1

d . When calculating the first
layer outputs, x0

i would be the raw input values of a data instance.
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Figure 2.1: General architecture of an FFNN.

To achieve the role of a general function approximator, the FFNN’s
should have at least one hidden layer[26]. In principle, 2 layers are sufficient
to represent any possible region[27, 28].

To offer any benefit over networks with no hidden layers, an ANN should
have the ability to represent nonlinear functions, and to do so, the activation
function used in the hidden layers is required to be non-linear as well. The
role of this activation function is to provide a non-linear output for each node,
and, finally, to the Neural Network itself. Otherwise, using a linear activation
function in all layers, the output would also be a linear function, lacking
representative power to be considered a general function approximator.

2.1.2
Activation Functions

Activation functions are also an important choice when dealing with
FFNNs, especially in the last layer of the architecture (output layer). When
training an ANN in a classification problem, one probably wants a network
that outputs the probability of each class to be the right one, as opposed to a
regression problem, where the predicted value, with the same magnitude as the
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target, is what is expected to be outputted from an FFNN. Moreover, despite
the output layer activation function having to be specifically set depending on
the problem, the hidden layer nodes should also have an activation function
that encourages learning while being mathematically differentiable. Due to
that, different activation functions can be used in hidden layers and output
layers. Although there are many possible choices, we only present the ones
used in this research.

Linear activation functions are defined as

Linear(x) = x (2-2)

and are commonly used to pass on the exact value of weighted inputs and
bias calculated, outputting a proportional value. It is commonly used as an
output layer function for regression problems, where the aim is to predict a
real value of a specific magnitude. The Softmax is also usually used as an
output activation function, defined mathematically as

Softmax(xj) = exj∑
J exk

, (2-3)

which ensures that all outputs are proportional, so that their sum is exactly
one, making the output vector a probability distribution. This function is
generally used for multi-class classification problems. Lastly, the Rectified
Linear Unit (ReLU) activation function is probably the most used for hidden
layers. It is a computationally efficient function that has an overall good
performance in most use cases. It can be mathematically expressed by

ReLU(x) = max(0, x). (2-4)

2.1.3
Training

Like many other supervised learning methods, Neural Networks learn by
minimizing the difference between the predicted value and the real value of
the data instances, i.e. minimizing error over a data set. This error is given by
a loss function L(w), a common choice for regression being the mean squared
error

L(w) = 1
N

N∑
i=1

(yi − ŷi(·; w))2 ,

where w are the weights, i.e. parameters of the network, N is the number
of data instances, ŷi(·; w) is the i-th predicted output, and yi is the i-th real
value.

The loss function is minimized iteratively by the network weight updates.
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This is where in fact the learning occurs. The weight update rule can be defined
as

w← w + ∆w. (2-5)
To calculate the weight updates ∆w, many algorithms leverage the gradient
of the error (or the loss). The Gradient Descent algorithm is the most basic
optimization algorithm for ANN’s and to calculate the updates ∆w in 2-5, the
algorithm moves in the opposite direction of the gradient in order to minimize
the loss (hence gradient descent), such that the update is

∆w = −α∇L(w), (2-6)

where α > 0 is the learning rate, and the gradient ∇L(w) is calculated through
backpropagation[29]. A learning rate that is too big can lead to no convergence,
never finding the optimal values. On the other hand, a learning rate that is
too small can lead to slow learning, making it impracticable.

In the Gradient Descent algorithm, the updates are made after each
evaluation of the whole data set, always requiring a new evaluation (with
updated weights) to continue iterating until convergence. This is called batch-
learning. In order to make the algorithm more feasible, an online version
was developed. The most known is the Stochastic Gradient Descent (SGD),
which follows the same principles, while, instead of evaluating the whole data
time after time, it implements an online version, updating weights based on
evaluations of a random single instance at a time or multiple instances at a
time, in a mini-batch fashion. The most used optimization algorithm today is
an extension of SGD, called Adam [30].

2.1.4
Validation and Testing

When training an FFNN, and most supervised machine learning models,
it is often advisable to split the data into three groups, where each one is
used for a different purpose. The first split is the training set, which is used
to feed the learning model. In fact, the model learns the patterns only with
respect to the training data. The second split is the validation set, which is
used to evaluate the model performance. The validation set does not serve
as information for the model to learn, as opposed to the previous set, but it
functions as a gauge, measuring how well the model would behave in a real
prediction with unseen data. This split is usually used as a tool to check if the
model is learning (during development) and to avoid over-training (overfitting).
And lastly, there is the test set, which in fact has only unseen data from the
dataset, simulating an exact real scenario. The test set is usually used as a
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final and definitive performance evaluation.

2.1.5
Architecture

The more hidden layers (or nodes) there are in an ANN architecture, the
more complexity is added to the approximated function. However, indiscrimi-
nately increasing the number of hidden layers does not mean that the approx-
imator will have a better performance. Too many hidden layers (or nodes) can
lead to an over-complex model that will learn the patterns necessary to have
a good performance in training data. But it may be too specialized, so much
that it will fall in performance for unseen patterns, i.e. validation and test data.
This behavior is contrary to the main objective of an ANN, generalization, and
it is known as overfitting.

The best ANN architecture for a specific case scenario remains an
unsolved problem in the ML field. In that case, to overcome the overfitting
problem, since the "right" architecture is never known for sure, a training
technique is used to maintain the generalization of the network, the Early-
stopping. Early-stopping has the main objective of stopping the training
whenever the model starts to learn the training set without any improvement
on the validation set. This behavior means that the model has stopped learning
the true data distribution and is memorizing the training set, becoming better
at patterns already seen, but not improving the performance on unseen data
(and actually getting worse). Usually, a patience parameter is set, which
controls after how many epochs (when all training data is passed through
the model) with no improvements the training will stop, while keeping the last
best model.

2.2
Transformers

In recent years, a new ANN paradigm has emerged: the Transformer
[36] architecture. The industry has been taken over by new transformer-based
models, and companies run in an unspoken contest to create the best model.
This recent architecture was originally built to handle Natural Language
Processing (NLP), specifically, a machine translation problem. It achieved
surprising performance and provided a way to quantify the relationships
between words, from input, output, or between both.

This architecture has some core concepts, and the most important can
be considered a technique called Attention [36], which, in a way, learns context
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relationships between elements of input sequence(s), storing it in an "Attention
Matrix". The next sections explain the core concepts used in a Transformer.

2.2.1
Tokens

Considering that the transformer was created to deal with machine
translation (i.e. words), and ML models can not handle words naturally, tokens
are a way to map words/characters/pieces of words to numerical values that
can be used by a machine learning model. There are several tokenization
techniques, and the performance varies depending on many aspects, such as the
model used and language structure. A simple visual representation is shown
in Figure 2.2. As we do not deal with NLP in this thesis, we will refrain from
being more detailed about this specific technique.

Figure 2.2: Tokenization example. Each word is transformed into a numerical
representation. The full sentence is represented by a vector formed by these
values.

2.2.2
Embeddings

While tokens can be considered a "raw" representation of an input,
embeddings are a way to improve this representation, by transforming them
into learnable float vectors, that can allow the model to capture relationships
and similarities about inputs and their contexts. This is true not only for
tokens, but for any input that goes through an embedding process. The
example in Figure 2.3 shows how we can "decompose" information from one
value to a vector with more elements.
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It is important to highlight that this embedding layer is trained together
with the rest of the model modules, aiming to learn the best possible embedding
to maximize performance. In the case of categorical inputs such as token IDs,
it is a table, while for real-valued inputs such as feature values, it is generally
a dense neural layer.

Figure 2.3: Embedding layer. In this example the layer is increasing the
dimension of each token to a learned representation.

2.2.3
Encoder

This structure is a stack of layers, capable of extracting contextual
information, e.g. through self-attention, from the input embeddings. In other
words, this structure learns relationships between the input elements, through
the self-attention mechanism, and builds a representation (usually in a space
with a smaller dimension) that will feed the decoder.

The encoder is not always needed, especially when input data is already
well structured and has no sequential dependency, e.g. tabular data or static
images. On the other hand, there are problems where a decoder-only archi-
tecture is better suited, especially in problems handling input comprehension,
such as text classification and sentiment analysis.

Figure 2.4 shows the structure of the original transformer encoder.

2.2.4
Decoder

The decoder structure aims to generate the actual outputs of the model.
It takes the encoder outputs as inputs alongside its previous outputs, usually
functioning in an auto-regressive way. As mentioned, it can work without
information from the encoder, generating sequential outputs based solely on
current input. It relies on cross-attention between the encoder and decoder (if
the encoder is present), as well as self-attention.



Chapter 2. Background 31

Figure 2.4: Encoder from the original transformer [36]. Inputs are a combina-
tion of embeddings and positional encodings. In each encoder block, a multi-
head attention layer is followed by a feed-forward layer.

2.2.5
Attention

The attention mechanism, introduced in [37, 38], for Recurrent Neural
Networks, was created to overcome limitations with the fixed size context
length, allowing the model to focus on relevant parts of the input.

Later, this mechanism was improved to work with transformers and is
considered the core of this architecture. It creates a form of communication
between inputs, making context relationships, which was crucial for machine
translation, and later found that it is a powerful approach in many other
scenarios. Following is a description of this mechanism.

Initially, each input embedding is multiplied by three trainable matrices
(linear layers in practice), WQ, WK and WV, generating three matrices, the
query Q, the key K, and the value V. These matrices usually have the same
dimensionality as the embedding vectors demb, even though it is not necessary,
and can be thought of as input abstractions, each one having its own role.
The query Q can be understood as a token communication asking for a kind
of information. The key K can be understood as what kind of information
the respective token contains. Whereas the value V can be understood as the
shared information between tokens.

Next, there is a communication between each query with all keys. This
communication is made by the Q and K dot products. In practice, for auto-
regressive cases, only communications with previous tokens are allowed, more
on that later. This generates a matrix with relationships, or affinities, between
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Figure 2.5: Decoder from the original transformer [36]. Similar to the encoder,
the inputs are a combination of embeddings and positional encodings. In each
decoder layer, there is a masked multi-head self-attention layer followed by a
multi-head cross-attention layer and lastly a feed-forward network layer.

queries and keys. To maintain stability, the matrix values are divided by the
square root of the matrices dimension (usually

√
demb). Each row is normalized

through a softmax layer, which reveals how much of that token (key) should
be aggregated in that position (query).

With the resulting matrix in hand, the final step is the product between
this matrix and the value matrix. The outcome is a vector for each input token,
which later goes through a feed-forward layer. The attention mechanism can
be mathematically formulated as

Attention(Q, K, V ) = softmax
(

QKT

√
demb

)
V. (2-7)

This process defines one layer of the attention mechanism. Usually, a
transformer model has many layers stacked (6 in the original paper), each
with trainable parameters WQ, WK and WV. This allows for a more complex
representation of the input, where shallow layers learn to represent simpler
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concepts, e.g. meaning of words, and deeper layers learn to represent more
complex concepts, e.g. expressions and ideas [39]. The described mechanism is
represented in Figure 2.6

Figure 2.6: Visual Representation of the Attention Mechanism, inspired by
[73]. The weights matrices are learned. One can see how Q, K, and V are
related in this visual representation.

2.2.6
Multi-head Attention

In [36], authors use multiple attention heads to process embedding
vectors. This allows context information to be interpreted in different ways,
learning different relationships between input vectors.

To achieve multi-head attention, the same attention mechanism described
above is repeated, in parallel, a number of times. In the original paper, 8
heads are used. With that, not one, but many attention scores from equation
2-7 are created. This allows for different representation spaces in the same
attention layer, each having the freedom to focus on different tokens and
building different context relationships.
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Finally, as each attention head produces a matrix called Z, result of
equation 2-7, they are concatenated and then multiplied by a learnable matrix
W o, with such a dimension that brings the output back to the original shape,
allowing it to serve as the input for the next layer. Figure 2.7 depicts this
process.

Figure 2.7: Multi-headed attention. Each attention head produces a matrix Z.
These matrices are concatenated and multiplied by W o to bring the dimension
back to the original shape.

2.2.7
Masks

Masks are a way to tell the model what in the sequence is supposed to
be ignored. This has mainly two applications. First, it can be used in varying
length inputs, and second to prevent attending to future information in the
attention block.

Considering that a model is not naturally allowed to deal with varying
length inputs, the transformer model achieve this feature by using what is
called a padding mask MP. If an input sequence is smaller than the one
considered by the model, the excessive elements are initially populated with
placeholder values. Inside the attention block, right before a softmax is applied
to the attention matrix (Q · KT ), any key-query combination related to these
placeholder values is replaced with negative infinity, inducing a zero after the
softmax. With that, they are essentially disregarded in attention calculations.
This process is represented in Figure 2.8a.

The second application can be called "look-ahead mask", or triangular
mask. This mask applies sequential limitations during attention, or in other
words, it ensures that queries do not communicate with future keys, maintain-
ing the temporal bounds between tokens. In practice, also before the softmax,
values outside the lower triangular matrix are set to negative infinity so that
after softmax they are disregarded. This masking process is represented in
Figure 2.8b.
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(a) Padding mask

(b) Look-ahead mask

Figure 2.8: How masks are applied in attention mechanism. In (a) the padding
mask is depicted, showing which elements of the attention matrix are used after
the mask is applied. In (b) the look-ahead mask is represented, not allowing
queries to communicate to future keys.

2.3
Reinforcement Learning

Reinforcement learning (RL) is a computational approach to understand-
ing and automating goal-directed learning and decision-making [31]. It is based
on the way animals learn behaviors: by trial and error, reinforcing successful be-
haviors and suppressing unsuccessful ones. The formulation of an RL problem
is deeply attached to the Markov Decision Process (MDP), which is a flex-
ible mathematical framework to model sequential decision-making. As such,
the objective of an RL agent is to solve an MDP problem, using available in-
formation from the environment and deciding which actions to take at each
timestep t, to accomplish a goal, specified in terms of rewards. We will now
briefly introduce these and other key concepts of RL, which are illustrated in
Figure 2.9.

The agent, in an RL framework, is responsible for interacting with the
environment, gathering information, and taking the right actions to achieve the
goal. The agent is the part where learning occurs, which takes place through
the use of experience gathered over time, once it tries different actions and
stores the outcomes, learning the right policy to achieve a goal. The agent
interacts with the environment performing an action. It is what transitions
the agent from one state to another. The actions follow a policy, a set of rules
that determines the decisions (actions) made by the agent in order to achieve
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Figure 2.9: Representation of the interaction between agent and environment.
The agent, which is able to "sense" the current state, interacts with the
environment through an action. The outcome of such interaction is a change
of state and a reward. Figure extracted from [31]

the goal. It is the core of an RL solution, as it controls the behavior of the
agent, aiming to achieve higher rewards over time.

Surrounding the agent is the environment, i.e., everything that the agent
may interact with. It is through the interaction (actions) with the environment
that the agent changes its state, to gather experience and learn the optimal
policy to achieve a goal. The state, can be interpreted as the information
regarding the environment, which the agent is capable of measuring. It is
what the agent senses about the environment. And finally, the reward is a
goal-related numerical feedback given by the environment to the agent, as a
response to an action.

2.3.1
Markov Decision Process (MDP)

The MDP is formulated as a tuple consisting of < S,A, T, R, γ >, where
S is the set of all possible states s ∈ S, A is the set of all possible actions
a ∈ A, T is a transition function T (s, a, s′) → Pr(s′|s, a) that maps a state
and action to a probability distribution of going to next state s′ ∈ S, R

is the reward function defined by R(s, a, s′) = r which defines the reward
signal for each possible transition between states and γ is the discount factor,
that assumes values in the range [0, 1] and is responsible for balancing the
importance between immediate rewards and delayed rewards.

In this research, all MDP setups are considered to have the Markov
Property, which determines that the probability of each possible value of s′

and r depends only on information available on the immediately previous state
s, or in other words, in all timesteps, represented by index t, the state s must
provide all necessary information about agent-environment interaction that is
necessary to select the optimal action. With that in mind, the given definitions
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of reward and transition function should suffice to calculate any outcome from
the MDP dynamics

p(s′, r|s, a) = Pr(st = s′, Rt = r|st−1 = s, at−1 = a). (2-8)
RL algorithms aim to maximize expected discounted reward through

time (also called the return), and there are a few different approaches to doing
so. In this research, the focus is on the maximization of return by leveraging
action-value functions (Q-functions), which is an estimate of how good it is
to be in a specific state and take a specific action. This estimate is calculated
based on the discounted return, which is defined as

Gt =
T∑

k=0
γkrt+k+1, (2-9)

where t represents the current timestep of an episode, k represents the
subsequent timesteps, T is the final timestep, γ is the discount factor and
rt+1 is the reward related to the current state and action.

Let π be the policy of an RL agent. It is defined as the probability of
taking an action a in the current state s, as in

π(a|s) = Pr(a|st = s). (2-10)

In order to achieve the best possible behavior, the RL agent must follow
a policy that is optimal, in other words, a policy that maximizes expected
discounted returns. Let π∗ be the optimal policy, it is defined as

π∗ = arg max
π

Eπ[Gt]. (2-11)

Note that to optimize expected return, the model can not follow only the
optimal policy since the beginning of the training. At first, the policy learned
is not optimal, as the learned value function is not the true one. If the model
always follows a policy that returns the maximum expected return exploiting
the information gathered so far, it is likely to fall in a local minimum. In
order to better estimate the value function, it needs a policy that explores
different actions for all states, gathering more information and consequently
improving the value function estimate. At the same time, always exploring
different actions will not lead the agent to the goal state, and the optimal
policy (the objective of an RL model) will not be followed. This is a well-
known problem in RL known as "the exploration-exploitation dilemma". A
good strategy, usually used, is to mainly follow an exploration policy when
training begins, slowly giving place to an exploitation policy, that always looks
for the actions which maximize expected return.

A widely used approach to balance the two policies is the ε-greedy policy.
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In this policy, an action is chosen randomly according to a probability ε. The
ε-greedy policy follows the rule:

πε(a|s) =

1− ε + ε
|A| if a = arg maxa′ Q(s, a′)

ε
|A| otherwise

(2-12)

where |A| is the number of possible actions in A, and ε is an exploration rate
between 0 and 1. As such, the policy is greedy most of the time, but with
probability ε chooses an exploratory action.

2.3.2
Action-Value Functions (Q)

As mentioned above, the action-value function is an estimate that
measures how good it is to be in a state s ∈ S and take action a ∈ A. In
other words, the action-value function Q measures the expected return of a
tuple (s, a) following policy π, such that

Qπ(s, a) = Eπ[Gt|st = s, at = a]. (2-13)

We can write Equation 2-9 in a recursive form, deriving

Gt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + · · ·

= rt+1 + γ(rt+2 + γrt+3 + γ2rt+4 + · · · )

= rt+1 + γGt+1 (2-14)

and allowing us to rewrite Equation 2-13 into

Qπ(s, a) = Eπ[rt+1 + γGt+1|st = s, at = a]

= Eπ[rt+1 + γQπ(st+1, at+1)]. (2-15)

Equation 2-15 is the Bellman equation for Qπ. It determines that when
following policy π, the Q-value of the current state and action is dependent on
the Q-value of the state and action in the next step, following the same policy,
along with the immediate reward.

As stated before, to solve an RL problem, the agent aims to find a
policy that leads to the highest discounted return possible in an MDP, that
is, finding a policy that maximizes expected return. Let the optimal policy
be called π∗ and the optimal Q-value be Q∗. The optimal policy π∗ leads to
the maximization of return through time, and to achieve that, the actions that
maximize returns must be chosen for the next states. Therefore, from Equation
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2-15, we get the Bellman optimality equation.

Q∗(s, a) = rt+1 + γ max
a′

Eπ[Gt+1|st = s, at = a]

= rt+1 + γ max
a′

Q∗(st+1, a′) (2-16)

In order to deal with an increased state and action space, function
approximators are often used in combination with RL. They are particularly
helpful mainly because the time and memory needed to deal with a big
state space is usually an obstacle for RL algorithms that do not leverage
approximators. The key feature added by the function approximators is the
generalization ability, i.e., when using them, there is no need to encounter all
possible states and actions, because they generalize from similar ones. Many
different function approximation methods can be used with RL to achieve the
mentioned generalization. They can be parametric or non-parametric functions
and generally fall into the supervised learning methods. This type of method
expects to receive a tuple of (input, output), where the input is the available
information and the output is the true value related to the input, aiming
to learn the mapping between them and reproduce it for unseen inputs, as
described in Section 2.1.3.

The outputs mentioned are called "targets" in an RL scenario, being an
updated estimate of the Q-value. During training, these Q-value estimates
need to be improved as the agent experience increases, thus they are updated
frequently. This update is based on Equation 2-16, and for parametric function
approximations, the update rule depends on the function parameters θ:

Y QL
t = rt+1 + γ max

a′
Q(st+1, a′; θ) (2-17)

This is the target used in Q-learning, when using function approximation
[31]. In this setup, the function approximator estimates the Q-values for the
next state and action Q(st+1, a′; θ), according to the current parameters θ. The
approximator is then trained, either after each timestep or based on a memory
of experiences (batch learning), by the loss function, which in many cases is
the mean squared error between the current estimate and the expected output
(the target in that case), as in

L(θ) =
(
Q(st, at; θ)− Y QL

t

)2
, (2-18)

where L is the loss function and Y QL
t is the Q-learning target value.
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2.3.3
Deep Q-Network (DQN)

One of the biggest RL breakthroughs in recent years is the use of Artificial
Neural Networks for approximating the Q function. In the work of Mnih et al.
[32, 33], not only an ANN was used as a function approximator, but also as
a feature extractor for raw images. This approach was derived from standard
Q-learning.

A few additions to the original Q-learning were developed besides the
usage of an ANN. One of those additions is the experience replay (D). It
works as a memory for all transitions happening during the episodes, at each
timestep, storing the agent’s experience as a tuple (st, at, st+1, rt+1). When
training the ANN, usually after each timestep, a group of tuples extracted
from D is randomly selected. Then this group, called mini-batch, is used to
carry out training steps.

Besides the use of experience replay, Mnih et al. also applied a target
network. In order to calculate the Q-learning target update in a setup using
a parameterized function approximator (such as an ANN), the parameters
of such approximator are also used to estimate the Q-values, i.e. the Q-
value targets used to train the approximator, and the Q-values estimates
are dependent on the same approximator parameters. This is problematic,
as it makes both the targets and the estimated Q-values highly correlated,
leading to instability and divergence. The target network aims to address that
problem, being a delayed copy of the Q-network (the learning agent). After
a defined number of updates, the weights from Q-network are copied to the
target network. While calculating the target value, instead of using the original
network to estimate Q-values, as in Eq. 2-17, it uses the target network to make
those estimates:

Y DQN
t = rt+1 + γ max

a′
Q(st+1, a′; θ−), (2-19)

where θ and θ− are respectively the original Q-network and target network
parameters, and Y DQN

t is the DQN target value.
In practice, the action is not an input to the network. Instead, the network

outputs one Q value per action. Y DQN
t only defines the target value for the taken

action at, but for training we need a target vector yt, with the same dimension
as set A, indicated by the index i. This vector is constructed by keeping the
values of all other actions constant, such that

yDQN
t,i =

Y DQN
t if ai = at

Q(st, ai; θ) otherwise
. (2-20)
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2.3.4
Double DQN (DDQN)

As shown in [34], the DQN algorithm suffers from maximization bias,
which is an overestimation of the Q-values. This happens because Q-values are
estimates. As such, their true values are initially unknown and inaccuracies
are necessarily going to happen during learning. These inaccuracies lead to
overestimation due to the max operator in the target update equation 2-19.
This leads to destabilization in training.

To overcome that problem, in [34], the authors continued using the target
network from the DQN algorithm to estimate the Q-values, although the
chosen action was changed to the one that maximizes the original Q-network
output, as in

Y DDQN
t = rt+1 + γQ

(
st+1, arg max

a′
Q(st+1, a′; θ); θ−

)
. (2-21)

2.3.5
Dueling DQN

One more improvement made in Deep Reinforcement Learning was
developed by [35]. In this approach, a different network architecture was
created in order to address both state value V (s) and action advantages
Q(s, a)− V (s). The state value and the advantage values are decoupled inside
the network architecture, but aggregated in the end, with final outputs the
same as in DQN. When separating the two estimates, the model can learn
which states are valuable regardless of how actions will affect them.

With that, the changes between the conventional DQN (or DDQN) and
the dueling architecture were minimal, and no adaptation between them is
needed, besides a change in the network architecture.

Figure 2.10: The architecture representation of a common DQN (top) and the
Dueling DQN (bottom). Figure extracted from [35]

Figure 2.10 shows the dueling architecture. The network is divided into
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two streams, one leading to a single value, the state value, and the other leading
to a vector, the advantage values (one for each action). They are merged to
output the Q-values, according to the network parameter θ, such that

Q(s, a; θ) = V (s; θ) +
(

A(s, a; θ)− 1
|A|

∑
a′

A(s, a′; θ)
)

. (2-22)

In Equation 2-22, the advantage function A(s, a) follows the definitions

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2-23)

and
Vπ(s) = Ea∼π[Qπ(s, a)] (2-24)

from [35].
As such, it is possible for the model to learn separately the value of a

state and the advantage of choosing each action. This setup makes it possible
for the model to learn the relation between each action advantage and the
average advantage value. This is especially helpful in scenarios where the
actions might not always affect the environment, and states by themselves have
more meaningful information. In [35], the authors showed that the dueling
architecture improved convergence time and performance compared to the
standard DQN.

2.4
Datasets

In order to assess the viability and performances of proposed methods in
this work, a group of tabular datasets is used to conduct experiments. In total,
six datasets were used. One is a synthetic dataset, while others are datasets
with real-world data.

Four of them are extracted from [40], they are: "Pen Digits" [41] ,"Wine"
[42], "Miniboone" [43], and "Beans" [44]. The "Healthrisk" dataset is extracted
from [45], and preprocessed to have classes that relates the body and birth
ages. All datasets are suited for a classification problem since all targets are
composed of categories. The "Miniboone" and "Wine" datasets were present in
related works [13, 14], hence they were chosen. Other datasets were searched
with the objective of different amounts of classes and samples while having only
continuous features. Moreover, datasets do not have missing features originally,
and a preprocessing step was carried out in all datasets, normalizing features
in the range [0, 1]. The datasets detailed characteristics can be seen in table
2.1
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Table 2.1: Datasets Characteristics

Features Classes Samples
Synthetic 2 2 20000
Wine 13 3 178
Miniboone 50 2 130065
Healthrisk 15 3 702
Pen Digits 16 10 10992
Beans 16 7 13611



3
Deep Reinforcement Learning with embedded supervised
learning for Classification with Costly Features

In this chapter, a Deep Reinforcement Learning (DRL) approach is
proposed, aiming to deal with CwCF problems. Later, a baseline is defined,
along with experiments for comparison between models.

As noted in Chapter 1, the original motivation stemmed from the ever-
increasing costs associated with healthcare. Consider a scenario in which
a patient undergoes multiple medical examinations for a diagnosis. While
conducting numerous tests can provide a comprehensive view of the situation,
it may not always be the most cost-effective approach. To address this, a
decision support algorithm could be implemented to optimize the sequence
of information gathered for diagnosing a disease. Notably, this concept of
optimizing the sequence of measured features for classification extends beyond
healthcare. For instance, sensor systems with memory limitations could benefit
from a similar approach, processing only the necessary information to complete
a task. As well as real time applications can benefit from this paradigm,
acquiring only enough information for a task.

3.1
Related Work

Today, most state-of-the-art RL algorithms [74, 75] leverage the power of
function approximators, especially neural networks, to obtain the best results
and improve representations, as mentioned in the previous chapter. The models
that rely on both Reinforcement Learning and Neural Networks are known as
Deep Reinforcement Learning (DRL) methods.

Usually, DRL algorithms are not used to learn classification patterns.
That is due to the fact that they require far more training time than other
machine learning methods, such as statistical learning, ANN’s, tree-based
methods and others. Another reason is that DRL algorithms are suited for
sequential problem solving, as they are built on top of MDP’s, therefore a
classification problem should be modeled as such before a DRL algorithm
could be used.

Although not usually used directly for classification, due to the sequential
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nature of the method, DRL is suited for different kinds of tasks involving
classification, like active learning [76] and feature selection [77]. Nevertheless,
related work has explored the idea of using DRL methods to serve both as a
classifier and for sequential feature acquisition.

In this approach, called here DRL multi-step classification, the agent can
choose which feature to read, and at some point decide to which class the
data belongs. In other words, the actions may serve for acquiring information
sequentially and for classification, terminating the task.

3.1.1
DRL Multi-step Classification

In this approach, each episode comprises a data instance. As mentioned,
the actions serve to choose which information to retrieve and also to classify
the data retrieved so far. Usually, in this kind of problem, the main objective
is two-fold: increase classification performance, while constraining the use of
resources. So besides the usual classification error minimization, the algorithm
also aims to use the least amount of possible scarce resources (e.g. features,
time, money, etc), minimizing cost and therefore learning to trade-off between
these two objectives. In this scenario usually, each feature has an intrinsic
cost based on the scarce resource considered, which impacts how the model
prioritizes each of them.

An approach to that problem was implemented by [46], where the
authors introduced the modeling of a classification problem as an MDP, with
a sequential feature acquisition, aiming to minimize classification error as well
as the number of features used. In this work, the states were defined by a
tuple containing two n-dimensional vectors (x, z), where x is drawn from
X ∈ RN and represents the input vector being classified, and z is drawn
from Z = {0; 1}N representing the selected features in the first vector. The
values in x are xn, with 1 < n < N and in z the values are zn = 1 for
selected features and zn = 0 otherwise. As for the actions, the set of possible
actions in state (x, z) is denoted by A(x, z) and they are divided into two sets:
Af = {f1, f2, . . . , fN} and Ay = Y , the first representing the actions that would
select a feature to be used, such that a = fn corresponds to choosing feature n

and the latter corresponding to assigning a label to the current data instance,
terminating the episode.

Another work [47] was published in the same year which also modeled
the classification problem as an MDP, but with different characteristics. In this
work, the objective was to investigate how the proposed RL algorithm would
perform in a classification task. The MDP states are formed by a vector three
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times the size of the input, i.e. given that x is a data instance from a dataset,
with length N , and each element of x is represented by xn. The state is a
vector composed of three equal parts, called ’buckets’, with total length 3N .
The first bucket, B1, is a copy of x, the second, ’attend’ bucket B2, is initially
composed of zeros and the third, ’ignore’ bucket B3, is initially also a copy of x.
The actions comprise either setting an element from B2 such that B2n = xn,
or setting an element from B3 such that B3n = 0. The idea is to have an
agent for each class, which would return a positive reward if the class is the
one represented by it and a negative reward otherwise, based on the learned
augmented representation. The authors used an extension of the Actor-Critic
Learning Automaton (ACLA)[48] algorithm, using neural networks.

More recently a DRL algorithm for Classification with Costly Features
(CwCF) was developed in [13] and extended in [14]. The CwCF arises when,
to classify a data instance, each feature used incurs an intrinsic cost. The
objective of the first work was to provide a flexible framework to classify data
instances in a dynamic way, choosing features based on acquired values, while
minimizing classification error and the cost necessary to classify. To achieve
that, the authors modeled the classification problem as in [46], modifying the
reward function to accept a different cost for each feature. For the actions, the
authors maintained the modeling of the same research, with actions that choose
a feature to "measure", Af , or actions representing the classifications, Ay. Also,
the DQN algorithm was used, leveraging the recent improvements over DRL
methods, such as experience replay, Double DQN, and Dueling architecture,
which provided a robust algorithm for budget-constraint classification during
the test phase. They also implemented an action that used a pre-trained ’high-
performance classifier’ (HPC) as a terminating step for data instances that
were considered more difficult by the DRL algorithm. In [14], the authors
improved on top of the previous proposes, adding the option to set a specific
average budget (as opposed to the previous indirect average budget) or a ’hard
budget’, in which the agent was not allowed to exceed the specified budget for
features used.

Another RL approach to deal with the CwCF problem is implemented
in [78]. In this work, authors leverage the Opportunistic Learning paradigm,
using a DQN model as a learning agent. The problem is modelled similarly to
other cited approaches in terms of states and actions. Differently, it bases its
prediction probabilities on Monte Carlo Dropout, deriving what authors called
prediction uncertainty to assess the impact of feature acquisition.

Learning happens in an online fashion, and two networks are imple-
mented, one for prediction, other for estimating action values. The first, as
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the name suggest, is responsible for making predictions, based on the predic-
tion uncertainties. The latter is responsible for estimating the values of each
feature being acquired. The representations learned from the prediction net-
work are shared with the value network, more specifically, outputs of each
layer in the prediction network serve as input for the adjacent layer in value
network. Three datasets were used as benchmarks, and results showed good
performance compared with the baselines proposed.

Lastly, in [79], the author propose a similar MDP modelling of the
problem, with a cost-sensitive loss function, composed of a budget and a loss
function. The loss provides the model with a hard-budget constraint, and can
be cost-sensitive, i.e. answers with final lower budget are more valuable than
the opposite, this is achieved by considering the information gain provided by
the feature acquisition related to the added cost. In this approach, states store
features, respective values and total costs, and actions can only be features. The
classifier, a logistic regression, is trained in an interleaved step with the policy.
This is done because the policy training depends on the classifier entropy, while
the classifier depends on the distribution over states induced by the policy.

Differently from the mentioned work, the proposed approach applies
training strategies that effectively utilize available information about the data
during training, for instance, updating all actions per training step, exploring
a specific set of actions, and limiting actions that clearly do not provide any
benefit for the objective.

3.2
MDP model

The use of RL for sequential problems can be considered one of the
natural choices because RL algorithms are naturally suited for this kind
of problem. In recent decades, DRL has been extremely fruitful, achieving
state-of-the-art performance in different applications [75, 74]. Following that,
this thesis proposes a DRL method to solve the stated problem, sequentially
gathering information with costs and ultimately classifying a data instance
with as little information as possible, for different tabular data sets.

A problem should be first modeled as an MDP to be suited for a DRL
approach. Given that the available information, in many cases, comes in the
form of tabular data sets, in this work the MDP was modeled for this kind of
data. The proposed formalization for the MDP is presented next.

Let X ∈ RN be the input vector distribution with dimension N to be
classified, and Y ∈ [1, C] be the class distribution related to X , comprising
C possible different classes. The tuple (x, y) drawn from (X ,Y) comprises
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the environment of each episode for the agent. The states are defined as set
S ∈ RN , where the initial state is always denoted by s = {−1}N , representing
the unread data features, since data is normalized in the range [0, 1]. When
a feature is read, it receives the corresponding value of the input vector, such
that sn = xn, with n ≤ N representing the vector dimension. As for the
actions, they are represented by the set A = Am ∪ Ay, where Am is the set
of measurement actions and Ay is the set of classification actions. Differently
from [46], states are represented by a single vector with a placeholder value
being used for unmeasured features.

Measurement actions am ∈ Am are responsible for updates in states and
represent information being acquired. They are defined in such a way that
Am = {f1, f2, . . . , fN}, where each possible measurement action is attached to
a feature value, causing the agent to read it, and update the corresponding
dimension in the state vector with the same value of the feature read. On
the other hand, classification actions ay ∈ Ay are the ones that actually set
the data instance as belonging to one of the C classes in the data set. Each
classification action, defined as Ay = {c1, c2, . . . , cC}, is attached to one class
in the data set. They terminate the episode since the agent’s objective is to
classify the data correctly, serving as the last step of the episode. To implement
that, the full action vector is comprised of both sets Am and Ay, reaching a
total size of N + C possible actions, where actions in the first N elements are
measuring actions, and actions in the [N + 1, N + C] range are classification
actions. Figure 3.1 visually describes the action vector.

f1 f2 fN c1 cC

Am Ay

Figure 3.1: Visual description of the action vector. In each timestep, only one
element can be chosen. measurement actions are represented by f, indicating
the next information to be measured. Classification actions are represented by
c, indicating the data instance label, predicted by the model.

The transitions can be formalized as

st+1,n =

xn , if at = fn
st,n , otherwise

. (3-1)
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where the classification actions lead to the terminal absorbing state, and t is
the current timestep.

As mentioned before, in the CwCF problem each feature has an intrinsic
cost. In this setup, the agent is free to ’measure’ any of the available features in
the data or classify them with the available information gathered so far. Each
measuring step returns a cost, or negative reward, to the agent, relative to the
chosen feature, whereas classification actions receive a high negative reward
if the class was chosen wrong or a symmetric positive reward if the class was
chosen correctly. For instance, in a healthcare scenario, these rewards might
depend on the disease itself, and many other factors. It even may be necessary
to have higher costs for wrong classifications if the disease is very aggressive,
i.e. there could be more nuances to the rewards in order to depict better the
problem at hand.

Without a lack of generality, the costs of all features are fixed with the
same value cn = −3, and the reward for right and wrong classifications are also
fixed, at 100 and−100, respectively. Note that in a real-world context, the costs
associated with features are inherent to the features themselves rather than
arbitrarily assigned. Higher costs for a feature may discourage the model from
selecting it, as this could lead to a lower final reward. However, during training,
that same feature might prove to be crucial for classification, potentially being
favored over others despite its higher cost.

It is also important to note that the change for different individual costs
would not bring any new perspective on how the proposed algorithm works,
as the process would be maintained, only considering the new costs. Due
to simplicity and increased ease of understanding, fixed costs were the ones
implemented. Following that, the reward function is defined as

R(s, a) =


−cn , if a ∈ Am

100 , if a ∈ Ay ∧ a = y

−100 , otherwise

. (3-2)

The fixed values are somewhat arbitrary, but note that they are scale-
invariant. As such, an implementation where the classification rewards are
unit-sized but the feature costs are set to cn = 0.03 would have the same
effect. However, it is very important to notice how delicate and subjective the
costs for features and for classification could be, depending on a variety of
factors. For instance, it is very straightforward to set a cost for features if it
is representing time or money. A different scenario arises if the classification
costs are supposed to reflect the patient’s well-being.

Another important point about the proposed setup is that all the
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environments achieve the Markov Property, that is, the next state only depends
on the previous one (current): st+1 = f(st, at). The distribution from which the
states are drawn is static, being, in the first step, the distribution of sn taken
randomly from {xn|x ∈ X} if a1 = fn. For subsequent steps, the distributions
are conditioned on the features which have already been measured. From
the agent’s point of view, there is no difference between choosing xn at the
beginning of the episode, and drawing the new measurement from all samples
that are consistent with the already measured features.

3.3
Implementation

To optimize the described MDP, the Dueling DDQN (DDDQN) was used.
This implements all RL-related improvements covered in the previous chapter.
As for the architecture, following [33], the neural networks are implemented
with two hidden layers with 400 and 300 nodes respectively. The output layer
is set according to the number of features and classes for each dataset, in such
a way that the number of output nodes is N + C, the same as the number of
possible actions. The Mean Squared Error (MSE) loss function was used, the
hyperparameters mainly followed [33] and were manually tuned, leading to a
learning rate ranged from 0.005 to 5e− 7 in an exponential decay, respectively
from the beginning to the end of training, and Adam [30] was the optimizer
algorithm used.

In this implementation, the targets follow Equation 2-21 for non-terminal
states, and as there are no future rewards to discount for, in terminal states
only the reward remains. Let y be the DDQN target vector and yi its elements.
The actions corresponding to a certain element yi of the feature vector are given
by

ai =

fi ∈ Am, if i ≤ N

ci−N ∈ Ay, otherwise
.

The target vector then becomes

yt,i ←


Y DDQN

t , if at = ai ∈ Am

R(st, at), if at = ai ∈ Ay

Q(st, ai), otherwise

(3-3)

As the exploratory policy, the ϵ-greedy exploration schedule was chosen.
It follows Equation 2-12, and was implemented with an exponential decay on
ϵ, depending on how many training episodes the model will train for, in such
a way that, once the algorithm reaches half the maximum number of episodes,
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the exploration is fixed to a low level of ϵ = 0.1, i.e. exploiting the best policy
so far 90% of the time and exploring 10%.

3.4
Embedded Supervised Learning

Considering a complete tabular data set, with no missing values, all
information about a data instance is available from the beginning of the
episode. Usually, with such information, supervised learning models are more
suited for classification. However, if one is trying to use the least amount of
information possible to achieve good accuracy in classification, these methods
are often designed to use all features at once. Another workaround could be
to use feature-selection methods to limit the usage of features with a low
impact on performance. This usually is a good way to handle this limitation.
However, this is a global measure; specific data instances might be harder
to classify, requiring more information (features) than the ones chosen after
feature selection, or easier, requiring less information.

Using Reinforcement Learning in such a scenario has the benefit of
treating each instance differently, acquiring more or less information as needed.
A trivial approach would be to model the MDP as stated in the previous
subsection and train the agent to solve it. However, that would disregard the
fact that the labels are already available since the beginning of the episode.

To leverage the already-known information about the data class, a new
approach is implemented in this version of DDDQN. Similar to supervised
learning, in all episode steps, the target estimates related to classification
actions, yi for i > N , are updated. For these actions, as they lead to a terminal
state, Q(s′, ·) = 0 and only the reward needs to be considered for the updates,
following Equation 2-21. The target update yt,i ← R(st, ay) is carried out for all
classification actions, together with the update for the measuring action chosen
in the current step. The idea is that this new approach helps the DDDQN
algorithm to learn not only the best features (in a dynamic fashion) based
on the values measured so far, but also to learn the right classification for all
possible states. Doing so guarantees that all Q-values for classification actions
are updated based on all visited states. This is possible because, as the input
comes from a fixed data set, all information regarding the sample is already
known, similar to supervised learning, but still benefiting from the sequential
nature of reinforcement learning. In other words, in every timestep during
training, the Q-values for the classification actions are going to be updated,
following
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yt,i ←


Y DDQN

t , if ai ∈ Am = at

R(st, ai), if ai ∈ Ay

Q(st, ai), otherwise

. (3-4)

Normally it would be impossible to update the value of actions different
from the chosen action at. In our case, the immediate reward for all classifica-
tion actions can be calculated, as the class of the instance used for the current
episode is known. As classification is also a terminal absorbing state, no further
information about the transition or reward functions is necessary.

With that approach, the DRL agent is free to learn the best policy for
measurement actions, as usual, benefiting from the exploratory policy, while
learning the state labels in every episode. The difference between a usual RL
algorithm applied to the case of CwCF and the proposed implementation is
shown in Figure 3.2. We can see how, for a normal DRL algorithm, only the Q-
value corresponding to the chosen action is updated. Opposed, in the proposed
DDDQN, the Q-values related to classification actions are updated along with
the Q-value corresponding to the chosen measurement action.
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Figure 3.2: Differences between a usual DDDQN implementation (left) and the
proposed method (right). Note that in the proposed one, besides the Q-value
related to the chosen action, the Q-values related to classification actions are
also updated. This happens in all steps during training.

3.4.1
All-action updates

As discussed, in a conventional MDP setup only one Q-value can be
updated, as the only future state known is the one returned from the environ-
ment, given an action. Again, in our scenario, as all information about the data
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is known, the transition function is trivial given the setup. Hence, the future
states st+1, needed for the target updates, can be calculated at any timestep.

With that in mind, the "all-action updates" version is implemented,
leveraging the already known information to apply Q-value updates for all
available actions at every learning step. This leads to a more computationally
complex but sample-efficient training. After experiments, this achieved better
results, and is considered the main approach in this chapter.

Along with that, one can argue that this approach decreases the impact
of the exploration/exploitation paradigm over the training. This is probably
true, since the model no longer relies only on the policy used to update Q-
values. That said, the policy schedule is still important to build a diverse
set of transitions at the beginning of the training, while focusing on what is
working best at the end. Notably the states being visited are still determined
by the policy, even though the updated values are not. Figure 3.3 exemplifies
the "all-action updates" approach.
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Figure 3.3: Differences between a usual DDDQN implementation (left) and
the "all-actions updates" method (right). With this approach, all Q-values are
updated, not only the ones related to chosen actions and classification actions.

3.5
Training

During training, different hyperparameter values and setups were tested
to achieve good performance and speed up learning for all datasets. The
objective is to use the same parameters throughout all dataset experiments,
showcasing how DRL algorithms are flexible and robust for different datasets.
Manual tuning was applied on, with initial hyperparameters values based on
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the original DQN. The same manual tuning strategy was applied to the baseline
method, to maintain a fair comparison between models.

The target network update interval, for instance, was set to 1500 episodes
for all datasets. This was chosen after some empirical tests and carried out for
all experiments. Also, three network training steps are done after each episode
is finished, again for all datasets.

Some modification to the regular RL training procedure were also im-
plemented as part of the experiments, aiming to improve final performance,
both for accuracy and accumulated return. These implementation options are
described next.

3.5.1
Training Options

Probably the most important implementation in training was the option
to limit actions to the ones that have not yet been chosen in the current
episode. In this setup, the agent is not allowed to acquire a feature already
measured. Once the feature is measured in the current episode, it becomes
unavailable to the agent. This is not usually seen in RL/DRL applications but
has been increasingly used, such as in [49, 50], recent DRL breakthroughs for
game play. This helps as measuring the same feature would lead the agent to
the same state it currently is while not gathering any new information from
it. It is always a sub-optimal action. Experiment performances improved when
this option was used. In Figure 3.4 we can see an example of an episode, where,
after taking an action, it is not possible anymore for the agent to repeat said
action. Also, in each timestep since the beginning of the episode, there is the
option for the agent to classify the data, terminating the episode, however,
usually, it must measure some features before the classification in order to
have an increased chance of success.

Another implementation was used regarding actions. In this one, the
agent is not allowed to take any classification action ay during exploration
based on the ϵ-greedy strategy. As the classification actions are always
’clamped’ during training, i.e. they are updated in every timestep, there is
no need for them to be explored. To take those actions during exploration
would mean a wasted update for a timestep. Implementing that limitation
leads to a more efficient exploration of the state space, forcing the agent to go
through as many different states as possible. On the other hand, for exploita-
tion, classification actions are allowed. As they terminate the episode, it allows
the agent to stop accumulating negative rewards by reading other features, i.e.
classifying in advance, once enough information is accumulated and the best
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Figure 3.4: Visual representation of states changing according to the chosen
action. The last action, a classification action, leads to the terminal absorbing
state.

action is the classification one.
For comparison, a second exploration schedule was implemented. The

softmax exploration was tested in different experiments. Using it led to slightly
better performance for two datasets, but worse performance on others. To
ensure that all datasets had the same setup, the ϵ-greedy method was applied
to all of them.

3.6
Experiments

In this section, the details regarding the setup for each experiment will be
covered, along with the baseline and proposed DDDQN agent performances.

Each experiment on a dataset comprises forty different runs, with differ-
ent training, validation, and test splits. The number of episodes used is related
to the dataset size. For all but one dataset, the amount of training episodes
used is 30k. The biggest dataset "Miniboone", required more episodes to find
a representative policy (convergence), therefore 200k training episodes were
used. Due to this increased amount of training episodes, the exploration decay
and learning rate were changed accordingly.

The performances shown in this chapter are the average of the mentioned
runs. It is also important to note that, for all experiments, the cost of all
features is set to a fixed value of cn = −3. This value will ultimately influence
how many features the algorithms may choose for the classification, affecting
both the proposed method and the baselines in a similar way. It is important
to clarify that the fixed cost is an example cost, and should not matter for
comparison between models. In a real scenario, these values should reflect the
actual considered cost for each specific information retrieval.



Chapter 3. Deep Reinforcement Learning with embedded supervised learning
for Classification with Costly Features 56

All experiments conducted for this thesis were performed on a Linux
platform with the following specifications: Intel(R) Xeon(R) CPU E5-2630 v4
@ 2.20GHz, 256GB RAM, and a GTX 1080 TI. The programming language
used was Python 3.7.9. TensorFlow 2.3.0 was employed for the experiments in
Chapter 3, while PyTorch 1.12.0 was utilized for the experiments in Chapters 4
and 5.

3.6.1
Baseline

To provide some comparable results and assess the proposed method’s
performance, a baseline method was developed. The method is composed of
Recursive Feature Elimination (RFE) [51] as its feature-selection algorithm
with both Logistic Regression and Linear Discriminant Analysis (LDA) as the
related classifiers. To ultimately classify the data, an ANN was used.

RFE [51] is a feature-selection wrapper method. As the name suggests,
it wraps around the learning algorithm, using the prediction performance
as an evaluation criterion. This method aims to, recursively, select smaller
feature sets based on each feature’s importance, which is derived from the
learning algorithm (a classifier in this approach). First, the classifier is fit to
the training data, using all features. Then, based on the classifier performance,
RFE eliminates the least important feature. These steps are repeated until the
determined number of features remains. Note that, during the process, RFE
naturally ranks the features, so, if one sets RFE to keep only one feature, it
would return the importance of all features.

Logistic Regression [52] is a well-known classification algorithm that uses
statistical learning, leveraging the logistic function, to predict a class for a set
of continuous features. It is primarily used for binary cases, but can be used
for multi-class problems as well. The LDA classifier[52] is yet another very
known statistical learning method, which leverages prior knowledge of the class
probability distribution to allocate data to a class.

The baseline method is implemented in two steps: feature selection and
classification. In the first step, as mentioned, the RFE method is used. It wraps
around two classification methods, the Logistic Regression and the LDA. The
two feature importance ranks are extracted and used in the next step. Now,
with both ranks in hand, the ANN classifier comes in place. In fact, for each
ranking, a different ANN model is trained, from all to one feature. During
training, the validation datasets are used to apply early stopping. Lastly, the
models that achieved the highest performance on validation data per number
of features are evaluated on the test set. Therefore, after training, there is one
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model saved per number of features.
The performance metric used to compare the baseline method and the

proposed DDDQN implementation had to be custom-made, as the problem’s
main objective is not only to achieve good accuracy but also to achieve low
cost, which can be more simply understood as high returns. Consequently, the
accuracy alone would not be appropriate to be used for comparison between
the baseline and the DDDQN agent. To address that, an equivalent reward
function was defined, following

E(F, acc) = −c ∗ F + acc ∗ 100− (1− acc) ∗ 100, (3-5)

where E is the equivalent reward, F is the number of features used, acc is
the model accuracy and c is the fixed cost for all features. Note that, if one
intends to implement different costs for different features, trivially, it is only
needed to change the first factor −c ∗F to ∑F

f=1−cf . This equation translates
the performance for the baseline method to the corresponding value returned
from the DDDQN agent, accounting for accuracy and the costs of each feature
used.

The architecture used for the ANN classifier is the same as used in the
DRL agent, with two hidden layers with 400 and 300 nodes, respectively. The
difference is only in the output layer, which has only C instead of N +C nodes
and the loss used is the Categorical Cross Entropy. The full algorithm can be
seen in Algorithm 1.

3.7
Results

In this section, a deeper look at the proposed method is made using a
synthetic dataset. Then, the results of subsequent experiments are shown for
the validation data. Lastly, the test set results are given. All results shown in
this section are regarded as the "all-action updates" version of the model.

It is important to note that, for the baseline model, the performance
presented is the one that achieves the highest return on the validation dataset,
considering all possible numbers of features based on RFE. This ensures that
the chosen baseline represents the optimal trade-off between the number of
features used and the resulting model performance. By selecting this optimal
point, we can ensure that the baseline reflects the best achievable performance
for the given dataset.
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Algorithm 1 NN baseline classifier algorithm
Input: dataset D = {(x0, y0), (x1, y1), ..., (xK , yK)}
Split D into training, validation and test sets
Execute Logistic Regression ranking with RFE
Execute LDA ranking with RFE
for i=1 to F do

Randomly Initialize parameters θ
Train NN with i features (following Logistic Regression ranking).
Save performance on validation set
Save model

end for
for i=1 to F do

Randomly Initialize parameters θ
Train NN with i features (following LDA ranking).
Save performance on validation set
Save model

end for
for i=1 to F do

Choose best model for i used based on validation set
Save test performance

end for

3.7.1
Verification

To verify that the proposed method works as expected, a synthetic
dataset was created to serve as a proof of concept. It has two features and
two classes, each of which is generated by a normal distribution with different
covariance matrices, graphically shown in Figure.3.5.

The data set was constructed such that, depending on the value of
the first measurement, a second measurement is either necessary or not. For
example, if feature 0 is measured first, and the value is above 30, we can be
sure that the class is 1. However, if it is around 20, we need to measure the
feature 1 to know the class for sure.

Figure 3.6 shows the trained DRL agent policy, in different states of the
dataset. The x-axis represents feature 0, and the y-axis represents feature 1.
The left column represents states where feature zero is not yet measured, and
similarly, the bottom row represents states with feature one not yet measured.
Through the graph, it is clear how the DRL agent behaves in different states.
Even with less information (i.e. only one feature measured), depending on the
value already measured, the agent already classifies. This shows that the agent
reads only enough features to get a high ’confidence’ (i.e. high Q-value) for
classification actions. Note that this might hurt accuracy at some level while
improving the cost for each classification.
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Figure 3.5: Visual representation of the Synthetic dataset, composed of two
features and two classes. The x-axis represents feature 0, and the y-axis
represents feature 1.
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Figure 3.6: DRL policy on ’Synthetic’ dataset. Actions M0 and M1 are
measurement actions for the respective features. C0 and C1 are classification
actions for the respective classes. In regions with mixed classes, the model
chooses to measure another feature, while in regions with one majority class,
the model classifies early.
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Figure 3.7 shows the maximum Q-value achieved by the agent. We can
interpret this graph as regions of more or less ’confidence’ regarding what the
agent thinks it is supposed to do. It is clear that a ’less confident’ region arises
between both classes, behaving like a decision boundary.
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Figure 3.7: Agent maximum values of Q. This can be interpreted as the model’s
"confidence". Note how there is a region of "low confidence" exactly between
the two classes distribution.

3.7.2
Learning curves

In Figure 3.8, the accumulated return plots for all six experiments are
shown. In these graphs, the x-axis represents all validation set performances
through the training time, while the y-axis represents the mean cumulative
return. The proposed method had a clear better performance in four datasets,
while achieving a similar performance in two. Moreover, the DDDQN agent
holds a flexible and dynamic way to classify data instances, gathering more
information only as needed, and classifying ’on the fly’.

Synthetic dataset

The performance of the proposed method on the synthetic data set
introduced in Section 3.7.1 is given in Figure 3.8a. The DDDQN agent
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(a) Average cumulative returns on Syn-
thetic dataset
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(b) Average cumulative returns on
’Wine’ dataset
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(c) Average cumulative returns on
’Healthrisk’ dataset
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(d) Average cumulative returns on
’Miniboone’ dataset
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(e) Average cumulative returns on ’Pen
Digits’ dataset
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(f) Average cumulative returns on
’Beans’ dataset

Figure 3.8: Performances on validation data
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outperforms the baseline in average return. For accuracy, the baseline performs
better by a small amount (see also Section 3.7.3).

Wine dataset

In this dataset, the performances were comparable between the baseline
and the DDDQN agent. In Figure 3.8b we can see how average returns in
the validation set are very similar between the proposed method and the
baseline. The wider overlapping confidence interval shows that the outcome
is less stable. In this data, as both accumulated return and accuracy have very
close performance, with overlapping confidence intervals for the baseline and
the DDDQN agent, it can be considered a tie.

Healthrisk dataset

As for the Healthrisk dataset, again, both methods have similar perfor-
mance for accumulated returns and accuracy. In Figure 3.8c it can be seen the
returns performances. For accuracy, both models achieved similar results, and
the confidence intervals are, as in the previous experiment, overlapping.

Miniboone dataset

In this dataset, the proposed model achieved a better performance in
accumulated return, while the baseline achieved better results accuracy-wise.
The return plot during training can be seen in Figure 3.8d. Due to the
bigger number of samples, confidence intervals were small and not overlapping,
indicating a better statistical result.

The original proposed model (without the "all-action updates") per-
formed poorly against the baseline in this setup, and since it is a dataset
with more features, it is likely that the model took advantage of the more
frequent updates.

Pen Digits dataset

The DRL agent performed considerably better than the baseline in this
experiment, both for accuracy and accumulated return, as shown in Figure
3.8e. We hypothesize that this particular dataset has some characteristic that
is suited for the sequential acquisition of features, achieving better performance
than the others.
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Beans dataset

Likewise the previous experiment, the proposed method also achieved
better performance both for accuracy and accumulated return. Results are
shown in Figure 3.8f.

3.7.3
Performances on test data

The performances on test data are showed in Tables 3.1 and 3.2. It
can be seen that regarding the returns, the proposed method clearly outper-
forms the baseline in four datasets (’Synthetic’, ’Miniboone’, Pen Digits’ and
’Beans’). For the other two, the returns performances are very similar, with
confidence intervals overlapping (’Wine’ and ’Healthrisk’). Regarding accuracy,
as expected, the DDDQN agent performance is slightly below the baseline
in five datasets, sometimes with overlapping confidence intervals (’Wine’ and
’Healthrisk’), and better in ’Beans’ data.

Even with such close comparison, note that the proposed algorithm
has the advantage of dynamically choosing features, classifying ’on the fly’
and therefore adding more flexibility to the model. Moreover, for most data
instances, the proposed method already classifies after one or two feature
measurements, while the baseline always needs all chosen features after feature-
selection is carried out. Lastly, it is important to stress again that the baselines
were trained using all possible number of features based on RFE, and the model
with the best return was selected. This extensive training and selection process
is not necessary in the proposed DRL approach.

Table 3.1: Cumulative Return Performances on test data

Cumulative Average Returns
All features

Baseline Baseline DRL

Synthetic 93.68 (93.8
93.6) 93.68 (93.72

93.62) 94.52 (94.58
94.44)

Wine 57.11 (58.4
54.8) 82.94 (85.17

80.17) 81.51 (83.93
78.73)

Healthrisk 24.09 (26.4
21.2) 55.86 (58.25

53.04) 57.05 (59.26
54.87)

Miniboone −60.55
(

−60.4
−60.8

)
64.95 (65.12

64.77) 66.38 (66.70
66.05)

Pen Digits 48.31 (48.4
48.2) 61.02 (61.33

60.64) 66.94 (67.51
66.36)

Beans 36.85 (37.3
36.4) 64.63 (65.07

64.18) 71.12 (71.56
70.75)
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Table 3.2: Accuracy Performances on test data

Average Accuracy
All features

Baseline Baseline DRL

Synthetic 0.998 (0.999
0.998) 0.998 (0.999

0.998) 0.997 (0.998
0.997)

Wine 0.981 (0.987
0.969) 0.960 (0.971

0.946) 0.939 (0.951
0.922)

Healthrisk 0.845 (0.857
0.831) 0.824 (0.836

0.810) 0.834 (0.845
0.823)

Miniboone 0.947 (0.948
0.946) 0.870 (0.871

0.869) 0.863 (0.865
0.860)

Pen Digits 0.967 (0.967
0.966) 0.940 (0.942

0.938) 0.922 (0.926
0.919)

Beans 0.924 (0.927
0.922) 0.883 (0.885

0.881) 0.908 (0.911
0.906)

3.7.4
Ablation

An ablation study was conducted to better understand the impact of each
component implemented in the proposed algorithm. By selectively removing
different parts of the model, we can identify which elements have the greatest
influence on the overall performance. Table 3.3 shows how excluding certain
parts of the proposed methodology affects the final outcome, highlighting that
the combination of the proposed changes was crucial to achieving the highest
performance. The ablation study includes the proposed algorithm (using the
All-action updates variation, no repeated actions, and no classification during
exploation), and variations without the proposed training details, such as
repeated actions allowed (RA), any actions allowed during exploration (AA),
and single update (SU). Results are the average return considering all datasets
mentioned in the experiments.
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Table 3.3: Ablation study, showing average return values from all datasets for
different algorithm configurations. Different configurations are: Proposed (All-
action update, no repeated actions, no classification during exploration), SU
(single update), RA (repeated actions allowed), AA (any action allowed during
exploration - including classification)

Ablation Avg. return CI ↓ CI ↑

Proposed 72.92 71.7 73.92

Proposed + RA 59.73 57.08 62.25
Proposed + AA 64.53 63.17 65.69
SU + AA 48.29 46.31 50.20
SU + RA + AA 29.51 25.56 33.13



4
Using transformers to classify tabular data with missing values

This chapter will focus on the transformer approach as a classifier
for tabular data with missing features during inference. This serves as an
intermediate step between the previous and next chapter, where we use
transformers in DQN-based RL for classification with costly features. Here,
we validate the performance of a transformer used as a classifier when we do
not have all features available at test time. This serves as a proof of concept
that transformers are viable in modelling tabular data and dealing with missing
values.

4.1
Related Work

In this section, we review papers that address the use of transformers for
classification tasks. We connect this topic with the problem of missing values,
a common issue in real-world environments and datasets.

Aditionally, we also point to papers advocating for tree-based methods,
such as XGBoost[15], over DL and transformers models, in handling tabular
data. Tree-based methods are one of the best for this type of data. However
it is important to note that they are usually not assessed directly in terms of
their ability to handle missing values.

Specifically for this problem, imputation methods are often used to fill
in the missing data. One of the most reliable imputation methods today is the
Multiple Imputation by Chained Equations (MICE) [16, 17] approach, though
other methods are also regarded at the same level, such as Missforest [88, 95],
Hot-deck [89], and MIDAS [90] .

4.1.1
Classifying with Transformers

It is only natural that with the excellent performance of transformers
in machine translation [36], text generation [67] and other applications, this
kind of model would be studied in other environments. For classification, as
mentioned, there is not a consensus about the best model to approach a tabular
dataset, as some papers point to tree-based methods as the better option, while
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others point to transformers having better performance [53, 54, 55, 56, 57, 59].
In this section, we point to the papers advocating to transformers, mentioning
their general ideas, peculiarities, strengths and weaknesses.

4.1.1.1
TabTransformer

The TabTransformer [53] is an end-to-end model based on the original
transformer [36]. The overall architecture is mainly characterized by the col-
umn embedding layer, transformer layers and an MLP in the end. Architecture-
wise, the main contribution is the column embedding layer, which generates
the contextual embeddings of categorical features.

In practice, the contextual embeddings are the response of each trans-
former layer to the input feature embeddings. In other words, each categorical
feature is parametrically embedded, and these embeddings are fed to the trans-
former layers. The output of each transformer layer is considered a contextual
embedding. The calculated contextual embeddings are concatenated with the
normalized continuous features, and go through the last layer of the model,
the MLP. Figure 4.1 is extracted from the original paper and shows this archi-
tecture in detail.

Figure 4.1: Architecture of TabTransformer, extracted from [53]. Continuous
features do not go through the transformer layer

The results showed competitive performance with Gradient Boosted
Decision Trees (GBDT) and better performance than the baseline MLP. This
study also addresses tasks such as semi-supervised learning and robustness
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for missing and noisy data. The authors provide two options to deal with
missing data, either by learning a representation of the missing label for each
categorical feature, or using the average learned embeddings over all labels
in each categorical feature. They chose to use the second option, since there
was not enough missing values so the model could learn a good representation
for it. There was no proposal for dealing with missing values in continuous
features.

4.1.1.2
TabNet

The TabNet model [54] is designed to incorporate the interpretability
of decision trees while leveraging the power of deep learning. To achieve
this, the model’s encoder employs individual feature selection by applying a
learnable sparse mask based on attention over the preceding decision steps.
At each decision step, the model selects a subset of features to reason from.
The selected features are processed by a feature transformer, which splits the
output into two components, one for the current decision, and another for
the subsequent step. The feature transformer comprises two layers that are
shared across all decision steps, and two additional layers that are specific to
each decision step. One of the objectives is to provide interpretable outputs
with the learned masks, that can be aggregated to obtain a global feature
importance attribution.

The decoder is simpler and aims to generate the reconstructed features.
It comprises a feature transformer for each step. Visual details of the model
are shown in Figure 4.2, which shows the encoder, the decoder, the feature
transformer, and attentive transformer architectures. Experimental results
showed performances as good or better than baselines, such as XGBoost. There
was little focus on missing values, which was addressed in a specific task with
the objective of predicting them, in a self-supervised learning approach.

4.1.1.3
SAINT

Like the previous approaches, SAINT [55] is an end-to-end transformer-
based architecture used to classify or regress tabular data. This model is
composed of a stack of identical stages, which in turn are built by one
self-attention transformer block and one novel intersample attention block.
The architercture is shown in Figure 4.3. Self-attention blocks follow [36]
architecture. The intersample blocks are similar, only differing in the use
of intersample attention layer instead of self-attention. These layers can be
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Figure 4.2: Architecture details of TabNet.

thought as row attention, as the attention is computed across all samples in a
batch, rather than across features in a single sample. It allows all features
from different samples to communicate with each other, which increases
performance.

The intersample attention provides benefits in performance, however it
can only be leveraged when a batch of inputs is fed to the model, otherwise
there is no information from different sources to be shared, othet than the only
inputted sample. This can go both ways, sharing similar representations when
information is missing, but requiring a batch of inputs in order to make use of
this approach.

Results showed overall superior performance of SAINT compared to
baselines like TabNet and tree-based methods like XGBoost. The missing
data problem is addressed only in the training phase, and no comparison with
baselines was carried out on this aspect.

4.1.2
Are transformers better than classical methods?

Despite evidence showing that transformer models can outperform the
current state-of-the-art in tabular data classification, the subject remains con-
troversial. Some papers advocate for transformers as capable of outperforming
tree-based methods, as we just saw. On the other hand, other studies argue that
tree-based methods, particularly gradient-boosted ones, exhibit better perfor-
mance than deep learning methods, including transformers. Next, we expose
three works that point to tree-based methods as better than deep learning to
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Figure 4.3: SAINT transformer block, showing how it applies the intersample
attention.

classify tabular data.

4.1.2.1
Tabular data: deep learning is not all you need

The main objective of this work [56] was to evaluate recently proposed
deep learning models, like TabNet, and a well established baseline, such as
XGBoost, on tabular data classification and regression.

To assess the performance, several datasets were used as benchmarks,
some for classification problems and others for regression problems. The overall
result showed that the deep models studied did not outperform XGBoost,
besides being more difficult to tune and take more time to train. Interestingly,
when using an ensemble of XGBoost and deep models, the best performance
was achieved.

4.1.2.2
Why do tree-based models still outperform deep learning on typical
tabular data?

In this research [57], the authors provide an extensive and detailed
benchmark for tabular datasets, in a variety of setups. With this benchmark
they analysed different models both in the deep models realm, such as MLP
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and SAINT, and in the tree-based models realm, like XGBoost and Gradient
Boosting Tree.

Their findings point to tree-based models being better in the studied
tasks, adding to the fact that they are easier to tune and faster to train. The
authors also try to answer some questions on why tree-based models are better
than deep models for this kind of data. In summary, they found that neural
networks tend to overly smooth solutions, uninformative features affect MLP-
like models more than tree-based ones, and deep learning models often have
rotationally invariant learning procedures [58].

4.1.2.3
Deep Neural Networks and Tabular Data: A Survey

In this survey [59], the authors provide a thorough review of existing
literature on deep learning models for tabular data, categorize the existing
methods in groups, define state-of-the-arts approaches, as well as an extensive
empirical comparison between models on multiple real-world datasets.

The empirical results showed boosted tree methods as the best options
amongst the studied models (13 deep learning models and 8 classic machine
learning models). This corroborates with the previous pointed papers, and
shows that training efficient deep learning models suited for tabular datasets
is still an open research problem.

4.1.3
Handling missing values

Missing values are a common problem for data scientists, ML practition-
ers, and researchers to deal with. This kind of problem can emerge from human
error when imputing values, data corruption, or even unanswered questions in
a survey. Depending on the type of missing data, one should approach it in
different manners. So first we should understand the types of missing values.

4.1.3.1
Types of missing data

There are three types of missing values, each with its own characteristics.
Determining the type of missing value in a dataset is important to choose the
best approach to handle them. [60, 61, 62]

Missing Completely at Random (MCAR): when data are MCAR, the
probability that it is missing does not depend on any observation of the dataset.
With this type, no bias is introduced in the data because of missing data. For
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example, this can happen due to data corruption in a depression survey. This
is the type of missingness we mainly focus on in this chapter.

Missing at Random (MAR): when data are MAR, there is a systematic
relation between the missing data and the observed data. For example, males
are less inclined to fully fill a depression survey than females. In this case
the missingness is directly related to a fully observed information (gender) in
a dataset. Moreover, this type of missingness is also present when measured
features depend on current data, similar to what is discussed in the previous
chapter.

Missing Not at Random (MNAR): missing data is MNAR when there is
a direct relation between the missing values and unobserved information in the
dataset. For example, a patient with depression filling out a depression severity
survey is less likely to completely fill out the survey as their depression is more
severe. The severity itself is not observable, since it is the target of the survey.

4.1.3.2
MICE

Handling missing values can be a challenge. How you approach it depends
heavily on the type of missing values, along with how much computation you
are willing to use.

Missing values can be dealt with using different approaches, however,
imputation is still the go-to since it does account for all available information
(other approaches may leave instances with missing information out) [86].
Imputation methods replace missing information with values based on some
heuristic, such as mean, mode, or more complex approaches, such as linear
regression, ML models, and Hot-Deck[89]. Multiple Imputation (MI) is a
derivation from the imputation approach, where many imputations are carried
out on the whole dataset, and one final result is drawn from that [86]. MI has
many approaches, like MIDAS [90] and Missforest [88], and compared to other
methods to handle missing values, is the one that provides better performances
[87, 88].

One of the most well-regarded approaches in the MI paradigm is the
Multiple Imputation by Chained Equations (MICE) [16, 17]. This approach
can deal with different data types, such as categorical and continuous features,
as well as different missing data types, like MCAR and MAR.

As MICE is a multivariate imputation technique, each missing value is
imputed taking into account one or more other features. The process follows
the steps: 1. imputation is performed on missing values using a simple strategy,
such as mean or median imputation. These are considered placeholders. 2. for
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the first feature, these placeholders are regressed by a regression model that
uses this feature as the dependent variable, while others are independent. 3.
the original placeholders in the first feature are replaced with the predictions
from the regression model. 4. steps 2 and 3 are repeated for every other features
that has missing values. when all features are handled, one cycle is finished.
5. this process is repeated for a number of cycles. At the end of each cycle, all
imputations are updated. The number of cycles is a parameter of the approach.

After this process is finished, one dataset has been created with imputed
values. In practice, many imputed datasets are created by repeating the
process. These datasets will have the same observed values, but different
imputed values. With more datasets created, one can better estimate the error
introduced by imputation, however in practice, creating a small amount of
imputed datasets, such as 5, is already good enough [63].

4.1.3.3
XGBoost

When dealing with tabular data in general, many papers point to tree-
based algorithms as being the best choice [56, 59, 64, 57], specifically models
like Extreme Gradient Boosting (XGBoost) [15], CatBoost [91], and LightGBM
[92] are well-regarded, especially over deep learning (DL) models. The now well-
known XGBoost [15] has been present as one of the state-of-the-art approaches
when dealing with tabular data for some time, and is the most frequent in
survey works.

XGBoost is a strong machine learning model, based on decision trees,
that leverages boosting, an ensemble ML method that trains sequential weak
learners. XGBoost starts with a weak tree model, and iteratively, a new tree
is added. This new tree is trained to predict the residual error of the model,
and its predictions are added to the current predictions. The model is trained
using gradient descent. One of the features of XGBoost is that it can naturally
handle missing values due to the implemented sparsity-aware split finding
[15]. This makes XGBoost a good baseline to assess models’ performances
on classification with missing values.

4.2
Methodology

This section outlines the implementation details of the proposed model
for tabular data classification with missing values, defining the model design
and procedures, such as training and pre-processing, used in the experiments.
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Motivated by the success of transformer models across various appli-
cations, including tabular datasets, we developed a transformer-based model
specifically designed to handle this type of data. Additionally, the missing data
problem is a frequent reality for those who deal with real datasets, therefore
this challenge is also addressed in our setup.

Consider a dataset D, with F features, where each data sample is
represented by xj

f , with j indicating the sample row, and f the feature column.
Classes are represented by y, and each sample corresponds to exactly one class,
x 7→ y. Feature values can be missing, where xj

miss represents the set of missing
features for a specific sample in row j.

The objective of the proposed approach is to correctly predict y, either
provided a sample with xj

miss or not. The model applies the attention mech-
anism to the input feature vector, establishing a communication between all
features in the fed context. Missing values xmiss, if present, are processed in
one of two different ways, either by (1) applying an attention mask to miss-
ing values, or (2) trimming the context so that missing values are no longer
present, condensing the context only to present features. No approaches in the
literature were found to be similar to (2) regarding missing values.

As for the model details, especially those which differ from the original
transformer architecture, three main topics can be mentioned: preprocessing,
embeddings, and missing values handling.

4.2.1
Preprocessing

Before training, the dataset undergoes a few preprocessing steps, to
ensure that the data is better handled by the model. Since all datasets consist
of continuous features, we begin by normalization the data, scaling it to the
range of [0, 1].

In this chapter we focus on test-time missing features. Since all datasets
are originally full, versions of the validation and test data sets were prepared
with missing values. In these versions, missing values were inserted by ran-
domly selecting how many features are to be missing, and according to that
randomly choosing which features would be missing. This process was applied
to each sample in the validation and test data sets. These modified datasets
were used to assess the model’s performance in the presence of random missing
data.

Additionally, to facilitate a comparison of model performance based on
the quantity of missing data, versions of the test data were created with specific
numbers of missing features, ranging from 0 to F − 1. These complement the
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previously mentioned data sets and allow for a detailed evaluation of model
robustness against varying levels of missing data.

4.2.2
Embeddings

In practice, the proposed model is configured to receive a vector contain-
ing all feature values available, or xj. Missing values of xj are set to NaN to
indicate missingness. In order to extract information of both, feature indexes
and their respective values are embedded through a learnable layer.

Since all features are continuous, their values are embedded with a linear
layer, mapping one value (R1) to a vector with the embedding dimension demb.
The respective feature indices are value-encoded from 1 to F , and embedded
with a learnable lookup table that maps each encoded feature N1 to a demb

dimensional vector (Rdemb). Both the value and feature embeddings are added
together before being fed to the attention blocks.

4.2.3
Handling missing values

Two different implementations of handling missing values were applied.
The first relies on attention masks to filter out values that are missing, i.e.,
inputs that present missing values are used to build a mask, that during
attention, is applied to corresponding tokens related to the missing input.
This indicates to the attention mechanism which tokens should be ignored,
which in practice is zeroing their values in the attention matrix.

Formally, from a batch of inputs with b samples and F features, during
the attention mechanism, Equation 2-7 generates a matrix with size T × T ,
with T usually being the size of the context. In this case this is the full number
of features present in the dataset. Therefore, for each sample in the batch, we
end up with a matrix of F × F , the first dimension representing the queries,
while the second represents the keys. The mask points to missing elements, so
each row or column from the generated matrix that corresponds to a missing
value is masked out: it is the outer product of the mask vector with itself.

Algorithm 2 details this process and Figure 4.4 visually exemplifies how
masking is performed.

The second way of handling missing values relies on contextual trimming,
which is excluding all missing values from input context. During training, this
approach actively and randomly inserts missing values inside the input context,
and trims it later. For each batch, a random number of missing values is chosen
and random features of each sample in the batch are replaced by missing values.
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Algorithm 2 missing values with mask
1: Input: batch B = {x1, x2, ..., xb}

2: missingj
i =

1, if xj
i = NaN

0, if xj
i ̸= NaN

3: maskj = missingj ⊗missingj

4: calculate embedded values with linear layer (input = B)
5: calculate embedded features with lookup table (input = {1, ..., F})
6: generate tokens adding embedded values and embedded features
7: perform remaining transformer forward pass with calculated tokens and

mask

Algorithm 3 missing values with trimmed context
1: Input: batch B = {x1, x2, ..., xb}
2: number_of_missing = random(1 to F )
3: for x in B do
4: missing_features = random(1 to F ,
5: number_of_missing,
6: replace = False)
7: xmissing_features = NaN
8: end for
9: generate Btrim by trimming the context from (B)

10: calculate embedded values with linear layer (input = Btrim)
11: calculate embedded features with lookup table (input =

features fromBtrim)
12: generate tokens adding embedded values and embedded features
13: perform remaining transformer forward pass with calculated tokens and

mask

The batch is then trimmed so that only available features are left. This process
is repeated for each batch of training data. The data is then fed to embedding
layers and later to the attention blocks, which do not need any mask. One
advantage is that no unnecessary computations are executed on values that
would be masked out. The pseudo-code can be seen in Algorithm 3, and the
visual representation is in Figure 4.5

This approach is feasible only because it addresses missing values specifi-
cally at test-time, rather than during training. This allows for greater flexibility
in utilizing the complete training data, as features can be randomly masked
during training without harming performance, and in fact, leading to perfor-
mance improvements.
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Figure 4.4: Representation of how the masking is created. On the left, we
show the raw input, with missing values being masked in red. Each element
is represented by a key, query, and value in the attention mechanism, and the
communication between keys and queries from elements of the same input row
can be represented as a matrix. An example of the matrix generated from the
first row is shown in the upper right of the left image. On the right, we show
the complete attention mask (one slice for each row in the left image). Note
how each missing value is masked both for keys and queries.

4.3
Experiments

In this section, we focus on describing the experimental characteristics of
our setup, detailing the datasets, baselines, training implementations, model
architecture, and how performance was assessed.

All experimental setups were run 10 times with different seeds, achiev-
ing statistical significance across results. Confidence intervals were assessed
by bootstrap confidence interval with 95% confidence level, using the bias-
corrected and accelerated method [65].

The experiments were conducted on the same set of datasets mentioned
throughout this work, excepting the synthetic dataset due to its simplicity.

4.3.1
Baselines

When dealing with tabular datasets, as mentioned, XGBoost is still one
of the best models, either for classification or regression. Moreover, it can
naturally deal with missing values based on its default direction technique [15].
Therefore, we use XGBoost as one of the baselines. The other two baselines
present in this section leverage the MICE imputation method, since it is
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Figure 4.5: Representation of how the trimming is applied. On the left, we show
the raw input, with missing values being removed in white. On the right, we
show the trimmed input, which is used for embedding. Note how the amount
of missing values, despite being random per batch, is fixed between samples.

considered one of the best options when dealing with missing values, and can
be combined with any downstream classifier [16, 88].

We combined MICE and an MLP classifier to create a second baseline.
Lastly, MICE imputation was used again, but now combined with the proposed
transformer implementation, only differing in how missing values are processed,
In this case, the baseline performs imputation using MICE and the transformer
is trained on a full (MICE imputed) dataset.

No comparison was made against other related models [53, 54, 55], due to
an inability of such models to: deal with continuous missing values, having only
task-specific results for missing values, and not providing information about
performance with missing values during inference, respectively.

We use accuracy as the primary metric to compare the proposed algo-
rithm with the baselines. Also, to maintain a fair comparison, a manual tuning
strategy was applied to hyperparameters, both for baselines and the proposed
algorithm. Additionally, we present the accuracy of the main models while
varying the number of missing features.

4.3.2
Proposed Versions

The proposed algorithm was applied considering three different training
scenarios with respect to missing values, which led to three different imple-
mentations of the model. These scenarios represent how missing values are
presented during training, being (1) fixed missing values, (2) different missing
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values in each epoch, and (3) different missing values in each batch. Note that,
as collected, all datasets are full, with no missing values, which in turn allows
these scenarios to be created.

In scenario (1) static missingness, a random amount of missing values are
inserted in the training data, only once, before training starts. The datasets
do not suffer any change during training with respect to missing values. This
simulates a training-time missingness scenario. Differently, in scenario (2),
random missing values are inserted in the full dataset for each epoch. Because
of that we call this dynamic missingness per epoch. Lastly, in scenario (3)
dynamic missingness per batch, different missing values are inserted in each
batch during training.

Differently from versions (1) and (2), in the last scenario, missingness
is handled by the model itself. For each received batch, a random amount of
missing values is chosen and that many values are randomly set to missing
for each sample. Moreover, for scenario (3), missing values are handled by
trimming the context only to available values, while the other scenarios use
masks in order to keep missing values unnattended. This is required because
their batches can have samples with different amounts of missing features.

4.3.3
Network Architecture

The architecture of the model is based on the GPT model [67], which is
decoder-only. The code is based on the [66] codebase, with appropriate changes
to incorporate the proposed use case. Like in the original architecture, a
dropout layer is employed after embeddings, and layer normalization is applied
right after the attention blocks.

The transformer architecture was chosen especially because of its ability
to utilize context information, which can be a substitute for missing informa-
tion. In other words, learning context information might be a way to overcome
missingness. This reflects even more in cases where, during training, all infor-
mation is available, since by randomly dropping out feature values, the model
can learn to depend on context representation without any loss, possibly result-
ing in better test-time performance, even with missing values. This scenario is
not usually accounted for in ML algorithms, which generally consider dropout
at a neuronal level.

As mentioned, missing data is handled in two different ways, which led
to slightly different architectures. The first, which handles missing values by
masking, is shown in Figure 4.6. This architecture maintains most of the
original architecture, while applying an attention mask to whenever tokens
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that represent missing values. Differently, in the second approach the model
is responsible for inserting random missing values to the input, and trimming
those values, leading to a smaller context to be embedded. This approach can
be seen in Figure 4.7

Figure 4.6: Masking architecture. The model receives a batch of data with
missing values. The inputs go through two embedding layers, one embedding
values, and the other embedding features. The mask is built based on the
missing values int he input batch, and used during the attention mechanism.

The chosen hyperparameters, in part, are based on the same codebase,
with a few changes to account for a different problem, such as less attention
heads, and smaller embedding dimension. The hyperparameter list is described
in Table 4.1

Table 4.1: Hyperparameters

Hyperparameter Value
Attention layers 6
Attention heads 4
Embedding dimension 128
Batch size 128
Dropout 0.1
Initial learning rate 6e-4
Learning rate schedule cosine decay
Early stopping patience 300 epochs
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Figure 4.7: Trimming architecture. The model is fed with a full batch (no
missing values), then the trimming approach is applied. The trimmed input
goes through both embedding layers, similar to the masking approach.

4.4
Results

In this section we show and assess the results for the experiments
described in the previous section. Moreover, we compare the proposed models
and the baselines.

As mentioned before, there are three scenarios were the proposed models
are assessed, and two model variations. Here is how these characteristics
interact: the masking approach is suited both for static missingness and
dynamic missingness per epoch scenarios, where the whole input can be fed
to the model, with missing values included as is; the trimming approach is
better suited for dynamic missingness per batch, where the full data is fed to
the model, which inserts random missingness each batch itself.

First, we compare the proposed models in all scenarios against each
other, also addressing a baseline model that is trained with full data (no
missing values). The results are based on versions of the test set that iteratively
increased the number of missing values per sample.

In Figure 4.8, we can see how the models performed accuracy-wise,
per number of missing features. In general, the trimming model, which han-
dles missing data per batch, achieved better performance than the other ap-
proaches, even being constrained by a fixed amount of missing values for each
batch. Moreover, even though the distribution of missingness is the same as in
the per-epoch missingness, grouping the number of missing values per batch
not only allows for a more efficient implementation through trimming, but also
increases accuracy.

Now, we address the baselines mentioned before, comparing the best
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Figure 4.8: Performances of the proposed Transformer models on test data.
The shaded regions are the 95% bootstrap confidence intervals.

proposed model with them. To summarize, the proposed baselines are: MICE
+ Transformer, MICE + MLP and XGboost. For all baselines, we considered
two scenarios, one without any missing values (full training data), and other
with static missing values in the training set. Models trained on scenarios with
missing values in the training data consistently achieved better performance.

Dynamic missing features were not considered, because the baseline
methods do not support that use case. Since MICE is used to input missing
values based on a trained model (regression in this case), all samples are
necessary to better train this model. XGBoost is not specifically designed to
deal with batch learning, while also not benefiting from changes in data during
training.

Results are shown in Figure 4.9, comparing the best proposed model
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Figure 4.9: Best variation performances on test data from the proposed
Transformer and baselines.

version with the best baseline versions. Again, results are based on an iterative
increasing number of missing values in the test set. In general, the proposed
model achieved better results than the baselines.

In all cases, as expected, training with missing values yielded better
performance than training with a full dataset, sometimes even when testing
with no missing values as well. Hypothetically, this can be seen as an effect
similar to dropout, where the presence of missing values in training helps the
model to generalise better, forcing the learning of patterns through different
features’ relationships.

Lastly, to summarise the results in one experiment, models were assessed
on test sets containing a random amount of missing values. In this setup,
a random number of missing values is inserted on random features for each
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Table 4.2: Model test set accuracies averaged over 10 training runs

Model Pendigits Wine Healthrisk Beans Miniboone Average
T Full 0.524 0.754 0.728 0.665 0.826 0.699
T Static 0.650 0.760 0.735 0.820 0.867 0.766
T Epoch 0.766 0.843 0.760 0.870 0.893 0.826
T Batch 0.808 0.880 0.778 0.878 0.906 0.850
M + T Static 0.733 0.856 0.758 0.854 0.899 0.820
M + MLP Static 0.732 0.830 0.770 0.852 0.892 0.815
XGB Static 0.747 0.841 0.757 0.865 0.891 0.820

sample in the test data. Obtained results, showed in Table 4.2 corroborate
the previous findings, demonstrating that the proposed model with per-
batch missingness consistently achieved better performance. Best results are
highlighted in bold, together with values that fall within its confidence interval.
To condense the table size, aliases are applied to the models following: "T
Full" is "Transformer with full dataset, "T Static" is "Transformer with static
missingness", "T Epoch" is "Transformer with missingness per epoch", "T
Batch" is "Transformer with missingness per batch", "M + T Static" is "MICE
plus Transformer with static missingness", "M + MLP Static" is "MICE plus
MLP with static missingness" and "XGB Static" is "XGBoost with static
missingness".

It is noteworthy that imputation baselines do perform similar to the
proposed model in cases with a small amount of data and high amount of
missing values, such as in Wine and Healthrisk datasets. This may indicate
that the proposed model performance is limited in datasets with few samples,
which is usually expected for transformers.



5
Reinforcement learning with transformers for classification
with costly features

As mentioned earlier, transformer architectures are powerful models with
proven groundbreaking results in NLP [36, 67, 68], computer vision [69], and
many other scenarios. This chapter aims to bring together the two previous
ideas proposed in this thesis: train a transformer model in a RL framework,
leveraging the attention mechanism and contextual information learning, to
classify data with costly features, in an auto-regressive manner.

To do so, we start by pointing to works related to this idea, and key
concepts used. Later, we talk about the proposed model itself, detailing the
methods, techniques, and strategies used. Then, we talk about the experimen-
tal setup, and finish with the achieved results, comparing them with baselines.

5.1
Related Work

Regarding the problem of costly features, [13, 14] are the main inspiration
to the proposed model. These works use a DQN-based agent to sequentially
choose between measurements and classification, balancing between more
information and more cost. Authors apply state-of-the-art RL techniques, such
as Double DQN [34], Dueling DQN [35], and Retrace [70]. These and other RL-
based approaches were already mentioned in Chapter 3 of the thesis.

5.1.1
Transformer-based Reinforcement Learning approaches

In the last few years, the research area where RL and Transformers are
used together has received a lot more attention, directly influenced by the
success of transformers in NLP. We now point to some works that leverage the
transformer architecture in a RL framework.

5.1.1.1
Decision Transformer

The Decision Transformer model [66] abstracts RL as a sequence mod-
eling problem, allowing Transformer architectures to be used in an offline RL
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manner. It can be seen as conditional sequence modeling, learning the best
actions to take, based on expected return, previous states and actions. As an
auto-regressive model, it can also generate future actions capable of achieving
the desired return. The model is capable of generating an adjusted set of auto-
regressive actions given a desired return. We can see the base structure of the
Decision Transformer in Figure 5.1

Figure 5.1: Decision Transformer base structure. Note how rewards, states, and
actions are fed as a sequenced input.

In this structure, previous actions, rewards, and states are fed to the
model in a sequence, while the model outputs the next action. Each input
modality goes through a dedicated embedding layer and is added with an
embedding for timestep, i.e. the positional encoding. More than one input
state can be assigned to the same positional encoding, especially if the input
is an image.

Decision Transformer (DT) is compared against different Temporal Dif-
ference (TD) RL approaches, such as Conservative Q-Learning (CQL) [80],
and other well-known RL models like REM [81] and QR-DQN [82]. DT bench-
marks were made in atari and gym environments and achieved matching or
better performance compared to the baselines.

5.1.1.2
Trajectory Transformer

Similar to the previous model, the Trajectory transformer [71] also
address the RL problem as a sequence modeling problem, aiming to produce
a sequence of actions that leads to a sequence of high rewards. Unlike the
Decision Transformer, this approach expects inputs as unstructured sequences
of states, actions, and rewards, modeling the transition distribution, as seen
in Figure 5.2.
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Figure 5.2: Trajectory Transformer base structure. In this model, states,
actions, and reward sequences are discretized, meaning that the sequence of
each type of information is processed as a subsequence.

This approach trains on auto-regressively discretized sequences of states,
actions and rewards. What this means is that, for a state with dimension N ,
is discretized in a sequence with N elements, as seen in 5.2. Two different
discretization approaches are addressed. Results show competitive or better
performance than baselines, such as CQL, BRAC and DT.

5.1.1.3
Q-Transformer: Scalable Offline Reinforcement Learning via Autoregres-
sive Q-Functions

The Q-Transformer [72] is also considered an offline RL model, with the
main contribution being the per action-dimension tokenization of Q-values.

Continuous actions are discretized in bins, and during training, given a
history of states, the q-values of all bins in all action dimensions are updated.
Q-values of actions observed in the dataset are trained via the bellman update,
while the ones not present in the dataset are minimized toward zero. Q-targets
of all action dimensions are computed based on the maximization of the next
action dimension within the same timestep. The Q-target of the last action
dimension in a timestep is computed using the discounted maximization of the
first action dimension in the next time step plus the reward. This process can
be seen in Figure 5.3

To assess performance, authors used real-world offline datasets of control
tasks composed with a small amount of human-demonstration episodes, all of
which succeed in the proposed task, and autonomously collected data, which
have a lower success ratio. Experiment results show better performance in
control tasks than the compared baselines such as DT and Implicit Q-learning
[83]

While the models discussed demonstrate strong performance in their re-
spective tasks, some limitations justify opting for an approach more aligned
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Figure 5.3: Q-Transformer base structure. Note how the target values are based
on the next-dimension max Q-value.

with a vanilla Transformer architecture. The Q-Transformer, for instance, is
designed to manage continuous action spaces, which are not present in CwCF
problems, and its primary focus is on action dimensions rather than feature
selection. Similarly, Decision Transformers tend to extract and stitch together
optimal segments of trajectories from the training data, utilizing a returns-to-
go strategy, which is less suited in CwCF contexts. Additionally, both the Tra-
jectory Transformer and Q-Transformer are tailored for offline reinforcement
learning, making them less suited for scenarios requiring continuous updates
and dynamic feature selection, as seen in CwCF problems.

5.2
Methodology

In this section, we give details about the development and implementa-
tion of a transformer model integrated into an RL framework. As mentioned
earlier, the main idea is to develop a similar model to the one in Chapter 3,
leveraging the state-of-the-art characteristics of a transformer model, and en-
hancing policy learning and Q-value estimation. The datasets used follow pre-
vious chapters, with minor differences that will be exposed throughout the
chapter.

Unlike the models previously implemented in this thesis, using a trans-
former model in an RL framework introduces scalability, as it is suited to deal
with contextual data. With that, transformers learn richer information about
the current context with the attention mechanism, which addresses the miss-
ingness from partial episodes (not seen features can be interpreted as missing
values).
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5.2.1
Problem setup

Since the problem we want to tackle is the same as in chapter 3,
Classification with Costly Features (CwCF), we model it with a similar MDP.
The objective of that problem is to train a model (policy) that, based on
feature costs, is capable of balancing between measuring one extra feature
or classifying with the already gathered information, at each timestep. This
decision-making process is dynamic with respect to measured values and can
be thought of as a type of dynamic feature selection.

5.2.2
MDP

Consider a dataset D with F features, the array x = {x1, x2, . . . , xF}
represents one sample from D, and y ∈ [1, C] is the true class of such sample,
with C being the number of different classes. The tuple (x, y) comprises one
environment for the proposed agent.

In this setup, states are composed by two vectors. Vector v =
{v1, v2, . . . , vt} indicates values, and vector f = {f1, f2, . . . , ft} indicates fea-
tures. Note that the size of the vectors are dynamic, depending on which
timestep t the model is currently in. Also, as initially no information is ac-
quired, we denote v1 and f1 as initial states, the former being empty and the
latter receiving a category that indicates "no-feature".

Regarding actions, they are divided in two groups, measurement actions
Am and classification actions Ac. A measurement action am, with 1 ≤ m ≤ F,
is used to denote the next feature do be measured, pointing to how the state
vectors are going to be updated for next timestep. For instance, if am is chosen,
it points to the feature with index m as being acquired next. At the beginning
of the next time step, v and f would be extended with the value and the index
from that feature, respectively. As for classification actions ac, 1 ≤ c ≤ C,
they are used to denote to which class the information acquired so far is
assigned. Classification actions are always terminal actions, as classification
is the model’s final objective. With that in mind, the full set of actions has
F + C possible actions.

Given an action a, the transition function maps such an action to two
possible outcomes, an information addition in both state vectors if it is a
measurement action, or to the terminal state if it is a classification action.
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Formally, we can define it as:

T (v, f, a) =

(v′, f ′) , if am

terminal , if ac

where v′ = append(v, xm|am), and f ′ = append(f, m|am) are the next state
vectors.

Following the previous setup, without lack of generality, we fix the costs
of all features and set it to cf = 0.03. The rewards of correct classification
and incorrect classifications are respectively set to 1 and −1. All rewards
were scaled down compared to Chapter 3 to facilitate some operations during
implementation. This does not affect the performance. We can formally define
the reward functions as

R(s, a) =


−cf , if am

1 , if ac = y

−1 , otherwise

. (5-1)

A full episode is exemplified in Figure 5.4. In the beginning, the value
state vector v is empty, as there is no information available, and the feature
state vector f has one element representing the "no features measured"
information. From there, for each measurement action, both state vectors are
appended with the respective information. Whenever a classification action
is chosen, the episode terminates. For simplicity, we denote f0 as the initial
element in f .

Figure 5.4: Full episode example. All vectors increase dimension with each time
step. This is only allowed because transformers can deal with varying length
inputs.

5.2.3
Training process

Now, the training process is described in detail. Policy strategy, memory
replay, model embeddings, network architectures and training strategy are
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explained in the following sections.

5.2.3.1
Epsilon greedy strategy

The ε-greedy policy strategy, explained in Equation 2-12, was applied
with exponential decay during the model’s training. This strategy induces
more exploration at the start of the training, while exploitation takes place
as training proceeds. This is suited for RL agents since at the beginning, the
model does not have any reference on what actions provide higher rewards,
and exploration provides different sequences of actions that will be added in
the replay memory and trained on. With time, the model gradually learns
sequences of actions that provide higher rewards, therefore it is better to exploit
the already gathered knowledge for the most part, only having a small chance
to explore aiming to avoid local minima. For that, ε starts at 1 and is decayed
exponentially until ε = 0.1.

In this implementation, target updates are performed for classification
actions along with the chosen measurement action, as opposed to Chapter 3,
where all Q-values related to measurements and classification actions were
updated. This change is made to avoid an unmanageable computational cost,
since to achieve a similar update process, we would need to read out all
transformer outputs based on combinations of current and next states. In
comparison with the All-action updates, adopted in Chapter 3, this is probably
less eficient way of updating targets, sample-wise.

In the proposed problem, repeating measurement actions would provide
no benefit to the model, as no new information would be gathered and more
cost would be added. Because of that, repeated actions are not allowed in
this setup. During training, a "full episode strategy" is applied, which limits
the agent to choose measurement actions as long as there is still unmeasured
information, forcing episodes with full context.

5.2.3.2
Building memory

When populating memory, RL algorithms such as DQN, usually add
transitions, which are changes from one timestep to another. Since the reward
is based solely on action, and next state is deterministic, it is enough to store
only the ground truth data array x and class y, and the sequence of actions
taken. The full episode can be rebuilt with the right sequence, using the stored
information.



Chapter 5. Reinforcement learning with transformers for classification with
costly features 92

Considering the ε-greedy strategy, the memory is initially filled with
episodes generated from random actions. As the model trains, episodes grad-
ually start to have actions based on the greedy policy. The size of the memory
is set to 1M, and after that many episodes are stored, the older ones are over-
written with new ones.

5.2.3.3
Embeddings

Embeddings are important to extract information and represent input
values. They convert input values into more complex learnable vectors, im-
proving the representation and carrying information from input values.

A trainable linear layer is applied to embed values from v, while a
learnable lookup table is responsible for embedding the feature values from
f . Both embedding layers are configured to output a vector Rdemb , with
embedding dimension demb elements. The embedding linear layer maps a single
value (R1) to the mentioned vector, with a tanh activation function, and the
embedding lookup table maps a feature index N1 to the mentioned vector. The
embeddings are added together before the attention block.

5.2.3.4
Network Architecture

Although the network architecture is based on the GPT [67] model,
which is a decoder-only transformer, we handle the inputs as an encoder-only
model, since all inputs are allowed to communicate with each other during
attention. The proposed model is mainly composed of the embedding blocks,
multi-head self-attention blocks, and two final heads, the measurement head
and the classification head. The overview of the architecture can be seen in
Figure 5.5.

The process starts by feeding the value vector v and feature vector f to
the model, both having (batch, context) dimension. The first step is to add
the "start indicator" in the feature vector. This informs the model when no
information is available but the episode has already started. At this point,
vector f has dimensions of (batch, 1 + context).

Following, the data goes through the embedding layers, generating a
(batch, context, demb) value embedding vector and a (batch, 1 + context, demb)
feature embedding vector. These vectors are added together along the last
dimension. The extra element in the feature embedding is left untouched. The
generated embedding vector holds information about each value present in
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Figure 5.5: Proposed Transformer model architecture with dedicated embed-
ding blocks for both values and features. The model includes two output heads:
a classification head and a measurement head.

the context and their respective features. A visual representation is shown in
Figure 5.6.

Figure 5.6: embedding blocks. The "no-information" embedding remains the
same, and addition is performed over other embeddings.

The embedding vector is fed to the attention layers, which are based on
[66]. Attention values are extracted and go through a layer normalization. At
this point, the calculated values feed a classification head and a measurement
head. Both heads are fully connected layers, with input size of demb and output
size of C and F respectively.

The classification head is responsible for outputting the logits for each
class based on the available information, while the measurement head is
responsible for outputting the Q-value for each possible action.
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5.2.3.5
Training strategy

Given the mentioned architecture, the training process applied, in gen-
eral, follows a basic DQN training strategy. We can divide the training process
in three steps: memory populating, memory sampling, and training step.

To populate memory, the ε-greedy exploration strategy was applied. At
each training step, the ε value is decayed by a factor dependent on how many
episodes the model will be training, reaching the lowest value of 0.1 at 2

3 of
maximum training episodes. The decaying factor is a function of how many
training steps are set to be processed, such that

decay = 0.1 3
2Tr ,

with Tr being the total training steps.
This translates to full exploration at the beginning of the training,

gradually moving to exploitation. Exploration is still maintained at 10% in
the final half of the training, allowing the model to move from local minima if
those occur.

Once enough samples are stored in memory, one training step is executed
after each episode rollout is added to the memory. In this training step, a batch
of random episodes is sampled from memory. Each sample s stores the features
indexes vector f , the true value vector vtrue, and the true class of that sample
ytrue. With that, the sample value vector v is rebuilt based on f . The batch
is truncated with a random amount of information, similar to what is done in
Chapter 4.

The model is then trained over this batch. The attention mechanism
does not apply any masks, meaning that all queries and keys are allowed to
communicate with each other. This ensures that context information is learned
in all scenarios, from small to full contexts.

It is noteworthy how the test-time missing values problem from chapter 4
is incorporated in this chapter in the form of unread features. The lack of
information during test time has the same characteristics as unread features
in the current modeling. In practice, the model ignores the unseen values, as
they are not part of the input, similar to the trimming approach.

Results based on the full context coming from the attention blocks
go through two heads, the measurement and the classification head. The
classification head is formed by a linear layer and outputs the logits for each
class. As in Chapter 3, the measurement head is formed by two fully connected
layers and outputs the Q-values for all measurement actions.
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To train the model, a loss function that covers both heads is needed,
therefore Mean Squared Error (MSE) is used to deal with measurement Q-
values, while Cross Entropy (CE) is used to deal with classification. Q-value
updates follows the usual approach in RL frameworks, such as the one exposed
in Chapter 3. With that, the loss

L(Y, Q̂, y, ŷ) = MSEmeasurement + CEclassification (5-2)

, is applied with
MSEmeasurement = (Q̂− Y )2 (5-3)

, where Q̂ is the model predicted Q-value and Y is the updated target Q-value,
and

CEclassification = −
C∑

c=1
Iy log(P (ŷ)) (5-4)

, where Iy is the indicator vector specifying if the class element c is the correct
class, and P (ŷ) is the predicted probability distribution between classes.

5.2.4
Validation and test

During validation and testing, the model is assessed by auto-regressive
generation of actions. Each measurement action returns the respective cost
of the chosen feature, which is fixed in these experiments, and classification
actions return a reward of 1 or −1 for a correct or incorrect classification,
respectively.

In an RL approach, the greedy action is chosen based on the highest Q-
value in that state. To do that, the logits from the classification head need to
be converted to Q-values. That is achieved by first applying a softmax function
to the classification head logits, generating a probability distribution, and
converting from the distribution to equivalent Q-values for each classification
action, such as in

Qequivalent = P (ŷc)− 1(1− P (ŷc))

= 2P (ŷc)− 1
. (5-5)

The model generates a sequence of actions, while state values and features
are updated between one action and another. If there is a case where the model
is more certain about to which class the measured information pertains, it will
finish the episode earlier by classifying the data.

This approach allows the model to interpret each episode as a totally
different environment. Moreover, the initial state is the same for all episodes,
since the starting point is the absence of any information.
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5.3
Experiments

The set of experiments executed to assess the model’s performance
follows similar standards to the ones defined in Chapter 3. Exposed results
are an average of ten runs with different seeds. Feature costs are fixed at
cf = 0.03, and as noted, this is equivalent to the previously used costs, only
scaled down along with classification rewards of 1 and −1 for correct and
incorrect classifications, respectively.

Experiments were carried out in the same six datasets: ’Synthetic’,
’Wine’[40], ’Healthrisk’[45], ’Miniboone’[43], ’Pen Digits’[41] and ’Beans’[44].

Performance is assessed based on accuracy and return. The results are
evaluated against the baselines and the proposed model in Chapter 3. Trans-
former results are scaled up to be at the same level as those from other models,
both in Table 5.1 results and graphs in Figure 5.9. The hyperparameters of
the proposed algorithm are initially based on the Decision Transformer imple-
mentation and are manually tuned from there to ensure a fair comparison with
the baselines, which are also manually tuned.

5.4
Results

Now, experimental results are shown and discussed for every dataset
considered. Graphs of validation performance during training are also exposed.
Note that the transformer model was trained on ten different seeds, with 50000
training steps for Synthetic, Wine, Healtrisk, Pen Digits and Beans datasets,
and with 300000 steps for miniboone.

5.4.1
Verification

In the synthetic dataset used for verification, the transformer model
achieves statistically equivalent test returns and accuracies as the DRL model
proposed in Chapter 3. As noted there, this dataset is not meant to be a
challenge or to assess the model’s performance, but rather to understand how
it behaves in all possible states.

In Figure 5.7, we can see the trained model’s policy. The graph is
divided in four plots, each representing the (un)measured features. Upper
left plot represents states with measured information about feature 1 and
no information about feature 0. Upper right plot represent states with both
features measured. Bottom left plot represent states with no measured features.
And bottom right plot represent states with only feature 0 measured. The
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model was capable of learning a good classification boundary, even though it
seems more strict regarding class 0 if compared to the model in Chapter 3.
Also, the latter was able to learn an upper limit for feature 1 so that samples
beyond that are classified as class 1, which does not seem to be the case in the
transformer model.
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Figure 5.7: Transformer policy on ’Synthetic’ dataset. Actions M0 and M1 are
measurement actions for the respective features. C0 and C1 are classification
actions for the respective classes. This model achieves the same behavior as the
one from chapter 3, as it can classify early when there is enough information,
and it measures another feature when there is overlapping between classes.

Figure 5.8 shows the maximum value of Q learned by the model for every
possible state. The model is very confident about all actions taken. Again, we
see a clear decision boundary between the classes distributions. Even in regions
with mixed classes, e.g. between 0.2 and 0.3 in bottom right plot, the model
seems to have a high "confidence" when compared to the one in Chapter 3.

In terms of performance, it achieved a slightly better return for validation
data than the other models. Validation performance during training can be
seen in Figure 5.9a. As noted before, this did not translate into significantly
better test performance (see also Table 5.1)

5.4.2
Learning curves

During validation the transformer model achieved different levels of
return and accuracy depending on the specific dataset. Return-wise, for
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Figure 5.8: Transformer agent maximum Q values. The decision boundary is
thinner, and apparently, this model has more "confidence" if compared to the
one from chapter 3.

Synthetic, Wine and Pen Digits, the best return performance achieved was
slightly higher or on par with the compared models. For Healthrisk, Miniboone
and Beans, returns achieve a lower performance. On the other hand, accuracy-
wise in general the transformer model achieved a better performance, with
lower performance only on Healthrisk data. Return results are shown in
Figure 5.9.

The difference in training episodes between proposed models is due
to the slower convergence of the transformer model. Figure 5.9 depicts how
the transformer architecture took more training steps to achieve convergence
during training. Therefore, in order to show the best performance, more
episodes were necessary when training the proposed transformer model.

5.4.3
Performances on test data

The performances on test data are shown in Tables 5.1 and 5.2, re-
spectively describing return and accuracy values achieved. Return-wise, the
proposed transformer model achieved similar or better performance on three
datasets, Synthetic, Wine, and Pen Digits, while accuracy-wise it achieved
better performance than the baselines in four datasets, Wine, Miniboone, Pen
Digits, and Beans.
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(a) Average returns on Synthetic dataset
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(b) Average returns on ’Wine’ dataset
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dataset
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(e) Average cumulative returns on ’Pen
Digits’ dataset
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Figure 5.9: Comparison between proposed models performances on validation
data
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Considering the results, we can argue that the transformer model is
somewhat more cautious about classification since it achieves better accuracy
while giving up on return. Perhaps adjusting the loss to give more importance
to the measurement actions can improve the performance in terms of final
return. Another hypothesis is that changing the costs and gamma could bring
these results closer to the DRL model. A lower cost could influence the model
to measure less, however, it is still unclear why the models achieved different
outcomes since the problem configuration was the same.

For Healthrisk dataset, the proposed model achieved a lower performance
both in return and accuracy. This might indicate that the model could not learn
good context representations, or that there is some overlooked characteristic
in this dataset, which negatively affects the attention mechanism more than
other algorithms. On the other hand, for Pen Digits dataset, the proposed
Transformer model achieved better results on both performances, showing that
it was capable of achieving improved results.

It is important to clarify that the proposed DRL model was tested using
40 different seeds, while the Transformer model was tested with 10 different
seeds. As a result, the latter may produce wider confidence intervals, but this
does not necessarily imply that it is less stable than the former.

Table 5.1: Cumulative Return Performances on test data

Cumulative Average Returns
All features

Baseline Baseline DRL Transformer

Synthetic 93.68 (93.8
93.6) 93.68 (93.72

93.62) 94.52 (94.58
94.44) 94.50 (94.60

94.26)
Wine 57.11 (58.4

54.8) 82.94 (85.17
80.17) 81.51 (83.93

78.73) 83.23 (88.29
77.56)

Healthrisk 24.09 (26.4
21.2) 55.86 (58.25

53.04) 57.05 (59.26
54.87) 47.96 (52.07

43.07)

Miniboone −60.55
(

−60.4
−60.8

)
64.95 (65.12

64.77) 66.38 (66.70
66.05) 58.79 (60.72

57.30)

Pen Digits 48.31 (48.4
48.2) 61.02 (61.33

60.64) 66.94 (67.51
66.36) 69.99 (70.66

69.15)
Beans 36.85 (37.3

36.4) 64.63 (65.07
64.18) 71.12 (71.56

70.75) 67.19 (68.10
66.32)
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Table 5.2: Accuracy Performances on test data

Average Accuracy
All features

Baseline Baseline DRL Transformer

Synthetic 0.998 (0.999
0.998) 0.998 (0.999

0.998) 0.997 (0.998
0.997) 0.998 (0.998

0.996)
Wine 0.981 (0.987

0.969) 0.960 (0.971
0.946) 0.939 (0.951

0.922) 0.958 (0.972
0.917)

Healthrisk 0.845 (0.857
0.831) 0.824 (0.836

0.810) 0.834 (0.845
0.823) 0.811 (0.830

0.783)
Miniboone 0.947 (0.948

0.946) 0.870 (0.871
0.869) 0.863 (0.865

0.860) 0.928 (0.929
0.926)

Pen Digits 0.967 (0.967
0.966) 0.940 (0.942

0.938) 0.922 (0.926
0.919) 0.951 (0.955

0.948)
Beans 0.924 (0.927

0.922) 0.883 (0.885
0.881) 0.908 (0.911

0.906) 0.925 (0.928
0.921)



6
Conclusions

This thesis tackles the challenge of Classification with Costly Features
(CwCF), a significant issue in real-world applications, as data retrieval often
incurs costs that are frequently overlooked. This work aims to develop novel
state-of-the-art models for CwCF problems, utilizing the paradigm of rein-
forcement learning (RL) to achieve this goal. The contributions are structured
around three main models: two specifically designed for the CwCF problem
and one focused on classification tasks.

First, we note that the Chapter 3 proposed DRL model achieves better
or similar results when compared to the baselines. Reward-wise, the proposed
RL model achieves better performance in four datasets, while achieving similar
performance in the other two datasets. The noted downside in accuracy
is expected as the objective is indeed balancing between more information
and lower classification cost. In practice, the model is being trained to
maximize classification accuracy, while minimizing cost, which translates to
less information.

The ’synthetic’ dataset provided a way of demonstrating the model
choices in an easy-to-visualize scenario. With this simplified data, it was
possible to show how the proposed method behaves in different states, with
different levels of information. A possible reason why the performance was not
as good as desired in two datasets is that the model might be data-dependent,
i.e. it suits datasets with specific characteristics, for instance, data that can be
classified with less information, while falling behind in performance on datasets
without that characteristic.

Only a few parameters (number of training episodes, exploration decay
and learning rate schedule) were adjusted between experiments, yet the model
performed consistently well across all datasets and scenarios. Moreover, this
approach maintains the RL framework, facilitating the incorporation of new
improvements suited for DQN.

Second, the transformer-based classifier showed better performance com-
pared to the baseline methods when handling datasets with missing values.
This is likely an effect of the model’s attention mechanism, which allows learn-
ing the input context effectively. By attending to different parts of the input,
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the model can leverage the learned relationship between observed features to
better predict the class. This resulted in better overall performance in scenarios
with incomplete data.

Additionally, transformer models are flexible and scalable, offering advan-
tages over more classic DL algorithms. It can naturally manage incomplete data
efficiently, simplifying data preprocessing, and avoiding imputation of missing
values. Integrating contextual information during learning is a key factor that
allows the transformer classifier to generalize well in different domains.

Third, the transformer-based agent trained in an RL framework achieved
slightly lower performance regarding returns when compared to the DRL
model, while achieving better accuracy. This indicates a more cautious clas-
sification process, acquiring more information before classifying the data. In
principle, this behavior can be influenced by weights for each loss factor (MSE
and CE).

6.1
Future Work

Regarding the first contribution, the DRL model is sufficiently flexible
to adapt to various contexts and leverage ongoing advancements in the field,
allowing for the incorporation of recent developments in RL to boost perfor-
mance. Additionally, different misclassification rewards could be implemented
to address scenarios where certain classes carry more significant consequences
than others, such as certain diseases. Furthermore, a natural extension would
be to consider actions that acquires multiple features simultaneously, which
poses a challenge in avoiding an impractical number of actions for datasets
with numerous variables. Lastly, enabling modifications to costs without the
need for retraining the agent would greatly enhance the model’s usability,
making it adaptable to dynamic cost behavior in real problems.

For the second model, the Transformer-based classifier, leveraging avail-
able pre-trained models could significantly improve feature representation by
addressing the words that represents each feature (feature title instead of fea-
ture index). This enhancement could enable the model to reason more effec-
tively about features, thereby allowing it to interpret key terms within the task
domain more accurately.

Finally, as previously mentioned, the Transformer agent trained within
a RL framework can be influenced by loss weights. Therefore, implementing
loss normalization with weighted loss, ensuring that all factors are on the same
scale, could be a natural progression. Similar strategies to those used for the
Transformer-based classifier could be applied here, utilizing the vocabulary of
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each feature. Additionally, an auto-regressive approach, employing a decoder-
based architecture, presents a promising alternative. Lastly, considering that
the current work does not address missing data during training, employing
masking techniques to handle unavailable features is a viable strategy.
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