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Abstract

Santos, Renan Almeida de Miranda; Ierusalimschy, Roberto (Ad-
visor). Revisiting Monitors, Again. Rio de Janeiro, 2025. 68p.
Tese de Doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Over the years, many programming languages were proposed with the
goal of being free from data races. The concept of monitors, in particular,
was envisioned precisely to prevent data races. In this thesis, we describe
a data-race-free programming language inspired by monitors. Our languages
features threads, shared memory with referential semantics, unbounded loops,
and a novel construct that emulates monitor capabilities. This new construct
is interesting because it is simpler and at the same time more flexible than
monitors. We prevent data races in the language by using a type system that
allows only immutable or protected data to be shared among threads. We
defined the small-step operational semantics of this language through three
distinct and hierarchically layered single-step operations: roughly, the first
layer represents individual cores, the second layer manages the shared memory,
and the third layer manages the thread pool. Over these relations, we defined
a multistep relation that produces a trace of program execution. We use this
trace to prove the absence of data races. All these results were formally defined
and proved in Coq.

Keywords
Monitors; Data Races; Operational Semantics; Formal Proofs.



Resumo

Santos, Renan Almeida de Miranda; Ierusalimschy, Roberto. Re-
visitando Monitores, Novamente. Rio de Janeiro, 2025. 68p.
Tese de Doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Ao longo dos anos, muitas linguagens de programação foram propostas
com o objetivo de prevenir condições de corrida para acessos à memória. O
conceito de monitores, em particular, foi concebido justamente para evitar
condições de corrida com acessos à memória. Nesta tese, nós descrevemos
uma linguagem de programação inspirada por monitores e livre desse tipo de
condição de corrida. Nossa linguagem possui threads, memória compartilhada
com ponteiros, laços não limitados, e uma construção nova que emula as
capacidades de monitores. Essa nova construção é interessante porque é mais
simples e, ao mesmo tempo, mais flexível do que monitores. Nós prevenimos
condições de corrida na linguagem por meio de um sistema de tipos que
permite apenas o compartilhamento entre threads de dados imutáveis ou
protegidos. Nós definimos a semântica operacional em passo pequeno da
nossa linguagem por meio de três operações distintas e hierarquicamente
organizadas: grosseiramente, a primeira camada representa núcleos individuais,
a segunda camada gerencia a memória compartilhada e a terceira camada
gerencia o conjunto de threads. Sobre essas relações, nós definimos uma relação
de múltiplos passos que produz um traço da execução do programa. Nós
usamos esse traço para provar a ausência de condições de corrida. Todos esses
resultados foram formalmente definidos e provados em Coq.

Palavras-chave
Monitores; Condições de Corrida; Semântica Operacional; Provas

Formais.
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1
Introduction

It is fair to say that most mainstream devices of this era have CPUs with
multiple cores. Parallelism as a means to increase performance has become
ubiquitous, and we cannot ignore its impact on the way we develop programs.
In specific, programming languages that combine preemptive multithreading
with the shared memory model impose on programmers a whole new class of
time-dependent errors that are specially hard to deal with [14, 15]. This thesis
is about data-race errors and programming languages designed to avoid them.

The concept of monitors have been created precisely to prevent data
races. Monitors encapsulate shared variables and restrict their access through
monitor procedures, which themselves are always called in mutual exclusion [9,
10]. Concurrent Pascal [11], the first language to implement monitors, takes
advantage of the guarantees provided by the model to statically check for the
absence of race-prone code. In our previous work [2, 3], we revisited the concept
of monitors and applied it to a programming language with pointers, a powerful
feature that was not present in the original proposals. In the present work, we
once again look into monitors as a way to implement data-race-free languages,
but now focusing on the formal aspects of this proposal. An important result
of this process was the decomposition of monitors in its essential components.

The work of formally proving that a language satisfies some property
begins by defining a formal semantics for the language: if we are to prove that
something is true when a program runs, we need to know what “runs” entails.
Formalizing a language property is also not a trivial matter, specially for data
race freedom. A data race is an event that happens during the execution of a
program, thus, we define its absence in terms of all the possible sequences of
steps a program can take. The very notion of this definition is dependent on
the formal semantics of a language.

In order to be able to prove that a language is data-race free, we need
the language to enforce this characteristic. There are many ways to do that,
ranging from Rust’s ownership type system to pure functional languages that
restrict themselves to immutability. As discussed, our inspiration is the monitor
concept, so we chose to prove data race freedom for a language that guarantees
that mutable data being shared between threads always does so in mutual
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exclusion.
To illustrate the safety guarantees behind the essence of the monitor

model, we created Elo, a toy concurrent language with threads that share data.
Elo provides mutual exclusion capabilities through its single non-conventional
feature: monitored references. Unlike standard references, monitored references
cannot be freely read from or written to. Accessing a monitored reference
requires entering its critical region, which is done in mutual exclusion with
any other threads trying to do the same. Thus, monitored references provide
the same safety guarantees that monitors do, without, however, its class-like
modularity features. With that, we decompose monitors into its most basic
components. Besides monitored references, Elo has enough features so we can
measure it against full-fledged languages: it has basic arithmetic operations,
conditionals, loops, functions as first-class values, memory manipulation oper-
ations (read, write, and allocation), wait statements, and spawn statements
for creating threads.

In addition to monitored references, Elo also has read-only and writeable
references. As the name implies, read-only references can only be read from,
while writeable references can be read from and written to. Elo’s type system
enforces safety by restricting how writeable references (which are the prime
material of data races) can be shared between threads. Roughly, Elo ensures
that writeable references shared by two or more threads are always accessed in
mutual exclusion. Despite the apparent simplicity for a race-free guarantee in
this scenario, trying to formally prove it was challenging, and we did not find
techniques and examples in the literature that we could use as a basis. One of
the main contributions of this thesis lies in showing the rationale of that proof.

As mentioned, we need to provide an operational semantics for Elo in
order to be able to prove data race freedom. Normally, we would do so by
defining a single reduction relation that describes how a memory and a pool of
threads get transformed by a single step of execution. We could formalize this
relation by an inductive set of rules. This is the basic idea behind small-step
operational semantics. Note, however, that several rules for these reduction
steps would not care about the memory, and most would not care about the
thread pool per se, only about a single thread. For example, the semantics
behind function calls is oblivious both to the memory and to the thread pool.
In order to improve modularity, Elo’s small-step rules are decomposed into
three hierarchical step operations: term step, memory step, and concurrent
step. Term step concerns itself solely with how a term (a thread) reduces,
memory step adds the shared memory semantics, and concurrent step adds
multithreading. By doing this, we avoid repeating unnecessary information in
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our definitions.
We can think of our three step operations as components in the multi-core

architecture of computers: term step represents a core, memory step represents
the memory controller unit, and concurrent step represents the thread pool
controller inside the operating system. The steps interact with each other
through effects, which act as the bus in our analogy. They describe the side
effects of the operation being performed by the reductions and serve as a
channel for relevant data to be exchanged between step levels. For example,
the read effect describes the act of reading from the memory. It allows the
address from the term and the loaded value from the memory to be passed
between the CPU level and the memory level.

Effects also act as labels for our step operations, as in a Labelled
Transition System [20]. In that regard, the language’s multistep operation
uses effects to produce a trace of the execution of the program. A trace is a
sequential list of events, with each event being composed of a thread identifier
and and effect. In essence, this list describes which thread caused which effect
for each point in the discrete timeline of the program’s execution. Effects,
traces, and the hierarchy of steps allowed us to prove language properties in a
legible and modular manner.

Our main safety result states that, for all possible traces that an Elo
program can produce, there is no possible scenario in which two threads
perform memory operations in a manner that would create a data race. For
the concept of data races, we adopt the same definition of the Java [16] and
C++ [17] memory models. We say that two memory operations on the same
memory location form a data race if at least one of them is a write operation,
and they do not follow a happens-before order. Two operations are ordered
by a happens-before relation if both execute on the same thread or if they
synchronize over the same lock.

To achieve this result, we define some auxiliary properties and prove that
they hold for all the steps of a program’s execution. We call these properties
invariants. There are two core invariants to the overhaul schema of our safety
proof: one deals with mutual exclusion and the other tracks shared data
between threads. Elo uses standard locks to implement mutual exclusion, so the
first invariant states that when a lock is locked, then one and only one thread is
inside its critical region, and when a lock is unlocked, then no threads are inside
its critical region. The second invariant uses regions in order to group memory
locations. A thread can be in its own unique region or inside a monitored
reference region. The invariant ensures that if a reference is inside a region,
than it is owned by that region. This allows us to assign exclusive ownership
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to memory locations, meaning an address is either owned by a specific thread
or by a monitored reference. Ownership of this kind does not change during
execution; if an address is allocated and begins its life cycle belonging to a
thread, it will forever be attached to that thread. Moreover, if an address can
access another address, then both addresses belong to the same owner. As we
will see, we are able to prove safety by combining this notion of regions and
ownership with the mutual exclusion guarantees of the first invariant.

We formalized our definitions and checked our proofs in Coq [18] (8.20.0),
a proof management system. You can check the Coq code at [1].

The rest of this thesis is organized as follows. In Chapter 2, we discuss the
language and its features. In Chapter 3, we formalize Elo’s syntax, operational
semantics, and typing rules. In Chapter 4, we discuss the main properties
behind our proofs. In Chapter 5, we present the main safety theorem and
explain how we proved it. In Chapter 6, we discuss related work. Lastly, in
Chapter 7 we present our concluding remarks.



2
The Language

In this chapter, we introduce Elo, the programming language we created
to use in our formalizations. Elo is an expression-oriented1 concurrent pro-
gramming language with mutable memory and threads that can share data.
We designed Elo to formalize memory operations in a safe threaded environ-
ment; thus, the language only includes features relevant for providing sufficient
expressivity and proving interesting properties regarding memory safety and
concurrency.

Elo is meant to be simple. We tried to break the semantics of the language
into basic constructs and to assign a single concept to each of them. This
approach to simplicity is quite common in programming-language research.
For instance, in most languages variables are mutable by nature (hence their
names), however, representing values with identifiers and having mutable
values are two different concepts. For this reason, as we will see, we separated
them as several functional languages do. We do something similar with
monitored references. Their responsibility is to provide synchronized access
to a value, not to provide mutability capabilities; thus, monitored references
cannot be written to. It is up to the programmer to put a mutable reference
inside a monitored reference in order to implement mutable synchronized
state. This portents to the fact that Elo is closer to a high-level intermediary
representation than to a general purpose programming language. Elo’s goal is
to provide a set of features concise enough to keep our proofs simple, but wide
enough so we do not weaken their merits. Some of the usual features that are
missing from the language, such as arrays and records, could be implemented
through grunt work. Also, we express some standard high-level constructs in
Elo by combining one or more of its own low-level constructs.

Before we delve into the specifics of the language, let us first familiarize
ourselves with its concepts by analyzing two examples of programs written
in Elo. The first example implements a calculator for the Fibonacci sequence
and showcases most of Elo’s standard constructs. The second example explores
the concurrency features of the language by tackling the producer-consumer
problem.

1Every one of Elo’s constructions is an expression and thus reduces to a value.
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1 function fib(n : Nat) : Nat
2 if n < 2 then
3 n
4 else
5 let a : w&Nat = new w&Nat 0 in // first element
6 let b : w&Nat = new w&Nat 1 in // second element
7 let x : w&Nat = new w&Nat 1 in // result
8 let i : w&Nat = new w&Nat (n - 2) in // counter
9 while !i do

10 a := !b; // updates the first element
11 b := !x; // updates the second element
12 x := !a + !b; // updates the result
13 i := !i - 1 // decreases the counter
14 end;
15 !x // returns the result
16 end
17 end
18 fib (10) // yields 55

Figure 2.1: Calculating the Fibonacci sequence.

Figure 2.1 presents the implementation for the Fibonacci calculator. The
fib function receives the index of an element in the Fibonacci sequence and
returns the value of said element. The function first checks for the base cases
with an if statement, then iteratively calculates the Fibonacci sequence by
using a while statement.

Elo follows ML’s style in which variables are always immutable and
mutability only occurs in memory cells. The variable a from line 5 evidences
this feature, as it is a let constant that points to a mutable memory cell. (The
b, x, and i variables follow the same reasoning.) The expression ⟨ new w&Nat 0 ⟩
allocates a memory cell and initializes it with zero; then, the variable a gets
assigned the reference that points to that cell. The type ⟨ w&Nat ⟩ in the new
expression means “writeable reference to a number”; it indicates which type of
reference is being created. Besides writeable references (w&), Elo has read-only
(r&) and monitored (x&) references. We will discuss the distinctions between
these three types later.

As shown in lines 9 through 13, we retrieve the value stored in a memory
cell by dereferencing a reference with the ⟨ ! ⟩ operator. In a similar manner, we
store a new value in a memory cell with the assignment statement. Assignments
expect a reference in the left-hand side of the ⟨ := ⟩ operator, and a value with
a matching type in the right-hand side. With let, new, dereferencing, and
assignment, we emulate conventional variables from imperative languages as
(constant) variables that point to (mutable) cells.

Note that you cannot allocate a reference without giving it an initial
value, meaning that there are no empty references or null pointers in the
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1 let buffer : x&(w&Nat) = new x&(w&Nat) (new w&Nat 0) in
2 let max : Nat = 10 in
3 spawn // producer
4 while 1 do
5 acquire buffer (λ n .
6 await (!n < max); // wait until not full
7 n := !n + 1
8 )
9 end

10 end;
11 spawn // consumer
12 while 1 do
13 acquire buffer (λ n .
14 await (!n > 0); // wait until not empty
15 n := !n - 1
16 )
17 end
18 end

Figure 2.2: A simplified producer-consumer scenario.

language. Also, there are no booleans in Elo; as in C, conditions are false
when they evaluate to zero, and are true when they evaluate to any other
number. For this reason, we only need to dereference the counter in line 9 to
check if it reached zero.

Figure 2.2 presents a simplified producer-consumer program. It spawns
a producer thread and a consumer thread that manipulate a shared buffer.
In this contrived version, the buffer holds a number that gets incremented
(produced) and decremented (consumed).

The example showcases Elo’s main concurrency feature: monitored refer-
ences. Monitored references closely relate to monitors, as they can be used to
implement the concurrent aspects of monitors. We will discuss their relation-
ship in Section 2.3. Going back to the example, note the type of the buffer
variable: a monitored reference (x&) that points to a writeable reference (w&)
that points to a number (Nat). We define buffer as a monitored reference
in order to synchronize thread access to its contents, and to protect its in-
ner mutable state. As with read-only and writeable references, a monitored
reference points to a memory cell, but, unlike other reference types, the lan-
guage ensures that the contents of monitored cells can only be accessed by a
thread in mutual exclusion with other threads. (Let us momentarily skip the
discussion on how Elo enforces this safety guarantees, and instead focus on the
constructions surrounding monitored references.) The inner mutable reference
also hints to the fact that monitored references by themselves are not mutable.
As mentioned, just like with variables, we embed mutability into monitored
references by having them hold writeable references. Thus, while we cannot
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1 type : ‘Unit ’ // unit type
2 | ‘Nat ’ // number type
3 | ‘r&’ type // read -only reference type
4 | ‘x&’ type // monitored reference type
5 | ‘w&’ type // writable reference type
6 | type ‘->’ type // function type
7

8 exp : ‘unit ’ // unit literal
9 | n // numeric literal

10 | exp ‘+’ exp // plus
11 | exp ‘-’ exp // monus
12 | exp ‘;’ exp // sequencing
13 | IF exp THEN exp ELSE exp END // conditional
14 | WHILE exp DO exp END // loop
15 | x // variable
16 | ‘λ’ a ‘:’ type ‘.’ exp // function abstraction
17 | exp ‘(’ exp ‘)’ // function call
18 | SPAWN exp END // thread creation
19 | NEW type exp // allocation
20 | ‘!’ exp // dereferencing
21 | exp ‘:=’ exp // assignment
22 | ACQUIRE exp ‘(’ ‘λ’ a ‘.’ exp ‘)’ // acquire
23 | AWAIT exp // await

Figure 2.3: Concrete syntax (types and expressions).

assign a value to a monitored reference, we can read its contents and assign a
value to its inner writeable reference.

As seen in lines 5 and 13, we must use the acquire expression instead of
the previously mentioned ⟨ ! ⟩ operator to read the contents of a monitored ref-
erence. An acquire expression acquires the lock associated with the monitored
reference, reads the contents of the monitored reference from the memory, then
calls the attached anonymous function with the read value as the argument.
In our example, the producer and the consumer try to acquire the buffer to
gain access to the inner writeable reference (which gets stored in the variable
n) and increment/decrement it. An acquire also implicitly releases its lock
at the end of the called function, essentially delimiting a syntactical critical
region for handling a monitored reference.

Critical regions can contain await operations that block until a certain
condition is met (without holding to the lock while waiting). We see this in
line 6, as the producer blocks while the buffer is full, and in line 14, as the
consumer blocks while the buffer is empty.

2.1
Syntax

Having reviewed some general examples of Elo programs, let us now
focus on its constructs. Figure 2.3 presents the complete concrete syntax for
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Elo. Uppercase items and items delimited by single quotes denote terminals
(tokens), while lowercase items (type and exp) represent non-terminals.

Elo’s primitive types comprise Unit (the type of the unit value) and Nat

(the type of numeric values), with Nat serving as an example for other triv-
ial types that are not in the language such as integers, floats, and booleans.
Besides the primitive types, the language has function types and three kinds
of reference types. The three reference types differentiate from one another by
which operations can be performed on them: a read-only reference can only be
read from, a monitored reference can only be acquired, and a writeable refer-
ence can be read from and written to. Conceptually, monitored references are
repurposed regular references that include synchronization features. Instead of
creating a new construct, we chose to implement synchronization primitives
using references precisely so we can be economic with the constructions we
introduce to the language. By doing it this way we reuse most of the semantic
constructions meant for memory expressions, which simplifies the proofs and
makes Elo more concise.

In order to guarantee data-race-freedom, Elo distinguishes between safe
and unsafe types, the idea being that values with safe types can be freely
shared between threads. Unit and Nat are naturally safe. Read-only references
are also safe, but only because they must be recursively safe, meaning a read-
only reference can only point to values with safe types. This prohibits the
existence of a read-only reference that contains a writable reference, which
would allow for potential races due to pointer indirection. Monitored references
are also safe, since its contents can only be manipulated while in mutual
exclusion with other threads. Writeable references are naturally unsafe, and
functions are unsafe due to their dependencies on variables from enclosing
scopes (closures). We will explain these ideas more thoroughly when we discuss
the safety rationale and the type system.

Regarding expressions, a unit represents a useless value, mainly the
result of operations that only perform side effects, and an n represents numeric
literals. Arithmetic operations, sequencing, conditionals, and loops work as
expected; as we mentioned, conditions inside conditionals and loops compare
a number to zero. We could have trivially added multiplication, division,
comparisons, and other common operators to the language. We chose not
to do so because these constructions would only repeat what addition and
subtraction (monus2) already exemplify in the proofs. This is in line with
what we explained about the goals of the language.

2The monus operation subtracts two numbers without yielding negative values. If the
second value in the expression is greater than the first, then the expression evaluates to
zero.
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As to functional constructs, an x represents a variable, and function
abstractions ⟨λ a : τ. t ⟩ introduce variables; the a stands for the parameter
name, the τ stands for the type of that parameter, and t is the body
of the function. Functions only take a single parameter, but we can use
currying to model multiple parameters. Function application is standard, and
basically performs variable substitution, as we will see when we delve into the
operational semantics. The let construct from the examples is not present
in the syntax because we implement it indirectly as a syntactic sugar using
function abstraction and function application:

let a : τ = t ′ in t ≡ ( λ a : τ. t ) t ′

The function construct we used to define fib in the first example is
also a syntactic sugar. Since Elo has functions as first class values, top-level
function definitions are simply let definitions of anonymous functions:

function f( a : τa ) : τ t end t ′ ≡ let f : τa → τ = ( λ a : τa. t ) in t ′

A spawn creates a new thread that evaluates the expression within the
body of the spawn.

Regarding expressions that concern the memory, the new operator allo-
cates and initializes references. It takes both an expression and a type: the
expression is used to initialize the corresponding memory cell; the type in-
dicates which kind of reference is being created: a read-only, monitored, or
writeable reference. Dereferencing (also called a load operation) takes a refer-
ence and returns its value from the memory, while assignment takes a reference
and a value and writes that value into the reference’s memory cell.

An acquire operation is technically a memory operation, since it ma-
nipulates monitored references, but it mainly works as a synchronization con-
struct. It takes a monitored reference and a function, and goes through four
steps. It blocks until it acquires the monitored reference’s lock, then it reads its
contents, calls the function with the read value as the argument, and, finally,
when the function finishes its execution, the acquire releases the monitored
reference. As mentioned, an acquire delimits a syntactical critical region for
handling a monitored reference. It also implicitly introduces a self variable to
the scope of this critical region. The self variable is an alias to the acquired
monitored reference itself.

An await operation can only be performed inside a critical region. It
blocks its thread until its condition is met, without retaining the lock of the
monitored reference. For comparison, standard monitors use two strategies to
define the semantics of its wait operations [13]: explicit signal monitors use
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1 while not (some condition) do
2 release the lock;
3 wait until another thread releases the lock;
4 acquire the lock
5 end

Figure 2.4: Pseudocode implementation for the await expression.

wait and signal constructs paired with condition variables, so that when one
thread blocks in a wait, another thread has to explicitly signal to restart it;
implicit signal monitors synchronize using wait-until constructs, that block the
current thread while a given logical predicate is not true. There are tradeoffs
regarding performance and ease of use between the two strategies, with implicit
signal monitors usually being slower but simpler, since they eliminate the need
for cooperation logic between threads. Nevertheless, the two models are equal
in terms of expressivity, so we chose to implement implicit-signaling for Elo
because we found it easier to formalize. Concretely, if the condition in an await
expression is false, it releases the lock and blocks until another thread releases
the lock. Then, the await tries to reacquire the lock and, once it does, it checks
the condition again. If the condition is true, await does nothing and reduces
to unit. Figure 2.4 illustrates this semantics in pseudocode.

2.2
Safety guarantees

In order to guarantee the absence of data races, Elo enforces that write-
able references only have one owner during their entire lifetimes. Conceptually,
a writeable reference in Elo can either belong to a thread or to a monitored ref-
erence. A writeable reference that belongs to a thread can only be accessed by
that thread, while a reference that belongs to a monitored reference can only
be accessed inside the body of a corresponding acquire expression. Our data-
race-freedom guarantee comes from the fact that thread owners by definition
only access their references sequentially, and writeable references that belong
to monitored references can only be accessed in mutual exclusion imposed by
acquire expressions.

We use the syntactic concept of boundaries to enforce exclusive ownership
for writeable references. A spawn statement and both the initialization and
the acquire of a monitored reference each delimit a boundary. The type
system prevents values with unsafe types from crossing these boundaries
by restricting variable visibility from enclosing scopes and by making sure
that values returned by acquire expressions do not have unsafe types. Thus,
writeable references (which are unsafe) do not gain or switch owners.
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1 let a : w&Nat = new w&Nat 42 in
2 spawn
3 a := 0 // error: undefined variable ‘a’
4 end;
5 a := 1

Figure 2.5: Variable visibility for spawn statements.

1 let a : w&Nat = new w&Nat 1337 in
2 let m : x&w&Nat = new x&w&Nat (
3 a // error: undefined variable ‘a’
4 ) in
5 spawn
6 acquire m (λ n . n := 0)
7 end;
8 a := 1

Figure 2.6: Variable visibility for (monitored) initializers.

1 let m : x&w&w&Nat = new x&w&w&Nat (
2 new w&w&Nat (new w&Nat 2)
3 ) in
4 let a : w&Nat = new w&Nat 1 in
5 acquire m (λ n . n := a); // error: undefined variable ‘a’
6 spawn
7 acquire m (λ n . !n := 0)
8 end;
9 a := 1

Figure 2.7: Variable visibility for acquire expressions.

Let us illustrate the aforementioned restrictions for boundaries using
some examples. Figure 2.5 shows why we cannot let an unsafe value cross
spawn boundaries. In line 1 we define a writeable reference a and try to share
it with the thread spawned in line 2. The language yields an error since a is
not visible inside the spawn statement. If we did not have that check, then the
assignments in lines 3 and 5 would form a data race.

Figure 2.6 showcases why we cannot use unsafe values when initializing
monitored references. In line 1 we create a writeable reference and store it in
the variable a, and in lines 2 through 4 we try to wrap it with a monitored
reference. As the variable is not visible within the scope of the new expression,
we get an error. Without it, the assignments in lines 6 and 8 would concurrently
access the same writeable reference, and thus cause a data race. Intuitively,
unsafe values manipulated within the initializer of a monitored reference are
owned by that monitored reference, as they can later appear inside an acquire
expression. For this reason, the variable a cannot belong to both the thread
and the initializer of the monitored reference.
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1 let m : x&w&Nat = new x&w&Nat (new w&Nat 24) in
2 let a : w&Nat = acquire m (λ n .
3 n // error: unsafe type
4 ) in
5 spawn
6 acquire m (λ n . n := 0)
7 end;
8 a := 1

Figure 2.8: The value of an acquire expression

The visibility rule for acquire expressions follows the same logic. Fig-
ure 2.7 illustrates this concept. In line 1 we create a monitored reference m
that wraps a writeable reference that points to another writeable reference. In
line 4 we define a new writeable reference a, and in line 5 we try to assign it to
the inner writeable reference of m. Since a cannot cross the acquire boundary,
we get an error. If we did not have that restriction, we would have the same
problem of Figure 2.6, so the assignments in lines 7 and 9 would form a data
race.

Figure 2.8 highlights the rule that enforces that the value returned by
an acquire expression must be safe. In line 1 we create a monitored reference
with an inner writeable reference. In line 3 we try to escape that writeable
reference from the monitored reference using an identity function. This yields
an error because n has type ⟨ w&Nat ⟩, which is unsafe. If not for this error, the
assignments in lines 6 and 8 could cause a data race.

In short, these examples illustrate the safety guarantees embedded in
Elo’s typing system. As we will see, the restrictions in the typing rules reflect
these cases. For example, the typing rule for the expression ⟨ spawn exp ⟩ types
the body of the spawn using an environment that excludes mutable variables,
so that any attempt to use an external mutable variable raises a type error.
Also note that the fact that we were able to prove the absence of data races
for well-typed Elo programs is the definitive argument for the exhaustiveness
of the rules. If there was a missing restriction, Coq would not allow us to
complete the proof.

2.3
Comparison with monitors

Monitored references can do everything that monitors can and more while
still maintaining the same guarantees of the model. Before we compare the two,
let us recapitulate the essence of the monitor concept.

Monitors were proposed by Brinch Hansen [9] and Hoare [10]. A monitor
is a class-like data structure that contains encapsulated variables and a
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selection of methods that can only be called in mutual exclusion between
multiple threads. In more abstract terms, a monitor provides a pre-defined
interface for programs to safely interact with data shared between threads.
Monitor methods may also block while waiting for a specific change of state
inside the monitor.

The original monitor proposals were not envisioned for languages with
references [29]. The rule that prevented race conditions was a simple scope rule
that only permitted a method to access their own variables or the monitor’s
variables. In a language with pointers, it is obvious that such guard is not
enough to guarantee data race freedom. For example, imagine a monitor that
stores a reference to an integer with a method that returns this pointer. Similar
to the examples we discussed in Section 2.2, such configuration would allow the
method to “leak” protected data from the monitor. We addressed this issue
in our first time revisiting the monitor concept [3]. We implemented Aria,
a language with references and monitors that maintained the model’s safety
guarantees.

Aria is a standard imperative programming language with native threads
that share data with one another. Aria uses monitors and the concept of
immutability to guarantee the absence of data races, since mutable shared
data can only be accessed inside monitor operations. The implementation of
references in Elo draws much from these ideas. Particularly, the restrictions
that Aria’s type system imposes on the boundaries between threads and
monitors are very similar to those that Elo enforces for its threads and
monitored references. With Aria, we also expanded on the concept of monitors
with scoped permissions and unlocked monitors. Scoped permissions allowed
monitors to express resource synchronization using syntactical scopes, while
unlocked monitors aimed at dealing with the issue of constantly acquiring and
releasing locks when repeatedly calling monitor methods.

To illustrate the problem unlocked monitors were trying to solve, consider
a monitor with basic get and set methods that encapsulates an array of
strings. Now imagine the common task of iterating over such array. We have
to lock and unlock the monitor for each get and set call; this repetition can get
tremendously expensive. Our solution in Aria involved creating a construct for
unlocking a monitor within a syntactically defined region, similar to what Elo’s
acquire does. However, because we were still restricted by the monitor syntax
and representation, the implementation for that feature relied on dynamic
checks, which is undesired. The deconstruction of monitors into monitored
references is the evolution of this idea, as we can check the rules for monitored
references statically.
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Another important concept associated to monitors is reentrancy. For
example, when a thread calls a monitor method that calls another method
from the same monitor, it is unclear whether the thread blocks (in a deadlock)
or not. Such scenarios are not uncommon, and it is somewhat undesired that
the semantics in these cases is not explicitly set by the original definitions of
the concept. For languages that use locks to implement monitors, in particular,
what defines the semantics is the reentrancy capabilities of said locks. As we
will see, the semantics of reentrancy is clearer for monitored references.

It is also interesting to analyze how the idea behind monitors is usually
misrepresented in other programming languages. For example, in Java, the
Object superclass (from which all other classes descend) comes with a lock and
a condition variable. Those features, combined with the synchronized keyword
and the wait and notify methods, are sometimes enough for some authors [28]
to characterize it as a monitor implementation. However, this reflects a lack of
understanding of the original monitor proposals. A monitor is not a collection
of features from which the programmer can code their own data race freedom.
The whole point of the construct is the safety ensured by the language, which
is precisely the reason for why we are once again studying it.

Regarding the comparison between monitors and monitored references,
note that a monitored reference, just like a monitor, also encapsulates data and
provides waiting capabilities through await. Monitored references, however,
do not statically set how the rest of the program can interact with that data.
Thinking abstractly, monitors pair safety guarantees with class-like modularity
features, while monitored references forgo the latter to focus on the former.
This is not to say that monitored references are limited if compared to
monitors; on the contrary, the acquire expression allows monitored references
to be handled dynamically, without the need for pre-defined functions. Thus,
the disassociation of safety from orthogonal modularity concerns expands on
the expressivity of monitors.

As to the missing class-like capabilities, Elo does not have object-oriented
features mainly because implementing them is orthogonal to the concurrency
properties we want to prove. Adding such constructs to the language would fall
into the grunt work category we mentioned earlier. That being said, we could
implement monitors using monitored references in Elo if we added something
like records to the language. Because Elo has first-class functions, we can set
the fields of a record to represent both monitor variables and methods. Thus,
we can use such records wrapped by monitored references to mimic monitors.

Note that this implementation with records eliminates some of the issues
with method reentrancy we mentioned earlier. For example, when recursively
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calling a monitor method, we do not need to worry about locks because we
can use the record instead of the monitored reference to call the method. The
semantics of this type of usage is very clear. It is obvious that calling any record
method will not block, since anonymous functions stored within records have
nothing to do with locks or concurrency.



3
Formalization

In this chapter, we formalize Elo’s syntax, operational semantics, and
typing system.

3.1
Syntax

Figure 3.1 lists the terms of Elo’s abstract syntax. We implemented them
in Coq using the inductive type tm in the Sem.v file along with the other
definitions of the semantics1. We use “terms” here instead of “expressions” to
differentiate the formal syntax from the concrete syntax. Most of the terms in
the list are identical to their expression counterparts. The extra terms (marked
with an asterisk) were added to the language so as to express the intermediary
results of evaluating some operations.

In order to better understand why we added the new terms, let us quickly
review the logic behind small-step operational semantics [20]. The main idea
behind small-step semantics is that we break the evaluation of a program,
as the name implies, in small steps, with each step performing a syntactical
transformation (a reduction) to the term that represents the program. To
illustrate, let us analyze the following reduction scheme.

(4 + 3) + (2 + 1) step−−→

7 + (2 + 1) step−−→

7 + 3 step−−→

10

The evaluation of ⟨ (4 + 3) + (2 + 1) ⟩ is composed by three steps: the
first step reduces the subterm ⟨ 4 + 3 ⟩, which syntactically transforms the
initial term into ⟨ 7 + (2 + 1) ⟩; the second step reduces the subterm ⟨ 2 + 1 ⟩,
which yields ⟨ 7 + 3 ⟩; the third step performs the final addition, which ends the
evaluation since 10 is a value (a term that cannot be further reduced). Different

1The text “inductive type tm in Sem.v” in the caption for Figure 3.1 indicates this
information. Other figures will display information about the Coq definitions in a similar
manner.
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t := Terms
| unit unit literal
| n numeric literal
| t1 + t2 arithmetic plus
| t1 - t2 arithmetic monus
| t1; t2 sequencing
| if t1 t2 t3 conditional
| while t1 t2 loop
| x variable
| λ a : τ. t function abstraction
| t1 t2 function application
| new τ t memory allocation
| init τ ad t * memory initialization
| ad : τ * reference literal
| ! t memory read
| t1 := t2 memory write
| acq t1 (λ a . t2) acquire operation
| cr ad t * critical region
| wait t wait operation
| reacq ad * reacquire operation
| spawn t thread creation

Figure 3.1: Abstract syntax – terms (inductive type tm in Sem.v).

from a conventional language interpreter, that reads a program as a set of
instructions to be performed and possibly alters an external state, in small-
step semantics the program is part of the state that gets altered. With each
step, the small-step interpreter mutates the term that represents the program.
This process is destructive, as past states cannot be used to inform the behavior
of a step, and neither can we use them in our proofs. As is conventional, it is
precisely because of this that we introduced intermediary terms to the syntax.
The following reduction scheme demonstrates this reasoning; it showcases the
usage of two intermediary terms (init and reference literals) when creating a
writeable reference.

new w&Nat ( ( 1 + 2 ) - 3 ) step−−→

init w&Nat 0x13ff1400 ( ( 1 + 2 ) - 3 ) step−−→

init w&Nat 0x13ff1400 ( 3 - 3 ) step−−→

init w&Nat 0x13ff1400 0 step−−→

0x13ff1400 : w&Nat

As shown, a new term reduces to an init term that eventually reduces to
a reference literal. Syntactically, a reference literal is composed by an address
and by a type; the address is the index to the referenced memory cell, and
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the type is the type of references that point to that address. An init term
is composed by these same components, plus a subterm that encapsulates the
constructor of the reference.

We introduced reference literals to the language because we needed a
term that represented the concept of a reference. In the previous example, the
term ⟨ 0x13ff1400 : w&Nat ⟩ represents the writeable reference associated to the
address 0x13ff1400. Conversely, we introduced init terms to the language
because we needed (for the sake of the proofs) to be able to syntactically
ascertain whether or not a term was in the process of initializing a reference.
Looking at the example, it is easy to assess that the writeable reference
identified by the address 0x13ff1400 is being initialized during the second
and fourth steps. In addition, the existence of the init term also allows us to
check for some of the safety restrictions we mentioned earlier. In the example,
the ⟨ ( 1 + 2 ) - 3 ⟩ subterm only starts to be reduced in the second step, after we
transformed new into init. This means that the new term itself is static, since
none of its subcomponents mutate throughout the reduction. Thus, to assess
whether or not a term respects the boundary rules for monitored reference
initialization, we must simply check for the presence of writeable references
within new terms.

As to other intermediary terms, a cr term encapsulates a critical region
much like an init term encapsulates a reference constructor. We use cr terms
to define syntactically observable boundaries for critical regions during the
reduction. They are the immediate result of reducing an acq term, analogous
to how an init term is the immediate result of reducing a new term. The
following scheme showcases this process:

acq ( 0x1a00ff21 : x&Nat ) (λ i . i + 1) step−−→

cr 0x1a00ff21 ( 42 + 1 ) step−−→

cr 0x1a00ff21 43 step−−→

43

The reduction step of an acq term acquires the lock of the associated
monitored reference, reads its contents, and passes it as the argument to the
function attached to the term. (It also substitutes instances of self inside the
function for the value of the monitored reference.) In the example, the first
step acquires the lock of the monitored reference 0x1a00ff21, reads the value
42 from that address, and substitutes the variable i for 42 in the body of the
function. It is the reduction of the cr term that actually evaluates the function
to completion, as seen in the second step. In the last step, the cr term releases
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σ := Safe Types
| Unit unit type
| Nat numeric type
| r&σ read-only reference type
| x&τ monitored reference type

τ := Types
| σ safe type
| w&τ writeable reference type
| τ1 → τ2 function type

Figure 3.2: Abstract syntax – types (inductive types sty and ty in Sem.v).

the lock and results in the value returned by the function. Syntactically, the
address ad in the term ⟨ cr ad t ⟩ refers to the associated monitored reference,
while the subterm t refers to the term being evaluated inside the critical region.

In regard to waiting semantics, there are, as the list of terms shows,
no await operations in the abstract syntax, only wait terms. We implement
await operations by wrapping a wait with a loop, similar to what we have
seen in Figure 2.4. This minimizes complexity, as wait is the simplest construct
we need to model waiting semantics, and less complex constructs lead to less
complex proofs.

await t ≡ while (not t) (wait self)

As we can see, wait is not attached to a condition; its parameter simply
indicates which monitored reference is associated to that wait. Remember
that when an acq term gets reduced, it substitutes instances of self for
the value of the acquired monitored reference. Thus, every ⟨ wait self ⟩ from
an await eventually becomes a ⟨ wait ( ad : x&τ ) ⟩, which correctly identifies
the monitored reference the wait pertains to. During evaluation, a wait
term releases the lock of its monitored reference and reduces to a reacq
intermediary term that, in turn, blocks while trying to reacquire the same
lock. We implement wait semantics like this because acq terms are dynamic,
and we cannot know at compile-time which address to use for a wait. We will
explain the restrictions around waiting in more detail in the next chapter.

Figure 3.2 lists Elo’s types as used by the abstract syntax. Note that
the formalizations differentiate safe types from general types by construction.
We represent safe types with the Greek letter ⟨σ ⟩ and general types with
the Greek letter ⟨ τ ⟩. Safe types include Unit, Nat, read-only reference types,
and monitored reference types, while general types include the safe types plus
writeable references and function types. Moreover, it is worth highlighting the
role of the inner types within each reference type: a read-only reference type
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v := Values
| unit unit value
| n numeric value
| ad : τ address value
| λ a : τ. t function value

Figure 3.3: Values (inductive type value in Sem.v).

contains an inner safe type (marked by the σ in ⟨ r&σ ⟩), which enforces by
construction that read-only references must be recursively safe; the monitored
reference type is special because it is a safe type that can contain an unsafe
type (as evidenced by the τ in ⟨ x&τ ⟩); lastly, writeable reference types are
standard, and can point to any other type.

3.1.1
Values

Figure 3.3 lists Elo’s values, which, as we mentioned, are terms that
cannot be further reduced. In the coming sections, we use ⟨ v ⟩ to indicate that
a term is a value. We also use value as a predicate, as in ⟨ value t ⟩, to the
same effect.

As is common, we do not evaluate inside the body of function abstrac-
tions, so they are considered values.

3.2
Operational Semantics

We use small-step operational semantics to define Elo’s evaluation. As we
discussed earlier, in small-step semantics we define the execution of programs
in terms of single-step reductions. The real semantics of the language is the
transitive closure over the single-step relations; in short, we evaluate programs
by performing zero or more steps. This method allows us to inductively reason
about all the intermediary steps of an execution without needing to care
whether it finishes or not.

Usually, small-step operational semantics are defined by a sole step
relation that describes the behavior of the reductions. The semantics of Elo
is a bit different. Instead of having one step relation, it has three hierarchical
relations: concurrent step (C–Step), memory step (M–Step), and term step
(T–Step). C–Step is the main reduction relation of the language, but we define
it in conjunction with the other two relations. In essence, T–Step describes
solely how a term reduces; M–Step describes how a term step interacts with
the memory; and C–Step describes how a memory step interacts with the
thread pool.
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e := Effects
| alloc ad τ memory allocation
| init ad t memory initialization
| read ad t memory read
| write ad t memory write
| acq ad t acquire lock
| rel ad release lock
| wacq ad acquire lock (wait)
| wrel ad release lock (wait)
| spawn t thread creation
| none no effect

Figure 3.4: Effects (inductive type eff in Sem.v).

This modular design was inspired by the multi-core architecture of
computers: T–Step represents a core, M–Step represents the memory controller
unit, and C–Step represents the thread pool controller inside the operating
system. The main benefit of this hierarchical definition is that it allowed us to
prove language invariants in a didactic progression, in the sense that we first
proved properties on T–Step, then on M–Step, and finally on C–Step.

Elo’s operational semantics is a Labelled Transition System [20]. In that
sense, we use effects as the labels that represent the interactions between the
three steps. Thus, effects pose as the bus in our analogy, since they allow the
steps to “communicate” with each other. To illustrate, let us think of how
dereferencing works. As mentioned, term steps do not involve the memory;
still, the term step for dereferencing must somehow gain access to the value
that was read from the memory. It receives that value through a read effect.
In turn, the dereferencing memory step (that does not know how terms reduce)
reads the value from the memory and sends it through the read effect to be
used by the term step. We will describe this interaction in more details in the
coming sections.

As seen in Figure 3.4, there are ten types of effects. The alloc, init,
read, and write effects apply to typical memory operations; acq and
rel apply to acquire synchronization; wacq and wrel apply to wait
synchronization; spawn applies to thread creation; and none indicates the
absence of an effect. The none effect is used by steps that neither interact
with the memory nor the thread pool. This applies, for example, to when a
step adds two numbers or calls a function.

It may seem that some effects in the list are redundant. In particular,
we have two effects for acquiring locks (acq and wacq) and two effects for
releasing locks (rel and wrel). This differentiation, however, is vital to the
inner workings of our proofs, since some of our lemmas and theorems depend
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on us knowing whether we are using an acquire or a wait to acquire/release
a lock. We also have separate effects for allocation and initialization (alloc
and init), because, as we will see, the operational semantics executes allocation
and initialization in separate steps.

Let us now detail the formal semantics of each step relation.

3.2.1
Term step

T–Step describes how a thread evolves, abstracting away details of
memory operations and thread creation. Figure 3.5 lists all the reduction rules
for the T–Step relation. The notation ⟨ t1

e−→ t2 ⟩ states that the term t1 reduces
to the term t2 with the effect e. In the Coq code, we implement T–Step using
the inductive type tstep (Sem.v).

Small-step reduction rules for terms fall into one of two categories:
they can either be computation rules or congruence rules. Computation rules
describe the essence of how to reduce a term, while congruence rules describe
how to recursively apply a computation rule to the subterm of a term.

In the interest of conciseness, we chose to present the congruence rules for
T–Step using evaluation contexts. Together with the Tctx rule, an evaluation
context (ε) serves as a compact representation of a congruence rule. A hole
⟨□ ⟩ in an evaluation context indicates which subterm is being reduced by
the associated congruence rule. For example, the evaluation contexts ⟨□ + t ⟩
and ⟨ v + □ ⟩ condense, respectively, the plus1 and plus2 congruence rules for
addition:

plus1
t1

e−→ t2

( t1 + t ) e−→ ( t2 + t )
plus2

t1
e−→ t2

( v + t1 ) e−→ ( v + t2 )

The plus1 rule states that, if t1 reduces to t2 with an effect e then ⟨ t1 + t ⟩
reduces to ⟨ t2 + t ⟩ with that same effect. The plus2 rule states that if t1 reduces
to t2 with an effect e then ⟨ v + t1 ⟩ reduces to ⟨ v + t2 ⟩ with that same effect;
we use v in the first subterm to enforce that it must be a value. Together,
plus1 and plus2 formalize how to reduce the subterms of an addition. The
“translation” for the other evaluation contexts follow the same logic.

Note that we do not have any congruence rules for the new term. This
demonstrates that the subterm t in ⟨ new τ t ⟩ is static. After we reduce new into
init, then its subterm reduces as evidenced by the ⟨ init τ ad □ ⟩ evaluation
context. Similarly, the subterm t2 in a term ⟨ acq t1 (λ a . t2) ⟩ is also static.
After we reduce acq into cr, then its subterm reduces as evidenced by the
⟨ cr ad □ ⟩ evaluation context.
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Tplus n1 + n2
none−−−−−−−−−→ n1 + n2

Tmonus n1 - n2
none−−−−−−−−−→ n1 − n2

Tseq v; t
none−−−−−−−−−→ t

Tif1 if 0 t1 t2
none−−−−−−−−−→ t2

Tif2 if n t1 t2
none−−−−−−−−−→ t1 (when n ̸= 0)

Twhile while t1 t2
none−−−−−−−−−→ if t1 ( t2; while t1 t2 ) unit

Tcall ( λ a : τ. t ) v
none−−−−−−−−−→ [ a / v ] t

Tnew new τ t
alloc ad τ−−−−−−−−−→ init τ ad t

Tinit init τ ad v
init ad v−−−−−−−−−→ ad : τ

Tload ! ( ad : τ ) read ad v−−−−−−−−−→ v

Tasg ( ad : τ ) := v
write ad v−−−−−−−−−→ unit

Tacq acq ( ad : τ ) (λ a . t) acq ad v−−−−−−−−−→ cr ad ( [ self / ( ad : τ ) ] [ a / v ] t )

Tcr cr ad v
rel ad−−−−−−−−−→ v

Twait wait ( ad : τ ) wrel ad−−−−−−−−−→ reacq ad

Treacq reacq ad
wacq ad−−−−−−−−−→ unit

Tspawn spawn t
spawn t−−−−−−−−−→ unit

Tctx ε { t1 }
e−−−−−−−−−→ ε { t2 } (if t1

e−→ t2)

ε := □ + t | v + □ | □ - t | v - □
| □; t | if □ t1 t2 | while □ t
| □ t | v □
| init τ ad □ | !□ | □ := t | v := □
| acq □ (λ a . t) | cr ad □

Figure 3.5: T–Step (inductive type tstep in Sem.v).
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As to the computation rules, we can see that the rules for plus, monus,
sequencing, conditionals, loops, and function calls do not produce effects,
their semantics follow the standard for these constructions: Tplus adds two
numbers; Tmonus subtracts two numbers; Tseq reduces to the second subterm
when the first subterm is a value; Tif reduces to the second or third subterm,
depending on whether or not the first subterm is zero; Twhile unfolds to an
if term containing a copy of the original while; and Tcall performs variable
substitution, represented as ⟨ [ x / v ] t ⟩, which reads “substitute instances of the
variable x for the value v inside the term t”.

The other rules are more interesting, since they depend on effects. For
instance, if we analyze Tload disregarding the Read effect, it basically “creates”
a value. Since T–Step has no notion of a memory, the origin of that value is not
obvious. In a sense, we can interpret the read effect as consuming an address
ad from the term ⟨ ! ( ad : τ ) ⟩ and producing a value v. Locally, Tload trusts,
in an oracle fashion, that the value it received from the effect is the value in
the memory cell indexed by the sent address. As we will see later, there will
be a memory step paired with Tload that defines the memory semantics for
dereferencing and that guarantees the validity of the value.

(It is worth noting that, even though we used produce/consume idioms
to explain effects, logic relations do not have directionality. For example, we
read the −→ arrow as a reduction from left to right, but we are actually defining
an association between elements in a set. Similarly, despite our interpretation
that ad is being sent and v is coming from the read effect, Tload is, in logical
terms, merely a relation between an address, a type, and a value.)

The same principles behind Tload apply to the other rules:

• The alloc effect in Tnew consumes the type from the term ⟨ new τ t ⟩,
and produces an address ad for the term ⟨ init τ ad t ⟩. The type informs
the paired memory step which kind of reference cell to allocate, and the
returned address is the index to that memory cell.

• The init effect in Tinit consumes the address and the value from the
term ⟨ init τ ad v ⟩, and the step reduces to a reference literal ⟨ ad : τ ⟩.
Unlike alloc and read, init is a one-way effect that does not produce
values or addresses to be used in the reduction. The paired memory
step takes care of initializing the memory cell associated with the given
address using the provided value.

• The write effect in Tasg consumes the address and the value from the
term ⟨ ( ad : τ ) := v ⟩, and the step reduces to unit. Overall, the write
effect behaves much like init.
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• The acq effect in the Tacq rule consumes the address ad from the term
⟨ acq ( ad : τ ) (λ a . t) ⟩, and produces a value v for the resulting term
⟨ cr ad ( [ self / ( ad : τ ) ] [ a / v ] t ) ⟩. The Tacq rule is like a dereferencing
operation mixed with a function call. It sends to the effect the address
of the monitored reference, and it receives a value in return. We expect
the value to be the contents of the monitored reference, and we use it as
the value of the parameter a when calling the function attached to the
acquire. The function call is represented by the substitution ⟨ [ a / v ] t ⟩,
and, on top of that, we also substitute any instances of self with the
value of the monitored reference. The paired memory step ensures the
synchronization semantics responsible for acquiring the lock.

• The rel effect in Tcr consumes the address from the term ⟨ cr ad v ⟩,
and the step reduces to the value v (which is the value returned by
the function called by the acquire). Like with the acq effect, the
paired memory step ensures the synchronization semantics responsible
for releasing the lock.

• The wrel effect in Twait consumes the address ad from ⟨ wait ( ad : τ ) ⟩,
and the step reduces to the term ⟨ reacq ad ⟩. In turn, the wacq effect in
Treacq consumes the address ad from the term ⟨ reacq ad ⟩, and the step
reduces to unit. In the eyes of the T–Step relation, the Twait and Treacq

rules are quite straightforward. The memory steps paired with Twait and
Treacq perform the relevant synchronization operations using the given
address ad.

• The spawn effect in Tspawn consumes the term t from ⟨ spawn t ⟩ to create
a new thread, and the step reduces to unit. Unlike the other effects that
pair with rules from M–Step, we will see that Tspawn pairs with a rule from
C–Step, because it needs to communicate with the thread pool instead
of the memory.

3.2.2
Memory step

Before we describe the M–Step relation, let us first discuss the formaliza-
tion for the memory. We use a list to represent the memory in Elo. Addresses
correspond to indices in this list. Each entry in the list represents a memory
cell, which contains a term, a boolean, a type, and an owner. We use the no-
tation J t , χ , τ , ω K to represent memory cells containing those four elements.
The term t is the de facto value being stored in that memory cell. Cells that
were allocated but not initialized hold the special empty value none in place
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of a term. The boolean χ indicates whether or not that memory cell is locked.
All memory cells posses this field, even those that have nothing to do with
monitored references. (We will discuss this suboptimal allocation of memory
later.) The type τ is a reference type (also called a pointer type), such that the
its internal type is the type of the term that is stored in the cell. Finally, the
owner ω identifies either a thread or a monitored reference, indicating who can
access the memory cell.

Only the first two elements in a memory cell (the term and the lock)
are relevant to the step relations. The operational semantics sets the other
two (the type and the owner), but does not use their values in the reductions.
They exist in the memory cell solely for the sake of our proofs. In an actual Elo
implementation, there is no need for types and owners in the memory cells.

Regarding list operations, there are five basic operations that deal with
retrieving information from the memory representation:

• #m (length): returns the length of the list that represents the memory.
This operation is specially important because it indicates the address of
the last allocated memory cell.

• m[ad].t (get term): returns the term stored in the cell (or none in case of
an uninitialized or invalid address).

• m[ad].χ (get lock): returns a boolean that indicates whether or not the
cell is locked (or false in case of an invalid address).

• m[ad].τ (get type): returns the pointer type of the cell (or Unit in case of
an invalid address).

• m[ad].ω (get owner): returns the owner of the cell (or the invalid owner
invalid in case of an invalid address).

Additionally, there are five operations that mutate the memory. All of
them return the changed memory.

• m[ad
term←−− t] (set term): sets the term stored in the cell indexed by the

given address (or does nothing in case of an invalid address). We use this
operation when assigning to or initializing a reference.

• m[ad
lock←−− true/false] (set lock): locks or unlocks the cell (or does

nothing in case of an invalid address).
• m[ad

owner←−−− ω] (set owner): sets the owner of the cell (or does nothing in
case of an invalid address). We use this operation in the C–Step relation
instead of M–Step. We will explain its purpose then.
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• m +++ τ (add cell): adds the cell J none , false , τ , invalid K to the end of
the memory. We use this operation when allocating new memory cells.
Note that a new cell does not contain a term, it is unlocked, it has no
valid owner, but it does have a type. (This operation is implemented
using the ⟨ ++ ⟩ operation that appends two lists.)

We implemented these list operations in Coq in the Array.v and Sem.v
files.

Figure 3.6 lists the reduction rules for the M–Step relation. The notation
⟨m1 / t1

e=⇒ m2 / t2 ⟩ indicates that the memory m1 and term t1 reduce to the
memory m2 and the term t2 with the effect e.

In essence, M–Step expands the semantics of T–Step by also describing
how the memory evolves with each reduction. To clarify this notion, let us
analyze the Mwrite rule. The term step ⟨ t1

write ad t−−−−−−−→ t2 ⟩ in the premise of
the rule determines how the initial term t1 reduces to t2. While the term
step is ignorant to the purpose of the address and the term sent through the
write effect, the memory step uses the received address and term to reduce
the original memory m to m[ad

term←−−− t], effectively mutating it. Thus, Mwrite

expands the (term) semantics of Tasg to include memory semantics.
As another example, let us analyze the Mread rule. Again, the T–Step

in the premise determines how the term reduces. However, the Mread rule, as
the name implies, does not alter the memory; it simply receives an address
from the read effect, and sends the term read from that address back to the
effect . Different from Mwrite, the Mread rule uses the read effect as a “two-
way” channel. This may seen strange given the perceived direction of the step
relations implied by the arrow notation, but remember that these are logical
relations that do not abide to this notion of directionality. Despite the intuition
that we “send to” and “receive from” an effect, their true purpose is to add
constraints to both the term and the memory steps.

More generally, we can see that T–Step reductions appear as premises in
all the rules for M–Step, each with a different effect. The effects filter which
T–Step rules are valid for each M–Step rule, and establish the pairing between
T–Step and M–Step we mentioned in the previous section. Besides that, it is
also obvious that T–Step encapsulates the semantics of term reduction, in such
a way that M–Step itself does not need to know anything about it. With all
that in mind, the remaining inference rules are easy enough to understand:

• Mnone is a pass-through rule that does not alter the memory. It allows M–
Step to encompass all the term–step reductions that produce no effects.
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Mnone
t1

none−−−→ t2

m / t1
none===⇒ m / t2

Malloc
t1

alloc #m τ−−−−−−−−→ t2

m / t1
alloc #m τ=========⇒ (m +++ τ) / t2

Minit
t1

init ad t−−−−−−→ t2

m / t1
init ad t======⇒ m[ad

term←−−− t] / t2

Mread
m[ad].t = te t1

read ad te−−−−−−−→ t2

m / t1
read ad te=======⇒ m / t2

Mwrite
t1

write ad t−−−−−−−→ t2

m / t1
write ad t=======⇒ m[ad

term←−−− t] / t2

Macq
m[ad].χ = false m[ad].t = te t1

acq ad te−−−−−−→ t2

m / t1
acq ad te=======⇒ m[ad

lock←−−− true] / t2

Mrel
t1

rel ad−−−−→ t2

m / t1
rel ad=====⇒ m[ad

lock←−−− false] / t2

Mwacq
m[ad].χ = false t1

wacq ad−−−−−→ t2

m / t1
wacq ad======⇒ m[ad

lock←−−− true] / t2

Mwrel
t1

wrel ad−−−−−→ t2

m / t1
wrel ad======⇒ m[ad

lock←−−− false] / t2

Figure 3.6: M–Step (inductive type mstep in Sem.v).
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• Malloc expands the memory, allocating at its end a new cell with the
type it received from Tnew through the alloc effect. It sends back the
address ⟨#m ⟩ to the term step, which references the newly inserted cell.

• Minit initializes a memory cell. It receives an address and a term from
the init effect, and uses the set term operation to mutate the memory.
It functions exactly like Mwrite, but using the init effect instead of the
write effect.

• Macq locks an unlocked memory cell and reads its contents. It receives
the relevant address from the acq effect, and sends back the read term.
Note that a thread cannot take this step while the cell is locked (while
m[ad].χ = true), which corresponds to the usual blocking semantics of
locks.

• Mrel unlocks the memory cell referenced by the address it received from
the rel effect. (It does not care whether or not the cell was locked in
the first place.)

• Mwacq locks an unlocked memory cell. It receives the relevant address from
the wacq effect, and (like Macq) it replicates the blocking semantics of
locks.

• Mwrel functions exactly like Mrel, but using the wrel effect instead of
rel.

3.2.3
Concurrent step

The C–Step relation is the main step relation of the language. It expands
on T–Step and M–Step to add the last missing piece of the semantics:
multithreading. To that end, we represent the thread pool in Elo as a list
of terms. We use the operation ths[tid] to retrieve a thread from the list ths

given the thread identifier tid, and the operation ths[tid← t] to update a thread
in the list with a new term t. These two operations are important because they
manipulate threads individually, which, as we will see, is how C–Step handles
them. We also use ⟨ ths ++ [ t ] ⟩ to add a new thread to the thread pool, and
#ths to get the length of the list of threads.

The C–Step relation detailed in Figure 3.7 describes how a memory and
a thread pool evolve in one step. The notation ⟨m1 / ths1 ∼∼∼∼∼∼∼▷

(tid, e)
m2 / ths2 ⟩

indicates that the memory m1 and the thread pool ths1 reduce to the memory
m2 and the thread pool ths2. Despite the parallel nature of processing multiple
thread reductions, the relation itself only performs one reduction at one thread
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Cmem

e ̸= alloc tid < #ths m1 / ths[tid] e=⇒ m2 / t

m1 / ths ∼∼∼∼∼∼▷
(tid, e)

m2 / ths[tid← t]

Calloc

tid < #ths ω = gcr ths[tid] tid m1 / ths[tid] alloc ad τ========⇒ m2 / t

m1 / ths ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼▷
(tid, alloc ad τ)

m2[ad
owner←−−− ω] / ths[tid← t]

Cspawn
tid < #ths ths[tid] spawn t ′

−−−−−−→ t

m / ths ∼∼∼∼∼∼∼∼∼∼∼∼▷
(tid, spawn t)

m / (ths[tid← t] ++ [ t ′ ])

Figure 3.7: C–Step (inductive type cstep in Sem.v).

at a time. In the notation, the thread identifier besides the effect indicates
which thread was stepped.

There are only three rules for C–Step. All of them check whether the ID
of the thread performing the step is within the bounds of the thread pool.

• The Cmem rule encompasses the semantics of all M–Step rules except for
Malloc (since it filters out the alloc effect). The M–Step rule in the
premise defines how the memory and the thread reduce, while Cmem simply
updates the value of the stepped thread in the thread pool.

• The Calloc rule mimics the Cmem rule in the context of the alloc effect,
while also inserting the owner of the allocated address in the memory.
If the address pertains to a read-only or monitored reference, than the
stored owner for that address is irrelevant, since we are only interested
in keeping track of writeable references. The Calloc rule uses the gcr (get
current region) function to compute the owner. The function checks for
⟨ cr ad t ⟩ and ⟨ init x&τ ad t ⟩ subterms in the thread, and returns the
innermost address ad it finds. This address identifies the owner of the cell
allocated by the step. In case gcr does not find any cr or init terms,
then the owner of the allocated cell is the thread itself. (This is why we
could not compute the owner in the Malloc rule; we needed the thread
identifier.) Remember that we do not use this owner information in the
semantics, only in the context of the proofs.

• The Cspawn rule handles thread creation. It adds the term it received
through the spawn effect to the thread pool.

C–Step is specially interesting because, at first glance, it does not seem
to be defining concurrent behavior. However, if we look closer, we can see that
none of its rules constrain on the order in which the threads should be stepped.
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Ufirst

m / ths ∼∼∼∼∼∼▷∗{}
m / ths

Utrans

m1 / ths1 ∼∼∼∼∼∼∼∼∼∼∼▷∗tc
m2 / ths2

m2 / ths2 ∼∼∼∼∼∼∼∼∼∼∼∼▷
(tid, e)

m3 / ths3

m1 / ths1 ∼∼∼∼∼∼∼∼∼∼∼▷∗(tid, e) :: tc
m3 / ths3

Figure 3.8: Multistep (inductive type multistep in Sem.v).

Thus, it allows for every possible non-deterministic interleaving between thread
reductions, which ensures the intended semantics.

3.2.4
Multistep

Figure 3.8 presents Elo’s multistep reduction relation. It steps a program
(a memory and a thread pool) zero or more times and produces a trace. A
trace is a list of events, with each event containing a thread identifier and an
effect; they serve as points in the discrete timeline of that program’s execution.
The trace allows us to analyze the order in which the threads were stepped
and the effects they produced. As we will see, traces are vital to the structure
of our proofs.

Regarding the rules, Ufirst starts the reduction with an empty trace
represented by {}, while Utrans is the transitive rule that appends one more
step to a previous multistep computation. Note that we use the cons operator
⟨ :: ⟩ to prepend events to the trace list, instead of appending with ⟨ ++ ⟩ like we
did with the memory and the thread pool. We do this for convenience, since
it simplifies some of the proofs when we apply the induction principle. As a
consequence, the events in a trace appear in reverse: the first event in the list
was the last event to take place.

3.3
Typing

Elo’s typing rules define a typing relation that relates terms to their types.
A typing judgment ⟨Γ ⊢ t ∈ τ ⟩ states that, given the typing environment Γ,
the term t has type τ . A typing environment is a mapping from variables to
their types; we use them to model scope rules for variables. Regarding notations
for maps, a ∅ represents the empty map, Γ [ x ] represents the lookup operation,
and Γ [ x⇐ τ ] represents the update operation. Lookup returns a special value
⊥ if a variable does not have a type (if a variable is not present in the map).
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τ unit Γ ⊢ unit ∈ Unit
τ nat Γ ⊢ n ∈ Nat

τ plus

Γ ⊢ t1 ∈ Nat
Γ ⊢ t2 ∈ Nat

Γ ⊢ t1 + t2 ∈ Nat
τ monus

Γ ⊢ t1 ∈ Nat
Γ ⊢ t2 ∈ Nat

Γ ⊢ t1 - t2 ∈ Nat

τ if

Γ ⊢ t1 ∈ Nat
Γ ⊢ t2 ∈ τ
Γ ⊢ t3 ∈ τ

Γ ⊢ if t1 t2 t3 ∈ τ
τ while

Γ ⊢ t1 ∈ Nat
Γ ⊢ t2 ∈ τ

Γ ⊢ while t1 t2 ∈ Unit

τ seq

Γ ⊢ t1 ∈ τ1
Γ ⊢ t2 ∈ τ2

Γ ⊢ t1; t2 ∈ τ2
τ var

Γ [ x ] = τ

Γ ⊢ x ∈ τ

τ fun
Γ [ a⇐ τa ] ⊢ t ∈ τ

Γ ⊢ λ a : τa. t ∈ τa → τ
τ call

Γ ⊢ t1 ∈ τa → τ
Γ ⊢ t2 ∈ τa

Γ ⊢ t1 t2 ∈ τ

Figure 3.9: Typing rules for the standard features (inductive type type_of in
Sem.v).

In Coq, we implement the typing relation using the inductive type type_of
(Sem.v). We define the map data structure in the Map.v file.

We present typing rules as a set of inference rules. Let us analyze some of
the basic rules in Figure 3.9 before we delve into the more complex ones. The
rules for unit (τunit) and numbers (τnat) are trivial; the language requires no
premises (no conditions) to asses that unit has type Unit and that a number
has type Nat. The typing rule for addition (τplus) is also quite straightforward:
both subterms of the addition must have numeric types, and then the addition
itself has a numeric type as well. There is no scope or variable handling involved
when adding terms, so the usage of typing environments is trivial. The typing
rules for monus, conditionals, loops, sequencing, variables, and functions are
standard and follow similar ideas, so we will refrain from discussing them.

The main non-conventional characteristic of the type system is the use of
safe environments, which restrict variable visibility in the boundaries between
threads and between a thread and a critical region. The typing rules for terms
that define these boundaries make use of safe, an operation over typing
environments that alters the result of the lookup operation by filtering out
variables with non-safe types. We formalize safe as follows.

safe ( Γ ) [ x ] =

Γ [ x ] if Γ [ x ] ∈ σ

⊥ otherwise

We use safe when typing monitored reference initialization, acq terms,
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τ refR Γ ⊢ ad : r&σ ∈ r&σ
τ refX Γ ⊢ ad : x&τ ∈ x&τ

τ refW Γ ⊢ ad : w&τ ∈ w&τ

τ newR
Γ ⊢ t ∈ σ

Γ ⊢ new r&σ t ∈ r&σ
τ initR

∅ ⊢ t ∈ σ
Γ ⊢ init r&σ ad t ∈ r&σ

τ newX
safe ( Γ ) ⊢ t ∈ τ

Γ ⊢ new x&τ t ∈ x&τ
τ initX

∅ ⊢ t ∈ τ
Γ ⊢ init x&τ ad t ∈ x&τ

τ newW
Γ ⊢ t ∈ τ

Γ ⊢ new w&τ t ∈ w&τ
τ initW

∅ ⊢ t ∈ τ
Γ ⊢ init w&τ ad t ∈ w&τ

τ loadR
Γ ⊢ t ∈ r&σ
Γ ⊢ ! t ∈ σ

τ loadW
Γ ⊢ t ∈ w&τ
Γ ⊢ ! t ∈ τ

τ asg

Γ ⊢ t1 ∈ w&τ
Γ ⊢ t2 ∈ τ

Γ ⊢ t1 := t2 ∈ Unit

Figure 3.10: Typing rules for memory operations (inductive type type_of in
Sem.v).

and spawn terms, which enforces the safety guarantees discussed in section 2.2.
For instance, the example in Figure 2.5 does not type check because safe
purges the variable a (which has an unsafe type) from the typing environment
of the spawn term.

The typing rules in Figure 3.10 apply to the basic memory operations.
The first three rules establish the typing semantics for references. The suffixes
in the names of the rules hint to which kind of reference each rule pertains to:
R stands for read-only references, X stands for for monitored references, and W
stands for writeable references. These rules may look trivial, but they perform
the important task of checking that the type τ inside a term ⟨ ad : τ ⟩ is always
a reference type, which prevents, for example, terms like ⟨ ad : Nat ⟩ from type
checking.

The rules for new (τnewR, τnewX, and τnewW) and init (τinitR, τinitX, and
τinitW) mirror the logic of the reference rules. Note that, when typing new for
monitored references, a new term is well-typed if its body is well-typed within
the safe version of its parent’s environment, which prevents unsafe values
from leaking into a monitored reference through initialization. The same check
is naturally not present when typing the allocation of a read-only or writeable
reference. Moreover, we use the empty environment for init subterms because
they cannot appear inside the body of an acquire or of a function abstraction,
which are the terms that add variables to an environment. All we will see, this
is also valid for the cr intermediary term.

The two rules for dereferencing (τloadR and τloadW) concern read-only
and writeable references, which enforces that we cannot read the contents
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τ acq

Γ ⊢ t1 ∈ x&τ
safe ( Γ ) [ self⇐ x&τ ] [ a⇐ τ ] ⊢ t2 ∈ σ

Γ ⊢ acq t1 (λ a . t2) ∈ σ

τ cr
∅ ⊢ t ∈ τ

Γ ⊢ cr ad t ∈ τ
τ spawn

safe ( Γ ) ⊢ t ∈ τ

Γ ⊢ spawn t ∈ Unit

τ wait
Γ ⊢ t ∈ x&τ

Γ ⊢ wait t ∈ Unit
τ reacq Γ ⊢ reacq ad ∈ Unit

Figure 3.11: Typing rules for concurrency constructs (inductive type type_of
in Sem.v).

of a monitored reference using the ⟨ ! ⟩ operator. A similar logic applies to
assignment, because its typing rule (τasg) applies only to writeable references.

Figure 3.11 lists the typing rules for concurrency related terms. An
acquire term acq is well-typed if it is acquiring a monitored reference and if its
body is well-typed within the safe version of its parent’s environment. We also
add two new variables in the typing environment of the body of the acquire:
the variables a and self. The former comes from the function attached to the
acquire, and the latter references the acquired monitored reference. Similar to
when initializing monitored references, the usage of safe enforces that unsafe
values do not leak into acquired monitored references. Additionally, the acq
term has a safe type ⟨σ ⟩, which prevents unsafe values from escaping from the
monitored reference.

A critical region term cr is well-typed if its body is well-typed given the
empty environment. As we discussed, we can use the empty environment for
typing its subterm because cr (same as init) cannot appear inside the body
of an acquire or of a function abstraction.

As with monitored reference initialization and acq terms, a spawn term
is well-typed if its body is well-typed within a safe version of its parent’s
environment, so that unsafe values cannot not leak into new threads.

For wait terms, we check whether its subterm is a monitored reference.
A wait only performs side-effects, so it types to Unit. A reacq does the same,
so it also types to Unit.

3.4
Implementation

The operational semantics we defined is not an actual interpreter imple-
mentation for Elo. It is a formal description of how a interpreter should behave
when evaluating Elo programs. We did implement a Elo interpreter in Coq, and
proved that it matches the semantics of our formalizations. We implemented a



Chapter 3. Formalization 43

step function that evaluates threads individually, and then composed it with
a round-robin scheduler, using monads to deal with blocked threads. You can
check the Coq code for the interpreter in the Eval.v file.

The interpreter mainly serves as a way to test-drive the language, since
it is (extremely) slow. It has no optimizations and does not run the threads
in parallel, only concurrently. The implementation did force us to make some
choices, though. For example, we had to chose which scheduling algorithm to
use to manage the threads, and we implemented the round-robin scheduler for
simplicity. This sheds some light to the fact that the operational semantics
we described does not discriminate between scheduling algorithms. On the
contrary, it allows us to implement any of them, as it should.

The notion that the semantics describes behavior and not implementation
is vital if we are to understand some of the design choices we made when
defining the step relations. For instance, earlier we mentioned that every
memory cell has a lock, even those that have nothing to do with monitored
references. The reason for this is simple: it simplifies our definitions without
altering the behavior of the evaluation. Clearly, we could have defined two
types of cells, with and without locks, and treated them accordingly. However,
this would add a lot of cumbersome scaffolding to the step rules and the proofs,
making them harder to read and understand. Any serious Elo implementation
should optimize memory allocation by distinguishing between the two types
of cells, or by storing locks some other way. Also, as mentioned, the reduction
steps do not make use of the types and owners stored in the memory. An
actual implementation should not store or even compute these pointer types
and owners. Proving that this optimization does not alter the semantics of
the language should be straightforward, since pointer types and owners do not
appear as premises in any of the step rules: owners only ever get written to the
memory, and pointer types only get written to the memory and passed around
inside terms.

The evaluation of await terms also leaves ample space for optimizations.
There is no constraint in the semantics stating that a waiting thread cannot
immediately reacquire the lock after releasing it. This is undesirable, since the
thread would simply go back to waiting after a few more steps. Naturally,
in a real-world implementation, we only want to allow a waiting thread to
reacquire a lock after a different thread releases it, which enables other threads
to possibly change the state of the monitored reference that the original thread
is waiting on.

Lastly, regarding the lock operations specifically, note that they must be
atomic. This is not made explicit by the semantics, since each step is atomic
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by itself. A real interpreter would have to use an atomic unlock operation for
Mrel and Mwrel, and another atomic operation for locking if unlocked for Macq

and Mwacq. The latter could use an atomic instruction such as CAS (compare-
and-swap).



4
Properties

In this chapter, we present some of the properties we use throughout
our proofs. Even though we try to focus on the more abstract parts of the
formalizations, we do discuss some of its technical aspects when we deem it
relevant.

Some of the properties we define are quite simple. For instance, in our
proofs, we sometimes need to know whether or not a thread has access to a
memory address. In those cases, we use a property that checks for the presence
of reference literals within the term that reifies the thread. We also use these
basic properties to define more complex properties. For example, the property
that guarantees that threads access monitored references in mutual exclusion
uses two basic properties to assess when a thread is inside a critical region.
Moreover, many of the properties we define are also invariant properties. An
invariant property is valid throughout all the evaluation steps of a program.
The mutual exclusion property we mentioned is an example of an invariant
property.

It is worth pointing out that we define all properties using syntactical
analysis or build them on top of other properties that perform these analyses.
We are able to employ such a simple method because of a key characteristic
of our formalizations: we store information about the state of the program
inside the program. Specifically, we enrich the terms and the memory to hold
information about the program. The following list describes these enrichments.

• The type τ in a reference literal ⟨ ad : τ ⟩ is an enrichment. We added it so
we could easily identify read-only, monitored, and writeable references.

• We could have implemented allocation and initialization using only
the new term, which makes the very existence of the init term an
enrichment. We added it because it allows us to check when a monitored
reference is being initialized.

• The address ad in the term ⟨ cr ad t ⟩ is also an enrichment, since we could
have implemented its functionality using simpler terms. For example, we
could remove the address from the term, leaving it as ⟨ cr t ⟩, and then
create a new term ⟨ release ad ⟩ that simply releases the lock of the
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address ad. However, we use the address in the cr term to check when a
thread is inside a critical region.

• Lastly, having a pointer type and an owner associated to every memory
address is also an enrichment. As we will see, this allows us to define
some properties more concisely.

These enrichments are inconsequential to the operational semantics of
the language. Even those that alter how we formalize some concepts (init
and cr) do so without changing the semantics behind the formalizations. It
is precisely this that differentiates an enrichment from cheating to make the
proofs easy. To illustrate, let us analyze term step rule for write. It does not
use the type τ from ⟨ ( ad : τ ) := v ⟩; in fact, it ignores it completely. If the
semantics were to use that type to check for writeable reference types, this
would constitute what we called cheating. In a compiler implementation, this
would be analogous to adding runtime checks to the language. Obviously, we
do not want that, nor do we need it. Thus, we can consider enrichments as
optimizations for the proofs.

4.1
Basic properties

Basic properties ensure the presence and/or the absence of a given
subterm within a term, so we use them to analyze terms syntactically. As
we will see, we also use some of the basic properties to compose more complex
properties.

Property (reserved-words t) (file Keywords.v): the term t has no subterms
that introduce self variables.

Property (no-ref ad t) (file NoRef.v): the term t has no ⟨ ad : τ ⟩ subterms.

Property (no-wref ad t) (file NoWRef.v): the term t has no ⟨ ad : w&τ ⟩
subterms.

Property (no-init ad t) (file NoInit.v): the term t has no ⟨ init τ ad t ′ ⟩
subterms.

Property (no-cr ad t) (file NoCR.v): the term t has no ⟨ cr ad t ′ ⟩ subterms.

Property (no-reacq ad t) (file NoReacq.v): the term t has no ⟨ reacq ad ⟩
subterms.
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The last five properties are specific to a single memory address. The
following properties generalize some of those definitions for all addresses.

no-refs t = ∀ ad , no-ref ad t

no-inits t = ∀ ad , no-init ad t

no-crs t = ∀ ad , no-cr ad t

no-reacqs t = ∀ ad , no-reacq ad t

Besides the “no” properties, that check for the absence of subterms within
a term, we also define properties that check for the presence of subterms within
a term.

Property (one-init ad t) (file OneInit.v): the term t has exactly one
subterm ⟨ init τ ad t ′ ⟩.

Property (one-cr ad t) (file OneCR.v): the term t has exactly one subterm
⟨ cr ad t ′ ⟩.

Definition. The point term is the next subterm of a term that is going to be
reduced by a T–Step computation rule. For example, the point term of the
arithmetic expression ⟨ ( 1 + ( 2 - 3 ) ) + 4 ⟩ is the subterm ⟨ 2 - 3 ⟩.

Property (waiting ad t) (file Waiting.v): the term t has exactly one
subterm ⟨ reacq ad ⟩, which is also the point term.

(We only use the notion of point terms to define the waiting property,
but note that an init or cr subterm must always contain the point term of
a thread. The one-init and one-cr properties could enforce this, but they
do not. For practical reasons, we chose to express this idea through other
properties and lemmas.)

The one-cr property ensures that a term is syntactically inside the
critical region of a monitored reference. However, that is not enough to
establish whether the term is holding the lock of that monitored reference,
since the term could be waiting to reacquire the lock. For this reason, we
created the holding and not-holding properties (Holding.v).

holding t = one-cr ad t ∧ no-reacq ad t

not-holding t = no-cr ad t ∨ ( one-cr ad t ∧ waiting ad t )

Note that these are memory-related properties that do not mention the
memory (remember that locks are memory abstractions in Elo). This is one of
the benefits of term enrichment. The cr and reacq terms contain the addresses
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no-cr ad unit no-cr ad n

no-cr ad t1
no-cr ad t2

no-cr ad (t1 + t2)

no-cr ad t1
no-cr ad t2

no-cr ad (t1 - t2)

no-cr ad t1
no-cr ad t2

no-cr ad (t1; t2)

no-cr ad t1
no-cr ad t2
no-cr ad t3

no-cr ad (if t1 t2 t3)

no-cr ad t1
no-cr ad t2

no-cr ad (while t1 t2)

no-cr ad x
no-cr ad t

no-cr ad (λ a : τ. t)

no-cr ad t1
no-cr ad t2

no-cr ad (t1 t2)

no-cr ad (ad ′ : τ)
no-cr ad t

no-cr ad (new τ t )
no-cr ad t

no-cr ad (init τ ad ′ t)

no-cr ad t
no-cr ad (! t)

no-cr ad t1
no-cr ad t2

no-cr ad (t1 := t2)
no-cr ad t

no-cr ad (spawn t)

no-cr ad t1
no-cr ad t2

no-cr ad (acq t1 (λ x . t2))

ad ̸= ad ′

no-cr ad t
no-cr ad (cr ad ′ t)

no-cr ad t
no-cr ad (wait t) no-cr ad (reacq ad ′)

Figure 4.1: The constructors of the no-cr property (inductive type no-cr in
NoCR.v).

associated with their monitored references; thus, we are able to check whether
or not a thread is holding a lock by performing simple syntactical analyses.

4.1.1
Formalizations

In Coq, we defined the reserved-words, no-ref, no-wref, no-init,
no-cr, no-reacq, one-init, one-cr, and waiting properties as inductive
types (from the Calculus of Inductive Constructions [19]). In this text, we
present inductive definitions as sets of structured inference rules. (For this
reason, we use the terms “inference rule” and “constructor” interchangeably
when referring to these concepts.)

Figure 4.1 lists all of the constructors for the no-cr property. As we can
see, most of them repeat the same pattern: a given term satisfies the property
if all of its subterms satisfy the property. We say that these are structural
constructors. The single meaningful inference rule for no-cr is (unsurprisingly)
the one regarding cr terms. It establishes that ⟨ no-cr ad (cr ad ′ t) ⟩ is true
if and only if we have ⟨ no-cr ad t ⟩ and ⟨ ad ̸= ad ′ ⟩. The first condition is
structural, and the second condition guarantees that the term can be inside
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one-cr ad t1
no-cr ad t2

one-cr ad (t1 + t2)

no-cr ad t1
one-cr ad t2

one-cr ad (t1 + t2)

no-cr ad t
one-cr ad (cr ad t)

ad ̸= ad ′

one-cr ad t
one-cr ad (cr ad ′ t)

Figure 4.2: Some of the constructors of the one-cr property.

a critical region, but not inside the critical region monitored by the address
ad. Note that there is no rule for when the addresses are equal. This is the
case that does not satisfy the predicate, and we formalize it by not giving
it a constructor. Thus, there is no way to “construct” the property for this
undesired scenario.

We presented the complete formal definition for no-cr for the sake
of thoroughness. The formalizations for reserved-words, no-ref, no-wref,
no-init, and no-reacq repeat the same overhaul structure. Henceforth, we
will only show and discuss the most important parts of the other formalizations,
but mostly refrain from dwelling on them for space-saving reasons.

The structural constructors for the “no” properties ensure that all the
subterms of a term satisfy a given condition, which mirrors the semantics
of logic’s universal quantifier ⟨ ∀ ⟩. There is another kind of property, which
ensures that at least one of the subterms of a term satisfies a given condition,
mirroring the semantics of the existential quantifier ⟨ ∃ ⟩. This is the idea behind
the one-init, one-cr, and waiting definitions.

The formalizations for existential properties differ from what we have
seen for universal properties like no-cr. Figure 4.2 showcases this difference
in regard to some of the constructors for one-cr (a similar logic applies
to one-init and waiting). In contrast to the no-cr property, that only
has one constructor for addition, the one-cr property has two, and both
of them guarantee that exactly one subterm is inside the critical region. We
need to have two distinct constructors because either the first or the second
subterm can be the one that is inside the critical region. Naturally, the omitted
structural constructors follow the same reasoning. As to the non-structural
constructors for one-cr (the ones that relate to the cr term), they also check
for two cases: either the term is inside the desired critical region, or the term
is inside a critical region that contains the desired critical region.
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4.1.2
Preservation & Inheritance

Definition. Given a step ⟨ t1
e−→ t2 ⟩, property preservation states that if a

property holds for t1 then it also holds for t2, while property inheritance states
that if a property holds for t2 then it also holds for t1.

We proved preservation and inheritance lemmas for most of the previ-
ously defined basic properties. Depending on the property, however, it is nat-
ural that preservation/inheritance does not apply to some types of steps. For
instance, if a term is not inside the critical region of a monitored reference and
it steps to acquire that monitored reference, then the no-cr property is not
preserved.

no-cr ad t1 →→

t1
acq ad t−−−−−→ t2 →→

¬ no-cr ad t2

In fact, we can prove that the term enters the critical region.

no-cr ad t1 →→

t1
acq ad t−−−−−→ t2 →→

one-cr ad t2

For these properties that are not invariably true, we still prove the
preservation and inheritance lemmas we can given the proper conditions. In
the case of the previous example, we can prove that preservation holds if we
have different addresses for the critical region and the effect.

no-cr ad t1 →→

t1
acq ad ′ t−−−−−−→ t2 →→

ad ̸= ad ′ →→

no-cr ad t2

We proved these preservation and inheritance lemmas by case analysis.
Specifically, by induction on the step operations, so that the induction hypoth-
esis handles the cases that derive from evaluation contexts.
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4.2
Invariant properties

An invariant property is a property that is preserved by any step that
a program can take. We defined many invariant properties for Elo. (For
convenience, we aggregated all of them in a single invariants predicate in
the Invariants.v file.) The reserved-words property we covered earlier, for
example, is also an invariant property. Proving its preservation theorems and
the preservation theorems for the other invariants was a big part of the work
for this thesis. We will not discuss these proofs, since they are long and also
fairly straightforward. However, the conceptualization of what properties we
needed to create to be able to prove what we wanted (and which of those were
invariants) is much more difficult and important. For that reasoning, we will
now discuss some of the core invariants of the language.

4.2.1
The consistent-waits property

We use the consistent-waits property (ConsistentWaits.v) to ensure
that wait and reacq subterms can only be present and/or absent within
certain parts of a term: in a term ⟨ acq t1 (λ a . t2) ⟩, the subterm t2 can contain
⟨ wait self ⟩ terms but no reacq terms; in a term ⟨ cr ad t ⟩, the subterm t can
contain ⟨ wait ( ad : τ ) ⟩ and ⟨ reacq ad ⟩ terms; in a ⟨λ a : τ. t ⟩ or ⟨ spawn t ⟩
term, the subterm t cannot contain wait and reacq terms. Naturally, a thread
in the the thread pool can only contain wait and reacq terms that fit these
rules.

4.2.2
The consistent-regions property

As we have seen, newly allocated writeable references have their owners
stored in the memory by the reduction relations. The consistent-regions
property (ConsistentRegions.v) guarantees that a writeable reference within
a term is always in a region that belongs to the owner of that reference. This
property is specially important to our final safety proof. It allows us to prove
that the point term in a thread that reads from or writes to an address is in a
region that belongs to the owner of that address.

Formally, a writable reference within a term must be inside of either
a thread region or a monitored region. (A term can also be inside an invalid
reference region, but these are a technicality of the reductions, so we will refrain
from discussing them.)
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r := Reference Regions
| Rthread tid thread region
| Rmonitored ad monitored region
| Rinvalid invalid region

We delimit the boundaries between reference regions as we recursively
analyze a term and its subterms. A term that represents a thread is always in
a thread region. If a term contains a ⟨ init x&τ ad t ⟩ or ⟨ cr ad t ⟩ subterm,
then t is within a monitored region for the memory address ad.

Because reference literals in the memory can themselves refer to other
addresses, memory values must also have consistent-regions. We ascertain
different things about a memory value depending on its pointer type: for a read-
only reference type, the value must not contain writeable references (no-wref);
for a monitored reference type, the value must be in a monitored region of the
corresponding address; for a writeable reference type, the value must be in a
region that matches that of the owner of the cell. This “memory invariant” is
necessary for us to prove the consistent-regions invariant for threads.

4.2.3
The unique-inits property

Some properties apply to a memory and a set of threads. We use the
auxiliary predicates for all threads (∀threads) and for one thread (∃!thread) to
define them. The ⟨ ∀threads ⟩ predicate states that all the threads in a given
thread pool satisfy a given property. The ⟨ ∃!thread ⟩ predicate states that, given
a property P1 and a property P2, exactly one thread in a given thread pool
satisfies P1 while all the other threads satisfy P2.

Property (unique-inits m ths) (file UniqueInits.v). For all allocated
cells in the memory, if a cell is not empty, then no threads are in the process
of initializing it; symmetrically, if a cell is empty, then only one thread is in
the process of initializing it.

unique-inits m ths = ∀ ad , ad < #m →→

( m[ad].t ̸= none →→ ∀threads ths ( no-init ad ) ) ∧

( m[ad].t = none →→ ∃!thread ths ( one-init ad ) ( no-init ad ) )

Remember that no-init and one-init are properties that range over an
address and a term. The ⟨ ∀threads ⟩ and ⟨ ∃!thread ⟩ quantifiers expect properties
over terms, so we curry the definitions by providing only the address, as in
⟨ no-init ad ⟩ and ⟨ one-init ad ⟩.
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We mainly use the unique-inits property to prove that we cannot
initialize the same memory address twice, and to prove that a memory cell
never goes back to being empty once we place a term inside it. We use these
lemmas in our final safety proof.

4.2.4
The mutual-exclusion property

Property (mutual-exclusion m ths) (file MutualExclusion.v). For all
memory addresses, if an address is unlocked, then no threads are holding its
lock; symmetrically, if an address is locked, then exactly one thread is holding
its lock.

mutual-exclusion m ths = ∀ ad ,

( m[ad].χ = false →→ ∀threads ths ( not-holding ad ) ) ∧

( m[ad].χ = true →→ ∃!thread ths ( holding ad ) ( not-holding ad ) )

The mutual-exclusion property is one of the cornerstones of our final
safety proof. Despite its complex appearance, its preservation theorems mostly
derive from the semantics of the language.

4.3
Initial properties

Definition. An initial property is a property that programs must satisfy before
the beginning of the evaluation.

A program in Elo as provided by the programmer must satisfy some
basic initial properties: it must not contain intermediary terms (references and
init/cr/reacq terms); it must not introduce reserved words; it must have
consistent wait terms; and it must be well typed (a term is well typed if it
has a type given the empty environment). These are very basic properties
that can be trivially checked by any compiler. That is to say that Elo’s initial
requirements are in par with standard requirements of other programming
languages.
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For convenience, we aggregated the initial properties in a single predicate.

initial t = no-refs t

∧ no-inits t

∧ no-crs t

∧ no-reacqs t

∧ reserved-words t

∧ consistent-waits t

∧ well-typed-term t

As we will see, the initial property appears as the single hypothesis
in our safety theorem. Since we proved our theorems in Coq, if you want to
ascertain whether or not our final proof is correct, than the initial properties,
the language semantics, and the definition for data races (which we will provide
in the next chapter) are all that you need to check. Every other property we
defined is a part of the inner workings of our proofs. We only presented and
discussed them so you can better understand the general ideas behind the
proofs.



5
Safety

In this chapter, we prove that a valid and well-typed Elo program can
never produce a data race. We define data races in relation to events and
traces. We say that a trace contains a data race when some of its events
overlap in time. Like other data-race definitions [16, 17], we use the happens-
before relation to express that two events cannot overlap in time. The following
definitions formalize these concepts in regard to pairs of events in a trace.
Definition. Two events synchronize with each other if the first event initializes
or releases an address and the second event acquires that address.
Definition. An event happens before another event if both execute on the same
thread or if they synchronize with each other. Moreover, if an event x happens
before an event y and the event y happens before an event z, then the event x
happens before the event z. That is, happens-before is a transitive relation.
Definition. Two events conflict with each other if one of them writes to a
memory address and the other reads or writes to that same memory address.
Definition. Two conflicting events form a data race unless one of them happens
before the other.

We formalize the happens-before and data-race definitions in Coq by
creating two inductive properties that range over traces.

Figure 5.1 lists the four constructors for the happens-before property.
To facilitate our proofs, we define the property in regard to the events located
on the edges of a trace. Remember that traces are reversed, so the notation
⟨ [ ev2 ] ++ tc ++ [ ev1 ] ⟩ represents a trace that starts with the event ev1, follows
up with zero or more events in the inner trace tc, and ends with the event
ev2. The first happens-before constructor (hbthread) handles events from the
same thread; the second constructor (hbinit) handles the synchronization case
between initializing and acquiring a monitored reference; the third constructor
(hblock) handles the synchronization case between releasing and acquiring
a monitored reference; the fourth constructor (hbtrans) handles transitivity.
Moreover, the second constructor uses the is-initialize predicate to check
for the init effect and the is-acquire predicate to check for the acquire effects
(acq and wacq). The third constructor also uses is-acquire, and it uses the
is-release predicate to check for the release effects (rel and wrel).
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hbthread
happens-before ( [ (tid, e2) ] ++ tc ++ [ (tid, e1) ] )

hbinit
is-initialize ad e1 is-acquire ad e2

happens-before ( [ (tid2, e2) ] ++ tc ++ [ (tid1, e1) ] )

hblock
is-release ad e1 is-acquire ad e2

happens-before ( [ (tid2, e2) ] ++ tc ++ [ (tid1, e1) ] )

hbtrans

happens-before ( [ ev2 ] ++ tca ++ [ ev1 ] )
happens-before ( [ ev3 ] ++ tcb ++ [ ev2 ] )

happens-before ( [ ev3 ] ++ tcb ++ [ ev2 ] ++ tca ++ [ ev1 ] )

Figure 5.1: The happens-before property (in file HappensBefore.v).

drrw

ev1 = (tid1, read ad t1)
ev2 = (tid2, write ad t2)

¬ happens-before ( [ ev2 ] ++ tc ++ [ ev1 ] )
data-race ( [ ev2 ] ++ tc ++ [ ev1 ] )

drwr

ev1 = (tid1, write ad t1)
ev2 = (tid2, read ad t2)

¬ happens-before ( [ ev2 ] ++ tc ++ [ ev1 ] )
data-race ( [ ev2 ] ++ tc ++ [ ev1 ] )

drww

ev1 = (tid1, write ad t1)
ev2 = (tid2, write ad t2)

¬ happens-before ( [ ev2 ] ++ tc ++ [ ev1 ] )
data-race ( [ ev2 ] ++ tc ++ [ ev1 ] )

Figure 5.2: The data-race property (in file Safety.v).

Figure 5.2 formalizes the data-race property. As with happens-before,
we characterize a data race in regard to a trace and the events located on its
edges. There are three kinds of conflicting events in a trace: read–write,
write–read, and write–write, all with respect to the same address. Each
data-race constructor addresses one of these cases and ensures the absence
of a happens-before ordering.

With that, we state our safety theorem as follows.

initial t →→(Hinit)

[ ] / [ t ] ∼∼∼∼∼∼∼∼∼∼∼∼▷∗tc3 ++ tc2 ++ tc1
m / ths →→(Hustep)

¬ ( data-race tc2 )

The theorem contemplates the evaluation of a correct program, that is,
one that satisfies Elo’s initial properties. The term t stands for that program
as provided by the programmer, while [ ] represents the empty memory at
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the beginning of execution, and [ t ] represents the initial thread pool with
its single thread. In order to express that the trace of an evaluation does not
contain a data race, we assert that no matter how we break the multistep trace
(tc1, tc2, and tc3), the subtrace tc2 does not constitute a data race. Since the
break points are arbitrary, tc2 can be any subtrace within the whole trace.

Note that the subtrace tc3 is irrelevant to our proof, since a multistep
relation does not necessarily represent the evaluation of a program to com-
pletion. On the contrary, a multistep relation holds for all intermediary steps
in the evaluation, and it does not enforce that the memory m and the thread
pool ths in the theorem represent the final state of the program. Thus, we can
state the safety theorem by using only tc1 and tc2, and our proof will be just
as powerful.

initial t →→(Hinit)

[ ] / [ t ] ∼∼∼∼∼∼∼∼▷∗tc2 ++ tc1
m / ths →→(Hustep)

¬ ( data-race tc2 )

Let us now begin to prove the theorem. By breaking the multistep
reduction from Hustep in two parts, we get an extra discrete point in the timeline
of the reduction, besides the initial and the final ones. We use the suffix ⟨x ⟩
to identify the state of the program after the tc1 multistep, and the suffix ⟨ y ⟩
to identify the state of the program after the tc2 multistep. (This effectively
renames m and ths to my and thsy). We also use ⟨ 0 ⟩ to label the beginning of
the reduction.

initial t →→(Hinit)

[ ] / [ t ] ∼∼∼∼∼∼∼∼▷∗tc1
mx / thsx →→(Hustep0X)

mx / thsx ∼∼∼∼∼∼∼▷∗tc2
my / thsy →→(HustepXY)

¬ ( data-race tc2 )

From Hinitial and then from the preservation of the invariants, we get
that the invariant property holds in all points of the reduction. These new
hypotheses replace Hinit and Hustep0X, so we remove them. Besides that, we
unfold the negation ⟨ ¬ ⟩ from the conclusion so we can introduce the Hrace
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hypothesis.

invariants mx thsx →→(HinvX)

invariants my thsy →→(HinvY)

mx / thsx ∼∼∼∼∼∼▷∗tc2
my / thsy →→(HustepXY)

data-race tc2 →→(Hrace)

False

We then split the proof in three cases, one for each of the data-race
constructors of Hrace. In this text, we will only discuss the read–write case,
since the proofs for the other two follow a similar logic.

invariants mx thsx →→(HinvX)

invariants my thsy →→(HinvY)

mx / thsx ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼▷∗[ ev2 ] ++ tc ++ [ ev1 ]
my / thsy →→(HustepXY)

ev1 = (tid1, read ad t1) →→(Hev1)

ev2 = (tid2, write ad t2) →→(Hev2)

happens-before ( [ ev2 ] ++ tc ++ [ ev1 ] )

The rewritten proof goal reflects that the read event must happen
before the write event. Continuing with the proof, we break the the HustepXY

hypotheses in three so we can analyze the reductions in regard to the edges
of the trace. This introduces two other discrete points in the timeline of the
reduction: ⟨ a ⟩ labels the program just after the the read and ⟨ b ⟩ labels the
program just before the write. Naturally, the invariants also hold for these
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states.

invariants mx thsx →→(HinvX)

invariants ma thsa →→(HinvA)

invariants mb thsb →→(HinvB)

invariants my thsy →→(HinvY)

ev1 = (tid1, read ad t1) →→(Hev1)

ev2 = (tid2, write ad t2) →→(Hev2)

mx / thsx ∼∼∼∼∼∼∼∼▷
ev1

ma / thsa →→(HcstepXA)

ma / thsa ∼∼∼∼∼∼∼▷∗tc
mb / thsb →→(HustepAB)

mb / thsb ∼∼∼∼∼∼∼∼▷
ev2

my / thsy →→(HcstepBY)

happens-before ( [ ev2 ] ++ tc ++ [ ev1 ] )

When tid1 and tid2 are equal, we trivially close the proof using the first
constructor from the happens-before property. The other case leaves us with
a ⟨ tid1 ̸= tid2 ⟩ hypothesis. Moreover, the write effect implies that the pointer
type of the address ad is a writeable reference type. Because pointer types do
not change, this is true for all memory states.

The general ideal of the rest of the proof goes as follows.

• Because the thread tid1 is performing a read on the address ad in
point ⟨x ⟩, we know that tid1 is in a region owned by the address ad

(as explained when discussed the consistent-regions property).
• Since read steps do not alter the region of a thread, the thread tid1 in

point ⟨ a ⟩ is still in the same region that it was in point ⟨x ⟩.
• In a similar manner, because the thread tid2 is performing a write on

the address ad in point ⟨ b ⟩, we know that tid2 is in a region owned by
the address ad.

• Given that owners in the memory are static, we infer that the thread tid1

in point ⟨ a ⟩ is in the same region that the thread tid2 is in point ⟨ b ⟩.
For the rest of the proof, we will only care for these two points in the
reduction.

• By definition, the region the threads are in can be one of three: Rinvalid,
Rthread, or Rmonitored. This splits the proof in three cases. The invalid case
is trivial because no valid memory contains an invalid owner. The thread
case is also trivial, since different threads cannot be in the same thread
region. The interesting case is the monitored case.
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• A thread that is in a monitored region can either be initializing a
monitored reference adx or inside the critical region of that monitored
reference. (Note that the address adx is different from the address ad that
we read and write from.) By applying this rationale to the threads tid1

and tid2 in ⟨ a ⟩ and ⟨ b ⟩, we split the proof in four cases:

– If tid1 in ⟨ a ⟩ is initializing adx and tid2 in ⟨ b ⟩ is also initializing adx,
we have a contradiction since two distinct threads cannot initialize
the same reference (remember the unique-inits property).

– If tid1 in ⟨ a ⟩ is inside the critical region of adx and the thread tid2

in ⟨ b ⟩ is initializing adx, we also have a contradiction. It is easy to
prove that we cannot acquire a reference before initializing it.

– The proof gets more complex if tid1 in ⟨ a ⟩ is initializing adx or is
inside its critical region, while tid2 in ⟨ b ⟩ is inside the adx critical
region.

Because the proof for both of the initialize-then-acquire and release-then-
acquire cases follow a very similar structure, we will only discuss the release-
then-acquire scenario.

• If tid1 in ⟨ a ⟩ and tid2 in ⟨ b ⟩ are both inside the adx critical region, we
prove the happens-before goal as follows.

– First, we assert that the threads are not only inside the critical
region of the monitored reference (not only they contain a cr term),
but they are also holding the lock of the monitored reference.
Remember that a term is holding the lock of an address if it is
inside its critical region and if it is not trying to reacquire the lock
of the address. It is easy to prove that a thread that reads from or
writes to an address cannot be trying to reacquire a lock.

– Given that the thread tid1 is holding the adx lock in point ⟨ a ⟩ and
that the thread tid2 is holding the adx lock in point ⟨ b ⟩, we know
that the thread tid1 must release the adx lock at some point in the
reduction. (Formally we prove that by forward induction on the
HustepAB hypothesis). Otherwise, we would get a contradiction since
two threads cannot hold the same lock simultaneously, as per the
mutual-exclusion invariant. Let us label the point in the reduction
that tid1 releases the lock as ⟨ p ⟩.

– In ⟨ p ⟩, we know that tid1 does not have the lock of the monitored
reference, and neither does any other thread, but we do know that
somewhere along the evaluation from ⟨ p ⟩ to ⟨ b ⟩, the thread tid2
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acquires the lock. (We prove that by inducing backwards from ⟨ b ⟩
to ⟨ p ⟩.) Let us label the point in the reduction that tid2 acquires the
lock as ⟨ v ⟩. (Note that we are not interested in the many acquire-
and-release cycles that can by performed on this monitored reference
between ⟨ p ⟩ to ⟨ v ⟩. These operations are irrelevant to our goal of
proving the happens-before property.)

– Finally, we have four sequential points in the timeline of the
reduction that characterize the desired happens-before ordering:
⟨ a ⟩ is the point when tid1 reads from ad, ⟨ p ⟩ is the point when
tid1 releases adx, ⟨ v ⟩ is the point when tid2 acquires adx, and ⟨ b ⟩
is the point when tid2 writes to ad. Naturally, ⟨ p ⟩ happens before
⟨ v ⟩ because of the lock synchronization rule (hblock). We get that
⟨ a ⟩ happens before ⟨ p ⟩ because the associated events happen in the
same thread tid1. For the same reason, but with the thread tid2, we
get that ⟨ v ⟩ happens before ⟨ b ⟩. Thus, by transitivity, we conclude
that the read in ⟨ a ⟩ happens before the write in ⟨ b ⟩.

Let us recapitulate on the safety theorem we just proved.

initial t →→(Hinit)

[ ] / [ t ] ∼∼∼∼∼∼∼∼∼∼∼∼▷∗tc3 ++ tc2 ++ tc1
m / ths →→(Hustep)

¬ ( data-race tc2 )

We have explained how we proved this theorem, but remember that given
that we did it in Coq, the how is irrelevant to the validity of the proof. You only
need to validate the concepts presented by the theorem in order to validate
the proof. Let us (re)analyze these concepts: the initial predicate aggregates
basic language properties, such as well-typedness, that can be easily checked
by a compiler; the multistep that produces the traces is part of the formal
semantics of the language, so you must believe the semantics is correct—and
that it produces traces correctly—in order to believe in the proof; lastly, the
definition of the data-race property comes directly from standard definitions
used by other programming languages. The theorem concludes that no segment
of the trace can contain a data race. Thus, as the concepts present in the
theorem are fairly straightforward, it stands to reason that the language is
safe from data races.



6
Related Work

As we mentioned before, monitors were first proposed by Brinch
Hansen [9] and Hoare [10], with exchanges between them leading to the spec-
ification of the construct as we know it today. Despite looking for research
involving the formalization of monitors, we could not find any relevant work
pertaining to the topic. Therefore, in this chapter, we will discuss programming
languages inspired by monitors and the formalization of concurrent program-
ming languages in general.

Guava [30] is a dialect of Java that implements monitors with proper
safety guarantees. Like Elo, it forbids threads from sharing unsynchronized
mutable data, and therefore ensures the absence of data races. Guava has
three categories of classes: monitors, objects, and values. They distinguish
between one another in regard to concurrency as follows: monitors can be
referenced from multiple threads, and enforce the expected mutual exclusion
semantics; objects are restricted to be shared within a single thread at a time,
and, thus, do not require synchronization; lastly, values are non-references that
always get recursively copied when shared between threads, which eliminates
any synchronization requirements. Guava deals with the “reference problem”
we mentioned earlier by using a Rust-like ownership system that keeps track
of owned and borrowed references within user-defined regions.

Guava was the only programming language we found that implemented
monitors with references keeping its original data-race freedom guarantees.
It also expanded on the abstraction by using interesting mechanisms to deal
with the shortcomings of the original proposals. Unlike Elo, Guava is still
restricted by the object-oriented modularity of Java, so some of its innovations
cannot be applied to monitored references. Also unlike Elo, Guava does not
have a formal specification and safety proof. The rules regarding ownership
and regions, however, could be applied to Elo in order to loosen some of the
restrictions regarding how mutable data is shared between threads.

As to the formalization of concurrent programming languages, in Vol-
ume 2 of Software Foundations [21], the textbook reference for operational
semantics in Coq, the Smallstep chapter presents a ⟨ t1 ∥ t2 ⟩ term that reduces
non-deterministically, meaning that a congruence step can reduce either t1 or
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t2. Despite its simplicity, we found hard to prove actual properties using this
formalization. Also, Volume 6, which introduces Separation Logic, does not
cover reasoning about concurrent programs, even though Concurrent Separa-
tion Logic has been used to that purpose [27].

Rust [4] is, perhaps, the most prominent example of a programming
language that uses Concurrent Separation Logic to prevent data races. As
of today (May 2025), Rust still does not have an informal specification, much
less a formal one. This becomes a problem when each of its research papers
have to decide what Rust is before starting to prove anything [5, 6, 7, 8].
Moreover, one can argue that Rust’s ownership system is complex in nature,
and requires programmers to learn about a whole new set of features in order
to be able to write basic code. Thus, the benefits of data-race-free code does
not come without its hindrances.

The inspiration to structure Elo’s reduction relations using effects came
from Type and Effect Systems [22]. These systems structure typing judgments
such that a type plus an effect associate with a term relative to a type
environment. An effect typically describes program behavior during evaluation,
as in “read from address x”, “write to address y”, and “raise exception z”.
Static analysis algorithms can then use this information to check for core
language properties. Using Type and Effect Systems to deal with concurrency
is not a novelty [23, 24]. However, as we have seen, Elo effects operate in a
different abstraction level. We use effects to prove language properties instead
of enforcing them, and we tie effects to reduction relations, not to typing
judgments.

Despite our initial inspiration, Labeled Transition Systems (LTS) [20]
relate to our formalizations much more closely than Type and Effect Systems.
In LTS, transitions are defined as a subset of S × L × S, given that S is a
set of states and L is a set of labels. We can then represent a transition from
state x to state y with a label α as ⟨x α−→ y ⟩. CompCertTSO [25], a verified
compiler for a concurrent C-like language, uses these principles when defining
its small-step operational semantics. Their method for formalizing layered and
modular semantics much resembles our approach with effects and the three
reduction relations. Being a C-like language, however, CompCertTSO is not
free from data races, so its formalization is not concerned with proving safety
properties. As another example, we found a study [26] that uses LTS to provide
a structural operational semantics for Python. Again, their focus lies not in
proving language properties, but in extracting an interpreter from the formal
semantics.



7
Conclusion

In this thesis, we have presented a way to formalize the monitor concept
by decomposing it in terms of its core features: class-like modularity and data
encapsulation through mutually exclusive accesses. We focused on the latter
since that is the aspect of the model responsible for the safety guarantees
that we were interested in proving. For our operational semantics, we defined
three reduction relations with distinct semantic purposes and layered them
cohesively to compose our single-step relation. We used effects to bridge
between the concerns of the different layers and to allow for a true modular
design.

The Coq code that implements our proofs and formalizations contains
13019 lines of code spread across 45 different files. Conceptually, we divided
the proofs and definitions of the project into three categories. The core of the
codebase mainly contains the semantics of Elo, the properties section contains
Elo’s many initial, invariant, and/or auxiliary properties, and the safety section
deals with the end-goal proofs and definitions explained in Chapter 5.

As mentioned, we use lists (with some array-like operations) to represent
the memory and the thread pool in Elo. Because of this, many of our
proofs contain list boilerplate that is orthogonal to the ideas of what we are
actually trying to prove. For example, it is common to see something like
⟨ ths[tid← t1][tid] = t2 ⟩ as a proof hypothesis. It is obvious that we can rewrite
that hypothesis as ⟨ t1 = t2 ⟩, but having to do it manually every single time
for dozens of proofs is a hindrance. For that reason, we created some generic
Coq tactics to deal with list manipulation. Specifically, the sigma and omicron
tactics defined in the file Array.v use Coq’s pattern matching capabilities in
order to simplify obvious list-related hypotheses such as the one in the example.

A great deal of the development time spent to complete this project was
spent proving property preservation. The most difficult part of the process was
to formulate adequate properties for the concepts we wanted to express. With
each new invariant we added, we had to prove the preservation (and sometimes
inheritance) lemmas and theorems associated with it. As we explained, the
process of proving property preservation consists of proving that a program
that satisfies a property still satisfies it after a single execution step. For that,
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we need to prove the invariance in regard to each of Elo’s ten effects. These
proofs were not particularly difficult, but they were time consuming. Some of
them were repetitive, so we were able to use Coq tactics to cut down on the
amount of boilerplate code in the proofs.

We judge that an important contribution of our work is the exposition
of how we engineered the safety proof. Formal proofs can be hard to develop,
even harder under the watchful eyes of a proof assistant, and to the best of
our knowledge there is no established way to formalize and prove properties
about concurrency for multithreaded languages. In that sense, ours was also
an effort in proof engineering: we demonstrated how one can define common-
place concepts such as immutability and data races, and build readable and
straightforward proofs using these definitions.

Another important contribution of this thesis relates to the use of
enrichments, since we have not seen other formalizations use them as we did.
By annotating the memory and the syntax with information about the state of
the program, we were able to prove safety using mostly syntactical properties.
This technique is specially valuable because it allowed us to structure most of
our intermediary proofs without needing to rely on the evaluation trace. Our
invariants only depend on the state of the system (memory and thread pool),
which greatly simplifies their definitions.

For the future, we would like to expand our language with other core
constructs, such as records, so we can properly emulate monitors. It would
also be interesting to approximate our semantics to hardware level, by porting
it to some kind of bytecode architecture, and then proving the necessary
equivalences.
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