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Abstract

Musa, Felipe Gomes de Vasconcelos; Garcia, Marcio Gomes Pinto (Advi-
sor); Lima, Lucas (Co-Advisor). Inflation Risk Forecasting in Brazil.
Rio de Janeiro, 2025. 51p. Dissertacao de Mestrado — Departamento de
Economia, Pontificia Universidade Catoélica do Rio de Janeiro.

Inflation forecasting is central to monetary policy, and effective decision-
making under uncertainty requires a risk management approach that considers
the full distribution of outcomes rather than relying solely on point estimates.
This paper evaluates the accuracy and policy relevance of probabilistic infla-
tion forecasts under Brazil’s inflation-targeting regime. We begin by analyzing
the Central Bank of Brazil’'s (BCB) predictive distributions and document
a systematic underestimation of inflation uncertainty. As an alternative, we
implement a Quantile Phillips Curve (QPC) model, which shows improved
calibration—particularly in upper-intermediate quantiles, a critical area given
Brazil’s historically upward-skewed inflation environment. The models’ abil-
ity to assess inflation target breach scenarios is then compared. While BCB
forecasts provide only short-term alerts, the QPC model delivers informative
signals up to 12 months ahead. The paper’s main original contribution is the
introduction of a multi-period target risk measure that combines persistence
and timing dimensions, estimated via a flexible copula-based approach. Ap-
plied to the QPC model, this framework identifies persistent inflation breaches
up to six months in advance, offering policymakers a valuable tool for more

nuanced, forward-looking risk management.

Keywords
Forecasting; Inflation Risk; Predictive Densities; Probabilities; Infla-

tion Target.



Resumo

Musa, Felipe Gomes de Vasconcelos; Garcia, Marcio Gomes Pinto; Lima,
Lucas. Previsao de Risco de Inflagdo no Brasil. Rio de Janeiro, 2025.
51p. Dissertacao de Mestrado — Departamento de Economia, Pontificia
Universidade Catélica do Rio de Janeiro.

A previsao de inflacao é central para a politica monetaria, e a tomada de
decisdo eficaz em contextos de incerteza exige uma abordagem de gestao de ris-
cos que considere toda a distribuicao de possiveis cenarios, em vez de se basear
apenas em estimativas pontuais. Este trabalho avalia a acuracia e a relevancia
para a politica econdmica das previsdes probabilisticas de inflagdo no regime de
metas de inflagdo do Brasil. Iniciamos analisando as distribui¢oes preditivas do
Banco Central do Brasil (BCB) e documentamos uma subestimagdo sistema-
tica da incerteza inflacionaria. Como alternativa, implementamos um modelo
de Curva de Phillips Quantilica (QPC), que apresenta melhor calibracao —
especialmente nos quantis intermediarios superiores, uma faixa critica diante
do histérico de assimetria a alta inflagdo no Brasil. Em seguida, comparamos
a capacidade dos modelos em avaliar riscos de descumprimento da meta de in-
flacao. Enquanto as previsoes do BCB oferecem apenas alertas de curto prazo,
o modelo QPC fornece sinais informativos com até 12 meses de antecedéncia.
A principal contribuicao original do trabalho é a introducao de uma medida
de risco multiperiodo de descumprimento da meta, que combina as dimensoes
de persisténcia e momento temporal, estimada por meio de uma abordagem
flexivel baseada em cépulas. Aplicada ao modelo QPC, essa estrutura identi-
fica descumprimento persistentes da meta de inflagdo com até seis meses de
antecedéncia, oferecendo aos formuladores de politica uma ferramenta valiosa

para uma gestao de riscos mais refinada e prospectiva.

Palavras-chave
Previsao; Risco de Inflagao; Densidades Preditivas; Probabilidades;
Meta de Inflacao.
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1
Introduction

Inflation forecasting plays a critical role in monetary policymaking. While
point estimates have traditionally received primary attention, the inherent
uncertainty of economic projections requires policymakers to also consider the

full distribution of potential outcomes:

“[A] central bank seeking to maximize its probability of achieving
its goals is driven, I believe, to a risk-management approach to
policy. By this I mean that policymakers need to consider not
only the most likely future path for the economy but also the

distribution of possible outcomes about that path.”
Federal Reserve Board Chairman Alan Greenspan, August 2003.

In this context, central banks increasingly complement point forecasts
with probabilistic assessments to better communicate and quantify the uncer-
tainty surrounding inflation outlook. A well-specified distribution allows poli-
cymakers to evaluate the likelihood, costs, and benefits of alternative inflation
scenarios, thereby supporting monetary policy decision-making.

In emerging economies—where inflation dynamics tend to be more
volatile and frequently influenced by structural shocks—the development of
reliable probabilistic forecasts is particularly important for effective monetary
policymaking.

This study focuses on Brazil, a major emerging country that has adopted
an inflation-targeting regime in 1999. Since then, the Central Bank of Brazil has
regularly published its Inflation Fan Chart (Leque de Inflagio), a probabilistic
representation of the uncertainty regarding expected inflation paths. Given its
importance as a primary input into monetary policy decisions!, it is paramount
to assess the accuracy of the Central Bank of Brazil’s (henceforth BCB)
distribution forecasts.

To this end, we conduct a systematic assessment of these forecasts across
multiple horizons. Findings indicate that BCB’s predictive densities demon-

strate persistent underestimation of inflation outcomes, with poor calibration?

! As stated in the September 1999 Monetary Policy Report: “In this sense, the inflation
fan chart is an extremely useful and important tool since its objective is to announce the
conclusions drawn by the Monetary Policy Committee regarding the expected inflation
trajectory, (...), and is used both as the basis for discussions and as an aid in the decision-
making process.”

2Calibration measures how well forecasted probabilities correspond to actual outcome
frequencies.
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at key monetary policy horizons (six and eight quarters ahead). In contrast, we
introduce a Quantile Phillips Curve (QPC) model, inspired by Lopez-Salido
and Loria (2024), which exhibits improved calibration properties.

Considering the uncertainty in inflation forecasting, policy should adapt
to emerging risks that could threaten monetary goals. Hence, the ability to
monitor and quantify inflation risks is essential for central banks to fulfill their
mandates effectively. This is particularly relevant for central banks operating
under an Inflation Targeting (IT) regime, as their credibility is often based on
their capacity to maintain inflation within predefined targets.

Brazil’s experience with inflation targeting illustrates the institutional
diversity that can exist across monetary policy frameworks. From 1999 to 2024,
the country followed a fixed event approach, evaluating inflation at year-end
(December) against pre-announced targets and tolerance bounds.

In January 2025, Brazil transitioned to a “continuous target” regime:
inflation is now assessed monthly, with a 12-month target of 3.00%, and
a tolerance range of +1.50 percentage points. Non-compliance requires that
inflation stays outside this band for six consecutive months, thus underscoring
the need for a continuous risk assessment for efficient policy-making.

This paper also analyzes how effectively BCB captures inflation target
risk, by evaluating the likelihood of inflation target breaches scenarios based on
its probabilistic forecast tool. Results indicate that BCB’s forecasts are only
informative at shorter horizons, whereas our proposed QPC model provides
more reliable assessments of inflation target risk at medium-term horizons.

Furthermore, a key original contribution of this paper is the introduction
of an inflation target duration risk measure, which also accounts for the
persistence of deviations from the target. We propose estimating this measure
using a flexible Copula-based approach that requires only individual horizon-
specific forecast densities as input, making it applicable across a wide range of
forecasting frameworks.

We assess this novel metric using forecasts from the suggested QPC
model, finding it delivers informative early warnings of sustained inflation tar-
get breaches scenarios up to six months ahead. Therefore, offering policymakers
a valuable tool for forward-looking risk management.

The document is structured as follows. Chapter 2 summarizes related
works and situates our contributions. Chapter 3 presents the density forecast-
ing methodology, the dataset, and the Quantile Phillips Curve model. Chapter
4 evaluates the calibration of predictive densities, while Chapter 5 analyzes
their performance in gauging inflation target risk. Chapter 6 concludes with a

synthesis of the key findings.
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Related Literature

Evaluations of central bank density forecasts have largely centered on the
Bank of England (e.g., Mitchell and Hall (2005)). For Brazil, Galvao (2005) and
Knuppel and Schultefrankenfeld (2019) assess the BCB Inflation Fan Charts
under the assumption of an underlying Gaussian distribution, whereas the
present study permits a more flexible distributional format.

Galvao (2005), based on data up to 2004, evaluate forecast uncertainty
across the distribution and reports that forecasts are well-calibrated at the
h=0 (nowcast) median, with uncertainty overestimation for other forecast
horizons and quantiles. In comparison, this work consider a substantially larger
sample and longer horizons. While we also find accurate median forecasts at
h = 0, our results indicate uncertainty underestimation at longer horizons.
This divergence is likely due to their sample period, marked by high inflation
volatility, which prompted the BCB to produce wider forecast intervals.

Knuppel and Schultefrankenfeld (2019) examine forecast uncertainty
from 1999 to 2016, focusing on the average distribution calibration. They find
that BCB tends to underestimate uncertainty at most horizons. This study
differs in both scope and focus: we use an extended sample, broader horizons
and calibration across quantiles. Our findings similarly indicate systematic
underestimation, with significant miscalibration in the upper quantiles at 6
and 8 quarters ahead.

Empirical density forecasting of macroeconomic variables can be es-
timated using parametric methods, assuming specific forms, or via non-
parametric methods, which are flexible but prone to overfitting. Seminal work
of Adrian, Boyarchenko and Giannone (2019) proposes a semi-parametric two-
step approach: first, estimate quantiles via Quantile Regression; second, fit
them with a skewed t-distribution to yield a full distribution forecast

Originally applied to GDP, this approach has been used to model
future inflation distribution in works such as Lopez-Salido and Loria (2024),
Tagliabracci (2020), and Banerjee et al. (2022). All grounded in Phillips Curve-
based quantile models for the U.S., Euro Area and a panel of advanced
economies. This study adds to the empirical distribution estimation literature
by applying the Quantile Phillips Curve method to Brazil, a major emerging
economy.

Despite its policy importance, research on quantifying inflation target

risk remains scarce. Hecq, Issler and Voisin (2024) proposes a risk measure
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based on the conditional probability that inflation will be within the bounds
at h period ahead. Applied to Brazilian data, the authors use a Mixed Causal-
Noncausal Autoregressive (MAR) model to derive the probabilities for 1,3 and
6-month ahead. Results indicate that the model generates informative risk
alerts only up to 3 months ahead.

In this context, we assess the capacity of both BCB and QPC models
to deliver informative early-warning signals of target breaches. Using the
predictive densities to derive conditional breach probabilities, we find that
both models outperform the MAR model: the BCB provides accurate signals
up to 6 months ahead, while the QPC remains informative up to 12 months.

Hecq, Issler and Voisin (2024) introduced a timing-based target risk
measure, evaluating compliance only at horizon h. This paper propose a new
risk measure that integrates timing and duration dimensions, offering a more
robust inflation target risk assessment.

The new approach considers the conditional probability that inflation
breaches bounds at horizon h and persists outside for k consecutive peri-
ods. Applied to our QPC model,using a copula-based estimation inspired by
Mogliani and Odendahl (2025), we produce informative early-warning predic-

tions for windows up to 6 months ahead.



3

Predictive Density Estimation

3.1
Methodology

In our setting, each model provides a finite set of conditional inflation
quantile forecasts.! Following a standard approach in the macroeconomic risk
literature, as in Adrian, Boyarchenko and Giannone (2019), we recover the
underlying predictive inflation density by mapping these discrete quantile
estimates into a continuous distribution.

Specifically, the skew t-distribution proposed by Azzalini and Capitanio
(2003) is fitted, which provides a flexible yet parsimonious specification capable
of capturing asymmetric and heavy-tailed behavior. The distribution is char-
acterized by four parameters: location (u), scale (o), shape («), and kurtosis
(v).

For each forecast origin 7" and horizon h, parameters are estimated by
minimizing the ¢, norm between the empirical conditional inflation forecast

quantiles and theoretical quantiles implied by the skew-¢ distribution:

~ A 2
. —1 .
arg min Z (QwT+h\IT(T) — 775 sy O74hy QT VT-i—h))
HT+h; OT+hs XT+h, VT+h

where Z7 is the information set available at T and F' is the cumulative
distribution function (CDF') of the skewed-t probability density function (PDF)
f, given by:

- - +1
s(w 'u;u)S ol H v s;v+1],
7o\ ()

where s(-) and S(-) denote the PDF and CDF of the Student-t distri-
bution, respectively. When a = 0, the distribution reduces to the standard
Student-t. In the limiting case as ¥ — oo, becomes a Gaussian density with
mean p and standard deviation o. Similarly to Adrian, Boyarchenko and Gi-

annone (2019), we focus on the exactly identified case, matching the 7 = 0.05,

Tf the estimated quantiles are not monotonic, the uncrossing procedure of Chernozhukov,
Fernédndez-Val and Galichon (2010) is applied to enforce monotonicity.
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0.25, 0.75, and 0.95 quantiles.?

3.2
Brazilian Central Bank Model

The construction of Inflation Fan Chart relies on a predetermined para-
metric probability distribution, whose functional form is not publicly disclosed.
This distribution is characterized by parameters® that are specified using a
combination of quantitative methods and the subjective judgment of the Mon-
etary Policy Committee regarding potential inflationary risks.

Published fan charts display the forecast median and quantiles* associ-
ated with the probability distributions at various points along the projection
horizon. Figure 3.1 provides an example of a BCB Inflation Fan Chart, as
published in the Monetary Policy Report of December 2024.

Figure 3.1: BCB Inflation Projections and Fan Chart

-------------------------

Y/ | 1 VA | 1 " | 1 | /A A | I 1 | A A/ B |
2022 2023 2024 2025 2026 2027
Inflation target == == == » Tolerance interval

Figure 3.1: Displays the BCB’s outlook, made in 2024Q4, for 12-month IPCA
inflation rate. Shaded areas represent projections intervals associated with the
following probabilities (from the inner to the outer interval): 10%, 30%, 50%,
70% and 90%.

2 An alternative approach, beyond the scope of this paper, would be to empirically explore
the use of additional quantiles (e.g., include also 7 = 0.50) to pin down the parameters of
f, allowing cases of over-identification.

3These include a measure of central tendency, dispersion, and asymmetry.

4Quantiles typically displayed are 5, 15, 25, 35, 45, 55, 65, 75, 85, and 95.
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3.2.1
Data

Inflation Fan Charts are published quarterly in the Monetary Policy Re-
port. The forecast for the current quarter (h = 0) corresponds to the 12-month
inflation projection for the final month of the respective quarter.> Subsequent
h-quarter-ahead forecasts correspond to 3h month-ahead projections.

Table 3.1 below summarizes the available data for each h-quarter-ahead
horizon considered.® Last forecast origin is selected such that the final out-of-

sample projection corresponds to 2024Q4.

Table 3.1: BCB Model - Inflation Target Sample

Horizon Forecast Origins Sample Size

h=0 1999Q4 — 2024Q4 101
h=1 1099Q2 — 2024Q3 102
h=2 1999Q2 — 2024Q2 101
h=3 1999Q2 — 2024Q1 100
h=4 1099Q2 — 2023Q4 99
h=5 1999Q2 — 2023Q3 98
h=6 1999Q2 — 2023Q2 90
h=71 1099Q2 — 2023Q1 82
h=8 1099Q2 — 2022Q4 73

Note: For horizons h = 0,6,7,8, predictions were unavailable for certain periods
within the forecast origin range.

For each forecast origin, we collect inflation quantiles at horizons h =
0,...,8. In particular, these predictive quantiles assume that the future
nominal policy interest rate coincides with market expectations and the

exchange rate follows a predefined path.

3.2.2
Estimation

BCB’s predictive densities, obtained from the quantile forecasts as de-
tailed in Section 3.1, are visualized in Figure 3.2. Each density is aligned such
that the probability function for period ¢ corresponds to the forecast issued at
time t¢-h.

5Forecasts are released during the last month of the respective quarter, prior to the
publication of the IPCA for that month.

6Although the maximum horizon extends up to 13 quarters ahead, sample sizes for
horizons beyond 8 quarters are limited.



Chapter 3. Predictive Density Estimation 18

The figures reveal a structural shift in the format of the predictive dis-
tributions around 2008. Prior to this period, the distributions were relatively
flexible, exhibiting asymmetry and time-varying dispersion. After 2008, how-
ever, the distributions resemble a Gaussian shape, with variation occurring

primarily in the central tendency.

Figure 3.2: BCB Predictive Densities
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10

0
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. 2101
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Figure 3.2: Each panel presents BCB’s predictive density for period ¢, based on
forecasts issued at time ¢-h. The sample encompasses all available projections
during the Inflation Targeting period, with the final out-of-sample forecast
corresponding to 2024Q4. Predictions for horizons h = 6,7, 8 were unavailable
for certain periods.
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3.3
Quantile Phillips Curve Model

Our econometric framework for conditional inflation quantile forecasting
adopts a distinct approach from the BCB’s methodology. While the Central
Bank assumes an ex-ante parametric distribution and derives quantiles accord-
ingly, we directly estimate the quantiles and subsequently recover the implied
predictive density.”

The model specification builds upon the Phillips-curve framework of
Blanchard, Cerutti and Summers (2015), estimating the conditional 7-quantile

of h-step-ahead inflation () as:®

QT <7Tt+h | Xt) = Qr + (]- - )\T)ﬂ—t + )\Tﬂ-?xp + /Bl,ToutPUtha‘pt

i (3-1)
+62,T7T;mp + B3 . FCI, + B4 ;Deficit,

Contemporaneous inflation (m;) captures the role of inertia in the
price-setting process, while long-term inflation expectations (m;" ") reflect the
forward-looking price-setting behavior of firms. The dominant behavior is de-
termined by the value of the parameter A.. Other common factors in the liter-
ature include economic slack measure (Output_ Gap,), relative prices shocks
(7™ and financial conditions (FCIL,).

We also incorporate the government’s fiscal primary result (Deficit;). This
inclusion is motivated by Banerjee et al. (2022), which estimates a quantile-
augmented Phillips curve that includes fiscal balance, using data from 21
economies over four decades. Their findings reveal that higher deficits sig-
nificantly affect not only average inflation but also the tails of the distribution
of future inflation outcomes in “fiscally led” regime economies.’ The rationale
is that larger deficits are associated with tail movements due to risks of mon-
etization and fiscal dominance. Given Brazil’s structural challenges regarding
fiscal sustainability and recurring political pressures on its central bank, the

inclusion of fiscal balance as an explanatory variable can be justified.’

"Quantiles are estimated independently for each forecast horizon, allowing the predictive
distribution to vary without imposing a specific functional form.
8Formally, the dependence between x; and the T-quantile of 7, is measured by:

T—h

Br= argmikn Z (T ’ 1(7ft+h,ZXtﬁ)|7rt+h = XeBr |+ (L —1)- 1(7Tf,+h<Xtﬁ)|7Tt+h - XtﬁTD )
BreR® —1

where 1(.) denotes the indicator function.

9Defined as a regime in which the government does not adjust the primary balance to
stabilize debt, and the central bank exhibits reduced independence.

10 Appendix A.1 presents an inference exercise assessing the relationship between explana-
tory variables and movements in different parts of the inflation distribution. Results show
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3.3.1
Data

The model utilizes monthly data from January 2004 to December 2024.
Parameters are re-estimated each period using an expanding training window
of 120 months (10 years, approximately 50% of the sample), which sets the
first forecast origin at December 2013.

Horizons range from h = 0 (nowcast) to h = 4 quarters (12 months)
ahead, as the direct forecasting approach—estimating parameters for each
horizon h to predict h-period-ahead values from current data—is not advisable
for longer horizons due to declining efficiency.!!

The last forecast origin is chosen such that, for each horizon, the final
out-of-sample prediction corresponds to December 2024. This setup yields an
initial sample of 133 monthly quantile forecast observations for h = 0, 130 for
h =1 and decreasing linearly up to 121 for h = 4.

To align with the BCB’s predictions, made at the end of each quarter,
initial sample is restricted to include only predictions issued at the last month
of each quarter. This adjustment results in 45 quantile prediction observations
for h =0, 44 for h = 1 and decreasing linearly up to 41 for h = 4.

Table 3.2 summarizes the variables used in the analysis, along with their
typical release lags. These lags are incorporated to construct data vintages

that approximate the information set available at each forecast origin.'2

statistically significant effects of fiscal deficits, especially on the upper tail.

HEmpirical evidence (e.g., Marcellino, Stock and Watson (2006)) indicates that direct
forecasts remain efficient relative to iterated forecasts up to 12 steps ahead, consistent with
the maximum horizon in Mogliani and Odendahl (2025), that also employs a QPC model.

12BCB specifies the exact day within the month on which the Fan Charts are produced. As
forecasts are issued during month ¢, and data for that month are incomplete, the minimum
feasible release lag is one month. Descriptive statistics are available in Appendix A.2.
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Table 3.2: Variables Description

Variable Definition Release Lag
Tt Headline IPCA (12-month % change) 1 Month
P FOCUS Survey Median 4 Years Ahead 1 Month

Expected Inflation
Output_ Gap, Cycle decomposition of IBC-Br activity 2-3 Months
indicator using HP Filter

P Monthly % changes nominal BRL/USD 1 Month
+ % changes Brazil Commodity Index

FCI, BCB Financial Conditions Index 1 Month

Deficit, 12-Month Accumulated Primary Fiscal 2 Months

Deficit (% GDP)

3.3.2
Estimation

At each forecast origin, we estimate Equation 3-1 to generate, almost!?
real time, out-of-sample h-step-ahead quantile forecasts for inflation. Using
the methodology described in Section 3.1, we derive predictive densities for

horizons h = 0,1, 2, 3,4 quarters ahead, which are visualized in Figure 3.3.

13Data correspond to revised (final) values.
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Figure 3.3: QPC Predictive Densities
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Figure 3.3: Each panel presents QPC predictive density for period ¢, based on
forecasts issued at time ¢-h. The sample encompasses all projections starting
in 2013Q4, with the final out-of-sample forecast corresponding to 2024Q4.

Inflation Values (%)

The panels display flexible distributional shapes with time-varying dis-
persion, skewness, and kurtosis. This contrasts with the BCB’s constant Gaus-
sian format across most horizons during the same sub-sample period, as illus-

trated in Figure 3.4 for the h = 4 forecasts.

Figure 3.4: BCB Four Quarters Ahead Predictive Densities
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Figure 3.4: Presents BCB predictive densities for period ¢, based on forecasts
issued at time t-4. The sub-sample encompasses all projections starting in
2013Q4, with the final out-of-sample forecast corresponding to 2024Q4.



4
Predictive Density Calibration

This Chapter outlines the framework for evaluating the calibration of
predictive densities presented in Chapter 3. It assesses the calibration of the
BCB model across the entire Inflation Target period and also compares it with
the QPC model over the 2013:Q4 to 2024:Q4 period.

4.1
Density Evaluation Test

We formally assess the forecast distributions of both models by analyzing
their calibration—that is, the extent to which the predictive distributions align
with the true, unobserved data-generating process.

To do so, we employ probability integral transforms (PITs). For each fore-
cast, the PIT is obtained by computing the conditional predictive cumulative
distribution function (CDF)

Fﬂt+}L|It(') = ]P)<7Tt+h <- | It)
at the realized inflation 77,

P]Tﬁrt%m (W:+h) = Fm+h|It(7T:+h)
In a perfectly calibrated model, these PITs are independently and identically
distributed as U(0, 1) (Diebold et al. (1998)); that is, if the model assigns a ex-
ante probability 7 to an event, then approximately a fraction 7 of the ex-post

observations should fall below the corresponding forecast quantile.

4.2
BCB’s Density Calibration over Inflation Target Period

First, we evaluate BCB’s quarterly density forecasts over the Inflation
Target period. Figure 4.1 shows, for every forecast horizon, the empirical CDF
of the PITs (solid blue line) alongside the 45-degree line of an ideal uniform
distribution. Deviations from this line signal potential miscalibration of the
predictive distribution. To address sampling uncertainty, 95% confidence bands
(dashed blue lines) are added, following Rossi and Sekhposyan (2019).! A curve

!Bands are based on a block weighted bootstrap from Inoue (2001), assuming uniformity.

As the BCB’s estimation process is undisclosed, these bands, derived from rolling window
estimates, serve as indicative benchmarks.



Chapter 4. Predictive Density Calibration 24

falling outside the bands indicates rejection of the null hypothesis of correct
calibration.

Figure 4.1: BCB Empirical Distribution of PITs
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Figure 4.1: Each figure reports, for a specific forecast horizon, the empirical
cumulative distribution of the probability integral transform (PITs) for BCB’s
quarterly forecasts from 1999:Q2 to 2024:Q4. The general guidance 95%
confidence bands (dashed lines) are obtained as in Rossi and Sekhposyan (2019)

and plotted parallel to the 45-degree line, representing the theoretical ideal
calibration.

The PIT plot analysis reveals that forecast calibration deteriorates as
the forecast horizon increases. At h = 0, the predictive distribution is well-
calibrated at the median but overly wide, with realized inflation outcomes
clustering around the center of the distribution. This produces an distinct
S-shaped PIT CDF deviation, indicating underconfidence, though the curve
remains narrowly within the general guidance confidence bounds for calibrated
forecasts.

Across forecast horizons ranging from one quarter to two years ahead, the
PIT CDF systematically lies below the theoretical 45-degree line, indicating a

systematic underestimation of realized inflation. This suggests that inflation
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outcomes frequently fall in the upper tail—or even exceed—the predicted
distributions, leading to lower than anticipated PIT CDF values across nearly
all quantiles.

Despite the empirical distribution remaining within general guidance
confidence bounds for most horizons, calibration is rejected at the current
relevant monetary policy horizon (h = 6)? and for long-term projections (h =
8), where the plots reveal a systematic underprediction notably in the upper

intermediate quantiles of the inflation distribution.

4.3
Models Density Calibration over 2013:Q4 to 2024:Q4

In order to compare both models, we employ the PIT CDF distribution
test considering the 2013:Q4 to 2024:Q4 sample, constrained by the QPC
model’s densities forecasts availability.

Figure 4.2 presents the empirical CDF of the PITs for each forecast

horizon, with the BCB model depicted by a solid blue line and the QPC model
by a solid green line.

Figure 4.2: BCB and QPC Empirical Distribution of PITs
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Figure 4.2: Each figure reports, for a specific forecast horizon, the empirical
cumulative distribution of the probability integral transform (PITs) for BCB’s
and QPC’s quarterly forecasts from 2013:Q4 to 2024:Q4. The general guidance
95% confidence bands (dashed lines) are obtained as in Rossi and Sekhposyan

(2019) and plotted parallel to the 45-degree line, representing the theoretical
ideal calibration.

2Considered as the timeframe that the Central Bank views it can steer inflation in order
to achieve its target.
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Analysis of the PIT plots indicates that, across most horizons, both
models remain within their respective 95% confidence bands. The plots also
suggest that the QPC model generally exhibits superior forecast calibration
compared to the BCB model. Across all forecast horizons, the QPC model’s
empirical CDF intersects the 45-degree reference line at least once and remains
closer to it, particularly in the central and upper intermediate regions of the
inflation distribution.

This indicates a more accurate assessment of moderate to high inflation
scenarios—arguably more critical in the Brazilian context, given the historical
upward asymmetry of inflationary pressures.

For h = 0, the predictive densities of both models appear well-calibrated,
as their empirical CDFs align closely with the ideal 45-degree line across
most of the inflation distribution. However, the QPC model shows signs of
miscalibration in the lower tail of the distribution.

Across forecast horizons ranging from one quarter to one years ahead,
the BCB densities predominantly fall below the 45-degree reference line, sug-
gesting a systematic underestimation of realized inflation during the analyzed
subperiod. This pattern also aligns with the findings for the entire inflation
target period.

In contrast, the QPC model’s predictive densities do not exhibit sys-
tematic directional bias. However, they display signs of overconfidence, as the
predictive distribution is too narrow relative to the actual dispersion of infla-
tion outcomes. Specifically, the observed inflation are more frequently extreme
than the model predicts. This is indicated by inverse S-shaped deviations from

the 45-degree reference line for certain horizons.



5
Risk Assessment on Inflation-Targeting Regime

As outlined in Chapter 1, assessing the risks associated with future
inflation developments is a critical component of decision-making for economic
agents.

Hecq, Issler and Voisin (2024) proposes a statistical warning mechanism
for Central Banks under an IT regime. This risk measure considers if it is
sustainable for inflation to stay within the actual tolerance bounds at any given
horizon. In particular, it considers the conditional probabilities that inflation
will be within the bounds at A period ahead.

Among the countries that adopt the widely used continuous-time infla-
tion target framework, most of them define their target breach as a persis-
tent deviation from the announced target or bands. In order, to evaluate the
duration risk of deviation episodes, a multi-period consideration is required,
extending beyond single-h period-ahead compliance assessment.

The primary contribution of this paper lies in proposing a more robust
target risk measure for Central Banks by incorporating timing and duration
dimensions. In the next sections, we assess models performance in gauging

inflation target risk.
5.1
Single-period Inflation Target Risk Assessment

In this context, our analysis focuses on the conditional probability that

inflation will fall outside bounds at a given horizon h:

]P)(WT—HL > ubT+h V Trgn < le+h | IT) = (5—1)

P (7TT+h > ubT+h ’ IT) +P (7TT+h < leJrh | IT)

Where [b; and ub, are the lower and upper bound target for time ¢ and

Zr is the information set in the period 7" which the forecast is computed.
5.1.1
Evaluation of BCB’s forecasts for Inflation Target Period

A key question is whether the BCB’s probabilistic forecasts can reliably

assess inflation target breaches scenarios. Figure 5.1 illustrates the inflation
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dynamics within Inflation Target period.
In Figure 5.2, we present the corresponding conditional probabilities com-

puted from the BCB’s quarterly density forecasts. The solid line corresponds
to a forecast made at time ¢-h of time-¢ inflation, with grey-shaded areas indi-

cating periods when realized inflation missed the target.

Figure 5.1: 12-month Inflation Rate in Brazil and Target Bound

Inflation Rate

Figure 5.1: Displays the 12-month IPCA inflation rate in Brazil since the
adoption of the Inflation Targeting regime. The dashed lines represent the
upper and lower target bounds, while the grey-shaded areas highlight periods
when realized inflation fell outside the target range.
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Figure 5.2: BCB Probabilities of Inflation Target Breach at ¢
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F1gure 5 2 Each ﬁgure reports the condltlonal probablhty, computed from
the BCB'’s predictive distributions (from 1999 to 2024), that inflation will be
outside the bounds at a given horizon h. Solid line corresponds to a forecast
made at time t-h of time-¢ inflation, with grey-shaded areas indicating periods
when realized inflation missed the target.

An effective Inflation Target Risk monitoring tool would accurately
assign, at time t— h, a higher probability of missing the target at time ¢ in cases
where realized inflation indeed deviates from the target. Specifically, the model
should yield higher probabilities for grey-shaded areas periods (when realized
inflation deviates from the target) and lower probabilities during non-shaded
areas periods (when inflation remains within the target range).

Preliminary visual inspection indicates that, for forecast horizons up
to three quarters ahead, the probabilities associated with the BCB’s density
forecasts exhibit a pattern reasonably aligned with the expected behavior of
an Inflation Target Risk warning tool. Notably, the blue line tends to be higher
during grey-shaded periods and lower during non-shaded periods.

For forecast horizons ranging from one year ahead up to two years

ahead, the pattern shifts significantly. Several instances emerge where lower
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probabilities are associated with grey-shaded areas while higher probabilities
appear in non-shaded periods. For instance, during the post-COVID inflation
target breach period (grey-shaded area between 2021Q1 and 2022Q4), the
associated probabilities for all forecast horizons beyond h = 4 were relatively
low. Conversely, during much of the non-shaded period between 2003Q4 and
2008Q)2, the associated probabilities were relatively higher.

Additionally, while probabilities exhibit significant variation for short-
term forecast, from 2009Q4 onward, the inflation target breach risk appears
to converge around 0.25 for longer horizons. This suggests that BCB’s density
forecasts often assign a 25% probability of an inflation target breach occurring
at horizons ranging from one to two years ahead, regardless of the prevailing
economic conditions and monetary policy stance at the time of the forecast.!

Overall, the analysis suggests that BCB’s density forecasts may be useful
for assessing an inflation target breach risk, particularly at short horizons.
Nonetheless, such visual assessments are not appropriate for comparing models
or conducting rigorous quantitative evaluations. To address this, we rely on a
widely adopted method for evaluating the accuracy of probabilistic models:

the Receiver Operating Characteristic (ROC) curve.

'In comparison, over the Inflation Targeting period, inflation remained outside the target
band approximately 43% of the time. This unconditional pattern may reflect a statistical
modeling artifact, a deliberate strategy to anchor long-term expectations around a constant
risk level, or suggest overconfidence in its ability to meet the target.
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5.1.1.1
Performance Metric for Probabilistic Forecast

In order to evaluate the accuracy of probability forecasts, the primary
approach is to frame the problem as a binary classification task.
An event occurs when realized inflation breaches the target at time t+h,

while a nonevent occurs if inflation remains within bounds:?

Bvent: m, , <lbyp or m, > ubip,

Nonevent: b <y < ubipp.

Define the indicator variable I2%, as:

1, if an FEvent occurs
Out _ ) )

T+h = )
0, if a Nonevent occurs.

The estimated probability of a breach at ¢ + h, given information at forecast

origin 7', is:

PTal;: =P (7TT+h > ubT+h V gy < le—i—h | IT) .

A signal occurs when P23 exceeds a threshold ¢ € (0,1), while a nonsignal

occurs otherwise:
Signal: PT(Br‘;f > ¢, Nonsignal: PT?r“ht <c.
The signal indicator function is:

fOut(C) _ 1, if a Signal occurs,
T+h . .
0, if a Nonsignal occurs.

The True Positive Rate (I'PR) and Fulse Positive Rate (FPR) are

2Hecq, Issler and Voisin (2024) defines event as inflation remaining within the target
bounds at h. We opt to use the complementary formulation, as it aligns more directly with
the concept of target risk and is also formulated in this manner in other studies, such as
Galvéo (2005). Naturally, accuracy results are invariant regarding definition of binary events.
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defined as follows:

PR =T e =)
( Out (C) =1N [Out — O)
PP = T g =)

The TP R measures the proportion of true signals—cases where the model
correctly predicts a target breach—relative to all actual breach events. It
reflects the model’s accuracy in detecting actual target breach episodes. The
F PR, in contrast, captures the proportion of false alarms—instances where
the model incorrectly predicts a breach—relative to all non-breach events,
indicating the rate of erroneous breach predictions.

The Receiver Operating Characteristic (ROC) curve plots TPR(c)
against F'PR(c) for all ¢ € (0, 1), illustrating the trade-off between true and
false positives. As ¢ — 1, no signals are emitted, yielding TPR(c) = 0 and
FPR(c) =0;as ¢ — 0, TPR(c) = 1 and FPR(c) = 1. For an uninformative
model, for all ¢ € (0,1), TPR(c) = FPR(c), producing a 45° ROC line; a per-
fect classifier traces the upper-left boundary of the unit square (TPR(c) =
and FPR(c) =0).

Selecting a threshold ¢ is critical—yet inherently subjective—when as-
sessing inflation breach risk. Jorda and Berge (2011) links rational decision-
making to a binary classification problem, demonstrating that the optimal

choice of ¢ depends on the agent’s assumed utility function.
Alternatively, the Area Under the ROC Curve (AUC'), defined as:

ave= [ " ROC(r) dr, (5-2)

serves as a summary statistic for classification models. An AUC' = 1 indicates a
perfect model, while AUC' = 0.5 suggests performance no better than random
guessing. The metric aggregates model performance across all classification
thresholds ¢, eliminating the need to justify a specific cutoff. As shown by
Yang and Pagan (2024), the use of a higher AUC model can be associated
with greater expected utility from a rational decision-making perspective.

The Figure 5.3 displays the AUC values for the BCB’s conditional
probabilities of inflation falling outside target bounds at horizon h.3

Results are consistent with the preliminary visual analysis in Sec-

tion 5.1.2, ratifying that probabilities derived from BCB’s density forecasts

3The associated ROC curves are displayed in Appendix A.3.



Chapter 5. Risk Assessment on Inflation-Targeting Regime 33

Figure 5.3: AUC statistic of BCB’s Single-Period Target Risk Probabilities for
the Inflation Target Period
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Figure 5.3: Displays the AUC values for BCB’s conditional probability that
inflation will be outside the bounds at a given horizon h. The plot includes
95% confidence intervals computed via DeLong method, and a dashed gray
line at 0.5, representing the threshold for a random classifier. Probabilities are
derived from BCB’s predictive distributions from 1999 to 2024

are effective for short-term inflation target risk assessment. At the nowcasting
for the end-month of the quarter (h = 0), the AUC is approximately 0.99, in-
dicating that the model correctly distinguishes between breach and non-breach
periods 99% of the time.

As the forecast horizon extends, predictive accuracy declines, with AUC
values beyond one to two years ahead becoming statistically indistinguishable
from a random classifier performance. This underscores the reliability of the
BCB'’s predictive densities for short-term inflation risk (up to three quarters)
but reveals limitations for medium and longer term risk assessment, including

the six-quarter horizon currently emphasized for monetary policy decisions.
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5.1.2
Comparison of QPC and BCB forecasts

For forecast horizons extending up to one year ahead, conditional prob-
abilities 5-1 are derived from the QPC and BCB’s quarterly density forecasts,
over the 2013-2024 sample period.

Figure 5.4 presents the corresponding probabilities for this evaluation

period and Figure 5.5 displays the AUC' values.

Figure 5.4: QPC and BCB’s Probabilities of Inflation Target Breach at ¢
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Figure 5.4: Each panel presents the conditional probability, computed from
the QPC and BCB’s predictive distributions (from 2013:Q4 to 2024:Q4), that
inflation will be outside the bounds at a given horizon h. Solid line corresponds
to a forecast made at time t-h of time-t inflation, with grey-shaded areas
indicating periods when realized inflation missed the target.
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Figure 5.5: AUC statistic of QPC and BCB’s Single-Period Target Risk
Probabilities
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Figure 5.5: Displays the AUC values for QPC and BCB’s conditional probabil-
ity that inflation will be outside the bounds at a given horizon h. Plot includes
95% confidence intervals computed via DeLong method, and a dashed gray

line at 0.5, representing the threshold for a random classifier. Probabilities are
derived from predictive distributions from 2013:Q4 to 2024:Q4

Both models probabilities for short-term predictions in 5.4 exhibit close
alignment and are consistent with the expected performance of an Inflation
Target risk warning tool. Beyond two quarters, models signals seem to diverge.

During the 2017 disinflation period, BCB forecasts made in 2016 (h=3,4
quarters in advance) underestimated the inflation target risk, while the QPC
model indicated elevated risk.

This discrepancy is even more pronounced during the post-COVID
inflation overshoot, when BCB forecasts, made in 2020, failed to detect target
risk. This misassessment suggests that the BCB underestimated upside risks
when aggressively lowered the Selic rate to 2%, requiring sharp corrective rate
hikes in the following quarters. Conversely, the QPC model accurately signaled
increasing risks post-COVID at these horizons, though it overestimated risks
following the 2017 disinflation period.

Results based on the AUC statistic, presented in 5.5, indicate that both
models effectively distinguish between breach and non-breach periods for hori-
zons up to two quarters ahead. Specifically, the BCB’s estimates exhibit higher
accuracy for the nowcast and one-quarter-ahead horizon. However, for horizons

of three quarters to one year ahead, the BCB’s probabilities performance are

4The associated ROC curves are displayed in Appendix A.4.
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statistically indistinguishable from a random model, highlighting the advan-

tages of incorporating quantile Phillips Curve relationships for medium-term

forecasting.
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5.2
Multi-period Inflation Target Risk Assessment

In the previous section, we examined the conditional risk of an Inflation
Target miss at a specific horizon h. As most countries define a breach as a
sustained deviation from the announced target, a multi-period consideration
is required, extending beyond single-h period-ahead compliance assessment.

We define the multi-period risk as the conditional joint probability that
inflation falls outside the target bounds at horizon h and remains outside for
at least k consecutive periods. This statistic captures not only the timing but
also the persistence of a deviation event, providing a more robust target risk

measure.

k-1
P (ﬂ (Trghgs > Ubr ity V Tranyy < Ibryny;) | Ir, bk < H —h + 1) =
j=0

(5-3)

P (mrin & [[brin, ubryn], mrinyr € [0r4nir, brynsal, - - -,

Trthik—1 & [0rthik—1, Ubrinin—1] | Ir, bk < H —h +1).

Note that the number of consecutive periods k is constrained by the
maximum horizon H, which denotes the farthest projection being considered.
The definition is flexible and ensures the framework can adapt to diverse I'T
regime requirements and economic conditions®.

To compute the probability in (5-3), the conditional joint probability

distribution function can be used:

Frrinarinin (B Zr) =P (mren < brgns o Trpngi—1 < brangwn—1 | Ir),
(5-4)
J— /
where T+ h:T+h+k—1 — (7TT+h7 TT4+h+1s- - - >7TT+h+k71) denotes a vector of

future inflation rates and B = [Ib, ub]* is the set of bounds over k periods.
One may assume a predefined function (ie., Multivariate Normal Distri-

bution) or use some other estimation method. This paper proposes to combine

individual h-step-ahead predictive distributions into a joint forecast using a

copula function. The method is fully flexible and requires only the horizon-

5Tt can incorporate endogenous k() and H(-), enabling, for instance, k to vary during
periods of external shocks or adaptive projection horizons H. For a summary on differ-
ent forecast horizons H within IT frameworks globally, refer to the "Governance for the
Communication of the Inflation Projections Horizon" section Box in the BCB’s Septem-
ber 2024 Inflation Report (available at:https://www.bcb.gov.br/content /ri/inflationreport/
202409 /11202409b5i.pdf).


https://www.bcb.gov.br/content/ri/inflationreport/202409/ri202409b5i.pdf
https://www.bcb.gov.br/content/ri/inflationreport/202409/ri202409b5i.pdf
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specific forecast densities as input, regardless of assumptions about the dis-
tributional form or the models used to generate them. This makes it broadly
applicable for practitioners aiming to construct joint predictive distributions

for inflation without imposing rigid parametric specifications.

5.2.1
Estimating Inflation Joint Probability Distribution via Copulas

For the single-period inflation target risk assessment, we used the esti-
mated distributions from the BCB and QPC models to derive the conditional
probabilities that inflation will be outside the bounds at a given h period ahead.
In other words, this involves using the marginal predictive densities functions
for each horizon to obtain the associated probabilities.

Our setup follows a direct forecasting scheme, that is individual pre-
dictions do not contain information on cross-horizon dependence. A simple
approach would be to assume independence between the different marginal
predictive densities (i.e., no correlation between the direct h-step-ahead pre-
dictions at different horizons) and compute the multi-period joint probability

in (5-3)% by multiplying the single-period probabilities for each horizon:

k-1
P (ﬂ (TT4hts > UbTintj V Trpnty < le+h+j)> =
=0

k-1
II ®(mrine; > ubrynys) + P (mrine < lbriny)) .
j=0

However, this procedure neglects the serial dependence common in
macroeconomic indicators, notably pronounced in inflation dynamics.

To address this issue, we build on the method presented by Mogliani and
Odendahl (2025). Their framework focuses on constructing predictive objects
that depend on several horizons using direct density forecasts, while accounting

for cross-horizon dependence.”

6Conditioning in Zr and k < H — h + 1 is dropped for better readability

"This method has also been applied in related contexts, such as in Charemza, Makarova
and Wu (2018), where the authors use a copula-based approach to forecast the duration of
short-term deflation episodes.
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5.2.2
Methodology

The forecaster aims to estimate F'(7y, ..., 7y), the multivariate distribu-
tion of (Ily,...,IIy), using copula functions. Sklar’s theorem states that for

any F'(my,...,mg), there exists a copula function C(-|R), such that:

F(ri,....m5) = C(Gr, (), ..., G, (71| R), (5-5)

where Gry,...,Gn, are the marginal CDFs and R parameters governs the
dependence structure. Inversely, a copula function C', combined with marginal
CDFs, reconstructs the full multivariate distribution.

We employ a Gaussian copula, Cg,, with correlation matrix R, to
estimate the joint predictive CDF, Fr(mriq,...,mryp), from the marginal
predictive CDFs Gn,.,,, ..., Gn,,, obtained in Chapter 3:®

FT(T(T-i-la ce >7TT+H) = CG&(GHT+1 (7TT+1)7 SR GHT+H (ﬂ—T-i-H)'R) (5'6)

The following Monte Carlo algorithm is applied to estimate joint proba-
bilities:

8The copula approach is highly adaptable with respect to the marginals, irrespective of
their distributional form or underlying model.
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Algorithm 1: Estimating the Joint Predictive Distribution

1. Compute realized PITs:

{{PITun}is Himr

. H \T-H
using estimated predictive CDFs {{Gnt +h} } and realized

h=1) =1
g \T-H
. . .
inflation {{Wt+h}h_l} .
=1) =1

2. Estimate the rank correlation matrix R from {{PIT,,,}L 171
3. Compute the lower Cholesky decomposition of ﬁ, denoted by P.
4. For each s =1,...,S, where s represents a simulation round:

(a) Draw a H x 1 vector X ~y;q N(0,15).

(b) Compute:

(Zy, ..., Zy] = Z = PX.

Let U = [Uy,...,Uy] = [®(Z1), ..., 2(Zg)], where ®(-) is the CDF

of a standard normal distribution.

(c) Evaluate inverse CDFs:
Gos, (Uh), ..., Gl (Un),

to obtain simulated draws [}, 4, ..., 77, 5|, that maintains the

dependence structure.

5. Use the simulated draws:

{[W%Ha "'77T§"+H]/ sS=1

to approximate Fr(mry1,...,Tr1H)-
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5.2.3
Aplication: Brazil Inflation Target Framework

The proposed multi-period target risk considers the probability (5-3)
of inflation breaching the target at horizon h and remaining outside for k
consecutive periods. While the duration of such deviations is typically not
predefined, the new Brazilian Inflation Targeting framework defines a target
as unmet if the 12-month inflation rate deviates beyond the tolerance interval
for six consecutive months (k = 6). This explicit criterion positions Brazil as
an ideal candidate for applying the introduced duration risk measure.

The continuous monthly target assessment prevents the evaluation of
the BCB’s predictive densities, as these are available only at quarter-end and
defined over quarterly horizons. Accordingly, the analysis is based solely on
probabilities derived from the QPC model, which can be updated at a monthly
frequency.

Computation of (5-3) follows the algorithm previously described. The
probability is estimated by drawing 10,000 joint simulated paths, using a
maximum forecast horizon H of 12 months. Although the initial monthly
forecast origin is December 2013, the use of a 32-month rolling window to
estimate the correlation matrix R from empirical PITs shifts the effective
starting point to August 2017.

To better interpret the results, Table 5.1 summarizes the output of a real
out of sample forecast conducted in June 2021 using our QPC model. For each
possible 6-month window within the 12-month forecast horizon, we display
the joint probability of inflation remaining outside the target bounds for every

month in that window.

Table 5.1: Example of Forecasted Probability of Inflation Breach Duration (%)

Forecast Date Forecast Window (Months Ahead)

(0=5) (1—-6) (2—7) (3—8) (4—9) (5-10) (6—11) (7—12)

June 2021 68% 60% 47% 34% 24% 16% 12% 10%

The results indicate a moderate to high probability (68%) of consecutive
breaches in the near term (June-November 2021). However, as the forecast
horizon extends, the probability of a sustained deviation declines significantly,
reaching only 10% for the last six-month window (January—June 2022). This
suggests that, while inflation was likely to remain outside the target range
in the short run, the medium-term outlook—arguably more relevant given
monetary policy transmission lags—indicates a reversion toward the target.

These findings imply that, as of June 2021, prevailing monetary policy may
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have been insufficient to bring inflation back within bounds immediately but
remained consistent with stabilization in longer horizons.
The heatmap in Figure 5.6, extends the example of Table 5.1 to all

forecast origins.
Figure 5.6: Heatmap of 6 Consecutive Breach Probabilities
Heatmap of 6 Consecutive Breach Probabilities
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Figure 5.6: Display the conditional probability, computed from the QPC’s
predictive distributions, that inflation will be outside the target bound during
every period of the considered 6-month windows.

Figure 5.7 reports the AUC values for the QPC’s joint conditional
probabilities of inflation falling outside the target bounds for £ = 6 consecutive
periods.?

The model’s joint probabilities accurately distinguish between persistent
and non-persistent breach periods in 91% of cases within the immediate six-
month window (0 to 5 months ahead).

Predictive efficiency decreases with longer horizons, yet the AUC values
indicate that the model remains informative for risk assessment over windows
up to six months ahead. These findings highlight the reliability of the Quantile
Phillips Curve in anticipating short-term persistent inflation events, offering
valuable insights for continuous risk monitoring and effective policymaking.

9Tn this case, an event is defined as realized inflation breaching the target at ¢ + h and

remaining outside bounds for five subsequent periods. Corresponding ROC curves are shown
in Appendix A.5.
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Figure 5.7: AUC statistic of QPC’s Multi-Period Target Risk Probabilities
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Figure 5.7: Displays the AUC values for QPC’s conditional joint probability
that inflation will be outside the bounds for each 6-months consecutive
windows. Plot includes 95% confidence intervals computed via DeLong method,
and a dashed gray line at 0.5, representing the threshold for a random
classifier. Probabilities are derived from predictive distributions from 2017:M8
to 2024:M12
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Conclusion

In complex and shock-prone economic environments, central banks must
consider not only the most likely future path for the economy but also the
distribution of possible outcomes about that path. This paper assessed the
accuracy and informativeness of the Central Bank of Brazil’s probabilistic
inflation forecasts, a key tool in the country’s inflation targeting framework.
The analysis spans Brazil’s full Inflation Targeting period from 1999 to
2024, while also examining the 2013:QQ4-2024:Q4 subsample for comparative
evaluation.

Findings show that BCB’s probabilistic tool consistently underestimate
inflation uncertainty, exhibiting significant miscalibration at key monetary
policy horizons (h = 6 and h = 8 quarters). In contrast, the QPC model shows
improved calibration properties, especially in the central and upper ranges
of the inflation distribution—particularly relevant for Brazil’s historically
upward-skewed inflation dynamics.

We also evaluate both models capacity to generate informative inflation
target risk assessment. Findings show that BCB’s forecasts are only efficient
at shorter horizons (up to 6-months ahead), whereas our proposed QPC model
provides reliable assessments of inflation target risk even at medium-term
horizons (up to 12-months ahead).

An original contribution of this study is a novel inflation target duration
risk measure that integrates persistence and timing risk by assessing the prob-
ability of consecutive target breaches across different periods along the forecast
horizon. Applied to the QPC model via a Copula-based approach, adaptable
to diverse forecasting setups, it delivers informative early warnings of persis-
tent inflation episodes up to six months ahead. This advancement enhances
forward-looking risk management by signaling prolonged deviations from the
inflation target, offering nuanced insights for more effective policymaking.

In conclusion, while the BCB’s Inflation Fan Chart remains a valuable
communication tool, its forecasting accuracy and risk assessment capabilities
are limited at short-term horizons. The QPC model suggested in this study
addresses these shortcomings by providing policymakers with improved tools
to navigate Brazil’s volatile inflation dynamics. Future research could extend
this framework to other economies, incorporate additional macroeconomic vari-
ables, or explore alternative models to further refine probabilistic forecasting

under inflation-targeting regimes.
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A
Appendix

A.l
Inference Exercise

In Table A.1, we report the coefficients of each explanatory variable from an
in-sample estimation of the Quantile Phillips Curve model (Equation 3-1), using
data from January 2004 to December 2024.

Expected inflation significantly influences inflation forecasts across all quan-
tiles (5th, 50th, and 95th), with its positive effect diminishing at higher quan-
tiles, underscoring the importance of forward-looking expectations across inflation
regimes. Inflation inertia, however, gains prominence in the upper quantile (95th),
indicating a stronger role in extreme inflation scenarios. The output gap signifi-
cantly affects the lower (5th) and median (50th) quantiles but shows no notable
impact in the upper (95th) quantile. In contrast, fiscal deficits exhibit a significant
influence across all parts of the distribution, highlighting fiscal policy’s relevance
across inflation regimes.

In summary, upside inflation risk (i.e., movements in the right tail of the
distribution) is primarily associated with higher fiscal deficits, elevated inflation
expectations, and stronger inflation inertia. Conversely, downside inflation risk (i.e.,
movements in the left tail) is linked to fiscal surpluses, lower inflation expectations,

and a weaker output gap.
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Table A.1: Dependent Variable: 12-Months Ahead Inflation

Quantile Estimates

Variable 5th 50th 95th

Expected Inflation 0.91 0.85 0.73
[0.77-1.05] [0.72-0.97] [0.52-0.93]

Current Inflation 0.09 0.15 0.27
[-0.05-0.23] [0.03-0.28] [-0.48-0.48]

Output Gap 0.84 0.99 0.48
[0.45—-1.22] [0.56-1.41]  [-0.32-1.28]

Financial Conditions -0.14 -0.61 -0.52
[-0.28-0.56] [-0.14-——1.09] [-0.37-1.41]

Imported Inflation 0.02 0.11 0.06
[-0.02-0.07]  [0.07-0.16]  [-0.03-0.15]

Fiscal Deficit 0.32 0.80 0.82
0.03-0.61]  [0.52-1.08]  [0.29-1.35]

Note: Coefficients in bold are statistically significant. Brackets show 95% confidence intervals
based on standard errors estimated using 5,000 block-bootstrap replications.

A.2
Descriptive Statistics

Table A.2: Descriptive Statistics

Variable Mean Std. Dev. Min Max
Current Inflation 5.74 2.11 1.88 12.13
Expected Inflation 4.26 0.65 3.00 5.50
Output Gap -0.07 2.41 -7.91  3.27
Imported Inflation 0.70 3.47 -7.14  11.84
Financial Conditions -0.06 1.19 -2.50 3.06
Fiscal Deficit -0.91 2.52 -4.08 9.24

Note: Data span monthly observations from January 2004 to December 2024 (N = 203).
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A.3
BCB ROC Curves

Figure A.1: BCB Single-period Inflation Target Risk Assessment ROC Curve
h=0 h=1 h =2
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Figure A.1: Each panel displays the ROC' curve for BCB’s conditional proba-
bility that inflation will be outside the bounds at a given horizon. The curve
plots TPR(c) against F'PR(c) for all ¢ € (0,1). Sample encompasses all avail-
able projections during from 1999:QQ2 to 2024:Q4.
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A.4
QPC and BCB ROC Curves

Figure A.2: BCB and QPC Single-period Inflation Target Risk Assessment
ROC Curves
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Figure A.2: Each panel displays the ROC' curve for QPC and BCB’s conditional
probability that inflation will be outside the bounds at a given horizon. The
curve plots TPR(c) against F'PR(c) for all ¢ € (0,1). Sample encompasses all
available projections from 2013:Q4 to 2024:QA4.
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A.5
QPC Multi-Period ROC Curves

Figure A.3: QPC Multi-Period Inflation Target Risk Assessment ROC Curves
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probabilities of inflation falling outside the target bounds for £ = 6 consecutive
periods. The curve plots TPR(c) against F'PR(c) for all ¢ € (0,1). Sample
encompasses all available projections from 2017:MS8 to 2024:M12.
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