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Abstract

Cardoso, Fabio Henrique; Rebuzzi Vellasco, Marley Maria Ber-
nardes (Advisor); Leite, Karla Tereza Figueiredo (Co-Advisor).
Quantum-inspired Neural Architecture Search applied to
Semantic Segmentation using Symmetric Networks. Rio de
Janeiro, 2025. 94p. Dissertação de Mestrado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Deep learning has revolutionized various domains, showing great per-
formance for several perceptual tasks, in the fields of computer vision, spe-
ech recognition, and natural language processing. However, designing optimal
deep neural network (DNN) architectures often rely on expert knowledge and
time-consuming trial and error approaches. Neural Architecture Search (NAS)
has emerged as a promising solution, automating the design process to dis-
cover architectures that enhance performance and efficiency. This work intro-
duces SegQSNAS, an extension of SegQNAS, designed for Q-NAS (Quantum-
inspired Neural Architecture Search) in semantic segmentation, particularly
within the medical imaging domain. SegQSNAS is designed to search for sym-
metrical U-Net-like architectures, thereby reducing the search space and elimi-
nating the need for feasibility checks that were needed in SegQNAS. Further-
more, it enhances the search process by incorporating a two-point crossover
operation in order to improve the exploitation during evolutionary process,
alongside the addition of self-attention, MobileNet, and EfficientNet functions
to the search space that enables the discovery of efficient, customized networks.
To address inaccuracies in multi-class scenarios, the SegQNAS implementation
of Dice-Sørensen Coefficient (DSC) and loss functions were corrected because it
provides an overestimated DSC score in those scenarios. Experiments on medi-
cal segmentation datasets from the Medical Segmentation Decathlon challenge
demonstrate that on the prostate dataset experiment, SegQSNAS performed
well with the best results in DSC score, parameter count and GPU days, archi-
ving 0.7924 in average DSC score with half million parameters. It also archive
of good results on the liver dataset experiment due to the best trade-off con-
sidering that it is a limited computing resource scenario. Although, in some
experiments it show some limitation of the search strategy or computational
resource available. In addition, in any experiment the self-attention block was
not selected in the best architecture found, and this is indicative that the pre-
defined maximum number of nodes or the complexity of the tested problems



might not have been high enough for this operation to be selected during
evolution process.

Keywords
Neural Architecture Search; Evolutionary Algorithms; Semantic Segmen-

tation; Quantum-inspired Computin.



Resumo

Cardoso, Fabio Henrique; Rebuzzi Vellasco, Marley Maria Bernar-
des; Leite, Karla Tereza Figueiredo. Busca por arquitetura neu-
ral com inspiração quântica aplicada a segmentação semân-
tica utilizando redes neurais simétricas. Rio de Janeiro, 2025.
94p. Dissertação de Mestrado – Departamento de Engenharia Elé-
trica, Pontifícia Universidade Católica do Rio de Janeiro.

A aprendizagem profunda revolucionou vários domínios, demonstrando
excelente desempenho em várias tarefas perceptivas nos campos de visão com-
putacional, reconhecimento de fala e processamento de linguagem natural. No
entanto, o projeto de arquiteturas ideais de redes neurais profundas geral-
mente depende do conhecimento de especialistas e de abordagens demoradas
de tentativa e erro. O campo da busca por arquiteturas neurais (NAS - Neural
Architecture Search) surgiu como uma solução promissora, automatizando o
processo de design para descobrir arquiteturas que melhoram o desempenho
e a eficiência. Este trabalho apresenta o SegQSNAS, uma extensão do SegQ-
NAS, projetado para Q-NAS (Quantum-inspired Neural Architecture Search)
em segmentação semântica, especialmente no domínio de imagens médicas. O
SegQSNAS foi projetado para pesquisar arquiteturas simétricas do tipo U-Net,
reduzindo assim o espaço de busca e eliminando a necessidade de verificações
de viabilidade de solução que eram necessárias no SegQNAS. Além disso, ele
aprimora o processo de busca incorporando uma operação de cruzamento de
dois pontos para melhorar a exploração durante o processo evolutivo, junta-
mente com a adição de funções de self-attention, MobileNet e EfficientNet ao
espaço de busca que permite a descoberta de redes eficientes e personalizadas.
Para tratar de imprecisões em cenários com vários rótulos, a implementação
do SegQNAS do Coeficiente de Dice-Sørensen (DSC) e as funções de perda
foram corrigidas porque fornecem uma avaliação de DSC superestimada nes-
ses cenários. Os experimentos com conjuntos de dados de segmentação médica
do desafio Medical Segmentation Decathlon demonstram que, no experimento
do conjunto de dados de próstata, o SegQSNAS teve um bom desempenho
com os melhores resultados em DSC, contagem de parâmetros e dias de GPU,
alcançando 0.7924 no DSC médio com meio milhão de parâmetros. SegQS-
NAS também apresentou bons resultados no experimento com o conjunto de
dados do fígado devido ao melhor trade-off, considerando que se trata de um
cenário de recursos de computação limitados. No entanto, em alguns experi-
mentos, ele mostra alguma limitação da estratégia de pesquisa ou do recurso
computacional disponível. Além disso, em todos os experimentos, a função
de self-attention não foi selecionada na melhor arquitetura encontrada, o que



indica que o número máximo predefinido de nós ou a complexidade dos proble-
mas testados podem não ter sido suficientemente altos para que essa operação
fosse selecionada durante o processo de evolução.

Palavras-chave
Busca por Arquitetura Neural; Algoritmos Evolucionários; Segmentação

Semântica; Computação com Inspiração Quântica.
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1
Introduction

Deep learning techniques have achieved excellent results across various
domains, ranging from image classification to natural language processing.
Its architecture, characterized by multiple layers of processing units, enables
the extraction of hierarchical representations from complex data [1, 2, 3]. The
ability of deep learning models to learn from vast amounts of unstructured data
has positioned them as superior alternatives to traditional machine learning
techniques, such as Support Vector Machines (SVM) and K-Nearest Neighbors
(K-NN) [4, 5].

Before the use of Deep Learning models, the feature extraction process
was performed by traditional pattern recognition methods, which were time-
consuming and lacked efficacy due to the inherent human bias [6]. On the other
hand, deep learning techniques can automatically learn to extract features that
are important for the task, and that may be non-obvious even to an expert in
the field. Additionally, deep learning techniques can extract multiple features
on various scales in a hierarchical form and define the importance of each
feature for the task.

In the healthcare sector, Deep Learning models[7] are rapidly transform-
ing the landscape of medical diagnosis, empowering medical experts to provide
more accurate and faster diagnoses. For example, deep learning techniques
have been successfully applied in tumor detection and segmentation, achieving
state-of-the-art results in various cancer imaging tasks [8]. The deep learn-
ing capabilities to process and analyze large quantities of data are beneficial in
the healthcare sector, where it can detect patterns previously elusive to human
experts [5, 9].

Despite deep learning’s ability to automatically extract task-specific
features, tuning several hyperparameters is still required for optimal neural
network performance. Each layer of the neural network can perform a different
operation, such as convolution, fully connected layers, pooling, transposed
convolution, etc. Each layer has its own set of hyperparameters to be defined.
For instance, configuring a convolutional layer involves specifying parameters
such as the number of kernels (filters), kernel size, stride, and padding.

Historically, defining DNN architectures has relied on expert knowledge
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and a trial-and-error approach. However, manually designing novel DNN
architectures, aside from being time-consuming, is prone to human bias and
may leave non-obvious architectures unexplored [10, 11, 12].

Given the challenges of manually configuring DNNs [13], an obvious next
step is to automate their architecture design. This research field is known as
Neural Architecture Search (NAS) [14]. NAS algorithms aim to find an optimal
neural network architecture that improves performance and computational
efficiency [15].

Two prominent NAS methodologies are Evolutionary Algorithms (EAs)
and Reinforcement Learning (RL). EAs are generally more sample efficient,
allowing for a broader exploration of the architecture space with fewer evalua-
tions [16] and can be advantageous in scenarios where computational resources
are limited. However, RL methods, while potentially more powerful in discov-
ering complex architectures, often suffer from longer training times and higher
resource consumption [17].

Quantum-Inspired Evolutionary Algorithm (QIEA) incorporates con-
cepts from quantum mechanics, such as superposition and entanglement, into
the evolutionary process. QIEAs utilize quantum bits (qubits) to represent
potential solutions, allowing for a more refined exploration of the search space.

The use of QIEAs in NAS presents advantages over traditional EA
and RL methods. QIEAs can effectively balance exploration and exploitation,
leading to faster convergence towards optimal architectures [18]. In addition,
QIEAs can represent multiple states simultaneously, which allows a more
comprehensive search, identifying architectures that might be underestimated
by conventional methods [19]. Q-NAS (Quantum-inspired Neural Architecture
Search [20] is one of the proposed methods, which introduces a Quantum-
inspired Evolutionary Algorithm (QIEA) to perform the search for a deep
neural architecture on the image classification task.

The SegQNAS (Quantum-inspired Neural Architecture Search applied
to Semantic Segmentation) is an extension of Q-NAS that performs NAS
on semantic segmentation DNNs, generating U-Net-like architectures. The
algorithm was evaluated on two datasets from the Medical Segmentation
Decathlon challenge [21].

1.1
Objectives

In this work, we introduce SegQSNAS (Quantum-inspired Symmetrical
Neural Architecture Search applied to Semantic Segmentation), an extension
of SegQNAS. Our research pursues two main objectives.



Chapter 1. Introduction 18

First, we aim to develop a NAS algorithm that builds upon SegQNAS
and creates a symmetrical neural network to reduce search space. This strategy
eliminates the need for individual feasibility checks during the search process.

Second, the goal is to enhance the SegQNAS algorithm by incorporating
new types of layers and adding crossover to the Quantum-inspired Evolutionary
Algorithm (QIEA) applied to SegQNAS.

Finally, we conduct a comparative analysis to evaluate SegQSNAS’s ef-
fectiveness. This comparison evaluates its performance against the original
SegQNAS algorithm and other state-of-the-art NAS approaches in the litera-
ture.

1.2
Contributions

In this section, we list the main contributions of this work:

– Search space reduction by using Symmetrical Neural Network:
SegQSNAS was designed to search the space of symmetrical U-net-like
networks. This symmetry reduce the search space in half compared to
SegQNAS because the other half of the network mirrors the first half.
Furthermore, this symmetrical design inherently eliminates the need
for the feasibility check required by SegQNAS, as every downsampling
operation in one half of the network is guaranteed to have a corresponding
upsampling operation of the same proportion in the other half.

– Addition of the crossover to the evolutionary process: A two-
point crossover operation was added to the evolutionary process pre-
sented by the SegQNAS algorithm, providing an improved and less noisy
evolution compared to the original one.

– Addition of self-attention block: A self-attention block was added to
the available blocks in the search space. This kind of layer allows for a
better composition of filters found during the convolutional process.

– Addition of lightweight convolutional block: Lightweight blocks,
such as MobileNet and EfficientNet, were also added, providing the
possibility to achieve an individual solution with an even smaller number
of parameters when compared to the blocks implemented on SegQNAS.

– Metrics and Loss functions correction: The Dice-Sørensen coeffi-
cient (DSC) function used in SegQNAS calculate the correct values for
binary problems. However, for multi-class problems, the calculated value
was overestimated because the numerator in the DSC formula does not
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fully account for the true overlap between multiple classes, while the de-
nominator is inflated due to the sum over all labels. In order to solve
this, the DSC function was corrected for both binary and multi-class
problems.

1.3
Work outline

This work comprises five additional chapters, which we describe below.
Chapter 2 presents the semantic segmentation task and describes how

current deep neural network architectures are designed to tackle this computer
vision problem.

Next, Chapter 3 provides the theoretical background for understanding
NAS and SegQNAS, their components (search space, search strategy, perfor-
mance estimation strategy), and their challenges.

Chapter 4 introduces SegQSNAS and discusses its changes, including the
search space used and enhancements to the algorithm.

Chapter 5 describes and discusses the experiments proposed to validate
SegQSNAS. The results are presented and compared to baselines and other
models in the literature.

Finally, Chapter 6 concludes our work and discusses the next steps of
our research.



2
Semantic Segmentation

In this chapter, we present the concept of semantic segmentation and how
convolutional neural networks are used to solve this task. First, we provide a
brief review of how convolutional neural networks perform automatic feature
extraction. Then, we focus on the encoder-decoder-based methods.

2.1
Semantic Segmentation

Image segmentation is a key research area in computer vision that
involves assigning a meaningful label to each pixel inside an image, enabling a
more detailed understanding of the scene [22]. This task can be divided into
three main categories.

– Semantic segmentation: This focuses on understanding the overall scene
by assigning a class label to every pixel, thereby segmenting the image
into regions that correspond to different object categories, providing a
comprehensive understanding of the scene;

– Instance segmentation: In contrast, instance segmentation involves not
only classifying each pixel but also distinguishing between different
instances of the same category;

– Panoptic segmentation: Panoptic segmentation deals with performing
both semantic and instance segmentation. It aims to assign a semantic
label to each pixel while also providing unique identities for each instance
of objects in the scene.

Semantic segmentation is a critical area of research within computer
vision and is essential for various applications, including autonomous driving,
medical imaging, and remote sensing, where precise object localization and
classification are crucial [24, 25, 26, 27, 28, 29, 30, 31]. Regarding autonomous
driving applications, the labels could be road, pedestrian, vehicle, etc. On the
other hand, when it comes to medical image analysis, the semantic labels could
be organs, vessels, and tissues, to name a few possibilities.

The evolution of semantic segmentation has been significantly influenced
by advances in deep learning, especially by the use of convolutional neural
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networks. These networks have allowed the extraction of high-level features
from images, which enhances the accuracy and efficiency of segmentation tasks
[32, 33, 34].

Traditional semantic segmentation methods often relied on hand-crafted
features and shallow learning techniques, which limited their performance.
Several semantic segmentation methods have been developed in the literature,
such as thresholding [35], region-growing [36], clustering of k-means [37],
watershed methods [38], active contours [39], graph cuts [40], conditional
random fields (CRFs) [41], Markov random fields [42] and sparsity-based
methods [43, 44]

In contrast, deep learning approaches have demonstrated superior han-
dling of complex image data, leading to state-of-the-art results on various
benchmarks [46, 47]. Deep learning methods were able to address the issue
of automated feature learning, achieving remarkable performance in several
computer vision tasks, such as classification, object detection, and semantic
segmentation [45].

The following sections will first introduce the fundamentals of convolu-
tional neural networks (CNNs) and their application in semantic segmentation.
We will then explore the encoder-decoder architecture, a widely used frame-
work for segmentation tasks.

2.2
Convolutional Neural Networks Applied to Segmentation Task

Convolutional Neural Networks (CNNs) are deep neural networks em-
ployed in image processing, video analysis, and other tasks that require feature
extraction from structured data. The fundamental operation of CNNs revolves
around the convolutional layer, which utilizes a set of learnable filters (or ker-
nels) to extract local features from input data. Typically, CNNs are composed
of stacked blocks of convolutional layers, activation layers, and pooling layers
(Figure 2.1).

The convolutional layers apply filters to the input data, generating
feature maps that highlight key patterns [48, 49]. The convolutional process
is inherently hierarchical, where the initial layers capture low-level features
such as edges and textures, while the deeper layers specialize in abstract
representations, allowing the network to understand complex patterns and
structures [50, 48, 51].

A convolutional layer receives an input tensor of shape (H ×W × C),
where H is the height, W is the width, and C is the number of channels.
The number of channels typically corresponds to the color components in an
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Figure 2.1: A typical CNN block comprises a convolutional layer, activation
layer, and pooling layer.

image (e.g., 3 for RGB). Then, it convolves k kernels of size (h×w×C) along
the x and y axes of the input tensor, producing an output tensor with shape
(H−h+2p

s
+ 1× W −w+2p

s
+ 1× k) where p is the padding and s is the stride.

Padding refers to the process of adding extra layers of pixels around the
input data. This technique is often used to control the spatial dimensions of the
output feature map, allowing for the preservation of the input size or allowing
the kernel to be applied to the edges of the input. The stride defines the step
size at which the kernel moves across the input tensor. A larger stride reduces
the spatial dimensions of the output feature map more significantly. The kernel
is a tensor of trainable weights that are adjusted through the training process
to extract task-specific features from the input tensor.

Figure 2.2 represents the convolution operation applied to a 4 × 4 × 1
input tensor with a 2× 2× 1 kernel with s = 1 and p = 0 producing an output
tensor of 3× 3× 1.

The activation layer performs an element-wise non-linear operation on an
input tensor, enabling the CNN to learn non-linear features. There are several
possibilities for activation functions, ReLU [52] and Softmax [53] are the most
common.

The ReLu function for every input x, if x is positive, the output is
x; otherwise, the output is zero (Equation 2-2). In the Softmax function z

represents the input logits, zi is the score for class i, and the denominator sums
the exponentials of all logits to ensure that the output sum is one (Equation
2-1).



Chapter 2. Semantic Segmentation 23

Figure 2.2: Example of a convolution with s = 1 and p = 0.

Softmax(zi) = ezi∑
j ezj

(2-1)

ReLU(x) = max(0, x) (2-2)
Finally, the pooling layers reduce the dimensionality of the feature maps

to retain significant features while discarding less important information [54,
55]. Reducing the feature maps resolution can reduce the resource requirement,
which improves efficiency, and, besides that, it also allows for small kernels to
have a larger receptive field, which means that a larger region of the input
image is taken into account in a kernel patch during convolution.

The polling layers that are the most commonly used are the average
polling layer and the maximum polling layer [56]. Pooling layers replaces the
values by an aggregation method and slides through the input with stride s as
shown in Figure 2.3 with average as the aggregation method.

Figure 2.3: Example of an 2x2 average pooling operation with s = 2.

The Convolutional Neural Networks are designed to allow them to under-
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stand the spatial context and relationships between different parts of an image.
This capability gives them significant leverage in tasks like classification and
segmentation. The primary distinction between segmentation and classification
tasks is the output format. In the segmentation task, it produces a pixel-wise
classification, while classification assigns a single label to the entire image.

In the next section, we will present encoder-decoder-based models, a
class of CNN that has become increasingly popular in image segmentation,
especially in medical imaging.

2.3
Encoder-Decoder-based models

Encoder-decoder architectures (Figure 2.4) have become fundamental in
the field of image segmentation, particularly in medical imaging. The main
characteristics of these architectures are that they are separated into three
main parts: the encoder, which captures the context and features of the
input image; the latent space, which is the most compressed information that
represents all the image; and the decoder, which reconstructs the image from
latent space to produce a segmentation map.

Figure 2.4: Default autoencoder representation.

The U-Net model (Figure 2.5) is one of the encoder-decoder architectures
widely used in the semantic segmentation task. Originally developed for
biomedical image segmentation, U-Net employs a symmetric structure with
skip connections. A skip connection is added after every encoder convolutional
block (before the pooling operation) to the decoder, and its purpose is
to facilitate the integration of high-resolution features from the encoder,
improving the preservation of fine details during the segmentation process
[57, 58].
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Variants of U-Net [59], such as U-Net++ [57] and Double U-Net [60], have
been proposed to further improve performance by incorporating nested skip
pathways and stacking multiple U-Net architectures. These modifications were
proposed to refine the segmentation output, especially in complex scenarios
where precise labels are necessary [61, 62].

Other contributions of the U-Net paper [59] include the training strategy
that is highly dependent on data augmentation and the Dice loss function
(Equation 2-4) based on the Dice coefficient (Equation 2-3).

The dice function receive every pixel real label ytrue,i and predicted label
ypred,i and use the representation of intersection as ∑i ytrue,i · ypred,i and the
union as ∑i(ytrue,i + ypred,i) to calculate the score, being 1 the representation
of a perfect overlap of the real and predicted label and 0 the representation of
no overlap between real and predicted labels.

Dice Coefficient = 2 · (∑i ytrue,i · ypred,i)
(∑i(ytrue,i + ypred,i)) + smooth (2-3)

Dice Loss Function = 1−Dice Coefficient (2-4)
Another encoder-decoder architecture is SegNet [63], which also follows

the encoder-decoder paradigm. SegNet (Figure 2.6) proposes a similar ap-
proach to U-Net, but the key difference lies in how they transfer information
from the encoder to the decoder. SegNet sends only pooling indices to the de-
coder, whereas U-Net transmits the entire feature map via its skip connections.
Both approaches are used to create an accurate and detailed reconstructed im-
age.

SegNet architecture has been adopted for high-resolution image segmen-
tation tasks due to its ability to maintain spatial hierarchies while processing
the image [61, 64]. Additionally, incorporating attention mechanisms in models
like Attention U-Net has further improved these networks’ ability to focus on
relevant features, enhancing segmentation accuracy [65].
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Figure 2.5: U-Net architecture.
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Figure 2.6: SegNet layer representation.



3
Neural Architecture Search

In this chapter, we present the Neural Architecture Search (NAS) field.
First, we review some of the NAS methods. Then, we detail NAS using a
Quantum Evolutionary Algorithm (Q-NAS), including its adaptation for the
segmentation task (SegQNAS).

3.1
Neural Architecture Search

The NAS process can be divided into three main components: Search
Space, Search Strategy, and Performance Estimation Strategy (Figure 3.1)
[66]. The Search Strategy module samples candidate architectures a from the
search space A and evaluates them according to a performance estimation
strategy. The evaluation is used to determine which candidates are better than
the others and to assist in the search strategy sampling of the search space, as
the problem deals with the exploration-exploitation trade-off.

Figure 3.1: NAS process

3.1.1
Search Space

The network is represented as a direct acyclic graph (DAG) [67] composed
of k nodes ∈ Z connected sequentially, where each node z(k) of the graph
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represents a tensor and its associated operation o(k) ∈ O that is applied
to its set of parent nodes z(k−1) (Equation 3-1). All possible architectures
represented by this DAG comprise the search space, combining all possible
node connections and operations presented in the set O. The operations o

such as convolutions, polling operations, and fully connected layers, belong to
the set O.

z(k) = o(k)(z(k−1)) (3-1)
The choice of search space affects the complexity of the search problem,

as the search space can be non-continuous and exponentially large [66]. Usually,
two main groups of search spaces are used to represent CNNs:

– Global search space: Refers to the comprehensive set of all possible neural
network architectures that can be generated based on a defined set of
operations and connections. This space is often vast and complex, since it
includes every conceivable arrangement of layers, nodes, and connections
throughout the entire network;

– Cell search space: Refers to the layers’ operations and hyperparameters,
such as kernel size, number of kernels, stride, padding, and activation
function for a convolutional layer.

These two types of search spaces are critical for an effective NAS. The
global search space provides the overarching framework for exploring various
architectures. In contrast, the cell search space allows for detailed optimization
of the components that compose these architectures.

3.1.2
Search Strategy

The objective of the search strategy is to find an architecture a from the
search space A that maximizes a certain performance metric in unseen data
(validation set). Furthermore, the search strategy defines how the search space
will be sampled to perform better in the validation set when trained in the
training set (Figure 3.1).

The search space is potentially exponentially large, so the choice of search
strategy must address the exploitation-exploration trade-off. Although quick
convergence is desirable, it may lead to poor-performing DNNs. Two main
strategies are used in NAS: Reinforcement Learning (RL) and Evolutionary
Algorithms (EA).

RL methods are used to model sequential decision-making processes. The
approach involves defining a policy that selects architectures based on their
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expected performance, which is evaluated through a reward mechanism. The
policy defines how the agent should act based on the environmental state, and
the environment state is obtained by observation (Figure 3.2).

Figure 3.2: A general framework for RL methods.

EAs, on the other hand, are optimization algorithms inspired by the
natural process of evolution. When applying EAs to NAS, the population is a
set of candidate architectures sampled from the search space, and its fitness is
the validation set’s evaluation. In addition, the combination of mutation and
crossover operations in EA facilitates the discovery of architectures that might
not be found using traditional gradient-based methods [68].

The algorithm comprises some key steps: initialization, parent selection,
recombination and mutation, and selection of the fittest individuals [69].
The population of architectures evolves over generations. Each architecture
is evaluated based on its performance, and the best-performing architectures
are selected to produce offspring for the next generation, as shown in Figure
3.3.

EA approach allows for a more diverse exploration of the search space
through mechanisms such as mutation and crossover, which can lead to the
discovery of architectures that might not be found through the RL approach
[70, 71]. In contrast, RL methods rely on a single agent’s experience, which
can limit exploration and lead to suboptimal solutions [72, 73].

The computational cost associated with training multiple architectures
in RL can be high due to often requiring extensive training cycles to evaluate
the performance of each candidate architecture [72, 74]. In contrast, EAs can
evaluate multiple architectures simultaneously, reducing the computational
burden [75, 76].
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Figure 3.3: A general framework for EA methods.

Another advantage of EAs compared to RL is their robustness to hyper-
parameter tuning, since RL methods require tuning of various hyperparam-
eters, such as learning rates and exploration strategies, which can be time-
consuming and may not generalize well across different tasks [77, 78].

In summary, EA offers advantages over RL, including exploration capa-
bilities, improved sample efficiency, and robustness in hyperparameter tuning.

3.1.3
Performance Estimation Strategy

As mentioned, NAS aims to find a neural architecture a that maximizes
performance on unseen data. Performance estimation strategies in NAS can
be categorized into full evaluations, multi-fidelity evaluations, and one-shot
models.

Full evaluations involve training each candidate architecture from scratch
and evaluating its performance, which, while accurate, is computationally
expensive and time-consuming [74, 79]. To mitigate these costs, multi-fidelity
evaluations have been proposed, where architectures are evaluated using fewer
resources, such as limited training epochs or smaller datasets, to provide
faster feedback on their potential performance [80, 81]. One-shot models are
a new approach in NAS where a single model is trained to evaluate multiple
architectures. This approach can reduce the training time since the weights are
shared across different architectures [82]. However, one-shot models can lead
to misleading performance estimates [74].

Although the above mentioned strategies focus mainly on reducing the
time and resource consumption of the performance estimation process, noise
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in the estimation is also important. Estimating the performance of a DNN is a
stochastic process due to several factors such as weights initialization, training
algorithm, and dataset split. To reduce noise in the process, performing k-
fold cross-validation, where the dataset is divided into k subsets, where each
part is then used once as validation set while the remaining k − 1 parts
form the training set, leads to a more reliable performance estimate than the
straightforward single-initialization and single evaluation [84].

3.2
Q-NAS

Quantum-inspired evolutionary algorithms (QIEAs) represent solutions
using the basic unit of quantum computing, q-bit, which allows a probabilistic
approach to the search space, allowing for enhanced exploration capability
[85, 86]. In the context of NAS, QIEAs offer advantages over conventional
evolutionary algorithms due to efficient exploration of diverse architectures and
facilitate better convergence, reducing the likelihood of premature convergence,
which is a common issue in classical evolutionary algorithms [87, 88, 89].

This section presents Q-NAS, a QIEA-based neural architecture search
proposed by [83]. The proposed work searches for the best DNN architecture
to perform image classification. However, it was designed to be task agnostic,
meaning it could be applied to any task.

3.2.1
Search Space

Quantum individual representation is a key concept for quantum-inspired
evolutionary algorithms as these quantum individuals encode a superposition
of all potential solutions, allowing for a more efficient exploration of the search
space. Upon observation, the quantum individual collapses into a classical
representation, which is then decoded into a feasible solution for the problem.
In Q-NAS, a quantum individual consists of two components: the numerical
part and the categorical part.

The numerical part of the quantum chromosome represents the probabil-
ity distribution of all possible hyperparameter values. However, the categorical
part represents the probability distribution over the possible functions assigned
to each node in the architecture.

The numerical part is represented by Equation 3-2 where G represents the
sets of hyperparameters. The function pi1(x) represents the probability density
function (PDF) that governs the probability of observing a specific value (in
the specified range) for the hyperparameter j when the quantum individual
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i is observed. During initialization, the user provides lower lij and upper uij

bounds for each hyperparameter in the numerical part of the chromosome,
constraining the search space within feasible limits. Figure 3.4 shows the visual
representation of the numerical chromosome.

qi = [pi1(x), ..., piG(x)] (3-2)

Figure 3.4: The image shows the composition of the numerical chromosome,
where each gene has a PDF function

The categorical part is represented by Equation 3-3 where qi represents
the quantum individual and L the number of nodes of an individual. In
addition, pi1(x) represents the probability mass function (PMF) that defines
the probability of observing a function of all F user-defined sets of functions.
Figure 3.5 shows the visual representation of the categorical chromosome.

qi = [pi1(x), .., piL(x)], pij ∈ [0, F − 1] (3-3)

Figure 3.5: The image shows the composition of the categorical chromosome,
where each gene has a PMF function
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The network template proposed in [83] is a chain-like structure composed
of L nodes, and every node executes a function F from the predefined function
set. A fully connected layer is fixed at the end of the network to ensure
structured output. Consequently, when a classical individual is processed, a
decoding process is needed to transform the chained nodes into the network
with its functions and hyperparameters.

The classical individual can sometimes generate infeasible network struc-
tures due to constraints in the architectural design. For example, for a given
input image resolution, a maximum number of pooling operations is needed
to maintain structural integrity. In Q-NAS, the parameter penalize_number

sets an upper limit on the number of pooling layers that are decoded. Any ad-
ditional pooling layers beyond this threshold are ignored during the decoding
process to ensure feasibility.

3.2.2
Search Strategy

This subsection presents the steps of the Q-NAS algorithm (Algorithm
1) used in [83] and provides a brief explanation of how the search strategy
works.

Algorithm 1 Q-NAS
t← 0
Initialize Q(t)
while t ≤ T do

Generate classical population C(t) observing Q(t)
if t = 0 then

Evaluate C(t)
P (t)← C(t)

else
C(t)← recombination between C(t) and P (t)
Evaluate C(t)
P (t)← best individuals from [C(t) ∪ P (t)]

end if
Q(t + 1)← update Q(t) based on P (t) values
t← t + 1

end while

The quantum population Q(t) is initialized. Q(t) is composed of N

quantum individuals qt
i , i = 1, 2, .., N . In the initialization step, every gene

starts with the same probability for each value. The user can also specify
custom probability values, so an initial bias towards some functions can be
inserted. Subsequently, the observation process simply uses probabilities to
sample the function to be observed.
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Then, the classical population is generated by observing both parts of
the quantum individuals’ chromosomes. The classical individuals are then
evaluated, and the best individuals are used to update the probabilities of
the quantum individuals.

The best classical individuals guide the update of the quantum chromo-
some. The update of the categorical quantum chromosome aims to increase the
probability that functions observed in a good-performing classical individual
should be increased, while reducing the probability of the remaining functions.
Q-NAS uses a simple heuristic for that. First, a random mask, based on the
update_quantum_rate parameter, is generated to update the quantum indi-
vidual. This mask defines which gene gi will be updated, then for each node i

in the mask, the following steps are executed:

1. get the function for node i in the best classical individual

2. calculate update_value = r × 0.05 where r is a random number in the
interval [0, 1]

3. increase the probability of observing that function by update_value

4. decrease the probability of observing the other functions by update_value
F −1

The update of the numerical quantum chromosome also aims to change
the probability distribution of the hyperparameters based on high-performing
classical individuals. To start the update, a random mask is generated based
on the parameter update_quantum_rate to define, which pij(x) are to be
updated. The idea is that pij(x) is changed in order to increase the probability
of observing values that lead to better-evaluated individuals. This is done by
changing the mean µij and the width σij of pij(x) using the following equation
(Eq. 3-4).

ht = max
i=1..K

ct
ij − min

i=1..K
ct

ij

µt+1
ij = µt

ij + r × (ct
ij − µt

ij)

σt+1
ij = σt

ij + r × (ht − σt
ij)

(3-4)

Where ct
ij is the jth current value of a classical individual i and r is a

random number in the range [0, 1]. In addition, h represents the difference
between the maximum and minimum value of all K classical individuals.
Rewriting Equation 3-4 in terms of lij and uij we have:
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lt+1
ij = lt

ij + r ×
(

ct
ij − lt

ij −
ht

2

)

ut+1
ij = ut

ij + r ×
(

ct
ij − ut

ij + ht

2

) (3-5)

The Equation 3-5 can be interpreted as the PDF defined by pij(x), being
shifted and narrowed in the direction of the value of the best classical individual
hyperparameter.

Once the initial generation is completed, a previous population P (t)
will be available and the crossover can then be applied to the numerical
chromosome component. In addition, Q-NAS uses the steady-state approach
for selecting P (t). That means that if the classical population has the size K,
P (t) will save the K best individuals from the set P (t) ∪Q(t).

An important aspect of using a quantum individual is that each can
generate one or more classical individuals. Because the observation process
is stochastic, each observation of the same quantum individual may lead to
different classical individuals.

3.2.3
Performance Estimation Strategy

In this subsection, the evaluation process is presented. After the obser-
vation process, each classical individual is decoded, into a neural architecture,
and evaluated. The evaluation process involves the following steps:

1. train the decoded network for 50 epochs on a subset of the training set;

2. evaluate the accuracy of the network on the validation set for the five
last epochs;

3. the higher validation accuracy is used as the individual fitness.

As seen from the above steps, some strategies for reducing the time
consumption of Q-NAS include training for a restricted number of epochs and
on a subset of the training set. Another restriction is that networks that took
more than 90 minutes to train are evaluated with a fitness value equal to 0.

At the end of the evolution process, the best network found is trained
using all dataset samples and for an extended number of epochs. The best
architecture retrained is the one used for comparison with other works.

Finally, incorporating a quantum-inspired optimization algorithm re-
duces the search space for potential neural architectures. In addition, quantum-
inspired strategies can explore the architecture space more intelligently, leading
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to faster convergence on optimal architectures while maintaining or improving
performance metrics such as accuracy and robustness [83].

3.3
SegQNAS

This section presents SegQNAS [91]. SegQNAS modifies Q-NAS to search
for semantic segmentation neural networks based on a U-Net like network
template. In addition, since the task shifts from Q-NAS to SegQNAS, the
performance estimation strategy must also change.

3.3.1
Search Space

The search space proposed for SegQNAS [91] divides the search space into
topology and cell levels. The topology level is responsible for searching for the
combination of blocks to compose the network, considering that the network
template is U-Net-like. The following blocks were used for the topology search:

– VGG Block

– ResNet Block

– DenseNet Block

– InceptionNet Block

– Identity Block

The information of each block is presented as a diagram in Figure 3.6
and Figure 3.7, considering Conv (kxk) as a convolution k × k, ReLU as an
activation function, and Avg Polling as the polling function that aggregates
values using the average function.

The cell is composed of a searchable block, an optional upscal-
ing/downscaling operation depending on the cell type, and a concatenation
of the skip connection and input if the skip connection is present. It is impor-
tant to note that the previously presented nonscaling type occurs when neither
upscaling nor downscaling is selected.

The search space’s cell level is divided into three types: upscaling,
downscaling, and nonscaling. The upscaling cell increases the cell level by 1
unit, doubling the feature map resolution while halving the number of channels.
The downscaling cell halves the feature map resolution while doubling the
number of channels, while the nonscaling cell preserves the same feature map
shape as the previous cell.
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Figure 3.6: VGG16, ResNet and InceptionNet Blocks of SegQNAS. Conv(kxk)
refers to a k × k convolution where k is also searchable. ReLU indicates all
activations as ReLU. All blocks produce as output a feature map with the
same shape as the input.

For this work, the topology and cell search space is represented by a
quantum individual with probability distribution of the functions F defined
by the user. Here, each function f ∈ F combines blocks and a cell together. The
Equation 3-6 represents the search space of the quantum individual, where qi

represents the quantum individual and L the number of nodes of an individual.
In addition, pi1(x) represents the probability mass function (PMF) that defines
the probability of observing a function of all F user-defined sets of functions.
Figure 3.5 shows the visual representation of the numerical chromosome.

qi = [pi1(x), .., piL(x)], pij ∈ [0, F − 1] (3-6)
The network template proposed in [91] follows a U-Net-like structure,

consisting of L nodes. Each node performs a function F from the function set.
The architecture has a fixed stem convolution at the beginning and fixed final
convolutions to transform the feature map into a class for each pixel. However,
the algorithm may generate infeasible networks, as the resulting architecture
could produce an output size different from the input size. To guarantee that
the network respects the design constraints, four rules were defined considering
d as the cell level and D the maximum allowed level:

– Rule 1: if d = 0 and the cell type is upscaling, change the cell type to
nonscaling.

– Rule 2: if d = D and the cell type is downscaling, change the cell type
to nonscaling.
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Figure 3.7: DenseNet Block of SegQNAS. Conv(kxk) refers to a k × k convo-
lution where k is also searchable. ReLU indicates all activations as ReLU. All
blocks produce as output a feature map with the same shape as the input.
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– Rule 3: if L− l = d and the cell type is either downscaling or nonscaling

change the cell type to upscaling.

– Rule 4: if L − l = d + 1 and the cell type is either downscaling change
the cell type to nonscaling.

Rule 1 accounts for the constraint of not allowing levels below zero, which
means that the output size of the network can never be larger than the input
size. Rule 2 enforces the maximum level constraint (d = D), which means that
the network can never have an output size smaller than the input size. Rules
3 and 4 guarantee that the output level is the same as the input (d = 0).

3.3.2
Search Strategy

This subsection covers the steps of the SegQNAS algorithm (Algorithm
2) used in [91] and a brief explanation on how the search strategy works.

Algorithm 2 SegQNAS
t← 0
Initialize Q(t)
while t ≤ T do

Generate classical population C(t) observing Q(t)
if t = 0 then

Evaluate C(t)
P (t)← C(t)

else
Evaluate C(t)
P (t)← best individuals from [C(t) ∪ P (t)]

end if
Q(t + 1)← update Q(t) based on P (t) values
t← t + 1

end while

The quantum population Q(t) is initialized. Q(t) is composed of N

quantum individuals qt
i , i = 1, 2, .., N . In the initialization step, every gene

starts with the same Probability Mass Function (PMF). However, the user
can specify different initial values to introduce a bias toward specific functions.
After that, the observation process applies probability to the sample, which
function is to be selected.

Then, the classical population is generated by observing the quantum
individuals. The classical individuals are evaluated, and the best-performing
ones are used to update the probabilities of the quantum individuals.

The best classical individuals guide the update of the quantum chro-
mosome, increasing the probability of selecting functions that performed well



Chapter 3. Neural Architecture Search 41

while reducing the probability of the others. The update of the quantum chro-
mosome follows the same rule for the categorical part of the quantum individual
in the Q-NAS presented in the last section. SegQNAS does not apply crossover
to the generated classical individuals; however, the selection process remains
the same as in the Q-NAS work presented in the last section.

It is important to note that the SegQNAS implementation does not
penalize the infeasible network found during the search process. Instead, the
network is adjusted to be feasible, leading to a noise searching process since
the decoded network is not the same as the one that will be evaluated in the
case of the infeasible network.

3.3.3
Performance Estimation Strategy

This subsection presents the process that evaluates the classical individ-
ual. After the observation process, each classical individual is decoded and
evaluated. The evaluation process involves the following steps:

1. train the decoded network for 30 epochs on a subset of the training set;

2. evaluate the network’s Dice-Sørensen coefficient (DSC) performance on
the validation set over the last six epochs;

3. the fitness of the classical individual is calculated with an average of a
5-fold cross-validation process.

The DSC is defined by the Equation 3-7, where X is the output
segmentation mask produced by the candidate network and Y is the ground
truth.

DSC = 2|X ∩ Y |
|X|+ |Y | (3-7)

Equation 3-8 represents the loss function used in SegQNAS.

Loss = 1−DSC (3-8)
After identifying the best architecture, this network is trained for 100

epochs using all the dataset samples. The retrained architecture is then used
to compare with other works.

Finally, the SegQNAS enhances the efficiency and effectiveness of de-
signing neural networks for the semantic segmentation task and, due to a
quantum-inspired algorithm, it allows SegQNAS to explore the architecture
search space more intelligently, reducing the computational burden [91].
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SegQSNAS

In this chapter, we present our method, SegQSNAS, which evolves
SegQNAS[91] designed to search exclusively for symmetrical U-Net-like net-
works. SegQSNAS differs from SegQNAS in the following aspects:

– Search space: SegQSNAS reduces the search space by searching only for
symmetrical networks and, because of that, the output size will always be
the same size as the input size for every solution, which removes the need
of the SegQNAS feasibility check for the network depth. In addition, a
self-attention block was added to the search space to improve the results,
and the MobileNet and EfficientNet blocks were added to allow for more
lightweight networks in the search space;

– Search Strategy: Q-NAS [83] performed a crossover operator only
for the numerical part of the chromosome, without a crossover for the
categorical part. In SegQSNAS, a two-point crossover[90] operation was
added to the evolutionary process, providing an improved and less noisy
evolution than the original one;

– Performance Estimation Strategy: The DSC function used in SegQ-
NAS calculates the accurate values for binary problems. However, for
multi-class problems, the computed value was overestimated because the
numerator in the DSC formula does not fully account for the true overlap
between multiple labels. At the same time, the denominator is inflated
by the cumulative sum across all labels. The DSC equation was designed
to be used in binary problems, however for multi-class problem the "one
vs. all" (OvA) strategy must be used. To solve this problem, the DSC
function was corrected for both binary and multi-class problems.

The following sections will detail these aspects. In addition, SegQSNAS
focuses exclusively on the evolution of the network architecture; thus, it does
not cover the hyperparameter search, because it does not improve the results,
as confirmed by [83] work.
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4.1
Search Space

The search space proposed for SegQSNAS is based on the work of [91]
which divides the search space into topology and cell levels.

The topology level is responsible for searching for the combination of
blocks the network should be composed of, considering that the network
template is U-Net-like. The cell level of the search space is again defined into
two types: downscaling or nonscaling. The downscaling cell halves the feature
map resolution while doubling the number of channels. The nonscaling cell
preserves the same feature map shape as the previous cell.

The upscaling cell is not part of the search space because on the
SegQSNAS design, the first half of the architecture has only downscaling and
nonscaling options since when the other half is decoded, all downscaling is
replaced by an upscaling cell. The upscaling cell increases the cell level by 1
unit, causing the feature map resolution to double while halving the number
of channels.

The chromosome representation for the SegQSNAS implementation is
categorical that is the same as SegQNAS and the representation can be
visualized in the Figure 3.5.

For a better understanding of the search space, Figure 4.1 shows an
example of the network that can be found using the SegQNAS method. The
orange nodes are the ones that are part of the search space and they are part
of the encoding part of the U-NET template. The gray part is generated by
mirroring the encoding part and changing downscaling cells to upscaling cells.
It is important to note that the SegQNAS [91] method allows upscaling in the
encoding part, but the proposed method does not allow it to be close to the
U-NET architecture.

SegQSNAS removed 3 × 3 steam convolution fixed as the first network
node. However, the final convolution was kept with the same configuration as
was implemented in the SegQNAS work, which is a fixed operation responsible
for getting feature map as input and transforming it into the segmentation
maps. The final convolution is a 3× 3 convolution with N kernels, where N is
the number of classes of the dataset. If N = 2, the activation function of the
final convolution is defined as a sigmoid. If N > 2, the activation function is
defined as softmax.

The batch normalization and ReLU activation block are implicit for all
convolutional operations.

The searchable block is a block belonging to the SegQSNAS function set
shown in Figure 4.2 and listed below:
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Figure 4.1: The image shows the example of network that could be found using
SegQSNAS. The encoding part is presented in orange and the decoding and
mirrored part is presented in gray.

– VGG Block

– ResNet Block

– DenseNet Block

– InceptionNet Block

– Identity Block

– Self-Attention Block

– MobileNet Block

– EfficientNet Block

The VGG, ResNet, DenseNet, InceptionNet and Identity blocks were
implemented in SegQNAS [91], as shown in Figure 3.6 and in Figure 3.7. How-
ever, the Self-Attention, MobileNet and EfficientNet blocks were a SegQSNAS
implementation presented in Figure 4.2.
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Figure 4.2: Blocks of SegQSNAS. Q stands for query vector, K for key vector
and V for values vector. MatMult refers to a dot product between two vectors.
Softmax is an activation function. Conv(1x1) refers to a 1 × 1 convolution.
ReLU indicates all activations as ReLU. DepthwiseConv(3x3) is a channel-
wise 3× 3 convolution for efficient feature extraction. Global Avg Polling is a
pooling operation that calculates the average of each feature map. FC stands
for Fully Connected layer and Sigmoid is an activation function. In addition
to it, there is also the Squeeze-and-Excitation (SE) presented in EfficientNet
Block. All blocks produce as output a feature map with the same shape as the
input.

Integrating self-attention in CNNs improves feature extraction by en-
abling the model to focus on relevant spatial features while ignoring less im-
portant ones. Adding attention modules to existing architectures enhances
their performance in complex tasks[92, 93].

Adding MobileNet blocks was designed to reduce the number of parame-
ters and computational complexity[94, 95, 96]. The Efficient block is enhanced
by the Squeeze-and-Excitation (SE), which recalibrates channel-wise feature
responses, allowing the network to focus on the most informative features[97].

EfficientNet employs a compound scaling method that uniformly scales
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all depth, width, and resolution dimensions. This approach allows EfficientNet
to achieve state-of-the-art accuracy while being smaller and faster than other
architectures[98, 99].

To summarize the search space, each cell can be defined by three
parameters:

1. The cell type (downscaling, nonscaling).

2. The block (Self-Attention, MobileNet, EfficientNet, VGG, ResNet,
DenseNet, InceptionNet, Identity).

3. The kernel size (k ∈ {3, 5, 7}) of the block convolutional operations.

The function set of SegQSNAS is the set of all combinations of cell types,
blocks and kernel sizes. A caveat is that the Identity block does not need a
kernel size specification as it performs no convolutional operation. All functions
of the search space are listed below:

– vgg_d_3: VGG downscaling 3× 3

– vgg_d_5: VGG downscaling 5× 5

– vgg_d_7: VGG downscaling 7× 7

– vgg_n_3: VGG nonscaling 3× 3

– vgg_n_5: VGG nonscaling 5× 5

– vgg_n_7: VGG nonscaling 7× 7

– res_d_3: ResNet downscaling 3× 3

– res_d_5: ResNet downscaling 5× 5

– res_d_7: ResNet downscaling 7× 7

– res_n_3: ResNet nonscaling 3× 3

– res_n_5: ResNet nonscaling 5× 5

– res_n_7: ResNet nonscaling 7× 7

– den_d_3: DenseNet downscaling 3× 3

– den_d_5: DenseNet downscaling 5× 5

– den_d_7: DenseNet downscaling 7× 7

– den_n_3: DenseNet nonscaling 3× 3

– den_n_5: DenseNet nonscaling 5× 5

– den_n_7: DenseNet nonscaling 7× 7

– inc_d_3: InceptionNet downscaling 3× 3
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– inc_d_5: InceptionNet downscaling 5× 5

– inc_d_7: InceptionNet downscaling 7× 7

– inc_n_3: InceptionNet nonscaling 3× 3

– inc_n_5: InceptionNet nonscaling 5× 5

– inc_n_7: InceptionNet nonscaling 7× 7

– mobile_n_v1: MobileNet nonscaling

– mobile_d_v1: MobileNet downscaling

– eff_n: EfficientNet nonscaling

– eff_d: EfficientNet downscaling

– selfatt: Self-Attention nonscaling

– ide: Identity

It is important to note that since SegQSNAS uses only symmetrical
networks and searches only half of the search space, all cell types must be
nonscaling or downscaling. When the second half is composed, all downscaling
in the first half turns into upscaling in the other half. This logic permits
SegQSNAS not to need to check the networks’ feasibility, since all downscaling
in the first part will have an upscaling with the same ratio in the other half of
the network.

4.2
Search Strategy

This subsection covers the steps of the SegQSNAS algorithm (Algorithm
3) and briefly explains how the search strategy works.

The quantum population Q(t) is initialized. Q(t) is composed of N

quantum individuals qt
i , i = 1, 2, .., N . In the initialization step, every gene

starts with the same PMF. Optionally, the user may specify different values,
inserting initial bias towards some functions. After that, the observation
process simply uses probabilities to sample which function is to be observed.

The classical population is generated by observing the quantum individ-
uals. An important aspect of using a quantum individual is that, due to the
stochastic nature of the observation process, each quantum individual can gen-
erate one or more classical individuals. After that, the classical individuals are
evaluated, and the best individuals are used to update the probabilities of the
quantum individuals.

The evaluation of each classical individual uses the fitness cache in order
to reduce the usage of computing resources and the usage time during the
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Algorithm 3 Q-NAS
t← 0
Initialize Q(t)
while t ≤ T do

Generate classical population C(t) observing Q(t)
if t = 0 then

Evaluate C(t)
P (t)← C(t)

else
C(t)← recombination between C(t) and P (t)
Evaluate C(t)
P (t)← best individuals from [C(t) ∪ P (t)]

end if
Q(t + 1)← update Q(t) based on P (t) values
t← t + 1

end while

evolution process[100]. The fitness cache allows the network to be evaluated
only once, the first time it appears during the evolution process; any time the
same network appears, it uses the cached value and does not train the network
again.

The best classical individuals guide the update of the quantum chromo-
some. The update of the quantum chromosome aims to increase the probabil-
ity that functions observed in a good-performing classical individual should
be increased while the remaining functions decrease. SegQSNAS uses the
same heuristic as Q-NAS[83] for that. First, a random mask, based on the
update_quantum_rate parameter, is generated to update the quantum indi-
vidual. This mask defines which gi will be updated, then for each node i in the
mask, the following steps are executed:

1. get the function for node i in the best classical individual

2. calculate update_value = r × 0.05 where r is a random number in the
interval [0, 1]

3. increase the probability of observing that function by update_value

4. decrease the probability of observing the other functions by update_value
F −1

After the initial generation, there will be a previous P (t), and conse-
quently, it will be possible to apply the crossover operation. In SegQSNAS,
the two-point crossover operation is used to improve the evolutionary pro-
cess convergence [101]. In addition, SegQSNAS uses the steady-state approach
for selecting P (t) which is the same implemented in Q-NAS[83] and used in
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SegQNAS[91]. That means that if the classical population has the size K, P (t)
will save the K best individuals from the set P (t) ∪Q(t).

As mentioned in Chapter 3, SegQNAS’ search strategy could lead to
an infeasible network, which forced some changes at the cell level during the
decoding process of the individual to the network, always to create a feasible
individual. However, due to the search strategy applied to SegQSNAS, which
uses a symmetric network, the same problem does not occur since all the
solutions in the search space are feasible.

SegQNAS has only feasible solutions because it only searches for the
first half of a U-Net-like network. Consequently, the search space consists
exclusively of nonscaling and downscaling cells. It allows the network to always
return to the first level when a network is decoded, since all downscaling cells
change to upscaling cells on the other half of the network.

Figure 4.3 shows how observation of the quantum individual and decod-
ing of the classical individual occur during the evolution process. The example
provided is based on a search for an architecture with three nodes in the encod-
ing part using four available functions, which means that the final architecture
could have at most six nodes. The current probability distribution for each
node of a quantum individual is presented in the image and, for the obser-
vation, the function with higher probability in each node. After observation,
function 1 was selected for the first node, function 5 for the second node, and
function 2 for the last node. After decoding, it will be possible to identify that
the first node is composed by a VGG block with downscaling cell and kernel
3x3, the second node is composed by an identity block and the last node is
composed by a ResNet block with nonscaling cell and kernel 3x3.
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Figure 4.3: The image shows the example of a observation of the quantum
individual and the decoding of the classical individual.

4.3
Performance Estimation Strategy

In this section, the evaluation process for the classical individual is
presented. Following the observation phase, each classical individual is decoded
and evaluated. The evaluation process involves the following steps:

1. train the decoded network for a limited number of epochs on a subset of
the training set;

2. evaluate the network by computing the average DSC across all classes,
excluding the background class;

3. calculate the validation score of the network on the validation set for the
last 20% epochs;

4. the fitness of the classical individual is calculated with an average of a
5-fold cross-validation process.
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The DSC function used in SegQNAS[91] (Equation 3-7) calculates the
correct values only for binary problems. In order to solve this for multi-class
problems, the DSC function was corrected to calculate the DSC for each class
of the problem except for the background class (c = 1) and averaging the
result of each class c in all possible classes of the problem (C), as presented in
Equation 4-1.

AV G_DSC = 1
|C|

|C|∑
i=1

DSCi, c ∈ C, c > 1 (4-1)

The loss function was adjusted by using the update AV G_DSC instead
of DSC, being presented in Equation 4-2.

Loss = 1− AV G_DSC (4-2)
The training protocol employs ADAM optimizer with a learning rate

10−3 and polynomial decay 0.9. Data augmentation techniques were applied
with horizontal flipping, shifting, scaling, rotating, and random crop opera-
tions.

Cross-validation was employed for each evaluated individual to mitigate
noise in the evaluation process. The individual evaluation using the validation
set for the last 20% epochs is presented in Equation 4-3, considering that for
each epoch, all classical individuals have the evaluation performed by applying
the 5-fold as presented in Equation 4-4.

The AV G_DSC is calculated using the validation set for every fold for
each classical individual for the last 20% epochs applying the 5-fold were then
averaged. Finally, this average was taken as the fitness value of the individual
that generated the network.

V _AV G_DSC = 1
5

5∑
i=1

AVG_DSCi (4-3)

5-fold cross validation = 1
5

5∑
i=1

V_AVG_DSi (4-4)

This evaluation strategy during the evolution process was proposed due
to resource constraints. Some techniques, such as training for a reduced number
of epochs and samples, were applied to reduce the time consumed in the
performance estimation process.

After finding the best architecture, 5-fold cross-validation is performed,
and each network is trained for a higher number of epochs using the whole
dataset.



5
Experiments

In this chapter, we present the experiments conducted to evaluate SegQS-
NAS. The first section presents all the datasets used, the second section
presents the setup used to perform the experiments, and finally, the third
section presents all the experiments and discusses the results.

5.1
Datasets

This section describes the datasets used to perform the experiments. The
four datasets used in this work were extracted from the Medical Segmentation
Decathlon challenge [21]. The datasets were selected to better understand how
SegQSNAS works on binary and multi-class datasets.

5.1.1
Spleen Dataset

The spleen dataset contains 61 3D-CT scans of patients undergoing
chemotherapy treatment for liver metastases at Memorial Sloan Kettering
Cancer Center. From the 61 3D-CT scans, ground truth was provided for 41
scans. In addition, this dataset has a binary target, where ’0’ represents the
background class and ’1’ the spleen.

The annotation was semi-automatized using the Scout Application,
followed by manual adjustment by an expert abdominal radiologist. Some
examples of images from the dataset are presented in Figure 5.1.
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Figure 5.1: Six sampled images from spleen dataset. The orange mask repre-
sents the spleen.

5.1.2
Prostate Dataset

The prostate dataset provided by Radboud University contains 48
prostate multiparametric magnetic resonance imaging (MRI) scans. It has two
target classes: the peripheral zone (PZ) of the prostate and the transition zone
(TZ). Of the 48 mp-MRI scans, ground truth was provided for 32 scans.

The image was generated from transverse T2-weighted scans and the
annotations were generated manually for the entire dataset. Figure 5.2 presents
some examples of images from the dataset.
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Figure 5.2: Six sampled images from prostate dataset generated from transverse
T2-weighted scans. The orange mask represents the prostate peripheral zone
(PZ) and the green mask represents the transition zone (TZ).

5.1.3
Liver Dataset

The liver dataset contains 201 contrast-enhanced CT images originally
provided from several clinical sites. It has two target classes: the liver and
cancer. Of the 201 contrast-enhanced CT scans, ground truth was provided
for 131 scans.

The images were generated with an in-plane resolution of 0.5 to 1.0 mm,
and slice thickness of 0.45 to 6.0 mm. The radiologists manually generated
annotations for the entire dataset. Some examples of images from the dataset
are presented in Figure 5.3.
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Figure 5.3: Six sampled images from liver dataset. The orange mask represents
the liver and the green mask represents the cancer.

5.1.4
Brain Tumor Dataset

The brain tumor dataset contains 750 multiparametric MRI scans with
three target classes: edema (E), enhanced tumor (ET), and non-enhanced
tumor (NET). Of the 750 multiparametric MRI scans, ground truth was
provided for 484 scans.

The images were generated from native (T1) and post-Gadolinium(Gd)
contrast T1-weighted (T1-Gd), native T2-weighted (T2), and T2 FluidAttenu-
ated Inversion Recovery (T2-FLAIR) volumes. A board-certified expert neuro-
radiologist approved the annotation of the entire dataset. Figure 5.4 presents
some examples of images from the dataset.
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Figure 5.4: Six sampled images from brain tumor dataset generated from
transverse T2-weighted scans. The orange mask represents the edema, the
green mask represents the non-enhanced tumor and the pink mask represents
the enhanced tumor.

5.2
Experimental Setup

The experiments were executed on a GPU cluster with three A30 24Gb
GPUs, 64 CPUs of Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz and 188 GiB
of RAM.

5.3
Experiments and Results

The purpose of the experiments is to evaluate the proposed adaptation of
SegQNAS, named SegQSNAS. Four experiments were designed using different
datasets with binary and multiclass targets:

– Experiment 1: Spleen Dataset;

– Experiment 2: Prostate Dataset;

– Experiment 3: Liver Dataset;

– Experiment 4: Brain Tumor Dataset.
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The function set (the search space) of SegQSNAS is the set of all cell
types, blocks and kernel sizes combinations, as specified in Chapter 4. As
mentioned before, the Identity block performs no operation. All functions of
the search space, that was presented in Chapter 4, are listed below:

– vgg_d_3: VGG downscaling 3× 3

– vgg_d_5: VGG downscaling 5× 5

– vgg_d_7: VGG downscaling 7× 7

– vgg_n_3: VGG nonscaling 3× 3

– vgg_n_5: VGG nonscaling 5× 5

– vgg_n_7: VGG nonscaling 7× 7

– res_d_3: ResNet downscaling 3× 3

– res_d_5: ResNet downscaling 5× 5

– res_d_7: ResNet downscaling 7× 7

– res_n_3: ResNet nonscaling 3× 3

– res_n_5: ResNet nonscaling 5× 5

– res_n_7: ResNet nonscaling 7× 7

– den_d_3: DenseNet downscaling 3× 3

– den_d_5: DenseNet downscaling 5× 5

– den_d_7: DenseNet downscaling 7× 7

– den_n_3: DenseNet nonscaling 3× 3

– den_n_5: DenseNet nonscaling 5× 5

– den_n_7: DenseNet nonscaling 7× 7

– inc_d_3: InceptionNet downscaling 3× 3

– inc_d_5: InceptionNet downscaling 5× 5

– inc_d_7: InceptionNet downscaling 7× 7

– inc_n_3: InceptionNet nonscaling 3× 3

– inc_n_5: InceptionNet nonscaling 5× 5

– inc_n_7: InceptionNet nonscaling 7× 7

– mobile_n_v1: MobileNet nonscaling

– mobile_d_v1: MobileNet downscaling

– eff_n: EfficientNet nonscaling

– eff_d: EfficientNet downscaling

– selfatt: Self-Attention nonscaling
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– ide: Identity

In all subsequent experiments, the dataset was divided into training and
test sets, with 80% of the images allocated for training and 20% for testing.
During the evolution and retraining process, the evaluation was performed
using a five-fold cross-validation applied to the train set. Furthermore, all
images in the dataset for all experiments were Z-normalized. The following
subsections provide further details on the experiments and present the results.

To provide a clearer comparison with the SegQSNAS search algorithm,
a Random Search baseline was established for each experiment. In each
experiment, the random search algorithm selected 50 random solutions, which
were then trained for 100 epochs using the complete dataset. In particular,
each of these randomly chosen solutions was generated from the same search
space as SegQSNAS, and their full architecture was constructed by mirroring
the encoding portion, defined by the search space, in the decoding part taking
into account that downscaling cells in the encoding part become upscaling cells
in the decoding part.

5.3.1
Experiment 1 - Spleen Dataset

The spleen dataset contains 41 3D-CT scans with annotations, which
were used to generate the dataset for this experiment.

It is essential to note that although the machine used for this experiment
has three GPUs, the resources are shared, and only one GPU was available
when the experiment was executed.

The evolution parameters applied to this experiment are presented in
Table 5.1. The number of nodes represents the maximum number of chained
nodes allowed for the first half of the architecture, meaning that the maximum
size of the architecture is 10. The number of quantum individuals indicates
the number of quantum individuals that are instantiated and used to generate
new individuals. The repetition parameter indicates the number of observations
each quantum individual will undergo. The update quantum rate is a number
that varies from 0 to 1, when 0 means that there will be no update for the
quantum individual and 1 means that the update will always be done. The
update quantum gen is a number that varies from 0 to 1, when 0 means that
there will be no update for the chromosome of the quantum individual and 1
means that the update will always be done. The probability mass functions
represent the probability distribution of the categorical chromosome, which
corresponds to the functions of the architecture. In this case, all blocks of
the search space have the same probability, uniformly distributed across all
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functions designed with the same block. The number of generations represents
the duration of the evolutionary process. The dataset, image resolution and
batch size are the parameters used to train each classical individual during the
number of epochs described in the training epochs parameter and evaluated
in the last e epochs described in the evaluation epochs parameter.

All parameters for this experiment are the same as those used on the
SegQNAS work for better comparison since SegQSNAS is a modified version
of SegQNAS.

Table 5.1: SegQSNAS Evolution parameters

Parameter Value
Number of nodes 5

Number of quantum individual 9
Repetition 1

Update quantum rate 0.9
Update quantum gen 1.0

Probability mass function Same probability for every function
Number of generations 100

Dataset entire dataset
Image Resolution 128x128

Batch Size 32
Training Epochs 30

Evaluation Epochs last 6

Due to the stochastic nature of this experiment, we ran four evolutionary
processes and the best result is presented. The evolution process is illustrated
in Figure 5.5, where it can be observed that every time a new solution with
a better evaluation is found, the difference between the ten best classical
individuals increases. However, due to the crossover usage, the algorithm
exploits it more and the other classical individuals converge faster. This
behavior can be observed through the bars presented in Figure 5.5, for example,
in generation 1 all individuals are very diverse and, because of that, it has a
higher bar, however, in 15 generations the bar size reduces to the minimum
before the evolutionary process found better solutions and the difference
between the individuals increases and the bar size also increases.
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Figure 5.5: Classical individual fitness during process evolution for spleen
dataset experiment

The evolutionary process converged relatively early in this experiment,
and the optimal architecture was identified at generation 53. Therefore, we can
conclude that it does not need all 100 generations to converge, and if there
were fewer generations, it would lead to a better GPU days score. Table 5.2
presents the best architecture found.

Table 5.2: Best architecture found for spleen dataset experiment

Node Description
vgg_d_3 VGG downscaling 3× 3

eff_d EfficientNet downscaling
mobile_d_v1 MobileNet downscaling

res_d_7 ResNet downscaling 7× 7
inc_d_7 InceptionNet downscaling 7× 7
inc_u_7 InceptionNet upscaling 7× 7
res_u_7 ResNet upscaling 7× 7

mobile_u_v1 MobileNet upscaling
eff_u EfficientNet upscaling

vgg_u_3 VGG upscaling 3× 3

The best individual has a classic U-Net-like architecture that only
contains the downscaling cell in the first half, compressing the information;
then, as imposed by the mirror strategy of the SegQSNAS approach, the
architecture comprises only the upscaling cell in its second half. This design,
with its five levels, typically results in a higher parameter count as a result
of the increased depth. In addition, the dense block was not utilized, likely
because the prostate dataset task is not particularly complex. During the
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evolution, the self-attention block was not considered a good choice for this
problem, and it is following the opposite direction of recent work that shows
improvements in the final results. However, the usage of self-attention block
causes, in many individuals, out of memory of the GPU due to hardware
limitations, and it causes the evolution to not consider it as a good option to
the best architecture. Additionally, the fact that the identity block is not used
means that a shallower architecture is not enough to achieve good results in
this dataset.

Changes in the function distribution of quantum nodes from one quantum
individual are presented when comparing Figure 5.6, which contains the
function distribution at the beginning of the evolutionary process where all
values are the same, with Figure 5.7, which presents the function distribution
of quantum nodes from one quantum individual at the end of the evolutionary
process. Due to the high cardinality of functions in this experiment, the division
of the stacked bar was created concatenating all functions from the block
family. In this case, it is possible to notice that the probability of Identity,
DenseNet and SelfAttention blocks are the smallest in all nodes and converges
to the best architecture found that has none of those blocks selected.

Figure 5.6: Functions distributions of a quantum individual at the start of the
evolutionary process for the spleen dataset experiment
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Figure 5.7: Functions distributions of a quantum individual at the end of the
evolutionary process for the spleen dataset experiment

After finding the best architecture during the evolution process, the
model is retrained using all dataset images for 100 epochs with 100 initial-
ization; other training parameters presented in Table 5.1 were not changed
for the retraining process. The number of initializations is selected as high as
possible for a better evaluation score.

Figure 5.8 shows the output of the best network for three images sampled
from the test set. It is possible to see that the predicted label is very similar
to the real one.
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Figure 5.8: Three sampled images from the spleen dataset with real and
predicted labels. The orange mask represents the spleen.

Table 5.3 compares the best result of SegQSNAS in the test set with
other works.
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Table 5.3: Spleen Dataset Experiments Results

Experiment DSC #Params
GPU
Days

Random Search 0.9010± 0.004 1.6× 106 0.34
SegQSNAS 0.9358± 0.004 2.5× 106 6.45

SegQNAS_2[91] 0.9560± 0.004 5.3× 106 4.15
SegQNAS_4[91] 0.9582± 0.008 1.0× 106 4.29

UNETR[102] 0.9640 92.6× 106 NA

The SegQNAS_2 experiment was designed to generate a U-Net network,
similar to what occurs with SegQSNAS, by limiting the search space to a
symmetric network only. The SegQNAS_4 experiment has a search space
that concatenates topology search with cell search, the same as that used in
SegQSNAS. The UNETR model uses a combination of CNNs and transformers,
which allows better feature extraction and, consequently, a better performance
in image tasks. Because of this characteristic, the UNETR network has a higher
parameter count.

As presented in Table 5.3, UNETR outperformed SegQNAS and SEGQS-
NAS, but only by a maximum of 0.03 in the DSC score. However, the marginal
improvement cost has almost 93 times more parameters than the lighter model
presented.

When SegQNAS and SegQSNAS are compared, similar performance and
parameter counts can be observed. SegQNAS achieved the second highest DSC
score with slightly fewer parameters. However, it should be noted that the
architecture discovered in the SegQNAS_4 experiment presented an upscaling
cell in the first half of the architecture, and this cell type is not part of the
SegQSNAS search space.

On the other hand, the SegQNAS_2 experiment discovers an architecture
that is part of the SegQSNAS search space. Compared to it, SegQSNAS has
a close dice score, with less than half the parameters of the second SegQNAS
experiment.

It is important to notice that the cache system was made using RAM
memory, so on every restart it resets. It cause the GPU Days on SegQSNAS
experiment to be higher in this case.

This experiment only validates that the quantum algorithm presented
in SegQNAS and SegQSNAS can find architectures with fewer parameters
that achieve close performance compared to state-of-the-art architectures. In
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addition, the baseline random search corroborates this finding, as it does not
identify an optimal architecture when compared to SegQNAS and SegQSNAS.

5.3.2
Experiment 2 - Prostate Dataset

The prostate dataset contains 32 prostate multiparametric MRI scans
with annotations, which were used to generate the dataset for this experiment.

In this experiment, only one of the three GPUs on the machine was used
due to the availability of shared resources.

The evolution parameters applied to this experiment are identical to
those used in the previous experiment (see Table 5.1). Again, all parameters
for this experiment are the same as those used in the SegQNAS work for a
better comparison, since SegQSNAS is a modified version of SegQNAS.

Due to the stochastic nature of this experiment, we ran four evolutionary
processes, and the best result is presented. The evolution process shown in
Figure 5.9 can be interpreted in the same way as in Figure 5.5. In this case,
the first 30 epochs had more search space exploration; after that, the evolution
process prioritized exploitation over exploration.

Figure 5.9: Classical individual fitness during process evolution for prostate
dataset experiment

The evolutionary process converged pretty early in this experiment. The
best architecture was found in generation 55, and after generation 77, the nine
best classical individuals always presented the same evaluation score. In this
experiment, we can conclude that, similarly to the first experiment, it was not
necessarily 100 generations that were required to converge, and with a lower
number of generations, it could lead to a better GPU days score. Table 5.4
presents the best architecture found.
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Table 5.4: Best architecture found for prostate dataset experiment

Node Description
den_n_3 DenseNet nonscaling 3× 3
inc_d_5 InceptionNet downscaling 5× 5
vgg_d_7 VGG downscaling 7× 7
vgg_d_5 VGG downscaling 5× 5
vgg_n_3 VGG nonscaling 3× 3
vgg_n_3 IVGG nonscaling 3× 3
vgg_u_5 VGG upscaling 5× 5
vgg_u_7 VGG upscaling 7× 7
inc_u_5 InceptionNet upscaling 5× 5
den_n_3 DenseNet nonscaling 3× 3

In this experiment, the best individual contains more non-scaling cells
throughout the architecture, resulting in a lower parameter count. Additionally,
the ResNet block block was not utilized, likely because the prostate dataset
task is not particularly complex. During the evolution, the self-attention block
was not considered a good choice for this problem and the explanation is the
same as that provided Experiment 1 (Subsection 5.3.1).

Additionally, no MobileNet and EfficientNet were used in this experiment
because lightweight blocks do not capture all the patterns needed for the task.
Although the task is not complex enough to warrant the use of ResNet, it does
not mean that the task is easy enough to be handled with only lightweight
blocks. In terms of the identity block not being used, it means that a shallower
architecture does not perform well in this dataset.

Changes in the function distribution of quantum nodes from one quantum
individual are highlighted when comparing Figure 5.10, which contains the
function distribution at the beginning of the evolutionary process, with Figure
5.11, which contains the function distribution of quantum nodes from one
quantum individual at the end of the evolutionary process. In Figure 5.11 it
can be seen that VGG, InceptionNet and DenseNet blocks have the highest
probability of all functions and, nevertheless, the functions from this families
of blocks appear in the best architecture found.
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Figure 5.10: Functions distributions of a quantum individual at the start of
the evolutionary process for the prostate dataset experiment

Figure 5.11: Functions distributions of a quantum individual at the end of the
evolutionary process for the prostate dataset experiment

After identifying the optimal architecture during the evolution process,
the model is retrained using all dataset images for 100 epochs with 100
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initializations. Again, the other training parameters presented in Table 5.1
remained unchanged for the retraining process.

Figure 5.12 shows the output of the best network for three images
sampled from the test set. The network output is close to the real labels;
however, it is evident that in the first sample, the mask format was not precise.
Additionally, for the last sample, it is also possible to notice that the orange
mask (TZ) is oversized.

Figure 5.12: Three sampled images from prostate dataset with real and
predicted labels. The orange mask represents the prostate peripheral zone (PZ)
and the green mask represents the transition zone (TZ).
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Table 5.5 compares the best result of SegQSNAS in the test set with
other models.

Table 5.5: Prostate Dataset Experiments Results

Experiment Avg. DSC
PZ

DSC
TZ

DSC
#Params

GPU
Days

Random Search 0.7575± 0.002 0.5972 0.8270 1.4× 106 0.09
SegQSNAS 0.7924± 0.004 0.6225 0.8403 0.5× 106 1.08

SegQNAS_2[91] 0.6682± 0.066 NA NA 5.7× 106 1.74
SegQNAS_4[91] 0.6821± 0.067 NA NA 16.4× 106 1.83

SwinUNETR[104] 0.8240 0.7565 0.8915 62.0× 106 NA

SegQNAS_2 and SegQNAS_4 have the same characteristics presented
in Experiment 1 (Subsection 5.3.1). The SwinUNETR model is a modification
of the UNETR model that was presented in Subsection 5.3.1.

Although showing a maximum gain of 0.04 in DSC compared to SegQ-
NAS and SEGQSNAS (Table 5.5), SwinUNETR achieved this improvement at
a significant computational cost, with approximately 124 times more parame-
ters.

When SegQSNAS and SegQNAS were compared, SegQSNAS achieved a
higher DSC score with fewer parameters and lower GPU days. The SegQSNAS
DSC score is 0.11 higher than that of the best experiment in SegQNAS, with
32 times fewer parameters.

This experiment has two labels in addition to the background label, and
due to this characteristic, SegQNAS overestimated the DSC score as presented
in Chapter 4. Considering this issue, the improvement from SegQNAS work is
even higher, as even with the overestimated DSC score, SegQSNAS improved
the DSC score by 0.11.

This experiment validates that SegQSNAS can compete with state-
of-the-art models, as evidenced by the close DSC score. In addition, due
to the reduced number of network parameters, SegQSNAS can run with
significantly fewer computer resources than SwinUNETR, making it a more
suitable solution for cases with limited computing resources. As presented in
Experiment 1 (Subsection 5.3.1), the SegQSNAS also surpass the baseline that
used random search.
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5.3.3
Experiment 3 - Liver Dataset

The liver dataset contains 131 contrast-enhanced CT scans with annota-
tions that were used to generate the dataset for this experiment.

In this experiment, more resources were available, allowing the use of two
of the three GPUs on the machine.

The evolution parameters applied to this experiment are presented in
Table 5.6. In this case, the dataset size for the evolution process was reduced to
improve the computational burden of training with the whole dataset. For the
first two experiments, the entire dataset was used in the evolution process to
match the parameters used by SegQNAS for a more accurate comparison. Since
SegQNAS only evaluated the spleen and prostate datasets, the parameters
could be adjusted for this experiment.

Table 5.6: SegQSNAS Evolution parameters for liver dataset experiment

Parameter Value
Number of nodes 5

Number of quantum individual 9
Repetition 1

Update quantum rate 0.9
Update quantum gen 1.0

Probability mass function Same probability for every function
Number of generations 100

Dataset limited dataset with 4000 images
Image Resolution 128x128

Batch Size 32
Training Epochs 30

Evaluation Epochs last 6

Due to the stochastic nature of this experiment, we ran two evolutionary
processes and the best result is presented. The evolution process shown in
Figure 5.13 can also be interpreted in the same way as explained in Figure 5.5.
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Figure 5.13: Classical individual fitness during process evolution for liver
dataset experiment

The evolutionary process converged relatively early in this experiment,
and the optimal architecture was identified at generation 90. It demonstrates
that the number of generations set was sufficient; however, with a lower number
of generations, it would not have converged to the solution found. The best
architecture found is presented in Table 5.7.

Table 5.7: Best architecture found for liver dataset experiment

Node Description
den_n_5 DenseNet nonscaling 5× 5
vgg_d_3 VGG downscaling 3× 3

eff_d EfficientNet downscaling
vgg_d_7 VGG downscaling 7× 7

eff_n EfficientNet nonscaling
eff_n EfficientNet nonscaling

vgg_u_7 VGG downscaling 7× 7
eff_u EfficientNet upscaling

vgg_u_3 VGG upscaling 3× 3
den_n_5 DenseNet nonscaling 5× 5

The best individual has no self-attention and ResNet, and the conclusion
is similar to the one presented in Experiment 2 (Subsection 5.3.2), indicating
that the task was not complex enough to require these types of blocks. The
InceptionNet block was not part of the best architecture because, for this
dataset, creating feature maps at different scales was not necessary. In addition
to it, the identity block was also not used either, which means that it does not
need a shallower architecture to achieve good results in this dataset.
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Changes in the function distribution of quantum nodes from one quantum
individual can be observed by comparing Figure 5.14, which contains the initial
distribution, with Figure 5.15, which represents the final distribution. In this
case, it is possible to notice that the probability of Identity, MobileNet and
SelfAttention blocks are the smallest in all nodes and converges to the best
architecture found that has none of those blocks selected.

Figure 5.14: Functions distributions of a quantum individual at the start of
the evolutionary process for the liver dataset experiment
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Figure 5.15: Functions distributions of a quantum individual at the end of the
evolutionary process for the liver dataset experiment

After finding the best architecture during the evolution process, the
model is retrained using all dataset images for 200 epochs with 10 initial-
izations.

Figure 5.16 shows, as in the other experiments, good results, although
they are not as precise as the real labels.

In Table 5.8 the comparison of SegQSNAS with other models is presented,
providing a comprehensive overview of SegQSNAS capabilities.

Table 5.8: Liver Dataset Experiments Results

Experiment Avg. DSC
Liver
DSC

Cancer
DSC

#Params
GPU
Days

Random Search 0.5014± 0.012 0.7512 0.2945 0.11× 106 0.13
SegQSNAS 0.7576± 0.002 0.9011 0.6141 10.5× 106 5.00

SwinUNETR[104] 0.8552 0.9535 0.7568 62.0× 106 NA
UNetFormer+[105] 0.7256 0.9479 0.5032 24.4× 106 NA
UNetFormer[105] 0.7689 0.9573 0.5805 59.0× 106 NA

The SwinUNETR was already presented in Experiment 2 (Subsection
5.3.2). The UNETFormer combines the encoder-decoder structure of U-Net
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Figure 5.16: Three sampled images from liver dataset with real and predicted
labels. The orange mask represents the liver and the green mask represents the
cancer.
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with the self-attention mechanisms characteristic of Vision Transformers.
The UNETFormer+ is a modified version of UNETFormer that incorporates
additional enhancements, such as refinement of the attention mechanism and
improvement of pre-training strategies.

As presented in Table 5.8, SwinUNETR outperformed all models, archiv-
ing almost 0.10 more in DSC score than SegQSNAS. When comparing each
isolated label, the SwinUNETR also outperformed SegQSNAS, leading to the
conclusion that, for this dataset, a deeper network is needed. However, due to
computer resource constraints, the maximum nodes used in this experiment
were 5, which generated an architecture with a maximum of 10 nodes.

On the other hand, SegQSNAS is a better choice compared to the UNET-
Former and UNETFormer+ models. SegQSNAS outperformed UNETFormer+
and was comparable to UNETFormer in terms of the DSC score. However,
when comparing the number of parameters, SegQSNAS has fewer parame-
ters than UNETFormer and UNETFormer+, and because of that, SegQSNAS
could be a better solution in the cases of limited computing resources.

This experiment demonstrates that for this dataset, a deeper network is
necessary because it can extract all the necessary features for the segmentation
task to achieve greater accuracy. However, due to limited computer resources,
the SegQSNAS experiment was unable to search for a deeper architecture.

Although hardware restrictions, it is possible to notice that compared
to the Random Search, SegQSNAS continue to surpass the result and the
difference become higher as the complexity of the problem increase.

5.3.4
Experiment 4 - Brain Tumor Dataset

The brain tumor dataset comprises 484 multiparametric MRI scans with
annotations, which were used to generate the dataset for this experiment.

Similarly to Experiment 3 (Subsection 5.3.3), it was also possible to use
two GPUs for this experiment.

The evolution parameters applied to this experiment are presented in
Table 5.9. In this case, the dataset size was reduced for the evolution process,
in the same way as in Experiment 3 (Subsection 5.3.3). In addition to this
change, for this experiment the update quantum rate was reduced to do more
exploration than exploitation during the evolution process.
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Table 5.9: SegQSNAS Evolution parameters for brain tumor dataset experi-
ment

Parameter Value
Number of nodes 5

Number of quantum individual 9
Repetition 1

Update quantum rate 0.5
Update quantum gen 1.0

Probability mass function Same probability for every function
Number of generations 100

Dataset limited dataset with 4000 images
Image Resolution 128x128

Batch Size 32
Training Epochs 30

Evaluation Epochs last 6

Due to the stochastic nature of this experiment, we ran two evolutionary
processes, and the best result is presented. The evolution process is shown in
Figure 5.17 and the plot interpretation is the same as in Figure 5.5.

Figure 5.17: Classical individual fitness during process evolution for brain
tumor dataset experiment

The evolutionary process converged relatively early in this experiment,
and the optimal architecture was identified at generation 97. Although it
may seem that more generations are needed to converge, this is not entirely
accurate because there were minimal improvements in the best individual since
generation 50, which suggests that the search had effectively converged. The
best architecture found is presented in Table 5.10.
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Table 5.10: Best architecture found for brain tumor dataset experiment

Node Description
res_n_3 ResNet nonscaling 3× 3

mobile_d_v1 MobileNet downscaling
den_n_3 DenseNet nonscaling 3× 3
den_n_7 DenseNet nonscaling 7× 7

mobile_d_v1 MobileNet downscaling
mobile_u_v1 MobileNet upscaling

den_n_7 DenseNet nonscaling 7× 7
den_n_3 DenseNet nonscaling 3× 3

mobile_u_v1 MobileNet upscaling
res_n_3 ResNet nonscaling 3× 3

The best individual found in this experiment has the same explanation
presented in the others experiments for the case of not using self-attention,
ResNet, InceptionNet and identity block.

For this experiment, Figure 5.18, with the initial function distribution,
and Figure 5.19, with the final distribution, were provided for a better visual
interpretation of its differences. It is important to note that the probability of
SelfAttention blocks is the smallest in all nodes and it is also possible to see
that the best architecture found has no SelfAttention Block.
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Figure 5.18: Functions distributions of a quantum individual at the start of
the evolutionary process for the brain tumor dataset experiment

Figure 5.19: Functions distributions of a quantum individual at the end of the
evolutionary process for the brain tumor dataset experiment

After finding the best architecture during the evolution process, the
model is retrained using all dataset images for 200 epochs with five initial-
izations.
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Figure 5.20 shows the degradation of the network output as the number
of output labels increases. This occurs because the evolutionary process was
unable to find a network that performed well across the three labels of the
brain tumor dataset images.

Table 5.11 shows a detailed comparison of SegQSNAS performance with
other relevant models.

Table 5.11: Brain Tumor Dataset Experiments Results

Experiment
Avg.
DSC

E
DSC

NET
DSC

ET
DSC

#Params
GPU
Days

Random Search 0.4787± 0.002 0.6033 0.4296 0.4143 0.3× 106 0.42
SegQSNAS 0.5673± 0.002 0.6772 0.4627 0.5621 0.5× 106 10.58

UNETR[102] 0.7110 0.7890 0.5850 0.7610 92.6× 106 NA
SwinUNETR[104] 0.6435 0.7002 0.5252 0.7051 62.0× 106 NA

The UNETR model and the SwinUNETR model were already introduced
in Experiment 1 (Subsection 5.3.1) and Experiment 2 (Subsection 5.3.2),
respectively.

As presented in Table 5.8, UNETR outperformed all models. When
comparing each isolated label, the greater difference between UNETR and
SegQSNAS is observed on the ET label, with a difference of almost 0.2 in the
DSC score. Compared to SwinUNETR, the same phenomenon occurs, with
a higher difference in the ET DSC score, although in this comparison, the E
DSC and NET DSC values were relatively close.

In this experiment, two possible conclusions for why SegQSNAS had a
higher difference in the ET DSC score. The first is that the SegQSNAS best
architecture has only half a million parameters, and the ET pattern has a much
more complex pattern than these numbers of parameters can detect. The other
explanation is that the search strategy using the average DSC could lead to a
non-optimal architecture when the number of labels increases.

Despite the non-optimal solution provided by SegQSNAS in this exper-
iment, SegQSNAS continue to provide a better architecture when compared
with Random Search results.
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Figure 5.20: Three sampled images from brain tumor dataset with real and
predicted labels. The orange mask represents the edema, the green mask
represents the non-enhanced tumor and the pink mask represents the enhanced
tumor.
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5.4
Discussion

In this section, the experiments are discussed in general, along with the
relationships between each result. From all experiments, SegQSNAS presented
the best result with Experiment 2 in the prostate dataset (Subsection 5.3.2),
which is a multi-class problem. In Experiment 3 (Subsection 5.3.3), although
the DSC score was not the highest, SegQSNAS provided the best trade-off be-
tween the DSC score and the parameter count, considering that computational
resources are important.

Considering the first and fourth experiments, SegQSNAS did not perform
well. In the first experiment (Subsection 5.3.1), the best SegQSNAS result was
pretty close to the one presented by the SegQNAS; however, due to the design
of the SegQSNAS, the best result found by the SegQNAS work was not part of
the search space. In the fourth experiment (Subsection 5.3.4), it was possible
to observe that as the number of labels increases, the best network found by
SegQSNAS starts to degrade, and in this case, it occurred with the ET DSC
score, showing the highest score difference.

Although the experiments show that the proposed model performance is
not higher than the state-of-the-art models, it is a favorable trade-off given the
architectures’ smaller parameter counts. However, the primary goal was higher
performance, yet the search algorithm consistently generated custom networks
with fewer parameters, despite this not being part of the fitness evaluation.

Considering the results of the experiments, it was possible to notice
that none of the experiments, even with the best architecture, incorporated
the identity block, indicating that the maximum node in the architecture
could be increased.It also shows that due to hardware restrictions, the self-
attention block was not correctly evaluated due to out of memory errors in
such architectures. The functions that never appeared in the best architecture
of all experiments are listed below:

– vgg_n_5: VGG nonscaling 5× 5

– vgg_n_7: VGG nonscaling 7× 7

– res_d_3: ResNet downscaling 3× 3

– res_d_5: ResNet downscaling 5× 5

– res_n_5: ResNet nonscaling 5× 5

– res_n_7: ResNet nonscaling 7× 7

– den_d_5: DenseNet downscaling 5× 5

– den_d_7: DenseNet downscaling 7× 7
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– inc_d_3: InceptionNet downscaling 3× 3

– inc_n_3: InceptionNet nonscaling 3× 3

– inc_n_5: InceptionNet nonscaling 5× 5

– inc_n_7: InceptionNet nonscaling 7× 7

– mobile_n_v1: MobileNet nonscaling

In summary, the prostate dataset experiment demonstrated that SegQS-
NAS performed well, yielding the best results in terms of DSC score, parameter
count, and GPU days. It also archive of good results on the liver dataset ex-
periment due to the best trade-off considering that it is a limited computing
resource scenario. However, some experiments show some limitations in the
search strategy or computational resources available. In addition, in any ex-
periment, the self-attention block was not selected in the best architecture
found, and this is indicative that the predefined maximum number of nodes
or the complexity of the tested problems might not have been high enough for
this operation to be selected during the evolution process.



6
Conclusions

Based on the foundations of SegQNAS, the proposed method introduced
key modifications aimed at improving search efficiency, model compactness,
and performance on medical imaging datasets. Throughout this work, we
explored architectural constraints, expanded the functional diversity of the
search space, and refined the evolutionary strategy to achieve more robust and
efficient models.

The primary goal of this work was to reduce the search space by
introducing a design constraint that limits exploration to symmetrical U-
Net-like networks.This dissertation presented SegQSNAS, a quantum-inspired
neural architecture search framework applied to semantic segmentation tasks.
Additionally, this symmetrical design inherently eliminates the need for the
feasibility check required by SegQNAS. Every downsampling operation in one
half of the network is guaranteed to have a corresponding upsampling operation
in the other half.

This goal was achieved because the original SegQNAS model often gen-
erates infeasible individuals. Moreover, the total number of nodes defines the
network’s size. In contrast, SegQSNAS limits the search to architectures with
half the number of nodes, ensuring feasibility. When comparing SegQSNAS
and SegQNAS results in the spleen and prostate experiments, we observed
that SegQSNAS significantly improved the DSC score, reduced the number of
parameters, and decreased GPU usage in the prostate experiment. Addition-
ally, in the spleen dataset, it produced an architecture with comparable DSC
and parameter count.

The secondary goal was to add new functions to the search space, such
as self-attention, MobileNet, and EfficientNet. The self-attention function was
intended to enhance the composition of the filters during convolution. However,
it was not selected in the best architecture of any experiment, possibly
indicating that more complex architectures (with a higher number of nodes)
are needed for this feature to be effective. This means that the problem was not
complex enough to replace any other function with self-attention to improve
the result.

However, MobileNet and EfficientNet were selected as the best architec-
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ture in all experiments except the prostate dataset experiment. These blocks
enabled the SegQSNAS evolutionary process to find lightweight customized
networks, reducing the number of parameters and GPU computation time
(GPU days).

The third goal was to improve the evolutionary process by reducing
noise and better exploiting the best solutions. To achieve this goal, a crossover
over the classical categorical individual was implemented using the two-point
crossover operation. The evolutionary process showed that each time a better-
performing solution was discovered, the diversity among the top ten classical
individuals increased. Thanks to the crossover operator, the algorithm was able
to exploit this diversity more effectively, resulting in faster convergence.

The last goal was to correct the metrics and loss implementation in
SegQNAS regarding multi-class problems. The DSC function used in SegQNAS
overestimates the multi-class problem because the numerator in the DSC
formula does not fully account for the true overlap between multiple labels,
while the denominator is inflated due to the sum over all labels. The correction
was based on the usage of the average of the DSC calculated for each label.
In the prostate dataset experiment, the SegQSNAS implementation led the
evolution process to a better solution even compared to an overestimated DSC
score.

In future work, we will extend our experiments to datasets with a
larger number of labels, investigating the limitations of the method in high-
complexity scenarios. We also intend to scale our experiments to a higher
maximum number of nodes, allowing the discovery of more complex network
architectures. Furthermore, we will extend the work to implement a population
diversity control module and dynamic parameters to be applied to the evolution
process, aiming to optimize the balance between exploration and exploitation.
This will include testing different search strategies, such as a hierarchical
approach with an initial topological search and a subsequent hyperparameter
search, exploring different crossover operators, and testing various mutation
operations.
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