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Abstract

Silva, Flavio Sergio da; Sardinha, José Alberto Rodrigues Pereira (Ad-
visor). Enhancing Asset Price Prediction: Conformal Prediction
Ensembles. Rio de Janeiro, 2025. 106p. Dissertação de Mestrado – De-
partamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

The financial market is widely recognized as a central indicator of a
nation’s economic vitality, providing essential credit and liquidity to support
investment and capital allocation. It plays a dual role by enabling the growth
of corporate capital and enhancing investor wealth. Asset Price Prediction
(APP) has been approached through a range of techniques, including Conven-
tional Statistics (CS), Fundamental Analysis (FA), Technical Analysis (TA),
Heuristic Rules (HR), and, more recently, Machine Learning (ML). Despite
considerable advancements in computational power and algorithmic design,
APP remains a complex challenge due to the inherently stochastic and non-
linear behavior of financial markets. Recent state-of-the-art (SOTA) studies re-
port trend prediction accuracy near 79% and price prediction accuracy around
27%. However, a key limitation of many existing approaches is their inabil-
ity to provide reliable estimates of predictive uncertainty, which is critical for
informed risk management. This work addresses this gap by proposing a Con-
formal Prediction Ensemble (CPE) framework that incorporates Conformal
Prediction (CP) techniques to calibrate the outputs of ML-based APP mod-
els. The proposed methodology consists of four sequential steps: ML models
generate Close value predictions, which are then calibrated using CP. Next, the
Conformal Prediction Intervals (CPIs) are intersected to enhance reliability.
Finally, a Random Approach (RA) is used to sample Close values from the
resulting intersection set uniformly. Model performance is assessed with and
without the application of CP, using the Symmetric Mean Absolute Percentage
Error (sMAPE) as the evaluation metric. Empirical validation is carried out
on two benchmark indices: the Standard & Poor’s 500 (SPX) and the Bovespa
Index (IBOV). The CPE framework demonstrates improved predictive robust-
ness by explicitly incorporating uncertainty estimation, thus contributing to
a practical and empirically grounded strategy for risk-aware APP in financial
markets.
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Resumo

Silva, Flavio Sergio da; Sardinha, José Alberto Rodrigues Pereira. Apri-
morando a Previsão de Preços de Ativos: Conformal Prediction
Ensembles. Rio de Janeiro, 2025. 106p. Dissertação de Mestrado – De-
partamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

O mercado financeiro é um indicador fundamental da saúde econômica de
um país, promovendo crédito e liquidez para sustentar investimentos e o fluxo
de capital. Ele facilita o crescimento das empresas e contribui para a geração
de riqueza dos investidores. A Previsão de Preços de Ativos (APP) tem sido
abordada por meio de diversas metodologias, como Estatísticas Convencionais
(CS), Análise Fundamentalista (FA), Análise Técnica (TA), Regras Heurísticas
(HR) e, mais recentemente, Aprendizado de Máquina (ML). Apesar dos
avanços computacionais, a APP continua sendo uma tarefa complexa devido
à natureza estocástica e caótica dos mercados financeiros.

Atualmente, os melhores resultados (SOTA) apresentam acurácia de
cerca de 79% para previsão de tendência e aproximadamente 27% para
previsão de preço. No entanto, a maioria das abordagens carece de métodos
robustos para quantificar a incerteza das previsões, o que limita sua aplicação
prática na gestão de riscos. Este estudo propõe um modelo baseado em
Conformal Prediction Ensemble (CPE), integrando Conformal Prediction (CP)
à calibragem dos resultados obtidos por ML para APP. A metodologia em
cinco etapas inicia com o uso de HR para simular cenários realistas de APP.
Em seguida, modelos de ML predizem o valor de fechamento (Close), que é
calibrado com CP. Um Random Approach (RA) seleciona novos valores de
Close de forma uniforme a partir do conjunto de previsões CP. Os resultados
com e sem CP são comparados por meio do Symmetric Mean Absolute
Percentage Error (sMAPE). Os dados utilizados são os índices Standard and
Poor’s 500 (SPX) e Bovespa (IBOV). A proposta visa superar o desempenho
de modelos ML isolados, incorporando estimativas de incerteza, e contribui
com uma estratégia empírica e prática de gestão de risco baseada em CP.

Palavras-chave
Previsão de Preços de Ativos; Conjunto de Previsões Conformes; Gestão

de Riscos; Mercados Financeiros; Modelos de Aprendizado de Máquina.
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1
Introduction

According to An, Sun e Wang (2022), the global financial market ex-
ceeded $90 trillion in capitalization by the year 2021, reflecting the immense
scale and complexity of this economic domain. This market involves millions
of investors worldwide, each contributing to the dynamic interplay of asset
valuation, investment strategies, and financial forecasting. As such, the devel-
opment of accurate predictive models for asset prices is not only a scientific
challenge but also of significant economic relevance.

1.1
Problem

The issue pertains to assets transactions within the financial market,
where investors aim to capitalize on the discrepancy between buying and selling
values. The most common market operations, or financial market trades, are
buy and sell. These trades can be executed regardless of the prevailing market
trends, which are typically classified as either an Uptrend or a Downtrend. The
entry into a position occurs at a specific market entry price (MEP), while the
exit is made at a defined market leave price (MLP). The most widespread
strategy for generating returns (i.e., making a profit) is to buy low and sell
high, referred to as going long. However, more experienced investors also use
the inverse strategy—going short—which consists of selling high and buying
back low, allowing profits in declining markets.

At each time step, traders must decide whether to buy, hold, or sell
to maximize their net returns. In this context, the asset return is defined as
the difference between the current asset price and its previous price. From an
operational perspective, it represents the realized gain or loss resulting from
an asset’s purchase and subsequent sale.

Various strategies are employed to support such trading decisions, indi-
vidually or in combination. These include Conventional Statistics (CS), Fun-
damental Analysis (FA), Technical Analysis (TA), Heuristic Rules (HR), and
Machine Learning (ML).

CS makes use of traditional statistical models, such as Auto-Regressive
Moving Average (ARMA) (BOX; PIERCE, 1970), and Auto-Regressive Condi-
tional Heteroscedasticity (ARCH) (ENGLE, 1982). The latter addresses issues
where the variance of the time series is not constant, a phenomenon known as
Heteroscedasticity (or Heteroskedasticity).
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FA entails analyzing a company’s internal and external performance
indicators, including management strategies and financial reports such as
income statements, balance sheets, assets, liabilities, and cash flows.

TA identifies patterns and trends through visual and statistical analysis
of price and volume data. Standard tools include Simple Moving Averages
(SMA), Support and Resistance levels, and trend lines.

HR involves rule-based reasoning drawn from practical trading experience
and subjective beliefs, often used by discretionary traders.

ML leverages data-driven algorithms to model complex relationships and
patterns. These algorithms span several paradigms, including neuron-based
(e.g., neural networks), rule-based (e.g., decision rules), kernel-based (e.g.,
SVM), regression-based, tree-based (e.g., random forests), curve-based (e.g.,
polynomial fitting), and generative-based (e.g., GANs or VAEs) models.

1.2
Context

This study utilizes real-life daily data from two prominent global stock
market indexes (SMI)1: the Standard and Poor’s 500, referred to as the S&P
500 (SPX), representing the performance of the top 500 companies listed on
U.S. stock exchanges, and the Bovespa Index, known as IBOVESPA (IBOV),
comprising nearly 100 of the most capitalized and actively traded stocks from
Brazilian companies on the B3 S.A - Brasil, Bolsa, Balcão stock exchange. As
of December 2023, IBOV included 86 assets from 83 companies.

Selvin et al.(2017) classified prediction problems based on trade dura-
tion into Short-term (ST), lasting seconds to months; Medium-term (MT),
spanning one to two years; and Long-term (LT), exceeding two years. High-
frequency trading (HFT), completed in milliseconds, achieves state-of-the-art
(SOTA)2

1The stock market index (SMI), or index, is a financial instrument (contract or security)
that represents the performance of an asset basket (portfolio). The measurement result is
given in points instead of prices, and the calculation is based on the weight of some indicators
such as market-cap, revenue, floating, fundamental, among others.

2Aït-Sahalia et al. (2022) represents the state of the art (SOTA) in High-Frequency
Trading (HFT), having achieved a prediction accuracy of around 79% for trends and 27%
for prices. results but is less popular due to its computational demands (AÏT-SAHALIA et
al., 2022).

Day Trading (DT) involves buying and selling within a day, preventing prolonged market
exposure. Swing Trading (ST) includes short-term or medium-term operations. The stock
exchange provides historical asset price data in the open-high-low-close (OHLC) format,
presented as a time series (TS) with specific time units, such as milliseconds, seconds,
minutes, hours, or days. This research focuses on the short term, covering operations lasting
a few minutes or hours.



Chapter 1. Introduction 18

1.3
Importance

The financial market (FM) serves as a fundamental infrastructure for
capital flow and liquidity in modern economies. Its efficiency relies on seamless
execution of transactions under varying market conditions, enabling investors
to act on perceived opportunities without significant slippage or delay. During
bullish or bearish cycles, strategic entry and exit points are essential for align-
ing investments with anticipated price movements, reinforcing the importance
of market accessibility and timing.

In this context, investors aim to identify patterns and optimal market
entry and exit points, making asset price prediction (APP) a crucial task for
maximizing returns. Rather than focusing on the precise future asset price,
the goal is to anticipate the price direction or trend reliably. Profits stem from
maintaining a consistent strategy where the number of profitable transactions
outweighs unprofitable ones over time, regardless of temporary fluctuations.

Given the highly competitive nature of the FM, where all participants
strive to outperform each other, adopting robust and precise forecasting
techniques becomes imperative. As noted by Hassan e Nath (2007), the growth
of online trading platforms has lowered entry barriers, empowering even small
investors to access markets and achieve significant profits through informed
decision-making and timely strategy execution.

1.4
Difficulty

The primary challenge lies in asset prices’ chaotic and unstable nature,
as highlighted by Lawrence (1997a), making asset price prediction (APP) a
highly complex task influenced by numerous observable and latent variables.
This complexity arises from inherent characteristics of financial time series,
such as high volatility, intrinsic noise, nonlinearity, and nonstationarity. The
nonlinearity limits the applicability of traditional statistical techniques, while
nonstationarity—manifested through time-varying statistical properties such
as mean, variance, and autocovariance—complicates the development of con-
sistent and robust predictive models. Moreover, financial data often exhibit
heteroscedasticity, where the error terms or asset returns variance changes
over time, further challenging model calibration and interval estimation. In
addition, input features typically vary in scale, necessitating normalization or
transformation to stabilize training processes, particularly in models based on
neural networks.
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According to Grandhmal and Patel Gandhmal e Patel (2019), high-
frequency fluctuations and abrupt changes in market behavior further com-
plicate trend forecasting. Market trend identification is typically derived from
relationships among high, low, and closing price values. For example, if the
high-minus-close value exceeds the close-minus-low value, the trend is consid-
ered upward; conversely, if the close-minus-low value exceeds the high-minus-
close value, the trend is downward. Otherwise, the market is viewed as trending
sideways.

Arslan (2022) pointed out that conventional statistical methods are
inadequate for capturing the nonlinear structure of financial time series. He
also highlighted that neural networks, while more expressive, often suffer from
overfitting and require careful hyperparameter tuning, which can be both time-
consuming and nontrivial.

The debate surrounding market efficiency remains a foundational topic in
financial economics. According to the Efficient Market Hypothesis (EMH), pro-
posed by Fama (1970), markets fully reflect all available information, making
it impossible to consistently achieve above-average returns through arbitrage
or technical analysis. However, several scholars and practitioners argue that
markets are not always efficient, mainly due to behavioral biases, liquidity
constraints, and persistent anomalies. In particular, Cornell (2013) presents a
thorough critique of market efficiency, emphasizing that structural and infor-
mational frictions can sustain inefficiencies over time, offering opportunities
for improved forecasting techniques.

Another intrinsic difficulty of APP is its online nature—decisions must be
made sequentially as new data arrives, without access to future observations.
This scenario falls under the category of online problems, where algorithms
must operate without complete information. Therefore, investors must make
real-time decisions based on partial and evolving knowledge, while asset prices
exhibit behavior akin to a random walk. This randomness implies that past
price movements provide only limited predictive power for future prices,
reinforcing the challenge of accurate forecasting in financial markets.

The overarching challenge is to develop robust prediction mechanisms
that support strategic decision-making to maximize returns while minimiz-
ing risk exposure. These mechanisms must address the complexities of chaotic
dynamics, evolving data distributions, market inefficiencies, and financial sys-
tems’ unpredictability in theoretical formulation and empirical implementa-
tion.
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1.5
Prediction Techniques

In financial markets, all models that assist traders in making decisions,
especially regarding asset prices and trend prediction, are called Quantitative
Models (QM). These models are grounded in mathematics and statistics and
aim to support informed, data-driven decision-making. It is important to
note that “Quant” models, based on deterministic classical computing, should
not be confused with “Quantum” models, which rely on stochastic principles
derived from quantum mechanics. Although portfolio optimization is also
relevant for QMs, this work focuses specifically on the prediction dimension.
As noted by An, Sun e Wang (2022), the last decade has seen a significant rise
in quantitative trading (QT), automatically generating trading signals using
data-driven methodologies.

1.5.1
Heuristic Rules

Heuristic Rules (HR) refer to empirical strategies developed from a
trader’s experience, intuition, or personal beliefs. These rules typically lack
statistical rigor or generalizability but are widely used by financial profes-
sionals. Traders often act on these heuristics with firm conviction, and when
such rules are encoded into systems to assist decision-making, they effectively
become Quantitative Models (QM). An, Sun e Wang (2022) highlights that
traditional quantitative trading methods are often built upon either heuristic
logic or human-guided predictive models, further validating the relevance of
HR within the predictive modeling landscape.

1.5.2
Conventional Statistics

The prediction of asset prices was initially tackled using Conventional
Statistics (CS) and econometrics. These methods rely on strong assumptions
such as linearity, normality, and stationarity, which are often misaligned with
the non-linear and dynamic nature of financial time series. In contrast, Machine
Learning (ML) methods learn patterns directly from historical data without
imposing strict assumptions about its distribution or behavior.

In the statistical modeling domain, the Auto-Regressive Moving Average
(ARMA) framework serves as a classical linear technique for forecasting, in-
cluding Asset Price Prediction (APP). Meanwhile, models like Auto-Regressive
Conditional Heteroscedasticity (ARCH) and its extensions aim to predict the
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variance of asset prices, capturing typical volatility clustering in financial mar-
kets.

Despite their historical importance, these techniques have key limita-
tions, particularly their inability to effectively handle non-stationarity, where
properties like the mean or variance change over time. According to Tambi
(2005), such limitations hinder their practical predictive accuracy in financial
environments characterized by volatility and complex dynamics, leading to a
growing preference for ML-based alternatives.

1.5.2.1
Machine Learning

With the advancement of computing power over the last two decades,
Machine Learning (ML) has gained prominence as a robust approach to Asset
Price and Trend Prediction. Unlike Conventional Statistics, ML techniques are
more adaptable and can achieve higher accuracy, especially when trained on
large-scale datasets.

The most common ML methods include neuron-based models (such
as neural networks), rule-based systems, neighbor-based algorithms (like K-
Nearest Neighbors), kernel-based models (e.g., Support Vector Machines),
regression-based approaches (such as linear or logistic regression), tree-based
models (e.g., decision trees and random forests), curve-based techniques (e.g.,
spline regression), ensemble-based strategies (like boosting and bagging), and
generative-based models (such as GANs and VAEs). Each paradigm offers
unique strengths in capturing complex patterns inherent to financial time
series.

1.6
Uncertainty Quantification

Machine Learning (ML) models, including state-of-the-art (SOTA) archi-
tectures, inherently yield uncertain predictions. This uncertainty arises from
factors that degrade performance, such as noise, randomness, volatility, and
data instability. In practical scenarios like asset price prediction (APP), it
becomes essential to quantify this uncertainty to inform decision-making. In
other words, beyond predicting outcomes, it is crucial to estimate the level of
confidence or reliability associated with those predictions.

Uncertainty Quantification (UQ) measures the uncertainty associated
with model outputs in a probabilistic context. It provides a way to assess how
likely the predictions reflect actual outcomes. As emphasized by Kabir et al.
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(2018), UQ plays a significant role across scientific and engineering applications
and has led to the development of various calibration techniques.

1.6.1
Conventional Quantification

Several traditional approaches exist for Uncertainty Quantification (UQ),
each with notable limitations. Standard methods include classification proba-
bilities, which often suffer from poor calibration; Bayesian posterior intervals,
which require strong assumptions about the underlying distribution—typically
assuming normality in finance; and bootstrapping methods, which may misesti-
mate variance during model re-estimation. Other calibration strategies include
Platt Scaling, Isotonic Regression, Spline Calibration, Ensemble Methods, and
Direct Interval Estimation, though they frequently lack rigorous probabilistic
guarantees.

Furthermore, as noted by Romano (2022), many ML models assume
that data is independent and identically distributed (i.i.d), implying mutual
independence and identical probability distributions across instances. While
this assumption simplifies modeling and inference, it rarely holds in real-
world financial applications, where temporal dependencies, volatility shifts,
and structural breaks are common. Consequently, even high-performing models
can produce unreliable predictions when calibration is not explicitly addressed.

1.6.2
Conformal Prediction

Conformal Prediction (CP), introduced by Gammerman, Vovk e Vapnik
(1998), offers a principled framework for generating prediction intervals with
formal probabilistic guarantees. Unlike conventional methods, CP is model-
agnostic and imposes no strict assumptions on the data distribution or the
internal mechanics of the prediction model. This makes it highly versatile and
applicable across various use cases.

CP benefits Black-Box models, such as deep neural networks, where
internal interpretability is limited. It enables uncertainty quantification by
constructing Conformal Prediction Intervals (CPI), providing reliable and
statistically valid estimates of prediction confidence. Importantly, CP offers
non-asymptotic coverage guarantees over finite samples without requiring the
data to follow specific distributions like the normal distribution.

The method operates by splitting the original dataset into training and
calibration sets. The ML model is trained only once on the training portion,
while the calibration data is used separately to derive the prediction intervals.
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This separation ensures that the uncertainty estimates are based on data not
used during model fitting, supporting better generalization.

Ultimately, CP delivers rigorous and practical uncertainty quantification,
supporting decision-making in high-risk domains such as finance. Although
its guarantees are statistical rather than deterministic, they are sufficient to
underpin confidence-based actions in real-world predictive modeling.

1.7
Gap

Manokhin (2022) emphasized that most Machine Learning (ML) models
suffer from poor calibration. He warned that proper calibration poses signif-
icant risks in high-stakes domains such as healthcare, finance, autonomous
driving, and pharmaceuticals. Uncalibrated models can lead to overconfident
or misleading predictions in these contexts, thereby impairing critical decision-
making processes.

Caruana e Niculescu-Mizil (2006), Guo et al. (2017), Johansson e
Gabrielsson (2019), and Mukhoti et al. (2020). These studies have consistently
shown that many ML models produce probabilistic outputs not aligned with
actual outcome frequencies, leading to unreliable uncertainty quantification.

This gap is particularly concerning in the context of Asset Price Pre-
diction (APP), where poorly calibrated ML models are frequently employed.
Given the financial implications of misestimation, robust calibration methods
are essential to improve reliability and risk assessment in APP scenarios.

1.7.1
Contribution

To address the calibration gap identified in predictive models, we propose
the development of a Conformal Prediction Ensemble (CPE) aimed at calibrat-
ing the prediction outputs of Machine Learning (ML) models in the context of
Asset Price Prediction (APP). This approach seeks to improve the reliability
of predictions, particularly in scenarios where poorly calibrated outputs may
compromise financial decision-making.

Drawing inspiration from the concept of a methodological "melting pot"
as advocated by Tibshirani e Hastie (2021) and echoed by Romano (2022), we
adopt a hybrid strategy that harmonizes diverse modeling philosophies. Both
authors suggest that integrating data-driven and model-based approaches can
lead to more robust solutions, especially in complex real-world domains such
as finance.
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The ensemble framework is composed of the following four key method-
ological components:

– Heuristic Rules (HR): Leveraging expert-driven strategies grounded
in practical financial knowledge, we adopt heuristic reasoning to forecast
the close price value (CPV) of assets. While not statistically formalized,
practitioners widely use these heuristics and often reflect market dynam-
ics effectively.

– Machine Learning (ML): We incorporate three different ML mod-
els—eXtreme Gradient Boosting (XGBoost), Long-Short Term Mem-
ory (LSTM), and Support Verctor Machine (SVM), to generate the ini-
tial prediction outputs, referred to as Original Asset Price Predictions
(OAPP). These predictions, while accurate in many cases, lack reliable
uncertainty quantification.

– Conformal Prediction (CP): To calibrate the OAPP results, we apply
two distinct techniques from the CP family: Conformalized Quantile
Regression (CQR) (ROMANO; PATTERSON; CANDèS, 2019) and
Mondrian Conformal Prediction (MCP) (VOVK; PAPADOPOULOS;
GAMMERMAN, 2005). These methods transform the raw outputs into
probabilistically valid Conformal Prediction Intervals (CPI), addressing
the known issue of poorly calibrated ML predictions.

– Randomization Approach (RA): As a final step, we incorporate a
randomization mechanism that selects a calibrated CPV from within the
predicted CPI using a uniformly random sampling strategy. This adds a
layer of diversity and robustness to the ensemble output.

Further methodological details, including the execution sequence and
rationale for selecting or omitting each technique, are presented in Section 3.

1.8
Structure

The remaining part of this research is organized as follows: Section 2
presents the literature review for asset price prediction (APP) using ML and
the variants related to this research; Section 3 provides the definitions of the
main experiments and their sequence; Section 4 presents the model description
and model formalization; Section 5 describes the experiment execution using
different ML techniques and the two dataset benchmarks; Finally, Section 6
concludes this paper, adding considerations and future research.



2
Literature Review

Using numerous approaches, the asset price prediction (APP) is a vast
research topic. For this reason, we narrowed the literature review to what is
closer to and around the prediction models and calibration techniques we chose
to use.

2.1
Prediction Models

This section details the relevant research related to both asset price
prediction (APP) and asset trend prediction (ATP) using the models LSTM,
SVM, and XGBoost.

The early foundations of asset price prediction (APP) were shaped by
the random walk theory and the Efficient Market Hypothesis (EMH). Cootner
(1964) observed that daily asset prices followed a random-walk behavior,
suggesting unpredictability in financial markets. Subsequently, Fama (1965)
posed a crucial question about the possibility of identifying predictive patterns
in historical price data, a concern that continues to influence modern financial
modeling. He argued that historical data would not offer a consistent advantage
in forecasting if markets were truly efficient, as posited by the Efficient Market
Hypothesis (EMH).

Challenging this position, several studies published between 2003 and
2011 presented empirical evidence contradicting the EMH and the random walk
hypothesis. These included works by Malkiel (2003), Smith (2003), Jr e Parker
(2007), and Bollen, Mao e Zeng (2011), all of which highlighted anomalies,
behavioral biases, and social sentiment as potential predictive features.

The exploration of artificial intelligence in finance began with White
(1988), who appears to be the first to apply Neural Networks (NN) to
predict daily asset returns for IBM. His optimistic results demonstrated
the potential of NN for APP, marking a key turning point in the field.
Building on this, Roman (1996) investigated the use of both backpropagation
and Recurrent Neural Networks (RNNs) to predict asset trend prediction
(ATP) across multiple international markets. Their results showed that while
recurrent architectures captured temporal dependencies, the improvement over
traditional feedforward models was not yet substantial, foreshadowing the later
breakthroughs made possible by LSTM.
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2.1.1
LSTM

Lawrence (1997) challenged the Efficient Market Hypothesis (EMH) by
highlighting the difficulty of accurately predicting short-term stock movements,
prompting interest in models capable of capturing the stochastic behavior of
financial time series.

Hochreiter and Schmidhuber (HOCHREITER; SCHMIDHUBER, 1997)
introduced the Long Short-Term Memory (LSTM) network to address limita-
tions of standard RNNs, particularly vanishing gradients. Using input, output,
and forget gates, their architecture enabled long-term sequence modeling and
became foundational for time-dependent prediction tasks such as asset price
and trend forecasting.

Subsequent studies expanded LSTM’s role in financial modeling. Kara
et al. (KARA; BOYACIOGLU; BAYKAN, 2011) demonstrated improved di-
rectional accuracy when combining LSTM with technical indicators. Chen et
al. (CHEN; ZHOU; DAI, 2015) confirmed LSTM’s effectiveness for intraday
forecasting using high-frequency data, while Fischer and Krauss (FISCHER;
KRAUSS, 2018) showed it outperformed MLPs by capturing nonlinear depen-
dencies without manual feature engineering.

Hybrid approaches also gained traction. Nelson et al. (NELSON;
PEREIRA; OLIVEIRA, 2017) integrated sentiment analysis into LSTM mod-
els to enhance predictions under volatility. Qiu et al. (QIU; SONG; AKAGI,
2020) implemented ensemble LSTMs with varied lag structures, improving
generalization and robustness in trading environments. Cao et al. (CAO; LI;
LI, 2021) introduced attention mechanisms, enabling LSTM to dynamically
weight relevant time steps, which enhanced interpretability and accuracy.

These advances illustrate LSTM’s adaptability for financial forecasting,
from core sequence modeling to hybrid and attention-based strategies. Its ca-
pacity to capture temporal dependencies and integrate diverse inputs makes it
a strong candidate for robust APP solutions under varying market conditions.

Additional information about LSTM can be found in Appendices A.2.1.2
and A.1.2.

2.1.2
SVM

Support Vector Machines (SVMs) have played a significant role in stock
market forecasting since the early 2000s, offering robustness in modeling the
nonlinear, noisy nature of financial time series. Tay and Cao (TAY; CAO,
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2001) demonstrated that SVM outperformed traditional neural networks,
particularly when working with limited and volatile data.

Kim (KIM, 2003) explored SVM’s ability to classify stock index direction
and emphasized the role of input feature selection in enhancing predictive
performance. Huang et al. (HUANG; NAKAMORI; WANG, 2005) further
improved results by integrating SVM with Genetic Algorithms (GA) for
feature selection and model optimization, inspiring hybrid SVM frameworks
in financial domains.

Cao and Tay (CAO; TAY, 2005) refined hyperparameter tuning for SVR
models, proposing an optimization framework that yielded more stable predic-
tions across indices. Thakur et al. (THAKUR; PADMANABHAN; GUPTA,
2011) introduced Particle Swarm Optimization (PSO) for parameter search,
showing advantages over conventional methods.

Patel et al. (PATEL et al., 2015) proposed an ensemble combining SVM,
ANN, and Random Forests, where SVM showed competitive accuracy when
properly optimized. Ghanbari and Goldani (GHANBARI; GOLDANI, 2021)
applied the Golden Sine Algorithm (GSA) for SVR tuning, reporting enhanced
predictive accuracy and efficiency.

These developments underscore SVM’s evolution from benchmark predic-
tive models to sophisticated hybrid systems. Its continued relevance in financial
forecasting stems from strong generalization, adaptability, and compatibility
with modern optimization techniques.

Additional information about the SVM model can be found in Appen-
dices A.2.1.3 and A.1.4.

2.1.3
XGBoost

XGBoost, developed by Chen and Guestrin (CHEN; GUESTRIN, 2016a),
is a high-performance, regularized gradient boosting algorithm known for its
scalability and predictive strength. Its adoption in financial forecasting has
grown due to its robustness with structured, noisy datasets.

Ballings et al. (BALLINGS et al., 2015) demonstrated XGBoost’s supe-
rior classification accuracy over logistic regression and neural networks. Patel
et al. (PATEL et al., 2015) confirmed its regression accuracy using techni-
cal indicators, while their follow-up work (PATEL; SHAH; KOTECHA, 2019)
showed enhanced performance by including macroeconomic variables during
turbulent periods.

The model’s flexibility has been extended with domain-specific fea-
tures. Zhang et al. (ZHANG; XU; WANG, 2018) and Chakraborty et
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al. (CHAKRABORTY; GHOSH, 2021) incorporated sentiment data, and
Jabeur et al. (JABEUR; LAHMIRI; HUSSAIN, 2020) applied XGBoost to
the volatile cryptocurrency market. Dong et al. (DONG; YU; LIU, 2022) in-
troduced a multi-resolution approach combining short- and long-term tem-
poral views, improving adaptability to nonstationary behavior. Januschowski
et al. (JANUSCHOWSKI et al., 2022) further validated the dominance of
boosted trees in time series forecasting competitions. Verma et al. (VERMA;
AGRAWAL; SHARMA, 2023) contributed interpretability by integrating
SHAP values to highlight influential variables such as volatility and volume.

Despite its predictive power, XGBoost lacks native support for uncer-
tainty quantification—a limitation in risk-sensitive financial environments. To
address this, we integrate Conformal Prediction (CP) into the model, enabling
distribution-free calibration of predictive intervals.

Further implementation details of XGBoost are available in Appen-
dices A.2.1.4 and A.1.6.

2.1.4
Addition Review

Huck (2009) proposed a pairs trading framework to identify underval-
ued and overvalued assets using multi-criteria decision techniques applied to
S&P100 components, contributing early advances to directional forecasting.
Jacobs (2015) cataloged 100 market anomalies, expanding the landscape of
factors in financial modeling.

This work intentionally excludes several families of models based on
empirical limitations. Conventional statistical methods such as ARIMA and
GARCH (BOX et al., 2015; BOLLERSLEV, 1986) offer interpretability and
volatility modeling but fall short under nonlinear dynamics and nonstationary
conditions (Cont, 2001; Christoffersen, 2012). Their parametric assumptions
and lack of flexible uncertainty modeling limit practical deployment in modern
financial forecasting.

Convolutional Neural Networks (CNNs), although successful in image
and short-term time series tasks (Borovykh, 2017), lack intrinsic mechanisms
for long-range temporal dependency modeling. Hybrid architectures incorpo-
rating CNNs with LSTMs or attention layers (QIN et al., 2017) have been
proposed, but pure CNNs struggle with trend detection, seasonality, and prob-
abilistic forecasting—key to financial decision-making (ANGELOPOULOS;
BATES; FANNJIANG, 2021).

Large Language Models (LLMs), while transformative in NLP, are not
well-aligned with structured temporal prediction. Studies like (LUO et al.,
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2023) and Zhang (2023) find specialized time series models like LSTM,
PatchTST (LIU et al., 2023), and Temporal Fusion Transformers (LIM;
ZOHREN, 2021) outperform LLMs in this domain. LLMs also lack na-
tive structures for autocorrelation, lagged dependencies, or calibrated uncer-
tainty—critical aspects for financial risk-aware applications (ANGELOPOU-
LOS; BATES; FANNJIANG, 2021).

Thus, while these excluded methods have theoretical and niche value,
our focus remains on empirically robust, interpretable, and uncertainty-aware
approaches that align with financial markets’ stochastic and regime-shifting
nature.

2.2
Calibration Techniques

In this session 2.2, we detail some relevant research related to model cali-
bration using the Conformal Prediction (CP). Although the CP can be applied
to calibrate the prediction of various Machine Learning (ML) algorithms, we
focus on just the regression case.

2.2.1
Conformal Prediction

Conformal Prediction (CP) was initially introduced by Vovk, Gammer-
man e Shafer (2005a) and formalized into a practical uncertainty quantification
method by Shafer e Vovk (2008a), offering finite-sample validity guarantees.
CP provides prediction sets that maintain user-specified coverage probabilities,
regardless of the underlying data distribution, making it particularly attractive
for financial time series where assumptions such as normality and independence
are frequently violated.

In a pivotal contribution, Romano, Patterson e Candès (2019) proposed
Conformalized Quantile Regression (CQR), which integrates CP with quantile
regression to generate prediction intervals with formal coverage guarantees.
CQR enables the model to adapt to heteroscedastic data, a common trait
in financial time series, by directly estimating lower and upper quantiles and
conformally adjusting them.

Later, Gibbs, Candès e Lei (2021) extended CP to handle non-
exchangeable data through Mondrian Conformal Prediction (MCP). MCP par-
titions the data into groups (e.g., time buckets or volatility regimes) and applies
CP within each group independently. This ensures coverage even under distri-
butional shifts, a valuable enhancement for dynamic financial environments.
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In the energy and price prediction context, Kath e Ziel (2021) compared
CP with the state-of-the-art Quantile Regression Averaging (QRA) model.
Their empirical results demonstrated that CP-based methods provided more
robust coverage across error distributions and time scales.

Wiśniewski, Jastrzębski e Olszewski (2020) applied CP to financial time
series forecasting, benchmarking it against classical models such as Moving
Average (MA) and Quantile Regression (QR). Their findings showed that
CP improved interval sharpness and maintained theoretical coverage under
distributional uncertainty.

For volatility forecasting, Chernozhukov e Wüthrich (2021) used CP
to construct predictive sets based on volatility-conditioned stock returns,
demonstrating improved performance compared to traditional econometric
models.

Romano, Sesia e Candes (2022) revisited CP in financial applications,
providing theoretical arguments and experimental evidence in favor of its adop-
tion in asset price prediction tasks. The authors emphasized the importance
of designing informative nonconformity scoring functions (NCS) to obtain ef-
ficient and narrow predictive intervals, highlighting this as a central challenge
in practical implementations.

These foundational and recent advancements underscore CP’s growing
relevance in finance, particularly for calibrating machine learning models and
managing predictive uncertainty in volatile or non-stationary environments.

Further discussion and detailed reviews of calibration techniques, includ-
ing CP, are available in Appendix A.2.2.



3
Methodology

This chapter presents the proposed methodology and outlines the ratio-
nale behind selecting and excluding specific techniques for asset price predic-
tion (APP). We adopt a hybrid strategy inspired by the "melting pot" phi-
losophy advocated by Tibshirani e Hastie (2021) and Romano (2022), which
encourages the integration of complementary models and paradigms.

Figure 3.1: Illustration of our multi-model ensemble pipeline
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Figure 3.1 illustrates the integrated architecture of our proposed ensem-
ble, which guides our experimental design, combining three methodological
pillars as the following layers:

– Machine Learning Layer (MLL) - (in blue)

– Conformal Prediction Layer (CPL) - (in yellow)

– Heuristic Rules Layer (HRL) - (in green)

Figure 3.1 illustrates the three architectural layers and the sequential
flow of eight key steps, as detailed below:

1. Training: This is a standard task for any machine learning (ML)
model, involving no modifications to the fitting process. The model is
trained using the training data slice, while the validation data slice
monitors generalization performance and avoids overfitting. Each asset
is associated with a distinct input dataset, allowing the models to learn
asset-specific patterns and dynamics independently. The input dataset
is split into four slices for training (train), validation (valid), calibration
(calib), and testing (test). The proportion of them are 70%, 10%, 10%,
and 10%, respectively.

2. Categorization: This step is specific to the Mondrian Conformal Pre-
diction (MCP) method. It utilizes the validation dataset to fit the struc-
tural partitions the Mondrian framework requires, effectively categorizing
the input space. The term fit follows the scikit-learn API convention.

3. Calibration: In this step, both CP methods utilize the calibration
data slice to determine the nonconformity scores required for interval
generation. The quantile-based calibration is performed at a confidence
level of 1 − α, where α = 5%.

4. Test Ingestion: This is a standard step in predictive modeling work-
flows, where the ML models ingest the test data slice in preparation for
generating predictions.

5. Initial Prediction: At this stage, the ML models produce point predic-
tions for the test data. This step is performed independently of the CP
mechanisms and represents the raw, uncalibrated output.

6. CPI Generation: Specific to the conformal prediction framework, this
step generates the Calibrated Prediction Intervals (CPI). It leverages the
initial point predictions from Step 5 along with the categorization and
calibration from Steps 2 and 3, respectively.
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7. Intersection Set: This step initiates the proposed heuristic. It com-
putes the intersection of all CPI intervals produced by the various CP
techniques. The resulting interval tends to be narrower—or potentially
null—as in any classical set intersection, as illustrated in Figures 3.2a
and 3.2b.

8. Final Prediction: This is the concluding step of the proposed heuristic.
Based on the interval produced by the intersection, two distinct ensemble
strategies are applied:

– Ensemble-M (Median-based): Computes the final prediction by
calculating the median of the lower and upper bounds of all CPI
intervals obtained in the previous step.

– Ensemble-R (Random-based): Samples the final prediction uni-
formly at random from within the interval produced by the Inter-
section Set step.

3.1
ML Layer

This layer addresses the task of asset price prediction (APP), the close,
through the use of three machine learning models, each representing a distinct
class of modeling approaches, and different architectural paradigms:

– Long Short-Term Memory (LSTM)

– Support Vector Machine (SVM)

– Extreme Gradient Boosting (XGBoost)

Support Vector Machine (SVM), Long Short-Term Memory (LSTM),
and eXtreme Gradient Boosting (XGBoost). This diversity ensures we capture
temporal dependencies, non-linear patterns, and structural flexibility across
different learning paradigms. For the SVM model, the configuration included
a regularization parameter C = 100.0, an epsilon-tube of 0.01 for regression
margin, a radial basis function (RBF) kernel, and a kernel coefficient γ = 0.001.

The Support Vector Machine was introduced by Cortes e Vapnik (1995a)
as a robust model for classification and regression tasks. We adopt the
Support Vector Regression (SVR) variant for our use case, which is well-suited
for modeling noisy, non-linear relationships commonly observed in financial
time series. Its kernel-based projection into high-dimensional spaces enables
the model to identify optimal hyperplanes that generalize well, mitigating
overfitting and improving forecast stability.
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The Long Short-Term Memory network, developed by Hochreiter e
Schmidhuber (1997), is a recurrent neural network (RNN) designed to learn
long-term dependencies in sequential data. Its architecture—featuring input,
forget, and output gates—effectively addresses the vanishing gradient problem
and is particularly useful for time series tasks involving complex temporal
dynamics. LSTM has become a benchmark model in financial contexts because
it can model non-stationary and volatile data sequences. Our implementation
follows best practices in the literature, leveraging LSTM’s memory capabilities
to forecast future asset values. The LSTM model was configured with a learning
rate 0.001, trained for a single epoch, and employed two hidden layers of 50
units each. It used a batch size of 1 and an early stopping threshold of 15
epochs. The optimizer was set to stochastic gradient descent (SGD), and the
loss function was Quantile Loss with quantile levels of 0.1, 0.5, and 0.9. The
quantile error tolerance for conformal calibration was fixed at 0.05. Evaluation
metrics included MAE, RMSE, MAPE, and SMAPE.

XGBoost, introduced by Chen e Guestrin (2016b), is a tree-based en-
semble method that builds upon gradient boosting principles. Its scalability,
sparsity-aware optimization, and ability to capture intricate data interactions
make it highly effective for structured data. XGBoost has demonstrated supe-
rior performance in a range of predictive modeling competitions. Januschowski
et al. (2022) confirmed the dominance of Gradient Boosted Decision Trees
(GBDT) in international forecasting challenges, such as the M5 Competition,
highlighting their suitability for time-series forecasting. The XGBoost model
used a learning rate of 0.3, a maximum depth of 10, and 500 estimators. Ad-
ditional hyperparameters included a minimum child weight of 1, L2 regular-
ization λ set to 5, early stopping with a patience of 30 iterations, and full
feature and row sampling (i.e., both ‘colsample_bytree‘ and ‘subsample‘ set
to 1.0). Like LSTM, it used Quantile Loss at levels 0.1, 0.5, and 0.9 with an
error tolerance of 0.05, and evaluation based on MAE, RMSE, MAPE, and
SMAPE.

These models were selected not only for their strengths but also for their
complementary characteristics. Together, they enable a diversified modeling
strategy to enhance the robustness and accuracy of our asset price prediction
ensemble.

This layer ingests only the training (train) and validation (valid) subsets
of the data to perform model fitting.

Additional implementation details for each model can be found in the
Appendices: A.1.4 for SVM, A.1.2 for LSTM, and A.1.6 for XGBoost.
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3.2
CP Layer

To address the poor calibration of machine learning models in asset price
prediction (APP), we adopt the Conformal Prediction (CP) framework in-
troduced by Gammerman, Vovk e Vapnik (1998). CP offers model-agnostic,
non-asymptotic prediction intervals with formal probabilistic guarantees, mak-
ing it well-suited for financial applications where uncertainty quantification is
critical.

Modern ML models typically yield point predictions, called Scored Pre-
diction Results (SPR), which are often poorly calibrated and lack confidence
bounds. To rectify this, we calibrate the original asset price prediction (OAPP)
from each model using CP, producing Conformal Prediction Intervals (CPI)
that represent calibrated asset price predictions (CAPP). These intervals quan-
tify prediction uncertainty as a bounded range (multi-point set) or, in rare
cases, an empty set.

We utilize two CP-based techniques to address the calibration as follows:

– Conformalized Quantile Regression (CQR)

– Mondrian Conformal Prediction (MCP)

The CQR proposed by Romano, Patterson e Candes (2019) combines
quantile regression with CP guarantees, while Mondrian Conformal Prediction
(MCP), introduced by Vovk, Papadopoulos e Gammerman (2005), is tailored
for non-exchangeable data distributions. Both methods are used independently
to calibrate the SPR output from each ML model.

Our three machine learning models—XGBoost, LSTM, and
SVM—predict close price values (CPVs) for two distinct assets, resulting
in six CPV predictions. These predictions are then individually calibrated
using CQR and MCP, resulting in 12 CPI results (six per CP method).

The quality of a CPI is assessed based on two efficiency criteria: (i)
confidence, which increases as the CPI becomes narrower; and (ii) credibility,
representing the belief that the actual value falls within the predicted interval.

While CP offers strong theoretical guarantees, its application requires
a hold-out calibration set, which reduces the data available for training
the model. Despite this limitation, the interpretability and reliability of the
resulting CPI make CP a valuable component of our prediction pipeline.

This layer ingests only the validation (valid) and calibration (calib)
subsets of the data to perform model fitting. The Mondrian Conformal
Prediction (MCP) method exclusively uses the validation dataset. In this
context, the validation data is not used for performance validation, but rather
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to fit and categorize the Mondrian structure, enabling conditional calibration
based on data attributes.

3.3
HR Layer

This study incorporates heuristic rules (HR) through two complementary
strategies: domain-informed modeling and randomized interval sampling. The
first strategy draws from empirical trading practices, where experienced traders
recognize that asset prices are more likely to traverse a price range during a
trading session rather than settle at an exact target value. Based on this insight,
we implement a heuristic rule that prioritizes the likelihood of intraday price
occurrences over precise closing prices.

The second strategy introduces stochastic diversity into the prediction
process by sampling uniformly within the bounds of the Conformal Prediction
Interval (CPI), which is produced by conformal calibration. This randomiza-
tion technique generates plausible point estimates inside the CPI, enabling the
construction of diversified and statistically grounded predictions.

We employ a heterogeneous ensemble approach to enhance forecasting
accuracy, combining outputs from three distinct machine learning models:
XGBoost, LSTM, and SVM. Rather than relying on complex meta-modeling
such as stacking, we use a naive ensemble strategy based on arithmetic
aggregation. While stacking is often beneficial for classification tasks, it offers
limited advantages for regression problems, which is this study’s focus.

Each base learner’s output is calibrated using Conformal Prediction (CP)
methods, resulting in six CPIs—three models applied to each of two price
types (high and low). We apply a set intersection operation across the CPIs
to consolidate these intervals into a single prediction. This yields a narrower
interval, referred to as the Subset Conformal Prediction Interval (Subset CPI),
which reduces uncertainty and narrows the range of plausible outcomes.

Finally, we apply a uniform random sampling over the Subset-CPI to
select the final point prediction. This technique is inspired by the randomiza-
tion advantage explored by Gupta et. al. (2020) , who demonstrated that ran-
domized selection can improve performance in online decision-making settings.
Although our approach does not provide additional probabilistic guarantees
beyond those offered by CP, it effectively combines robustness and simplicity
to deliver high-quality predictive outcomes.

To enhance the reliability of our ensemble predictions, we adopt a set
intersection strategy applied to the Conformal Prediction Intervals (CPI)
produced by each of the three base Machine Learning (ML) models. This
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procedure generates a refined interval, called the Subset Conformal Prediction
Interval (Subset CPI), a narrower subset of the original CPI outputs. The goal
is to improve prediction precision by minimizing both bias and covariance.

Unlike traditional approaches such as set union—which may inflate the
prediction range—the intersection technique is designed to restrict it, resulting
in sharper and more focused estimates. Although this method does not
maintain the formal probabilistic guarantees provided by standard Conformal
Prediction (CP) frameworks, it offers a pragmatic and empirically grounded
calibration refinement.
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(a) Intersection of the Conformal Prediction Interval (CPI).

(b) Possible Scenarios Cases of the Intersection of the Conformal
Prediction Interval (CPI).

Figure 3.2: Intersection of CPI.

Figure 3.2a depicts the critical regions under consideration. The upper-
bound corresponds to the high price value (HPV), while the lower-bound
pertains to the close price value (CPV). This stratification conceptually
parallels Bollinger Bands (BOLLINGER, 2002), which dynamically model
market volatility using statistical boundaries.

In the diagram, CPI results from the three ML models, denoted as M1,
M2, and M3, are shown in gray. Their intersections form two Subset-CPIs: one
for HPV and one for CPV, indicated by green dashed lines. For contextual
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reference, blue dashed lines indicate set unions, although this operation has
not been adopted in our method due to its tendency to widen the predictive
range.

Visual cues such as continuous and dashed curves are added to support
interpretability. These highlight the last correct close price (LCCP), the open
price value (OPV), and prediction flow, though they are not directly used in
the CPI computation.

When CPI sets are disjoint and fail to intersect, we default to selecting
the median CPI as the Subset-CPI.

Figure 3.2b outlines three scenarios: complete intersection, partial inter-
section, and empty set fallback. This intersection mechanism provides a robust
strategy for synthesizing multiple conformal predictions into a single, statisti-
cally meaningful interval, despite the absence of formal guarantees.

Overall, this methodology allows us to empirically enhance asset price
prediction by balancing the trade-off between interval width and coverage
confidence, with results evaluated across HPV and CPV boundaries.

In the context of stock market prediction, a heuristic approach considers
a prediction successful if the actual price trajectory intersects the predicted
value at any point during the trading session, regardless of whether it crosses
from above or below. This perspective aligns with practical trading scenarios
where an order is deemed executed if the market price reaches the specified
level, even if it does not close at that level.

While this heuristic is prevalent in trading practices, it is not typically
incorporated into formal error metrics within predictive models. Instead, it
serves as an operational criterion for evaluating the effectiveness of predictions
in real-world trading environments.

Although this heuristic is widely recognized among practitioners, it is not
often discussed in the academic literature. Therefore, while it offers valuable
practical insights, it lacks formal theoretical backing in scholarly research.

3.4
Ensemble

As illustrated in Figure 3.1 and detailed in Section 3, both proposed
ensemble methods share identical processes in the Machine Learning (ML)
and Conformal Prediction (CP) layers. The distinction lies in the Heuristic
Rule (HR) layer: Ensemble-M selects the final predicted value using the median
statistic, whereas Ensemble-R selects the value through a random choice within
the calibrated prediction interval.
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In both ensembles, this selection is performed after applying a common
Intersection Set (IS), Figures 3.2a and 3.2b, procedure. This IS operation,
executed within the HR Layer, refines the prediction interval by computing
the intersection of all Conformal Prediction Intervals (CPI) produced by each
CP method. The resulting narrowed interval enhances the precision of the
final prediction while preserving the diversity introduced by the ensemble
structure.

3.5
Analysis

This section outlines the methodology used to evaluate the performance
of Asset Price Prediction (APP) and Conformal Prediction Intervals (CPI)
across a range of experimental scenarios. These scenarios are generated from
combinations of four methodological components:

– Data Benchmark: Two datasets derived from different stock market
indices;

– Machine Learning (ML): Three predictive models—LSTM Hochreiter
e Schmidhuber (1997), SVM Cortes e Vapnik (1995a), and XGBoost
Chen e Guestrin (2016b);

– Conformal Prediction (CP): Two CP calibration strategies—CQR
Romano, Patterson e Candes (2019) and Mondrian CP Vovk, Pa-
padopoulos e Gammerman (2005);

– Heuristic Rule (HR): Two proposed ensemble methods named
Ensemble-M and Ensemble-R.

The primary focus is to evaluate how conformal prediction (CP) meth-
ods improve the predictive performance of baseline machine learning (ML)
models. To account for market dynamics, the experimental setup incorporates
directional trends—Uptrend and Downtrend—and computes prediction error
ϵ using the Euclidean norm, as ϵ = ||y − ŷ||2. For upward trends, the error is
||yhigh − ŷhigh||2, and for downward trends, it becomes ||ylow − ŷlow||2.

We evaluate the ML model outputs using two standard metrics: Mean
Absolute Percentage Error (MAPE) and Symmetric MAPE (sMAPE). The
analysis compares:

– The three base ML models (LSTM, SVM, and XGBoost) applied to two
different assets;

– Two ensemble strategies (Ensemble-M and Ensemble-R) applied to the
same assets.
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This results in a total of 10 scenarios: (3 ML models+2 ensembles)×2 assets =
10.

To evaluate the quality of the CP-calibrated prediction intervals, we use:

– Coverage percentage: measuring how often the true value falls within the
predicted interval;

– Interval size: average and median width of the CPI, reflecting informa-
tiveness and precision.

We compare two CP techniques (CQR and Mondrian CP) and the two
ensemble strategies (Ensemble-M and Ensemble-R), each applied to two ML
models over two assets, yielding 16 scenarios: (2 CP methods+2 ensembles)×
2 ML models × 2 assets = 16.

While we use common benchmarks and widely recognized algorithms,
our goal is not to rely on external benchmarking. Instead, we perform internal
comparisons among baseline CP methods and proposed ensemble variants to
provide a replicable foundation for future research.

Additionally, we introduce a secondary heuristic evaluation criterion:
a prediction is considered successful if the real price crosses the predicted
value during the time window, regardless of the direction. Although this
heuristic is not reflected in MAPE or sMAPE metrics, its practical relevance
is demonstrated through color-coded visualizations across scenarios.



4
Experiment

This section describes the experimental setup for evaluating asset price
prediction and conformal prediction calibration techniques. All preprocessing
procedures—such as data quality checks, normalization, and alignment—are
detailed in the Appendix.

The data partitioning ensures fair and reproducible model evaluation,
each dataset is partitioned into four disjoint subsets such as 70% for training,
10% for validation (used for the ML models and the Nondrian CP technique,
10% for conformal calibration, and 10% for testing. This configuration enables
the separation of tasks: model fitting (train), hyperparameter tuning (valid),
calibration (calib), and final evaluation (test).

As the forecasting Strategy, we adopt a one-step-ahead prediction ap-
proach using a backward time window of five trading days. This decision is
based on empirical evidence suggesting that, in short-term trading, the most
predictive influence arises from the prior five business days. Influence rapidly
decays beyond the 5-day mark and is often negligible by the 14th or 15th day,
as noted in Suleiman (2023). This is consistent with financial trading heuristics
and academic observations in time series forecasting.

We proceed with a minimal feature set to isolate the performance of con-
formal prediction techniques, and we constrain the feature space to a minimal
configuration. This reduces confounding effects from extensive feature engi-
neering, ensuring that performance improvements can be attributed primarily
to the calibration strategy rather than feature complexity.

Tree-based models such as XGBoost are known to perform poorly when
extrapolating beyond the training data range (LUNDBERG et al., 2020). To
address this, we applied a value-shifting preprocessing step to align the distri-
butions of all input subsets with the training set, improving prediction stability
under distributional shifts. This procedure is detailed in the subsequent Sub-
section 4.1.
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(a) SPX without any shifting.

(b) SPX with shifting.

Figure 4.1: SPX dataset with and without shifting.

As the visual diagnostic, represented by a distinct colors, Figures 4.1a
and 4.2a shows the original unaligned data inputs, while Figures 4.1b and
4.2b presents the post-shifted data input. This transformation ensures that
each subset resides within a known operational domain, improving prediction
consistency.

(a) BVSP without any shifting.

(b) BSVP with shifting.

Figure 4.2: BVSP dataset with and without shifting.
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Both indices, the BVSP and the SPX, exhibit similar movements in
their values, suggesting that these two stock markets are subtly correlated
and similarly exposed to global influences that drive periods of depreciation
and appreciation.

All model hyperparameters follow best practices established by previous
literature on stock market forecasting, ensuring methodological rigor and
alignment with validated configurations.

4.1
ML Layer

In this subsection, we evaluate the predictive performance of three
distinct machine learning (ML) models applied to close price value (CPV)
forecasting. Each model is trained and tested using historical asset price data
from two benchmark financial indices: the S&P 500 (SPX) and the Bovespa
Index (IBOV). The primary objective at this stage is to generate baseline
predictions without conformal calibration, which will subsequently serve as a
comparative benchmark for assessing the contribution of Conformal Prediction
techniques to model performance and uncertainty quantification.

We adopt a one-step-ahead forecasting strategy, as this experiment does
not require forecasts extending beyond a single time step into the future. A
backward time window of five trading days is used as input for the models,
based on empirical evidence suggesting that incorporating additional historical
steps beyond this threshold yields diminishing predictive returns (Suleiman,
2023).

The data preprocessing involved comprehensive diagnostic assessments
and corrective treatments to ensure data quality and consistency. For the sake
of brevity, the detailed procedures are not presented in this work.

The selected machine learning models represent different methodological
paradigms, each offering a unique approach to modeling the complex dynamics
of financial time series. Specifically, we employ: (i) Long Short-Term Memory
(LSTM), a recurrent neural network architecture designed to capture temporal
dependencies; (ii) Support Vector Machine (SVM), a kernel-based model
capable of handling non-linearities in multi-dimensional feature spaces; and
(iii) eXtreme Gradient Boosting (XGBoost), a scalable decision-tree-based
ensemble algorithm well-regarded for its high predictive accuracy.

Given the architectural and theoretical diversity among these models,
we anticipate that at least one will effectively capture relevant patterns in the
data, providing a robust predictive foundation. This diversity is also essential
for evaluating the robustness and generalizability of the conformal calibration
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procedure between different modeling approaches.
To ensure fair and consistent evaluation, the dataset is partitioned into

four disjoint subsets: 70% for training, 10% for validation, 10% for conformal
calibration, and 10% for testing. This division separates the processes of model
fitting and hyperparameter optimization, prediction calibration, and final
performance assessment. The introduction of a dedicated calibration subset
is specific to the Conformal Prediction (CP) technique, while the remaining
factions follow conventional practices commonly employed in Machine Learning
(ML) applications.

All models were configured using hyperparameters informed by empirical
findings from prior academic studies specifically focused on stock market
prediction, such as Gandhmal e Patel (2019), Patel et al. (2015), ensuring
alignment with best practices in the literature and maintaining methodological
rigor and practical relevance.

Notably, while it is widely recognized that the performance of Conformal
Prediction (CP) methods strongly depends on the predictive quality of the
underlying base models (ZECCHIN et al., 2024; TENG et al., 2023), we delib-
erately constrained the set of features to a minimal configuration. This design
choice enables a more focused evaluation of the CP calibration techniques by
isolating their effects from the influence of complex feature engineering.

Although standard normalization was applied across all input subsets, we
observed instability in the predictive performance of the XGBoost model when
values in the validation, calibration, or test sets exceeded the numerical range
encountered during training. The occurrence outside the training range is a
characteristic of stock market behavior during specific time slots, observed in
the exchanges analyzed in this study and reported in other markets worldwide.
This behavior reflects a well-documented limitation of tree-based models:
their poor ability to extrapolate when handling out-of-domain data. Unlike
parametric models, decision tree-based algorithms partition the input space
solely according to the distribution observed during training, lacking the
capacity to generalize to unseen regions in the feature space. Consequently,
any change in the input distribution, a common phenomenon in time series
prediction, can lead to a degradation in predictive accuracy (LUNDBERG et
al., 2020).

A preprocessing step was introduced before normalization involving a
value-shifting technique to mitigate the extrapolation issue observed in the
XGBoost model. Specifically, the validation, calibration, and test sets were
transformed to align their respective maximum values with the maximum
value observed in the training set. This domain alignment ensured that all
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input subsets fell within a similar numerical range, reducing the likelihood of
the model encountering out-of-distribution inputs. As a result, this procedure
improved consistency across data partitions and enhanced the stability and
robustness of XGBoost predictions under distributional shifts.

All figures presented in the following subsections show graphical results
derived exclusively from the test subset.
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The LSTM model demonstrated slower training and inference times than
the other machine learning models (SVM and XGBoost), primarily due to
its sequential architecture and higher computational complexity. However, it
performed better than the XGBoost on the training data, capturing temporal
dependencies more effectively. While beneficial for modeling complex patterns,
this higher fitting capacity also increases the risk of overfitting, particularly in
financial time series where noise and nonstationarity are prevalent. As a result,
additional caution must be exercised when evaluating LSTM performance,
ensuring that its predictive gains are not merely artifacts of memorizing
training dynamics.

(a) BVSP Real vs Predicted. (b) SPX Real vs Predicted.

Figure 4.3: LSTM Prediction over the test subset.

As illustrated in Figures 4.3a and 4.3b, the SPX index exhibits a more
monotonic, stable, and trend-oriented behavior compared to BVSP. This
suggests that the Brazilian market (BVSP) is more volatile and often operates
in a sideways (non-trending) regime.

The Support Vector Machine (SVM) model is straightforward to con-
figure, requiring only a limited number of hyperparameters. Its simplicity and
well-established theoretical foundation make it an attractive choice for baseline
modeling tasks. In our experiments, SVM demonstrated high computational ef-
ficiency, particularly well suited for relatively short time series datasets. Given
that the financial time series used in this study, based on daily intervals over
the past 24 years, comprised slightly more than 6,200 observations, SVM could
train and produce predictions with minimal computational overhead. This ef-
ficiency, combined with its compatibility with the scikit-learn framework,
contributed to its selection as a replacement for the initially tested Neural
Prophet (NProphet) model, which does not follow a scikit-learn-like struc-
ture.
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(a) BVSP Real vs Predicted. (b) SPX Real vs Predicted.

Figure 4.4: SVM Prediction over the test subset.

As illustrated in Figures 4.4a and 4.4b, the SVM model demonstrates
superior predictive performance, with the predicted values (in red) closely
tracking and visually overlapping the actual values (in blue). This high level
of alignment causes the red prediction line to dominate the plot, making the
blue line of the actual values difficult to distinguish. In contrast, the LSTM
model, shown in Figures 4.3a and 4.3b, exhibits a visibly more significant
divergence between predicted and true values, the blue line remaining visible.
These observations suggest that the SVM achieves higher prediction accuracy
and a better fit for our stock market dataset compared to the LSTM model.

XGBoost is widely recognized for its computational efficiency and ability
to deliver strong predictive performance with minimal data preprocessing. Its
tree-based architecture, enhanced by gradients, enables it to robustly handle
non-linear relationships and missing values, making it a popular choice for
forecasting financial time series (CHEN; GUESTRIN, 2016a).

However, a notable limitation was observed during experimentation: XG-
Boost exhibited sensitivity to domain changes between training and evaluation
datasets. Specifically, when the calibration and test datasets contained feature
values outside the numerical range encountered during training and validation,
such as when training values fell within a bounded interval but calibration and
test values exceeded those bounds, XGBoost struggled to generalize effectively.
This behavior stems from the fact that decision tree-based models, including
XGBoost, partition the feature space based on thresholds derived from the
training data and are inherently limited in their ability to extrapolate beyond
observed regions (LUNDBERG et al., 2020).

As mentioned in Section 4.1, this issue is mitigated by applying the value-
shifting technique.
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(a) BVSP Real vs Predicted. (b) SPX Real vs Predicted.

Figure 4.5: XGBoostPrediction over the test subset.

As illustrated in Figures 4.5a and 4.5b, the XGBoost model demon-
strates satisfactory predictive performance throughout most of the time series,
with a notable decline toward the end. This behavior is particularly evident
in the SPX dataset, where the model’s predictive accuracy deteriorates as the
series approaches higher value levels. This degradation may be attributed to
the limitations of extrapolation previously discussed at the beginning of Sec-
tion 4.1. Interestingly, the loss of predictive power coincides with data points
reaching values beyond those encountered during training. In addition to its
predictive performance, XGBoost is also characterized by fast training execu-
tion, comparable to that of the SVM model.

4.2
CP Layer

This section applies two Conformal Prediction (CP) tech-
niques—Conformalized Quantile Regression (CQR) and Mondrian Conformal
Prediction (MCP)—to calibrate machine learning models trained for asset
price prediction. These methods produce statistically valid prediction intervals
(PIs) for Close Price Values (CPVs), enabling uncertainty quantification and
informed risk management.

Both techniques are evaluated on the IBOV and SPX indices to ensure
methodological consistency. The analysis investigates each method’s ability
to enhance predictive robustness and empirical coverage, contributing to the
practical reliability of CP in real-market scenarios.

Conformalized Quantile Regression (CQR) is used to construct
distribution-free, feature-conditional prediction intervals by leveraging quan-
tile regression (QR) within the conformal prediction (CP) framework. The
procedure begins by training a model to estimate the conditional lower and
upper quantiles of the response variable at a pre-specified miscoverage level.
These quantile estimates are then calibrated using a non-conformity score
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(NCS), typically defined as the difference between the predicted interval and
the observed value, computed over a held-out calibration set.

Under the assumption of data exchangeability, this calibration step guar-
antees marginal coverage of a finite sample without relying on distributional
assumptions. CQR thus combines the flexibility of QR, which adapts to het-
eroscedastic and non-linear relationships, with the rigorous probabilistic guar-
antees of CP, making it well suited for uncertainty quantification in complex
forecasting tasks (ROMANO; PATTERSON; CANDES, 2019).

(a) LSTM - BVSP. (b) SVM - BVSP. (c) XGBoost - BVSP.

Figure 4.6: CQR: Conformal Results over the BVSP dataset.

Figures 4.6b and 4.6c illustrate the Conformal Prediction Interval (CPI)
bounds (in gray) constructed using CQR for two different machine learning
models, SVM and XGBoost, applied to the same dataset (BVSP). The pre-
dicted values are colored red, while the actual ones are colored blue. This com-
parison highlights the CP calibration’s sensitivity to the underlying model’s
predictive quality. In particular, in the final portion of the time series, the
XGBoost model decreases the predictive precision, as evidenced by signifi-
cantly wider CPI bands. This outcome reflects the dependence of conformal
prediction on the reliability of the base model: poorer predictive performance
leads to greater uncertainty and, consequently, broader intervals (ROMANO;
PATTERSON; CANDES, 2019).

(a) LSTM - SPX. (b) SVM - SPX. (c) XGBoost - SPX.

Figure 4.7: CQR: Conformal Results over the SPX dataset.

Mondrian Conformal Prediction (Mondrian CP) extends the standard
CP framework by incorporating localized calibration based on partitions of
the input space. Instead of applying a single global conformity score (CS)
throughout the entire dataset, Mondrian CP conditions the nonconformity
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scores (NCS) within distinct subsets, often defined by discrete variables or
clustering strategies, allowing for heterogeneity in the data. This stratified ap-
proach improves the efficiency and informativeness of the resulting intervals,
particularly in domains like finance, where market dynamics can vary signifi-
cantly between different regimes or asset types. By capturing such contextual
variability, Mondrian CP offers more precise and relevant prediction intervals
tailored to the specific behavior of each data segment (VOVK; GAMMER-
MAN; SHAFER, 2005b).

(a) LSTM - BSVP. (b) SVM - BVSP. (c) XGBoost - BVSP.

Figure 4.8: Mondrial CP: Conformal Results over the BVSP dataset.

Figures 4.8a, 4.8b, and 4.8c illustrate that the Mondrian Conformal Pre-
diction (MCP) method struggled to maintain a reliable interval calibration in
the same critical region where XGBoost previously failed. This convergence of
errors across multiple models suggests the presence of a structurally challeng-
ing or chaotic regime within that time slot, which warrants deeper investigation
in future studies.

(a) LSTM - SPX. (b) SVM - SPX. (c) XGBoost - SPX.

Figure 4.9: Mondrial CP: Conformal Results over the SPX dataset.

Figures 4.9a, 4.9b, and 4.9c demonstrate representative results of the
experiments using Mondrian CP.

4.3
Ensemble Method

This section presents two ensemble strategies, Ensemble-M and
Ensemble-R, developed to enhance the calibration of predictive uncertainty
in financial time series forecasting by employing Conformal Prediction (CP)
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techniques. Each ensemble strategy operates on a set of six predictive inter-
vals, generated by applying two CP methodologies—Conformalized Quantile
Regression (CQR) and Mondrian Conformal Prediction (Mondrian-CP)—to
the outputs of three distinct machine learning models: Long Short-Term
Memory (LSTM), Support Vector Machines (SVM), and eXtreme Gradient
Boosting (XGBoost). Both ensemble strategies utilize a standard mechanism
for interval aggregation, which involves computing the pointwise numerical
intersection of the six resulting Conformal Prediction Intervals (CPIs). This
intersection seeks to retain only those regions where the predictions from all
models and calibration methods agree, resulting in a more robust and conser-
vative predictive interval. The CPIs, by design, are valid and distribution-free,
providing rigorous uncertainty quantification under minimal assumptions.
The Ensemble-M strategy exemplifies this approach by aggregating the CPIs
for each time step and producing a consensus region of confidence. This
intersection-based mechanism inherently filters out noisy or extreme intervals
influenced by outlier model behavior, producing narrower and more reliable
bands. The underlying rationale is to leverage the strengths of model diversity
while mitigating individual weaknesses, making a predictive region that is both
empirically supported and statistically cautious. Intersection-based ensemble
strategies offer substantial advantages in volatile financial environments, where
achieving precision and reliability is critical for risk-sensitive decision-making.
By aggregating conformal prediction intervals (CPIs) across diverse models
and calibration schemes, such strategies enhance the robustness of predictive
inference while mitigating the risk of overconfident or biased estimates. The
theoretical and empirical benefits of ensemble conformal predictors are well-
supported in recent literature. For example, Vovk et al. (2022) demonstrates
that ensemble approaches can improve conditional coverage and sharpen
predictive intervals, especially under model uncertainty and distributional
shifts, conditions commonly encountered in financial time series forecasting.

(a) BVSP without zoom. (b) BVSP with zoom on the last 10%.

Figure 4.10: Intersection of six BVSP’s CPI.
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Figure 4.10a presents the results of the initial ensemble strategy, denoted
as Ensemble-M, applied to each target financial asset. This strategy combines
multiple Conformal Prediction Intervals (CPIs) derived from calibrated out-
puts of different machine learning (ML) models. Figure 4.10b provides a mag-
nified view of the final 10% of the test subset, allowing for a more detailed
examination of prediction interval behavior during this evaluation window.

(a) SPX without zoom. (b) SPX with zoom on the last 10%.

Figure 4.11: Intersection of six SPX’s CPI.

Figure 4.11 exhibits analogous behavior to that observed in Figure 4.10.
To avoid redundancy, their detailed explanation is omitted here. The only
notable distinction lies in the relative smoothness of the SPX Conformal
Prediction Intervals (CPIs), which exhibit lower volatility compared to those
obtained for the BVSP asset.

The primary distinction between Ensemble-M and Ensemble-R is the
strategy used to extract the final point estimate from the unified interval.
While Ensemble-M selects the median value within the intersected interval,
Ensemble-R randomly samples a value from the same region. The subsequent
sections further discuss the rationale and implications of these selection crite-
ria.

4.3.1
Ensemble-M

The distinguishing feature of Ensemble-M is its selection strategy for
the final point prediction. Specifically, the ensemble computes a representative
point based on the median of the interval bounds, hence the character "M " from
the name “Ensemble-M”. To ensure robustness against outliers and extreme
values, the median is calculated through a filtering process based on the
interquartile range (IQR). This involves aggregating all upper and lower bounds
from the six CPIs and retaining only those values that fall within the IQR,
defined between the first (Q1 ) and third (Q3 ) quartiles. The final prediction is
then obtained by computing the median of these filtered values. This strategy
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aims to balance the influence of all models while reducing sensitivity to
anomalous interval bounds, thereby producing a stable and central prediction
within the collective uncertainty space. Figures 4.10 and 4.11 illustrate the
practical application of this method. At each time step, a point estimate
is derived from the median of the CPI bounds, producing a consistent and
resilient central prediction across the test dataset.

4.3.2
Ensemble-R

The distinguishing feature of the Ensemble-R strategy lies in the method
used to select the final point prediction within the aggregated Conformal
Prediction Interval (CPI). Instead of relying on a central tendency measure
such as the median, as in Ensemble-M, the Ensemble-R method selects a single
point randomly from a uniform distribution defined over the bounds of the
intersected CPI. This approach reflects a probabilistic selection mechanism,
where each value within the interval has equal likelihood of being chosen, hence
the "R" (random) designation in its name. This random selection technique
aligns with principles from game theory, particularly under the assumption of
a fully informed adversarial environment. In their seminal work, von Neumann
et. al. (1944) demonstrated that, in such adversarial settings, randomized
strategies can serve as optimal countermeasures to prevent deterministic
predictability. By adopting a stochastic final prediction, Ensemble-R enhances
robustness and avoids overfitting to deterministic strategies that may be
exploitable in volatile or manipulated financial environments. Figures 4.10
and 4.11 also illustrate the practical implementation of this strategy. At
each prediction time step, a point is sampled from a uniform distribution
within the corresponding CPI. This ensures a realistic representation of intra-
interval variability and aligns the output with the probabilistic interpretation
of conformal prediction. The randomized final prediction provides a more
nuanced tool for financial decision-making, especially under uncertain and
dynamic trading conditions.

4.4
Heuristic

To more accurately capture realistic intraday trading dynamics, we adopt
a heuristic that evaluates prediction success based on intra-session price be-
havior, rather than relying exclusively on proximity to the end-of-day closing
price. Specifically, a prediction is considered successful if the actual market
price crosses the predicted point at any time during the trading session, irre-
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spective of the direction of the crossing. This approach, termed the crossing-
based heuristic (CBH), is rooted in practical trading logic, particularly the
operation of limit orders, stop-loss triggers, and other threshold-based execu-
tion mechanisms commonly utilized by both institutional and retail traders.
Such mechanisms activate when a specified price level is touched, not necessar-
ily maintained, thereby making the moment of crossing more relevant than the
closing position. The CBH is especially pertinent for high-liquidity, high-value
financial instruments, where execution is typically feasible throughout the ses-
sion. Although this heuristic is a practical convention in real-world trading,
it has received limited formal treatment in the academic literature. Nonethe-
less, its foundations align with empirical findings on intraday price formation
and execution timing. For example, Heston, Korajczyk e Sadka (2010) ex-
amines systematic patterns in intraday return behavior across a cross-section
of stocks and supports using within-session price dynamics as a critical de-
terminant of market activity. By adopting the CBH, we incorporate a more
execution-aligned assessment of prediction quality, which is essential for eval-
uating model performance in real-time trading applications. Both ensemble
models presented in this work, Ensemble-M and Ensemble-R, implement the
CBH to assess whether a predicted value was practically reachable during the
trading day. For interpretability and visual analysis, a color-coded representa-
tion is employed:

– Green dots denote successful predictions where the asset’s price range
crossed the forecasted price during the session.

– Red dots denote unsuccessful predictions, i.e., the forecasted value was
not touched within the session.

This evaluation metric thus captures statistical accuracy and execution feasi-
bility, a critical consideration for applications in real-time financial forecasting
and decision support.

4.4.1
Ensemble-M

Figure 4.12a presents the prediction results of the Ensemble-M model
applied to the test subset of the BVSP asset, with final point predictions
evaluated according to the crossing-based heuristic (CBH). Figure 4.12b
provides a magnified view of the final 10% of this dataset, allowing for a closer
inspection of prediction performance near the time horizon.
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(a) BVSP without zoom. (b) BVSP with zoom on the Last 10%.

Figure 4.12: Heuristic - Final Result of BVSP using Ensemble-M.

Figures 4.13a and 4.13b exhibit analogous behavior to that observed
in Figure 4.12. To avoid redundancy, their detailed explanation is omitted
here. The only noteworthy distinction is the comparative effectiveness observed
across datasets: the Ensemble-M method achieved a higher incidence of
successful predictions under the crossing-based heuristic (CBH) when applied
to the BVSP dataset than to SPX. This discrepancy may be attributed to
differences in intraday volatility and market microstructure between the two
assets, as suggested by empirical studies on high-frequency trading and return
dynamics (HESTON; KORAJCZYK; SADKA, 2010).

(a) SPX without zoom. (b) SPX with zoom on the Last 10%.

Figure 4.13: Heuristic - Final Result of SPX using Ensemble-M.

4.4.2
Ensemble-R

Figure 4.14a presents the prediction results of the Ensemble-R model
applied to the test set of the BVSP asset, with final point predictions evaluated
according to the crossing-based heuristic (CBH). Figure 4.14b provides a
magnified view of the final 10% of this dataset, allowing for a closer inspection
of prediction performance near the time horizon.
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(a) BVSP without zoom. (b) BVSP with zoom on the Last 10%.

Figure 4.14: Heuristic - Final Result of BVSP using Ensemble-R.

Figures 4.15a and 4.15b exhibit analogous behavior to that observed in
Figure 4.14. To avoid redundancy, their detailed explanation is omitted here.
Consistent with the behavior observed in the Ensemble-M configuration, the
Ensemble-R strategy also demonstrated superior predictive performance on
the BVSP (Bovespa) asset compared to the SPX (S&P 500). This discrepancy
can also be attributed to market-specific characteristics, such as volatility
profiles, liquidity distribution, and regional trading patterns, which influence
the responsiveness of conformal prediction intervals and ensemble decision-
making under uncertainty.

(a) SPX without zoom. (b) SPX with zoom on the Last 10%.

Figure 4.15: Heuristic - Final Result of SPX using Ensemble-R.

4.5
Analysis

This sub-section presents the evaluation methodology adopted to assess
the performance of the predictive and calibration components of the proposed
framework. We use error metrics to quantify machine learning (ML) predic-
tions and the effectiveness of conformal prediction (CP) methods’ effectiveness
in generating reliable prediction intervals. The analysis includes point predic-
tion errors and interval-based evaluations, providing a comprehensive view of
how each component contributes to overall predictive performance and uncer-
tainty quantification.
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4.5.1
Prediction Metric

In stock market forecasting, percentage-based error metrics are generally
considered more appropriate than absolute ones, as they normalize predic-
tive performance across various price scales and market conditions. This study
adopts the Symmetric Mean Absolute Percentage Error (sMAPE) as the prin-
cipal evaluation criterion due to its robustness in treating both under and
over-forecasting symmetrically (MAKRIDAKIS, 1993). sMAPE is particularly
advantageous in financial contexts, as it accounts for bidirectional error dis-
persion, providing a balanced view of model accuracy over volatile time series.
Nonetheless, the use of sMAPE is not without criticism. Goodwin e Lawton
(1999) observed that sMAPE can introduce a subtle asymmetry by penalizing
under-predictions more heavily than over-predictions. In contrast, Hyndman e
Koehler (2006) argued that sMAPE tends to penalize over-forecasting, partic-
ularly in low actual values disproportionately. These divergent viewpoints un-
derscore the need for caution when interpreting sMAPE in edge cases or near-
zero series. To provide a comprehensive performance assessment, we also report
additional error metrics, including Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). While
MAPE is a widely cited metric in forecasting literature, it is unstable when
actual values approach zero, leading to inflated or undefined errors (MYTTE-
NAERE et al., 2016). Consequently, MAPE is not employed as the primary
evaluation metric in this study but is retained for completeness and compara-
bility with prior research.

Across all experiments, as shown in Table 4.1, the individual machine
learning models (LSTM, SVM, and XGBoost) generally outperformed the
proposed ensemble models regarding point prediction accuracy. This outcome
is expected, as the ensemble models are designed not for optimal point
estimation but for generating robust and reliable prediction intervals in the
face of uncertainty.

The performance of the models also varied depending on the dataset.
In particular, models trained and tested on the SPX dataset consistently
achieved lower error rates than those evaluated on the BVSP dataset. This
empirical observation suggests that the SPX market may exhibit more stable
or learnable patterns, whereas the BVSP data appears more volatile or
structurally complex, making it relatively less predictable.
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Table 4.1: Prediction Error Metrics

Model Asset SMAPE ↓ MAPE MAE RMSE

BVSP

SVM 0.8227 0.8229 969.3567 1250.9759
Ensemble-M 0.8696 0.8689 1023.7192 1298.4379
Ensemble-R 0.8804 0.8795 1037.8368 1314.8526

LSTM 1.0175 1.0164 1192.6343 1494.4216
XGBoost 1.1146 1.1104 1331.0614 1791.1499

SPX

SVM 0.7200 0.7204 32.9221 43.7233
Ensemble-M 0.7739 0.7740 35.3620 46.2093
Ensemble-R 0.7908 0.7906 36.1571 46.7404

LSTM 0.8787 0.8797 40.2592 52.5583
XGBoost 1.0247 1.0206 47.1508 59.5157

4.5.2
CPI Metric

This subsection analyzes key metrics related to Conformal Prediction
Intervals (CPIs), which provide calibrated uncertainty estimates for high- and
low-value price forecasts. The evaluation focuses on three core indicators: CPI
Coverage, CPI Mean, and CPI Median.

CPI Coverage represents the proportion of instances where the actual
observed value falls within the predicted interval. It is a measure of reliability,
with higher values indicating that the interval successfully captures the proper
market behavior.

In contrast, CPI Mean and CPI Median quantify the average and
median length of the prediction intervals, respectively. These metrics reflect
the informativeness and precision of the intervals, with shorter intervals being
preferable for practical decision-making.

This study’s ensemble methods aim to reduce the width of the Conformal
Prediction Interval (CPI) by aggregating outputs from multiple conformal
predictors. Although intersection-based strategies may slightly relax the formal
statistical guarantees of individual conformal methods, empirical evidence
indicates that coverage remains robust.

As shown in Table 4.2, both ensemble approaches—Conformalized Quan-
tile Regression (CQR) and Mondrian Conformal Prediction—demonstrate
strong calibration performance, maintaining coverage rates of at least 98%
across both the SPX and BVSP datasets. These results highlight the effec-
tiveness of the conformal framework in balancing reliability and interval com-
pactness, reinforcing its robustness for uncertainty quantification in financial
forecasting.
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Table 4.2: Resume CPI Metrics

Dataset ML Model CP Model CPI Coverage
(%) ↓

CPI
Mean

CPI
Median

BVSP

LSTM, SVM, XGBoost Ensemble-R 98 6956.78 6411.92
LSTM, SVM, XGBoost Ensemble-M 98 6956.78 6411.92
XGB CQR 98 10562.20 10562.20
XGB Mondrian 97 10753.32 5822.94
SVM Mondrian 95 8217.10 5254.84
LSTM Mondrian 95 9268.50 5842.10
SVM CQR 94 4724.71 4724.71
LSTM CQR 93 5407.06 5407.05

SPX

LSTM, SVM, XGBoost Ensemble-R 100 360.10 367.75
LSTM, SVM, XGBoost Ensemble-M 100 360.10 367.75
LSTM Mondrian 100 365.70 346.86
XGB CQR 100 393.35 393.35
XGB Mondrian 100 378.12 377.34
LSTM CQR 99 300.02 300.02
SVM Mondrian 99 312.13 301.61
SVM CQR 99 269.51 269.51

Regarding sharpness, SVM-based models generate the narrowest mean
and median CPI widths, reflecting high precision in uncertainty estimation.
Ensemble strategies, particularly on the SPX dataset, also deliver compact
intervals, closely matching the performance of XGBoost-based models.

Overall, the findings support ensemble-based conformal approaches as
a practical means to enhance interval sharpness while preserving reliable
coverage. They are well-suited for risk-aware decision-making in financial time
series forecasting.



5
Conclusion

As noted by Zecchin et al. (2024) and Teng et al. (2023), the effectiveness
of the calibration is inherently dependent on the quality of the underlying
predictions. This dependency was observed in the XGBoost model, where
poor predictive performance in specific time intervals negatively impacted the
overall quality of the calibration.

The experimental results demonstrate that applying Conformal Predic-
tion (CP) significantly contributes to risk management in asset price fore-
casting by quantifying prediction uncertainty through calibrated confidence
intervals. These intervals provide an interpretable measure of money exposure,
allowing traders to align their decisions with predefined risk thresholds. The
analysis further indicates that most operations, exceeding 89%, are success-
fully accepted by the market under the heuristic evaluation, confirming the
practical viability of the approach in high-liquidity scenarios.

Moreover, the proposed Conformal Prediction Ensemble (CPE), which
is grounded in the CP technique, consistently improves average performance
metrics compared to models without CP calibration. This validates the poten-
tial of the CPE framework to improve predictive reliability and operational
applicability in real-world trading environments.

5.1
Future Works

An important avenue for future research is to investigate the theoretical
probabilistic guarantees arising from the integration of Conformal Prediction
(CP) methods with Heuristic Rules (HR). This includes evaluating conformal
intervals’ validity, calibration, and conditional coverage when heuristic-driven
decision layers are embedded into the predictive pipeline. Additionally, future
work could benefit from employing more robust clustering strategies within the
Mondrian CP approach to improve the granularity and effectiveness of data
partitioning, directly impacting the quality of localized prediction intervals.

Disclaimer

It is academic research and should not be used in real-life trades without
the necessary modifications to be more adherent to the investor context. All
risks are borne by those who use the approaches or artifacts presented here.
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Glossary

Asset Price Prediction (APP) The task of forecasting future prices of fi-
nancial assets based on historical data and various modeling techniques.

Conformal Prediction (CP) A statistical framework that provides reliable
prediction intervals with valid coverage guarantees regardless of the under-
lying distribution.

Conformal Prediction Ensemble (CPE) A hybrid framework that inte-
grates machine learning models with conformal prediction techniques to en-
hance prediction reliability in asset pricing.

Conformal Prediction Interval (CPI) An interval output generated by con-
formal prediction methods that defines the range where the true value is
expected to lie with a specified confidence.

Heuristic Rules (HR) Empirical rules derived from experience or intuition
used in decision-making without formal statistical or mathematical foun-
dations.

Machine Learning (ML) A field of artificial intelligence focused on building
systems that can learn patterns from data and make decisions or predictions.

Long Short-Term Memory (LSTM) A type of recurrent neural network
capable of learning long-term dependencies in sequential data, useful for
time series forecasting.

Support Vector Machine (SVM) A supervised machine learning algorithm
used for classification and regression, leveraging kernel methods to find
optimal decision boundaries.

eXtreme Gradient Boosting (XGBoost) A powerful ensemble learning al-
gorithm based on gradient boosted decision trees, known for high predictive
accuracy and efficiency.

Random Approach (RA) A post-processing technique in which predictions
are randomly sampled from the calibrated prediction interval to add stochas-
tic diversity.

Quantitative Trading (QT) A method of trading that uses mathematical
models and algorithms to make trading decisions based on quantitative
analysis.
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Symmetric Mean Absolute Percentage Error (sMAPE) A perfor-
mance metric that calculates the percentage difference between predicted
and actual values in a symmetric form.

Conformalized Quantile Regression (CQR) A method combining quan-
tile regression with conformal prediction to produce valid prediction intervals
under distributional uncertainty.

Mondrian Conformal Prediction (MCP) A variant of conformal predic-
tion tailored for non-exchangeable data by conditioning predictions within
partitions of the data.

Support Vector Regression (SVR) A regression variant of SVM that pre-
dicts continuous outcomes by minimizing error within an epsilon margin.

Open-high-low-close (OHLC) A format for representing financial time series
using the open, high, low, and close prices for a given time interval.

High-frequency trading (HFT) A form of trading that uses powerful algo-
rithms to execute a large number of orders at extremely high speeds.

Efficient Market Hypothesis (EMH) A financial theory stating that asset
prices fully reflect all available information, making it impossible to consis-
tently achieve superior returns.

Auto-Regressive Conditional Heteroscedasticity (ARCH) A time se-
ries model that describes changing variance over time, often used to model
financial volatility.

Auto-Regressive Moving Average (ARMA) A classical time series model
that combines autoregression and moving average components to model
linear relationships in data.
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Appendix

A.1
Background

This appendix aims to provide additional information about the background
of the models and techniques in case the reader wants it.

A.1.1
Machine Learning

This appendix provides additional information about the technique’s back-
ground if the reader wants it.

A.1.2
LSTM

The Long-Short Term Memory (LSTM) is a type of gated Recurrent Neural
Network (RNN) with improvements. The primary capability of the LSTM is its
memory pool to save information for further processing. The memory poll has
two segments, the Short-term state and the Long-term state. The first saves the
current result from processing, and the second handles the long-term information
through processing.

The LSTM has a memory pool with two segments, the Short-term state
and the Long-term state. The first saves the current result from processing, and
the second handles the long-term information through processing. The Long-term
state handles what to save, read, or reject based on an Activation Function (AF).
Figure A.1 shows one block (unit), similar to a small state machine.

The gates have weights that are fitted during the train process.

A.1.2.1
Activation Function

The standard Activation Function (AF) for the LSTM model is the Hyper-
bolic Tangent (tanh), which is non-linear and has better predictive results than
the Logistic Sigmoid Function 1 . Other AF could provide better results, such as
Rectified Linear Unit (ReLU), which is the most used AF. The ReLu is a Piece-

1The Sigmoid Function is any strictly increasing, monotonic, continuous, and differen-
tiable in the complete of real numbers set. It has an ’S’ shape curve that is consequently
non-linear. The most common Sigmoid is the Logistic Sigmoid Function that can map any
real number to a value between 0 and 1.
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Figure A.1: The architecture of LSTM unit (STAUDEMEYER; MORRIS,
2019).

wise Linear Function 2 having two linear pieces, meaning more straightforward
computation. Variations of the ReLU solve the problem of dying ReLU, or dead
neurons, when it gets stuck, resulting in zero. The variations to be considered
are the Leaky ReLU and Randomized ReLU. These both are monotonic functions,
and their derivatives are monotonic, resulting in less computation effort during the
optimization using the Stochastic Gradient Descent (SGD).

A.1.3
Gate Function

The standard Gate Function (GF) for the Long Short Term Memory (LSTM)
is the Logistic Sigmoid Function 1 , which is an S-shaped curve that is consequently
non-linear.
The LSTM has three GF responsible for filtering information, such as the Forget
Gate, Input Gate, and Output Gate. This filtering decides to let in, store, and
throw the information away.

2The Piece-wise Linear Function, or Hinge Function, is a nearly linear function that
provides a number of linear segments (pieces) over the same quantity of interval.
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A.1.3.1
Input Gate

It conditionally decides whether to update the Memory State with values
from the Input Data based on the Previous Hidden State and the Current Input
Data. If the new value is accepted, it will be part of the Long Term Memory (Cell
State) of the Neural Network (NN).

A.1.3.2
Forget Gate

It conditionally decides whether to forget or not information, based on the
new Input Data and the previous Hidden State. Both are inputs in the block (unit),
and they are an output of a Sigmoid Activation Function1, which results in a value
between 0 and 1. The 0 means lower relevance, and the 1 means higher relevance.

The old memories will pass through to the next block (unit) if it is fully
opened, and the old memories will be kept if it is shut off. subsubsectionOutput
Gate

It conditionally decides which information will generate the output on the
Final Hidden State of the Neural Network (NN). The condition is based on the
Block Memory and the Input Data. The Block Memory are the Cell State (Long-
Term Memory) and the Previous Hidden State

The Output Gate Function is a Logistic Sigmoid Function1, and it acts as
Activation Function, which decides if the information will be in the Updated Cell
State. And if it is relevant enough to result as an output of the New Hidden State.

A.1.3.3
Cell State

It has the dependency and relation of the current Long-Term Memory of the
Neural Network (NN). It avoids the Gradient Vanishing on the LSTM.

A.1.3.4
Hidden State

The Previous Hidden State has the Previous Time Step output.
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A.1.3.5
Formulation

The main details of the LSTM formulation follow as the setup below:

t = {1, 2, . . . , n}, data index time from the dataset.

x = feature values.

y = correct target (label) value.

ŷ = predicted target (label) value.

f̂(x) = prediction function.

i(t) = σ(W ix.x(t) + W ih.h(t−1) + bi), input gate.

f(t) = σ(W fx.x(t) + W fh.h(t−1) + bf ), forget gate.

o(t) = σ(W ox.x(t) + W oh.h(t−1) + bo), output gate.

g(t) = tanh(W gx.x(t) + W gh.h(t−1) + bg), go into the cell (memory) state.

c(t) = f (t) ∗ c(t−1) + i(t) ∗ g(t), memory (cell) state.

h(t) = tanh(c(t) ∗ o(t), hidden state.

A.1.4
SVM

A.1.5
Description

Support Vector Machine (SVM) has undergone significant evolution since
its inception, marked by theoretical advancements and diverse applications across
various domains. The conceptual framework of SVMs was introduced by Vladimir
N. Vapnik and Alexey Ya. Chervonenkis, in 1963, focused on developing linear
classifiers capable of separating data points with maximal margin. This approach
aimed to enhance generalization capabilities by identifying an optimal hyperplane
that maximizes the margin between distinct classes.

In 1992, Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik ex-
tended this framework by incorporating the kernel trick, facilitating the creation of
nonlinear classifiers. This innovation allowed the algorithm to operate effectively
in high-dimensional feature spaces without explicit computation of the transfor-
mations, thus broadening the applicability of SVMs to more complex, nonlinearly
separable datasets. Building upon the foundational SVM model, several variants
have been developed to address specific challenges:

– Support Vector Regression (SVR): Introduced to adapt SVMs for
regression tasks, SVR employs ?-insensitive loss functions to approximate
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real-valued functions, enabling the prediction of continuous outcomes.
– Least Squares Support Vector Machines (LS-SVMs): Proposed by

Johan A.K. Suykens and Joos Vandewalle in 1999, LS-SVMs reformulate
the standard SVM optimization problem by utilizing a least squares cost
function, resulting in a set of linear equations. This modification simplifies the
computational complexity associated with traditional quadratic programming
in SVMs.

– One-Class SVMs: Developed by Bernhard Scholkopf et al. in 1999, this
variant is tailored for novelty or anomaly detection tasks. It constructs a
decision boundary around most data, effectively identifying outliers or novel
patterns.

– Incremental and Online SVMs: Addressing the need for real-time learning
in dynamic environments, incremental SVM algorithms have been designed
to update the model as new data becomes available, without retraining
the entire dataset. This approach is particularly beneficial for applications
involving large-scale or streaming data.

SVMs have found extensive applications in financial time series forecasting,
attributed to their robustness in handling high-dimensional and nonlinear data.
Notable applications include:

– Stock Price Prediction: SVMs have been employed to forecast stock prices
by capturing complex patterns in historical data, demonstrating superior
performance compared to traditional models.

– Volatility Modeling: The capability of SVMs to model nonlinear relation-
ships has been leveraged to predict market volatility, aiding in risk manage-
ment and derivative pricing.

– Credit Risk Assessment: SVMs contribute to more accurate credit scoring
and risk evaluation by effectively classifying borrowers based on risk profiles.

– Algorithmic Trading: SVMs facilitate the development of trading strategies
by identifying profitable opportunities through pattern recognition in market
data.

Comparative Analysis of Advantages and Limitations is: Advantages

– Robustness to High-Dimensional Data:: SVMs perform effectively in
spaces where the number of dimensions exceeds the number of samples.

– Flexibility through Kernel Functions: Using various kernel functions
allows SVMs to model complex, nonlinear decision boundaries.

– Strong Theoretical Foundations: Rooted in statistical learning theory,
SVMs offer insights into their generalization capabilities.
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A.1.5.1
Limitations

– Computational Intensity: Training SVMs can be resource-intensive, partic-
ularly with large datasets, due to the complexity of the optimization problem.

– Parameter Sensitivity: The performance of SVMs is contingent on the
appropriate selection of kernel parameters and regularization terms.

– Interpretability: The resultant models can be less interpretable than other
methods, such as decision trees, posing challenges in domains where model
transparency is crucial.

Contemporary research endeavors aim to enhance the scalability, efficiency,
and applicability of SVMs:

– Scalable Algorithms: Efforts are underway to develop algorithms capable
of handling large-scale datasets more efficiently, including parallel processing
techniques and approximation methods.

– Hybrid Models: Integrating SVMs with other machine learning models,
such as neural networks, to capitalize on the strengths of each and improve
predictive performance.

– Automated Parameter Selection: Research into automatically tuning
hyperparameters seeks to alleviate the reliance on manual selection, thereby
streamlining the modeling process.

– Enhanced Interpretability: Developing techniques to render SVM models
more transparent and interpretable, facilitating their adoption in fields
requiring explainable AI solutions.

Support Vector Machines (SVMs) have demonstrated significant efficacy
in financial time series forecasting, particularly in stock market prediction. Their
ability to model complex, nonlinear relationships makes them well-suited for the
volatile nature of economic data. For instance, Tay and Cao (2001) applied
SVMs to forecast financial time series, comparing their performance against
traditional back-propagation neural networks. Their findings indicated that SVMs
outperformed neural networks regarding predictive accuracy, highlighting their
potential in financial forecasting applications.

Similarly, Kim (2003) investigated the application of SVMs in predicting
stock price indices. The study concluded that SVMs provided a promising alter-
native to traditional methods, offering improved financial time series forecasting
prediction performance.

In another study, Huang et al. (2005) explored the use of SVMs to predict
the weekly movement direction of the NIKKEI 225 index. The results demonstrated
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that SVMs outperformed other classification methods, reinforcing their applicability
in stock market prediction.

These studies underscore the adaptability and robustness of SVMs in mod-
eling the intricate dynamics of financial markets. By effectively capturing the non-
linear patterns inherent in economic data, SVMs have become a valuable tool in
the arsenal of financial analysts and researchers aiming to enhance predictive ac-
curacy in stock market forecasting. Another emerging direction is online and
stochastic SVMs, designed to handle streaming data and massive datasets. Al-
gorithms like LASVM (Bordes et al., 2005) and Pegasos (Shalev-Shwartz et al.,
2011) introduced stochastic gradient descent-based training procedures for SVMs,
enabling real-time learning and reducing memory footprints. These enhancements
further expanded the practical utility of SVMs in high-velocity data environments.
Finally, conformal prediction frameworks have been recently applied to SVMs to
provide confidence sets around predictions. Although conformal prediction is model-
agnostic, its application to SVMs has shown promising results in creating reliable
and calibrated decision boundaries with provable guarantees. This reflects the con-
tinuous theoretical enrichment of SVMs toward interpretable and trustworthy AI
systems. In summary, the evolution of Support Vector Machines (SVMs) has been
marked by a continuous stream of innovations, ranging from architectural flexibility
and kernel-based learning to probabilistic reasoning, computational scalability, and
recent integrations with deep learning and uncertainty quantification frameworks.
These advancements have preserved the theoretical rigor of the original formulation
while significantly expanding the scope and expressiveness of SVM-based models
across diverse and complex domains.

SVM remains a foundational algorithm in machine learning, striking a balance
between robust theoretical grounding and practical effectiveness. Its adaptability
to classification and regression tasks and its resilience in handling nonlinearity
and high-dimensionality has sustained its relevance in academic and industrial
applications–particularly in financial time series forecasting.

While newer approaches, such as deep learning, have gained prominence,
SVM remains a reliable baseline and frequently plays a role in ensemble and
hybrid architectures. The ongoing convergence of SVM with scalable computational
techniques and interpretable machine learning methodologies ensures that it will
remain a critical component of predictive modeling frameworks well into the
foreseeable future.
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A.1.5.2
Formalization

The Equation (A-1) section aims to describe the standard formulation of the
Support Vector Machine (SVM) for binary classification in LaTeX, followed by a
detailed description of each component.

min
w,b,ξ,ξ∗

1
2∥w∥2 + C

n∑
i=1

(ξi + ξ∗
i )

s.t. yi − w⊤ϕ(xi) − b ≤ ε + ξi

w⊤ϕ(xi) + b − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0, i = 1, . . . , n

(A-1)

A.1.5.3
Variables and Constants:

– xi ∈ Rd: Input feature vector of the i-th training sample.

– yi ∈ R: Real-valued target/output for the i-th sample.

– ϕ(·): Optional mapping function to a high-dimensional feature space (used
with the kernel trick).

– w ∈ Rd: Weight vector of the regression model.

– b ∈ R: Bias (intercept) term of the model.

– ε > 0: Insensitivity margin; deviations within ±ε are not penalized.

– ξi, ξ∗
i ≥ 0: Slack variables allowing deviations above and below the ε-tube,

respectively.

– C > 0: Regularization parameter that controls the trade-off between the
flatness of the function and the tolerance to errors.

– K(xi, xj): Kernel function representing the inner product in the feature
space, i.e., K(xi, xj) = ϕ(xi)⊤ϕ(xj).

– αi, α∗
i : Lagrange multipliers from the dual optimization formulation.

– n: Total number of training samples.

The Equation (A-2) is the decision function in kernelized form.

f(x) =
n∑

i=1
(αi − α∗

i )K(xi, x) + b (A-2)
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A.1.6
XGBoost

The Decision Tree (DT), as the name suggests, is a supervised learning
algorithm based on Decision Rules (DR) using a tree data structure. The intuition
behind the DT is to create multiple criteria (rules) to split each tree’s node into
further two or more sub-nodes as if it was splitting the dataset among the nodes.

The DT main benefits are: It is Non-Parametric, so it does not require strong
assumptions, mainly related to the data distribution; It is considered as White-Box3

because it is easy to understand and interpret by boolean logic ; It does not require
data normalization and scaling4; Missing values do not impact it; It performs the
automatic features selection that is important to reduce the data noise, and also
provide the feature significance ranking; It is not impacted by outliers; it can be
used for categorical and numerical data as well as classification and regression
problems; It handles non-linear data correlation (pattern).

The DT drawbacks are: It memorizes the train data, overfitting its; It could
have weak generalization to deal with Zero-shot data, even after the overfitting
been addressed; It is unstable because a small data change results in a considerably
different tree structure, which is known as variance, and it is mitigated by using
Ensemble Learning (EL); It tends to bias favoring the significant target outcome
(class or label), especially in the face of unbalanced classes; It has Non-Smoothness
Decision Boundaries (abrupt) because the boundary decision rules are discrete in
the form of a stair (not a curve), and it could not be desirable in the regression
problems; It has greedy approach to compound the Decision Rules (DR) in each
tree’s node, and it may not achieve the optimal tree structure, which is the case
of high-dimensional data; And others.

The EL techniques are used by multiple DT to mitigate the overfitting
problem and increase the prediction performance. The most common EL for DT is
based on Bagging or Boosting approaches, such as Random Forest and Gradient
Boost, respectively.

The Bagging executes different training to create several Experts 5 or Weak
Learners (WL) using different dataset’s sub-set (bootstrapping), all features, and
all target outcome (class or label). The Bagging flow to generate each Expert is

3A model is considered a Black-Box when it is difficult to explain and interpret, such
as Artificial Neural Network (ANN). By contrast, the White-Box is easier to explain and
interpret.

4The Scaling is a preprocessing data transformation technique that takes one or more
features (aleatory variable) to the same scale (order of magnitude). It is essential to stabilize
(converge) the Machine Learning (ML) models, mainly for those based in Neural Network
(NN).

5The Expert is an entity with a set of rules enough to support the decision-making process.
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parallel, which means that one Expert generation will not affect the other. In the
end, it provides the final prediction result based on majority voting or statistical
calculation over each generated Expert. The Random Forest, which uses Bagging,
generates multiple trees based on random different dataset’s sub-set and also the
features. Each DT is considered as a Expert with the necessary rules to provide the
Intermediate Prediction Result (IPR) for each specifically DT. The final prediction
result for the regression problems mainly uses the average.

The Boosting executes Weak Learners (WL) and combines them, interac-
tively, creating a Strong Learners (SL) . It uses the full dataset, all features, and
just one target outcome (class or label). Each interaction creates a standalone
composite model, which improves the Intermediate Prediction Result (IPR) of the
SL. After each iteration, the mispredicted instances (data points) receive more
attention until these instances are correctly predicted. The Boosting flow to gen-
erate each SL is sequential, which means that the previously generated SL will
positively affect the next SL. In the end, the final prediction result is exactly the
last generated SL, which has the better accuracy. The Gradient Boost generates
multiples trees based on random different sub-sets of the dataset and also the
features.

A.1.6.1
Formulation

The main details of the XGBoost formulation follow as the setup below:

i = {1, 2, . . . , n}, data index from the train dataset.

t = {1, 2, . . . , m}, iteraction index.

x = feature values.

y = correct target (label) value.

ŷ = predicted target (label) value.

f̂(x) = prediction function.

l(y, ŷ) = Differentiable CART learners and loss function to be minimized.

Lt =
n∑

i=1
l(yt(xi), ŷ(t−1)(xi) + ŷt(xi)) + Ω(ŷt(xi))

f̂0(x) = arg min
θ

n∑
i=1

l(y(xi), θ), initial constant value.

A.1.7
Conformal Prediction

This appendix provides additional information about the technique’s back-
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ground if the reader wants it.

A.1.7.1
CP - Conformalized Quantile Regression

The Conformalized Quantile Regression (CQR) is a method to Quantify the
Accuracy of the predictions. It combines the Split CP technique and Quantile
Regression (QR) method.

The key advantages of the CQR are distribution-free and adaptiveness on
the heteroscedastic6data. Due to the adaptability of each event over time, it is
fundamental in various real cases, such as the asset´s price in the financial market.
It means the Conformal Prediction Interval (CPI) varies in length based on the
previous event covariance. When the covariance increases, the CPI also increases,
which is analogous to the covariance decreasing case.

The QR in detail has the key disadvantages of the asymptotical coverage
guarantee and not be model-free.

A.1.7.2
CP - Non-Conformity Scores

The Conformal Prediction (CP) requires a function to return the prediction
score. This score function is known as Non-Conformity Scores (NCS), Non-
Conformity Measure (NCM), or just the Conformity Scores (NCS) function. The
intuition behind the NCS is to know how far the predicted value is from the correct
value.
The coverage guarantees of the CP are unrelated to the NCS function. However,
the NCS function influences the size (width) of the Prediction Interval (PI) set.
The size of the PI is associated with the Efficiency Criteria (EC). Small PI ’s size is
related to high EC because it is a more concise result set, and large size is related
to small EC.

The simplest NCS function is the Regression Residual (RR), (LEI et al.,
2018). It is the difference between the correct value and the predicted value. In
math worlds, it is equal to the absolute error ϵ̂train(x, y) = ||y − ŷ(x)||2, or just
the L2 − Norm7 of the error.

6The Heteroscedasticity, or Heteroskedasticity, occurs when the variance is not constant
over time.

7||A||2 is the L2 − Norm of the A, and the L2 − Norm is the Standard Euclidean Norm
or just Euclidean Distance. It is equivalent to ||A||2 =

√
A2.



Appendix A. Appendix 86

A.1.7.3
CP - Self-supervised Learning

Figure A.2, Seedat et al. (2023), shows the three different approaches to
improve the adaptiveness of the CP. The Self-supervised Learning improves a
signal for adaptiveness.

Figure A.2: Approaches for Comformal Prediction.(SEEDAT et al., 2023)

A.2
Review

This appendix aims to provide additional information about the review of
this research in case the reader wants it.

A.2.1
Prediction

This appendix provides additional information from the literature review on
asset price prediction (APP), focusing on discovering predictive models and their
enhancements over the years.

A.2.1.1
Before the LSTM

Cootner (1964) observed a random walk behavior on the daily asset price.
Fama (1965) mentioned an intriguing question that was already tormenting the
academy and the financial market (FM), where it would be possible to identify
patterns of behavior in prices. White (1988) seems to be the first to use the
Neural Networks (NN) for daily prediction of the asset returns16 of the IBM
company with very optimistic results. S. Hochreiter (1991) discussed Vanishing
Gradient Problem (VGP) 8 in his thesis, advised by J. Schmidhuber. Baba and
Kozaki (1992), and Chenoweth and Obradovic (1996) argued about Feed-forward
Neural Network (FNN). Roman (1996) used backpropagation and RNN to predict
the ATP. asset price prediction (APP) begins popularity with the Artificial Stock

8The Vanishing Gradient Problem (VGP) occurs when the Descendent Gradient (DG)
goes to zero.
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Market (ASM) [Arthur et al., 1997]. Schuster (1997) approached the Birectional
Recurrent Neural Network (Bi-RNN) which was trained in both directions.

A.2.1.2
LSTM

Lawrence (1997b) conducted a survey on asset price prediction (APP) using
neural networks (NN). He challenged the validity of the Efficient Market Hypothesis
(EMH) by presenting empirical evidence that contradicted its core assumptions and
demonstrated the potential of data-driven approaches in financial forecasting.

Hochreiter e Schmidhuber (1997) introduced the Long Short-Term Memory
(LSTM) model as a specialized form of Recurrent Neural Network (RNN) to mit-
igate the Vanishing Gradient Problem (VGP). The architecture featured memory
cells equipped with input, output, and forget gates, supported by Constant Er-
ror Carousel (CEC) units, enabling the model to retain information over extended
sequences and overcome training difficulties in deep recurrent structures.

Gers, Schmidhuber e Cummins (2000) proposed a refinement to the original
LSTM architecture by introducing an adaptive forget gate. This innovation enabled
the model to learn when to reset its internal memory, improving adaptability in
dynamic environments and non-stationary time series, features especially important
for modeling financial markets.

Chan et al. (2000) proposed two enhancements for training neural networks
in asset price prediction (APP): the conjugate gradient learning (CGL) algorithm
and the multiple linear regression weight initialization (MLRWI) technique. These
addressed the slow convergence and suboptimal initialization issues of the standard
steepest descent algorithm in backpropagation, especially when applied to daily
financial data.

Gers, Schraudolph e Schmidhuber (2002) demonstrated that LSTM models
are capable of learning both Context-Free Languages (CFL) and, for the first time,
Context-Sensitive Languages (CSL), thereby extending their applicability beyond
regular sequence tasks to formal language processing. This milestone established
LSTM as a more general-purpose learner in structured sequential domains.

Hochreiter e Schmidhuber (1997) further positioned LSTM as an effective
meta-learner, a model that can learn how to learn. Their theoretical and empirical
results showed that LSTM could match the performance of Hidden Markov Models
(HMM) in sequence modeling tasks, without requiring changes to the core LSTM
algorithm.9

9The Meta-Learn, also known as learning-to-learn, is a machine learning approach where
one learning algorithm is trained to support the learning process of another. Common
examples include transfer learning, hyperparameter optimization, and ensemble learning.
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Malkiel (2004) provided empirical evidence that asset prices do not always
follow a random walk. He observed increased predictability during certain market
phases, such as short-term momentum driven by positive serial correlation and long-
term mean reversion caused by negative serial correlation. Additionally, he noted
that valuation metrics like price-to-earnings (P/E) ratios tend to vary with interest
rates and dividend yields, suggesting potential features for forecasting models in
APP.

Graves e Schmidhuber (2005) introduced the Bidirectional LSTM (Bi-
LSTM) for phoneme classification, showing that bidirectional architectures, trained
using Backpropagation Through Time (BPTT), outperformed standard RNNs
and multilayer perceptrons in modeling sequential dependencies. Their results
established Bi-LSTM—sometimes referred to as Vanilla LSTM—as a state-of-the-
art model, widely adopted in domains requiring context-rich time series modeling,
including financial forecasting.

Wierstra, Gomez e Schmidhuber (2005) presented Evolino (EVOlution of
systems with LINear Outputs), a neuroevolution framework for training recurrent
networks like LSTM on tasks that demand long-term memory, such as context-
sensitive language processing and time series forecasting. Evolino optimizes in-
ternal state weights using evolutionary algorithms, avoiding overfitting and local
minima issues. The framework performed well on benchmark datasets, including
the Mackey-Glass System (MGS),10 by using linear regression or quadratic pro-
gramming to map hidden states to outputs.

Graves et al. (2006) introduced the Connectionist Temporal Classification
(CTC) loss to enhance LSTM’s performance in unsegmented sequence learning.
The CTC framework enabled end-to-end training by aligning predicted labels with
temporal input data, removing the need for pre-segmented training examples or
post-processing steps. This innovation allowed a single network to simultaneously
handle alignment and recognition tasks, outperforming traditional HMM and hybrid
HMM-RNN models in speech recognition.

Mayer et al. (2006) applied LSTM models trained with Evolino to improve
robotic execution of surgical knot-tying. Their work demonstrated the architec-
ture’s effectiveness in learning continuous, precision-dependent movements, un-
derlining LSTM’s versatility in real-time control and robotics.

Graves e Schmidhuber (2007) extended the CTC-BLSTM framework with
policy gradients for reinforcement learning tasks. They demonstrated a discrimi-
native keyword spotting system trained without supervision, achieving 84.5% ac-
curacy, significantly outperforming the HMM baseline (65.0%).

10The Mackey-Glass System is a nonlinear differential equation used to model chaotic
biological processes. It is widely used as a benchmark for evaluating time series prediction
algorithms due to its complex, non-periodic behavior.
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Their results validated the architecture’s capability to model long-range
dependencies in bioinformatics.

Graves et al. (2009) demonstrated the practical superiority of LSTM models
trained with Connectionist Temporal Classification (CTC) by winning two hand-
writing recognition categories at the ICDAR 2009 competition. This was the first
time a recurrent neural network (RNN) achieved such recognition in an inter-
national benchmarking event, affirming LSTM’s capability in real-world sequence
classification tasks.

Cho et al. (2014) introduced the Gated Recurrent Unit (GRU) as a simplified
RNN architecture. Designed initially for neural machine translation, GRU uses
only two gates—reset and update—eliminating the need for a separate cell state
and output gate. This streamlined design addresses the Descendent Gradient
Dissipation Problem (DGDP)11, reducing training complexity while maintaining
performance in sequence modeling.

Samarawickrama (2017) compared several RNN-based architectures, includ-
ing GRU, simple RNNs, and LSTM, on daily asset price prediction (APP). The
study evaluated predictive accuracy and found that LSTM and GRU models out-
performed basic RNNs in capturing short-term dependencies in financial data.

Greff et al. (2016) conducted a comprehensive analysis of LSTM variants,
assessing the influence of key architectural components such as peephole connec-
tions and gate couplings. Their empirical results suggested that many commonly
used components could be omitted with minimal loss in performance, guiding the
design of more efficient LSTM-based models.

Qin et al. (2017) proposed the Dual-Stage Attention-Based Recurrent Neural
Network (DA-RNN), which combines LSTM with input and temporal attention
mechanisms. This hybrid framework improves interpretability and accuracy in
multivariate time series forecasting, including applications in finance.

Lai et al. (2018) introduced the LSTNet architecture, integrating convolu-
tional layers, LSTM modules, and autoregressive components. This hybrid model
captures both short-term patterns and long-term dependencies in periodic financial
time series, significantly improving predictive robustness.

Moghar (2020) explored the impact of training epochs on LSTM performance
in stock market prediction. The findings underscored that tuning epoch count is
critical for balancing learning sufficiency and overfitting risk in financial time series
forecasting.

Graves et al. (2009) demonstrated the practical superiority of LSTM models
trained with Connectionist Temporal Classification (CTC) by winning two hand-

11The Descendent Gradient Dissipation Problem (DGDP) refers to the progressive loss of
signal in backpropagation through time, which limits effective learning across long sequences.
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writing recognition categories at the ICDAR 2009 competition. This was the first
time a recurrent neural network (RNN) achieved such recognition in an inter-
national benchmarking event, affirming LSTM’s capability in real-world sequence
classification tasks.

Cho et al. (2014) introduced the Gated Recurrent Unit (GRU) as a simplified
RNN architecture. Designed initially for neural machine translation, GRU uses
only two gates—reset and update—eliminating the need for a separate cell state
and output gate. This streamlined design addresses the Descendent Gradient
Dissipation Problem (DGDP) 11 , reducing training complexity while maintaining
performance in sequence modeling.

Samarawickrama (2017) compared several RNN-based architectures, includ-
ing GRU, simple RNNs, and LSTM, on daily asset price prediction (APP). The
study evaluated predictive accuracy and found that LSTM and GRU models out-
performed basic RNNs in capturing short-term dependencies in financial data.

Greff et al. (2016) conducted a comprehensive analysis of LSTM variants,
assessing the influence of key architectural components such as peephole connec-
tions and gate couplings. Their empirical results suggested that many commonly
used components could be omitted with minimal loss in performance, guiding the
design of more efficient LSTM-based models.

Qin et al. (2017) proposed the Dual-Stage Attention-Based Recurrent Neural
Network (DA-RNN), which combines LSTM with input and temporal attention
mechanisms. This hybrid framework improves interpretability and accuracy in
multivariate time series forecasting, including applications in finance.

Lai et al. (2018) introduced the LSTNet architecture, integrating convolu-
tional layers, LSTM modules, and autoregressive components. This hybrid model
captures both short-term patterns and long-term dependencies in periodic financial
time series, significantly improving predictive robustness.

Moghar e Hamiche (2020) explored the impact of training epochs on LSTM
performance in stock market prediction. The findings underscored that tuning
epoch count is critical for balancing learning sufficiency and overfitting risk in
financial time series forecasting.

Vuong et al. (2022) proposed a hybrid model integrating XGBoost for
feature selection and LSTM for sequential learning in the context of stock and
forex forecasting. Their results, tested on a Forex dataset from 2008 to 2018,
demonstrated superior performance compared to the ARIMA baseline across MAE,
MSE, and RMSE metrics, highlighting the synergy between gradient boosting and
deep learning.

Kumar (2023) developed a model combining a four-layer LSTM architecture
with a Hidden Markov Chain (HMC) to forecast stock prices. By leveraging



Appendix A. Appendix 91

the temporal dynamics captured by LSTM and the probabilistic state transitions
modeled by HMC, the hybrid approach provided robust predictions with enhanced
interpretability, using RMSE and steady-state distribution analysis.

Together, these works illustrate the evolution of LSTM from a theoretical
breakthrough to a cornerstone of sequential modeling, continuously extended
by architectural refinements, integration with attention, and combination with
other deep learning components. Its effectiveness in modeling complex temporal
dynamics continues to make it a widely adopted approach for asset price prediction
and other financial forecasting tasks.

Graves (2013) presented the Stacked LSTM (S-LSTM), combining multiple
levels of the LSTM for speech recognition.

A.2.1.3
SVM

The foundational work on Support Vector Machines (SVMs) was introduced
by Cortes e Vapnik (1995b), where the authors formulated the problem of finding a
hyperplane that maximizes the margin between two linearly separable classes. This
seminal contribution established SVM as a powerful and theoretically grounded
approach to binary classification. Building on Vapnik’s statistical learning theory,
this work laid the foundation for further developments, particularly in extending
SVM to non-linear and more complex data structures.

A significant enhancement came with introducing the kernel trick, which
allows SVMs to operate in high-dimensional feature spaces without explicitly
computing the transformation. This extension, presented by Boser, Guyon e Vapnik
(1992), enabled SVMs to learn non-linear decision boundaries by using kernel
functions such as the radial basis function (RBF), polynomial, and sigmoid kernels.

To adapt SVMs for regression tasks, Drucker et al. (1997) proposed the
Support Vector Regression (SVR) framework, which applies the same maximal
margin principles to continuous-valued outputs. SVR introduced the concept of
an ϵ-insensitive loss function, allowing the model to ignore minor deviations and
focus on capturing significant trends, a beneficial property in financial time series
forecasting.

The Least Squares SVM (LS–SVM) was another vital variation, introduced by
Suykens e Vandewalle (1999), where the traditional convex quadratic programming
problem was reformulated into a system of linear equations. This modification
simplified the optimization process, making the algorithm more efficient and
suitable for large-scale problems.

Further, Schölkopf et al. (2001) introduced the One-Class SVM, designed for
unsupervised anomaly detection, a technique particularly relevant for identifying
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rare events in financial markets, such as crashes or abrupt trend reversals. One-
Class SVMs estimate the support of a high-dimensional distribution by separating
normal data from outliers using an implicit kernel space.

Over the years, SVMs have been continually enhanced through algorithmic
and computational innovations. These include online and incremental learning
frameworks, developed to handle real-time data streams, and scalable solvers
optimized for high-dimensional datasets. In recent years, SVMs have also been
integrated with deep learning models to combine feature learning with robust
decision boundaries. Though still under active research, these hybrid approaches
aim to overcome the interpretability limitations of deep neural networks while
maintaining the predictive strength of SVMs.

Despite the emergence of complex deep learning architectures, SVMs remain
a strong benchmark due to their solid theoretical foundation, robust generalization
properties, and broad applicability in domains such as bioinformatics, image
processing, and especially financial forecasting. Their ability to manage nonlinear,
high-dimensional data makes them well-suited for tasks like asset price prediction,
where the signal-to-noise ratio is typically low and the underlying patterns are
highly nonlinear and non-stationary.

Thus, the trajectory of SVM research reflects a balance between theoretical
rigor and practical adaptability. The original principles laid out by Vapnik and
colleagues have stood the test of time and evolved to meet the demands of
contemporary machine learning tasks.

A.2.1.4
XGBoost

Morgan and Sonquist (1963) introduced the first decision tree (DT) model
as part of the AID project, called Automatic Interaction Detection (AID), which
pioneered binary regression tree structures.

Hunt (1966) published the first formal academic paper on decision trees,
providing foundational theory for recursive partitioning.

Messenger and Mandell (1972) developed the first classification tree algo-
rithm, THAID, tailored specifically for categorical target prediction.

Breiman et al. (1974) created the Classification and Regression Tree (CART)
algorithm, which formalized binary tree structures for both regression and classifi-
cation tasks.

Breiman et al. (1977) released the first software for implementing CART,
enabling practical application of decision tree algorithms in data analysis.

Kass (1980) proposed the CHAID algorithm, using chi-squared statistics
for splitting and Bonferroni corrections to control type I error, though often



Appendix A. Appendix 93

conservatively.
Breiman et al. (1984) enhanced CART with pruning, tunneling, and subtree

selection to avoid overfitting and improve model generalization.
Gordon and Olshen (1985) extended CART for survival analysis using

Minimum Wasserstein Distance between Kaplan-Meier curves and mass points
as node impurity measures (NIM).

Quinlan (1986) introduced ID3, a non-binary tree algorithm that uses
information gain ratio to guide splits, enabling multi-branch partitions.

Ciampi et al. (1988) presented RECPAM, adapting CART to censored data
through Proportional Hazards Likelihood Ratio tests.

Loh and Vanichsetakul (1988) proposed FACT, which implemented linear
splits using Recursive Linear Discriminant Analysis.

Segal (1988) and Davis and Anderson (1989) independently extended CART
to censored data with the Log-Rank Statistic Test as the NIM.

Ciampi (1991) integrated CART with Generalized Linear Models, increasing
flexibility in handling different outcome distributions.

Segal (1992) adapted CART for longitudinal data analysis, enhancing its
applicability for repeated measurements.

LeBlanc and Crowley (1992) applied Proportional Hazards Log-likelihood for
splitting in survival trees.

Quinlan (1992) proposed M5, the first model tree with piecewise linear
regression at the leaves.

Quinlan (1993) released C4.5 and C5.0, extending ID3 by introducing
pruning, support for numeric features, and better efficiency.

Breiman (1996) introduced Bagging, an ensemble approach that averages
predictions over bootstrapped samples to reduce variance.

Alexander and Grimshaw (1996) extended CART with Simple Linear Regres-
sion to improve regression accuracy.

Loh and Shih (1997) developed QUEST, a fast and unbiased splitting
strategy that corrects selection bias.

Torgo (1997) extended M5 by using Kernel and Nearest-Neighbor models in
terminal nodes.

Chipman et al. (1998) and Denison et al. (1998) developed Bayesian CART,
introducing probabilistic modeling of tree structures.

Zhang (1998) extended CART to support multiple binary response variables.
Kim and Loh (2001) proposed CRUISE, improving unbiased split selection

for both classification and regression.
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Breiman (2001) developed Random Forests (RF), combining bagging and
random feature selection to grow unpruned trees and introducing variable impor-
tance metrics.

De’ath (2002) created MVPART, extending CART for multivariate re-
sponses.

Chaudhuri and Loh (2002) enhanced GUIDE with quantile regression.
Loh (2002) broadened GUIDE to include bootstrap bias correction, bagging,

and RF.
Chipman et al. (2002) further advanced Bayesian CART.
Kim and Loh (2003) improved CRUISE for performance and interpretability.
Chan and Loh (2004) extended GUIDE with logistic regression.
Dusseldorp and Meulman (2004) proposed RTA for adaptive spline modeling

in trees.
Su et al. (2004) applied MVPART to multivariate applications.
Lee (2005) refined multivariate response modeling in CART.
Fan and Gray (2005) introduced TARGET, combining trees and genetic

algorithms.
Loh (2006) extended GUIDE with Poisson regression.
Guerts et al. (2006) developed Extra Trees, an ensemble that uses full

datasets with randomized splits.
Hothorn et al. (2006) proposed CTREE, using permutation tests to eliminate

variable selection bias.
Zeileis et al. (2008) presented MOB, a permutation-based model tree

method.
Fan and Gray (2008) refined TARGET’s optimization.
Su et al. (2008, 2009) proposed Interaction Trees for treatment effect

heterogeneity.
Loh (2009) enhanced GUIDE with kernel methods, deeper interactions, and

robust handling of missing values.
Dusseldorp et al. (2010) introduced STIMA for subgroup analysis.
Chipman et al. (2010) proposed BARD, a Bayesian ensemble for uncertainty

quantification.
Foster et al. (2011) introduced Virtual Twins for personalized treatment

effect modeling.
Lipkovich (2011) developed SIDES for subgroup identification in trials.
Sela and Simonoff (2012) proposed Random Effect Trees to account for

hierarchical data.
Loh and Zheng (2013) expanded GUIDE for longitudinal and multiresponse

tasks.
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Loh (2014) reviewed 50 years of decision tree developments.
Loh et al. (2015) incorporated proportional hazards regression in GUIDE.
Schapire (1990) formally introduced boosting under the PAC learning frame-

work, forming the theoretical base of ensemble learning.
Friedman (1991) proposed MARS, using splines for nonlinear regression.
Jordan and Jacobs (1994) presented Hierarchical Mixtures of Experts, com-

bining expert models with probabilistic gating.
Freund (1995) introduced a general boosting framework.
Freund and Schapire (1997) presented AdaBoost.M1, a discrete classification

booster using reweighting.
Friedman and Fisher (1999) created PRIM for interpretable rule-based

prediction.
Friedman et al. (2000) adapted AdaBoost for continuous outputs.
Friedman (2001) introduced Gradient Boosting Machine (GBM) and shrink-

age to improve regularization.
Chen and Guestrin (2016) proposed XGBoost, a fast, scalable gradient

boosting framework with second-order optimization and regularization.
Ke et al. (2017) introduced LightGBM, incorporating GOSS and EFB for

scalability.
Prokhorenkova et al. (2018) proposed CatBoost for categorical feature

support using ordered boosting.
He et al. (2020) presented asynchronous optimization for distributed XG-

Boost.
Januschowski et al. (2021) reviewed GBTs’ dominance in M5 and other

structured data competitions.

These contributions chronicle the evolution of boosting—from its PAC-learning
roots and AdaBoost foundations, to powerful frameworks like XGBoost, LightGBM,
and CatBoost—showing how regularization, scalability, and categorical feature
modeling have shaped the state-of-the-art in gradient boosting for machine
learning.

A.2.2
Calibration

This appendix aims to provide additional information about the literature
review of the prediction calibration in case the reader wants it.



Appendix A. Appendix 96

A.2.2.1
Full CP

The Full CP denomination comes from the idea of using the entire dataset,
different from other CP variants that will be presented in the sequence. Because
of its solid theoretical methodology, the Full CP is the basis of all further CP
variations.

Platt (1999) laid the foundation for modern calibration techniques by
introducing Platt Scaling, a logistic regression model trained on the outputs
of a classification algorithm to transform uncalibrated scores into calibrated
probabilities. Initially applied to Support Vector Machines (SVMs), this method
remains widely used due to its simplicity and effectiveness in binary classification
tasks.

Zadrozny e Elkan (2002) advanced prediction calibration by proposing Iso-
tonic Regression as an alternative to Platt Scaling. This non-parametric approach
proved more flexible, especially for models where the assumption of a sigmoid-
shaped score-probability relationship does not hold. They also formalized a frame-
work for evaluating probabilistic predictions and demonstrated the method’s gen-
eral applicability across classification models.

Guo et al. (2017) conducted a comprehensive empirical study on the cal-
ibration properties of modern deep learning models, revealing that despite im-
provements in accuracy, neural networks tend to be poorly calibrated. Their work
emphasized the tradeoff between confidence and accuracy in over-parameterized
models. It reintroduced Temperature Scaling as a simple yet effective post-hoc
method to recalibrate softmax outputs in deep classifiers.

Kuleshov, Fenner e Ermon (2018) extended calibration techniques to regres-
sion models, a less explored domain. They developed a method based on conformal
prediction and quantile regression to generate calibrated predictive intervals for
continuous outputs. This represented a shift from calibrating class probabilities to
producing reliable confidence intervals in regression tasks, with strong theoretical
guarantees under mild assumptions.

Levi et al. (2020) introduced diagnostic tools and evaluation metrics tailored
for probabilistic regression calibration, such as the Probability Integral Transform
(PIT) histogram and empirical coverage plots. Their analysis explained when and
how regression models produce miscalibrated predictions and how calibration can
be corrected or diagnosed during model evaluation.

Song, Zhao e Ermon (2021) proposed Distribution Calibration as a novel
technique for few-shot learning. By aligning the support and query sets distributions
using calibrated scores, they demonstrated improved generalization in low-data
regimes. This approach highlights the emerging intersection between calibration
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and transfer learning, especially when confidence quantification is crucial.
Romano, Patterson e Candes (2022) unified probabilistic classification and

regression calibration under the conformal prediction and conditional coverage
framework. They provided rigorous formulations for calibrating predictive distri-
butions and proposed efficient algorithms that ensure distributional guarantees.
This work represents a significant theoretical advancement in general-purpose cal-
ibration strategies with valid statistical guarantees.

Hoff, Kuleshov e Ermon (2022) addressed the challenge of achieving both
calibration and sharpness in regression. They analyzed the inherent tradeoff be-
tween producing narrow predictive intervals (sharpness) and maintaining empirical
coverage (calibration), proposing loss functions that explicitly balance these ob-
jectives. Their contributions enhance the practicality of calibrated regression in
risk-sensitive applications.

The Conformal Prediction (CP) starts with Gammerman, Vovk e Vapnik
(1998), although without the explicit CP name. They described a procedure
to quantify the degrees of confidence on the Support Vector Machine (SVM)’s
predictions. Saunders, Gammerman e Vovk (1999) presented a new algorithm,
based on the Gammerman, Vovk e Vapnik (1998), producing two Efficiency
Criteria (EC) of a prediction. The EC is a reliability indicator composed by the
measures of confidence and credibility. The first highest p-value, p1, determines
the credibility of the class predicted by the ML model. The second highest p-
value, p2, determines the confidence 1−p2 of the prediction. Vovk, Gammerman e
Saunders (1999) presented a method to measure the confidence of Support Vector
Machine (SVM) prediction on pattern recognition problem. Papadopoulos et al.
(2002) approached of replacing the Transductive Inference13 with the Inductive
Inference13 in regression problems based on Ridge Regression (RR) to deal with
large datasets.

Vovk, Papadopoulos e Gammerman (2005) proved the validity of conformal
sets given Exchangeable 12 data and a miscoverage level α ∈ (0, 1) considering
a unique dataset case. The confidence level is specified by the user as 1 − α.
They also formulate how to measure the non-conformity. The guarantees proved
by Vovk, Papadopoulos e Gammerman (2005) are the baseline of most further
research about CP.

As the Full CP uses the whole dataset, it turns computationally expensive in
some real-world cases. Some research tackles this problem, such as Burnaev and
Vovk (2014), Lei (2019), Ndiaye and Takeuchi (2019), Abad et al. (2022).

The use of a unique sample set led to some problems, such as: Computational
12"A sequence of random variables is exchangeable when its joint distribution is invariant

to arbitrary permutations of the variables" (Nathanael L. Ackerman at el., 2017).
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cost; Over-fits of the Machine Learning (ML) on the fit (train) step; The Non-
Conformity Scores (NCS) function would equal zero. The NCS function aims to
return the prediction residue (error), and the most naive NCS is the difference
between the correct value and the predicted value.

A.2.2.2
Split CP

The Split CP (SCP), also known as Inductive CP (ICP) 13 , is a particular
case of the Full CP (FCP) by splitting the original set into two slices, one for fitting
(train) and another for calibration. The calibration step uses a different dataset
than the Machine Learning (ML) algorithm uses for training step. It reduces the
computational cost because the calibration is executed in a shorter set. It also
avoids the Non-Conformity Scores (NCS) going to zero because it uses a set not
over-fitted by the ML algorithm. This usefulness has made the Split CP the most
widely used CP method.

Papadopoulos et al. (2002) defined the Inductive Confidence Machines (ICM)
replacing the Transductive Inference13 with the Inductive Inference13. The ICM
provides a measure of its own accuracy in regression problems based on the
Ridge Regression (RR) model to deal with large datasets. Vovk, Papadopoulos
e Gammerman (2005) proved the validity of conformal sets given exchangeable12

data and a miscoverage level α ∈ (0, 1), considering the Split CP as a particular
case of the Full CP. Shafer e Vovk (2008b) developed a complete theory about
CP known as Marginal Coverage CP. The Marginal Coverage means the CP is
fulfilled in the average case and not in each data sample. V. Fedorova et al.
(2013) and U. Johansson et al. (2013) presented a new Efficiency Criteria (EC)
of a prediction, known as being probabilistic-based. They do not have the issues
found on the standard EC. Lei, Rinaldo e Wasserman (2015) applied the Split
CP to outlier detection and clusters detection using several Conformity Scores.
V. Vovk et al. (2016) presented two probabilistic EC for classification, having a
finite set of labels. They affirmed that the probabilistic approach should replace
the standard criterion and presented six other EC. They optimize ten EC when
the distribution is previously known. Lei et al. (2018) proved that if the anti-
conservativeness of conformal sets, the Non-Conformity Scores (NCS), are almost
surely distinct. The prediction set can be upper bounded by 1 − α + 1

n+1 , where
n is the length of an exchangeable12 data and α ∈ (0, 1) is the miscoverage level.
It considers the Split CP as a particular case of the Full CP. Angelopoulos et

13The Inductive Inference is similar to regular Supervised Learning when it splits the
dataset into train and test, and it trains general rules for unseen test cases. On the contrary,
the Transductive Inference used the entire dataset beforehand, and it is a specific training
for specific test cases.
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al. (2020) discursed about the sizes of the train and calibration sets. They said
the coverage distribution concentrates over 1 − α by using more calibration data
(sample). Oliveira et al. (2022) proved the Split CP is also applied to dependent and
Non-Stationary 14 data, keeping the probabilistic guarantees. They also developed
a general method, based on concentration of measure and decoupling inequalities
instead of the Exchangeability, to analyze the CP. The Non-Stationary is precisely
our case of asset price prediction, as well as the Non-Exchangeability 12.

A.2.2.3
Cross CP

The Cross-Validation is not useful for our case of asset price prediction,
because it is a particular case of Exchangeability 12. Vovk (2015) introduced the
Cross CP, as a hybrid of Inductive CP13 and Cross-Validation, to avoid the
Inductive CP problem of losing parts of the dataset during the training. Vovk
et al. (2018) compared the computational efficiency of Split CP and Cross CP,
and their advantages and limitations.

A.2.2.4
Jackknife CP

The original technique of Jackknife is not new as the existence of review
research by Miller and Rupert G. (1974). The combination of Conformal Prediction
(CP) and the Jackknife generates an CP Interval (CPI) centered on the ‘predicted
value by the Machine Learning (ML) algorithm. The width of the CPI is obtained
by the quantiles of the Leave-One-Out Residuals 15 .

Barber et al. (2021) introduced the Jackknife+ method that also uses the
quantiles of the Leave-One-Out Residuals, similar to the original Jackknife. It
achieves a rigorous coverage guarantee through the assumption of exchangeable12

training samples. It also extends the Jackknife+ to k-fold and discourses the
relation with the Cross CP proposed by (VOVK, 2015).

A.2.2.5
Conformalized Quantile Regression

Conformalized Quantile Regression (CQR) is a particular case of Split CP
using Quantile Regression (QR) method.

Romano, Patterson e Candes (2019) first introduced the Conformalized
Qualite Regression (CQR) method that inherited the benefits of both the CP
and the QR. They showed the Efficiency Criteria (EC) of the CQR method tends

14The Non-Stationarity occurs when the time-series distribution has some statistics
changing over time, such as mean, variance, and time-wise covariance.

15The Leave-One-Out Residuals is the resulting error in not using the altogether data.
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to produce better results than it means shorter intervals. Sesia e Candès (2020)
compared two CQR methods using simulated and correct data (real number set).
They discuss the ideal proportion of training and calibration based on empirical
observation, that is, between 70% and 90% for the training set. Romano (2022)
said the CQR is good to generate variable intervals length because it uses the
quantiles estimation. He affirmed all theorems applied to Split CP is valid for CQR
as it is a particular case of the Split CP. He said the procedural difference is that
CQR uses a specific Non-Conformity Scores (NCS) and two base models instead
of just one.

A.2.2.6
Non-Conformity Scores

The Non-Conformity Scores (NCS) function is an important artifact because
it influences the size of the Conformal Prediction Interval (CPI) set, and therefore
the Efficiency Criteria (EC).

Koenker and Basset (1978) first introduced the classical Quantile Regression
(QR) method. It estimates conditional quantiles through Quantile Least Squares
(QLS).

Lei et al. (2018) used the Regression Residual (RR) as NCS function.
It is given simplistically by the spread of the residual ϵ̂train(x, y) between the
correct value y and the fitted value ŷ(x) resulting by the Regression Model (RM)
conditioned on x.

Lei et al. (2018) also used the Weighted Regression Residuals (WRR) as NCS
function. It considers the non-constant residual variance that is very typical to the
asset price data, which has Non-Stationarity 16 characteristics. It provides a weight
to residual ϵ̂train(x, y) by dividing it per the Mean Absolute Deviation (MAD)
µ̂train(x, y). The ϵ̂train(x, y) is calculated by the µ̂train(x, y) itself, conditioned on
x. It estimates the MAD |y − ŷ(x)| and the conditional mean separately, and it
locally reaches adaptive CPI.

Hechtlinger, Póczos e Wasserman (2018) used the Increasing Sets (IS) as
NCS function. They tackle classification problems approaching the Conformal
Prediction Interval (CPI) based on p̂(x|y) instead of p̂(y|x). They argued it is
useful when the train dataset will not fully describe the test dataset. This is
exactly the case with many outlier or adversarial attacks, such as the asset price
data. Angelopoulos et al. (2020) presented a method to stabilize the Conformal
Prediction Interval (CPI) by regularization. They also used the Increasing Sets (IS)
as NCS function in the image classification problem.

16The asset return is the difference between the current asset price value and the previous
asset price value. From an operational point of view, it is the result (profit or loss) between
the purchase and sale of the asset.
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Romano, Patterson e Candes (2019) proposed a new adaptive method Con-
formalized Quantile Regression (CQR) combining the Split Conformal Prediction
(SCP) and the classical Quantile Regression (QR). They used the Plug-in Predic-
tion Interval Error (PPIE) as NCS function. As it is adaptive to Heteroscedastic-
ity 6 data, it is helpful to the asset price data due to the substantial variance over
time. Besides the experiments on benchmark regression datasets, they theorized a
marginal valid coverage guarantee for the Conformal Prediction Interval (CPI) of
any Regression Model (RM).

A.2.2.7
Regression Prediction

Dewolf, Baets e Waegeman (2023) analyzed the estimation of Prediction
Interval (PI) in regression domain over independent and identically distributed
(iid)17 benchmark data using four methods such as Bayesian, Ensemble, Direct
Interval Estimation and Conformal Prediction (CP).

A.3
Proposal

This appendix aims to provide additional information about this research
proposal in case the reader wants it.

A.3.1
Conformal Prediction

From the further details of a toy example, it is possible to verify how easy it
is to experiment with the Conformal Prediction (CP) method.

Figure A.3 shows the pre-processing code and how it is ordinary and very
similar to a pre-processing code for an ordinary prediction model for a regression
case.

Figure A.4 shows the code and resulting plot for the train and predict step,
followed by the getting of the prediction absolute error (PAE) ϵ̂.

The train step is very similar to any ordinary Regression Model (RM) when it
is fitted on the train dataset Xtrain. The calibration step begins with a task that is
similar to any regular RM prediction. It first proceeds the prediction on a different
dataset that, in our case, is the calibration dataset Xcalib.

The plot shows the dots as the predicted points Ŷcalib. The symmetric and
inclined line is the ideal position of the predicted points. The line furthest to

17The independent and identically distributed (iid) is a collection of a random variables
when for each one of the random variable, they are mutually independent, and they also
have the same and mutual probability distribution. Although the iid simplifies the statistic,
it is not a realistic assumption for some cases, such as asset price prediction (APP).
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Figure A.3: Traditional pre-processing code (authorship based on (SHAH,
2022) sample).

the right is the regression line achieved by the RM after the prediction on the
calibration step.

(a) Code (b) Plot

Figure A.4: Prediction result of the calibration step (authorship based on
(SHAH, 2022) sample

Figure A.5 shows the code of the train and calibration steps, and the resulting
plot of the th-quantile Q from the distribution of the prediction absolute error
(PAE) ϵ̂, using the calibrate dataset Ŷcalib.

In the code, we first get the prediction absolute error (PAE) ϵ̂ between the
correct label value yt and the predicted label value ŷt. Second, based on an α that
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is the miscoverage level defined by the user, and the distribution of the PAE ϵ̂, we
get the value of the th-quantile 1−α. In this toy experiment, we used an empirical
α = 5, which consequently generated a th-quantile 1 − α equal to 0.95. It results
in a quantile value of 1 − α equal to 1.221569 to be used as a threshold of the
prediction absolute error (PAE) ϵ̂.

The plot shows the histogram of the distribution of the PAE ϵ̂ and a vertical
red line as the threshold 1 − α on PAE equal to ϵ̂ = 1.221569. In this naive
experiment, the practical choice of the α was based on a visual analysis of the
histogram plot using the Elbow Method . In our case, the right side of the vertical
threshold red line has shorter errors, reduced slope variation, and fewer events
(mass concentration) in each class with a thin tail.

(a) Code (b) Plot

Figure A.5: Result of the prediction absolute error (PAE) and the quantile
value threshold (authorship based on (SHAH, 2022) sample).

Figure A.6 shows the code and the resulting table to get the Conformal
Prediction Interval (CPI) C based on the predicted value Ŷcalib on the calibration
step, and the quantile value bounds Q.

In the code, we first get the predicted value Ŷcalib through a pre-trained
Regression Model (RM) Â. Second, we calculate the CPI ’s bounds Q based on
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the predicted value Ŷcalib and the quantile value of 1 − α equal to 1.221569. The
lower bound is qlower, and the upper bound is qupper.

The table shows the values for the correct label value (CLV) Ysubset, predicted
label value (PLV) Ŷsubset, lower bound qlower, and upper bound qupper.

(a) Code (b) Table

Figure A.6: Code and resulting table of the prediction values and the CPI’s
bounds values (authorship based on (SHAH, 2022) sample).

Figure A.7 shows the code and the resulting plot to get the predicted label
values (PLV) Ŷtest and the Conformal Prediction Interval (CPI) C, using the test
dataset Xtest.

In the code, we used the pre-trained Regression Model (RM) Â to proceed
with the test step, known as the prediction, using the test dataset Xtest. Second,
we calculate the CPI ’s bounds C based on the predicted label values (PLV) Ŷtest

and the quantile value of 1 − α equal to 1.221569. This quantile value of 1 − α

equal to 1.221569 is the same obtained on the calibrate step. The lower bound is
qlower, and the upper bound is qupper.

The scatter plot shows the predicted values among the time-line. The colors
of the values are yellow for the lower bound, blue for the correct, and green for the
upper bound.
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(a) Code (b) Table

Figure A.7: Code and resulting scatter plot of the prediction values and the
CPI’s bounds values (authorship based on (SHAH, 2022) sample).

A.4
Additional Information

This appendix aims to provide some remaining information of this research
in case the reader wants it.

A.4.1
Infra-structure

All the experiments were developed in Python Notebook, running in Ubuntu
Linux, over Windows, through Windows Subsystem for Linux 2 (WSL2), with 16.0
Gb of RAM, as the following details.

Hardware:

– Operational System
Microsoft Windows 10 Pro, version 10.0.19044 Build 19044.

– Laptop
DELL, model Latitude E6430, processor Intel(R) Core(TM) i5-3340M CPU
@ 2.70GHz, 2701 Mhz, 2 Core(s), 4 Logical Processor(s), memory of 15.9
Gb, virtual memory of 23.4 Gb, disk NTFS 291.89 Gb for the operational
system, disk NTFS 638.05 Gb for the data.
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– Virtual Machine
wsl2.

– Virtual Operational System
Ubuntu 20.04.6 LTS, release 20.04, code-name focal, Memory 12697 Kb,
Swap 4096 Kb, Disk 256 Gb, 4 CPUs type Intel(R) Core(TM) i5-3340M
CPU @ 2.70GHz.

Software:

– Integrated Development Environment (IDE)
Microsoft VS Code, version 1.80.1 - x64.

– Programming Language
Python, version 3.9.7.

– Notebook
Jupyter, version: IPython=7.29.0, ipykernel=6.4.1, jupyter_client=6.1.12,
jupyter_core=4.8.1, jupyter_server=1.4.1, notebook=6.4.5.

Packages:

– requirement.txt
requirements.txt

– requirement.yaml
requirements.yaml
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