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Abstract

Leal, Giovanna Luisa Coelho; Saldanha, Nicolau Corção (Advisor);
Alves, Emília Carolina Santana Teixeira (Co-Advisor). Homotopy
Type of Intersections of Real Bruhat Cells in Dimension 6.
Rio de Janeiro, 2025. 251p. Tese de Doutorado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

In this work, we investigate the arbitrary intersection of real Bruhat
cells. Such objects have attracted interest from various authors, particularly
due to their appearance in different contexts: such as in Kazhdan-Lusztig
theory and in the study of locally convex curves. We study the homotopy
type of the intersection of two real Bruhat cells. This homotopy type is the
same as that of an explicit submanifold of the group of real lower triangular
matrices with diagonal entries equal to 1. For (n+ 1)× (n+ 1) matrices with
n ≤ 4, these submanifolds are the disjoint union of contractible connected
components. Our focus is on such intersections for 6×6 real matrices. For this,
we study the connected components of Bruhat cells for permutations σ ∈ S6

with at most 12 inversions. We make use of the structure of the dual CW
complexes associated with these components. We show that for permutations
with at most 12 inversions, with the exception of σ = [563412] , all connected
components are contractible. Furthermore, for σ = [563412], we identify new
non-contractible connected components with the homotopy type of the circle.

Keywords
Permutation group; Clifford algebra; Spin group; Bruhat cell; Homo-

topy type.



Resumo

Leal, Giovanna Luisa Coelho; Saldanha, Nicolau Corção; Alves,
Emília Carolina Santana Teixeira. Tipo homotópico de inter-
seções entre células de Bruhat reais em dimensão 6. Rio de
Janeiro, 2025. 251p. Tese de Doutorado – Departamento de Mate-
mática, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho, investigamos a interseção arbitrária de células de Bruhat
reais. Tais objetos têm despertado o interesse de diversos autores, em especial
devido à sua aparição em diferentes contextos: como na teoria de Kazhdan-
Lusztig e no estudo de curvas localmente convexas. Estudamos o tipo homo-
tópico da interseção de duas células de Bruhat reais. Este tipo homotópico é o
mesmo que o de uma subvariedade explícita do grupo de matrizes triangulares
inferiores reais com entradas diagonais iguais a 1. Para matrizes (n+1)×(n+1)
com n ≤ 4, estas subvariedades são a união disjunta de componentes conexas
contráteis. Nosso foco é em tais interseções para matrizes reais 6× 6. Para tal,
analisamos as componentes conexas das células de Bruhat para permutações
σ ∈ S6 com no máximo 12 inversões. Utilizamos a estrutura dos CW complexos
duais associados a estas componentes. Mostramos que para permutações com
no máximo 12 inversões, com exceção de σ = [563412], todas as componentes
conexas são contráteis. Além disso, para σ = [563412], identificamos novas
componentes conexas não contráteis, com o tipo homotópico do círculo.

Palavras-chave
Grupo das Permutações; Algebra de Clifford; Grupo Spin; Célula de

Bruhat; Tipo homotópico.
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1
Introduction

Over the past century, Bruhat cell decompositions have been important
to mathematics, particularly in the study of Grassmannians and flag spaces,
and have become standard tools in fields like topology, enumerative geometry,
representation theory and the study of locally convex curves. Despite their
long-standing importance, the topological study of Bruhat cell intersections,
whether in pairs or more complex collections, remains relatively underexplored.
These intersections naturally arise in various mathematical areas, including
singularity theory, Kazhdan-Lusztig theory, and matroid theory. However,
detailed topological results on these intersections are still scarce (see [9]).

One notable exception to this lack of topological insight is the problem
of counting connected components in pairwise intersections of big Bruhat cells
over the real numbers. Significant advances were made in this area during
the late 1990s, with key contributions found in works such as [8], [3], and
[10]. Essentially, this problem reduces to counting the orbits of a specific finite
group of symplectic transvections acting on a finite-dimensional vector space
over the finite field F2 ([11]).

We examine the intersections between a top-dimensional cell and a
cell corresponding to a different basis. These intersections can naturally be
identified with a subset of the lower nilpotent group Lo1

n+1.
For a permutation σ ∈ Sn+1, let Pσ be the permutation matrix. Let Lo1

n+1

be the group of real lower triangular matrices with diagonal entries equal to
1. Following the Bruhat decomposition, partition Lo1

n+1 into subsets BLσ for
σ ∈ Sn+1:

BLσ = {L ∈ Lo1
n+1 ∣∃U0, U1 ∈ Upn+1, L = U0PσU1},

where Upn+1 is the upper triangular matrix group.
The intersection of two opposite big Bruhat cells in Flagn+1 is homeomor-

phic to BLη, where η ∈ Sn+1 is the longest element. The number of connected
components of BLη is 2, 6, 20, and 52 for n = 1, 2, 3, 4, respectively. For n ≥ 5,
the number of connected components stabilizes and is given by 3.2n. This sta-
bilization can be explained by the fact that, for n ≥ 5, it is possible to embed
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the E6 lattice into a particular lattice that emerges in this problem ([8]).
The relative positions of two big Bruhat cells in Flagn+1 correspond

bijectively to the elements of Sn+1. In particular, opposite big Bruhat cells
are associated with the top permutation η ∈ Sn+1. The study of the number
of connected components in the intersection of two big cells for a given
relative position σ was initiated in [8]. For any specific σ ∈ Sn+1, the number
of connected components can be determined based on the results from [7].
However, to the best of our knowledge, no closed formula has been founded.

In [1], Alves and Saldanha introduce useful tools for studying the
homotopy type of these intersections. They apply these tools to prove the
following theorem:

Theorem 1. (E. Alves, N. Saldanha - IMRN, 2022) Consider σ ∈ Sn+1 and
BLσ ⊂ Lo1

n+1.

1. For n ≤ 4, every connected component of every set BLσ is contractible.

2. For n = 5 and σ = [563412] ∈ S6, there exist connected components of
BLσ, which are homotopically equivalent to S1.

3. For n ≥ 5, there exist connected components of BLη, which have even
Euler characteristic.

Our aim is to extend this construction to the case n = 5. Specifically,
we examine the connected components of the set BLσ, for σ ∈ S6. The main
result of this thesis is the following:

Theorem 2. Consider σ ∈ S6 and BLσ ⊂ Lo1
6.

1. For inv(σ) ≤ 11, every component of every set BLσ is contractible;

2. For inv(σ) = 12, except for σ = [563412], every component of every set
BLσ is contractible;

3. For σ = [563412] there exist 100 connected components, where exactly
24 are homotopically equivalent to S1, 4 are inconclusive with the Euler
characteristic equal to 1 and the others 72 are contractible.

According to Theorem 2 in [1], for σ ∈ Sn+1 there exist a finite CW
complex BLCσ homotopically equivalent to BLσ. In particular, the connected
components of BLCσ correspond precisely to those of BLσ.

Therefore, to determine the homotopy type of BLσ, for σ ∈ S6, we classify
the permutations by their number of inversions and study the connected
components of BLCσ. The maximum number of inversions is 15. Our study
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covers the case up to inv(σ) = 12. For inv(σ) ≥ 13 there are 20 permutations.
Analyzing the components using our current method becomes increasingly
challenging as the dimension of the ancestries grows.

Visualizing cells of dimension greater than four is particularly difficult,
and we believe that continuing this work will require additional tools and
techniques.

Nevertheless, some conclusions can still be drawn about these permuta-
tions. For σ ∈ S6 with inv(σ) = 13, the connected components have Euler
characteristics of either 1 or 0. In the latter case, the components are homo-
topically equivalent to S1. The same holds for σ ∈ S6 with inv(σ) = 14.

It is well known from [1] that for the permutation σ = η ∈ S6, the
only one with inv(σ) = 15, there exists a connected component with the
Euler characteristic equal to 2, consequently non-contractible. The remaining
connected components have Euler characteristic equal to 1.

Here is an overview of this thesis:
In Chapter 2, we introduce some concepts relevant to this work, including

the wiring diagram, which will be used extensively throughout.
Chapter 3, provides a brief overview of matrix groups such as

Quatn+1, Spinn+1 and B̃+
n+1. In addition, we present a summary of the Clif-

ford Algebra Cl0n+1.
In Chapter 4, we introduce two key concepts essential to this work:

preancestry and ancestry. Understanding these concepts in the context of the
wiring diagram is fundamental to the development of this research.

In Chapter 5, we study Bruhat cells and their properties, including
proving the previously mentioned diffeomorphisms. Additionally, we examine
certain properties of totally positive matrices and their relationship to the
Bruhat cells.

Chapter 6 presents the stratification BLSε and its corresponding strata,
beginning with ancestries of dimension 0 and extending to the generalized
concept.

In Chapter 7, we investigate the CW complex BLCσ and its gluing maps.
Furthermore, we provide a formula for the Euler characteristic of BLz as
presented in [1], and conclude with the presentation of Theorem 1.

In Chapter 8, we present several wiring diagram decompositions. Next,
we introduce some lemmas that will help in studying the CW complexes BLCσ

for permutations that can be decomposed in specific ways.
Chapters 9 through 14 present the connected components of BLσ for

σ ∈ S6, with inv(σ) ≤ 11. For these permutations, all connected components
of BLσ are contractible.
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In Chapters 15 and 16, we study the connected components of BLσ for
σ ∈ S6, with inv(σ) = 12. Chapter 15 addresses nearly all permutations
for which all connected components of BLσ are contractible. Chapter 16
focuses on the permutation σ = [563412], with each connected component
of this permutation examined in a separate section. Section 16.2 illustrates the
connected component presented in the second item of Theorem 1, illustrated
below in Figure 1.1. Furthermore, we provide a concrete method using matrices
to understand the curve that forms S1. Section 16.3 introduces a new non-
contractible connected component of BLσ, constructed step by step. The
remaining connected components are presented in the following sections.
Furthermore, in this chapter, we present our result.

Figure 1.1: Connected component homotopically equivalent to S1
.

To conclude, Chapter 17 presents information on the Euler characteristics
of the connected components for permutations σ ∈ S6 with inv(σ) ≥ 13.



2
The Symmetric Group

In this chapter, we review key concepts and properties of the permutation
group Sn+1. The first section provides an overview of the definition and
some fundamental concepts. Following that, we explore the set of signed
permutations, introducing additional important sets. Finally, Section 3 focuses
on the Bruhat order, an essential concept in this work.

2.1
Permutations

There are several ways to represent a permutation σ ∈ Sn+1, a common
one is given by σ = [1σ2σ3σ4σ] ∈ S4. Another way is by using Coxeter-Weyl
generators ai = (i, i + 1), with i ∈ [[n]] = {1, . . . , n}. Using this notation, a
permutation can be written as a product of these transpositions. For instance,
σ = [4321] = a1a2a1a3a2a1. This representation is referred to as a word for
the permutation.

Definition 2.1.1. The set of pairs (i, j) that are inversions of σ is given by

Inv(σ) = {(i, j) ∈ [[n + 1]]2 ∣ (i < j) ∧ (iσ > j
σ)}.

Additionally, inv(σ) = card{Inv(σ)}.

A set I ⊆ {(i, j) ∈ [[n + 1]]2 ∣ i < j} is the set of inversions of a
permutation σ ∈ Sn+1, if and only if ∀i, j, k ∈ [[n + 1]] with i < j < k, the
following conditions are satisfied:

1. if (i, j), (j, k) ∈ I then (i, k) ∈ I;

2. if (i, j), (j, k) /∈ I then (i, k) /∈ I.

Also, if ρ = ση then Inv(σ) ⊔ Inv(ρ) = Inv(η).

Definition 2.1.2. A reduced word for a permutation σ ∈ Sn+1 is an
expression of σ as a product of generators ai = (i, i+ 1), where the number of
generators is minimal and equal to inv(σ).

To obtain the reduced word, we consider certain properties of the
generators:
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1. aiai = e, where e is the identity permutation;

2. ajai = aiaj, for ∣i − j∣ ≠ 1;

3. aiai+1ai = ai+1aiai+1.

There may be more than one reduced word for a given permutation,
but all reduced words are related through a sequence of moves based on the
properties above.

There is a unique permutation η = a1a2a1a3a2a1 . . . anan−1 . . . a2a1,
known as the top permutation, where the length of its reduced word is
inv(η) = n(n+1)

2 , the largest possible value.

Definition 2.1.3. Given σ0 ∈ Sj and σ1 ∈ Sk, define σ = σ0 ⊕ σ1 ∈ Sj+k, such
that

i
σ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i
σ0 , i ≤ j,

(i − j)σ1 + j, i > j.
(2-1)

Example 2.1.1. Let σ0 = [231] = a2a1 ∈ S3 and σ1 = [312] = a1a2 ∈ S3.
Then σ = σ0 ⊕ σ1 = [231645] = a2a1a4a5 ∈ S6. ⋄

Definition 2.1.4. Let σ ∈ Sn+1. The permutation matrix Pσ is defined by
e

T
kPσ = e

T
kσ , where eT

k is the k-th standard basis row vector.

Example 2.1.2. For η ∈ Sn+1, the permutation matrix is:

Pη =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

. .
.

1

⎞
⎟⎟⎟⎟⎟⎟
⎠
.

⋄

Remark 2.1.5. If σ = σ0 ⊕ σ1, then Pσ = Pσ0 ⊕ Pσ1 , i.e., the matrix Pσ has
two diagonal blocks Pσ0 and Pσ1 , and is zero elsewhere. ⋄

Example 2.1.3. Consider σ0 = [21] ∈ S2, σ1 = [312] ∈ S3 and σ = σ0 ⊕ σ1 =

[21534] ∈ S5. We have

Pσ0 = ( 1
1

) , Pσ1 =

⎛
⎜⎜⎜⎜
⎝

1
1

1

⎞
⎟⎟⎟⎟
⎠

and then

Pσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1

1
1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

⋄
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2.2
Wiring Diagram

Reduced words for a permutation σ can be represented using a diagram.
There are multiple ways to interpret this diagram. In our approach, each point
represents a number, starting from 1 at the top and ending at n + 1 at the
bottom, with the permutation being read by mapping the points on the left
side to the points on the right. Each crossing in the diagram corresponds to a
generator ai, read from left to right. Moreover, from top to bottom, the space
between two adjacent points corresponds to a single generator, starting from a1

up to an. This representation helps us identify reduced words for permutations.

Example 2.2.1. Consider n = 2 and η = [321]. We construct the diagram of
η by marking the points as described above. In this diagram, we map the first
point on the left to the last point on the right, and follow the permutation for
the other points accordingly. Thus, we obtain the following diagram:

Figure 2.1: Wiring diagram of η ∈ S3.

Now, we need to read the diagram. As described, the generators are read
from top to bottom and from left to right. Therefore, the reduced word for η
is given by

η = a1a2a1.

Notice that η = [321] has two different reduced words, namely η = a1a2a1 and
η = a2a1a2. ⋄

The inversion ai = (i, i+1) appears on the wiring diagram at height i+ 1
2 .

Definition 2.2.1. The horizontal row between the starting points of two
adjacent wires at height i + 1

2 is called ri.

The row ri does not appear explicitly in the wiring diagram.

Definition 2.2.2. A region is a bounded connected component of the
complement in the plane of the union of the wires in a wiring diagram.

A region of a wiring diagram has vertices k1 and k2 on the row ik1 , along
with all vertices k where k1 < k < k2 and ∣ik − ik1∣ = 1.
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Figure 2.2 shows the rows and provides an example of a region. Note that
this wiring diagram contains two regions, although we are explicitly showing
only one.

Figure 2.2: Example of a region in the wiring diagram of the permutation
σ = a2a1a4a3a2a5a4 ∈ S6.

The following concept is closely related to the wiring diagram.

Definition 2.2.3. A permutation σ ∈ Sn+1 blocks at j, 1 ≤ j ≤ n, if and
only if i ≤ j implies iσ ≤ j. Equivalently, σ blocks at j if and only if aj does
not appear in a reduced word for σ. Let Block(σ) be the set of j such that σ
blocks at j and b = block(σ) = ∣Block(σ)∣. A permutation σ does not block
if block(σ) = 0.

Example 2.2.2. Let σ = [231645] = a2a1a4a5 ∈ S6.

Figure 2.3: Wiring diagram of σ = a2a1a4a5 ∈ S6.

The permutation σ blocks at 3. Notice that when a permutation blocks,
it is easy to write it as a sum, in this case σ = σ0 ⊕ σ1, where σ0 = [231] ∈ S3

and σ1 = [312] ∈ S3. ⋄

2.3
Signed Permutations

In the previous section, we associated a permutation σ ∈ Sn+1 with an
(n+1)×(n+1) matrix, denoted by Pσ. In this section, we explore another type
of matrix associated with permutations and study the corresponding groups
of matrices.
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Let Bn+1 be the group of signed permutation matrices, which are orthog-
onal matrices P such that there exits a permutation σ ∈ Sn+1, where

e
T
i P = ±e

T
iσ , ∀i ∈ [[n + 1]].

Example 2.3.1. Consider the matrix

P =

⎛
⎜⎜⎜⎜
⎝

0 0 1
0 −1 0
−1 0 0

⎞
⎟⎟⎟⎟
⎠
,

Since e
T
1 P = e

T
3 , eT

2 P = −eT
2 , and e

T
3 P = −eT

1 , there exists a permutation
σ ∈ S3 associated with P , and σ = [321] = a1a2a1. Hence, P ∈ B3. ⋄

The intersection of Bn+1 with the group of orthogonal matrices with
determinant equal to 1 is defined as B+

n+1 = Bn+1 ∩ SOn+1.
Additionally, the normal subgroup Diag+

n+1 ⊂ B+
n+1 is defined consisting

of permutation matrices that are diagonal and orthogonal with determinant 1.
This subgroup is isomorphic to {±1}n.

The map ϕ ∶ B+
n+1 → Sn+1 given by P ↦ σP is a surjective homomor-

phism, with kernel Diag+
n+1. Therefore, since Diag+

n+1 is a normal subgroup,
then

B+
n+1

Diag+
n+1

≈ Sn+1 .

By organizing the signs into a diagonal matrix, this isomorphism intu-
itively indicates that if we “forget” the signs, we are left with a permutation.

Thus, we have seen that every permutation σ ∈ Sn+1 corresponds to a
matrix Pσ ∈ B+

n+1, where σP = σ.

2.4
Bruhat Order

The Bruhat order is another key concept in this work. There are several
types of Bruhat order, we use two of them.

Definition 2.4.1. Given σ0, σ1 ∈ Sn+1, we write σ0 ◁ σ1 if and only if there
are reduced words σ1 = ai1ai2 . . . ail

and σ0 = ai1ai2 . . . aik−1aik+1 . . . ail
.

Example 2.4.1. Let σ0 = a1a2, σ1 = a1a2a1 ∈ S3. It is easy to see that
σ0 = a1a2 ◁ a1a2a1 = σ1. ⋄

Definition 2.4.2. (Strong Bruhat order) Given σ0, σ1 ∈ Sn+1, we write σ0 < σ1

if and only if there is a reduced word for σ0 in terms of the Coxeter generators
aj that is a subexpression of a reduced word for σ1.
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We have σ0 ≤ σk, with k = inv(σk)− inv(σ0) ≥ 0, if and only if there are
σ1 . . . σk−1 such that σ0 ◁ σ1 ◁ . . .◁ σk−1 ◁ σk.

Example 2.4.2. Let σ0 = e, σ1 = a1a2a1 ∈ S3. The sequence e◁ a1 ◁ a1a2 ◁

a1a2a1, shows that e ≤ a1a2a1.
On the other hand a1 ≰ a2, a2 ≰ a1 and e /◁ a1a2a1. ⋄



3
Matrix Groups

In this chapter, we study examples of real matrices groups, with a
particular focus on Quatn+1, Spinn+1, and B̃+

n+1.
More precisely, a matrix group G is a subgroup of the group of invertible

real matrices Gln+1 ⊂ R(n+1)×(n+1). The group Spinn+1 is a smooth manifold
and therefore a Lie group. In contrast, the groups Quatn+1 and B̃+

n+1 are finite
groups. The detailed constructions presented in this chapter, along with the
matrix representations of the generators, are outlined in [6].

3.1
The Group Quatn+1

In this section, we define the group Quatn+1 by its generators âi.

Definition 3.1.1. The group Quatn+1 is generated by the elements
±â1, . . . ,±ân that satisfy the following relations:

(i) â
2
i = −1;

(ii) âiâj = âj âi if ∣i − j∣ ≠ 1;

(iii) âiâj = −âj âi if ∣i − j∣ = 1.

Therefore, the elements of this finite group can be listed, with the
cardinality given by ∣Quatn+1 ∣ = 2n+1,

Quatn+1 = {±1,±â1,±â2,±â1â2,±â3,±â1â3,±â2â3,±â1â2â3, . . . ,±â1 . . . ân}.

The group Quatn+1 can be regarded as a group of 2n × 2n real matrices
by interpreting its generators as matrices.

Note that each âi is an antisymmetric matrix. Additionally, each block
of the matrix âi has determinant 1. Consequently, âi has determinant 1.

Since each element q ∈ Quatn+1 is a product of generators âi, such that

q = ±â
ε1
1 . . . â

εn

n ∈ Quatn+1

with εk ∈ {0, 1}, it follows det(q) = 1.
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The matrices âi, each have exactly one non-zero entry per column, and
this entry is either 1 or −1. Furthermore, since det(âi) = 1, âi is a signed
permutation matrix. Therefore, âi ∈ B+

2n for each i ∈ [[n]].

Example 3.1.1. For n = 2, the matrices âi with i ∈ {1, 2} are 22×22 matrices
of the following form:

â1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

e â2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

⋄

3.2
Clifford Algebra

In this section, we explore the matrix algebra generated by the elements
âi, which is called the even Clifford algebra, denoted by Cl0n+1. In the previous
section, we saw that Quatn+1 is a finite group and precisely identified its
elements.

Note that Quatn+1 = HQuatn+1 ⊔(−HQuatn+1), where HQuatn+1 con-
sists of elements appearing with a positive sign in Quatn+1. Furthermore, ob-
serve that HQuatn+1 ⊂ Quatn+1 is not a subgroup, since â2

i = −1 ∉ HQuatn+1.

Definition 3.2.1. Cl0n+1 is an associative algebra with unity over R, which is
a vector space of dimension 2n, with an orthonormal basis HQuatn+1.

Therefore, the Clifford algebra Cl0n+1 is generated by the elements âi,
which satisfy the relations previously seen in the definition of the generators of
Quatn+1. Additionally, as a vector space, it is endowed with an inner product
defined by

⟨z1, z2⟩ = 2−n Trace(z1z
T
2 ).

For n small enough, Clifford algebras are well-known algebras.

Example 3.2.1. For n = 1, Cl02 is a 2-dimensional algebra over R with basis
{1, â1}, where â1 are 2 × 2 matrices satisfying the condition â

2
1 = −1.

Therefore, the elements of Cl02 are of the form u + vâ1, where u, v ∈ R.
From the previous section, we know that

â1 = (0 −1
1 0

) .
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Note that this is the matrix form of i ∈ C. Therefore, the elements of Cl02
are given by u + vâ1, where â1 = i, which means Cl02 = C. ⋄

Describing the generators of Clifford algebras for n ≥ 2 becomes a
relatively laborious and extensive task, as the dimension grows exponentially.

Classifications for Clifford algebras can be found in [12].

3.3
One Parameter Subgroups

A one-parameter subgroup of a group G is a continuous homomor-
phism from R as an additive group to the group G.

Define the one-parameter subgroup α
SO
i ∶ R → SOn+1 by

α
SO
i (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I1

cos(θ) − sin(θ)
sin(θ) cos(θ)

I2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where I1 ∈ R(i−1)×(i−1) and I2 ∈ R(n−i)×(n−i) are identity matrices.
From the generators âi ∈ Quatn+1, one can define the one-parameter

subgroups of the group SO2n

α
Spin
i ∶ R → SO2n , α

Spin
i (θ) = exp (θ âi

2 ) .

Since âi are matrices with zero diagonals, it is not difficult to see that
exp(θ âi

2 ) is a matrix where the diagonal entries are cos( θ

2), and the non-zero
entries in the positions of âi are sin( θ

2).
Therefore, the elements αSpin

i (θ) are 2n × 2n matrices defined as

α
Spin
i (θ) = exp (θ âi

2 ) = cos (θ2) + âi sin (θ2) .

For simplicity, αSpin
i (θ) will be denoted as αi(θ).

Note that the elements αi(θ) are block orthogonal matrices, with each
matrix having identical diagonal elements. Additionally, the determinant of
each block is 1, hence the determinant of the entire matrix is also 1.

3.4
The Group Spinn+1

Having defined αi(θ), the next step is to consider the group generated
by these elements.
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Definition 3.4.1. The group generated by the elements αi(θ), where θ ∈ R
and i ∈ [[n]] = {1, 2, . . . , n}, is defined as Spinn+1.

Since Spinn+1 is defined by its generators αi(θ), which are expressed as
matrices, the group can be seen as a matrix group. By adjusting the codomain
of αi(θ), we obtain αi = α

Spin
i ∶ R → Spinn+1.

Given that αi(π) = âi, it follows that Quatn+1 ⊂ Spinn+1 ⊂ Cl0n+1. From
αi(π) = âi, we can define in Cl0n+1 the elements

a
Spin
i =

1
2 âi, i ∈ [[n]].

Let spinn+1 ⊂ Cl0n+1 be the Lie algebra generated by the elements a
Spin
i .

There exists an isomorphism between spinn+1 and son+1 as Lie algebras, thus
the dimension of spinn+1 is given by n(n+1)

2 , which is the dimension of son+1.
Therefore, the group Spinn+1 has the same dimension.

Remark 3.4.2. Multiplication by an element of the group Spinn+1 defines
a linear transformation of the Clifford algebra Cl0n+1 on itself. The basis
HQuatn+1 allows us to express this linear transformation as a 2n × 2n real
matrix. ⋄

3.5
The Group B̃+

n+1

Having defined the groups Quatn+1 and Spinn+1 along with their gener-
ators, we can now define the finite group B̃+

n+1 ⊂ Spinn+1.
Let us define the elements ái and ài, such that (ái)−1

= ài as follows:

ái = αi (
π
2 ) =

1 + âi√
2
, ài = αi (

−π
2 ) =

1 − âi√
2
,

where ái, ài ∈ Spinn+1 ⊂ Cl0n+1. Note that âi = á
2
i and â

2
i = á

4
i = −1.

Definition 3.5.1. The group generated by the elements {á1, . . . , án} is defined
as B̃+

n+1 ⊂ Spinn+1.

Since both Quatn+1 and Spinn+1 are regarded as matrix groups, B̃+
n+1 can

also naturally be viewed as a matrix group.
Note that the matrices are orthogonal, with determinant 1. Additionally,

the elements on each diagonal are equal, and if i ≠ j we have aij = −aji.
Let us examine some properties that illustrate how the elements âi, ái

and ài interact with one another.
For ái ∈ B̃+

n+1 e âi ∈ Quatn+1, the following identities hold:
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(i) For all i ∈ [[n − 1]], we have
⎧⎪⎪⎪⎨⎪⎪⎪⎩

áiái+1ái = ái+1áiái+1

(ái)−1
ái+1(ái)−1

= ái+1(ái)−1
ái+1

;

(ii) If ∣i − j∣ ≠ 1 ⟹

⎧⎪⎪⎪⎨⎪⎪⎪⎩

áj ái = áiáj

âj ái = áiâj

;

(iii) If ∣i − j∣ = 1 ⟹

⎧⎪⎪⎪⎨⎪⎪⎪⎩

âj ái = (ái)−1
âj

âj âi = −âiâj

.

The acute and grave maps are defined using reduced words and the
elements ái, ài ∈ B̃+

n+1 ⊂ Cl0n+1.

Definition 3.5.2. Let σ ∈ Sn+1, such that σ = ai1 . . . ail
is a reduced word.

Let ài = (ái)−1
. Define the following maps:

(i) acute ∶ Sn+1 → B̃+
n+1, given by acute(σ) = σ́ = ái1 . . . áil

;

(ii) grave ∶ Sn+1 → B̃+
n+1, given by grave(σ) = σ̀ = ài1 . . . àil

.

At first glance, the definition seems to depend on the chosen reduced
word. Lemma 3.2 in [4] shows that the maps are well-defined and thus there
is no such dependence.

Example 3.5.1. Let σ = η = [654321] = a1a2a1a3a2a1a4a3a2a1a5a4a3a2a1.
Recall that ái =

1+âi√
2 , then ή = á1á2á1á3á2á1á4á3á2á1á5á4á3á2á1. So

ή = (1 + â1√
2

) . . . (1 + â1√
2

) .

Thus, keeping in mind the relationships between âi, ái, and ài, after some
work we conclude that

ή =
1

2
√

2(1 + â3 − â2â4 − â2â3â4 − â1â5 − â1â3â5 + â1â2â4â5 + â1â2â3â4â5).
⋄
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3.6
The Homomorphism Π ∶ Spinn+1 → SOn+1

The group Spinn+1, as previously defined, is also recognized as the double
cover of SOn+1. As Lie algebras, there is a unique homorphism between spinn+1

and son+1. Additionally, Spinn+1 is simply connected and there exists a unique
homomorphism Π ∶ Spinn+1 → SOn+1, such that αi(θ) ↦ α

SO
i (θ). In other

words, the map is defined by:

Π ∶ Spinn+1 → SOn+1

αi(θ) ↦
⎛
⎜⎜⎜⎜
⎝

I1

Rot(θ)
I2

⎞
⎟⎟⎟⎟
⎠
,

where I1 ∈ R(i−1)×(i−1) and I2 ∈ R(n−i)×(n−i) are identity matrices. Moreover,
Rot(θ) is the 2 × 2 rotation matrix given by

Rot(θ) = (cos(θ) − sin(θ)
sin(θ) cos(θ)

) .

Note that Π(âi) is a diagonal matrix with determinant 1. Furthermore,
Π(ái) is a permutation matrix, also with determinant 1.

Recall that Quatn+1 ⊂ Spinn+1 is generated by âi, and B̃+
n+1 ⊂ Spinn+1 is

generated by ái. Therefore,

Π[Quatn+1] ⊂ Diag+
n+1 and Π[B̃+

n+1] ⊂ B+
n+1 .

Since the reverse inclusions are also valid, it follows that

Π[Quatn+1] = Diag+
n+1 and Π[B̃+

n+1] = B+
n+1 .

It has already been established that ϕ ∶ B+
n+1 → Sn+1 it is a surjective

homomorphism, whose kernel is Diag+
n+1. Thus,

B+
n+1

Diag+
n+1

≈ Sn+1 .

Furthermore, ϕ ◦ Π = σ, where

σ ∶ B̃+
n+1 → Sn+1

z ↦ σz
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it is a homomorphism, whose kernel is Quatn+1.
The map Π ∶ Spinn+1 → SOn+1 provides the following exact sequences,

i.e., chained homomorphisms where the image of the predecessor is the kernel
of the successor:

(i) 1 → Quatn+1 ↪ B̃+
n+1

σ
−→ Sn+1 → 1;

(ii) 1 → {±1} ↪ Quatn+1
Π
−→ Diag+

n+1 → 1,

where B̃+
n+1 = Π−1[B+

n+1] and Quatn+1 = Π−1[Diag+
n+1].

Example 3.6.1. Let z = á1á3á2 ∈ B̃+
4 , then

Π(z) = Π(á1á3á2) = Π(á1)Π(á3)Π(á2)

Π(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0
1 0 0 0
0 0 0 −1
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with ϕ(Π(z)) = [3142] = a1a3a2. ⋄

With the homomorphism well understood, from now on, we omit ϕ and
simply refer to it as σ = Π(z).

The group Diagn+1 acts by conjugations on SOn+1. The quotient
En =

Diagn+1
±I

is inherently isomorphic to {±1}[[n]]: a matrix D ∈ Diagn+1 cor-

responds to E ∈ En = {±1}[[n]], with Ei = Di,iDi+1,i+1.
Furthermore, the group En also acts by automorphisms on SOn+1 . This

action can be lifted to Spinn+1 and then extended to Cl0n+1. Specifically, each
element E ∈ En defines automorphisms of Spinn+1 and Cl0n+1 through the
following relations:

(αi(θ))E
= αi(Eiθ), (âi)E

= Eiâi.

3.7
The Real Part

In this section, we explore various results regarding the real part of an
element z ∈ Cl0n+1. The proofs of the results in this section can be found in [1]
and [6].

An element of Cl0n+1 can be written as a linear combination of elements
from Quatn+1 ⊂ Spinn+1 ⊂ Cl0n+1. Therefore, any element z ∈ Cl0n+1 can be
expressed as

z = ∑
q∈HQuatn+1

cqq, with cq ∈ R.
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Definition 3.7.1. The real part of z ∈ Cl0n+1 is defined by

R(z) = 2−n Trace(z) = ⟨z, 1⟩.

Thus, for z = ∑q∈HQuatn+1
cqq ∈ Cl0n+1 the real part is the independent

coefficient R(z) = c1.
Let us see a result that relates the real part of z ∈ Spinn+1 ⊂ Cl0n+1, with

the eigenvalues of the matrix Π(z) ∈ SOn+1.

Fact 3.7.1. For z ∈ Spinn+1 ⊂ Cl0n+1, let Q = Π(z) ∈ SOn+1 such that the
eigenvalues are exp(±θ1i), . . . , exp(±θki), 1, . . . , 1. Then

R(z) = ± cos (θ1
2 ) . . . cos (θk

2 ) .

In particular, R(z) = 0 if and only if, -1 is an eigenvalue of Q.

Example 3.7.1. Let z ∈ Spin4, such that {exp(±π

2 i), exp(±π

3 i)} is the set of
eigenvalues of Q = Π(z) ∈ SO4. Thus, we can assume

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(π

2 ) − sin(π

2 )
sin(π

2 ) cos(π

2 )
cos(π

3 ) − sin(π

3 )
sin(π

3 ) cos(π

3 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
1

1
2 −

√
3

2√
3

2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and z = α1(π

2 )α3(π

3 ). Therefore, by Fact 3.7.1,

R(z) = cos (π4 ) cos (π6 ) =

√
2

2

√
3

2 =

√
6

4 .

⋄

The previous result shows that R(z) can be computed using information
about Q = Π(z) ∈ SOn+1. Next, we focus on how R(z) can be computed based
on information about Q ∈ B+

n+1.

Definition 3.7.2. A matrix Q ∈ B+
n+1 is said to be an even-length cycle if

there exist indices i1, . . . , ik such that

(i) (eik
)T
Q = −(ei1)

T ,

(ii) (eij
)T
Q = (eij+1)

T for 1 ≤ j < k,

(iii) (ej)T
Q = (ej)T for j > k.

If the length is odd, (eik
)T
Q = (ei1)

T , and (ii) and (iii) are still valid.
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Fact 3.7.2. Let z0 ∈ B̃+
n+1, such that Π(z0) = Q0 ∈ B+

n+1 is a cycle of length
k. Then R(z0) = ±2

−k+1
2 .

Example 3.7.2. Let z = á3á2 ∈ B̃+
4 . Thus, σ = ϕ ◦ Π(z) = a3a2 = (234) ∈ S4,

such that Π(z) = Q ∈ B+
4 is the permutation matrix of σ, given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since σ is a cycle of lenght 3, the eigenvalues of Q are: exp(±2πi

3 ) and 1.
Thus, by the previous result

R(z) = ± cos (π3 ) = ±
1
2 = ±2

−k+1
2 , with k = 3.

Notice that, through manual computation, we obtain

z = á3á2 = (1 + â3√
2

) (1 + â2√
2

) =
1
2(1 + â2 + â3 + â3â2).

Therefore, R(z) = 1
2 . ⋄

Another way to compute the real part, in the case of an element in
Spinn+1 of a specific type, is by using the number of cycles of a permutation
in Sn+1.

Recall the exact sequences:

1 → Quatn+1 ↪ B̃+
n+1

σ
−→ Sn+1 → 1;

1 → {±1} ↪ Quatn+1
Π
−→ Diag+

n+1 → 1,

where Π ∶ Spinn+1 → SOn+1 and ϕ ◦ Π(z) = σ, with ϕ ∶ B+
n+1 → Sn+1.

We have Π−1[{σ}] = σ́Quatn+1 ⊂ B̃+
n+1, which implies Π[σ́Quatn+1] ⊂

Π[B̃+
n+1] = B+

n+1. From the first exact sequence above, it follows that for any
σ ∈ Sn+1, the set σ́Quatn+1 is a coset.

Definition 3.7.3. The subgroup HDiag,X ≤ Diag+
n+1 with index 2∣X∣−1 consists

of matrices E ∈ Diag+
n+1 such that, if A = {i1, . . . , ik} ∈ X, then the product

Ei1i1 . . . Eikik
= 1.

Example 3.7.3. Let n = 4 and X = {{1, 3}, {2, 4, 5}}. Let E ∈ Diag+
5 be the
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matrix defined by

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since E2,2E4,4E5,5 = (−1).(−1).1 = 1 e E1,1E3,3 = 1.1 = 1 with
A = {2, 4, 5}, B = {1, 3} ∈ X, then E ∈ HDiag,X . ⋄

Let HX = Π−1[HDiag,X] ≤ Quatn+1, where Π ∶ Quatn+1 → Diag+
n+1 is the

restriction of Π ∶ Spinn+1 → SOn+1.
For a permutation σ ∈ Sn+1, consider Xσ the partition of [[n + 1]] into

cycles of σ. Let Hσ = HXσ
≤ Quatn+1. It follows that ∣Hσ∣ = 2n+2−c, where c

is the number of cycles of σ.

Example 3.7.4. Let σ = (15)(234) ∈ S5. Thus, Xσ = {{1, 5}, {2, 3, 4}}.
Moreover, ∣Hσ∣ = 24+2−2

= 16.
By a simple computation, we can see that the subgroup HDiag,Xσ

is
generated by

diag(−1, 1, 1, 1,−1), diag(1,−1,−1, 1, 1), diag(1, 1,−1,−1, 1) ∈ Diag+
5 .

Lifting to Hσ, we have the generators â1â2â3â4, â2, â3 ∈ Quat5, then

Hσ = {±1,±â2,±â3,±â2â3,±â1â4,±â1â2â4,±â1â3â4,±â1â2â3â4}.

Note that ∣Hσ∣ = 16, as expected. ⋄

Fact 3.7.3. Consider σ ∈ Sn+1, written as a product of disjoint cycles, such
that c is the number of cycles. Choose z0 ∈ σ́Quatn+1, such that R(z0) > 0.
For q ∈ Quatn+1, we have

∣R(qz0)∣ = ∣R(z0q)∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2− (n+1−c)
2 , q ∈ Hσ,

0, q ∉ Hσ.

There are 2n+1−c values of q ∈ Quatn+1, such that R(qz0) > 0 (similarly
for R(z0q)). Furthermore, if z0 is expanded in the canonical basis as z0 =

∑p∈HQuatn+1
cpp, then cp ≠ 0, if and only if p ∈ Hσ.

Example 3.7.5. Let σ = (13)(24) = a2a1a3a2 ∈ S4. Then, making use of the
known relations for ái, we have:

σ́ =
â1 + â2 + â3 − â1â2â3

2 .
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Moreover, HDiag,Xσ
is generated by

diag(1,−1, 1,−1), diag(−1, 1,−1, 1) ∈ Diag+
4 .

Then, Hσ is generated by â1â2, â2â3 ∈ Quat4, thus

Hσ = {±1,±â1â2,±â1â3,±â2â3}.

Let us choose q0 = −â3 ∈ Quat4. We have,

z0 = −â3σ́ =
1 − â1â3 + â2â3 + â1â2

2 .

Therefore, R(z0) = 1
2 > 0.

We can see that the terms of z0 match the elements of Hσ. ⋄



4
Preancestries and Ancestries

In this chapter, we introduce two key concepts for this work: preancestry
and ancestry. Given a permutation, a preancestry is a sequence of elements in
Sn+1, and an ancestry is a sequence of elements in B̃+

n+1.
These two concepts guide the direction of this work. In the upcoming

chapters, their influence on our study will be further explored and better
understood.

See [1] for the proofs of the results of this chapter.

4.1
Preancestries

A preancestry for a permutation is directly connected to the reduced
word. It can be represented by a sequence consisting of ±2 and 0.

Definition 4.1.1. Let σ = ai1ai2 . . . ail
∈ Sn+1 be a reduced word. A

preancestry is a sequence (ρk)0≤k≤l of permutations with the following
properties:

1. ρ0 = ρl = η;

2. for all k ∈ [[l]], either ρk = ρk−1 or ρk = ρk−1aik
;

3. for all k ∈ [[l]], if ρk−1aik
> ρk−1 then ρk = ρk−1aik

.

Example 4.1.1. Let σ = a1a2a1 ∈ S3. Then

(ρ0 = η, ρ1 = ρ0, ρ2 = ρ1, ρ3 = ρ2) = (η, η, η, η)

is a preancestry sequence. This is just one example of a preancestry, specifically
the trivial one, but it is not the only possible preancestry. The following
sequence also defines a valid one:

(ρ0 = η, ρ1 = ηa1, ρ2 = ρ1, ρ3 = ρ2a1) = (η, a1a2, a1a2, η).

⋄
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It is generally more practical in this work to represent a preancestry (ρk)
using a sequence of ±2 and 0:

ε0 ∶ [[n]] → {−2, 0,+2}

ε0(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2, ρk = ρk−1aik
< ρk−1,

0, ρk = ρk−1,

2, ρk = ρk−1aik
> ρk−1.

Therefore, a sequence ε0 is considered a preancestry if the sequence of
permutations (ρk)0≤k≤l defined below, satisfies the conditions for a preancestry:

ρ0 = η, ρk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρk−1aik
, ε0(k) ≠ 0,

ρk−1, ε0(k) = 0.

It should be noted that in any preancestry ε0, the count of k ∈ [[l]] such
that ε0(k) = −2 equals the count of k ∈ [[l]] such that ε0(k) = +2.

Definition 4.1.2. The dimension d = dim(ε0) of a preancestry is determined
by the number of occurrences of +2 (or −2) in the sequence.

In the wiring diagram for σ, a preancestry ε0 is represented using
diamonds to indicate the values in the sequence: a black diamond denotes
−2, and a white diamond denotes +2. If ε0(k) = 0, the space remains empty.

Example 4.1.1 presents two preancestries. The preancestry with dimen-
sion 0 is depicted in the wiring diagram by leaving the inversions empty, while
the preancestry with dimension 1 is represented by marking a black diamond
for the first inversion and a white diamond for the second. Figure 4.1 illustrates
these diagrams.

Figure 4.1: Preancestries of dimension 0 and 1, respectively, ε0 = (0, 0, 0) and
ε0 = (−2, 0,+2).

Example 4.1.2. Consider the reduced word for σ = a2a3a2a1a2a4a3a2 ∈ S5.
The sequences and the wiring diagram, below represents a preancestry of
dimension 1

(η, η, ηa2, ηa2, ηa2, ηa2, ηa2, η, η) = (0,−2, 0, 0, 0, 0, 2, 0).
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Figure 4.2: Preancestry of dimension 1, ε = (0,−2, 0, 0, 0, 0,+2, 0).

The next sequences and wiring diagram, represents a preancestry of
dimension 2

(η, ηa2, ηa2a3, ηa2a3, ηa2a3, ηa2a3, ηa2a3, ηa2, η) = (−2,−2, 0, 0, 0, 0,+2,+2).

Figure 4.3: Preancestry of dimension 2, ε = (−2,−2, 0, 0, 0, 0,+2,+2).

⋄

Fact 4.1.1. Consider a permutation σ ∈ Sn+1. The number of preancestries
per dimension does not depend on the choice of the reduced word.

Counting preancestries is a task that becomes progressively more chal-
lenging. We have methods to count them for dimensions 0, 1, and 2. However,
for higher dimensions, we require a different approach.

There exists one preancestry with dimension 0, identified by the absence
of marked vertices.

Preancestries with dimension 1 are straightforward to categorize: we
simply mark two adjacent intersections along the same row. In essence, a
1-dimensional preancestry corresponds to a bounded section of the wiring
diagram complement, with the two marked intersections representing its left
and right extremes. The count of 1-dimensional preancestries is l−n+ b where
l = inv(σ) and b = block(σ).

Figure 4.2 shows a preancestry of dimension 1. Note that for σ =

a2a3a2a1a2a4a3a2 ∈ S6 there are l − n + b = 8 − 4 + 0 = 4 preancestries
with this dimension.



Chapter 4. Preancestries and Ancestries 35

For dimension 2, the scenario becomes slightly more intricate. Consider a
preancestry ε0 of dimension 2, and let k1 < k2 < k3 < k4 such that ∣ε0(ki)∣ = 2.
In this case, ε0(k1) = −2 and ε0(k4) = +2. If ε0(k2) = +2, then ε0(k3) = −2,
ik1 = ik2 , and ik3 = ik4 . In this scenario, intersections k1 and k2 are consecutive
on row ik1 , and intersections k3 and k4 are consecutive on row ik3 . If ε0(k2) = −2
and ∣ik1 − ik2∣ > 1, we also observe two pairs of consecutive intersections on
two rows. In both cases, the preancestry is classified as type I.

The figure below illustrates a preancestry of this type.

Figure 4.4: Preancestry of dimension 2, ε = (−2, 0, 2, 0,−2, 0, 0, 2).

If ε0(k2) = −2 and ε0(k3) = +2, with ∣ik1 − ik2∣ = 1, then ε0 belongs to
type II. Here, ik1 = ik4 and ik2 = ik3 , and intersections k2 and k3 are consecutive
on row ik2 . Intersection k1 is the last on row ik1 before k2, while intersection
k4 is the first on row ik1 after k3. There exists no limit to the number of
intersections on row ik1 between k2 and k3. Figure 4.3 shows a preancestry of
dimension 2 and type II.

The subword comprised of all marked letters has value 1. Additionally,
the subword consisting of unmarked letters contains valuable information, as
highlighted by the following result. This result helps us estimate the maximum
dimension of a preancestry.

Fact 4.1.2. Consider σ ∈ Sn+1 and a fixed reduced word of lenght l =

inv(σ). Consider a preancestry ε0 of dimension d = dim(ε0). There are
δ = l − 2d unmarked crossings k1, . . . , kδ. Assume that the unmarked crossing
kj is (ij,0, ij,1) ∈ Inv(σ). We then have

σ = (iδ,0iδ,1) . . . (i1,0i1,1).

If c = nc(σ) is the number of cycles then 2d ≤ l + c − n − 1.

Fact 4.1.3. For n ≥ 2, let η ∈ Sn+1 be the top permutation. The largest possible
dimension among all preancestries is

dmax = ⌊n
2

4 ⌋ .
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Furthermore, there exists a unique preancestry of dimension dmax.

4.2
Ancestries

An ancestry is closely related to a preancestry. In terms of a wiring
diagram, it identifies the inversions that the preancestry does not mark, with
circles, either black or white. In terms of a sequence, it assigns −1 or 1 to the
zeros of ε0.

Definition 4.2.1. Let σ = ai1 . . . ail
∈ Sn+1 be a fixed reduced word. An

ancestry is a sequence (ϱ)0≤k≤l of elements of B̃+
n+1 such that:

1. ϱ0 = ή, ϱl ∈ ήQuatn+1;

2. for all k, we have ϱk = ϱk−1 or ϱk = ϱk−1áik
or ϱk = ϱk−1âik

;

3. the sequence (ρk) defined by ρk = ΠB̃+
n+1,Sn+1

(ϱk) is a preancestry.

The final condition can be restated as follows: if Π(ϱk−1) < Π(ϱk−1)aik
,

it implies that ϱk = ϱk−1áik
, for all k.

The ancestry (ϱk) corresponds to the preancestry (ρk).

Example 4.2.1. Consider σ = a1a2a1 ∈ S3, from Example 4.1.1. The
sequences below represent some ancestries for this permutation:

(ή, ή, ή, ή), (ή, ήá1â2, ήâ2, ήâ1).

⋄

There are three additional sequences that represent an ancestry. Two
consist of integers, and the other comprises elements of Quatn+1. The first is
defined recursively by

ξ ∶ [[l]] → {0, 1, 2}

ϱk = ϱk−1(áik
)ξ(k)

.

It follows that ϱk = ϱ0 ⋅ (ái1)
ξ(1)⋯(áik

)ξ(k), where ϱ0 = ή.1

The sequence of elements (qk)0≤k≤l is defined as follows:

ρ́kqk = ϱk, with qk ∈ Quatn+1,

so that, in particular q0 = 1 and ql = ὴϱl.
1In the reference [1], the equation is missing the term ϱ0.
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The last sequence is the one used most frequently. Given an ancestry, we
define a sequence:

ε ∶ [[l]] → {±1,±2}

ε(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2, ξ(k) = 1, ρk < ρk−1,

+2, ξ(k) = 1, ρk > ρk−1,

(1 − ξ(k))[âik
, qk−1], ξ(k) ≠ 1.

It is possible to recover ξ and (ϱk) from ε by:

ξ(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, ε(k) = [âik
, qk−1],

2, ε(k) = −[âik
, qk−1], ϱk = ϱk−1(áik

)ξ(k);

1, ∣ε(k)∣ = 2.

Notation 4.2.1. Here, [âik
, qk−1] = (âik

)−1
q
−1
k−1âik

qk−1 ∈ {±1} represents the
commutator.

Furthermore, qk = (ρ́k)−1
ϱk = (áik

)− sign(ε(k))
qk−1áik

.
Given the reduced word, each of the sequences (ϱk), ξ, and ε allows us to

obtain (qk) and the other two sequences. With the preancestry and (qk), the
three sequences mentioned above can also be derived. Therefore, these three
sequences are considered alternative descriptions of an ancestry.

Example 4.2.2. Consider σ = a1a2a1 ∈ S3, the permutation from the previous
example. Let us find the sequences above. Given ε1 = (+1,+1,+1), we get

qk1 = (1, 1, 1, 1), ξ1 = (0, 0, 0), ϱk1 = (ή, ή, ή, ή).

Given ε2 = (−2,+1,+2), we get

qk2 = (1, â1, â1â2, â2), ξ2 = (1, 2, 1), ϱk2 = (ή, ήá1â2, ήâ2, ήâ1).

⋄

Definition 4.2.2. Let σ ∈ Sn+1. For an ancestry ε, define P (ε) = σ́(ql)−1.

From this definition it follows that ϱl = ή(P (ε))−1
σ́.

Fact 4.2.1. Let σ ∈ Sn+1. Given an ancestry ε, we have

P (ε) = (ái1)
sign(ε(1))

. . . (áil
)sign(ε(l))

.

Example 4.2.3. From Example 4.2.2, we have the sequences qk, ξ, and ε

for the two ancestries. For the first P (ε1) = á1á2á1, and for the second
P (ε2) = à1á2á1. ⋄
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Definition 4.2.3. The dimension d = dim(ε) of an ancestry is determined by
the number of occurrences of +2 (or −2) in the sequence. This dimension is
the same as that of the associated preancestry.

In the wiring diagram, an ancestry is represented by the sequence ε.
Similar to a preancestry, where −2 and +2 are represented by a black and
a white diamond, respectively, in an ancestry, −1 and +1 are represented by
a black and a white disk, respectively. From now on, we will also represent
the sequence ε of an ancestry using black and white disks and diamonds. For
instance, ε = (−2,+1,+2) is written as (⬩ • ⋄).

Example 4.2.4. For σ = a1a2a1 ∈ S3, the wiring diagrams for the ancestries
from the previous example are illustrated as follows:

Figure 4.5: Ancestries ε1 = (+1,+1,+1) = (◦ ◦ ◦) and ε2 = (−2,+1,+2) =

(⬩ ◦ ⋄) with dimension 0 and 1, respectively.

⋄

Definition 4.2.4. If vertices k1 and k2 define a region and have opposite signs,
we can change the signs along the boundary of this region. This operation is
called a click.

Figure 4.6 shows a diagram before and after a click in the upper region.
The diagram on the left has ancestry ε1 = (• • • • ◦ ◦ •), and on the right,
ε2 = (◦ ◦ • ◦ • ◦ •).

Figure 4.6: Example of a click in the wiring diagram of the permutation
σ = a2a1a4a3a2a5a4 ∈ S6.
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4.3
Counting Ancestries

In this section, we will examine how to compute the number of ancestries
ε associated with a preancestry ε0 such that P (ε) = z, for a given z ∈ Quatn+1.

Definition 4.3.1. For a given preancestry ε0 and an element z ∈ σ́Quatn+1,
define Lε0(z) as the set of ancestries ε associated with ε0 such that P (ε) = z.
The cardinality of Lε0(z) is denoted by NLε0(z).

Fact 4.3.1. For any z ∈ σ́Quatn+1, we have

NLε0(z) − NLε0(−z) = 2
l−2d

2 R(z). (4-1)

Recall that Xσ is the partition of [[n + 1]] into cycles of σ.

Definition 4.3.2. Given a preancestry ε0, define a partition Xε0 as a refine-
ment of Xσ. The partition Xε0 is the most refined partition that satisfies the
following condition: for each k where ε0(k) = 0 and the k-th crossing is (i0, i1),
the pair {i0, i1} must be contained in some set A in Xε0 .

Let Hε0 = HXε0
≤ Quatn+1. It follows from Fact 4.1.2 that Hσ ≤ Hε0 .

Example 4.3.1. Consider σ = (15)(234) = a1a3a2a1a4a3a2a1a4 ∈ S5. From
Example 3.7.4, we have Xσ = {{1, 5}, {2, 3, 4}} and

Hσ = {±1,±â2,±â3,±â2â3,±â1â4,±â1â2â4,±â1â3â4,±â1â2â3â4}.

There is only one preancestry with the maximum dimension d = 3, given
by (−2, 0,−2, 0,−2, 0,+2,+2,+2). Additionally, there are five preancestries of
dimension 2 and five of dimension 1.

For ε0 = (−2, 0,−2, 0,−2, 0,+2,+2,+2), the unmarked crossings, where
ε0(k) = 0 occur at (1, 5), (2, 4) and (3, 4). Thus Xε0 = Xσ, which implies
Hε0 = Hσ.

In the case of ε0 = (−2,−2, 0, 2, 0, 2, 0, 0, 0), the unmarked crossings,
where ε0(k) = 0 are (1, 3), (1, 4), (2, 5), (3, 5) and (4, 5), which leads to
Xε0 = {1, 2, 3, 4, 5} implying that Hε0 = Quat5.

The remaining four preancestries of dimension 2, as well as all preances-
tries of dimensions 1 and 0, have the same Xε0 and Hε0 . ⋄

The next result is an important result for this work. Together with
Fact 4.3.1, it provides a method for counting the ancestries associated with
a preancestry for a permutation.
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Fact 4.3.2. Consider a preancestry ε0 and the subgroup Hε0 ≤ Quatn+1.
Choose z0 ∈ σ́Quatn+1 with R(z0) > 0. For z = qz0, we have

NLε0(z) + NLε0(−z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2l−2d+1/∣Hε0∣, q ∈ Hε0 ,

0, q ∉ Hε0 .
(4-2)

The following equation provides the number of ancestries with d = 0:

NL(z) = 2l−n+b−1
+ 2

l
2−1

R(z), (4-3)

where R(z) = 2−n Trace(z) = ⟨z, 1⟩.

Example 4.3.2. Consider σ = (15)(234) = a1a3a2a1a4a3a2a1a4 ∈ S5. From
the previous example, we know the value of ∣Hε0∣. Let

z = σ́ =
−â1 − â1â2 + â1â3 − â1â2â3 − â4 + â2â4 − â3â4 − â2â3â4

2
√

2
.

Note that R(z) = 0. For ε0 of dimension 0, it follows that

NL(z) = 29−4−1
+ 2

9
2−1

R(z) = 24
= 16.

For ε0 with dimension 1, we have

NLε0(z) − NLε0(−z) = 2
9−2

2 R(z) = 0,

NLε0(z) + NLε0(−z) =
29−2+1

25 =
28

25 = 8.

Thus, 2.NLε(z) = 8, so NLε(z) = 4.
As seen in the previous example, each of the five preancestries of

dimension 1 has the same Hε0 , resulting in 4 × 5 = 20 ancestries ε with
dim(ε) = 1 .

For ε0 with dimension 2, we have

NLε0(z) − NLε0(−z) = 2
9−4

2 R(z) = 0,

NLε0(z) + NLε0(−z) =
29−4+1

25 =
26

25 = 2.

Thus, 2.NLε(z) = 2, so NLε(z) = 1.
As noted above, all six preancestries of dimension 2 share the same Hε0 ,

resulting in 1 × 6 = 6 ancestries ε with dim(ε) = 2.
For ε0 with dimension 3, we have

NLε0(z) − NLε0(−z) = 2
9−6

2 R(z) = 0,
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NLε0(z) + NLε0(−z) =
29−6+1

24 =
24

24 = 1.

Therefore, 2.NLε(z) = 1, giving NLε(z) = 1
2 < 1, which results in NLε(z) = 0.

⋄

4.4
Thin Ancestries

An ancestry of dimension 0 for a permutation σ ∈ Sn+1 can be of two
types: thin or thick. In this section, we will focus on thin ancestry.

Definition 4.4.1. Consider a permutation σ ∈ Sn+1 and its reduced word. An
ancestry of dimension 0 is called thin if, whenever ik0 = ik1 , it follows that
ε(k0) = ε(k1). Otherwise, the ancestry is called thick.

In the wiring diagram, an ancestry is thin when the inversions in the
same row have the same sign.

Consequently, there are 2n−b thin ancestries, where b = block(σ). We
assume for now that σ does not block, that is, b = 0.

We already know how to count the ancestries that satisfy P (ε) = z for
each dimension. Now, the task is to determine how many of these ancestries
are thin. This number will be denoted by NLthin(z).

Let ε0 be the empty preancestry and consider a fixed element z ∈

σ́Quatn+1. By definition, there are NLε0(z) ancestries ε corresponding to ε0

and satisfying P (ε) = z.
From the previous chapter, it follows that the group En acts by automor-

phisms on SOn+1, Spinn+1 and Cl0n+1.
Consider σ ∈ Sn+1, z0 ∈ σ́Quatn+1, and Q0 = Π(z0) ∈ B+

n+1. For an
element to belong to the same orbit as Q0, it must preserve the cycle structure.
Consequently, the orbit OQ0 of Q0 under the action of En on SOn+1 has a
cardinality of 2n−c+1.

Regarding the action of En on σ́Quatn+1, there are two possibilities for
the size of the orbit Oz0 . If there exists E ∈ En such that zE

0 = −z0, we set
canti(z0) = 1; otherwise, canti(z0) = 0.

If R(z) = 0, we can always find a E ∈ En such that zE
= −z, implying

canti = 1. Conversely, if R(z) ≠ 0, there are no E ∈ En such that zE
= −z,

leading to canti = 0 (see [1]).

• If canti(z0) = 1, the orbit is Π−1[OQ0], with cardinality 2n−c+2.

• If canti(z0) = 0, the orbits Oz0 and O−z0 are disjoint, each with cardinality
2n−c+1, and their union is Π−1[OQ0]; in this case we say the orbits split.
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For z ∈ Spinn+1, define Ez ⊆ En as the isotropy group of z, i.e.,

Ez = {E ∈ En ∣ zE
= z}.

For thin ancestries, we focus on the group where z = σ́, i.e., Eσ́ ≤ En.

Fact 4.4.1. Given σ ∈ Sn+1, let c = nc(σ) be the number of cycles of σ. We
have ∣Eσ́∣ = 2c̃ where c̃ ∈ Z, c − 2 ≤ c̃ ≤ c.

The value of c − c̃ ∈ {0, 1, 2} can be deduced by following the proof.
However, it does not appear to have a simple formula.

Definition 4.4.2. Let σ́En denote the orbit of σ́ under the action of En:

σ́
En

= {σ́E
, E ∈ En}.

The next result follows straightforwardly.

Fact 4.4.2. Let c̃ be such that ∣Eσ́∣ = 2c̃. For z ∈ σ́Quatn+1, we have

NLthin(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2n−c̃
, z ∈ σ́

En ,

0, z ∉ σ́
En .

Furthermore, ∣σ́En∣ = 2c̃.

Example 4.4.1. Let σ = (15)(26)(3)(4) = a2a1a3a2a4a3a2a1a5a4a3a2 ∈ S6. It
follows that

σ́ =
1
2(−â1 − â2â3â4 − â5 + â1â2â3â4â5) ∈ B̃+

6 ,

then we have,

σ́
En

= {±â1 ± â2â3â4 ± â5 ± â1â2â3â4â5
2 } ,

where the signs must be such that there is an odd number of equal signs.
Let σ́ = z. Since the real part is R(z) = 0, there exists E ∈ En such that

z = σ́
E
= −σ́ = −z. Therefore canti = 1.

The size of the orbit σ́En is given by

∣σ́En∣ = 2n−c+2
= 2c̃

.

Given n = 5 and c = 4:

∣σ́En∣ = 25−4+2
= 8 = 23

.
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Hence, c̃ = 3.
The number of ancestries of dimension 0 is given by:

NLε0(z) = 2l−n−1
+ 2

l
2−1

R(z).

Given l = 12, n = 5 and R(z) = 0:

NLε0(z) = 212−5−1
= 26

= 64.

If z ∈ σ́
En , then

NLthin(z) = 2n−c̃
= 25−3

= 22
= 4

Therefore, for z ∈ σ́
En , there are 64 ancestries of dimension 0 labeled by ε0,

and among these, 4 are classified as thin.
This demonstrates that while there are 64 possible ancestries of dimen-

sion 0 for the given permutation, only 4 of them are thin, highlighting the
relative rarity of thin ancestries in this context. ⋄

Fact 4.4.3. Consider σ ∈ Sn+1 which does not block, and let ε0 be the empty
preancestry. If l = inv(σ) > 2n + 2 then for all z ∈ σ́Quatn+1 we have
NLε0(z) > NLthin(z).



5
Bruhat Cells

In this chapter, we introduce Bruhat cells in the matrix groups GLn+1

and SOn+1. This will eventually lead us to the Bruhat cell in Spinn+1, which is
the central object of our study.

Following this introduction, we present key results from [4] concerning
Bruz, which will provide useful information for working with elements of Bruz.

5.1
Bruhat Cells in Spinn+1

First, we define the Bruhat decomposition for the sets GLn+1 and SOn+1

(see [13]).

Definition 5.1.1. The Bruhat decomposition of a matrix M ∈ GLn+1 is given
by the following:

For every M ∈ GLn+1, there exists a unique permutation σ ∈ Sn+1 and
matrices U0, U1 ∈ Upn+1 such that

M = U0PσU1.

Note that since σ ∈ Sn+1 is determined uniquely, the permutation matrix
Pσ is as well. However, U0 and U1 ∈ Upn+1 are not.

After decomposing each matrix in GLn+1, we obtain the partition of the
real general linear group into double cosets of Upn+1,

GLn+1 = ⨆
σ∈Sn+1

Upn+1 Pσ Upn+1 .

Definition 5.1.2. For σ ∈ Sn+1, define the Bruhat cell of σ in GLn+1 as

BruGL
σ = {M ∈ GLn+1 ∣∃U0, U1 ∈ Upn+1,M = U0PσU1} ⊂ GLn+1 .

Bruhat cells can also be defined for other matrix groups. In our case, we
consider SOn+1 and Lo1

n+1, the latter of which will be explored in detail later
in this work.
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Definition 5.1.3. For σ ∈ Sn+1, define the Bruhat cell of σ in SOn+1 as

BruSO
σ = {Q ∈ SOn+1 ∣∃U0, U1 ∈ Upn+1, Q = U0PσU1} ⊂ SOn+1 .

The Bruhat decomposition of SOn+1 is known as Bruhat stratification
with signs and is given by

SOn+1 = ⨆
P∈B+

n+1

BruP , BruP = (Up+
n+1 P Up+

n+1) ∩ SOn+1, P ∈ B+
n+1,

where B+
n+1 = Bn+1 ∩ SOn+1.

Recall the homomorphism introduced in Section 3.6:

Π ∶ Spinn+1 → SOn+1 .

Let Bruσ = Π−1[BruSO
σ ] ⊂ Spinn+1 . This set has 2n+1 connected compo-

nents, each one containing an element z ∈ σ́Quatn+1.
For z ∈ B̃+

n+1, let Bruz be the connected component of BruΠ(z) containing
z, where σ = Π(z). We have

Bruσ = ⨆
z∈σ́ Quatn+1

Bruz .

The set Bruz is a smooth contractible submanifold of Spinn+1 of dimension
l = inv(σ) and is referred to as a signed Bruhat cell. The Bruhat stratification
of Spinn+1 is given by:

Spinn+1 = ⨆
z∈B̃+

n+1

Bruz .

The union of signed Bruhat cells Bruz with z ∈ B̃+
n+1 such that Π(z) =

Pσ ∈ SOn+1 is the unsigned Bruhat cell Bruσ ⊂ Spinn+1, where σ ∈ Sn+1. Each
connected component of an unsigned Bruhat cell contains exactly one element
z ∈ B̃+

n+1 ⊂ Spinn+1.
In [4], several important results regarding Bruz are discussed, which are

pertinent to our work. We outline these results without providing their proofs.

Fact 5.1.1. Given reduced words ai1 . . . aik
< ai1 . . . aik

aj for consec-
utive permutations in Sn+1 and signs ε1, . . . , εk, ε ∈ {±1}, set z1 =

(ái1)
ε1 . . . (áik

)εk , z0 = z1(áj)ε
∈ B̃+

n+1. Given q ∈ Quatn+1, the map

Φ ∶ Bruqz1 ×(0, π) → Bruqz0

Φ(z, θ) = zα(εθ),
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is a differomorphism.

Fact 5.1.2. In the conditions of the Fact 5.1.1, i.e., with z1 =

(ái1)
ε1 . . . (áik

)εk , z0 = z1(áj)ε
∈ B̃+

n+1 and q ∈ Quatn+1, we have the
inclusion Bruqz1 ⊂ Bruqz0.

Fact 5.1.3. Given q ∈ Quatn+1, a reduced word ai1 . . . aik
∈ Sn+1, and signs

ε1, . . . , εk ∈ {±1}, the map

Ψ ∶ (0, π)k
→ Bruq(ái1)ε1 ...(áik )εk

Ψ(θ1, . . . , θk) = qαi1(ε1θ1) . . . αik
(εkθk)

is a diffeomorphism.

Fact 5.1.4. Consider σ0, σ1 ∈ Sn+1, σ = σ0σ1. If inv(σ) = inv(σ0) + inv(σ1)
then Bruσ́0 Bruσ́1 = Bruσ́. Moreover, the map

Bruσ́0 ×Bruσ́1 → Bruσ́

(z0, z1) → z0z1

is a diffeormorphism.

These results provide a parameterization for Bruσ́ in terms of αik
and θk

Bruσ́ = {αi1(θ1) . . . αik
(θk); θi ∈ (0, π)},

where σ = ai1 . . . aik
∈ Sn+1.

Example 5.1.1. Consider η = a1a2a1 ∈ S3. Then

Bruή = {α1(θ1)α2(θ2)α1(θ3); θi ∈ (0, π)}.

Let z ∈ Bruή with θ1 = θ2 = θ3 =
π

2 , then

z = α1 (
π
2 )α2 (

π
2 )α1 (

π
2 ) = á1á2á1 = ή.

⋄

The strong Bruhat order, as defined in Definition 2.4.2, can be expressed
as follows:

σ0 ≤ σ1 ⟺ Bruσ0 ⊆ Bruσ1 .

The results above also provide insights into the behavior of elements
within Bruhat cells. Specifically:
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• If z ∈ Bruz0 and σ0 = Π(z0) ◁ σ1 = σ0ai, then zαi(θ) ∈ Bruz0ái
for

θ ∈ (0, π).
• If z ∈ Bruz0 and σ1 ◁ σ0 = Π(z0) = σ1ai, then there exists θ =

Θi(z) ∈ (0, π) such that zαi(−θ) ∈ Bruz1 , where z0 = z1ái. Additionally,
zαi(θ̃) ∈ Bruz1 for all θ̃ ∈ (−θ, π − θ).

A partial order on B̃
+
n+1, called the lifted Bruhat order, is defined as

follows:
z0 ≤ z1 ⟺ Bruz0 ⊆ Bruz1 .

It is evident that z0 ≤ z1 implies Π(z0) ≤ Π(z1), but the converse does
not necessarily hold.

Notice that z0 ≤ z1 and Π(z0) = Π(z1) implies z0 = z1.

5.2
The Upper Set

Having defined the lifted Bruhat order, we can also establish a partial
order on the set of ancestries for a given permutation.

Definition 5.2.1. Given two ancestries ε and ε̃, let (ϱk) and (ϱ̃k) be the
sequences in Definition 4.2.1. We define a partial order on ancestries as follows:

ε ⪯ ε̃ ⟺ (∀k, ϱk ≤ ϱ̃k).

The fact that this is a partial order is straightforward.
If ε ⪯ ε̃ then, ϱk ≤ ϱ̃k, and thus Π(ϱk) ≤ Π(ϱ̃k). Additionally, Π(ϱl) =

η = Π(ϱ̃l), then ϱl = ϱ̃l. Therefore, P (ε) = σ́q
−1
l = σ́(ὴϱl)−1

= σ́(ὴϱ̃l)−1
=

P (ε) = σ́q̃l
−1

= P (ε̃).
Thus, ε ⪯ ε̃ implies P (ε) = P (ε̃).

Definition 5.2.2. A set U of ancestries is an upper set if for any ε ∈ U

and ε ⪯ ε̃ it follows that ε̃ ∈ U . The upper set generated by ε is denoted by
Uε = {ε̃ ∣ ε ⪯ ε̃}.

For an ancestry of dimension 0, there is no ancestry ε̃ such that ε̃ ⪯ ε,
meaning that ε is ⪯-maximal.

For an ancestry ε with dim(ε) > 0, we define ε̃ setting ε̃(k) = sign(ε(k)).
This ensures that ε̃ ⪯ ε. In a wiring diagram, the ancestry ε̃ is obtained by
replacing each diamond with a disk of the same color.

When dim(ε) = 1, the upper set Uε generated by ε includes ε itself and
two ancestries of dimension 0. One is ε̃ = sign(ε), where the two diamonds are
replaced by disks of the same color. The second is obtained from ε̃ performing
a click in the region corresponding to ε.
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Example 5.2.1. For σ = [321] = a1a2a1 ∈ S3, Figure 5.1 shows an ancestry
of dimension 1, ε = (−2,+1,+2), and the upper set generated by it.

Figure 5.1: Upper set of ε = (⬩ ◦ ⋄).

The upper set consists of two ancestries of dimension 0 and one of
dimension 1: Uε = {(⬩ ◦ ⋄), (• ◦ ◦), (◦ • •)}. ⋄

In the figure, the upper set is depicted by an edge connecting two
ancestries of dimension 0. This edge represents the ancestry of dimension 1,
which is shown above the edge.

An ancestry, denoted by ε, of dimension 0 can be illustrated on a diagram
for σ ∈ Sn+1 by indicating a sign at each intersection, as previously established.
The edges are then constructed as follows:

When a click can be performed in a region, we generate an ancestry of
dimension 1 represented by an edge, connecting two ancestries of dimension
0: one with the same signs as the ancestry of dimension 1, and the other with
signs altered by the click.

For ancestries where dim(ε) > 1, the description of the upper set Uε

generated by ε is more complex.
Let ε be an ancestry of dimension 2, type I. The set Uε contains 4 elements

of dimension 0, 4 elements of dimension 1 and one element of dimension 2,
which is ε.

Example 5.2.2. Let σ = [4231] = a1a2a3a2a1 ∈ S4 and ε = (⬩ ⬩ • ⋄ ⋄) an
ancestry of dimension 2. Figure 5.2 shows the upper set generated by ε.
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Figure 5.2: Upper set of ε = (⬩ ⬩ • ⋄ ⋄).

Notice that the upper set contains exactly four ancestries of dimension
0, four ancestries of dimension 1, and one ancestry of dimension 2. ⋄

If ε is a type II ancestry of dimension 2, the structure of Uε becomes
more intricate.

5.3
Bruhat Cells in Lo1

n+1

Following the Bruhat decomposition, we can partition Lo1
n+1 into subsets

BLσ for σ ∈ Sn+1:

BLσ = {L ∈ Lo1
n+1 ∣ ∃U0, U1 ∈ Upn+1, L = U0PσU1}.

Therefore,
Lo1

n+1 = ⨆
σ∈Sn+1

BLσ .

Let Up+
n+1 ⊂ Upn+1 be the group of upper triangular matrices with

positive diagonal entries.
For a matrix L ∈ Lo1

n+1, perform the usual QR factorization:

L = QR, Q ∈ SOn+1, R ∈ Up+
n+1 .

Next, we focus on the orthogonal component of the matrix L, specifically
Q ∈ SOn+1. This component defines a smooth map:

QSO ∶ Lo1
n+1 → SOn+1; QSO(L) = Q.

Lift this map to define

Q ∶ Lo1
n+1 → Spinn+1, with Q(I) = 1.
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The set U1 = Q[Lo1
n+1] ⊂ Spinn+1 is an open contractible neighborhood

of 1 ∈ Spinn+1. We have U1 = ὴBruή. In other words, U1 is a top-dimensional
Bruhat cell for the basis described by ὴ, which is, up to signs, en+1, en . . . , e2, e1.

The inverse map
L = Q−1

∶ U1 → Lo1
n+1,

is also a smooth diffeomorphism and corresponds to the LU factorization.
Now we are ready to define the main object of study in this work: the set

BLz, which plays a central role in the analysis of the associated CW complexes.
After introducing its definition, we will show that BLz is diffeomorphic to the
intersection of two Bruhat cells for different bases in Spinn+1.

Definition 5.3.1. For z ∈ B̃+
n+1, define

BLz = Q−1[Bruz] = Q−1[Bruz ∩ὴBruή] ⊆ Lo1
n+1 .

Therefore, we can partition BLσ into 2n+1 subsets which are both open
and closed

BLσ = ⨆
σ́ Quatn+1

BLz .

Recall that Inv(σ) = {(i, j) ∈ [[n + 1]]2 | (i < j) ∧ (iσ > j
σ)}, and

Inv(ησ) = Inv(η)\ Inv(σ).

Definition 5.3.2. Let σ ∈ Sn+1, define

Loσ = {L ∈ Lo1
n+1 ∣ i > j, Li,j ≠ 0 → (j, i) ∈ Inv(σ)}.

Example 5.3.1. Let σ = [312] ∈ S3, Inv(σ) = {(1, 2), (1, 3)}. Then,

Loσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

1 0 0
a 1 0
b 0 1

⎞
⎟⎟⎟⎟
⎠

∣ a, b ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

⋄

Lemma 5.3.1. Consider σ ∈ Sn+1. Then

(a) Loσ is a subgroup of Lo1
n+1;

(b) The map
ϕ ∶ Loσ ×Loση → Lo1

n+1

(L0, L1) ↦ L0L1

is a diffeomorphism.
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Proof.

(a) Let Lα, Lβ ∈ Loσ. Let us check that for i2 > i0, (LαLβ)i2i0 ≠ 0 implies
(i0, i2) ∈ Inv(σ).
We have,

(LαLβ)i2,i0 ≠ 0,

which implies
∑

i0≤i1≤i2

(Lα)i2,i1(Lβ)i1,i0 ≠ 0.

Thus, there exists i1 such that

(Lα)i2,i1 ≠ 0, (Lβ)i1,i0 ≠ 0.

Consider the following cases:

• If i1 = i0, then (Lα)i2,i0 ≠ 0, implying (i0, i2) ∈ Inv(σ);
• If i1 = i2, then (Lβ)i2,i0 ≠ 0, implying (i0, i2) ∈ Inv(σ);
• If i0 < i1 < i2, then (Lα)i2,i1 ≠ 0 ≠ (Lβ)i1,i0 .

Thus, (i0, i1), (i1, i2) ∈ Inv(σ), which implies (i0, i2) ∈ Inv(σ).

Therefore, we conclude that Loσ ≤ Lo1
n+1.

(b) Let us construct the inverse map.

Given L ∈ Lo1
n+1, our aim is to find L0 ∈ Loσ and L1 ∈ Loση.

We work inductively on the entries (i, j). Proceed with i = j + t where
i − j = t is increasing.

For t = 1, i.e. i = j + 1, we have (j, i) ∈ Inv(σ) or (j, i) ∈ Inv(ση).
Therefore,

Li,j = (L0)i,j + (L1)i,j,

with either (L0)i,j = 0, or (L1)i,j = 0.

Inductive step: t > 1.

Assume that for all pairs (i, j) where i = j + k and k < t, the entries Li,j

can be decomposed as described. Now consider i = j + t.

We have:

Li,j = ∑
j≤k≤i

(L0)i,k(L1)k,j

= (L0)i,j(L1)j,j + ( ∑
j<k<i

(L0)i,k(L1)k,j) + (L0)i,i(L1)i,j

= (L0)i,j + ( ∑
j<k<i

(L0)i,k(L1)k,j) + (L1)i,j.
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From the induction hypothesis, we have already dealt with

∑
j<k<i

(L0)i,k(L1)k,j,

and either
(L0)i,j = 0, or (L1)i,j = 0.

Therefore, we conclude that there exists a well-defined inverse map ϕ
−1.

Hence, ϕ is a diffeomorphism. □

Let σ0 ∈ Sn+1, z0 = σ́0q0 ∈ B̃
+
n+1, q0 ∈ Quatn+1 and Q0 = Π(z0) ∈ SOn+1.

The maps Q and L yield the following diffeomorphisms:

Uz0 ≈ z0 Lo1
n+1, Bruz0 ≈ z0 Loσ−1

0
.

Also, the map

ψ ∶ z0 Loσ−1
0
×Loσ−1

0 η → z0 Lo1
n+1, ψ(z0La, Lb) = z0LbLa (5-1)

is a diffeomorphism, as can be seen from Lo1
n+1 = Loσ−1

0
Loσ−1

0 η = Loσ−1
0 η Loσ−1

0
.

Lemma 5.3.2. Let La ∈ Loσ−1
0
, Lb ∈ Loσ−1

0 η and q ∈ Quatn+1. Then, z0La ∈ Uq

if and only if ψ(z0La, Lb) ∈ Uq.

Proof. We have ψ(z0La, Lb) = z0LbLa = L̃bz0La, and we want to show that

z0La ∈ Uq ⟺ L̃bz0La ∈ Uq.

Consider that if La = LU , then L̃bz0La = L̃bLU . Therefore, z0La ∈ Uq, then
L̃bz0La ∈ Uq as well. □

Proposition 5.3.3. Uz0 ∩ Uq ≈ (Bruz0 ∩Uq) × Rn−l.

Proof. We have

Uz0 ≈ z0 Lo1
n+1, Bruz0 ≈ z0 Loσ−1

0
, Rn−l

≈ Loσ−1
0 η .

Therefore,

Uz0 ∩ Uq ⊆ z0 Lo1
n+1, (Bruz0 ∩Uq) × Rn−l

⊆ z0 Loσ−1
0
×Loσ−1

0 η .

We know that ψ (as in equation (5-1)) is a diffeomorphism. Furthermore,
by the previous lemma, we can apply ψ to obtain the desired local structure,
completing the proof. □
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Recall that

Bruz0 ∩Uq = Bruq−1z0 ∩U1, Q−1[Bruq−1z0 ∩U1] = BLq−1z0 .

Therefore, the set BLz is diffeomorphic to Bruz ∩(ὴBruή) = Bruz ∩U1,
the intersection of two Bruhat cells for different bases in Spinn+1.

Example 5.3.2. Let η = [321] = a1a2a1 ∈ S3. From Chapter 3, we have

ή =
â1 + â2√

2
, ήQuat3 = {±1 ± â1â2√

2
,
±â1 ± â2√

2
} ,

with signs assigned arbitrarily. Then ∣ήQuat3 ∣ = 8. We have

Lo1
3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L =

⎛
⎜⎜⎜⎜
⎝

1 0 0
x 1 0
z y 1

⎞
⎟⎟⎟⎟
⎠

»»»»»» x, y, z ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

For a matrix L ∈ Lo1
3 to be in BLη it must satisfy the minor determinants

conditions, so it follows that BLη = {L ∣ z ≠ 0, z ≠ xy} ⊂ Lo1
3. After a

computation we get

BL 1−â1â2√
2

= {L ∣ z > max{0, xy}}, BL 1+â1â2√
2

= {L ∣ z < min{0, xy}},

BL â1+â2√
2

= {L ∣ x > 0, 0 < z < xy}, BL â1−â2√
2

= {L ∣ x > 0, xy < z < 0},

BL−â1−â2√
2

= {L ∣ x < 0, 0 < z < xy}, BL−â1+â2√
2

= {L ∣ x < 0, xy < z < 0},

BL−1+â1â2√
2

= BL−1−â1â2√
2

= ∅.

⋄

5.4
The Set of Totally Positive Matrices Posσ

In this section, we study how the positive matrices behave in the set BLσ.
Recall [[n + 1]] = {1, 2, . . . , n + 1}. Let [[n + 1]](k) be the set of

subsets i ⊆ [[n + 1]], with card(i) = k. For i0, i1 ∈ [[n + 1]](k), where
ij = {ij1 < ij2 < . . . < ijk}, write:

i0 ≤ i1 ⟺ i11 ≤ i01, i12 ≤ i02, . . . , i1k ≤ i0k.

Definition 5.4.1. A matrix L ∈ Lo1
n+1 is totally positive if for all k ∈
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[[n + 1]] and for all indices i0 ≥ i1 ∈ [[n + 1]](k),

i0 ≥ i1 ⟹ det(Li0,i1) > 0.

Let Posη ⊂ Lo1
n+1 be the set of totally positive matrices.

Let lo
1
n+1 denote the Lie algebra of Lo1

n+1, consisting of strictly lower
triangular matrices. For li ∈ lo

1
n+1 let li be the matrix whose only nonzero

entry is (li)(i+1,i) = 1.
Let λi be the corresponding one-parameter subgroup:

λi ∶ R → Lo1
n+1, λi(t) = exp(tli) = I + tli.

The group En = {±1}[[n]] acts by automorphisms on Lo1
n+1 as follows:

(λi(t))E
= λi(Eit).

This action modifies the entries of the matrices in Lo1
n+1 according to the signs

specified by E ∈ En.
Hence, we have Q(L)E

= (Q(L))E for all L ∈ Lo1
n+1 and E ∈ En.

Additionally, L(zE) = (L(z))E for all z ∈ U1 and E ∈ En. For z ∈ B̃+
n+1 and

E ∈ En, we have (BLz)E
= BLzE . In particular, the sets BLz and BLzE are

diffeomorphic via the map L↦ L
E.

To determine the homotopy type of BLσ, we decompose σ́Quatn+1 into
En-orbits. For each orbit, we select a representative z and determine the
homotopy type of BLz.

Example 5.4.1. For η ∈ S3, the orbits of ήQuat3 are:

O 1+â1â2√
2

= {1 ± â1â2√
2

} , O−1+â1â2√
2

= {−1 ± â1â2√
2

} ,

O â1+â2√
2

= {±â1 ± â2√
2

} .

From Example 5.3.2, we can see that for z ∈ O 1+â1â2√
2

the sets BLz are
diffeomorphic. The same holds for z ∈ O â1+â2√

2
. For z ∈ O−1+â1â2√

2
the sets are

empty. ⋄

For any reduced word η = ai1ai2 . . . ail
where l = inv(η), the map

(0,∞)l
→ Posη

(t1, t2, . . . , tl) ↦ λi1(t1)λi2(t2) . . . λil
(tl)
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is a diffeomorphism.
In other words, a matrix L ∈ Lo1

n+1 is totally positive if and only if there
exist positive numbers t1, . . . , tl such that

L = λi1(t1) . . . λil
(tl).

The set Posη of totally positive matrices is an open semigroup and
contractible connected component of BLη.

Moreover, the closure Posη has a stratification given by:

Posη = {L ∈ Lo1
n+1 ∣ ∀i0, i1, ((i0 ≥ i1) → (det(Li0,i1) ≥ 0))} = ⨆

σ∈Sn+1

Posσ .

Here, Posσ ⊂ Lo1
n+1 is a smooth manifold of dimension inv(σ). If σ = ai1 . . . ail

is a reduced word, with l = inv(σ), then the map

(0,∞)l
→ Posσ, (t1, t2, . . . , tl) ↦ λi1(t1)λi2(t2) . . . λil

(tl)

is a diffeomorphism. Similarly, if σ1 ◁ σ0 = σ1ail
, then the map

Posσ1 ×(0,∞) → Posσ0 , (L, tk) ↦ Lλil
(tl)

is a diffeomorphism.
In other words, we have L ∈ Posσ if and only if there exist positive

numbers t1, . . . , tl such that

L = λi1(t1) . . . λil
(tl).

The set BLσ is also a contractible connected component of BLσ.
Note that different reduced words result in distinct diffeomorphisms, but

they map to the same set Posσ.

Example 5.4.2. For n = 2 and

L(x, y, z) =
⎛
⎜⎜⎜⎜
⎝

1 0 0
x 1 0
z y 1

⎞
⎟⎟⎟⎟
⎠
,

we have

Posa1a2 = {L(x, y, 0) ∣ x, y > 0}, Posa2a1 = {L(x, y, xy) ∣ x, y > 0},

Posa1a2a1 = Posη = {L(x, y, z) ∣ x, y > 0; 0 < z < xy}.
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Therefore, from Example 5.3.2, BLή = Posη. ⋄

As we can see, for any σ ∈ Sn+1, we have Posσ ⊆ BLσ́. However, as n
increases and for most permutations σ, Posσ constitutes a small connected
component of the much larger set BLσ́.

We now present several results from [4] that establish connections be-
tween the set of positive matrices Posσ and the set of interest Bruz.

Fact 5.4.1. Consider σ ∈ Sn+1. Then Q[Posσ] ⊂ Bruσ́ . Furthermore, if σ ≠ e

then σ́ does not belong to Q[Posσ].

Fact 5.4.2. Consider σk−1 ◁ σk = σk−1aik
∈ Sn+1. Consider zk−1 ∈ Bruσ́k−1

and zk ∈ Bruσ́k
, zk = zk−1αik

(θk), θk ∈ (0, π). If zk ∈ Q[Posσ] then zk−1 ∈

Q[Posσk−1] and zk−1αik
(θ) ∈ Q[Posσk

] for all θ ∈ (0, θk].

Fact 5.4.3. Let σ = ai1 . . . aik
∈ Sn+1 be a reduced word. Let t1, . . . , tk ∈ R\{0};

for 1 ≤ i ≤ k, let εi = sign(ti) ∈ {±1}. Let

L = λi1(t1) . . . λik
(tk), z = (ái1)

ε1 . . . (áik
)εk

∈ B̃+
n+1,

then L ∈ Q−1[Bruz].

These results will be useful in the following chapters.



6
The Stratification BLSε

In this chapter, we study the stratification BLSε and its strata. First, we
examine some examples of BLSε for ancestries of dimension 0. After that, we
generalize the concept and explore some properties of the structure.

6.1
The Strata BLSε With dim(ε) = 0

Consider a permutation σ ∈ Sn+1 and a reduced word ai1 . . . ail
. For an

ancestry ε with dim(ε) = 0, define

BLSε = {λi1(t1) . . . λil
(tl) ∣ tk ∈ R\{0}, sign(tk) = εk} ⊂ BLσ . (6-1)

From Fact 5.4.3, it follows that

BLSε ⊆ BLz, z = P (ε) = (ái1)
ε(1)

. . . (áil
)ε(l)

∈ σ́Quatn+1 .

The subsets BLSε ⊂ BLσ are open, and the union over all ancestries of
dimension 0 is open and dense.

If ε is a thin ancestry, the corresponding subset BLSε is also labeled thin.
Notice that ε = (+1,+1, . . . ,+1) is thin, with P (ε) = σ́ and BLSε = Posσ ⊆

BLσ́, which is a contractible connected component.
In a more general scenario, for any thin ancestry ε, there exists a

corresponding E ∈ En such that ε(k) = (áik
)E for all k. This leads to

P (ε) = σ́
E and BLSε = (Posσ)E. Consequently, BLSε ⊆ BLσ́E represents a

contractible connected component. The set

BLz,thick = BLz \ ⋃
ε thin

BLSε

is referred to as the thick part of BLz.

Example 6.1.1. Let σ = η = a1a2a1 ∈ S3. Figure 4.1 shows the two possible
preancestries. We reproduce the figure below for clarity.
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Figure 6.1: Preancestries of dimension 0 and 1, respectively, ε0 = (0, 0, 0) and
ε0 = (−2, 0,+2).

The eight ancestries of dimension 0 are (±1,±1,±1); the two ancestries
of dimension 1 are (−2,±1,+2).

From Example 5.3.2, we have:

Lo1
3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L =

⎛
⎜⎜⎜⎜
⎝

1 0 0
x 1 0
z y 1

⎞
⎟⎟⎟⎟
⎠

∣ x, y, z ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, BLη = {L ∣ z ≠ 0, z ≠ xy} ⊂ Lo1

3 .

A computation yields:

λ1(t1)λ2(t2)λ1(t3) =
⎛
⎜⎜⎜⎜
⎝

1 0 0
t1 + t3 1 0
t2t3 t2 1

⎞
⎟⎟⎟⎟
⎠
.

If L ∈ BLSε, we write L = λ1(t1)λ2(t2)λ1(t3), where sign(tk) = εk.
For ε = (+1,+1,+1), we have x = t1 + t3 > 0, y = t2 > 0, z = t2t3 > 0,

with xy = (t1 + t3)t2 = t1t2 + t2t3. Thus, 0 < z < xy. Consequently,

BLS(+1,+1,+1) = {L ∣ x > 0, 0 < z < xy} = BL â1+â2√
2
.

Through similar computations, we obtain

BL−â1+â2√
2

= {L ∣ x < 0 , xy < z < 0}, BL â1−â2√
2

= {L ∣ x > 0, xy < z < 0},

BL−â1−â2√
2

= {L ∣ x < 0, 0 < z < xy}, BL−1+â1â2√
2

= BL−1−â1â2√
2

= ∅.

Additionally,

BLS(−1,+1,+1) = {L ∣ z > max{0, xy}, y > 0},

BLS(+1,−1,−1) = {L ∣ z > max{0, xy}, y < 0}.

Let z0 =
1−â1â2√

2 . Note that P (−1,+1,+1) = P (+1,−1,−1) = P (−2,+1,+2) =
z0. These are the only ancestries ε for which P (ε) = z0. As we will see later,

BLS(−2,+1,+2) = {L ∣ y = 0, z > 0}.
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Then,
BLz0 = BLS(−1,+1,+1) ⊔BLS(−2,+1,+2) ⊔BLS(+1,−1,−1),

BL 1−â1â2√
2

= {L ∣ z > max {0, xy}}.

A similar decomposition applies to

BL 1+â1â2√
2

= {L ∣ z < min {0, xy}}.

Notice that the six non empty sets are contractible.
Recall that η can also be expressed as the reduced word η = a2a1a2. The

interpretation of the ancestry differs depending on the reduced word used,
but the homotopy type remains the same. ⋄

Referencing [8], it is established that BLη comprises 3⋅2n connected com-
ponents. Additionally, [1] provides an efficient enumeration of these connected
components.

Fact 6.1.1. For n ≥ 5, the 3 ⋅ 2n connected components of BLη are

PosE
η , E ∈ En, BLz, thick, z ∈ ήQuatn+1 .

The first list are the 2n thin connected components; the second are the 2n+1

thick connected components.

6.2
The Stratification BLSε

In this section, we show how to determine the ancestry for a given
L ∈ BLσ, where σ = ai1 . . . ail

∈ Sn+1 is a fixed word, with l = inv(σ).
Subsequently, we present the stratifications of BLσ and BLz in terms of BLSε.

Let z̃l = Q(L). Choose ql ∈ Quatn+1 such that zl = z̃lql ∈ Bruσ́. Define
the sequence recursively as follows:

σ0 = 1, σ1 = ai1 , σk = σk−1aik
= ai1 . . . aik

,

so that σ = σl. According to Theorem 5.1.1, we have well-defined sequences
(θk)0≤k≤l and (zk)0≤k≤l, with z0 = 1 ∈ Spinn+1, such that

zk = zk−1αik
(θk) ∈ Bruσ́k

, θk ∈ (0, π).

Choose (ϱk) ∈ B̃+
n+1 such that zk ∈ ὴBruϱk

. The sequence (ϱk) represents
the desired ancestry. The corresponding preancestry is given by (ρk), where
ρk = ΠB̃+

n+1,Sn+1
(ϱk) so that zk ∈ ὴBruρk

.
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Given an ancestry ε, define BLSε ⊂ BLσ as the set of matrices L with
ancestry ε. In Equation 6-1, we explicitly define BLSε for dim(ε) = 0.

Now that we have identified the desired sequences (ρk) and (ϱk), let us
verify that they indeed represent preancestry and ancestry. We have ρ0 = η

and ϱ0 = ή, since z0 = 1 ∈ ὴBruή ⊂ ὴBruη.

• If zk−1 ∈ ὴBruϱk−1 and ρk−1 < ρk−1aik
, then zk−1αik

(θ) ∈ ὴBruϱk−1áik
for

all θ ∈ (0, π). This implies ϱk = ϱk−1áik
and ρk = ρk−1aik

.

• If zk−1 ∈ ὴBruϱk−1 and ρk−1 > ρk−1aik
, then zk−1αik

(θ) belongs to one of
the following three sets, for θ ∈ (0, π):

ὴBruϱk−1 , ὴBruϱk−1áik
, ὴBruϱk−1âik

.

This implies ϱk can be one of

ϱk−1, ϱk−1áik
, ϱk−1âik

.

Finally, z̃k ∈ U1 implies zk ∈ Bruη and ϱl ∈ ήQuatn+1.

Therefore, we conclude that

BLσ = ⨆
ε

BLSε, BLz = ⨆
P (ε)=z

BLSε,

where ε varies over the ancestries.
In Definition 4.3.1 of Chapter 4, we define NLε0(z) as the cardinality of

the set of ancestries ε associated with a preancestry ε0 such that P (ε) = z.
It follows from the definition of BLSε and the equation on the right above
that BLSε ⊂ BLP (ε). Thus, for any preancestry ε0 and any z ∈ σ́Quatn+1, we
have NLε0(z) = Nε0(z), where Nε0(z) is the number of ancestries ε for which
BLSε ⊂ BLz.

Therefore, we have Theorem 4 from [1]:

Fact 6.2.1. Consider a permutation σ ∈ Sn+1, a reduced word and a preances-
try ε0. Let z0 ∈ σ́Quatn+1 be such that R(z0) > 0.

For any z = qz0 ∈ σ́Quatn+1, we have:

Nε0(z) −Nε0(−z) = 2
l−2d

2 R(z);

Nε0(z) +Nε0(−z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2l−2d+1/∣Hε0∣, q ∈ Hε0 ,

0, q ∉ Hε0 .
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We can also use ξ(k) to provide information about the size of θk. Consider
zk−1 ∈ ὴBruϱk−1 . The following cases arise:

1. If ρk−1 < ρk−1aik
: for all θ ∈ (0, π), we have zk−1αik

(θ) ∈ ὴBruϱk−1áik
. In

this case, we set ξ(k) = 1.

2. If ρk−1 > ρk−1aik
: there exists a unique θ• ∈ (0, π) such that zk−1αik

(θ•) ∈
ὴBruϱk−1áik

. We then consider the following sub-cases based on the value
of θk:

• If θk < θ•: we have zk ∈ ὴBruϱk−1 , ϱk = ϱk−1 and ξ(k) = 0;
• If θk > θ•: we have zk ∈ ὴBruϱk−1âik

, ϱk = ϱk−1âik
and ξ(k) = 2;

• If θk = θ•: we have zk ∈ ὴBruϱk−1áik
, ϱk = ϱk−1áik

and ξ(k) = 1.

In summary, ξ(k) provides the following information about θk:

• ξ(k) = 0 means that θk is small;

• ξ(k) = 2 means that θk is large;

• ξ(k) = 1 means that θk is just right.

Let us introduce some additional notation. Define

U⋄
1 = ⨆

σ∈Sn+1

ὴBruσ́, U1 ⊂ U⋄
1 ⊂ U1 ⊂ Spinn+1 .

The set U⋄
1 is a fundamental domain for the action of Quatn+1 on Spinn+1.

Given any z ∈ Spinn+1, there exists a unique q ∈ Quatn+1 such that zq ∈ U⋄
1 .

For each k, write zk = z̃kqk with z̃k ∈ U⋄
1 and qk ∈ Quatn+1. Consequently, we

have z̃k ∈ ὴBruρ́k
.

The following results are the Lemmas 12.1 and 12.2 in [1].

Fact 6.2.2. There exist unique θ̃k ∈ (−π, 0)∪(0, π) such that z̃k = z̃k−1αik
(θ̃k).

Furthermore, for s = [âik
, qk−1] ∈ {±1} we have θ̃k = sθk or θ̃k = s(θk − π). In

the first case, we have qk = qk−1; in the second case, qk = qk−1âik
.

We have already provided the interpretation of ξ(k). Now, we are
prepared to explain the meaning of ε(k).

Fact 6.2.3. We have sign(ε(k)) = sign(θ̃k). Also, ε(k) = −2 if and only if
ρk < ρk−1; ε(k) = +2 if and only if ρk > ρk−1.

The above construction can be viewed as an extension of the method
described in Section 6.1, which is based on the functions λi. This extension is
necessary for cases where the construction in Lo1

n+1 is not feasible. Since Lo1
n+1
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is unsuitable, we instead operate within the compact group Spinn+1 (or SOn+1),
using the functions αi in place of λi and making the necessary adaptations.

Let us examine a step-by-step example to clarify.

Example 6.2.1. Let us consider σ = η = a1a2a1 ∈ S3, and

L0 =

⎛
⎜⎜⎜⎜
⎝

1 0 0
0 1 0
1 0 1

⎞
⎟⎟⎟⎟
⎠
.

If L0 = λ1(t1)λ2(t2)λ1(t3), then

L0 =

⎛
⎜⎜⎜⎜
⎝

1 0 0
0 1 0
1 0 1

⎞
⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜
⎝

1 0 0
t1 + t3 1 0
t2t3 t2 1

⎞
⎟⎟⎟⎟
⎠
,

which implies t2 = 0 and t2t3 = 1. This is a contradiction. Thus, L0 ∉ BLSε for
any ε with dim(ε) = 0. Next, applying the Gram-Schmidt process to L0 yields

Π(z̃3) = Q(L0) =
⎛
⎜⎜⎜⎜
⎝

√
2

2 0 −
√

2
2

0 1 0
√

2
2 0

√
2

2

⎞
⎟⎟⎟⎟
⎠
.

Denote Π(z̃3) simply as z̃3. We have z̃3 = α1(θ̃1)α2(θ̃2)α1(θ̃3). A computation
yields that z̃1 = α1(−π

2 ), z̃2 = α1(−π

2 )α2(π

4 ) and z̃3 = α1(−π

2 )α2(π

4 )α1(π

2 ),
with ρ1 = ρ2 = a1a2.

From the previous result, we already know the signs of the ancestry.
Additionally, we know that in this case, the dimension of the ancestry must
be 1, so ε = (−2,+1,+2) and L0 ∈ BLS(−2,+1,+2). ⋄

Now, we present some results from [1] that demonstrate the well-behaved
nature of BLSε. More precisely, the results show that BLSε is a smooth
submanifold diffeomorphic to Rl−d. Furthermore, the union of all BLSε is an
open subset of the larger space.

Fact 6.2.4. Consider a permutation and a reduced word σ = ai1 . . . ail
∈ Sn+1

and an ancestry ε. The subset BLSε ⊆ BLσ is a smooth submanifold of
codimension d = dim(ε).

Fact 6.2.5. Consider a permutation and a reduced word σ = ai1 . . . ail
∈ Sn+1

and an ancestry ε with d = dim(ε). The smooth submanifold BLSε ⊂ BLσ is
diffeomorphic to Rl−d, where l = inv(σ).

Fact 6.2.6. Let ε, ε̃ be ancestries. If BLSε ∩BLSε̃ ≠ ∅ then ε ⪯ ε̃.
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Observe that in the previous result, we do not assert equivalence, nor do
we state that any of the conditions above imply BLSε ⊆ BLSε̃.

Fact 6.2.7. If Uε̃ is an upper set of ancestries, then

⋃
ε∈Uε̃

BLSε ⊆ BLσ

is an open subset.



7
The CW Complex

In this chapter, for σ ∈ Sn+1 we introduce the CW complex BLCσ

associated with BLσ. We then examine the Euler characteristic of BLz, and
investigate the glueing maps of the CW complexes. Finally, we present the
homotopy type of BLσ for n ≤ 4.

7.1
The CW Complex BLCσ

The concept behind the CW complex BLCσ is that it behaves as a dual
cell structure to the stratification. This type of construction, particularly under
more favorable conditions, should be familiar with the Poincaré duality. As we
have seen, we have sufficient conditions to implement a similar construction in
our context.

Consider Sk−1
r and Dk

r as follow:

Sk−1
r = {v ∈ Rk ∣ ∣v∣ = r}, Dk

r = {v ∈ Rk ∣ ∣v∣ ≤ r}.

For a CW complex X, let X[j]
⊆ X denote the j-dimensional skeleton,

which is the union of all cells of dimension at most j.
The following result is Lemma 14.1 from [1] and is a key concept

concerning smooth manifolds, essential for the proof of Theorem 2 also in
[1], which we will soon present.

Fact 7.1.1. Let M0 ⊂ M1 be smooth manifolds of dimension l. Assume that
N1 = M1\M0 ⊂ M1 is a smooth submanifold of codimension k, 0 < k ≤ l, and
that N1 is diffeomorphic to Rl−k. Assume that X0 is a finite CW complex and
that i0 ∶ X0 →M0 is a homotopy equivalence.

There exists a map β ∶ Sk−1
→ X

[k−1]
0 with the following properties. Let

X1 be obtained from X0 by attaching a cell C1 of dimension k with glueing map
β. There exists a map i1 ∶ X1 →M1 with i1∣X0 = i0 such that i1 ∶ X1 →M1 is
a homotopy equivalence.

Observe that since M0 ⊂M1 is a submanifold of codimension 0, it follows
that M0 is an open subset of M1. Consequently, the subset N1 ⊂M1 is closed.
Additionally, if k < l it follows that M1 is not compact. The maps i0 and i1
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can often be taken as inclusions in many examples, but this is not a strict
requirement.

Now, we proceed to present Theorem 2 from [1] and its proof:

Fact 7.1.2. For σ ∈ Sn+1, there exists a finite CW complex BLCσ and a
continuous map iσ ∶ BLCσ → BLσ with the following properties:

1. The map iσ is a homotopy equivalence.

2. The cells BLCε of BLCσ are labeled by ancestries ε. For each ancestry ε
of dimension d, the cell BLCε has dimension d.

Proof. Ancestries of dimension 0 are the maximal elements under the partial
order ⪯. Let BLσ;0 ⊆ BLσ be the union of the open, disjoint, and contractible
sets BLSε for ε an ancestry of dimension 0. The set BLσ;0 is homotopically
equivalent to a finite set with one vertex per ancestry, which is of course a CW
complex of dimension 0. This is the basis of a recursive construction.

We can list the set of ancestries of positive dimension as (εi)1≤i≤Nε

in such a way that εj ⪯ εi implies j ≥ i. Define recursively the subsets
BLσ;i = BLσ;i−1 ∪BLSεi

⊆ BLσ. The family of sets BLσ;i defines a filtration:

BLσ;0 ⊂ BLσ;1 ⊂ . . . ⊂ BLσ;Nξ−1 ⊂ BLσ;Nξ
= BLσ .

The partial order ⪯ and Fact 6.2.6 guarantee that BLσ;i−1 ⊂ BLσ;i is
an open subset. Fact 6.2.4 tells us that BLSεi

= BLσ;i \BLσ;i−1 is a smooth
submanifold of codimension d = dim(εi) and Fact 6.2.5 tell us that BLSεi

is
diffeomorphic to Rl−d. Notice that BLSεi

⊂ BLσ;i is a closed subset. We may
therefore apply Fact 7.1.1 to the pair M0 = BLσ;i−1 ⊂ BLσ;i = M1, completing
the recursive construction and the proof. □

The proof of Fact 7.1.1, see [1], and Fact 7.1.2 provides us with instruc-
tions for the actual construction of the CW complex BLCσ and the map iσ.
However, this construction of the CW complex and the glueing maps is not as
straightforward as one might hope.

7.2
The Euler Characteristic

Fact 7.1.2 provides information about the CW complexes, while the
following result from [1] offer a formula for the Euler characteristic.

Fact 7.2.1. For σ ∈ Sn+1 and z ∈ σ́Quatn+1, we have

χ(BLz) = ∑
ε0

(−1)dim(ε0)Nε0(z).
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The summation is taken over all preancestries ε0.

Fact 7.2.2. Let z0 ∈ ήQuatn+1 be such that R(z0) > 0. We have that χ(BLz0)
is odd and χ(BL−z0) is even.

Fact 7.2.3. Consider n ≥ 5 and z0 ∈ ήQuatn+1 with R(z0) > 0. Then
BL−z0,thick is non empty, connected and its Euler characteristic χ(BL−z0,thick)
is even.

Example 7.2.1. For n = 5, BLC−z0 is connected and has: 480 vertices,
1120 cells of dimension 1, 864 cells of dimension 2, 228 cells of dimension
3, 6 cells of dimension 4 and no cells of higher codimension. It follows that
χ(BLz0) = 480−1120+864−228+6 = 2. In particular, BL−z0 is not contractible.

⋄

7.3
The glueing Maps

The glueing maps for the CW complexes BLCσ present challenges. To
gain a better understanding, we examine several results from [1] that offer
valuable insights.

In general, for an upper set U of ancestries, define

BLSU = ⋃
ε∈U

BLSε ⊆ BLσ, BLCU = ⋃
ε∈U

BLCε ⊆ BLCσ .

According to Fact 6.2.7, ⋃ε∈U BLSε = BLSU ⊆ BLσ is an open subset.

Fact 7.3.1. Let U be an upper set of ancestries. The subset BLCU ⊆ BLCσ

is closed and a CW complex. The restriction iσ∣BLCU
∶ BLCU → BLSU is a

homotopy equivalence.

Let U∗
ε = Uε\{ε}. It follows directly from the previous result that the

image of the glueing map for BLCε is contained in BLCU∗
ε
.

Consider an ancestry ε with dim(ε) > 0. Define two non empty subsets
U

±
ε ⊂ U

∗
ε . Denote the largest index k such that ε(k) = −2 by k•. It holds that

ϱk•
= ϱk•−1áik

. Define ϱ−k•
= ϱk•−1 and ϱ

+
k•

= ϱk•−1âik
. For ε̃ ∈ U

∗
ε , let (ϱ̃k)0≤k≤l

be defined as the standard. Then:

ε̃ ∈ U
±
ε ⟺ ϱ̃k•

= ϱ
±
k•

and ϱ̃k = ϱk for 0 ≤ k < k•.

These sets U±
ε are disjoint.
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Example 7.3.1. For ε with dim(ε) = 1, Uε consists of three elements: ε itself
and two ancestries with dimension 0. Consequently, the sets U±

ε each contain
one element. Figure 5.1 shows an example.

For ε with dim(ε) = 2 of type I, the sets U±
ε each contain one element.

In an upcoming chapter, we explore several examples illustrating these upper
sets, such as Figure 10.4, where U+

ε corresponds to the edge on the left and
U

−
ε to the one on the right. ⋄

Following from that, we define the sets near BLSε as:

BLS±
ε = ⋃

ε̃∈U±
ε

BLSε̃ .

Fact 7.3.2. Let ε be an ancestry of dimension d = dim(ε) > 0. If W is a
sufficiently thin open tubular neighborhood of BLSε then (BLSε ∪BLS±

ε )∩W ⊂

W are smooth submanifolds with boundary. Both manifolds have codimension
d − 1 and boundary equal to BLSε.

Let W ∗
= W\BLSε. There exists a diffeomorphism Φ ∶ Sd−1 × (0, r) ×

Rl−d
→ W

∗ such that

Φ−1[BLS+
ε ] = {N} × (0, r) × Rl−d

, Φ−1[BLS−
ε ] = {S} × (0, r) × Rl−d

,

where N,S ∈ Sd−1 are the north and south poles.

This result describe the sets near BLSε.
Let M be a smooth manifold and N ⊂ M be a transversally oriented

submanifold of codimension k that is also a closed set. The intersection with
N defines an element of Hk(M ;Z). The intersection with either BLS±

ε defines
in W

∗ a generator of Hd−1(W ∗;Z) ≈ Z.
If the manifold BLSU∗

ε
is homotopically equivalent to Sd−1 and the

intersection with BLS±
ε defines generators of Hd−1(BLSU∗

ε
;Z) ≈ Z, the ancestry

ε of dimension d = dim(ε) > 0 is called tame. If these conditions are not
satisfied, ε is classified as wild.

In terms of BLCU∗
ε
, the first condition states that BLCU∗

ε
is homotopically

equivalent to Sd−1. The second condition asserts that we can construct cocycles
ω
±
BLC ∈ Zd−1(BLCU∗

ε
;Z) by considering elements of U∗

ε of dimension d − 1 as
cells of BLCU∗

ε
, these cocycles ω±

BLC are generators of Hd−1
≈ Z.

Example 7.3.2. From Examples 5.2.1 and 5.2.2, we see that an ancestry ε

with d = dim(ε) = 1 or d = 2 of type I is tame. ⋄
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For the case of tame ancestries, we refer to Lemma 16.6 from [1], which
provides a method for obtaining the glueing map. Here, we outline the proof
for better understanding.

Fact 7.3.3. If ε is tame, then the glueing map β ∶ Sd−1
→ BLCU∗

ε
is a homotopy

equivalence.

Proof. Let W ∗
= W\BLSε as in Fact 7.3.2 and ω±

W∗ ∈ H
d−1(W ∗;Z) be defined

by intersection with BLS±
ε . By the definition of tameness, each one serves as

a generator. Consider the small transversal section α1 ∶ Dd
1
2
→ BLSUε

with
α1(0) = z1 ∈ BLSUε

\BLSU∗
ε
, and the restriction β1 = α1∣Sd−1

1
2

, where, ignoring

the radius, β1 ∶ Sd−1
→ W

∗. We have a paring Hd−1(W ∗;Z)× πd−1(W ∗) → Z.
According to Fact 7.3.2, ∣ω±

W∗β1∣ = 1.
Let i ∶ W

∗
→ BLSU∗

ε
denote the inclusion map. Define ω

±
BLS ∈

H
d−1(BLS∗

Uε
;Z) by their intersection with BLS±

ε , as per the definition of tame-
ness. Consider

i
∗
= H

d−1(i) ∶ Hd−1(BLSU∗
ε
;Z) → H

d−1(W ∗;Z);

we have i∗(ω±
BLS) = ω

±
W∗ . Thus, ω±

BLS(i ◦ β1) = ω
±
W∗β1 and i ◦ β1 is a generator

of πd−1(BLS∗
Uε
). From the proof of Fact 7.1.1, see [1], so is the glueing map β.

The result follows. □

From this result, Fact 7.3.1, and Fact 7.1.1, where M0 = BLSU∗
ε

⊂

M1 = BLSUε
= BLSε ∪BLSU∗

ε
, we conclude that we can attach a cell BLCε of

dimension d = dim(ε) to obtain BLCUε
.

Additionally, by the previous result and the examples in this section, we
observe that the cells BLCε of dimension 1 in BLCσ are edges joining the two
vertices corresponding to the elements of dimension 0 in Uε. If ε has dimension
2 type I, then BLCε fills in a square hole.

Up until the end of this work, we have not come across any wild ancestry.
This does not imply that they do not exist; perhaps they appear in higher
dimensions.

7.4
The Homotopy Type of BLσ for n ≤ 4

Several examples, combined with previously presented results, contribute
to proving Theorems 1 and 3 in [1], as outlined below. In Section 16.2 of
Chapter 16, we present the component referenced in item 2 of Fact 7.4.2.
Refer to [1] and [2] for proofs and examples.
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Fact 7.4.1. For n ≤ 4 and z ∈ B̃+
n+1, each connected component X ⊆ BLCz

collapses to a point.

Fact 7.4.2. Consider σ ∈ Sn+1 and BLσ ⊂ Lo1
n+1.

1. For n ≤ 4, every connected component of every set BLσ is contractible;

2. For n = 5 and σ = 563412 ∈ S6, there exist connected components of BLσ

which are homotopically equivalent to the circle S1;

3. For n ≥ 5, there exist connected components of BLη which have even
Euler characteristic.

In the upcoming chapters, we construct BLσ for σ ∈ S6.



8
Wiring Diagram Decomposition

In this chapter, we explore methods for decomposing a wiring diagram,
with a focus on block decomposition and split decomposition. We introduce
and define three distinct types of splits applicable to a wiring diagram.

8.1
Block Decomposition

In this section, we explore how to decompose a wiring diagram based on
the number of blocks. Recall that σ ∈ Sn+1 blocks at j if and only if aj does
not appear in a reduced word for σ.

Fact 8.1.1. If σ ∈ Sn+1 blocks at j then there exist permutations σ0 ∈ Sj and
σ1 ∈ Sn+1−j such that σ = σ0 ⊕ σ1.

Example 8.1.1. Let σ = [231645] = a2a1a4a5 ∈ S6.

Figure 8.1: Wiring diagram of σ = a2a1a4a5 ∈ S6.

Note that σ blocks at 3. This permutation can be represented as a sum
of two permutations: σ = σ1 ⊕ σ2, where σ1 = a2a1 ∈ S3 and σ2 = a1a2 ∈ S3. ⋄

Lemma 8.1.1. Let σ = ai1 . . . aik
∈ Sn+1 be a reduced word. If σ blocks at j

such that, σ = σ0 ⊕ σ1 with σ0 ∈ Sj and σ ∈ Sn+1−j then BLσ = BLσ0 ⊕BLσ1.

Proof. If σ ∈ Sn+1 blocks at j such that σ = σ0 ⊕ σ1, with σ0 ∈ Sj and
σ1 ∈ Sn+1−j, then the permutation matrix Pσ has two diagonal blocks, Pσ0 and
Pσ1 , such that Pσ = Pσ0 ⊕ Pσ1 .

Let L ∈ Lo1
n+1. Suppose that there exist L0 ∈ BLσ0 and L1 ∈ BLσ1 , such

that L = L0 ⊕ L1. Therefore,
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L = L0 ⊕ L1 =(U1Pσ0U2)⊕ (U3Pσ1U4)
= (U1 ⊕ U3)(Pσ0U2 ⊕ Pσ1U4)
= (U1 ⊕ U3)(Pσ0 ⊕ Pσ1)(U2 ⊕ U4).

Since, U1 ⊕ U3, U2 ⊕ U4 ∈ Upn+1, and Pσ0 ⊕ Pσ1 = Pσ, then

L = Ũ1PσŨ2,

where Ũ1 = (U1 ⊕ U3) and Ũ2 = (U2 ⊕ U4). Therefore, L ∈ BLσ.
In conclusion, L ∈ BLσ if and only if there exist L0 ∈ BLσ0 and

L1 ∈ BLσ1 , such that L = L0 ⊕ L1. □

We have seen how to represent a permutation as a direct sum of smaller
permutations, now we explore methods to decompose permutations in different
ways.

8.2
Split Type 1

In this section, we explore the behavior of a wiring diagram when it can
be decomposed in a way similar to a direct sum. This approach simplifies the
analysis, as the permutation is associated with a sum of permutations that
have already been studied.

Definition 8.2.1. If a curve can be traced in the wiring diagram from ri

to ri+1, or from ri+1 to ri, such that it transversely crosses only one wire,
without passing through an inversion, then a split type 1 can be performed
on the diagram. This split is said to be performed at row ri. The operation
decomposes the diagram into two parts, resulting in permutations σ1 ∈ Si+1

and σ2 ∈ Sn+1−i.

The permutations σ1 ∈ Sj+1 and σ2 ∈ Sn+1−j are obtained by joining the
wire that was cut with the dot that does not have a wire entering or leaving
it. It is important to note that the resulting words are still reduced.

Definition 8.2.2. Let σ = ai1 . . . ail
be a reduced word for a permutation

σ ∈ Sn+1. If a split type 1 can be performed at rj, then:

• σ1 = aik1
. . . aikm

∈ Sj+1,∀iks
≤ j,

• σ2 = aik1−j . . . aikn−j ∈ Sn+1−j, ∀iks
> j,

where ks ≤ ks+1, m = inv(σ1) and n = inv(σ2).
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Example 8.2.1. Let σ = [325614] = a1a4a3a2a1a5a4 ∈ S6.
We can trace a curve on the diagram, crossing the fifth wire and

separating it into two parts.

Figure 8.2: First step to apply the split type 1 on the wiring diagram of the
permutation σ = a1a4a3a2a1a5a4 ∈ S6.

The upper part is essentially σ1 = a1a2a1 ∈ S3, and the lower part is
essentially σ2 = a2a1a3a2 ∈ S4.

Figure 8.3: Result of apply the split type 1.

⋄

Lemma 8.2.1. Let σ = ai1 . . . ail
∈ Sn+1 be a reduced word. If a split type 1 can

be performed at σ ∈ Sn+1, resulting in permutations σ1 ∈ Si+1 and σ2 ∈ Sn+1−i,
then BLCσ = BLCσ1 ×BLCσ2.

Proof. When split type 1 is applied, the permutation is decomposed into two
parts such that no region in one part has inversions lying on the boundary
of a region in the other part. Consequently, performing a click in the region
of σ corresponding to σ1 does not affect the signs of the inversions associated
with σ2.

This establishes a correspondence between 1-skeletons of the desired CW-
complexes. In order to extend this correspondence to higher dimensional cells,
its suffices to verify that a valid pattern of black and white diamonds (i.e., a
preancestry) for the original permutation corresponds to a pair of such patterns
for σ1 and σ2.
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This implies that the CW complex of σ ∈ Sn+1 is equivalent to that of
σ1 ⊕ σ2 ∈ Sn+2. By Lemma 8.1.1, we have BLCσ = BLCσ1 ×BLCσ2 . □

See Section 10.1 for a detailed application of the lemma.

8.3
Split Type 2

In this section, we introduce the concept of a tourist and examine how
its presence enables us to decompose a wiring diagram. This decomposition
simplifies the analysis similarly to the way split type 1 does.

Definition 8.3.1. Let σ = ai1 . . . ail
be a reduced word for a permutation σ ∈

Sn+1. A split type 2 on a wiring diagram at inversion aik
is a decomposition

of the diagram into two parts, which satisfies the following conditions:

1. For all j ≠ k, aik
≠ aij

;

2. The remaining words in either Sik+1 and Sn+1−ik
, or Sik

and Sn+2−ik
,

remain reduced.

We call the inversion aik
a tourist.

Note that the tourist is an inversion that does not impact the possibility
of applying the click operation; it is only affected by the click. One could say
that the inversion only observes what is happening, like a tourist.

The move involves separating the wiring diagram into two parts in such
a way that the inversion aik

is in one of the two parts, the wires that were cut
are then reconnected to the dots that do not have a wire entering or leaving.
The other part is obtained by connecting the wires that we have cut.

A split type 2 can be performed at aik
by drawing a line at height ik+1/4

or ik + 3/4. In the first case, the inversion will lie in the upper subdiagram;
in the second case, it will lie in the lower subdiagram. In both scenarios, the
split is said to occur at the inversion aik

.
When split type 2 is applied at aik

, at height ik + 1/4, the resulting
permutations are σ1 ∈ Sik

and σ2 ∈ Sn+2−ik
. In the other case, the resulting

permutations are σ1 ∈ Sik+1 and σ2 ∈ Sn+1−ik
.

Remark 8.3.2. If the tourist is not at the boundary of any region, split type
1 can be applied. ⋄

Definition 8.3.3. Let σ = ai1 . . . ail
be a reduced word for a permutation

σ ∈ Sn+1. If a split type 2 can be performed at aj, then:

1. For j + 1
4 , the resulting permutations are:



Chapter 8. Wiring Diagram Decomposition 74

• σ1 = aik1
. . . aikm

∈ Sj, ∀iks
≤ j − 1,

• σ2 = aik1−j−1 . . . aikn−j−1 ∈ Sn+2−j, ∀iks
> j − 1,

where ks ≤ ks+1, m = inv(σ1) and n = inv(σ2).

2. For j + 3
4 , the resulting permutations are:

• σ1 = aik1
. . . aikm

∈ Sj+1, ∀iks
≤ j,

• σ2 = aik1−j . . . aikn−j ∈ Sn+1−j, ∀iks
> j,

where ks ≤ ks+1, m = inv(σ1) and n = inv(σ2).

Example 8.3.1. Let σ = a2a1a3a2a1a5a4 ∈ S6 be a reduced word. The
inversion a3 is a candidate for applying the split type 2. To begin, we mark the
red line in Figure 8.4, where the split type 2 is performed at the height 3 + 3

4 .

Figure 8.4: First step to apply the split type 2 on σ = a2a1a4a3a2a5a4 ∈ S6.

Next, we connect the wires to form the resulting diagrams, as shown in
Figure 8.5. Note that a2a1a3a2 ∈ S4 and a1a2a1 ∈ S3 are still reduced.

Figure 8.5: Resulting permutations: σ1 = a2a1a3a2 ∈ S4 and σ2 = a1a2a1 ∈ S3.

We can also apply split type 2 at the tourists a1, a3 and a5. ⋄

The next example shows more types of tourists.

Example 8.3.2. The wiring diagram on the left of Figure 8.6 has three
tourists: a1, a2 and a3. On the right, there is one tourist: a1.

Note that in both diagrams, one might think that a5 is a tourist, but this
is not the case, as if we apply the split type 2 at this inversion, the remaining
word will not be reduced.
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Figure 8.6: Wiring diagrams of the permutations σ1 = a4a5a4a3a2a1 ∈ S6 and
σ2 = a2a3a2a4a3a2a1a5a4a3a2 ∈ S6 .

Furthermore, the tourists in the first diagram do not belong to the
boundary of any region. Therefore, we can apply split type 1. ⋄

Lemma 8.3.1. Let σ = ai1 . . . ail
∈ Sn+1 be a reduced word. If aik

is a tourist,
then BLCσ = BLCσ1 ×BLCσ2, where σ1 ∈ Sik+1 and σ2 ∈ Sn+1−ik

are the
remaining permutations obtained by performing a split type 2 at aik

.

The proof is similar to the proof of Lemma 8.2.1.
Proof. Since aik

is a tourist, there are no preancestries for σ ∈ Sn+1 with the
inversion aik

marked. By applying split type 2, the permutation is decomposed
into two parts such that row rik

contains only the inversion aik
. Consequently, a

preancestry for the original permutation corresponds to a pair of preancestries
for σ1 and σ2. This implies that the CW complex of σ ∈ Sn+1 is equivalent to
that of σ1 ⊕ σ2 ∈ Sn+2. By Lemma 8.1.1, we have BLCσ = BLCσ1 ×BLCσ2 . □

See Section 10.2 for a detailed application of the lemma.

8.4
Split Type 3

In this section, we introduce the final method for decomposing a diagram.
Unlike the previous methods, applying split type 3 does not result in the
number of components of BLσ being a simple product.

Definition 8.4.1. Consider a wiring diagram where we trace a curve starting
in ri at height i+ 1

2 , that passes from ri to ri−1 without crossing any wire. The
curve then crosses a wire at height i − ϵ, and moves up to height i − 1

4 . The
curve moves horizontally at this height and then moves down, crossing another
wire at height i− ϵ. The curve then moves into ri and continues at height i+ 1

2
until the end. In the process the curve crosses wires exactly twice. We assume
there are only two crossings in ri−1. If such a curve can be traced in the wiring
diagram, we can perform split type 3. The operation decomposes the diagram
into two parts, resulting in the permutations σ1 ∈ Si+1 and σ2 ∈ Sn+2−i. In the
crossed region, the wires are first reconnected by linking the left wire to the
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right dot, and vice versa, creating an inversion ai. The remaining wires are
then connected by joining them at their nearest starting and ending points.

Definition 8.4.2. Let σ = ai1 . . . ail
be a reduced word for a permutation

σ ∈ Sn+1. If a split type 3 can be performed at rj, then:

• σ1 = aik1
. . . aikm

∈ Sj+1, ∀iks
≤ j,

• σ2 = aik1−j−1 . . . aikn−j−1 ∈ Sn+2−j, ∀iks
≥ j,

where ks ≤ ks+1, m = inv(σ1) and n = inv(σ2). In σ1, the subword aj . . . aj

will be represented by a single aj, which is the new inversion introduced by
the split.

Remark 8.4.3. In split types 1 and 2, the permutation is decomposed into
two smaller permutations whose dimensions sum to n + 2. In split type 3,
however, one additional inversion is generated in σ1. Here, the sum of the
dimensions of σ1 and σ2 is n + 3. The sign of the additional inversion does
not alter the homotopy type of the associated CW complex. Simply taking the
direct sum would result in twice as many components, so this must be adjusted
accordingly. ⋄

Example 8.4.1. Let σ = a1a2a3a2a4a3a2a5a4a3a2a1 ∈ S6. In Figure 8.7, we
trace a red curve that only crosses one region in the diagram, in accordance
with the conditions outlined in the definition.

Figure 8.7: First step to perform a split type 3 on the diagram of σ ∈ S6 .

Now, we connect the wires that we cut in the upper part of the diagram to
the dots representing 3 on both sides, creating an inversion a3 in the diagram.
The resulting permutation is η ∈ S3.

After that, we connect the wires that we cut in the lower part of the wiring
diagram to the dots representing 1 on both sides. The resulting permutation
is η ∈ S5.
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Figure 8.8: Resulting permutations η ∈ S3 and η ∈ S5 .

⋄

Lemma 8.4.1. Let σ = ai1 . . . ail
∈ Sn+1 be a reduced word. If a split type

3 can be performed at σ ∈ Sn+1, resulting in σ1 ∈ Sj+2 and σ2 ∈ Sn+1−j,
then BLCσ ×{±1} = BLCσ1 ×BLCσ2. In particular, the number of connected
components in BLCσ is half the product of the number of connected components
in BLCσ1 and BLCσ2 .

Proof. Applying split type 3 the permutation is decomposed into two parts:
the upper part, which includes the new inversion aj and is represented by
σ1 ∈ Sj+2, and the lower part. Performing a click operation in the region
corresponding to σ1 changes the signs of all inversions in rj simultaneously.
Consequently, this change of signs does not affect the possibility of performing
a click in the regions corresponding to σ2. This establishes a correspondence
between 1-skeletons of the desired CW-complexes.

The curve passes through exactly one region which is contained between
the two only crossings in ri−1. Thus, any preancestry with diamonds in ri−1 has
only one possible way to be marked in this row. For ancestries of dimension
greater than 1 that include diamonds in ri−1, the possible positions for the
diamonds in the remaining rows are not affected by the diamonds in ri−1.
Therefore, any preancestry in σ corresponds to a pair of preancestries in σ1

and σ2.
If no click is performed in the region corresponding to σ1, the sign of aj

in σ1 is ◦ (or •); if a click is performed, the sign changes to • (or ◦). This
results in two copies of the same component.

Therefore, BLCσ ×{±1} = BLCσ0 , where σ0 = σ1 ⊕ σ2 ∈ Sn+3. By
Lemma 8.1.1, it follows that BLCσ0 = BLCσ1 ×BLCσ2 . Thus, the number of
connected components of BLCσ is half the product of the number of connected
components of BLCσ1 and BLCσ2 . □
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Example 8.4.2. Let σ = a1a2a3a2a4a3a2a5a4a3a2a1 ∈ S6, as in the previous
example. In the diagram of σ1 = a1a2a1 ∈ S3 (Figure 8.8), the inversion a2

is generated during the process of separating the diagrams. However, this
inversion does not affect the overall analysis. Its effect is limited to changing
the signs of r1 in the diagram of σ2 = a1a2a1a3a2a1a4a3a2a1 ∈ S5.

The CW complex is formed as the product of BLCσ2 and the cells of
BLCσ1 disregarding the influence of a2. In this example, the cells correspond
to two dots and one segment, represented as (•x•), (◦x◦), and (⬩x⋄).
Assigning either ◦ or • to the position x yields the same CW complex.

Therefore, only one possibility needs to be considered. Consequently, the
number of connected components is half the product of the components.

From this analysis, it follows that BLCσ contains 3× 52 = 156 connected
components, all of which are contractible. ⋄

In the following chapters, we examine the homotopy type of BLσ with
σ ∈ S6 categorizing the analysis by the number of inversions. With our
understanding of how to decompose a wiring diagram, we can now distinguish
between permutations that can be reduced and those that cannot.
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The Homotopy Type of BLσ for inv(σ) ≤ 6

For those σ ∈ S6 with inv(σ) ≤ 6, determining the homotopy type of
BLσ is relatively straightforward. In this chapter, we first focus on the cases
where inv(σ) ≤ 4, and then proceed to analyze those with inv(σ) = 5 and
inv(σ) = 6.

9.1
The Homotopy Type of BLσ for inv(σ) ≤ 4

For σ ∈ S6 with inv(σ) ≤ 4, we have block(σ) = ∣Block(σ)∣ = b ≠ 0 and
the permutation can be expressed as a sum of well known permutations.

As stated in Definition 2.1.3, if σ = σ1 ⊕ σ2, then BLσ = BLσ1 ⊕BLσ2 .
Since σ1 ∈ Sj and σ2 ∈ S6−j with j ≤ 5, both BLσ1 and BLσ2 are contractible.
Consequently, the sum BLσ = BLσ1 ⊕BLσ2 is also contractible. The number of
connected components is the product of the number of connected components
of BLσ1 and BLσ2 .

Example 9.1.1. Example 8.1 presents the permutation σ = [231645] =

a2a1a4a5 ∈ S6. We can express σ as the sum of two permutations: σ = σ1 ⊕ σ2,
where σ1 = a2a1 ∈ S3 and σ2 = a1a2 ∈ S3. It is well known that both BLσ1 and
BLσ2 each have 4 connected components, all contractible.

Therefore, BLσ has 16 connected components, all of which are con-
tractible. These connected components are thin ancestries representing points
in the CW complex. ⋄

9.2
The Homotopy Type of BLσ for inv(σ) = 5

The permutations will be categorized based on the number of blocks. For
inv(σ) = 5 there are a total of 71 permutations distributed across the following
cases:

1. There are 55 permutations with b ≠ 0.

In this case, the permutation can be expressed as a sum of well-known
permutations. Consequently, BLσ is contractible.
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2. There are 16 permutations with b = 0.

Since there are five rows and five inversions, it follows that there is exactly
one inversion in each row. Consequently, the connected components are
thin and therefore, contractible.

Example 9.2.1. Let σ = [512364] = a1a2a3a5a4 ∈ S6.

There are 25
= 32 ancestries, all with dimension 0. Figure 9.1 shows one

of these ancestries.

Figure 9.1: Thin component with ε = (• ◦ • ◦ ◦).

Notice that each ancestry is thin, since there is only one inversion in
each row. Therefore, BLσ has 32 connected components, all of which are
contractible. ⋄

Since BLσ is contractible for both b = 0 and b ≠ 0, it follows that BLσ is
contractible for all σ ∈ S6 with inv(σ) ≤ 5.

9.3
The Homotopy Type of BLσ for inv(σ) = 6

For σ ∈ S6 with inv(σ) = 6, there are 90 permutations distributed across
the following cases:

1. There are 46 permutations with b ≠ 0.

In this case, the permutation can be expressed as a sum of well-known
permutations. Consequently, BLσ is contractible.

2. There are 33 permutations that can be analyzed using the permutation
σ = a1a2a1 ∈ S3.

Example 9.3.1. Let σ1 = [234651] = a4a5a4a3a2a1 ∈ S6.

The permutation has three tourists, a3, a2 and a1, so we can use split type
1 to separate the wiring diagram into two parts. In this case we apply the
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split at r3. These parts correspond to the permutations σ1 = a3a2a1 ∈ S4

and σ2 = a1a2a1 ∈ S3.

It is well-know that σ2 = a1a2a1 ∈ S3 has 6 connected components, all of
them contractible. The components consist of 4 thin and 2 thick. The per-
mutation has 3 additional inversions, represented by σ1 = a3a2a1 ∈ S4.
These inversions are tourists, meaning that they do not affect the homo-
topy type of the connected components. They essentially contribute to
the number of components. Figure 9.2 shows a thin connected component
of BLσ.

Figure 9.2: Thin component with ancestry ε = (◦ • ◦ • ◦•).

Since the permutation has 5 rows, it is easy to see that BLσ has 32 thin
connected components.

Figure 9.3 shows the other type of connected component, with dimension
1. This component consists of two dots connected by an edge. Note that
the component is generated by the part associated with σ2 = a1a2a1 ∈ S3,
the other part remains unchanged.

Figure 9.3: Connected component of dimension 1 with ancestry ε = (⬩•⋄◦◦•).

Consequently, BLσ contains 2⋅8 = 16 connected components of this type.

Therefore, BLσ has 32 + 16 = 6 ⋅ 23
= 48 connected components, all of

them contractible. ⋄
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3. There are 11 permutations that can be analyzed using the permutation
σ = a2a1a3a2 ∈ S4.

This case is similar to the previous one. The permutation has two
tourists, and we can apply split type 1 to solve it.

Therefore, BLσ has 12 ⋅ 22
= 48 connected components, all of them

contractible.

As a result, for all σ ∈ S6 with inv(σ) = 6, BLσ is contractible. Hence,
BLσ is contractible for all σ ∈ S6 with inv(σ) ≤ 6.
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The Homotopy Type of BLσ for inv(σ) = 7

For inv(σ) = 7, there are 101 permutations distributed across the
following cases. In the first case, the permutation is blocked. For cases 2 to
10, split type 1 is applied and for case 11, split type 3 is applied.

1. There are 32 permutations with b ≠ 0.

In this case, the permutation can be expressed as a sum of well-known
permutations. Consequently, BLσ is contractible.

2. There are 12 permutations that can be analyzed using the permutation
σ1 = a1a2a3a2a1 ∈ S4.

The permutation σ ∈ S6 has two tourists to which we apply split type 1.

It is well known that σ1 = a1a2a3a2a1 ∈ S4 has 18 connected components,
all of which are contractible.

Therefore, BLσ has 18 ⋅ 22
= 72 connected components, all of them

contractible.

3. There are 12 permutations that can be analyzed using the permutation
σ2 = a2a1a3a2a1 ∈ S4.

The permutation has two tourists to which we apply split type 1.

It is well known that σ2 = a2a1a3a2a1 ∈ S4 has 16 connected components,
all of which are contractible.

Therefore, BLσ has 16 ⋅ 22
= 64 connected components, all of them

contractible.

4. There are 12 permutations that can be analyzed using the permutation
σ3 = a1a2a1a3a2 ∈ S4.

The permutation has two tourists to which we apply split type 1.

Therefore, BLσ has 64 connected components, all of them contractible.

5. There are 4 permutations that can be analyzed using the permutation
σ4 = a2a1a3a2a4a3 ∈ S5.

The permutation has one tourist and we apply split type 1.
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Therefore, BLσ has 64 connected components, all of them contractible.

6. There are 4 permutations that can be analyzed using the permutation
σ5 = a2a1a3a4a3a2 ∈ S5.

The permutation has one tourist to which we apply split type 1.

Therefore, BLσ has 72 connected components, all of them contractible.

7. There are 4 permutations that can be analyzed using the permutation
σ6 = a3a2a1a4a3a2 ∈ S5.

The permutation has one tourist to which we apply split type 1.

Therefore, BLσ has 64 connected components, all of them contractible.

8. There are 4 permutations that can be analyzed using the permutation
σ7 = a1a3a2a1a4a3 ∈ S5.

The permutation has one tourist to which we apply split type 1.

Therefore, BLσ has 72 connected components, all of them contractible.

9. There are 12 permutations that can be analyzed using the permutation
σ8 = a1a2a1 ∈ S3.

Example 10.0.1. Let σ = [324651] = a1a4a5a4a3a2a1 ∈ S6.

Figure 10.1: Ancestry ε = (⬩ ⬩ • ⋄ • • ⋄) of dimension 2.

Note that we can apply split type 1 at row 2, crossing the sixth wire. Or
at row 3, crossing the same wire.

It is well known that σ8 = a1a2a1 ∈ S3 has 6 contractible connected
components. In this case, we have 2 copies of the same permutation and
an additional inversion that does not alter the homotopy type of the
components.

Furthermore, BLσ8 only has components of dimension 0 and 1, whereas
σ ∈ S6 has ancestries of dimension 2, Figure 10.1 shows one of these
ancestries. The connected components will be the product of those with
lower dimension. The next example will explain this in details.
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Therefore, BLσ has 6 ⋅ 6 ⋅ 2 = 72 connected components, all of them
contractible. ⋄

10. There are 4 permutations that can be studied through the sum of
σ9 = a1a2a1 ∈ S3 and σ10 = a2a1a3a2 ∈ S4. This case will be detailed in
Section 10.1.

11. The permutation σ = a2a1a4a3a2a5a4 ∈ S6 will be studied in detail in
Section 10.2.

10.1
Case 10

Let σ = [325614] = a1a4a3a2a1a5a4 ∈ S6. As shown in Example 8.2.1,
we can apply split type 1 to decompose σ into σ1 = a1a2a1 ∈ S3 and
σ2 = a2a1a3a2 ∈ S4.

It is well known that BLσ1 and BLσ2 have 6 and 12 connected components,
respectively, all of them contractible. Therefore, BLσ has 6 ⋅12 = 72 connected
components, all contractible.

First, let us analyze the case without applying split type 1.
There exist 25

= 32 thin ancestries, resulting in 32 components similar
to the one shown in Figure 10.2. Consequently, BLσ has 32 thin connected
components, all contractible.

Figure 10.2: Thin component with ancestry ε = (• • ◦ ◦ • • •).

For dimension 1, there are 2 possible positions for the diamonds, as shown
in Figure 10.3. For each position, the rows that do not have diamonds have
only one sign. This yields 24

= 16 copies for each position.
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Figure 10.3: CW complexes with 1-dimensional ancestries ε1 = (◦⬩••◦◦⋄)
and ε2 = (⬩ • • • ⋄ ◦ •), respectively.

Thus, BLσ has a total of 32 connected components of this type, all
contractible.

For dimension 2, there is one possible position for the diamonds, as shown
in Figure 10.4. In this case, each row that does not have diamonds takes one
sign. As a result, we have 23

= 8 copies.

Figure 10.4: CW complex with the 2-dimensional ancestry ε = (⬩⬩◦◦⋄•⋄).

Therefore, there are 8 connected components of this type in BLσ, all
contractible.

Summing up, BLσ has 72 connected components, all of them are
contractible.

When analyzing through the split, there is a difference in the considera-
tion of ancestries.

For σ1 = a1a2a1 ∈ S3 and σ2 = a2a1a3a2 ∈ S4, the permutations do not
have ancestries of dimension 2. However, for σ ∈ S6, ancestries of dimension 2
appear. This occurs because the CW complex of σ ∈ S6 is the product of the
CW complexes of σ1 ∈ S3 and σ2 ∈ S4. These ancestries appear when we take
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the sum, altering the structure of the CW complex. However, the homotopy
type is preserved.

It is well known that BLσ1 has two connected components of dimension
1 and four thin ones. Furthermore, BLσ2 has four connected components of
dimension 1 and eight thin ones. The connected components of dimension 1
are shown in Figure 10.5.

Figure 10.5: CW complexes of dimension 1 of BLσ1 and BLσ2 , respectively.

One can see that the product of these components yields the component
of dimension 2 in Figure 10.4.

The other three permutations are

σ1 = a2a1a4a5a4a3a2, σ2 = a2a1a3a2a4a5a4,

σ3 = a1a2a1a4a3a5a4.

They are all expressed with the same two permutations.

10.2
Case 11

Let σ = [351624] = a2a1a4a3a2a5a4 ∈ S6 be a fixed a reduced word.
For this permutation, there are three possible approaches: the first is applying
clicks, the second is using the orbits, and the third is applying split type 3.

10.2.1
First Approach

For σ = a2a1a3a2a1a4a3 ∈ S6, the maximal dimension for the ancestries
is 2. Let us understand what happens for each possible ancestry.

In dimension 0, an ancestry can be either thin or thick. The latter only
appears in CW complexes of dimension greater than 0.

There exist 25
= 32 thin ancestries, resulting in 32 components similar

to the one shown in Figure 10.6. Consequently, BLσ has 32 thin connected
components, all contractible.
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Figure 10.6: Component of dimension 0 with ancestry ε0 = (◦ • ◦ ◦ ◦ • ◦).

In dimension 1, there are two possible positions for the diamonds. For
each position, when rows without diamonds have only one sign, a component
is formed as shown in Figure 10.7. This yields 24

= 16 copies for each position.

Figure 10.7: CW complexes of dimension 1, with ancestries ε1 = (⬩◦•◦⋄◦•)
and ε2 = (◦ ◦ ⬩ ◦ ◦ ◦ ⋄), respectively.

Thus, BLσ has a total of 32 connected components of these types, all
contractible.

The remaining ancestries of dimension 1 appear in CW complexes of
higher dimensions.

In dimension 2, there is only one possible position for the diamonds, as
shown in Figure 10.8. In this case, each row without diamonds takes one sign.
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Figure 10.8: CW complex with 2-dimensional ancestry ε3 = (⬩ ◦ ⬩ ◦ ⋄ ◦ ⋄).

Therefore, there are 23
= 8 connected components of this type in BLσ,

all of them contractible.
Summing up, BLσ has 32 + 32 + 8 = 72 connected components, all of

them contractible.

10.2.2
Second Approach

For σ = a2a1a4a3a2a5a4 ∈ S6, it follows that

σ́ =
1

2
√

2
(â3 − â1â2â3 + â1â4 + â2â4 + â1â5 + â2â5 − â3â4â5 + â1â2â3â4â5).

The set σ́Quat6 has 5 orbits of sizes 16, 8, 16, 16, 8:

Oσ́ = {±â3 ± â1â2â3 ± â1â4 ± â2â4 ± â1â5 ± â2â5 ± â3â4â5 ± â1â2â3â4â5

2
√

2
},

Oâ3σ́ = {−1 ± â1â2 ± â1â3â4 ± â2â3â4 ± â4â5 ± â1â3â5 ± â2â3â5 ± â1â2â4â5

2
√

2
},

Oâ1σ́ = {±â1â3 ± â2â3 ± â4 ± â1â2â4 ± â5 ± â1â2â5 ± â1â3â4â5 ± â2â3â4â5

2
√

2
},

Oâ4σ́ = {±â1 ± â2 ± â3â4 ± â1â2â3â4 ± â3â5 ± â1â4â5 ± â2â4â5 ± â1â2â3â5

2
√

2
},

Oâ1â4σ́ = {1 ± â1â2 ± â1â3â4 ± â2â3â4 ± â4â5 ± â1â3â5 ± â1â2â4â5 ± â2â3â5

2
√

2
}.
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In the expressions within the Clifford algebra notation, the signs must
be such that there is an even number of equal signs.

The elements z ∈ σ́Quat6 have R(z) ∈ {− 1
2
√

2 , 0,
1

2
√

2}. Using the Formula
4-3 for the number of ancestries of dimension 0 for a given z ∈ σ́Quat6, it
follows that N(z) ∈ {0,−2, 4}.

(i) If R(z) = − 1
2
√

2 < 0, then N(z) = 0, and thus the corresponding set BLz

is empty. Therefore, for each z ∈ Oâ3σ́ the set BLz is empty.

(ii) If z0 = σ́, then R(z0) = 0 and N(z0) = Nthin(z0) = 2. Thus, for each
z ∈ Oσ́ the set BLz has 2 contractible thin connected components. This
component is illustrated in Figure 10.6.

Hence, this yields 32 connected components of BLσ, all contractible.

The CW complex BLCz0 is represented by two dots.

(iii) Let z = à2á1à4á3á2á5à4. Then R(z) = 0, N(z) = 2 and there is no
thin ancestry. By Formulas 4-1 and 4-2, it follows that for dimension 1,
N(z) = 1. The component is shown in Figure 10.7.

Therefore, for each z ∈ Oâ1σ́ the set BLz has one connected component,
which is contractible. The same applies to z ∈ Oâ4σ́, resulting in 32
connected components of BLσ, all of which are contractible.

The CW complex BLCz is represented by two vertices and one edge.

(iv) Let z = à2á1à4á3á2á5á4. In this case, R(z) =
1

2
√

2 > 0 and N(z) = 4.
By Formulas 4-1 and 4-2, it follows that for dimension 1, N(z) = 4
(two for each preancestry of dimension 1). Additionally, for dimension 2,
N(z) = 1. The component is shown in Figure 10.8.

Therefore, for each z ∈ Oâ1â4σ́, the set BLz has one connected component,
which is contractible. Thus, we have 8 connected components of BLσ, all
of which are contractible.

The CW complex BLCz consists of one connected component, with 4
vertices connected by 4 edges.

In summary, BLσ has 72 connected components, all contractible.
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10.2.3
Third Approach

Note that the permutation has three tourists, a1, a3 and a5, The split
type 2 can be applied to any of them. As in Example 8.3.1, consider a3. One
can observe that inversion a3 = (3, 4) does not affect the click operation, it
only gets affected. This means that the inversion does not significantly change
the analysis.

Figure 10.9: The wiring diagram of the permutation σ = a2a1a4a3a2a5a4 ∈ S6.

Note that the upper part is equivalent to σ1 = a2a1a3a2 ∈ S4, and the
lower part is equivalent to σ2 = a1a2a1 ∈ S3. Now, apply Lemma 8.3.1.

Then BLCσ = BLCσ1 ×BLCσ2 and, consequently, BLσ has 12 ⋅ 6 = 72
connected components, all contractible.

Furthermore, it is important to note that the CW complexes of BLσ1 ∈ S4

and BLσ2 ∈ S3 consist only of 0-cells and 1-cells. Their product generates the
2-cell in BLσ ∈ S6.

The permutations σ1 ∈ S3 and σ2 ∈ S4 are the same as in Section
10.1. Therefore, we have already seen that the product of the components
of dimension 1 yields the component of dimension 2.

A closer examination reveals that cases 10 and 11 are fundamentally the
same. This occurs because of the presence of tourists.

As a result, BLσ is contractible for all σ ∈ S6 with inv(σ) = 7.
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The Homotopy Type of BLσ for inv(σ) = 8

For inv(σ) = 8, there are 101 permutations distributed across the
following cases. In the first case, the permutation is blocked. For cases 2 to
13, split type 1 is applied. For case 14, split type 1 or 2 is applied, and for case
15, split type 2 is applied. Consequently, for all cases, BLσ is contractible.

1. There are 18 permutations with b ≠ 0;

2. There are 12 permutations that can be analyzed using the permutation
σ1 = a1a2a1a3a2a1 ∈ S4;

3. There are 4 permutations that can be analyzed using the permutation
σ2 = a3a2a1a4a3a2a1 ∈ S5;

4. There are 4 permutations that can be analyzed using the permutation
σ3 = a2a1a3a4a3a2a1 ∈ S5;

5. There are 4 permutations that can be analyzed using the permutation
σ4 = a2a3a2a1a4a3a2 ∈ S5;

6. There are 4 permutations that can be analyzed using the permutation
σ5 = a1a3a2a4a3a2a1 ∈ S5;

7. There are 5 permutations that can be analyzed using the permutation
σ6 = a2a1a3a2a4a3a1 ∈ S5;

8. There are 4 permutations that can be analyzed using the permutation
σ7 = a1a2a3a4a3a2a1 ∈ S5;

9. There are 5 permutations that can be analyzed using the permutation
σ8 = a1a2a3a2a1a4a3 ∈ S5;

10. There are 4 permutations that can be analyzed using the permutation
σ9 = a1a2a1a3a4a3a2 ∈ S5;

11. There are 3 permutations that can be analyzed using the permutation
σ10 = a1a2a1a3a2a4a3 ∈ S5;
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12. There are 4 permutations that can be analyzed using the permutation
σ11 = a1a3a2a1a4a3a2 ∈ S5;

13. There are 3 permutations that can be analyzed using the permutation
σ12 = a2a1a3a2a4a3a2 ∈ S5;

14. There are 18 permutations that can be studied through the sum of two
permutations one in S3 and the other in S4;

The permutation in S3 is the same for all the 18 permutations,
σ1 = a1a2a1 ∈ S3. The permutations in S4 are

σ1 = a2a1a3a2a1, σ2 = a1a2a3a2a1 or σ3 = a1a2a1a3a2 ∈ S4;

15. There are 9 permutations that we can apply split type 2. In some of
them, we can also apply split type 3. In the following section, we explore
an example.

11.1
Case 15

Let σ = [361452] = a2a1a3a4a5a4a3a2 ∈ S6 be a reduced word.

11.1.1
First Approach

There exist 25
= 32 thin ancestries similar to Figure 11.1. Therefore, BLσ

has 32 thin connected components, all contractible.

Figure 11.1: Thin component with ancestry ε1 = (◦ ◦ • ◦ • ◦ •◦).

For dimension 1, there are three possible positions for the diamonds,
r2, r3 and r4. If the remaining rows have equal signs, each one have the same
CW complex structure. In Figure 11.2, we can see an example. In these cases,
we have 16 copies for each position.
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Figure 11.2: CW complex of dimension 1 with ancestry ε2 = (◦ ◦ • ⬩ • ⋄ •◦).

If the remaining rows consist of one with equal signs and the other with
opposite signs, the ancestries will appear in the CW complex of dimension 2.
If they all have opposite signs, the ancestry will be part of the CW complex
of dimension 3, which we discuss below.

Therefore, BLσ has a total of 48 connected components of these types,
all contractible.

For dimension 2, the diamonds can be positioned in three ways: in r2 and
r3; r3 and r4; or r2 and r4. For each position, there are two possibilities for the
row that does not have diamonds and contains more than one inversion, either
having equal or opposite signs.

If the signs are equal, we have an example in Figure 11.3. In these cases,
there are 8 copies for each position.

If the signs are opposite, they will appear in a CW complex of dimension
3, which will be discussed next.

Figure 11.3: CW complex of dimension 2 with ancestry ε3 = (⬩◦ •⬩ •⋄ •⋄).

Therefore, BLσ has a total of 24 connected components of these types,
all contractible.

For dimension 3, the diamonds have only one position, resulting in 4
copies of a solid cube. In Figure 11.5, we have an example represented as a
cube planar projection. The 3-dimensional cell in Figure 11.4 completely fills
the cube. Note that the faces of the cube correspond to the 2-dimensional
ancestries mentioned above.
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Figure 11.4: Ancestry of dimension 3 that fills the cube ε4 = (⬩◦⬩⬩•⋄⋄⋄).

Figure 11.5: The cube that represents the CW complex of dimension 3.

Therefore, BLσ has 4 connected components of dimension 3, all of them
contractible.

Summing up, BLσ has 108 connected components, all contractible.

11.1.2
Second Approach

In this subsection, we assume that the components are already known
and we now examine which orbit corresponds to each CW complex we drew
in the previous section.

The analysis can also be done without relying on the CW complexes
mentioned above; this would require additional calculations involving the
number of higher-dimensional ancestries.

For σ = [361452] = a2a1a3a4a5a4a3a2 ∈ S6, it follows that

σ́ =
1
2(â1â4 + â2â4 + â3â5 − â1â2â3â5) ∈ B̃+

6 .
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The set σ́Quat6 consists of 9 orbits, with the first 7 having size 8, and
the last two having size 4:

Oσ́ = {±â1â4 ± â2â4 ± â3â5 ± â1â2â3â5
2 },

Oâ1σ́ = {±â4 ± â1â2â4 ± â1â3â5 ± â2â3â5
2 },

Oâ3σ́ = {±â1â3â4 ± â2â3â4 ± â5 ± â1â2â5
2 },

Oâ1â3σ́ = {±â3â4 ± â1â2â3â4 ± â1â5 ± â2â5
2 },

Oâ3â4σ́ = {±â1â3 ± â2â3 ± â4â5 ± â1â2â4â5
2 },

Oâ4σ́ = {±â1 ± â2 ± â3â4â5 ± â1â2â3â4â5
2 },

Oâ1â3â4σ́ = {±â3 ± â1â2â3 ± â1â4â5 ± â2â4â5
2 },

Oâ1â4σ́ = {1 ± â1â2 ± â1â3â4â5 ± â2â3â4â5
2 },

Oâ1â2â3â5σ́ = {−1 ± â1â2 ± â1â3â4â5 ± â2â3â4â5
2 }.

In the expressions within the Clifford algebra notation, the signs must
be such that there is an odd number of equal signs.

The elements z ∈ σ́Quat6 have R(z) ∈ {−1
2 , 0,

1
2}. Using the Formula 4-3

of the number of ancestries of dimension 0 for a given z ∈ σ́Quat6, it follows
that N(z) ∈ {0, 4, 8}.

(i) For z = σ́, we have R(z) = 0 and N(z) = 4 = Nthin(z). Therefore, for
each z ∈ Oσ́ the set BLz has 4 connected components, all contractible.

(ii) For z ∈ σ́Quat6 with R(z) = −1
2 we have N(z) = 0. Therefore, for each

z ∈ Oâ1â2â3â5σ́ the set BLz is empty.

(iii) For z ∈ Oâ1σ́, we have R(z) = 0, N(z) = 4 and no thin ancestry.
By Formulas 4-1 and 4-2, it follows that for dimension 1, N(z) = 2.
Therefore, for each z ∈ Oâ1σ́ the set BLz has 2 connected components,
that are contractible, so we have 16 connected components of BLσ.

The CW complex BLCz is the one in Figure 11.2.

The same applies to z ∈ Oâ3σ́,Oâ1â3â4σ́, then BLz has 16 connected com-
ponents for each orbit. Summing up, BLσ has 48 connected components
of these types.
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(iv) For z ∈ Oâ1â3 , we have R(z) = 0, N(z) = 4 and no ancestry thin.
By Formulas 4-1 and 4-2, it follows that for dimension 1, N(z) = 4.
Therefore, for each z ∈ Oâ3σ́ the set BLz has 1 connected component,
that are contractible, so we have 8 connected components of BLσ.

The CW complex BLCz is the one in Figure 11.3.

The same is applied to z ∈ Oâ4 ,Oâ3â4 , then BLz has 8 connected com-
ponents for each orbit. Summing up, BLσ has 24 connected components
of these types.

(v) If we have R(z) = 1
2 , then N(z) = 8 so that the corresponding set BLz has

1 connected component, that is contractible. By Formulas 4-1 and 4-2, it
follows that for dimension 1, N(z) = 12. Therefore, for each z ∈ Oâ1â4σ́

the corresponding sets BLz are contractible, so we have 32 connected
components of BLσ, all of them contractible.

The CW complex BLCz is the cube in Figure 11.5.

11.1.3
Third Approach

For this permutation, we can apply split type 2 at a1, resulting in
σ1 = a1a2a3a4a3a2a1 ∈ S5. Alternatively, we can also apply split type 3
at r3 or r4, leading to σ3 = a2a1a3a2 ∈ S4 and σ4 = a1a2a3a2a1 ∈ S4, or
σ5 = a2a1a3a4a3a2 ∈ S5 and σ6 = a2a1a2 ∈ S3, respectively.

The approach involving split type 1 is the most straightforward. Since
we already know the connected components of σ1 ∈ S5, the only change when
transitioning to σ ∈ S6 is the increase in the number of components.

As a result, BLσ is contractible for all σ ∈ S6 with inv(σ) = 8.
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The Homotopy Type of BLσ for inv(σ) = 9

For inv(σ) = 9, we have 90 permutations distributed in the following
cases. In the first case, the permutation is blocked. For cases 2 to 10, split type
1 is applied. For case 11, split type 1 or 2 is applied. For case 12, split type 2
is applied, and for case 13 split type 3 is applied. Consequently, for cases 1 to
13, BLσ is contractible. Case 14 will be studied separately.

1. There are 8 permutations with b ≠ 0;

2. There are 4 permutations that can be analyzed using the permutation
σ1 = a2a3a2a1a4a3a2a1 ∈ S5;

3. There are 4 permutations that can be analyzed using the permutation
σ2 = a1a3a2a1a4a3a2a1 ∈ S5;

4. There are 4 permutations that can be analyzed using the permutation
σ3 = a2a1a3a2a4a3a2a1 ∈ S5;

5. There are 4 permutations that can be analyzed using the permutation
σ4 = a2a1a3a2a1a4a3a2 ∈ S5;

6. There are 4 permutations that can be analyzed using the permutation
σ5 = a1a2a3a2a4a3a2a1 ∈ S5;

7. There are 4 permutations that can be analyzed using the permutation
σ6 = a1a2a1a3a4a3a2a1 ∈ S5;

8. There are 4 permutations that can be analyzed using the permutation
σ7 = a1a2a3a2a1a4a3a2 ∈ S5;

9. There are 4 permutations that can be analyzed using the permutation
σ8 = a1a2a1a3a2a4a3a2 ∈ S5;

10. There are 4 permutations that can be analyzed using the permutation
σ9 = a1a2a1a3a2a1a4a3 ∈ S5;

11. There are 7 permutations that can be studied through the sum of two
permutations one in S3 and the other in S4;
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The permutations in S3 e S4 are the same for all four cases. Specifically,
σ1 = a1a2a1 ∈ S3 and σ2 = a1a2a1a3a2a1 ∈ S4;

12. There are 12 permutations that we can apply split type 2;

13. There are 19 permutations that we can apply split type 3;

14. There are 8 permutations that needs to be studied separately.

12.1
Case 14

For σ = [651234] = a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

4
√

2
(−1 − â1 − â2 − â1â2 − â3 + â1â3 − â2â3 + â1â2â3 − â4 + â1â4

+ â2â4 − â1â2â4 − â3â4 − â1â3â4â2â3â4 + â1â2â3â4 − â5 + â1â5 + â2â5

− â1â2â5 + â3â5 + â1â3â5 − â2â3â5 − â1â2â3â5 − â4â5 − â1â4â5 − â2â4â5

− â1â2â4â5 + â3â4â5 − â1â3â4â5 + â2â3â4â5 − â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are four possible positions for the diamonds. The

component will be determined by the rows that do not have diamonds. If the
rows r1 or r4 has opposite signs and the remaining rows have equal signs, we
obtain the CW complex in Figure 12.1. This results in 32 copies.

Figure 12.1: CW complex of dimension 1.

Therefore, BLσ has a total of 32 connected components of this type, all
contractible.

The ancestries of dimension 1 that appear in components of this type can
be categorized as follows: those with diamonds in r1 or r4, where the remaining
rows have equal signs; those with diamonds in r2, where r3 has opposite signs,
and r1 and r4 have equal signs; or those with diamonds in r3, where r2 has
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opposite signs, while r1 and r4 have equal signs. The remaining ancestries of
dimension 1 appear in the 2-dimensional CW complex.

For dimension 2, there are three possible positions for the diamonds that
will appear together. This results in 32 components similar to Figure 12.2.

Figure 12.2: CW complex of dimension 2 with ancestries ε2 = (⬩•⋄⬩◦•⋄•◦),
ε3 = (⬩ • ⋄ • ◦ ⬩ ◦ • ⋄) and ε4 = (• ◦ ⬩ • ⋄ ⬩ ◦ • ⋄) of dimension 2.

Therefore, BLσ has a total of 32 connected components of this type, all
contractible. Summing up, BLσ has 96 connected components, all of them are
contractible.

The other 7 permutations have a CW complex similar to the one
described. They are,

σ1 = a4a3a2a1a5a4a3a2a1, σ2 = a3a2a1a4a3a2a1a5a4,

σ3 = a1a4a3a2a1a5a4a3a2, σ4 = a2a1a4a3a2a1a5a4a3,

σ5 = a1a3a2a1a4a3a2a5a4, σ6 = a1a2a1a4a3a2a5a4a3,

σ7 = a2a1a3a2a1a4a3a5a4 ∈ S6 .

As a result, BLσ is contractible for all σ ∈ S6 with inv(σ) = 9.
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The Homotopy Type of BLσ for inv(σ) = 10

For inv(σ) = 10, we have 71 permutations distributed in the following
cases. In the first case, the permutation is blocked. for cases 2 to 5, split type
1 is applied. For case 6, split type 2 is applied, and for case 7 split type 3
is applied. Consequently, for cases 1 to 7, BLσ is contractible. Case 8 will be
studied separately.

1. There are 2 permutations with b ≠ 0;

2. There are 4 permutations that can be analyzed using the permutation
σ1 = a2a1a3a2a1a4a3a2a1 ∈ S5;

3. There are 4 permutations that can be analyzed using the permutation
σ2 = a1a2a3a2a1a4a3a2a1 ∈ S5;

4. There are 4 permutations that can be analyzed using the permutation
σ3 = a1a2a1a3a2a4a3a2a1 ∈ S5;

5. There are 4 permutations that can be analyzed using the permutation
σ4 = a1a2a1a3a2a1a4a3a2 ∈ S5;

6. There are 12 permutations that we can apply split type 2;

7. There are 21 permutations that we can apply split type 3;

8. There are 20 permutations that needs to be studied separately.
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13.1
Case 8

These 20 permutations can be classified into two types of CW complexes,
which will be analyzed individually.

Type 13.1. For σ = [346521] = a3a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1
4(−â1 − â2 − â3 + â1â2â3 + â1â4 + â2â4 − â3â4 + â1â2â3â4 − â5

− â1â2â5 + â1â3â5 − â2â3â5 − â1â2â4â5 − â4â5 − â1â3â4â5 + â2â3â4â5).

There exist 25
= 32 thin ancestries. Hence, BLσ has 32 thin connected

components, all contractible.
For dimension 1, there are five possible positions for the diamonds.

Analyzing these positions, we generate all connected components. If r1 or r4

have opposite signs, and the remaining rows have equal signs, we have the CW
complex in Figure 13.1. This results in 32 copies.

Figure 13.1: CW complex of dimension 1.

The remaining ancestries of dimension 1 appear in higher-dimensional
CW complexes.

If r2 has opposite signs and the remaining rows have the same signs, we
have the CW complex in Figure 13.2. This results in 32 copies.
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Figure 13.2: CW complex of dimension 2 with five 2-cells.

The remaining ancestries of dimension 2 appear in the 3-dimensional CW
complex.

If the signs in r3 are (• • ◦) or (◦ ◦ •), and the remaining rows have
equal signs, we obtain the CW complex shown in Figure 13.3. This results in
16 copies.

Figure 13.3: CW complex of dimension 3.
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Figure 13.4: 3-cell with ancestry ε3 = (⬩ ⬩ ◦ • ⬩ • ⋄ ⋄ ◦⋄).

In this CW complex, there are twelve 2-cells that fill the squares and
hexagons, along with a 3-cell (Figure 13.4) that completely fills the prism.
The structure resembles a prism, with 2-cells acting as “wings” attached to it.
These wings, in turn, have attached 1-cells that resemble antennas.

These possible positions for the squares yield all the connected compo-
nents of BLσ. Therefore, BLσ has a total of 112 connected components, all
contractible.

There are 11 permutations that have a CW complex similar to the one
described. They are,

σ1 = a3a2a1a4a3a5a4a3a2a1, σ2 = a1a4a3a2a1a5a4a3a2a1,

σ3 = a1a3a4a3a2a1a5a4a3a2, σ4 = a2a1a3a4a3a2a1a5a4a3,

σ5 = a1a3a2a1a4a3a5a4a3a2, σ6 = a1a3a2a1a4a3a2a1a5a4,

σ7 = a1a2a!a4a3a2a1a5a4a3, σ8 = a2a1a3a2a1a4a3a5a4a3,

σ9 = a1a2a1a3a4a3a2a5a4a3, σ10 = a1a2a1a3a2a4a3a2a5a4,

σ11 = a1a2a1a3a2a1a4a3a5a4 ∈ S6 .

Type 13.2. For σ = [354621] = a2a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1
4(−â1 − â2 + â1â3 − â2â3 − â4 − â1â2â4 − â3â4 + â1â2â3â4 − â5

− â1â2â5 + â3â5 − â1â2â3â5 − â1â4â5 − â2â4â5 − â1â3â4â5 + â2â3â4â5).

There exist 25
= 32 thin ancestries. Thus, BLσ has 32 thin connected

components, all contractible.
For dimension 1, there are five possible positions for the diamonds. If the

diamonds are in r1, and the remaining rows have equal signs, we have the CW
complex in Figure 13.5. This results in 32 copies.
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Figure 13.5: CW complex of dimension 1.

If the diamonds are in r3, and the remaining rows have equal signs, we
have the CW complex in Figure 13.6. This results in 32 copies.

Figure 13.6: CW complex of dimension 2, with 6 ancestries of dimension 2, for
example ε2 = (⬩ • ⬩ • ◦ • ◦ ⋄ ⋄•).

The remaining ancestries of dimensions 1 and 2 appear in the 3-
dimensional CW complex. Therefore, BLσ has a total of 64 connected of these
types, all contractible.

For dimension 3, there is only one possible position for the diamonds.
Figure 13.7 depicts the CW complex that has a 3-cell, this cell completely fills
the cube in the CW complex. This results in 16 copies.
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Figure 13.7: CW complex of dimension 3 with ancestry ε3 = (⬩⬩•⋄⬩•⋄◦•⋄).

In this CW we have twelve 2-cells that fill the squares and the hexagons,
and one 3-cell that fills the cube. The 2-cells that are not part of the cube are
attached to it.

Therefore, BLσ has 16 connected components of this type, all con-
tractible. In summary BLσ, it has a total of 112 connected components, all
contractible.

There are 7 permutations that have a CW complex similar to the one
described. They are,

σ1 = a2a3a2a1a4a3a2a1a5a4, σ2 = a2a1a4a3a2a5a4a3a2a1,

σ3 = a1a2a4a3a2a1a5a4a3a2, σ4 = a2a1a3a2a4a3a2a1a5a4,

σ5 = a1a2a3a2a1a4a3a2a5a4, σ6 = a1a2a1a3a2a1a4a3a5a4,

σ7 = a1a2a1a4a3a2a5a4a3a2 ∈ S6 .

As a result, BLσ is contractible for all σ ∈ S6 with inv(σ) = 10.



14
The Homotopy Type of BLσ for inv(σ) = 11

For inv(σ) = 11, we have 49 permutations distributed across the following
cases:

1. There are 4 permutations that can be analyzed using permutation
σ1 = a1a2a1a3a2a1a4a3a2a1 ∈ S5, here we apply split type 1 or 2;

2. There are 3 permutations that we can apply split type 2;

3. There are 9 permutations that we can apply split type 3;

4. There are 33 permutations that needs to be studied separately.

14.1
Case 4

These 33 permutations can be classified into seven types of CW com-
plexes, which will be analyzed individually.

Type 14.1. For σ = [356421] = a3a2a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

2
√

2
(−â1 − â2 − â3â4 + â1â2â3â4 − â5 − â1â2â5 − â1â3â4â5 + â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are six possible positions for the diamonds. If the

diamonds are in r1 or r4 and the remaining rows have equal signs, we have the
CW complex in Figure 14.1. This results in 32 copies.
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Figure 14.1: CW complex of dimension 2 with ancestry ε1 = (⬩⬩••⋄•••⋄••).

If the diamonds are in r3, with signs (••◦) or (•◦◦), and the remaining
rows have equal signs, we obtain the CW complex depicted in Figure 14.2.
This results in 16 copies.

Figure 14.2: CW complex of dimension 3 with ancestry ε2 = (⬩•⬩••⬩•⋄⋄•⋄).
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Note that in this CW complex, there is a 3-cell that fills the prism
in the center of the figure. The ancestries ε3 = (• • • • • ◦ • ◦ ◦ ◦ •) and
ε4 = (◦ ◦ • • • ◦ ◦ • ◦ ◦ •) are the vertices on the upper left and lower right
corners of the prism.

This CW complex comprises one 3-cell and ten 2-cells attached to it.
Additionally, it includes four 1-cells and four 0-cells attached to 2-cells. This
structure resembles a solid prism with wings, some of which have antennas.
However, none of these alter the homotopy type of the component.

If the diamonds are in r2 with signs (•◦◦), and the remaining rows have
equal signs, we have the CW complex shown in Figure 14.3. This results in 16
copies.

Figure 14.3: CW complex of dimension 3 with ancestry ε5 = (◦⬩⬩•⋄⬩◦⋄◦•⋄).

Note that we have a 3-cell in this CW complex, this cell fills the cube
in the CW completely. The ancestries ε6 = (◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •) and
ε7 = (◦ ◦ ◦ • • • • • ◦ • ◦) are the vertices on the upper left and lower
right corners of the prism.
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This CW complex comprises one 3-cell and twelve 2-cells attached to it.
Additionally, it includes one 1-cell with one 0-cell attached to cells of dimension
2. This structure resembles a solid cube with wings and antennas. However,
none of these alter the homotopy type of the component.

If r2 is (◦◦•) and the remaining rows have equal signs, we have the CW
complex in Figure 14.4. This results in 16 copies.

Figure 14.4: CW complex with three 3-dimensional ancestries.

This CW complex comprises three 3-cells with ancestries ε8 = (⬩⬩⬩•⋄•
•⋄⋄◦•), ε9 = (⬩⬩•◦⋄⬩••⋄◦⋄) and ε10 = (⬩⬩•⬩⋄••◦⋄⋄•). The three
3-cells are attached through one 2-cell for each pair of 3-cells. Additionally,
there are four 2-cells and two 1-cells, each with a 0-cell attached.

The ancestries ε11 = (••◦◦◦•◦•◦◦•) and ε12 = (•◦•◦•••◦◦◦•) are the
vertices on the upper left and lower right corners of the first “paralellepiped”.
The ancestries ε13 = (• • • • ◦ • • ◦ ◦ ◦ •) and ε14 = (• ◦ • ◦ ◦ ◦ • ◦ • • •) are
vertices of the other “paralellepiped”. The second “paralellepiped” attaches to
the previous one through the 2-cell with ancestry ε15 = (⬩⬩• •⋄• • ◦⋄ ◦ •).

The ancestries ε16 = (•◦•••◦••◦••) and ε17 = (•◦•◦◦••◦•◦◦)
are vertices of the prism. This prism attaches to the second “paralellepiped”
through the 2-cell with ancestry ε18 = (⬩ ⬩ • ◦ ⋄ ◦ • • ⋄ • •).

Therefore, BLσ has 64 connected components of these types, all con-
tractible.
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The remaining ancestries appear in the 4-dimensional CW complex.
For dimension 4, the permutation has only one possible position for the

diamonds. We will see that the CW complex is contractible in two ways: by
analyzing the CW complex and by considering collapses.

Let us construct this CW complex step by step:
Step 1: There is a 4-cell in Figure 14.5, which comprises eight 3-cells.

Horizontally, four 3-cells are attached, two prisms and two “parallelepipeds”
yielding a solid torus. Vertically, the structure is similar, with two cubes and
two prisms. Then, we have two solid tori attached such that every 3-cell in one
solid torus is glued to every 3-cell in the other solid torus.

Therefore, by the known decomposition of a S3 into two solid tori (see
[5]), we obtain a S3. Finally, a 4-cell with ancestry ε19 = (⬩⬩⬩◦⋄⬩•⋄⋄◦⋄)
is attached, resulting in a D4.

Figure 14.5: First step of the CW complex, with ancestry of dimension 4.

Step 2: Attach one 3-cell to the previous 4-cell.
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Figure 14.6: Second step of the CW complex, with 3-dimensional ancestry
ε20 = (⬩ ⬩ • ⬩ ⋄ • • • ⋄ ⋄ •).

This cell is attached to Figure 14.5 through a 2-cell with ancestry
ε21 = (⬩ ⬩ • ◦ ⋄ ◦ • ◦ ⋄ • •). Note that the 3-cell has two 2-cells attached
like wings, these cells are also attached to Figure 14.5.

Step 3: Attach another 3-cell to the previous 4-cell.

Figure 14.7: Third step of the CW complex, with 3-dimensional ancestry
ε22 = (⬩ ⬩ ◦ ⬩ ⋄ • ◦ • ⋄ ⋄ ◦).

This cell is attached to Figure 14.5 through a 2-cell with ancestry
ε23 = (⬩ ⬩ ◦ • ⋄ • ◦ • ⋄ ◦ ◦). Note that the 3-cell has two 2-cells attached
like wings, these cells are also attached to Figure 14.5.

Therefore, BLσ has 8 connected components of this type, all contractible.
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Using collapses to analyze this problem, we can start with the initial CW
complex and apply collapses to simplify it. First of all, we remove the cell of
the higher dimension, in this case, 4.

(⬩ ⬩ ⬩ ◦ ⋄ ⬩ ◦ ⋄ ⋄ ◦ ⋄), (⬩ ⬩ • ⬩ ⋄ • • • ⋄ ⋄ •)

After that, we remove the cells of dimension 3.

(⬩ ⬩ ◦ ⬩ ⋄ • ◦ • ⋄ ⋄ ◦), (⬩ ⬩ ◦ ◦ ⋄ ◦ ◦ ◦ ⋄ • ◦)
(⬩ ⬩ • ◦ ⋄ ⬩ • ◦ ⋄ ⋄ ◦), (⬩ ⬩ • ◦ ⋄ ◦ • ◦ ⋄ • •)
(⬩ ⬩ ⬩ ◦ ⋄ • • ⋄ ⋄ ◦ ◦), (⬩ ⬩ • ◦ ⋄ • • ◦ ⋄ ◦ ◦)
(⬩ ⬩ ⬩ ◦ ⋄ • • ⋄ ⋄ ◦ ◦), (⬩ ⬩ ◦ • ⋄ • ◦ • ⋄ ◦ ◦)
(⬩ ⬩ ◦ • ⋄ ⬩ ◦ • ⋄ ◦ ⋄), (⬩ ⬩ ◦ • ⋄ ◦ ◦ • ⋄ • •)
(◦ ⬩ ⬩ ◦ ⋄ ⬩ ◦ ⋄ • ◦ ⋄), (◦ ⬩ ◦ • ⋄ ⬩ • • • ◦ ⋄)
(⬩ • ⬩ ◦ ◦ ⬩ • ⋄ ⋄ ◦ ⋄), (◦ ◦ ◦ ⬩ ◦ ⬩ • ◦ ⋄ ◦ ⋄)
(• ⬩ ⬩ ◦ ⋄ ⬩ • ⋄ ◦ ◦ ⋄), (• ⬩ • ◦ ⋄ ⬩ • ◦ ◦ ◦ ⋄)
(⬩ ◦ ⬩ ◦ ◦ ⬩ ◦ ⋄ ⋄ ◦ ⋄), (• ◦ • ⋄ • ⬩ • ◦ ⋄ ◦ ⋄)

Now, we continue with a long sequence of more 72 collapses, ending with a
point. In this case

(• ◦ • ◦ • • • • ◦ ◦ •).

Therefore, BLσ has 8 connected components of this type, all contractible.
Summing up, BLσ has a total of 104 connected components, all contractible.

There are 3 permutations that have a CW complex similar to the one
described. They are,

σ1 = a1a2a1a4a3a2a1a5a4a3a2, σ2 = a2a1a3a2a1a4a3a2a1a5a4,

σ3 = a1a2a1a3a2a4a3a2a5a4a3 ∈ S6 .

Type 14.2. For σ = [364521] = a2a3a4a3a2a1a5a4a3a2a1 ∈ S6, it follows that

σ́ =
1

4
√

2
(1 − â1 − â2 + â1â2 − â3 + â1â3 − â2â3 + â1â2â3 − â4 + â1â4 + â2â4

− â1â2â4 − â3â4 + â1â3â4 − â2â3â4 + â1â2â3â4 − â5 − â1â5 − â2â5 − â1â2â5

+ â3â5 + â1â3â5 − â2â3â5 − â1â2â3â5 − â4â5 − â1â4â5 − â2â4â5 − â1â2â4â5

− â3â4â5 − â1â3â4â5 + â2â3â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
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For dimension 1, there are six possible positions for the diamonds. If r1

has opposite signs while the remaining rows have equal signs, this configuration
results in 32 copies of the CW complex shown in Figure 14.8.

Figure 14.8: CW complex of dimension 1.

If r2 has signs (• • ◦) and the remaining rows have equal signs, we have
the CW complex shown in Figure 14.9. This results in 32 copies.

Figure 14.9: CW complex with ten 2-cells.

Therefore, BLσ has 64 connected components of these types, all con-
tractible.

The remaining ancestries of dimensions 1 and 2 appear in higher-
dimensional CW complexes.

In dimension 3, there are four possible positions for the diamonds, all
of which are illustrated together in Figure 14.10. In this CW complex, some
3-cells have 2-cells attached to them, resembling wings.

Let us see that the CW complex is contractible in two ways: by analyzing
the CW complex and by considering collapses.
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Figure 14.10: CW complex with three 3-cells.

The 3-cells fill a vertically convex solid with 12 faces, along with a cube
extending from left to right. Horizontally, from top to bottom, the 3-cells fill
a prism and a cube.

Considering collapses, begin by removing the 3-dimensional cells:

(⬩ ⬩ ⬩ ◦ ◦ ◦ ◦ ⋄ ⋄ ⋄ ◦), (◦ ◦ ⬩ • ⬩ ◦ ◦ ⋄ ◦ ⋄ ◦)
(◦ ⬩ ⬩ ◦ • ⬩ • ⋄ ⋄ • ⋄), (◦ ⬩ ◦ ⋄ ◦ ⬩ ◦ ◦ • • ⋄)
(⬩ ⬩ ◦ ⋄ ⋄ ⬩ • ◦ ◦ • ⋄), (⬩ ⬩ ◦ ⋄ ⋄ • • ◦ ◦ • ◦)
(⬩ ◦ ⬩ • ⋄ ⬩ • ⋄ ◦ • ⋄), (⬩ ◦ ⬩ • ⋄ • • ⋄ ◦ • ◦)

After that, we continue to remove the cells with a long sequence of more 61
collapses until we finish with one point:

(◦ • ◦ • • ◦ ◦ • ◦ ◦ •).

Therefore, BLσ has 32 connected components of this type, all con-
tractible. Summing up, BLσ has a total of 128 connected components, all of
them contractible.

There are 11 permutations that have a CW complex similar to the one
described. They are,

σ1 = a2a3a2a1a4a3a5a4a3a2a1, σ2 = a2a1a3a4a3a2a5a4a3a2a1,

σ3 = a1a2a4a3a2a1a5a4a3a2a1, σ4 = a1a2a1a4a3a2a5a4a3a2a1,
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σ5 = a2a1a3a2a4a3a5a4a3a2a1, σ6 = a1a2a3a4a3a2a1a5a4a3a2,

σ7 = a1a2a3a2a1a4a3a5a4a3a2, σ8 = a1a2a3a2a1a4a3a2a1a5a4,

σ9 = a1a2a1a3a4a3a2a5a4a3a2, σ10 = a1a2a1a3a2a4a3a5a4a3a2,

σ11 = a1a2a1a3a2a4a3a2a1a5a4 ∈ S6 .

Type 14.3. For σ = [436521] = a1a3a4a3a2a1a5a4a3a2a1 ∈ S6, it follows that

σ́ =
1

2
√

2
(1 − â1 − â2 − â1â2 − â3 − â1â3 − â2â3 + â1â2â3 − â4 + â1â4 + â2â4

+ â1â2â4 − â3â−â1â3â4 − â2â3â4 + â1â2â3â4 − â5 − â1â5 + â2â5 − â1â2â5

− â3â5 + â1â3â5 − â2â3â5 − â1â2â3â5 − â4â5 − â1â4â5 + â2â4â5 − â1â2â4â5

+ â3â4â5 − â1â3â4â5 + â2â3â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are six possible positions for the diamonds. If

the diamonds are in r4 and the remaining rows have equal signs, we have the
CW complex in Figure 14.11. This results in 32 copies. Therefore, BLσ has 32
contractible connected components of this type.

Figure 14.11: CW complex of dimension 1.

The remaining ancestries of dimension 1 appear in higher-dimensional
CW complexes.

For dimension 2, we have ten possible positions for the diamonds. If r1

or r3 has signs (◦ • ◦), and the remaining rows have the same signs, we have
the CW complex in Figure 14.12. This results in 32 copies. Therefore, BLσ has
32 contractible connected components of this type.
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Figure 14.12: CW complex with ten 2-cells.

The remaining ancestries of dimension 2 appear in a higher-dimensional
CW complex.

For dimension 3, we have four possible positions for the diamonds and
they will appear together. In dimension 1, if the diamonds are in r2, and the
other rows have equal signs, we obtain the CW complex in Figure 14.13, which
results in 32 copies. The cells of dimension 3 fill the four prisms completely.
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Figure 14.13: CW complex of dimension 3.

The following pairs of ancestries represent the vertices at the upper left
and lower right corners of the four prisms:

ε3 = (• ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦), ε4 = (◦ ◦ • • • • ◦ ◦ ◦ • ◦);

ε5 = (• ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦), ε6 = (◦ • ◦ ◦ • • ◦ ◦ ◦ • ◦);

ε7 = (• • ◦ • ◦ • ◦ • ◦ ◦ ◦), ε8 = (• • ◦ ◦ • ◦ ◦ ◦ • • •);

ε9 = (• • ◦ • ◦ ◦ ◦ • ◦ • •), ε10 = (◦ • ◦ ◦ ◦ • ◦ ◦ • • •).

Horizontally, form left to right, the prisms are ε11 = (• ⬩ ⬩ ◦ ◦ ⬩ • ⋄ ⋄ ◦ ◦⋄)
and ε12 = (⬩ ⬩ ⬩ ◦ ◦ ⋄ • ⋄ ⋄ • •). Vertically, form left to right, the prisms are
ε13 = (⬩ ◦ ⬩ • ⬩ • ◦ ⋄ • ⋄ ⋄) and ε14 = (⬩ ⬩ ◦ ⋄ ⬩ • ◦ ◦ • ⋄ ⋄).

Therefore, BLσ has 32 contractible connected components of this type.
Summing up, BLσ has a total of 128 connected components, all of them
contractible.

Three permutations share a CW complex similar to the one described.
They are:

σ1 = a1a3a2a1a4a3a5a2a3a2a1, σ2 = a1a2a1a3a4a3a2a1a5a4a3,

σ3 = a1a2a1a3a2a1a4a3a5a4a3 ∈ S6 .
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Type 14.4. For σ = [453621] = a2a1a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

2
√

2
(−â1 − â2â3 − â4 + â1â2â3â4 − â5 − â1â2â3â5 − â1â4â5 + â2â3â4â5).

There exist 25
= 32 thin ancestries, resulting in 32 contractible connected

components in BLσ.
For dimension 1, there are six possible positions for the diamonds. If the

diamonds are in r4, and the remaining rows have equal signs, we have the
CW complex in Figure 14.14. This results in 16 copies. Hence, BLσ has 16
contractible connected components of this type.

Figure 14.14: CW complex of dimension 2.

If r1 has signs (•◦◦) and the other rows have equal signs, we obtain the
CW complex shown in Figure 14.15. This results in 16 copies.
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Figure 14.15: CW complex of dimension 3.

The cell with ancestry ε2 = (• ⬩ ⬩ • ⬩ • • ⋄ • ⋄ ⋄) of dimension 3
completely fills the prism. The ancestries ε3 = (• • ◦ ◦ • • ◦ • • ◦ ◦) and
ε4 = (• ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ •) are the vertices on the upper left and lower right
corners of the prism.

This CW complex comprises one 3-cell and ten 2-cells attached to the
previous one. Additionally, there are four 1-cells and four 0-cells attached.

If r2 has signs (• ◦ ◦) and the remaining rows have equal signs, we have
the CW complex shown in Figure 14.16. This results in 16 copies.
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Figure 14.16: CW complex of dimension 3.

The cell with ancestry ε5 = (⬩ • ⬩ • ⋄ ⬩ • ⋄ • ◦ ⬩) of dimension 3
fills the cube completely. The ancestries ε6 = (• • • • ◦ • • ◦ • ◦ ◦) and
ε7 = (• • ◦ ◦ ◦ ◦ ◦ • • • •) are the vertices on the upper left and lower right
corners of the prism.

This CW complex comprises one 3-cell and twelve 2-cells attached to the
previous one. Additionally, there are two 1-cells and two 0-cells attached.

If the diamonds are in r3 and the remaining rows have equal signs, we
have the CW complex in Figure 14.17. This results in 16 copies.
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Figure 14.17: CW complex of dimension 3.

There are three cells of dimension 3 in this CW complex. They fill two
prisms and one “paralellepiped” completely. The “paralellepiped”, at the top
of Figure 14.17, is ε8 = (⬩ ⬩ • ⬩ • ⋄ • • ⋄ ⋄ ◦). The first prism, below the
previous “paralellepiped”, is ε9 = (⬩ ⬩ ⬩ ◦ ◦ ⋄ • ⋄ • ⋄ ◦). The second prism,
which is harder to visualize in the figure due to its position on top of the
“paralellepiped”, is ε10 = (⬩ ⬩ • • ⬩ ⋄ • • ◦ ⋄ ⋄).

The following pairs of ancestries represent the vertices at the upper left
and lower right corners of the prisms and the “paralellepiped”, respectively:

ε11 = (• • • ◦ ◦ ◦ • ◦ • ◦ ◦), ε12 = (◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦);

ε13 = (• ◦ • • ◦ ◦ • • ◦ • •), ε14 = (◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ •);

ε15 = (• ◦ • • ◦ • • • ◦ ◦ ◦), ε16 = (◦ • • • • ◦ • ◦ ◦ • ◦).

Thus, BLσ has 48 connected components of these types, all contractible.
The remaining ancestries of dimensions 1, 2 and 3 will appear in a 4-

dimensional CW complex.
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For dimension 4, there is only one possible position for the diamonds.
This CW complex consists of ten cells of dimension 3, with two of each possible
type. Let us construct step by step.

Step 1: First, there are eight 3-cells that yields the 4-cell in Figure 14.18
with ancestry ε17 = (⬩⬩⬩•⬩⋄•⋄•⋄⋄), which as we saw before, represents
a D4.

Figure 14.18: First part of the CW complex of dimension 4.

Step 2: Attach to this 4-cell the 3-cell in Figure 14.19 with ancestry
ε18 = (⬩⬩•⬩◦⋄•◦⋄⋄•). The 3-cell has two 2-cells attached. The attachment
occurs through the 2-cell with ancestry ε20 = (⬩ ⬩ ◦ ◦ • ⋄ ◦ • • ⋄ ◦),

Figure 14.19: 3-cell with ancestry ε18 = (⬩ ⬩ • ⬩ ◦ ⋄ • ◦ ⋄ ⋄ •).



Chapter 14. The Homotopy Type of BLσ for inv(σ) = 11 124

Step 3: Attach to this 4-cell the 3-cell in Figure 14.20 with ancestry
ε19 = (⬩⬩◦⬩◦⋄◦◦⋄⋄◦). The 3-cell has two 2-cells attached. The attachment
occurs through the 2-cell with ancestry ε21 = (⬩ ⬩ • • ◦ ⋄ • ◦ ◦ ⋄ •).

Figure 14.20: 3-cell with ancestry ε19 = (⬩ ⬩ ◦ ⬩ ◦ ⋄ ◦ ◦ ⋄ ⋄ ◦).

Therefore, BLσ has 8 connected components of this type, all contractible.
Summing up, BLσ has a total of 104 connected components, all of them
contractible.

There are 3 permutations that have a CW complex similar to the one
described. They are,

σ1 = a1a3a2a4a3a2a1a5a4a3a2, σ2 = a2a1a3a2a4a3a2a1a5a4a3,

σ3 = a1a2a1a3a2a1a4a3a2a5a4 ∈ S6 .

Type 14.5. For σ = [456231] = a3a2a1a4a3a2a5a4a3a2a1 ∈ S6, it follows that

σ́ =
1

4
√

2
(−1 − â1 − â2 + â1â2 + â3 − â1â3 − â2â3 − â1â2â3 − â4 + â1â4

+ â2â4 + â1â2â4 − â3â4 − â1â3â4 − â2â3â4 + â1â2â3â4 − â5 − â1â5

+ â2â5 − â1â2â5 − â3â5 + â1â3â5 − â2â3â5 − â1â2â3â5 + â4â5 − â1â4â5

+ â2â4â5 + â1â2â4â5 − â3â4â5 − â1â3â4â5 + â2â3â4â5 − â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are six possible positions for the diamonds. If the

diamonds are in r4, and the remaining rows have equal signs, we have the
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CW complex in Figure 14.21. This results in 32 copies. Therefore, BLσ has 32
connected components of this type, all contractible.

Figure 14.21: CW complex of dimension 2 with ten ancestries of dimension 2.

The remaining ancestries of dimensions 1 and 2 appear in higher-
dimensional CW complexes.

For dimension 3, there are five possible positions for the diamonds, as
shown in Figure 14.22.
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Figure 14.22: CW complex with five 3-cells.

There are five cells of dimension 3, filling two “parallelepipeds”, two
cubes, and one prism completely. Additionally, there are some cells of lower
dimension attached.

Horizontally, at the top of the CW complex, we have the two “paral-
lelepiped”: ε1 = (⬩ ⬩ • • ⬩ ◦ • ◦ ⋄ ⋄ •) and ε2 = (⬩ ⬩ • ⬩ • ⋄ • ⋄ ⋄ ◦ •).
Vertically, from left to right, we have the two cubes: ε3 = (⬩◦⬩•⋄⬩•◦•⋄⋄)
and ε4 = (⬩ ⬩ • • ⬩ ◦ • ◦ ⋄ ⋄ •). Furthermore, in the center of Figure 14.22,
we have the prism: ε5 = (• ◦ ⬩ ⬩ ◦ ⬩ • ⋄ • ⋄ ⋄).

Let us see that is contractible thinking about collapses. First of all, we
remove the cells of dimension 3:

(⬩ ⬩ • ⬩ • ⋄ • ⋄ ⋄ ◦ •), (• ⬩ ◦ ⬩ • ⋄ ◦ ⋄ • ◦ •)
(⬩ ◦ ⬩ ⬩ ◦ ◦ • ⋄ ⋄ • ⋄), (◦ • ⬩ ◦ ⬩ ◦ • ◦ ⋄ • ⋄)
(⬩ ⬩ • • ⬩ ◦ • ◦ ⋄ ⋄ •), (• ⬩ • • ⬩ ◦ • ◦ ⋄ ⋄ •)
(⬩ ◦ ⬩ • ⋄ ⬩ • ◦ • ⋄ ⋄), (⬩ ◦ ⬩ • ⋄ ◦ • ◦ ◦ • ⋄)
(• ◦ ⬩ ⬩ ◦ ⬩ • ⋄ • ⋄ ⋄), (• ◦ • ⬩ ◦ ⬩ • ⋄ • ⋄ ◦).

After that, we continue to remove the cells with a long sequence off more 60
collapses until we finish with the point
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(• ◦ ◦ • ◦ • • ◦ ◦ ◦ •).

Therefore, BLσ has 32 copies of this type, all contractible. Summing up,
BLσ has a total of 96 connected components, all of them contractible.

There are 3 permutations that have a CW complex similar to the one
described. They are,

σ1 = a2a3a2a1a4a3a2a1a5a4a3, σ2 = a1a3a2a1a4a3a2a5a4a3a2,

σ3 = a1a2a3a2a1a4a3a2a5a4a3 ∈ S6 .

Type 14.6. For σ = [456312] = a3a2a1a4a3a2a1a5a4a3a2 ∈ S6 we have

σ́ =
1

4
√

2
(−1 − â1 − â2 − â1â2 − â3 − â1â3 − â2â3 − â1â2â3 − â4 + â1â4 − â2â4

+ â1â2â4 − â3â4 + â1â3â4 − â2â3â4 + â1â2â3â4 − â5 + â1â5 + â2â5 − â1â2â5

− â3â5 + â1â3â5â2â3â5 − â1â2â3â5 − â4â5 − â1â4â5 + â2â4â5 + â1â2â4â5

− â3â4â5 − â1â3â4â5 + â2â3â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are six possible positions for the diamonds. If

the diamonds are in r1 and the remaining rows have equal signs, we have the
CW complex in Figure 14.23. This results in 32 copies. Therefore, BLσ has 32
contractible connected components of this type.
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Figure 14.23: CW complex of dimension 2 with ten ancestries of dimension 2.

The remaining ancestries of dimensions 1 and 2 appear in higher-
dimensional CW complexes.

For dimension 3, there are five possible positions for the diamonds, which
appear together, as shown in Figure 14.24.
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Figure 14.24: CW complex with five 3-cells.

There are five cells of dimension 3, filling three “parallelepipeds” and
two prisms completely. Additionally, there are some cells of lower dimension
attached.

Horizontally, in the center of Figure 14.24 we have the one “paral-
lelepiped” and one prism: ε1 = (⬩ ⬩ • ⬩ ◦ ⋄ ◦ • ⋄ ⋄ •) and ε2 = (⬩ ◦ ⬩ ⬩

◦ ◦ ⋄ ◦ ⋄ ⋄ ◦). Vertically, from left to right, we have two “parallelepipeds”:
ε3 = (⬩ ⬩ • • ⬩ ⋄ • • • ⋄ ⋄) and ε4 = (◦ ⬩ ⬩ ◦ ⬩ ◦ ⋄ • • ⋄ ⋄). Furthermore,
the last one is more challenging to spot in the Figure 14.24, it is the prism:
ε5 = (◦ ⬩ ⬩ ⬩ ◦ ◦ ⋄ ◦ ⋄ ◦ ⋄).

Let us see that it is contractible by considering collapses. First, we remove
the cells of dimension 3:

(◦ ⬩ ⬩ ⬩ ◦ ◦ ⋄ ◦ ⋄ ◦ ⋄), (◦ • ◦ ⬩ ◦ ⬩ • ◦ ⋄ ◦ ⋄)
(⬩ ◦ ⬩ ⬩ ◦ ◦ ⋄ ◦ ⋄ ⋄ ◦), (⬩ • ⬩ • ⋄ ◦ ⋄ • ◦ ◦ •)
(⬩ ⬩ • • ⬩ ⋄ • • • ⋄ ⋄), (⬩ ◦ ◦ • ⋄ ⬩ • • • ◦ ⋄)
(⬩ ⬩ • ⬩ ◦ ⋄ ◦ • ⋄ ⋄ •), (• ⬩ • ⬩ ◦ ⋄ ◦ • ⋄ ◦ •)
(◦ ⬩ ⬩ ◦ ⬩ ◦ ⋄ • • ⋄ ⋄), (◦ • ⬩ ◦ ⬩ ◦ ⋄ • • ⋄ ◦).
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After that, we continue to remove the cells with a long sequence off more 60
collapses until we finish with the point

(◦ ◦ • ◦ • • • • ◦ • ◦).

Therefore, BLσ has 32 copies of this type, all contractible. Summing up, BLσ

has a total of 96 connected components, all of them contractible.
The permutation σ1 = a2a1a3a2a1a4a3a2a5a4a3 ∈ S6 has a CW complex

similar to the one described.

Type 14.7. For σ = [463512] = a2a1a3a4a3a2a1a5a4a3a2 ∈ S6 we have

σ́ =
1

2
√

2
(−â1 − â2â3 + â2â4 − â2â3â4 − â5 − â1â2â3â5 − â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Hence, BLσ has 32 thin connected

components, all contractible.
For dimension 1, there are six possible positions for the diamonds. If

r4 has opposite signs and the remaining rows have equal signs, we have the
CW complex in Figure 14.25. This results in 16 copies. Therefore, BLσ has 16
connected components of this type, all contractible.

Figure 14.25: CW complex of dimension 2 with the 2-dimensional ancestry
ε1 = (⬩ ⬩ • ◦ • • ⋄ ◦ ◦ • ⋄).

If r1 has opposite signs and the remaining rows have equal signs, we have
the CW complex Figure 14.26. This results in 16 copies.
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Figure 14.26: CW complex of dimension 3.

This CW complex has one 3-cell with ancestry ε2 = (◦⬩⬩⬩◦◦⋄◦⋄⋄◦)
and ten 2-cells attached to the previous one. Additionally, there are two 1-cells
with two 0-cells attached. The cell of dimension 3 fills the prism completely.
The ancestries ε3 = (◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • •◦) and ε4 = (◦ • • ◦ • ◦ ◦ • • ◦ ◦)
represent the vertices at the upper left and lower right corners of the prism.
Therefore, BLσ has 16 connected components of this type, all contractible.

If r2 has signs (•◦◦) or (◦◦•), and the remaining rows have equal signs
we have the CW complex in Figure 14.27. This results in 16 copies.
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Figure 14.27: CW complex of dimension 3 with ε5 = (⬩ • ⬩ ⬩ ◦ ◦ • • ⋄ ⋄ ⋄).

This CW complex has one cell of dimension 3 that completely fills
the solid, and some cells with lower dimension attached, these cells do not
alter the homotopy type of the component. Therefore, BLσ has 16 connected
components of this type, all contractible.

The remaining ancestries of dimensions 1 and 2 appear in a higher-
dimensional CW complex.

Thinking over dimension 3, if the diamonds are in r1, r2 and r4, while the
remaining rows have equal signs, we have the CW complex in Figure 14.28.
This results in 16 copies.
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Figure 14.28: CW complex of dimension 3.

This CW has three cells of dimension 3, that fills two prisms and one
“paralellepiped” completely, ε7 = (⬩⬩•⬩••⋄•⋄•⋄), ε8 = (⬩⬩⬩◦⋄•⋄◦••⋄)
and ε9 = (⬩⬩•◦•◦⋄◦◦⋄⋄), respectively. Additionally, there are two 2-cells
attached like wings. Therefore, BLσ has 16 contractible connected components
of this type.

The following pairs of ancestries represent the vertices at the upper left
and lower right corners of the prisms and the “paralellepiped”, respectively:

ε10 = (◦ ◦ ◦ • ◦ • • • ◦ ◦ •), ε11 = (◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ •);

ε12 = (◦ ◦ ◦ ◦ • • • ◦ • ◦ •), ε13 = (◦ • • • ◦ ◦ ◦ ◦ • ◦ •);

ε14 = (◦ ◦ ◦ ◦ • • • ◦ • ◦ •), ε15 = (◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • •).

The remaining ancestries of dimension 3 appear in the higher-dimensional
CW complex.

For dimension 4, we have only one possible position for the diamonds.
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Figure 14.29: CW complex of dimension 4 with ε13 = (⬩ ⬩ ⬩ ⬩ • • ⋄ • ⋄ ⋄ ⋄).

First, we collapse the four 1-cells that appear as “antennas” in the CW
complex. Then, the CW complex will have a familiar structure. Vertically, this
CW complex has six 3-cells, which are 4 prisms and 2 “paralellepipeds”, which
attach along a solid torus. Horizontally, this CW complex has four 3-cells,
which are 2 solids with 12 faces and 2 prisms, that glue along a solid torus as
well. Thus, we have a S3 and finally, we glue a 4-cell that leads to a D4.

Therefore, BLσ has 8 contractible connected components of this type.
Summing up, BLσ has a total of 104 connected components, all of them
contractible.

There are 2 permutations that have a CW complex similar to the one
described. They are

σ1 = a1a3a2a1a4a3a2a1a5a4a3, σ2 = a2a1a3a2a1a4a3a5a4a3a2 ∈ S6 .

As a result, BLσ is contractible for all σ ∈ S6 with inv(σ) = 11.



15
The Homotopy Type of BLσ for inv(σ) = 12

For inv(σ) = 12, the 29 permutations are distributed in two cases:

1. There are 2 permutations that we can apply split type 3;

2. There are 27 permutations that needs to be studied separately.

15.1
Case 2

These 27 permutations can be classified into nine distinct types of CW
complexes. The last type will be examined in detail in the next chapter.

Type 15.1. For σ = [365421] = a2a3a2a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

4
√

2
(1 − â1 − â2 + â1â2 − â3â4 + â1â3â4 − â2â3â4 + â1â2â3â4 − â5

− â1â5 − â2â5 − â1â2â5 − â3â4â5 − â1â3â4â5 + â2â3â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are seven possible positions for the diamonds. If

the diamonds are in r1 and the remaining rows have equal signs, we have the
CW complex in Figure 15.1. This results in 32 copies. Therefore, BLσ has 32
connected components of this type, all contractible.

Figure 15.1: CW complex with ancestry ε1 = (• ⬩ ⬩ • • ⋄ • • • ⋄ ••).
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If the diamonds are in r2 with signs (• • •◦), and the remaining rows
have equal signs, a CW complex with 4 cells of dimension 3 is obtained. This
results in 16 copies. The construction of this CW complex will be analyzed by
attaching the 3-cells one by one.

Step 1: Begin with a 3-cell that fills the prism in Figure 15.2.

Figure 15.2: First part of the CW complex of dimension 3.

The cell with ancestry ε2 = (• ⬩ ⬩ • • ⋄ ⬩ • • ⋄ ◦⋄) fills the prism.
Note that there are four 2-cells attached like wings in the first part of the CW.
Additionally, two vertices with only one edge each are also attached to this
part.

Step 2: Attach the next 3-cell that fills a “parallelepiped” with ε3 =

(•⬩⬩•⬩⋄• • •⋄⋄◦). Similar to the previous one, this part has four 2-cells
attached as wings.

This part attaches to the first one through the hexagon on the left side
of the 3-cell in Figure 15.3, with ε4 = (•⬩⬩••⋄•••⋄◦◦). The left vertices
of the wings in Figure 15.3 are attached to the right vertices of the wings in
Figure 15.2.
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Figure 15.3: Second part of the CW complex of dimension 3.

Step 3: The third part includes a 3-cell that fills another “parallelepiped”.

Figure 15.4: Third part of the CW complex of dimension 3.
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The cell with ancestry ε5 = (⬩⬩⬩•⋄⋄◦•◦⋄•◦) fills the “parallelepiped”.
Similar to the previous one, it has 2-cells that appear as wings, in this case,
there are two of them.

In this part, we attach the cell in Figure 15.4 to the cell in the second
part through the hexagon on the left side of the cell with ancestry ε6 =

(• ⬩ ⬩ • ◦ ⋄ ◦ • ◦ ⋄ •◦). The left vertices of the wings in Figure 15.4 are
attached to right vertices of the wings in Figure 15.3.

Step 4: To complete the attachment, we glue the last 3-cell, which fills
the third “parallelepiped”, and Attachment occurs similar to the previous case,
through the left hexagon in Figure 15.5 with ancestry ε7 = (•⬩⬩•◦⋄◦•◦⋄•◦).
Additionally, two edges of Figure 15.5 are attached to the wings in Figure 15.4.

Figure 15.5: Fourth part of the CW complex of dimension 3 with ancestry
ε8 = (• ⬩ ⬩ ⬩ ◦ ⋄ ◦ • ⋄ ⋄ •◦).

Upon completing all attachments, we have a contractible component.
This CW complex comprises three 3-cells attached side by side, with an
additional 3-cell attached between two of them, sharing one 2-cell in common.
Furthermore, cells of lower dimension are also attached to these 3-cells, without
altering the homotopy type of the component. Therefore, BLσ has 16 connected
components of this type, all contractible.
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If the diamonds are in r3 with signs (• ◦ ◦), and the other rows have
equal signs, we obtain a CW complex with seven 3-cells. This results in 32
copies. The construction of the CW is a bit confusing, so we need a step by
step construction.

Step 1: Start with a 3-cell that fills a convex solid with eighteen faces
in Figure 15.6. Note that there are three vertices, each with only one edge
attached to this part.

Figure 15.6: First part of the CW complex of dimension 3 with ancestry
ε9 = (⬩ ⬩ ◦ ⬩ • ◦ • • ⋄ ⋄ ⋄•).

Step 2: The second part of this CW complex consists of a 3-cell with
ancestry ε10 = (◦⬩•⬩••⬩◦⋄⋄◦⋄) that fills the prism shown in Figure 15.7.
Attachment occurs through the hexagon on the right side of Figure 15.6 to the
hexagon on the left side of Figure 15.7 with ancestry ε11 = (◦⬩•⬩••◦◦⋄⋄••).
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Figure 15.7: Second part of the CW complex of dimension 3.

Step 3: Following attach the 3-cell illustrated in Figure 15.8.

Figure 15.8: Third part of the CW complex of dimension 3.
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The 3-cell with ancestry ε12 = (⬩ ⬩ ◦ • ⋄ ⋄ ⬩ • • ◦ ◦⋄) fills the prism.
Notice the presence of a 2-cell attached to the prism, resembling a wing.

The attachment to Figure 15.8 occurs through the square in the center
and the square in the previous Figure 15.7, with ancestry ε13 = (◦⬩•◦⋄•⬩•

• ◦ ◦⋄). This part also attaches to Figure 15.6 through a 2-cell with ancestry
ε14 = (⬩ ⬩ ◦ • ⋄ ⋄ ◦ • • ◦ ••) that fills the hexagon on the left side of this
figure.

Step 4: The forth part is a 3-cell that fills the cube in Figure 15.9.
Attachment occurs through the square in the center of the cube to the square
at the bottom of Figure 15.7, with ancestry ε15 = (◦ • • ⬩ • • ⬩ ◦ ⋄ ◦ ◦⋄).

Figure 15.9: Fourth part of the CW complex of dimension 3 with ancestry
ε16 = (⬩ ◦ ⋄ ⬩ • • ⬩ ◦ ⋄ ◦ ◦⋄).

This part attaches to Figure 15.6 through a 2-cell with ancestry
ε17 = (⬩◦⋄⬩••◦◦⋄◦••) that fills the square on the left side of this figure.
Furthermore, this part also attaches to Figure 15.8 through a 2-cell that fills the
square on the bottom of this figure, with ancestry ε18 = (⬩◦⋄◦◦•⬩••◦◦⋄).

Step 5: The fifth component of the CW complex in Figure 15.10
comprises a 3-cell with ancestry ε19 = (• ◦ ⬩ ⬩ ◦ ⋄ ⬩ ◦ ⋄ ◦ ◦⋄) that fills
the cube and five 2-cells that are attached to the 3-cell.

The attachment to Figure 15.9 occurs through the square with ancestry
ε20 = (⬩◦⋄•••⬩◦◦◦◦⋄). This part is attached to Figure 15.6 through a 2-cell,
with ancestry ε21 = (•◦⬩⬩◦⋄◦◦⋄◦••). Furthermore, this part also attaches
to Figure 15.8 through a 2-cell, with ancestry ε22 = (• ◦ ⬩ ◦ • ⋄ • • • ◦ ◦⋄).
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Figure 15.10: Fifth part of the CW complex of dimension 3.

Step 6: The sixth part is similar to the previous one, consisting of one
3-cell that fills the cube and two 2-cells attached.

Figure 15.11: Sixth part of the CW complex of dimension 3 with ancestry
ε23 = (⬩ ◦ ⋄ • ⬩ • ⬩ ◦ ◦ ⋄ ◦⋄).

Attachment occurs at the square at the bottom of the cube to the one in
Figure 15.9, with ancestry ε24 = (⬩ ◦ ⋄ • • • ⬩ ◦ ◦ ◦ ◦⋄). This part attaches
to Figure 15.6 through a 2-cell, with ancestry ε25 = (⬩ ◦ ⋄ • ⬩ • ◦ ◦ ◦ ⋄ ••).
Furthermore, this part also attaches to Figure 15.7 through a 2-cell, with
ancestry ε26 = (◦ • • • ⬩ • ⬩ ◦ ◦ ⋄ ◦⋄).

Step 7: To complete the CW complex, the seventh part includes the last
3-cell that fills the cube. Additionally, this part has three 2-cells attached to
the 3-cell.
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Figure 15.12: Seventh part of the CW complex of dimension 3 with ancestry
ε27 = (⬩ ◦ ⋄ • • ⬩ • ◦ ⋄ ◦ ⋄◦).

Attachment occurs in the square on the left side of the cube to the
square on the right side of the cube in Figure 15.9, with ancestry ε28 =

(⬩ ◦ ⋄ ⬩ • • • ◦ ⋄ ◦ ◦◦).
Similar to the previous case, this CW complex has seven 3-cells attached,

along with some cells of lower dimension that do not alter the homotopy
type. Upon completing all attachments, we have a contractible component.
Therefore, BLσ has 32 connected components of this type, all contractible.

The remaining possible positions for the diamonds in dimensions 1, 2 and
3 appear in cells of higher dimensions.

For dimension 4, there are three possible positions for the diamonds, all of
which are depicted together in a CW complex. Constructing this CW complex
requires some careful steps. Let us proceed with its construction step by step.

Step 1: Start with a 4-cell with ten 3-cells.
Vertically, this CW complex consists of six 3-cells filling “paral-

lelepipeds”, which are attached along a solid torus. Horizontally, the CW com-
plex comprises four 3-cells, consisting of two convex solids as seen in Figure
15.6 and two cubes, also attached along a solid torus. As a result, we obtain
an S3, and finally a cell of dimension 4 is attached, resulting in a D4.
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Figure 15.13: First part of the CW complex of dimension 4 with ancestry
ε29 = (⬩ ⬩ ⬩ ⬩ • ⋄ • • ⋄ ⋄ ⋄•).

Step 2: The second part consists of another D4, with ancestry ε30 =

(◦ ⬩ ⬩ ⬩ ◦ ⋄ ⬩ ◦ ⋄ ⋄ ◦⋄). The cell has eight 3-cells. The attachment is made
through a 3-cell that fills the vertical “parallelepiped” in the center of Figure
15.14, attaching it to the fourth vertical “parallelepiped” in Figure 15.13 with
ancestry ε31 = (◦ ⬩ ⬩ ⬩ ◦ ⋄ ◦ ◦ ⋄ ⋄ ••).
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Figure 15.14: Second part of the CW complex of dimension 4.

Step 3: Attach a 4-cell similar to the previous one, with 3-cells attached.

Figure 15.15: Third part of the CW complex of dimension 4 with ancestry
ε32 = (⬩ ⬩ ⬩ • ⋄ ⋄ ⬩ ◦ • ⋄ ◦⋄).
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To complete the attachment, we have three more 3-cells.
Step 4: The fourth part involves attaching the cube in Figure 15.16 to

all the 4-cells. In Figure 15.16, the square on the right side of the cube with
ancestry ε33 = (⬩ •⋄⬩ ◦ ◦ • • ⋄ • ◦◦) is attached to Figure 15.13. The upper
square of the cube with ancestry ε34 = (• • ◦ ⬩ ◦ ◦ ⬩ • ⋄ • ◦⋄) is attached
to Figure 15.14. Finally, the square in the center of the cube with ancestry
ε35 = (⬩ • ⋄ ◦ • ◦ ⬩ ◦ • • ◦⋄) attaches to Figure 15.15.

Figure 15.16: Fourth part of the CW complex of dimension 3 with ancestry
ε36 = (⬩ • ⋄ ⬩ ◦ ◦ ⬩ • ⋄ • ◦⋄).

Step 5: For the fifth part, attach another cube from Figure 15.17 to
all the 4-cells. The square in the center of the cube with ancestry ε37 =

(⬩ ◦ ◦ ⬩ ◦ ◦ • ◦ ⋄ ◦ ◦◦) attaches to Figure 15.13. The square at the bottom
of the cube with ancestry ε38 = (◦ • • ⬩ ◦ ◦ ⬩ ◦ ⋄ ◦ ◦⋄) attaches to
Figure 15.14. Finally, the square on the right side of the cube with ancestries
ε39 = (⬩ ◦ ⋄ ◦ • ◦ ⬩ • • ◦ ◦⋄) attaches to Figure 15.15.

Figure 15.17: Fifth part of the CW complex of dimension 3 with ancestry
ε40 = (⬩ ◦ ⋄ ⬩ ◦ ◦ ⬩ ◦ ⋄ ◦ ◦⋄).

Step 6: For the sixth and last part, attach a “parallelepiped” to two
4-cells. The hexagon at the bottom of Figure 15.18 with ancestries ε41 =

(◦ • ⬩ ◦ • ⋄ • • • ⋄ ◦◦) attaches to Figures 15.15 and 15.14. Note that Figure
15.18 has four 2-cells that appear like wings. They do not alter the homotopy
type.
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Figure 15.18: Sixth part of the CW complex of dimension 3 with ancestry
ε42 = (◦ ⬩ ⬩ ⬩ ◦ ⋄ ⬩ ◦ ⋄ ⋄ ◦⋄).

The CW complex comprises three 4-cells, each resembling a D4, attached
through a cell of dimension 3. Specifically, each pair of 4-cells is joined by a
3-cell, and all three 4-cells share one common 2-cell. In addition, two 3-cells
are attached to each of the three 4-cells and finally one 3-cell is connected to
only two of the 4-cells. After completing all these attachments, the resulting
component is contractible.

Therefore, BLσ has 16 connected components of this type, all con-
tractible. In summary, BLσ has a total of 112 connected components, all con-
tractible.

The permutations

σ1 = a1a2a1a4a3a2a1a5a4a3a2a1, σ2 = a2a1a3a2a4a3a2a5a4a3a2a1 ∈ S6

have a CW complex structure similar to the one described.

Type 15.2. For σ = [456321] = a3a2a1a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

4
√

2
(−â1 − â2 − â1â3 − â2â3 − â4 + â1â2â4 − â3â4 + â1â2â3â4 − â5

− â1â2â5 − â3â5 − â1â2â3â5 − â1â4â5 + â2â4â5 − â1â3â4â5 + â2â3â4â5).

There exist 32 thin ancestries. Consequently, BLσ has 32 thin connected
components, all contractible.

For dimension 1, there are seven possible positions for the diamonds. If
the diamonds are r4 and the remaining rows have equal signs, the resulting
CW complex will be constructed in two steps. This results in 16 copies.
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Step 1: The first part includes a cell of dimension 3 that fills a cube in
Figure 15.19.

Figure 15.19: First part of the CW complex of dimension 3 with ancestry
ε1 = (• ⬩ • ⬩ • ⋄ ⬩ • ⋄ • ◦⋄).

Step 2: Now, attach Figure 15.20 to the previous one through five 0-
cells and four 1-cells. The second part consists of attaching lower-dimensional
cells, which can be easily collapsed. Once all attachments are completed, the
component remains contractible. Therefore, BLσ has a total of 16 connected
components of this type, all contractible.
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Figure 15.20: Second part of the CW complex with 14 2-cells.

If the diamonds are in r2 with signs (•◦◦) and the remaining rows have
identical signs, the resulting CW complex consists of ten 3-cells and must be
constructed step by step. This results in 32 copies.

Step 1: Begin with the first part of the CW complex in Figure 15.21,
which consists of three 3-cells that fill three prisms with ancestries ε2 =

(•◦⬩⬩•⬩◦•⋄•⋄⋄), ε3 = (⬩◦•⬩•◦⬩•⋄⋄•⋄), and ε4 = (⬩◦⬩⬩•◦⋄•⋄⋄◦•).
Vertically, there are two 3-cells, while horizontally, there is one. Note that there
are five 2-cells and four 1-cells attached to the 3-cells in Figure 15.21.



Chapter 15. The Homotopy Type of BLσ for inv(σ) = 12 150

Figure 15.21: First part of the CW complex with three 3-cells.

Step 2: The second part consists of attach a 3-cell to Figure 15.21.

Figure 15.22: Second part of the CW complex.
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The cell fills the prism in Figure 15.22, with ancestry ε5 = (⬩ ◦

⬩ ◦ ⋄ ⬩ ◦ ◦ • • ⋄⋄) Attachment occurs through the square with ancestry
ε6 = (⬩ ◦ • ◦ ⋄ ◦ ⬩ ◦ • ◦ •⋄).

Step 3: The third part consists of attaching the 3-cell, that fills the “par-
allelepiped” from Figure 15.23, to Figure 15.21. Attachment occurs through the
hexagon on the left of the previous figure, with ancestry ε8 = (⬩ ◦ ◦ ⬩ • • • •

⋄ ⋄ ◦•).

Figure 15.23: Third part of the CW complex of dimension 3 with ancestry
ε7 = (⬩ ⬩ • ⬩ ◦ ⋄ • • ⋄ ⋄ ◦•).

Step 4: The fourth part consists of attaching two more 3-cells. The left
is attached through the square with ancestry ε9 = (◦ ⬩ ◦ ⬩ ◦ ⋄ • ◦ ⋄ • ◦•)
to Figure 15.23. This cell is also attached to Figure 15.21 through the square
with ancestry ε10 = (◦ • ⬩ ⬩ ◦ • ⋄ ◦ ⋄ • ◦•). The right is attached through
the hexagon with ancestry ε11 = (⬩ ⬩ • ◦ • ⋄ • ◦ • ⋄ ◦•) to the Figure 15.23.
This cell is also attached to Figure 15.22 through the square with ancestry
ε12 = (⬩ ◦ ◦ ◦ ⋄ ⬩ • ◦ • ◦ ⋄•).
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Figure 15.24: Fourth part of the CW complex of dimension 3 with ancestries
ε13 = (◦ ⬩ ⬩ ⬩ ◦ • ⋄ ◦ ⋄ • ⋄•) and ε14 = (⬩ ⬩ • ◦ ⬩ ⋄ • ◦ • ⋄ ⋄•).

Step 5: The fifth part consists of attaching the “parallelepiped” in Figure
15.25. Note that in the cell in Figure 15.25, there is one 2-cell attached like a
wing.

Figure 15.25: Fifth part of the CW complex of dimension 3 with ancestry
ε15 = (◦ ⬩ ⬩ • ⬩ ◦ ⋄ ◦ • ⋄ ⋄•).
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Attachment occurs through the hexagon with ancestry ε16 = (◦ ⬩ ◦ •

⬩••◦•⋄⋄•) to the right cell in Figure 15.24, and the hexagon in the center
with ancestry ε17 = (◦ ⬩ ⬩ • ◦ • ⋄ ◦ ◦ • ⋄•) to the left cell in Figure 15.24.
This cell is also attached to Figure 15.21 through the square with ancestry
ε18 = (◦ • ⬩ • ⬩ ◦ ⋄ ◦ • ⋄ ◦•).

Step 6: The sixth part consists of attaching the “parallelepiped” in
Figure 15.26. The attachment to Figure 15.25 occurs through the hexagon
with ancestry ε20 = (◦⬩⬩••◦⋄◦•◦⋄•). This cell is also attached to Figure
15.22 through the hexagon in the right with ancestry ε21 = (◦•⬩••⋄◦◦••⋄⋄).

Figure 15.26: Sixth part of the CW complex of dimension 3 with ancestry
ε19 = (◦ ⬩ ⬩ • • ⬩ ⋄ ◦ • • ⋄⋄).

Step 7: The seventh and final part consists of attaching the prism
in Figure 15.27. Attachment occurs through the square with ancestry ε23 =

(◦ ⬩ ◦ • • ⋄ ⬩ ◦ • • ◦⋄) to Figure 15.26. This cell is also attached to Figure
15.22 through the square with ancestry ε24 = (⬩ ◦ ◦ ◦ ⋄ ◦ ⬩ ◦ • • ◦⋄). Note
that in the cell on Figure 15.27, there is one 2-cell attached like a wing.
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Figure 15.27: Seventh part of the CW complex of dimension 3 with ancestry
ε22 = (⬩ ⬩ • ◦ ◦ ⋄ ⬩ ◦ ◦ ⋄ ◦⋄).

Upon completing all attachments, we have a contractible CW complex.
Therefore, BLσ has a total of 32 connected components of this type, all
contractible.

The remaining ancestries of dimensions 1, 2 and 3 appear in higher-
dimensional CW complexes.

For dimension 4, there are two possible positions for the diamonds, which
appear together in a CW complex that will also be constructed step by step.
This results in 16 copies.

Step 1: Start with the cell of dimension 4 in Figure 15.28, which is a D4,
as we saw before.
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Figure 15.28: First part of the CW complex of dimension 4 with ancestry
ε25 = (⬩ ⬩ • ⬩ • ⋄ ⬩ • ⋄ ⋄ ◦⋄).

Step 2: Now, attach the second cell of dimension 4, which is also a D4.

Figure 15.29: Second part of the CW complex of dimension 4 with ancestry
ε26 = (◦ ⬩ ⬩ ⬩ • ⬩ ⋄ ◦ ⋄ • ⋄⋄).

The attachment is through the last vertical cube in Figure 15.28 to the
first cube in Figure 15.29 with ancestry ε27 = (• ⬩ • ⬩ • ⋄ ⬩ • ⋄ ◦ ◦⋄).

Step 3: The third part of the CW complex consists of attaching two
3-cells to the two previous 4-cells.
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Figure 15.30: Third part of the CW complex of dimension 3 with ancestries
ε28 = (⬩ • ⬩ ⬩ • ◦ ⋄ • ⋄ ⋄ ••) and ε29 = (⬩ ◦ ⬩ ⬩ ◦ ◦ ⋄ • ⋄ ⋄ ◦◦).

The cell on the left of Figure 15.30 attaches to Figure 15.28 through the
hexagon with ancestry ε30 = (⬩••⬩•◦◦•⋄⋄••). The attachment to Figure
15.29 is through the square with ancestry ε31 = (◦ ◦ ⬩ ⬩ ◦ • ⋄ ◦ ⋄ • ••). The
cell on the right of Figure 15.30 attaches to Figure 15.28 through the hexagon
with ancestry ε32 = (⬩ ◦ ◦ ⬩ ◦ • • • ⋄ ⋄ ◦◦). The attachment to Figure 15.29
is through the square with ancestry ε33 = (◦ • ⬩ ⬩ • • ⋄ ◦ ⋄ • ◦◦).

Step 4: The fourth part of the CW complex consists of attaching two
3-cells to Figure 15.28.

Figure 15.31: Fourth part of the CW complex of dimension 3 with ancestries
ε34 = (⬩ ⬩ • • ⬩ ⋄ • • ◦ ⋄ ⋄◦) and ε35 = (⬩ ⬩ • ◦ ⬩ ⋄ • ◦ ◦ ⋄ ⋄•).

The cell on the left of Figure 15.30 attaches to Figure 15.28 through the
hexagon with ancestry ε36 = (⬩ ⬩ • • ◦ ⋄ ◦ • • ⋄ •◦). The cell on the right
of Figure 15.30 attaches to Figure 15.28 through the hexagon with ancestry
ε37 = (⬩ ⬩ • ◦ ◦ ⋄ ◦ ◦ • ⋄ ••).
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Step 5: The fifth part of the CW complex consists of attaching two
3-cells to the two previous 4-cells.

Figure 15.32: Fifth part of the CW complex of dimension 3 with ancestries
ε38 = (⬩ ◦ ⬩ ◦ ⋄ ⬩ ◦ ◦ ◦ • ⋄⋄) and ε39 = (⬩ • ⬩ • ⋄ ⬩ • • • • ⋄⋄).

The cell on the left of Figure 15.32 attaches to Figure 15.28 through the
square with ancestry ε40 = (⬩ ◦ ◦ ◦ ⋄ ⬩ ◦ ◦ • ◦ ⋄). The attachment to Figure
15.29 is through the hexagon with ancestry ε41 = (◦ • ⬩ • • ⬩ ◦ ◦ ◦ • ⋄⋄).
Furthermore, this cell is attached to the right cell in Figure 15.30 and to the
right cell Figure 15.31. The attachment to the cell in Figure 15.30 is through
the square with ancestry ε42 = (⬩•⬩•⋄•⋄•••••). The attachment to the cell
in Figure 15.31 is through the square with ancestry ε43 = (⬩•◦•⋄⬩◦••◦⋄•).

The cell on the right of Figure 15.32 attaches to Figure 15.28 through the
square with ancestry ε44 = (⬩• • •⋄ •⬩• • • ◦⋄). The attachment to Figure
15.29 is through the hexagon with ancestry ε45 = (◦ ◦ ⬩ ◦ • ⬩ • • • • ⋄⋄).
Moreover, this cell is attached to the left cell in Figure 15.30 and to the left
cell in Figure 15.31. The attachment to the cell in Figure 15.30 is through the
square with ancestry ε46 = (⬩•⬩•⋄•⋄••••••). The attachment to the cell
in Figure 15.31 is through the square with ancestry ε47 = (⬩•••⋄⬩••••⋄◦).

Step 6: The sixth part of the CW complex consists of attaching two
3-cells to Figure 15.29.
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Figure 15.33: Sixth part of the CW complex of dimension 3 with ancestries
ε48 = (◦ ⬩ ⬩ ◦ ⬩ ◦ ⋄ • ◦ ⋄ ⋄◦) and ε49 = (◦ ⬩ ⬩ • ⬩ ◦ ⋄ ◦ ◦ ⋄ ⋄•).

The cell on the left of Figure 15.33 attaches to Figure 15.29 through the
hexagon with ancestry ε50 = (◦ ⬩ ⬩ ◦ ◦ • ⋄ • • • ⋄◦). Furthermore, this cell
is attached to the left cell in Figure 15.30 and to the right cell Figure 15.31.
The attachment to the cell in Figure 15.30 is through the square with ancestry
ε51 = (◦ ◦ ⬩ • ⬩ ◦ ⋄ ◦ • ⋄ ⬩•). The attachment to the cell in Figure 15.31 is
through the hexagon with ancestry ε52 = (◦ ⬩ ◦ ◦ ⬩ • • • ⋄ ⋄ ◦◦).

The cell on the right of Figure 15.33 attaches to Figure 15.29 through
the hexagon with ancestry ε53 = (◦ ⬩ ⬩ • • ◦ ⋄ ◦ ◦ ◦ ⋄•). Furthermore, this
cell is attached to the right cell in Figure 15.30 and to the left cell in Figure
15.31. The attachment to the cell in Figure 15.30 is through the square with
ancestry ε54 = (◦ ◦ ⬩ • ⬩ ◦ ⋄ ◦ • ⋄ ••). The attachment to the cell in Figure
15.31 is through the hexagon with ancestry ε55 = (◦ ⬩ ◦ • ⬩ • • ◦ ⋄ ⋄ ◦•).

To help with understanding, there are two 4-cells that share a common
3-cell. Moreover, eight 3-cells are attached, encircling the 4-cells.

Upon completing all attachments, we have a contractible CW complex.
Therefore, BLσ has a total of 16 connected components of this type, all
contractible. Summing up, BLσ has a total of 96 connected components, all
contractible.

Type 15.3. For σ = [463521] = a2a1a3a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

4
√

2
(1 − â1 − â2â3 + â1â2â3 − â4 + â1â4 − â2â3â4 + â1â2â3â4 − â5

− â1â5 − â2â3â5 − â1â2â3â5 − â4â5 − â1â4â5 + â2â3â4â5 + â1â2â3â4â5).
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There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are seven possible positions for the diamonds. If

the diamonds are in r4 and the remaining rows have equal signs, we have the
CW complex in Figure 15.34. This results in 16 copies. Therefore, BLσ has a
total of 16 connected components of this type, all contractible.

Figure 15.34: CW complex of dimension 2 with ancestry ε1 = (⬩ ⬩ • ◦ • • ⋄ ◦

◦ • ⋄•).

The remaining ancestries of dimension 1 and 2 appear in higher-
dimensional CW complexes.

If the diamonds are in r1 with signs (• ◦ ◦), we have a component that
has seven 3-cells. Now, Let us describe the step by step construction of the
component.

Step 1: Start with three 3-cells attached in the first part of the CW
complex, as shown in Figure 15.35. The cells fill one convex solid with twelve
faces and two prisms, with ancestries ε2 = (⬩ • ⬩ ⬩ • • • • ⋄ ⋄ ⋄•), ε3 =

(◦ ◦ ⬩ ⬩ • ◦ ⋄ ◦ ⋄ ⋄ •⋄) and ε4 = (◦ ⬩ ⬩ ⬩ • • ⋄ ◦ ⋄ ⋄ ◦◦), respectively.
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Figure 15.35: First part of the CW complex of dimension 3.

Step 2: The second step consists of attaching a cube to the second
and third squares in the first line of squares. The attachment is through the
squares in Figure 15.36 with ancestries ε6 = (⬩ • • ⬩ • ⋄ ◦ • ⋄ • ••) and
ε7 = (◦ ◦ ◦ ⬩ ◦ • ⬩ • ⋄ • ◦⋄).

Figure 15.36: Second part of the CW complex of dimension 3, with ancestries
ε5 = (⬩ • • ⬩ • ⋄ ⬩ • ⋄ • ◦⋄).

Step 3: The third part consists of attaching a cell that fills the prism in
Figure 15.37. The attachment is through the three central squares in Figure
15.37 to the three last squares in the fourth line of squares in Figure 15.35,
with ancestries ε9 = (◦◦•⬩•⬩•◦⋄•⋄•), ε10 = (◦◦•⬩•◦⬩◦⋄◦◦⋄) and
ε11 = (◦ ⬩ • ⬩ • • ⋄ ◦ ⋄ ◦ ◦◦).
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Figure 15.37: Third part of the CW complex of dimension 3, with ancestries
ε8 = (◦ ⬩ • ⬩ • ⬩ ◦ ◦ ⋄ ◦ ⋄⋄).

Step 4: The fourth part involves attaching a cell that fills the cube in
Figure 15.38 to the two central squares in the second line of squares in Figure
15.35, with ancestries ε12 = (⬩•⬩◦⋄⋄◦◦••••) and ε13 = (◦◦⬩•⋄•⬩◦••◦⋄).
Furthermore, the upper square in Figure 15.38 glues to the square at the
bottom of Figure 15.36, with ancestry ε15 = (⬩••◦◦⋄⬩◦••◦⋄). Note that
there are three 2-cells attached to the cube.

Figure 15.38: Fourth part of the CW complex of dimension 3, with ancestries
ε14 = (⬩ • ⬩ ◦ ⋄ ⋄ ⬩ ◦ • • ◦⋄).

Step 5: The fifth part consists to attach a cell that fills the prism in
Figure 15.39. The attachment is made by connecting the three last squares in
the prism to the three last squares in the last line of squares in Figure 15.39,
with ancestries ε17 = (◦◦⬩◦⋄⬩••••⋄•), ε18 = (◦◦⬩◦⋄◦⬩••◦◦⋄), and ε19 =

(◦⬩⬩◦⋄•⋄••◦◦◦). The upper hexagon in the prism attaches to the hexagon
at the bottom of Figure 15.37, with ancestry ε20 = (◦ ⬩ • ◦ ◦ ⬩ ◦ • • ◦ ⋄⋄).
Note that there is a 2-cell attached to the prism.
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Figure 15.39: Fifth part of the CW complex of dimension 3, with ancestries
ε16 = (◦ ⬩ ⬩ ◦ ⋄ ⬩ ◦ • • ◦ ⋄⋄).

Step 6: In this step, we attach seven 2-cells in Figure 15.40 to Figure
15.35, Attachment occurs through four 0-cells and two 1-cells.

Figure 15.40: Sixth part of the CW complex.

Step 7: To finish the attachment of this CW complex, attach three 0-cells
and two 1-cells from Figure 15.41 to Figure 15.35.
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Figure 15.41: Seventh part of the CW complex with four 2-cells.

Upon completing all attachments, we have a contractible component.
Therefore, BLσ has 32 connected components of this type, all contractible.

The remaining ancestries of dimensions 1 and 2 appear in higher-
dimensional CW complexes.

For dimension 3, there are eleven possible positions for the diamonds,
and there are two components with dimension 3: one contains four 3-cells,
and the other contains seven, the latter corresponds to the previous case. We
proceed with a step by step construction for the component with four 3-cells.
The procedure involves attaching one cell at a time.

Step 1: Begin with the 3-cell with ancestry ε21 = (⬩⬩•••⬩⋄•••⋄⋄)
fills the “parallelepiped” in Figure 15.42.

Figure 15.42: First part of the CW complex of dimension 3.
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Step 2: The second part consists in attach the “parallelepiped” in Figure
15.43, with ancestry ε22 = (⬩ ⬩ • • ⬩ ◦ ⋄ • • ⋄ ⋄•), to the previous one. The
attachments occurs through the hexagon at the bottom of Figure 15.43 to the
one in the center of Figure 15.42 with ancestry ε23 = (⬩ ⬩ • • • ◦ ⋄ • • ◦ ⋄•).

Figure 15.43: Second part of the CW complex of dimension 3.

Step 3: For the third part, the prism in Figure 15.44 will be attached to
the upper hexagon in the previous figure.

Figure 15.44: Third part of the CW complex of dimension 3.
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Attachment occurs through the hexagon in the center of Figure 15.44
with ancestry ε25 = (⬩⬩••◦•⋄•◦•⋄•). Note that four 2-cells are attached
like “wings” to the 3-cell, with ancestry ε24 = (⬩ ⬩ • ⬩ ◦ • ⋄ • ⋄ • ⋄•) that
fills the prism.

Step 4: The last 3-cell fills the prism in Figure 15.45 and will be attached
to the same 2-cell as the third part. Note that there are two 2-cells attached
to the prism.

Figure 15.45: Fourth part of the CW complex of dimension 3, with ancestry
ε26 = (⬩ ⬩ ⬩ • ⋄ • ⋄ • ◦ • ⋄•).

Upon completing all attachments, we have a contractible component.
Therefore, BLσ has 16 contractible connected components of this type.

The remaining ancestries of dimension 3 appear in a 4-dimensional CW
complex.

For dimension 4, there are three 4-cells that appear alongside three 3-cells
in a CW complex. Alternatively, in dimension 1, if the diamonds are located
in r3 with signs (• • ◦), we obtain the 4-dimensional component. All 4-cells
are homotopically equivalent to D4, as we have seen before. This results in 16
copies. The structure is complex and requires a step by step construction.

Step 1: The first part consists of a 4-cell with ancestry of dimension 4
ε27 = (⬩ ⬩ ⬩ ⬩ • • ⋄ • ⋄ ⋄ ⋄◦), and cells of lower dimension attached.
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Figure 15.46: First part of the CW complex.

Step 2: Next, attach the second 4-cell with ancestry of dimension 4
ε28 = (⬩ ⬩ • ⬩ • ⬩ ⋄ • ⋄ ◦ ⋄⋄).

Figure 15.47: Second part of the CW complex.
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Attachment occurs through the first vertical prism in Figure 15.47 to the
3-cell in Figure 15.46 with ancestry ε29 = (⬩ ⬩ • ⬩ • • ⋄ • ⋄ ◦ ◦ ⋄ ◦).

Step 3: The third part consists of attaching the last 4-cell with ancestry
ε30 = (⬩ ⬩ ⬩ ◦ ⋄ ⬩ ⋄ ◦ • ◦ ⋄⋄).

Figure 15.48: Third part of the CW complex.

Attachment occurs through the last vertical “parallelepiped” in Figure
15.48 to the 3-cell in the vertical center of Figure 15.47, with ancestry
ε31 = (⬩ ⬩ • ◦ ◦ ⬩ ⋄ ◦ • ◦ ⋄⋄). The vertical prism in the center of Figure
15.48 attaches to the last vertical prism in Figure 15.46, with ancestry
ε32 = (⬩ ⬩ ⬩ ◦ ⋄ ◦ ⋄ ◦ • • ⋄•).

Step 4: The fourth part is a 3-cell that fills the “parallelepiped” with
ancestry ε33 = (⬩ ⬩ ⬩ ◦ ⋄ ⬩ ⋄ ◦ • ◦ ⋄⋄) in Figure 15.49. The attachment
is through the hexagon on the left side of Figure 15.49 to the hexagon with
ancestry ε34 = (⬩ ⬩ • ◦ ◦ ◦ ⋄ ◦ • • ⋄•) in Figure 15.48.
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Figure 15.49: Fourth part of the CW complex.

Step 5: The fifth part is a 3-cell that fills the prism in Figure 15.50.
This cell is attached to all cells of dimension 4. The hexagon with ancestry
ε36 = (◦ ◦ ⬩ ⬩ • ◦ • ◦ ⋄ ⋄ •◦) attaches to Figure 15.46. The square with
ancestry ε37 = (◦ ◦ ◦ ⬩ ◦ • ⬩ • ⋄ • •⋄) attaches to Figure 15.47. The square
with ancestry ε38 = (◦ ◦ ⬩ • ⋄ • ⬩ ◦ • • •⋄) attaches to Figure 15.48.

Figure 15.50: Fifth part of the CW complex with ancestries of dimension 3
ε35 = (⬩ ⬩ ⬩ ◦ ⋄ ⬩ ⋄ ◦ • ◦ ⋄⋄).

Step 6: The last part is a 3-cell that fills the prism with ancestry
ε39 = (⬩ ⬩ ⬩ ◦ ⋄ ⬩ ⋄ ◦ • ◦ ⋄⋄) in Figure 15.51.
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Figure 15.51: Sixth part of the CW complex.

This cell attaches to all 4-cells. The hexagon with ancestry ε40 = (• ◦

⬩ ⬩ • ◦ • • ⋄ ⋄ ◦◦) attaches to Figure 15.46. The square with ancestry
ε41 = (• ◦ ⬩ ◦ ⋄ ◦ ⬩ ◦ • ◦ ◦⋄) attaches to Figure 15.48. The square with
ancestry ε42 = (• ◦ • • • ◦ ⬩ • ⋄ ◦ ◦⋄) attaches to Figure 15.47.

The CW complex consists of three 4-cells connected through 3-cells and
sharing one common 2-cell, with three additional 3-cells attached.

Upon completing all attachments, we have a contractible component.
Therefore, BLσ has 16 connected components of this type, all contractible.
Summing up, BLσ has a total of 112 connected components, all of them
contractible.

The permutations

σ = a1a3a2a4a3a2a1a5a4a3a2a1, σ = a2a1a3a2a1a4a3a5a4a3a2a1 ∈ S6

have a CW complex structure similar to the one described.

Type 15.4. For σ = [465231] = a2a3a2a1a4a3a2a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

4
√

2
(−â2 + â1â2 + â3 − â1â3 − â4 + â1â4 − â2â3â4 + â1â2â3â4 − â5

− â1â5 − â2â3â5 − â1â2â3â5 + â2â4â5 + â1â2â4â5 − â3â4â5 − â1â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are seven possible positions for the diamonds.

If the diamonds are in row r4 and the remaining rows have equal signs, we
have a CW complex with one 3-cell and some 2-cells attached. This will be
constructed through three steps.

Step 1: First, we have a 3-cell that fills the cube with ancestry ε1 =

(⬩ ◦ ⋄ ◦ ⬩ ◦ ⬩ ◦ ⋄ ◦ ⋄◦) in Figure 15.52, with 2-cells attached.
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Figure 15.52: First part of the CW complex.

Step 2: Attach nine 2-cells to Figure 15.52. Attachment occurs through
five 0-cells and four 1-cells.

Figure 15.53: Second part of the CW complex.

Step 3: To finish, attach eight 2-cells to Figure 15.52. Attachment occurs
through six 0-cells and five 1-cells.



Chapter 15. The Homotopy Type of BLσ for inv(σ) = 12 171

Figure 15.54: Third part of the CW complex.

Upon completing the attachments, we obtain a contractible CW complex.
Therefore, BLσ has a total of 16 connected components of this type, all
contractible.

If the diamonds are in row r1 and the remaining rows have equal signs,
we have a CW complex with ten 3-cells. This CW complex will be constructed
step by step, attaching one 3-cell at time.

Step 1: First, we have a 3-cell that fills the cube in Figure 15.55.

Figure 15.55: 3-Cell with ancestry ε2 = (⬩ • ⋄ ⬩ ⬩ • ◦ • ⋄ • ◦⋄).

Step 2: Attach a 3-cell that fills the cube in Figure 15.56. The attachment
to Figure 15.55 occurs through the 2-cell with ancestry ε4 = (⬩ • ⋄ ⬩ ◦ ◦ ◦ ◦

• • ◦⋄).
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Figure 15.56: 3-Cell with ancestry ε3 = (⬩ • ⋄ ⬩ ◦ ⬩ • ◦ ◦ ⋄ ◦⋄).

Step 3: Attach a 3-cell that fills the cube in Figure 15.57. The attachment
to Figure 15.56 occurs through the 2-cell with ancestry ε6 = (⬩ • ⋄ ⬩ ◦ • • ◦

◦ ◦ ◦⋄).

Figure 15.57: 3-Cell with ancestry ε5 = (⬩ • ⋄ ⬩ ◦ • ⬩ ◦ ◦ ◦ ⋄⋄).

Step 4: Attach a 3-cell with ancestry ε7 = (⬩ ⬩ ⬩ ◦ ◦ ⋄ ⋄ ◦ ◦ ◦ ⋄◦)
that fills the “paralellepiped” in Figure 15.58. The attachment to Figure 15.56
occurs through the 2-cell with ancestry ε8 = (⬩ • ⋄ • ◦ ⬩ • ◦ ◦ ⋄ ◦◦).

Figure 15.58: Fourth part of the CW complex.

Step 5: Attach a 3-cell with ancestry ε9 = (⬩ ⬩ • • ⬩ ◦ • • ⋄ ⋄ ⋄•)
that fills the convex solid in Figure 15.59, with four 0-cells and four 1-cells
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attached. The attachment to Figure 15.56 occurs through the 2-cell with
ancestry ε10 = (⬩ •⋄ ◦ ◦⬩ ◦ ◦ ◦ ⋄ ••). This cell is also attached to the one in
Figure 15.55 through the 2-cell with ancestry ε11 = (⬩ • ⋄ ◦ ⬩ • • • ⋄ • ••).

Figure 15.59: Fifth part of the CW complex.

Step 6: Attach a 3-cell that fills the prism in Figure 15.59. The
attachment to Figure 15.56 occurs through the 2-cell with ancestry ε13 =

(◦ ◦ • ⬩ ◦ ⬩ • ◦ ◦ ⋄ ◦⋄).

Figure 15.60: 3-Cell with ancestry ε12 = (◦ ⬩ ◦ ⬩ ⬩ ◦ • ◦ ⋄ ⋄ ◦⋄).
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This cell is also attached to the one in Figure 15.59 through the 2-cell
with ancestry ε14 = (◦ ⬩ ◦ ◦ ⬩ ◦ ◦ ◦ ⋄ ⋄ ••). And to the one in Figure 15.55
through the 2-cell with ancestry ε15 = (◦ ◦ • ⬩ ⬩ • ◦ • ⋄ • ◦⋄).

Step 7: Attach a 3-cell that fills the cube in Figure 15.61. The attachment
to Figure 15.60 occurs through the 2-cell with ancestry ε17 = (◦ ⬩ ◦ ⬩ • ⋄ • ◦

◦◦◦⋄). This cell is also attached to the one in Figure 15.57 through the 2-cell
with ancestry ε18 = (◦ ◦ • ⬩ ◦ • ⬩ ◦ ◦ ◦ ⋄⋄).

Figure 15.61: 3-Cell with ancestry ε16 = (◦ ⬩ ◦ ⬩ • ⋄ ⬩ ◦ ◦ ◦ ⋄⋄).

Step 8: Attach a 3-cell that fills the cube in Figure 15.62.The attachment
to Figure 15.60 occurs through the 2-cell with ancestry ε20 = (◦ • ◦ ⬩ ⬩ ◦ • ◦

⋄◦◦⋄). This cell is also attached to the one in Figure 15.59 through the 2-cell
with ancestry ε21 = (◦ • ◦ ◦ ⬩ ◦ ⬩ ◦ ⋄ • ⋄•).

Figure 15.62: 3-Cell with ancestry ε19 = (◦ • ◦ ⬩ ⬩ ◦ ⬩ ◦ ⋄ ◦ ⋄⋄).

Step 9: Attach a 3-cell that fills the “paralellepiped” in Figure 15.63,
with a 2-cell attached. The attachment to Figure 15.60 occurs through the
2-cell with ancestry ε23 = (◦ ⬩ ◦ • ⬩ ◦ • ◦ ⋄ ⋄ ◦◦).
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Figure 15.63: Ninth part of the CW complex with ancestry of dimension 3:
ε22 = (◦ ⬩ ⬩ ◦ ⬩ • • ◦ ⋄ ⋄ ◦◦).

Step 10: Attach a 3-cell that fills the “paralellepiped” with ancestry
ε24 = (◦ ⬩ ⬩ ◦ • ⬩ ⋄ ◦ ◦ ⋄ ⋄◦) in Figure 15.64, with two 2-cells attached. The
attachment to Figure 15.63 and Figure 15.58 occurs through the 2-cell with
ancestry ε25 = (◦ ⬩ ⬩ ◦ • • ⋄ ◦ ◦ ⋄ ◦◦).

Figure 15.64: Tenth part of the CW complex.

Upon completing all attachments, we obtain a contractible CW complex.
Therefore, BLσ has a total of 32 connected components of this type, all
contractible.

The remaining ancestries of dimensions 1, 2 and 3 appear in higher-
dimensional CW complexes.

For dimension 4, there are two possible positions for the diamonds, which
always appear together. The construction will proceed step by step.

Step 1: First, we have a 4-cell with ten 3-cells. This cell is homotopically
equivalent to a D4.
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Figure 15.65: 4-Cell with ancestry ε26 = (⬩ ⬩ ⬩ • ⬩ • ⋄ • ⋄ ⋄ ⋄•).

Step 2: Next, attach the second 4-cell, which is another D4, with three
2-cells attached. This cell is attached to the one in Figure 15.65 through the
3-cell with ancestry ε28 = (⬩ • ⋄ ◦ ⬩ ◦ ⬩ ◦ ⋄ ◦ ⋄•).

Figure 15.66: Second part of the CW complex with ancestry of dimension 4:
ε27 = (⬩ • ⋄ ⬩ ⬩ ◦ ⬩ • ⋄ • ⋄⋄).

Step 3: Now we attach the 3-cells. The first fills the prism in Figure
15.67. This cell is attached to the one in Figure 15.65 through the 2-cell with
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ancestry ε30 = (•⬩◦◦⬩◦••⋄⋄◦•), and to the one in Figure 15.66 through
the 2-cell with ancestry ε31 = (• • ◦ ⬩ ⬩ ◦ ◦ • ⋄ ◦ •⋄).

Figure 15.67: 3-Cell with ancestry ε29 = (• ⬩ ◦ ⬩ ⬩ ◦ ◦ • ⋄ ⋄ •⋄).

Step 4: The second 3-cell fills the prism in Figure 15.68. This cell
is attached to the one in Figure 15.65 through the 2-cell with ancestry
ε33 = (◦⬩◦◦⬩••◦⋄⋄••), and to the one in Figure 15.66 through the 2-cell
with ancestry ε34 = (◦ ◦ • ⬩ ⬩ ◦ • • ⋄ • ◦⋄).

Figure 15.68: 3-Cell with ancestry ε32 = (◦ ⬩ ◦ ⬩ ⬩ • ◦ • ⋄ ⋄ •⋄).

Step 5: The third 3-cell fills the cube in Figure 15.69.

Figure 15.69: 3-Cell with ancestry ε35 = (⬩ • ⋄ ⬩ ◦ ⬩ ◦ ◦ • ⋄ •⋄).

This cell is attached to the one in Figure 15.65 through the 2-cell with
ancestry ε36 = (⬩•⋄◦◦⬩•◦•⋄◦•). To the one in Figure 15.66 through the
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2-cell with ancestry ε37 = (⬩ • ⋄ ⬩ ◦ • ◦ ◦ • ◦ •⋄). And to the one in Figure
15.67 through the 2-cell with ancestry ε38 = (• • ◦ ⬩ ◦ ⬩ ◦ ◦ • ⋄ •⋄).

Step 6: The fourth 3-cell fills the cube in Figure 15.70. This cell is
attached to the one in Figure 15.65 through the 2-cell with ancestry ε40 =

(⬩ • ⋄ ◦ • ⬩ • • • ⋄ ••). To the one in Figure 15.66 through the 2-cell with
ancestry ε41 = (⬩•⋄⬩•◦•••◦◦⋄). And to the one in Figure 15.68 through
the 2-cell with ancestry ε42 = (◦ ◦ • ⬩ • ⬩ ◦ • • ⋄ ◦⋄).

Figure 15.70: 3-Cell with ancestry ε39 = (⬩ • ⋄ ⬩ • ⬩ ◦ • • ⋄ ◦⋄).

Step 7: The fifth 3-cell fills the cube in Figure 15.71. This cell is
attached to the one in Figure 15.65 through the 2-cell with ancestry ε44 =

(◦⬩◦◦•⋄⬩◦•◦⋄•), and to the one in Figure 15.66 through the 2-cell with
ancestry ε45 = (◦ ◦ • ⬩ ◦ • ⬩ ◦ • • ⋄⋄).

Figure 15.71: 3-Cell with ancestry ε43 = (◦ ⬩ ◦ ⬩ • ⋄ ⬩ ◦ • • ⋄⋄).

Step 8: The sixth 3-cell fills the cube in Figure 15.72.

Figure 15.72: 3-Cell with ancestry ε46 = (• ⬩ ◦ ⬩ • ⋄ ⬩ • ◦ • ⋄⋄).
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This cell is attached to the one in Figure 15.65 through the 2-cell with
ancestry ε47 = (•⬩◦◦•⋄⬩•◦◦⋄•), and to the one in Figure 15.66 through
the 2-cell with ancestry ε48 = (• ◦ • ⬩ ◦ • ⬩ • ◦ • ⋄⋄).

Note that this CW complex comprises two D4 attached through a cube.
Additionally, these D4 have some 3-cells attached to them, but these cells do
not alter the homotopy type.

Upon completing all attachments, we obtain a contractible CW complex.
Therefore, BLσ has a total of 16 connected components of this type, all
contractible. Summing up, BLσ has a total of 96 connected components, all of
them contractible.

Type 15.5. For σ = [465312] = a2a3a2a1a4a3a2a1a5a4a3a2 ∈ S6 it follows that

σ́ =
1

4
√

2
(−â1 − â2 − â1â3 − â2â3 + â1â4 − â2â4 + â1â3â4 − â2â3â4

− â1â5 − â3â5 − â1â2â3â5 − â4â5 + â1â2â4â5 − â3â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are seven possible positions for the diamonds. If

the diamonds are in row r4 and the remaining rows have equal signs, we have a
CW complex with one 3-cell and cells of lower dimensions attached. This will
be constructed through three steps.

Step 1: First, we have a 3-cell that fills the convex solid, with two
vertexes and two edges attached.
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Figure 15.73: Cell of dimension 3 with ancestry ε1 = (⬩⬩ ◦ • ⬩ ◦ ◦ • • ⋄ ⋄⋄).

Step 2: Attach the Figure 15.74 to the previous one. Attachment occurs
through four 1-cells and five 0-cells.

Figure 15.74: Second part of the CW complex.
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Step 3: To conclude, attach Figure 15.75 to Figure 15.73. Attachment
occurs through three 1-cells and four 0-cells.

Figure 15.75: Third part of the CW complex.

Upon completing all attachments, we obtain a contractible CW complex.
Therefore, BLσ has a total of 16 connected components of this type, all
contractible.

If the diamonds are in row r1 and the remaining rows have equal signs,
we have a CW complex with ten 3-cells and cells of lower dimensions attached.
This will be constructed one 3-cell per step.

Step 1: First, we have a cell of dimension 3 that fills the convex solid in
Figure 15.76.

Figure 15.76: 3-Cell with ancestry of dimension 3: ε2 = (⬩⬩•⬩•⋄◦⋄•⋄•◦).
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Step 2: For the second part, attach a 3-cell that fills the “parallelepiped”
in Figure 15.77. The attachment to Figure 15.76 occurs through the 2-cell with
ancestry ε4 = (• • ⬩ ⬩ • ◦ ◦ ⋄ • ◦ •⋄).

Figure 15.77: 3-Cell with ancestry of dimension 3: ε3 = (••⬩⬩•⬩•⋄••⋄⋄).

Step 3: For the third part attach a 3-cell with with ancestry ε5 =

(• ⬩ ⬩ ◦ • ⬩ ◦ • • • ⋄⋄) that fills the “parallelepiped” in Figure 15.78, with a
2-cell attached. The attachment to Figure 15.76 occurs through the 2-cell with
ancestry ε6 = (• ⬩ • ◦ • ⋄ ⬩ • • ◦ •⋄), and to Figure 15.77 through the 2-cell
with ancestry ε7 = (• • ⬩ ◦ • ⬩ ◦ • • • ⋄⋄).

Figure 15.78: Third part of the CW complex.

Step 4: For the fourth part, attach to Figure 15.78 a 3-cell with ancestry
ε8 = (• ⬩ ⬩ ◦ ⬩ ◦ ⋄ ◦ • ⋄ ⋄•) that fills the “parallelepiped” in Figure 15.79,
with a 2-cell attached. Attachment occurs through the cell of dimension 2 with
ancestry ε9 = (• ⬩ ⬩ ◦ • ◦ ⋄ ◦ • ◦ ⋄•).
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Figure 15.79: Fourth part of the CW complex.

Step 5: For the fifth part, attach a 3-cell that fills the “parallelepiped”
in Figure 15.80. The attachment to Figure 15.76 occurs through the 2-cell with
ancestry ε11 = (⬩⬩•◦•⋄⋄◦•◦◦•), and to Figure 15.79 and to Figure 15.78
through the 2-cell with ancestry ε12 = (• ⬩ ⬩ ◦ • ◦ ⋄ ◦ • ◦ ⋄•).

Figure 15.80: 3-Cell with ancestry ε10 = (⬩ ⬩ ⬩ ◦ • ⋄ ⋄ ◦ • ◦ ⋄•).

Step 6: For the sixth part, attach a 3-cell that fills the cube in Figure
15.81. Attachment to Figure 15.76 occurs through the 2-cell with ancestry
ε14 = (⬩ • ⋄ ⬩ • • • ⋄ • ◦ ◦•).

Figure 15.81: 3-Cell with ancestry ε13 = (⬩ • ⋄ ⬩ ⬩ • • ⋄ • ⋄ ◦•).

Step 7: For the seventh part, attach a 3-cell that fills the cube in Figure
15.82. Attachment to Figure 15.76 and Figure 15.81 occurs through the 2-cell
with ancestry ε16 = (⬩ • ⋄ ⬩ • • • ⋄ • ◦ ◦•), and to Figure 15.80 through the
2-cell with ancestry ε17 = (⬩ • ⋄ • • ⬩ • ◦ • ◦ ⋄•).
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Figure 15.82: 3-Cell with ancestry ε15 = (⬩ • ⋄ ⬩ • ⬩ • ⋄ • ◦ ⋄•).

Step 8: For the eighth part, attach a 3-cell with ancestry ε18 = (⬩ •

⋄ ◦ ⬩ • ⬩ ◦ • ⋄ •⋄) that fills the cube in Figure 15.83, with five 2-cells
attached. The attachment to Figure 15.76 occurs through the 2-cell with
ancestry ε19 = (⬩ • ⋄ ◦ • • ⬩ ◦ • ◦ •⋄), and to Figure 15.81 through the
2-cell with ancestry ε20 = (⬩ • ⋄ ◦ ⬩ • ◦ • • ⋄ ◦•).

Figure 15.83: Eighth part of the CW complex.

Step 9: For the ninth part attach a 3-cell that fills the prism in Figure
15.84, with a 2-cell attached. The attachment to Figure 15.77 and 15.82 occurs
through the 2-cell with ancestry ε22 = (••◦⬩•⬩•⋄•◦⋄•). And to Figure 15.85
and Figure 15.81 through the 2-cell with ancestry ε23 = (••◦⬩⬩••⋄•⋄◦•).
And to Figure 15.79 through the 2-cell with ancestry ε24 = (•⬩◦•⬩••◦•⋄⋄•).
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Figure 15.84: Ninth part of the CW complex with ancestry of dimension 3:
ε21 = (• ⬩ ◦ ⬩ ⬩ • • ⋄ • ⋄ ⋄•).

Step 10: For the tenth part, attach a 3-cell that fills the prism in Figure
15.85. Attachment to Figure 15.77 occurs through the 2-cell with ancestry
ε26 = (••⬩⬩•◦◦⋄•◦•⋄). This cell is also attached to Figure 15.83 through
the 2-cell with ancestry ε27 = (• • ◦ ◦ ⬩ • ⬩ ◦ • ⋄ •⋄), and to Figure 15.81
through the 2-cell with ancestry ε28 = (••◦⬩⬩••⋄•⋄◦•). To Figure 15.77
Attachment occurs through the 2-cell with ancestry ε29 = (••⬩⬩•◦◦⋄•◦•⋄),
and to Figure 15.79 through the 2-cell with ancestry ε30 = (••⬩◦⬩◦⋄◦•⋄◦•).

Figure 15.85: 3-Cell with ancestry ε25 = (• • ⬩ ⬩ ⬩ ◦ ◦ ⋄ • ⋄ •⋄).

Upon completing all attachments, we obtain a contractible CW complex.
Therefore, BLσ has a total of 32 connected components of this type, all
contractible.

The remaining ancestries of dimensions 1, 2 and 3 appear in a 4-
dimensional CW-complex.

For dimension 4, we have two possible positions for the diamonds, which
appear together. The CW complex will be constructed step by step.
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Step 1: The first 4-cell with ancestry ε31 = (⬩ ⬩ ⬩ ◦ ⬩ • ⋄ • • ⋄ ⋄⋄)
has ten 3-cells and is homotopically equivalent to a D4. Figure 15.86 shows the
cell, with one 2-cell attached.

Figure 15.86: First part of the CW complex.

Step 2: The second 4-cell with ancestry ε32 = (⬩⬩•⬩⬩••⋄•⋄⋄⋄) has
sixteen 3-cells and is also homotopically equivalent to a D4. Its construction
requires a step-by-step approach. First, six 3-cells are vertically attached in
Figure 15.87.

Figure 15.87: Second part of the CW complex.

Now, we attach the remaining ten 3-cells.
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Step 3: Attach the two cubes and one prism in Figure 15.88 to Figure
15.87. The attachment occurs through the seven 2-cells with ancestries ε33 =

(◦••⬩⬩◦◦⋄◦⋄•◦), ε34 = (◦••⬩⬩◦◦⋄◦⋄•◦), ε35 = (⬩◦⋄⬩◦•◦⋄•••◦),
ε36 = (•⬩•⬩◦⋄•⋄◦•◦◦), ε37 = (•••⬩⬩••⋄•⋄◦◦), ε38 = (•⬩•⬩•⋄◦⋄•••◦),
and ε39 = (• • • ⬩ • ⬩ • ⋄ • ◦ ⋄◦). Note that we have one 2-cell attached as a
wing.

Figure 15.88: Third part of the CW complex.

Step 4: Attach the convex solid in Figure 15.89 to Figure 15.87. The
attachment occurs through twelve 2-cells that fill four hexagons and eight
squares. Note that there are four 1-cells with four 0-cells attached to the convex
solid. Furthermore, attach Figure 15.89 to Figure 15.88 through the 2-cells with
ancestries ε40 = (⬩ ◦ ⋄ • • ⬩ • ◦ ◦ • ⋄◦), ε41 = (⬩ ◦ ⋄ • ⬩ ◦ ◦ ◦ ◦ ⋄ •◦), and
ε42 = (• ⬩ • • ⬩ • • ◦ • ⋄ ⋄◦).

Figure 15.89: Fourth part of the CW complex.

Step 5: Similar to Step 3, attach the two cubes and one prism in Figure
15.90 to Figure 15.87. The attachment occurs through the seven 2-cells with
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ancestries ε43 = (• • ◦ ⬩ ⬩ ◦ ◦ ⋄ • ⋄ ••), ε44 = (◦ ⬩ ◦ ⬩ • ⋄ ◦ ⋄ ◦ • ••),
ε45 = (◦•◦⬩•⬩•⋄◦◦⋄•), ε46 = (◦•◦⬩⬩••⋄◦⋄◦•), ε47 = (◦⬩◦⬩◦⋄•⋄••◦•),
ε48 = (⬩ • ⋄ ⬩ • • • ⋄ • • ◦•), and ε49 = (• • ◦ ⬩ • ⬩ • ⋄ • • ⋄•). Note that
we have one 2-cell attached as a wing.

Furthermore, Figure 15.90 attaches to Figure 15.89 through three 2-cells
with ancestries ε50 = (⬩ • ⋄ ◦ ⬩ ◦ • • • ⋄ ••), ε51 = (◦ ⬩ ◦ ◦ ⬩ • ◦ • ◦ ⋄ ⋄•),
and ε52 = (⬩ • ⋄ ◦ • ⬩ ◦ • • • ⋄•).

Figure 15.90: Fifth part of the CW complex.

Step 6: Attach the convex solid in Figure 15.91 to Figure 15.87. The
attachment occurs through twelve 2-cells that fill four hexagons and eight
squares. Furthermore, attach Figure 15.91 to Figure 15.90 through the 2-cells
with ancestries ε53 = (⬩•⋄•⬩◦◦◦•⋄••), ε54 = (◦⬩◦•⬩••◦◦⋄⋄•), and
ε55 = (⬩ • ⋄ • • ⬩ • ◦ • • ⋄•). This 3-cell also attached to Figure 15.88
through the three 2-cells with ancestries ε56 = (⬩ ◦ ⋄ ◦ ⬩ ◦ • • ◦ ⋄ •◦),
ε57 = (• ⬩ • ◦ ⬩ • ◦ • • ⋄ ⋄◦), and ε58 = (⬩ ◦ ⋄ ◦ • ⬩ ◦ • ◦ ⋄ ◦).

Figure 15.91: Sixth part of the CW complex.
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After completing all the attachments, the resulting 4-cell is homotopically
equivalent to a D4. The attachment to Figure 15.86 occurs through three 3-cell
with ancestry ε59 = (⬩ ⬩ • ◦ ⬩ • ◦ • • ⋄ ⋄⋄).

Note that this CW complex comprises two D4 attached through a 3-
cell. Upon completing all attachments, we have a contractible component.
Therefore, BLσ has 16 connected components of this type, all contractible.
In summary, BLσ has a total of 96 connected components, all contractible.

Type 15.6. For σ = [546231] = a1a3a2a1a4a3a2a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

4
√

2
(−â1 − â2 + â3 − â1â2â3 − â4 + â1â2â4 − â1â3â4 − â2â3â4 + â1â5

− â2â5 − â3â5 − â1â3â3â5 + â4â5 + â1â2â4â5 − â1â3â4â5 + â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin connected

components, all contractible.
For dimension 1, there are seven possible positions for the diamonds. If

r1 has signs (• • ◦), and the remaining rows have equal signs, we have a CW
complex that will be constructed through three steps.

Step 1: First, we have a 3-cell with four 2-cells attached. The 3-cell with
ancestry ε1 = (⬩ ⬩ ⬩ ◦ ◦ ◦ ⋄ ◦ ◦ ⋄ ◦⋄) fills the convex solid completely.

Figure 15.92: First part of the CW complex.

Step 2: Now, attach Figure 15.93 to Figure 15.92 through three 1-cells
four 0-cells.
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Figure 15.93: Second part of the CW complex with seven 2-cells.

Step 3: To conclude, attach Figure 15.94 to the Figure 15.92 through
three 1-cells and four 0-cells.

Figure 15.94: Third part of the CW complex with seven 2-cells.

The component consists of a 3-cell with some lower-dimensional cells at-
tached. Upon completing all attachments, we obtain a contractible CW com-
plex. Therefore, BLσ has a total of 16 connected components, all contractible.
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If the diamonds are in r4 and the remaining rows have equal signs, we
have a CW complex with ten 3-cells. The component will be constructed one
3-cell per step.

Step 1: First we have a 3-cell with ancestry ε2 = (⬩◦⬩••⬩◦◦◦⋄⋄⋄)
that fills the convex solid in Figure 15.95 with some cells of lower dimension
attached.

Figure 15.95: First part of the CW complex.

Step 2: Attach a 3-cell that fills the prism in Figure 15.96. Attachment
occurs through the 2-cell in Figure 15.95 with ancestry ε3 = (⬩ ◦ ◦ ⋄ • ⬩ • ◦

• ⋄ •◦).

Figure 15.96: 3-Cell with ancestry ε4 = (⬩ ⬩ • ⋄ ⬩ ◦ ◦ • ⋄ ⋄ •◦).

Step 3: Attach a 3-cell that fills the “parallelepiped” in Figure 15.97,
with a 2-cell attached. Attachment occurs through the 2-cell in Figure 15.96
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with ancestry ε5 = (◦ ⬩ • ◦ ⬩ ◦ ◦ • ⋄ ⋄ •◦).

Figure 15.97: Third part of the CW complex with ancestry of dimension 3:
ε6 = (◦ ⬩ ⬩ ◦ ⬩ ◦ ⋄ • ⋄ ⋄ •◦).

Step 4: Attach a 3-cell that fills the “parallelepiped” in Figure 15.98.
Attachment occurs through the 2-cell in Figure 15.96 with ancestry ε7 =

(◦ ⬩ ⬩ ◦ • ⬩ ⋄ • • ⋄ ⋄◦).

Figure 15.98: 3-Cell with ancestry ε8 = (◦ ⬩ ⬩ ◦ • ⬩ ⋄ • • ⋄ ⋄◦).

Step 5: Attach a 3-cell with ancestry ε9 = (⬩⬩ •⋄ •⋄⬩ • • ◦ ⋄◦) that
fills the cube in Figure 15.99, with two 2-cells attached. Attachment occurs
through the 2-cell in Figure 15.98 with ancestry ε10 = (◦⬩◦••⋄⬩••◦⋄◦).
This cell also attaches to Figure 15.96 through the 2-cell with ancestry
ε11 = (⬩ ⬩ • ⋄ • ⋄ ◦ • • • •◦).
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Figure 15.99: Fifth part of the CW complex.

Step 6: Attach a 3-cell with ancestry ε12 = (◦ ⬩ ◦ ⬩ • ⋄ ⬩ • • ◦ ⋄⋄)
that fills the cube in Figure 15.100, with one 2-cell attached. Attachment
occurs through the 2-cell in Figure 15.99 and to Figure 15.98 with ancestry
ε13 = (◦ ⬩ ◦ • • ⋄ ⬩ • • ◦ ⋄◦).

Figure 15.100: Sixth part of the CW complex.

Step 7: Attach a 3-cell that fills the cube in Figure 15.101. Attachment
occurs through the 2-cell in Figure 15.100 with ancestry ε14 = (◦ ◦ • ⬩ ◦ • ⬩ •

• ◦ ⋄⋄).

Figure 15.101: 3-Cell with ancestry ε15 = (◦ ◦ • ⬩ ⬩ ◦ ⬩ ◦ ⋄ ◦ ⋄⋄).
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Step 8: Attach a 3-cell that fills the prism in Figure 15.102. Attachment
occurs through the 2-cell in Figure 15.101 with ancestry ε16 = (◦ ◦ • ⬩ ⬩ ◦ ◦ ◦

⋄ • •⋄). In Figure 15.100 with ancestry ε17 = (◦ ⬩ ◦ ⬩ • ⋄ ◦ • • • •⋄). In
Figure 15.95 with ancestry ε18 = (◦ ◦ • • •⬩•◦ •⋄•⋄). In Figure 15.96 with
ancestry ε19 = (◦ ⬩ ◦ • ⬩ • • • ⋄ ⋄ •◦).

Figure 15.102: 3-Cell with ancestry ε20 = (◦ ⬩ ◦ ⬩ ⬩ • • • ⋄ ⋄ •⋄).

Step 9: Attach a 3-cell that fills the cube in Figure 15.103. Attachment
occurs through the 2-cell in Figure 15.101 with ancestry ε21 = (◦ ◦ • • ⬩ ◦ ⬩ ◦

⋄ ◦ ⋄◦).

Figure 15.103: Cell of dimension 3 with ancestry ε22 = (⬩◦◦⋄⬩◦⬩◦⋄◦⋄◦).

Attachment occurs through the 2-cell in Figure 15.95 with ancestry ε23 =

(⬩◦◦⋄•◦⬩◦◦◦⋄◦). In Figure 15.96 with ancestry ε24 = (⬩◦◦⋄⬩◦◦◦⋄••◦).
In Figure 15.99 with ancestry ε25 = (⬩ ◦ ◦ ⋄ ◦ • ⬩ • • ◦ ⋄◦)

Step 10: Attach a 3-cell that fills the prism in Figure 15.104. Attachment
occurs through the 2-cell in Figure 15.103 with ancestry ε26 = (⬩ ◦ ◦ ⋄⬩ ◦ • ◦

⋄◦◦◦). In Figure 15.95 with ancestry ε27 = (⬩◦⬩•••⋄◦◦◦◦⋄). In Figure
15.101 with ancestry ε28 = (◦ ◦ • ⬩ ⬩ ◦ • ◦ ⋄ ◦ ◦⋄).
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Figure 15.104: 3-Cell with ancestry ε29 = (⬩ ◦ • • ⬩ • ⋄ ◦ ⋄ ◦ ⋄⋄).

Upon completing all attachments, we have a contractible component.
Therefore, BLσ has 32 connected components of this type, all contractible.

The remaining ancestries of dimensions 1, 2, and 3 appear in a 4-
dimensional CW-complex.

For dimension 4, we have two possible positions for the diamonds, which
appear together. Alternatively, in dimension 1, if the diamonds are located in
r2 with signs (• ◦ ◦), we obtain this component. The CW complex will be
constructed step by step.

Step 1: The first 4-cell with ancestry ε30 = (⬩⬩⬩◦⬩◦⋄◦⋄⋄◦⋄) has
ten 3-cells and is homotopically equivalent to D4. Figure 15.105 shows the cell
with two edges and two vertices attached.

Figure 15.105: First part of the CW complex.
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Step 2: The second 4-cell similarly to the previous one, also has ten
3-cells and is homotopically equivalent to a D4. Attachment occurs via the last
3-cell horizontally in Figure 15.105 and the first one in Figure 15.106, with
ancestry ε31 = (⬩ ⬩ ⬩ ◦ ◦ • ⋄ • • ⋄ ◦⋄).

Figure 15.106: 4-Cell with ancestry ε32 = (⬩ ⬩ ⬩ ◦ ◦ ⬩ ⋄ • • ⋄ ⋄⋄).

Step 3: The Figure 15.107 shows the first 3-cell with one 2-cell attached.
The cell is attached to Figure 15.105 through the 2-cell with ancestry ε33 =

(⬩•◦⋄⬩•◦◦⋄◦••), and to Figure 15.106 through ε34 = (⬩•◦⋄◦◦⬩•••⋄•).

Figure 15.107: Third part of the CW complex with ancestry of dimension 3:
ε35 = (⬩ • ◦ ⋄ ⬩ • ⬩ ◦ ⋄ • ⋄•).
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Step 4: The Figure 15.108 shows the second 3-cell with ancestry
ε36 = (⬩◦◦⋄⬩•⬩•⋄•⋄◦) with one 2-cell attached. The cell is attached to
Figure 15.105 through the 2-cell with ancestry ε37 = (⬩ ◦ ◦ ⋄ ⬩ • • • ⋄ • ◦◦),
and to Figure 15.106 through ε38 = (⬩ ◦ ◦ ⋄ • • ⬩ ⬩ ◦ • ⋄◦).

Figure 15.108: Fourth part of the CW complex.

Step 5: The Figure 15.109 shows the third 3-cell with cells of lower
dimension attached. The cell is attached to Figure 15.105 through the 2-cell
with ancestry ε39 = (• • ◦ ⬩ ⬩ • • ◦ ⋄ ◦ ◦⋄), and to Figure 15.106 through
ε40 = (• • ◦ ⬩ ◦ ◦ ⬩ • • ◦ ⋄⋄).

Figure 15.109: Fifth part of the CW complex with ancestry of dimension 3:
ε41 = (• • ◦ ⬩ ⬩ • ⬩ ◦ ⋄ ◦ ⋄⋄).

Step 6: To finish, Figure 15.110 shows the fourth 3-cell with ancestry
ε42 = (◦ ◦ • ⬩ • • ⬩ • ⋄ • ⋄⋄), with cells of lower dimension attached.
The cell is attached to Figure 15.105 through the 2-cell with ancestry ε43 =

(◦◦•⬩⬩•••⋄•◦⋄), and to Figure 15.106 through ε44 = (◦◦•⬩◦◦⬩◦••⋄⋄).
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Figure 15.110: Sixth part of the CW complex.

This CW complex comprises two D4 connected through a single 3-cell,
with four 3-cells attached to the 4-cells. Upon completing all attachments, we
have a contractible component. Therefore, BLσ has 16 connected components
of this type, all contractible. Summing up, BLσ has a total of 96 connected
components, all of them contractible.

Type 15.7. For σ = [546312] = a1a3a2a1a4a3a2a1a5a4a3a2 ∈ S6 it follows that

σ́ =
1

4
√

2
(−â1 − â1â2 − â1â3 − â1â2â3 − â4 − â2â4 − â3â4 − â2â3â4 − â5

+ â2â5 − â3â5 + â2â3â5 − â1â4â5 + â1â2â4â5 − â1â3â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
For dimension 1, there are seven possible positions for the diamonds. If

the diamonds are in row r4 and the remaining rows have equal signs, we have
a CW complex with one 3-cell and cells of lower dimension attached. This will
be constructed thought three steps.

Step 1: First, we have a 3-cell in Figure 15.111 with cells of lower
dimension attached. The 3-cell with ancestry ε1 = (⬩◦⬩•⬩•◦⋄⋄◦⋄◦) fills
the prism completely.
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Figure 15.111: First part of the CW complex.

Step 2: Now, attach ten 2-cells to Figure 15.111, with cells of lower
dimension as shown in Figure 15.112. Attachment occurs through six 0-cells
and five 1-cells.

Figure 15.112: Second part of the CW complex with ten 2-cells.

Step 3: To finish, attach ten 2-cells to Figure 15.111 with cells of lower
dimension as shown in Figure 15.113. Attachment occurs through six 0-cells
and five 1-cells.
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Figure 15.113: Third part of the CW complex with ten 2-cells.

If the diamonds are in row r2 with the signs (• • ◦), and the remaining
rows have equal signs, we have a CW complex with ten 3-cells and lower-
dimensional cells attached. This will be constructed one 3-cell at a time.

Step 1: Start with the 3-cell that fills the “parallelepiped” in Figure
15.114.

Figure 15.114: 3-Cell with ancestry ε2 = (• ⬩ ⬩ • ⬩ • ⋄ • • ⋄ ⋄ ⋄ ◦).

Step 2: Now, attach the 3-cell that fills the prism in Figure 15.115 with
cells of lower dimension attached. The attachment to Figure 15.115 occurs
through the 2-cell with ancestry ε3 = (• ⬩ ◦ • ⬩ ◦ ◦ ◦ • ⋄ ⋄◦).
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Figure 15.115: Second part of the CW complex with ancestry of dimension 3:
ε4 = (• ⬩ ◦ ⬩ ⬩ ◦ ◦ ⋄ • ⋄ ⋄◦).

Step 3: Attach the 3-cell that fills the prism in Figure 15.116. The
attachment to Figures 15.114 and 15.115 occurs through the 2-cell with
ancestry ε5 = (• ⬩ ◦ • ⬩ ◦ ◦ ◦ • ⋄ ⋄◦).

Figure 15.116: 3-Cell with ancestry ε6 = (⬩ ⬩ ◦ ⋄ ⬩ ◦ • • • ⋄ ⋄◦).

Step 4: Attach the 3-cell that fills the cube in Figure 15.117. The
attachment to Figure 15.116 occurs through the 2-cell with ancestry ε7 =

(⬩ ⬩ ◦ ⋄ • ⋄ • • • ◦ ◦◦).
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Figure 15.117: 3-Cell with ancestry ε8 = (⬩ ⬩ ◦ ⋄ • ⋄ ⬩ • • ⋄ ◦⋄).

Step 5: Attach the 3-cell with ancestry ε9 = (⬩ ⬩ ◦ ⋄ ⬩ ◦ ⬩ • • ⋄ ◦⋄)
that fills the cube in Figure 15.118 with two 2-cells attached. The attachment
to Figure 15.117 occurs through the 2-cell with ancestry ε10 = (⬩• ◦⋄ • ◦⬩ •

• ◦ ◦⋄), and to Figure 15.116 through ε11 = (⬩ • ◦ ⋄ ⬩ ◦ • • • ⋄ ◦◦).

Figure 15.118: Fifth part of the CW complex.

Step 6: Attach the 3-cell that fills the “parallelepiped” in Figure 15.119.
The attachment to Figure 15.117 occurs through the 2-cell with ancestry ε13 =

(•⬩◦◦•⋄⬩••◦◦⋄), and to Figure 15.114 through ε13 = (⬩•⬩••⋄•⋄•◦⋄◦).

Figure 15.119: 3-Cell with ancestry ε14 = (• ⬩ ⬩ • • ⬩ ⋄ • • ◦ ⋄⋄).
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Step 7: Attach the 3-cell with ancestry ε15 = (⬩ ⬩ ⬩ • • ◦ ⋄ ⋄ • • ⋄•)
that fills the convex solid in Figure 15.120, with cells of lower dimension
attached. The attachment to Figure 15.119 occurs through the 2-cell with
ancestry ε16 = (• ⬩ ⬩ • • ◦ ⋄ ◦ • • ⋄•), and to Figure 15.117 through
ε17 = (⬩ ⬩ ◦ ⋄ • ⋄ ◦ ◦ • ◦ ••).

Figure 15.120: Seventh part of the CW complex.

Step 8: Attach the 3-cell that fills the “parallelepiped” in Figure 15.121.
The attachment to Figure 15.120 occurs through the 2-cell with ancestry ε18 =

(⬩◦⬩◦◦•⋄⋄•◦••), and to Figure 15.117 through ε19 = (⬩◦•⋄◦•⬩••◦◦⋄).

Figure 15.121: 3-Cell with ancestry ε20 = (⬩ ◦ ⬩ ⬩ ◦ • ⋄ ⋄ • ◦ ◦⋄).

Step 9: Attach the 3-cell that fills the “parallelepiped” in Figure 15.122.
The attachment to Figure 15.121 occurs through the 2-cell with ancestry ε21 =
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(•◦⬩⬩◦◦•⋄•••⋄), and to Figure 15.115 through ε22 = (•◦•⬩◦⬩◦⋄•◦⋄◦).
Moreover, to Figure 15.120 through ε23 = (• ◦ ◦ ⬩ ◦ ⬩ ◦ ⋄ • • ⋄•), and to
Figure 15.119 through ε24 = (• ◦ ⬩ ◦ ◦ ⬩ • • • ◦ ⋄⋄).

Figure 15.122: 3-Cell with ancestry ε25 = (• ◦ ⬩ ⬩ ◦ ⬩ ◦ ⋄ • ◦ ⋄⋄).

Step 10: Attach the 3-cell that fills the prism in Figure 15.123, with
lower-dimensional cells attached. The attachment to Figure 15.122 occurs
through the cell of dimension 2 with ancestry ε26 = (• ◦ ⬩ ⬩ ◦ ◦ • ⋄ • • •⋄),
and to Figure 15.115 through ε27 = (• ◦ • ⬩ ⬩ • • ⋄ ◦ ⋄ •◦). Moreover, to
Figure 15.114 through ε28 = (• ◦ ⬩ ◦ ⬩ • ⋄ • ◦ ⋄ •◦).

Figure 15.123: Tenth part of the CW complex with ancestry of dimension 3:
ε29 = (• ◦ ⬩ ⬩ ⬩ • • ⋄ ◦ ⋄ •⋄).

Upon completing all attachments, we have a contractible component.
Therefore, BLσ has 32 connected components of this type, all contractible.

The remaining ancestries of dimensions 1, 2, and 3 appear in a 4-
dimensional CW-complex.

For dimension 4, there are two possible positions for the diamonds, which
appear together with some 3-cells attached in a CW complex that will be
described step by step.

Step 1: First we have a 4-cell that fills the D4 in Figure 15.124, with
some cells of lower dimension attached.



Chapter 15. The Homotopy Type of BLσ for inv(σ) = 12 205

Figure 15.124: 4-Cell with ancestry ε30 = (⬩ ⬩ ⬩ ◦ ⬩ • ⋄ ⋄ • ⋄ ⋄•).

Step 2: Now attach another 4-cell that fills the D4 in Figure 15.125.
The attachment to Figure 15.124 occurs through the 3-cell with ancestry
ε31 = (• ⬩ ◦ ⬩ ⬩ ◦ • ⬩ • ⋄ ⋄•). This cell has some cells of lower dimension
attached.

Figure 15.125: 4-Cell with ancestry ε32 = (⬩ • ⬩ ⬩ ⬩ • ⋄ ⋄ • ⋄ •⋄).

Now we attach six 3-cells:
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Step 3: Attach a 3-cell that fills the “parallelepiped” in Figure 15.126.
This cell is attached to Figure 15.124 through the 2-cell with ancestry ε33 =

(◦•◦⬩•⬩◦⋄•◦⋄•), and to Figure 15.125 through the 2-cell with ancestry
ε34 = (◦ • ⬩ ⬩ • ◦ • ⋄ • ◦ •⋄).

Figure 15.126: Third part of the CW complex with ancestry of dimension 3:
ε35 = (◦ • ⬩ ⬩ • ⬩ ◦ ⋄ • • ⋄⋄).

Step 4: Attach a 3-cell that fills the “parallelepiped” in Figure 15.127.
This cell is attached to Figure 15.124 through the 2-cell with ancestry ε36 =

(• • ◦ ⬩ ◦⬩ •⋄ ◦ • ⋄•) and to Figure 15.125 through the 2-cell with ancestry
ε37 = (• • ⬩ ⬩ ◦ ◦ ◦ ⋄ ◦ • •⋄).

Figure 15.127: Fourth part of the CW complex with ancestry of dimension 3:
ε38 = (• • ⬩ ⬩ ◦ ⬩ • ⋄ ◦ ◦ ⋄⋄).

Step 5: Attach a 3-cell that fills the cube in Figure 15.128. This
cell is attached to Figure 15.124 through the 2-cell with ancestry ε39 =

(⬩⬩ •⋄ ◦⋄ • • ◦ • •◦) and to Figure 15.125 through the 2-cell with ancestry
ε40 = (⬩ • • ⋄ ◦ ◦ ⬩ • ◦ • •⋄).
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Figure 15.128: 3-Cell with ancestry ε41 = (⬩ ⬩ • ⋄ ◦ ⋄ ⬩ • ◦ • •⋄).

Step 6: Attach a 3-cell with ancestry ε42 = (⬩⬩◦⋄•⋄⬩◦•◦•⋄) that
fills the cube in Figure 15.129. This cell is attached to Figure 15.124 through
the 2-cell with ancestry ε43 = (⬩ ⬩ ◦ ⋄ • ⋄ ◦ • • ◦ ◦•) and to Figure 15.125
through the 2-cell with ancestry ε44 = (⬩ • ◦ ⋄ • ◦ ⬩ ◦ • ◦ •⋄).

Figure 15.129: Sixth part of the CW complex.

Step 7: Attach a 3-cell that fills the “parallelepiped” in Figure 15.130.
This cell is attached to Figure 15.124 through the 2-cell with ancestry ε45 =

(• ⬩⬩ ◦ ◦ ◦ ⋄ ◦ ◦ • ⋄•) and to Figure 15.127 through the 2-cell with ancestry
ε46 = (• • ⬩ ◦ ◦ ⬩ ◦ • ◦ ◦ ⋄⋄). Moreover, to Figure 15.128 through the cell of
dimension 2 with ancestry ε47 = (• ⬩ • ◦ ◦ ⋄ ⬩ • ◦ • •⋄).
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Figure 15.130: 3-Cell with ancestry ε48 = (• ⬩ ⬩ ◦ ◦ ⬩ ⋄ • ◦ ◦ ⋄⋄).

Step 8: Attach a 3-cell with ancestry ε49 = (◦⬩⬩••⬩⋄◦••⋄⋄) that
fills the “parallelepiped” in Figure 15.131. This cell is attached to Figure 15.124
through the 2-cell with ancestry ε50 = (◦ ⬩ ⬩ • • ◦ ⋄ • • ◦ ⋄•) and to Figure
15.126 through the 2-cell with ancestry ε51 = (◦•⬩••⬩◦◦••⋄⋄). Moreover,
to Figure 15.129 through the 2-cell with ancestry ε52 = (◦⬩•••⋄⬩◦•◦•⋄).

Figure 15.131: Eighth part of the CW complex.

This CW complex comprises two D4 connected through a single 3-cell,
with six 3-cells attached to the 4-cells. Upon completing all attachments, we
have a contractible component. Therefore, BLσ has 16 connected components
of this type, all contractible. Summing up, BLσ has a total of 96 connected
components, all of them contractible.

Type 15.8. For σ = [634521] = a1a2a3a4a3a2a1a5a4a3a2a1 ∈ S6 it follows that

σ́ =
1

4
√

2
(1 − â2 − â3 − â2â3 − â4 + â2â4 − â3â4 − â2â3â4 − â1â5 − â1â2â5

+ â1â3â5 − â1â2â3â5 − â1â4â5 − â1â2â4â5 − â1â3â4â5 + â1â2â3â4â5).

There exist 25
= 32 thin ancestries. Consequently, BLσ has 32 thin

connected components, all contractible.
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For dimension 1, there are seven possible positions for the diamonds. If
the diamonds are in r4 and the remaining rows have equal signs, we have the
CW complex in Figure 15.132. This results in 32 copies. Therefore, BLσ has
32 connected components of this type, all contractible.

Figure 15.132: CW complex of dimension 1.

The remaining possible positions for the diamonds appear in cells of
higher dimensions.

For dimension 2, there are 15 possible positions for the diamonds. If the
diamonds are in the first two inversions of r1 with signs (• ◦ ◦), and in r4, we
obtain the CW complex in Figure 15.133. This results in 32 copies. Therefore,
BLσ have 32 connected components of this type, all contractible.

Figure 15.133: CW complex of dimension 2.
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The remaining possible positions for the diamonds appear in the cells of
higher dimensions.

For dimension 3, there are ten possible positions for the diamonds. If r2

has signs (◦ ◦ •) and the remaining rows have equal signs, we obtain a CW
complex with ten 3-cells, each corresponding to one of the possible diamond
positions. The structure of this CW complex can be complex to visualize, so
to confirm its contractibility, we examine some cells separately and observe
where they attach to generate the CW complex.

Step 1: First, six 3-cells are attached as illustrated in Figure 15.134.
These cells comprise four cubes and two prisms.

Figure 15.134: First part of the CW complex with six 3-cells.

Step 2: Attach a 3-cell that is a convex solid with twelve faces, consisting
of eight squares and four hexagons. The hexagon in the center of Figure
15.135 attaches to the hexagon that is a common face of the two prisms in
Figure 15.134, with ancestry ε2 = (⬩ ◦ • ◦ ◦ ⬩ ◦ • • ◦ ⋄⋄). The square
with ancestry ε3 = (◦ • ⬩ ◦ ⋄ ◦ ⬩ • • ◦ ◦⋄), and the square with ancestry
ε4 = (⬩ ⬩ ◦ ◦ • ⋄ ⋄ • • ◦ ◦◦) attach to the corresponding squares in Figure
15.134.
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Figure 15.135: Second part of the CW complex with ancestry of dimension 3:
ε1 = (⬩ ⬩ ◦ ◦ ⬩ ◦ ◦ • • ⋄ ⋄⋄).

Step 3: Attach another 3-cell similar to the previous one. The square
with ancestry ε6 = (◦ ⬩ ⬩ ◦ ⋄ ⋄ • • • ◦ ◦◦), and the one with ancestry
ε7 = (◦ ⬩ • • • ⋄ ⬩ ◦ ◦ ◦ ◦⋄) in Figure 15.136 attach to the corresponding
squares in Figure 15.134.

Figure 15.136: Third part of the CW complex with ancestry of dimension 3:
ε5 = (◦ ⬩ ⬩ ⬩ • ◦ • ◦ ⋄ ⋄ ⋄◦).
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Step 4: Attach one more 3-cell, which fills the prism completely. The
hexagon at the top of Figure 15.137 attaches to the hexagon in the middle of
the previous cell, with ancestry ε8 = (◦ ⬩ ⬩ ◦ ⋄ ⋄ • • • ◦ ◦◦). The square on
the left side of Figure 15.137, with ancestry ε9 = (⬩ ◦ ⬩ ◦ ⋄ • ⋄ • • ◦ ◦◦),
attaches to the corresponding square in Figure 15.134. The square on the left
side of Figure 15.137, with ancestry ε10 = (⬩◦ •⬩ • •⋄ ◦⋄ ◦ ◦◦), attaches to
the corresponding square in Figure 15.134.

Figure 15.137: 3-Cell with ancestry ε11 = (⬩ ◦ ⬩ ⬩ • • ⋄ ◦ ⋄ ⋄ ◦◦).

Step 5: Attach one last 3-cell, which is a prism. The hexagon at the
top of Figure 15.138 attaches to the hexagon in the middle of Figure 15.137,
with ancestry ε13 = (◦ • ⬩ ⬩ • ◦ ◦ ◦ ⋄ ⋄ ••). The square with ancestry
ε14 = (◦•⬩◦⋄◦⬩••◦◦⋄) on the right side of Figure 15.138 attaches to Figure
15.134. The square in Figure 15.138 with ancestry ε15 = (◦••⬩•◦⬩◦⋄◦◦⋄)
attaches to Figure 15.134.

Figure 15.138: 3-Cell with ancestry ε12 = (◦ • ⬩ ⬩ • ◦ ⬩ ◦ ⋄ ⋄ ◦⋄).

Upon completing all the attaching, we have a component that is con-
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tractible. Therefore, BLσ has 32 connected components of this type, all con-
tractible.

The remaining 3 dimensional ancestries appear in a 4-dimensional CW-
complex.

For dimension 4, there is only one possible arrangement for the diamonds.
The structure of this CW complex is large, containing many cells; we will first
examine the 4-cell and then attach several 2-cells, which do not change the
homotopy type of the component.

Step 1: First, we have twenty 3-cells attached that form two solid tori
as shown in Figure 15.139. This construction results in D4, as previously
demonstrated.

Figure 15.139: 4-cell with ancestry ε = (⬩ ⬩ ⬩ ⬩ • • • • ⋄ ⋄ ⋄⋄).

Step 2: Figure 15.140 represents two additional parts that we attach to
Figure 15.139, each attachment occurs through five 1-cells.
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Figure 15.140: Additional two parts with five 2-cells each.

Upon completing all attachments, we have a contractible connected
component. Therefore, BLσ has 16 connected components of this type, all
contractible. In summary, BLσ has a total of 144 connected components, all
contractible.

The permutation σ = a1a2a3a2a1a4a3a5a4a3a2a1 ∈ S6 has a CW complex
structure similar to the one described.
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For σ = [563412] = a2a1a3a2a4a3a2a1a5a4a3a2 ∈ S6, it follows that

σ́ =
1
2(−â1 − â2â3â4 − â5 + â1â2â3â4â5) ∈ B̃+

6 .

In the first section, we explore the orbits of the elements z ∈ σ́Quat6,
as well as the count of cells of each dimension present in the component. The
following sections investigate each component.

16.1
The Orbits

The set σ́Quat6 consists of nine orbits each of size 4 or 8:

Oσ́ = {±â1 ± â2â3â4 ± â5 ± â1â2â3â4â5
2 },

Oâ1σ́ = {1 ± â1â2â3â4 ± â1â5 ± â2â3â4â5
2 },

Oâ2σ́ = {±â1â2 ± â3â4 ± â2â5 ± â1â3â4â5
2 },

Oâ1â2σ́ = {±â2 ± â1â3â4 ± â1â2â5 ± â3â4â5
2 },

Oâ3σ́ = {±â1â3 ± â2â4 ± â3â5 ± â1â2â4â5
2 },

Oâ1â3σ́ = {±â3 ± â1â2â4 ± â1â3â5 ± â2â4â5
2 },

Oâ2â3σ́ = {±â1â2â3 ± â4 ± â1â4â5 ± â2â3â5
2 },

Oâ4σ́ = {±â2â3 ± â1â4 ± â4â5 ± â1â2â3â5
2 },

O−â1σ́ = {−1 ± â1â2â3â4 ± â1â5 ± â2â3â4â5
2 }.

In the expressions within the Clifford algebra notation, the signs must
be such that there is an odd number of equal signs.

The elements z ∈ σ́Quat6 have R(z) ∈ {−1
2 , 0,

1
2}. Using the Formula

4-3 of the number of ancestries of dimension 0 for a given z ∈ σ́Quat6, it
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follows that N(z) ∈ {48, 64, 80}. The number of ancestries per dimension can
be determined using the Formulas 4-1 and 4-2 (see Section 4.3), and this can
be cross-verified using Maple.

1. For z ∈ Oσ́, R(z) = 0 and N(z) = 64 and Nthin(z) = 4. Consequently,
BLσ has 40 connected components of this type. The CW complex BLCz

are described in Section 16.4. Thus, for each z ∈ Oσ́, the sets BLz have
four thin components and one thick.

The component has sixty 0-cells, one hundred and twelve 1-cells, sixty-
eight 2-cells, sixteen 3-cells, and one 4-cell. Moreover, the Euler charac-
teristic of this component is equal to 1.

2. If R(z) =
1
2 , then N(z) = 80 and Nthin(z) = 0. Therefore, BLσ has 4

connected components of this type. The CW complex BLCz is described
in Section 16.9. Then, for each z ∈ Oâ1σ́, the sets BLz have one connected
component.

The component has eighty 0-cells, one hundred and sixty-eight 1-cells,
one hundred and twenty-eight 2-cells, forty-eight 3-cells, ten 4-cells, and
one 5-cell. Additionally, the Euler characteristic of this component is 1.

3. For z ∈ Oâ2σ́, R(z) = 0 and N(z) = 64 and Nthin(z) = 0. Consequently,
BLσ has 8 connected components of this type. The CW complex BLCz

are described in Section 16.5. Thus, for each z ∈ Oâ2σ́, the sets BLz have
one connected component.

The component has sixty-four 0-cells, one hundred and twelve 1-cells,
sixty 2-cells, twelve 3-cells, and one 4-cell. In this case, the Euler
characteristic is also equal to 1.

4. For z ∈ Oâ1â2σ́, R(z) = 0 and N(z) = 64 and Nthin(z) = 0. Consequently,
BLσ has 8 connected components of this type. The CW complex BLCz

is described in Section 16.6. Thus, for each z ∈ Oâ1â2σ́, the sets BLz have
one connected component.

The component has sixty-four 0-cells, one hundred and twelve 1-cells,
sixty 2-cells, twelve 3-cells, and one 4-cell. Furthermore, this component
has an Euler characteristic of 1.

5. For z ∈ Oâ3σ́, R(z) = 0 and N(z) = 64 and Nthin(z) = 0. Consequently,
BLσ has 8 connected components of this type. The CW complex BLCz

are described in Section 16.3. Thus, for each z ∈ Oâ3σ́, the sets BLz have
one connected component.
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The component has sixty-four 0-cells, one hundred and twelve 1-cells,
fifty-two 2-cells, and four 3-cells. Moreover, the Euler characteristic of
this component is 0.

6. For z ∈ Oâ1â3σ́, R(z) = 0 and N(z) = 64 and Nthin(z) = 0. Consequently,
BLσ has 8 connected components of this type. The CW complex BLCz

is also the one described in Section 16.3. Thus, for each z ∈ Oâ1â3σ́, the
sets BLz have one connected component.

The component has sixty-four 0-cells, one hundred and twelve 1-cells,
fifty-two 2-cells, and four 3-cells. In addition, the Euler characteristic of
this component equals 0.

7. For z ∈ Oâ2â3σ́, R(z) = 0 and N(z) = 64 and Nthin(z) = 0. Consequently,
BLσ has 8 connected components of this type. The CW complex BLCz

are described in Section 16.8. Thus, for each z ∈ Oâ2â3σ́, the sets BLz

have one connected component.

The component has sixty-four 0-cells, one hundred and twelve 1-cells,
sixty 2-cells, twelve 3-cells and one 4-cell. Moreover, the Euler character-
istic of this component is equal to 1.

8. For z ∈ Oâ4σ́, R(z) = 0 and N(z) = 64 and Nthin(z) = 0. Consequently,
BLσ has 8 connected components of this type. The CW complex BLCz

are described in Section 16.7. Thus, for each z ∈ Oâ4σ́, the sets BLz have
one connected component.

The component has sixty-four 0-cells, one hundred and twelve 1-cells,
sixty 2-cells, twelve 3-cells and one 4-cell. Furthermore, this component
has an Euler characteristic of 1.

9. If R(z) = −1
2 , then N(z) = 48 and Nthin(z) = 0. Therefore, BLσ

has 8 connected components of this type. The CW complex BLCz are
described in Section 16.2. Then, for each z ∈ O−â1σ́, the sets BLz have
two connected components.

The component has twenty-four 0-cells, twenty-eight 1-cells and four 2-
cells. Furthemore, the Euler characteristic of this component is 0.
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16.2
The Known Component

In the Introduction, we already presented a connected component of
BLσ that is homotopically equivalent to S1 and thus non-contractible. In this
section, we will discuss this component in greater detail.

If r4 has opposite signs and the remaining rows have equal signs, we
obtain the component shown in Figure 16.1, which is the one in Figure 1.1 (as
described in [2]) and corresponds to the CW complex depicted in Figure 16.2.
Therefore, BLσ has 8 connected components of this type.

Figure 16.1: Connected component homotopically equivalent to S1
.

Figure 16.2: CW complex homotopically equivalent to S1
.
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Furthermore, using equation 6-1, we generate the paths that correspond
to the edges yielding S1, by concatenating these paths, we obtain the circle.
The paths are given by:

Γi ∶ [−1, 1] → Lo1
6, i ∈ {1, . . . , 10},

Γ1(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
−t + 1 1

2 2 1
2 + t 4 + 2t 2 + t 1

1 4 3 2 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ2(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1
2 −2t 1
3 3 − 3t 3 1
1 3 − t 3 2 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ3(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1 + t 1
−2t −2 1
2 − t 0 2 − t 1

1 2 1 − 2t 2 1
0 1 −t 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ4(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 1

−3 − t −3 − t 1
−t −1 − t 1 1
1 2 −1 1 − t 1
0 1 −1 −t 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ5(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 1

−3 + t −3 + t 1
−1 −2 1 1
1 3 + t −2 − t −1 − t 1
0 1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ6(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
−t + 1 1
−2 −2 1

−2 − t −4 − 2t 2 + t 1
1 4 −3 −2 1
0 1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ7(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1
−2 2t 1
−3 −3 + 3t 3 1
1 3 − t −3 −2 1
0 1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ8(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
t + 1 1

2t 2 1
−2 + t 0 2 − t 1

1 2 −1 + 2t −2 1
0 1 0 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ9(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 1

3 + t 3 + t 1
t t + 1 1 1
1 2 1 −1 + t 1
0 1 1 t 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ10(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 1

3 − t 3 − t 1
1 2 1 1
1 3 + t 2 + t t + 1 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To obtain these paths, we consider the product of λi that generates the
matrices in the stratum of dimension 0 as in equation 6-1, for instance

Γ1(t) = λ2(
−1
t
)λ1(−t)λ3(t)λ2(

1
t
)λ4(1)λ3(1)λ2(1)λ1(1)λ5(1)λ4(1)λ3(1)λ2(1).

Notice that, even though there are fractions in the right hand side, the matrix
Γ1 has polynomial entries.
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These paths illustrate how the matrices in the strata of codimension 0
connect via the matrices in the strata of codimension 1. For instance, applying
t = 1 to Γ1 we have a matrix in the stratum of codimension 0 represented by
the second diagram from the left at the top of Figure 16.1. Applying t = −1
produces a matrix corresponding to the adjacent stratum of codimension 0 on
the left. Finally, for t = 0, we obtain a matrix in the stratum of codimension
1, the edge connecting these diagrams.

Note that applying t = −1 in Γ1 and t = 1 in Γ10 results in the same
matrix, indicating that the concatenation of these paths forms a closed curve
homotopically equivalent to S1.

16.3
The New non-Contractible Component

Another connected component homotopically equivalent to S1, and thus
non-contractible, was found with CW complex of dimension 3. This component
consists of four 3-cells that are attached together, generating a solid torus.
Additionally, some 2-cells are attached like wings, which do not alter the
homotopy type of the component.

Let us go through the step by step construction of this component, adding
the 3-cells one by one until we attach the last one with the first to generate
the solid torus. Note that in some cells, we have vertices connected to only one
edge. In some of these cases, we connect them with an edge in another solid,
thus generating the mentioned wings.

Step 1: First, we have a 3-cell that fills the cube in Figure 16.3.

Figure 16.3: Cube with ancestry ε1 = (◦ ⬩ ◦ ⬩ ⬩ ◦ ⋄ ⋄ ◦ ◦ ◦◦).

Some lower-dimensional cells are attached to the cube, resulting in the
structure shown in Figure 16.4.
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Figure 16.4: First part of the CW complex.

Step 2: Attach a 3-cell that fills the convex solid with 18 faces in Figure
16.5. Attachment occurs through the square face with ancestry ε2 = (◦ • ◦ ⬩

⬩ ◦ ⋄ ◦ ◦ ⋄ ◦◦).

Figure 16.5: Convex solid with ancestry ε3 = (⬩ ◦ ⬩ ◦ ⬩ ◦ ◦ ◦ ◦ ⋄ ⋄⋄).

Some lower-dimensional cells are attached to the convex solid, resulting
in the structure shown in Figure 16.6.
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Figure 16.6: Second part of the CW complex.

Following this attachment, two 2-cells appear as wings in the component
when we attach the previous two.

Figure 16.7: 2-Cells with ancestries ε4 = (◦ ⬩ ⬩ • ◦ ⋄ • ⋄ ◦ ◦ ◦◦) and
ε5 = (◦ ⬩ ◦ • ◦ ⬩ ◦ ⋄ • • ⋄◦).

Step 3: Attach another 3-cell that fills a cube, as shown in Figure 16.8.
Attachment occurs through the square face with ancestry ε6 = (• ◦ ◦ ⬩ ⬩ •

⋄ • • ⋄ ◦•).
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Figure 16.8: Third part of the CW complex with ancestry of dimension 3:
ε7 = (• ⬩ ◦ ⬩ ⬩ ◦ ⋄ ⋄ • ⋄ ◦•).

Following this attachment, similar to the previous case, some 2-cells
appear as wings in the component.

Figure 16.9: 2-Cells with ancestries ε8 = (• ⬩ ◦ • ◦ ⬩ ◦ ⋄ ◦ • ⋄•) and
ε9 = (• ⬩ ⬩ • ◦ ⋄ • ⋄ • ◦ ◦•).

Step 4: Attach a 3-cell that fills another convex solid with 18 faces,
similar to the previous one. Attachment occurs through the square face with
ancestry ε10 = (• • ◦ ⬩ ⬩ ◦ ⋄ ◦ • ⋄ ◦•).
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Figure 16.10: Fourth part of the CW complex with ancestry of dimension 3:
ε11 = (⬩ • ⬩ ◦ ⬩ • ◦ • ◦ ⋄ ⋄⋄).

Following this attachment, we have some 2-cells that also appear as wings
in the component.

Figure 16.11: 2-Cells with ancestries ε12 = (• ⬩ ⬩ ◦ • ⋄ ◦ ⋄ ◦ • ◦•) and
ε13 = (◦ • ⬩ ◦ ◦ • ⬩ • ⋄ • ◦ ⋄ •).

Step 5: To complete the attachment, the cell in Figure 16.11 is attached
to the cell in Figure 16.4, resulting in the formation of the solid torus. The
attachment is realized on the square face with ancestry ε14 = (◦ ◦ ◦ ⬩ ⬩ • ⋄ •

◦ ⋄ ◦◦).
After this last attachment, we have some 2-cells that appear as wings in

the component.
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Figure 16.12: 2-Cells with ancestries ε15 = (◦ ⬩ ◦ ◦ • ⬩ • ⋄ ◦ ◦ ⋄◦) and
ε16 = (◦ ⬩ ⬩ ◦ • ⋄ ◦ ⋄ • • ◦◦).

Upon completing all the attachments, we have a component that is
homotopically equivalent to S1. Therefore, BLσ has 16 components of this
type.

For easier visualization, Figure 16.13 first displays the CW complex
without the 1-cells and 2-cells attached. It then shows the same CW complex
with these cells added, with the red cells representing those not shown in the
initial diagram. In this representation, cells of dimension greater than 1 are
not filled for clarity.

Figure 16.13: Non-contractible CW complex.

Similarly to the previous case, we can also present the paths that cor-
respond to the edges yielding S1, by concatenating these paths we obtain the
circle. The paths are given by:
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Γi ∶ [−1, 1] → Lo1
6, i ∈ {1, . . . , 10},

Γ1(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1
0 2 1
1 t + 1 1 1
−1 1 − t 1 0 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ2(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1

−1 − t 1 − t 1
1 2 1 1
−1 t + 1 2 + t t + 1 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ3(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
t + 1 1
−2 0 1
−t 2 2 + t 1
−1 2 3 2 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ4(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
t − 1 1
−2 0 1

−t − 2 2 2 − t 1
−1 2 1 − 2t 2 1
0 1 −t 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ5(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1

−1 + t −1 − t 1
t − 2 1 − t 1 1
−1 2 −1 1 − t 1
0 1 −1 −t 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ6(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1
0 −2 1
−1 −1 − t 1 1
−1 1 − t −1 0 1
0 1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ7(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1

t + 1 −1 + t 1
−1 −2 1 1
−1 t + 1 −2 − t −1 − t 1
0 1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ8(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1 + t 1

2 0 1
t −2 2 + t 1
−1 2 −3 −2 1
0 1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Γ9(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1 − t 1

2 0 1
2 + t −2 2 − t 1
−1 2 −1 + 2t −2 1
0 1 t −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Γ10(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0 1

1 − t t + 1 1
2 − t −1 + t 1 1
−1 2 1 −1 + t 1
0 1 1 t 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that applying t = −1 in Γ1 and t = 1 in Γ10 results in the same
matrix, indicating that the concatenation of these paths forms a closed curve
homotopically equivalent to S1.

From now on, all the six found components are contractible. In the next
sections, we examine these components in detail, where five have dimension 4
and one has dimension 5.
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16.4
The First Contractible Component of Dimension 4

For dimension 4, there are six possible positions for the diamonds, each
resulting in one additional component, all of which are contractible.

If r4 has equal signs and the remaining rows have diamonds, the CW
complex will be described below and consists of one 4-cell with four 3-cells
attached.

Step 1: First, we have a 4-cell with twelve 3-cells that is a D4 and fills
the CW complex in Figure 16.14.

Figure 16.14: 4-cell with ancestry ε1 = (⬩ ⬩ ⬩ ⬩ • • ⋄ ⋄ • • ⋄⋄).

Step 2: Attach a 3-cell that fills the “parallelepiped” in Figure 16.15.
Attachment occurs through the 2-cell with ancestry ε2 = (••⬩⬩•◦⋄••◦⋄•).

Figure 16.15: 3-cell with ancestry ε3 = (• • ⬩ ⬩ ⬩ ◦ ⋄ • • ⋄ ⋄•).

Step 3: Attach a 3-cell that fills another “parallelepiped” in Figure
16.16 to Figure 16.14. Attachment occurs through the 2-cell with ancestry
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ε4 = (◦ • ⬩ ⬩ ◦ • ⋄ • • • ⋄◦).

Figure 16.16: 3-cell with ancestry ε5 = (◦ • ⬩ ⬩ ⬩ ◦ ⋄ • ◦ ⋄ ⋄◦).

Step 4: Attach a 3-cell that fills the prism in Figure 16.17. The
attachment to Figure 16.14 occurs through the 2-cell with ancestry ε6 =

(⬩⬩◦ • ◦ • •⋄ • • ◦⋄). This cell is also attached to Figure 16.15 through the
2-cell with ancestry ε7 = (• • ◦⬩⬩◦⋄•◦⋄••), and to Figure 16.16 through
the 2-cell with ancestry ε8 = (◦ • • ⬩ ⬩ ◦ ⋄ • ◦ ⋄ ◦◦).

Figure 16.17: 3-cell with ancestry ε9 = (⬩ ⬩ ◦ • ⬩ ◦ • ⋄ ◦ ⋄ ◦⋄).

Step 5: Attach a 3-cell that fills another prism in Figure 16.18.

Figure 16.18: 3-cell with ancestry ε10 = (⬩ ⬩ • • ⬩ ◦ • ⋄ • ⋄ •⋄).
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The attachment to Figure 16.14 occurs through the 2-cell with ancestry
ε11 = (⬩⬩•••◦•⋄•◦•⋄). This cell is also attached to Figure 16.15 through
the 2-cell with ancestry ε12 = (• • • ⬩ ⬩ ◦ ⋄ • • ⋄ ◦•), and to Figure 16.16
through the 2-cell with ancestry ε13 = (◦ • ◦ ⬩ ⬩ ◦ ⋄ • • ⋄ •◦).

Upon completing all the attachments, we have a contractible connected
component. Therefore, BLσ has 8 connected components, all contractible.

16.5
The Second Contractible Component of Dimension 4

If r1 has equal signs and the remaining rows have diamonds, the CW
complex will be described below.

Step 1: First, we have a 4-cell in Figure 16.19, which is homotopically
equivalent to a D4. Two 3-cells are attached to it.

Figure 16.19: 4-cell with ancestry ε1 = (⬩ • ⬩ ⬩ ⬩ • ⋄ • • ⋄ ⋄⋄).

Step 2: Attach a 3-cell with ancestry ε2 = (◦⬩⬩⬩• ◦⋄⋄◦ •⋄⋄) that
fills the prism in Figure 16.20, with some cells of lower dimension attached.
Attachment occurs through the 2-cell with ancestry ε3 = (◦◦⬩⬩••◦•◦•⋄◦).
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Figure 16.20: Second part of the CW complex.

Step 3: Attach a 3-cell with ancestry ε4 = (• ⬩ ⬩ ⬩ • ◦ ⋄ ⋄ • • ⋄•)
that fills another prism in Figure 16.21 to Figure 16.19, with some cells of
lower dimension attached. Attachment occurs through the 2-cell with ancestry
ε5 = (• • ⬩ ⬩ • ◦ ⋄ ◦ • • ⋄•).

Figure 16.21: Third part of the CW complex.

Upon completing all the attachments, we have a contractible connected
component. Therefore, BLσ has 8 connected components, all of them con-
tractible.

16.6
The Third Contractible Component of Dimension 4

If r1 has opposite signs and the remaining rows have equal signs, the CW
complex will be described below.

Step 1: First, we have a 4-cell that fills the CW complex in Figure 16.22,
which is homotopically equivalent to a D4. Two 3-cells are attached to it.
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Figure 16.22: 4-cell with ancestry ε1 = (• ⬩ ⬩ ⬩ ⬩ • ⋄ ⋄ • ⋄ ⋄•).

Step 2: Attach a 3-cell that fills the “parallelepiped” in Figure 16.23,
with some cells of lower dimension attached. The attachment to Figure 16.22
occurs through the 2-cell with ancestry ε2 = (• • ⬩ ⬩ ◦ ◦ ⋄ ◦ ◦ • ⋄•).

Figure 16.23: Second part of the CW complex with ancestry of dimension 3:
ε3 = (⬩ • ⬩ ⬩ ◦ ⋄ ⋄ ◦ ◦ • ⋄•).

Step 3: Attach a 3-cell that fills another “parallelepiped” in Figure 16.24
to Figure 16.22, with some cells of lower dimension attached. Attachment
occurs through the 2-cell with ancestry ε4 = (• ◦ ⬩ ⬩ • ◦ ⋄ • • ◦ ⋄•).
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Figure 16.24: Third part of the CW complex with ancestry of dimension 3:
ε5 = (⬩ ◦ ⬩ ⬩ • ⋄ ⋄ • • ◦ ⋄•).

Two more 3-cells are attached in the CW complex; however, they are
attached to the previously 3-cells, not to the 4-cell.

Step 4: Attach a 3-cell that fills the “parallelepiped” in Figure 16.25
to the one in Figure 16.24, with some cells of lower dimension attached.
Attachment occurs through the 2-cell with ancestry ε6 = (•◦⬩⬩•◦⋄••◦⋄•).

Figure 16.25: Fourth part of the CW complex with ancestry of dimension 3:
ε7 = (• ◦ ⬩ ⬩ • ⬩ ⋄ ◦ • • ⋄⋄).

Step 5: Attach a 3-cell with ancestry ε8 = (• • ⬩⬩ ◦⬩⋄ • ◦ ◦ ⋄⋄) that
fills the “parallelepiped” in Figure 16.26 to the one in Figure 16.23, with some
cells of lower dimension attached. The attachment to occurs through the 2-cell
with ancestry ε9 = (• • ⬩ ⬩ ◦ ◦ ⋄ ◦ ◦ • ⋄•).
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Figure 16.26: Fifth part of the CW complex.

Upon completing all the attachments, we have a contractible connected
component. Therefore, BLσ has 8 connected components, all contractible.

16.7
The Fourth Contractible Component of Dimension 4

For dimension 4, if the only rows without diamonds are r3 and r4, we
obtain a CW complex with ten 3-cells. Let us proceed with a step by step
construction.

Step 1: First, we have a 4-cell that fills Figure 16.27. This cell is a little
bit confusing. As we have already seen, it also contains two tori that form a S3,
to which a D4 is attached. Its composition consists horizontally of four cubes
and vertically of two octagonal prisms and two filled spheres.

Figure 16.27: 4-cell with ancestry ε1 = (⬩ ⬩ • ⬩ ⬩ • ⋄ ⋄ • ⋄ •⋄).

Step 2: Attach a 3-cell that fills the convex solid in Figure 16.28, with
two 2-cells attached. The attachment to Figure 16.27 occurs through the 2-cell
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with ε2 = (⬩ ⬩ • • ◦ ◦ ◦ ⋄ ◦ • •⋄).

Figure 16.28: Second part of the CW complex with ancestry of dimension 3:
ε3 = (⬩ ⬩ • • ◦ ⬩ • ⋄ ◦ ◦ ⋄⋄).

Step 3: Attach in Figure 16.27 a 3-cell that fills the convex solid, similar
to the previous one, in Figure 16.29, with two 2-cells attached. Attachment
occurs through the 2-cell with ε4 = (⬩ ⬩ • ◦ • ◦ • ⋄ • ◦ •⋄).

Figure 16.29: Third part of the CW complex with ancestry of dimension 3:
ε5 = (⬩ ⬩ • ◦ • ⬩ ◦ ⋄ • ◦ ⋄⋄).

Step 4: Attach in Figure 16.27 a 3-cell that fills the convex solid,
in Figure 16.30. Attachment occurs through the 2-cell with ancestry ε6 =

(⬩ ⬩ • • ◦ ◦ ◦ ⋄ ◦ • •⋄).
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Figure 16.30: 3-cell with ancestry ε7 = (⬩ ⬩ ⬩ • ◦ ⋄ ◦ ⋄ ◦ • •⋄).

Step 5: Attach in Figure 16.27 a 3-cell that fills the convex solid, similar
to the previous one, in Figure 16.31. Attachment occurs through the 2-cell
with ancestry ε8 = (⬩ ⬩ • ◦ • ◦ • ⋄ • ◦ •⋄).

Figure 16.31: 3-cell with ancestry ε9 = (⬩ ⬩ ⬩ ◦ • ⋄ • ⋄ • ◦ •⋄).

Upon completing all the attachments, we have a contractible connected
component. Therefore, BLσ has 8 connected components, all contractible.

16.8
The Fifth Contractible Component of Dimension 4

In dimension 1, if r3 has diamonds in any possible position and the
remaining rows have equal signs, we obtain a CW complex of dimension 4.
The construction will be completed in 3 steps, that follows below.

Step 1: First, we attach ten 3-cells, as illustrated in Figure 16.32,
together with additional cells of lower dimensions. For clarity, this construction
is presented in two figures. The figure has been rotated for easier visualization.
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Figure 16.32: First part of the CW complex.

Step 2: Now, attach a 3-cell that fills the S2 in Figure 16.33. Attachment
occurs through the 2-cells with ancestry ε1 = (⬩ ⬩ ◦ ◦ • • • ⋄ ◦ • ◦⋄), ε2 =

(⬩ ◦ ◦ ⋄ • ◦ ⬩ • ◦ • ◦⋄) and ε3 = (⬩ • ◦ ◦ • • • ◦ ◦ • ◦⋄).
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Figure 16.33: 3-cell with ancestry ε4 = (⬩ ⬩ ◦ ⬩ • ◦ ⋄ ⋄ ◦ • ◦⋄).

Step 3: To finish, attach another 3-cell that fills the S2 in Figure 16.34.
Attachment occurs through 2-cells with ancestry ε5 = (⬩⬩•••◦◦⋄•••⋄), ε6 =

(⬩ ◦ • ⋄ • ◦ ⬩ • • • •⋄) and ε7 = (⬩ • • • • ◦ ◦ ◦ • • •⋄).

Figure 16.34: 3-cell with ancestry ε8 = (⬩ ⬩ • ⬩ • ◦ ⋄ ⋄ • • •⋄).

Upon completing all the attachments, we have a contractible connected
component. Therefore, BLσ has 8 connected components, all contractible.

16.9
The Component of Dimension 5

For dimension 5, there is only one possible position for the diamonds.
The CW complex has an intricate structure. We construct it step by step,
attaching ten 4-cells; see the construction in the following.

Step 1: First, we have a 4-cell similar to the one in Figure 16.22.
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Figure 16.35: 4-cell with ancestry ε1 = (• ⬩ ⬩ ⬩ ⬩ • ⋄ ⋄ • ⋄ ⋄◦).

Step 2: Attach the 4-cell below to Figure 16.35, this cell is similar to the
one described in Figure 16.19. Attachment occurs via the 3-cell with ancestry
ε2 = (• ◦ ⬩ ⬩ ⬩ ◦ ⋄ • • ⋄ ⋄◦). This cell fills the “parallelepiped” which is
the second 3-cell vertically, from left to right in Figure 16.35, and the first
horizontally in Figure 16.36.

Figure 16.36: 4-cell with ancestry ε3 = (⬩ ◦ ⬩ ⬩ ⬩ ◦ ⋄ • • ⋄ ⋄⋄).
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Step 3: Attach the 4-cell below to Figure 16.36, this cell is similar to the
one described in Figure 16.32. Attachment occurs via the 3-cell with ancestry
ε4 = (⬩ ◦ ⬩ ◦ ⬩ • • • • ⋄ ⋄⋄). This cell fills the convex solid, which is the
second vertical 3-cell, from left to right in Figure 16.36, and the last vertically
in Figure 16.37.

Figure 16.37: 4-cell with ancestry ε5 = (⬩ ⬩ ⬩ • ⬩ • ◦ ⋄ • ⋄ ⋄⋄).

Step 4: Now, attach the 4-cell in Figure 16.38, which is similar to the one
in Figure 16.35, through the 3-cell with ancestry ε6 = (◦⬩⬩•⬩•◦⋄◦⋄⋄•).
The cell fills the prism at the bottom of Figure 16.38 and the third vertically
in Figure 16.37.
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Figure 16.38: 4-cell with ancestry ε7 = (◦ ⬩ ⬩ ⬩ ⬩ • ⋄ ⋄ ◦ ⋄ ⋄•).

Step 5: Attach the 4-cell below to Figure 16.38, this cell is similar to the
one described in Figure 16.36. Attachment occurs via the 3-cell with ancestry
ε8 = (◦◦⬩⬩⬩◦⋄•◦⋄⋄•), that fills the “parallelepiped” which is the second
3-cell vertically, from left to right in Figure 16.38, and the fourth horizontally
in Figure 16.39.

Figure 16.39: 4-cell with ancestry ε9 = (⬩ • ⬩ ⬩ ⬩ • ⋄ ◦ • ⋄ ⋄⋄).
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Step 6: Attach the 4-cell below to Figure 16.39, this cell is similar to the
one described in Figure 16.37. Attachment occurs via the 3-cell with ancestry
ε10 = (⬩•⬩◦⬩◦•◦•⋄⋄⋄), which fills the convex solid, which is the fourth 3-cell
vertically, from left to right in Figure 16.39, and the last vertically in Figure
16.40. The cell also attaches to Figure 16.35 through ε11 = (•⬩⬩◦⬩◦•⋄•⋄⋄◦),
which is the prism at the bottom of Figure 16.35.

Figure 16.40: 4-cell with ancestry ε12 = (⬩ ⬩ ⬩ ◦ ⬩ ◦ • ⋄ • ⋄ ⋄⋄).

Following these steps, after attaching these six 4-cells, we have a homo-
topically equivalent structure to D3 × S1, a 4-dimensional solid torus.

Next, we perform a similar construction with the other four 4-cells.
Step 7: First, we have the 4-cell below to Figure 16.37, this cell is similar

to the one described in Figure 16.14.
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Figure 16.41: 4-cell with ancestry ε13 = (⬩ ⬩ ⬩ ⬩ • • ⋄ ⋄ • ◦ ⋄⋄).

Step 8: Attach the 4-cell below, this cell is similar to the one described
in Figure 16.27. Attachment occurs via the 3-cell with ancestry ε14 = (⬩⬩•⬩

• •⋄⋄• ◦ ◦⋄). This cells fills the S2 which is the last 3-cell horizontally, from
left to right in Figure 16.42.

Figure 16.42: 4-cell with ancestry ε15 = (⬩ ⬩ • ⬩ ⬩ • ⋄ ⋄ • ⋄ ◦⋄).

Step 9: Attach the 4-cell below to Figure 16.43, this cell is similar to the
one described in Figure 16.41. Attachment occurs via the 3-cell with ancestry
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ε16 = (⬩⬩•⬩◦◦⋄⋄◦•◦⋄). This cells fills the S2, which is a horizontal 3-cell
in Figure 16.42.

Figure 16.43: 4-cell with ancestry ε17 = (⬩ ⬩ ⬩ ⬩ ◦ ◦ ⋄ ⋄ ◦ • ⋄⋄).

Step 10: Attach the 4-cell below to Figure 16.43, this cell is similar
to the one described in Figure 16.42. Attachment occurs via the 3-cell with
ancestry ε18 = (⬩ ⬩ ◦ ⬩ • • ⋄ ⋄ ◦ ◦ •⋄). The cell fills the S2, which is a
horizontal 3-cell in Figure 16.44. This cell also attaches to Figure 16.41 through
ε19 = (⬩⬩◦⬩◦ ◦⋄⋄• • •⋄), which is a horizontal 3-cell in Figure 16.44 that
fills another S2.
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Figure 16.44: 4-cell with ancestry ε20 = (⬩ ⬩ ◦ ⬩ ⬩ • ⋄ ⋄ ◦ ⋄ •⋄).

After attaching these four 4-cells, we have another homotopically equiv-
alent structure to D3 × S1, a 4-dimensional solid torus.

In addition to the attachments described above, the ten 4-cells also
connect to several others. In the following, we present the list of attachments:

1. Figure 16.35 attaches to:

(a) Figure 16.37 through ε21 = (• ⬩ ⬩ • ⬩ • ◦ ⋄ • ⋄ ⋄◦);
(b) Figure 16.39 through ε22 = (• • ⬩ ⬩ ⬩ • ⋄ ◦ • ⋄ ⋄◦);
(c) Figure 16.41 through ε23 = (• ⬩ ⬩ ⬩ • • ⋄ ⋄ • ◦ ⋄◦);
(d) Figure 16.42 through ε24 = (• ⬩ • ⬩ ⬩ • ⋄ ⋄ • ⋄ ◦◦);
(e) Figure 16.43 through ε25 = (• ⬩ ⬩ ⬩ ◦ ◦ ⋄ ⋄ ◦ • ⋄◦);
(f) Figure 16.44 through ε26 = (• ⬩ ◦ ⬩ ⬩ • ⋄ ⋄ ◦ ⋄ •◦).

2. Figure 16.36 attaches to:

(a) Figure 16.38 through ε27 = (◦ • ⬩ ⬩ ⬩ • ⋄ ◦ ◦ ⋄ ⋄•);
(b) Figure 16.40 through ε28 = (⬩ ◦ ⬩ • ⬩ ◦ ◦ • • ⋄ ⋄⋄);
(c) Figure 16.41 through ε29 = (⬩ ◦ ⬩ ⬩ • ⋄ ⋄ • • ◦ ⋄◦)

and ε30 = (◦ • ⬩ ⬩ ◦ ⬩ ⋄ • • ◦ ⋄⋄);
(d) Figure 16.42 through ε31 = (⬩ ◦ • ⋄ ⬩ • ⬩ • • ⋄ ◦⋄);
(e) Figure 16.43 through ε32 = (⬩ ◦ ⬩ ⬩ ◦ ⋄ ⋄ ◦ ◦ ◦ ⋄•)

and ε33 = (• ◦ ⬩ ⬩ ◦ ⬩ ⋄ • ◦ • ⋄⋄);
(f) Figure 16.44 through ε34 = (⬩ ◦ ◦ ⋄ ⬩ • ⬩ • ◦ ⋄ •⋄).

3. Figure 16.37 attaches to:



Chapter 16. The Homotopy Type of BLσ for inv(σ) = 12 - Case 9 245

(a) Figure 16.39 through ε35 = (⬩ • ⬩ • ⬩ • ◦ ◦ • ⋄ ⋄⋄);

(b) Figure 16.41 through ε36 = (⬩ ⬩ • • • ⬩ ◦ ⋄ • ◦ ⋄⋄)
and ε37 = (⬩ ⬩ ⬩ • • ⋄ • ⋄ • • •⋄);

(c) Figure 16.42 through ε38 = (⬩ ⬩ • ⬩ • • ⋄ ⋄ • ◦ ◦⋄)
and ε39 = (⬩ ⬩ • • ⬩ • ◦ ⋄ • ⋄ ◦⋄);

(d) Figure 16.43 through ε40 = (⬩ ⬩ ◦ ◦ • ⬩ ◦ ⋄ ◦ • ⋄⋄)
and ε41 = (⬩ ⬩ ⬩ ◦ • ⋄ • ⋄ • ◦ ◦⋄);

(e) Figure 16.44 through ε42 = (⬩ ⬩ ◦ ⬩ ◦ ◦ ⋄ ⋄ • • •⋄)
and ε43 = (⬩ ⬩ ◦ ◦ ⬩ ◦ • ⋄ ◦ ⋄ •⋄).

4. Figure 16.38 attaches to:

(a) Figure 16.40 through ε44 = (◦ ⬩ ⬩ ◦ ⬩ ◦ • ⋄ ◦ ⋄ ⋄•);

(b) Figure 16.41 through ε45 = (◦ ⬩ ⬩ ⬩ ◦ ◦ ⋄ ⋄ • • ⋄•);

(c) Figure 16.42 through ε46 = (◦ ⬩ ◦ ⬩ ⬩ • ⋄ ⋄ • ⋄ ••);

(d) Figure 16.43 through ε47 = (◦ ⬩ ⬩ ⬩ • • ⋄ ⋄ ◦ ◦ ⋄•);

(e) Figure 16.44 through ε48 = (◦ ⬩ • ⬩ ⬩ • ⋄ ⋄ ◦ ⋄ ◦•).

5. Figure 16.39 attaches to:

(a) Figure 16.41 through ε49 = (⬩ • ⬩ ⬩ • ⋄ ⋄ • • • ⋄•)
and ε50 = (• • ⬩ ⬩ • ⬩ ⋄ ◦ • ◦ ⋄⋄);

(b) Figure 16.42 through ε51 = (⬩ • • ⋄ ⬩ ◦ ⬩ ◦ • ⋄ ◦⋄);

(c) Figure 16.43 through ε52 = (⬩ • ⬩ ⬩ ◦ ⋄ ⋄ ◦ ◦ • ⋄◦)
and ε53 = (◦ ◦ ⬩ ⬩ • ⬩ ⋄ ◦ ◦ • ⋄⋄);

(d) Figure 16.44 through ε54 = (⬩ • ◦ ⋄ ⬩ ◦ ⬩ ◦ ◦ ⋄ •⋄).

6. Figure 16.40 attaches to:

(a) Figure 16.41 through ε55 = (⬩ ⬩ ◦ ◦ ◦ ⬩ • ⋄ • • ◦⋄)
and ε56 = (⬩ ⬩ ⬩ ◦ • ⋄ • ⋄ • ◦ ◦⋄);

(b) Figure 16.42 through ε57 = (⬩ ⬩ • ◦ ⬩ ◦ • ⋄ • ⋄ ◦⋄)
and ε58 = (⬩ ⬩ • ⬩ ◦ ◦ ⋄ ⋄ ◦ • ◦⋄);

(c) Figure 16.43 through ε59 = (⬩ ⬩ • ◦ ◦ ⬩ • ⋄ ◦ • ◦⋄)
and ε60 = (⬩ ⬩ ⬩ ◦ ◦ ⋄ ◦ ⋄ ◦ ◦ •⋄);

(d) Figure 16.44 through ε61 = (⬩ ⬩ ◦ • ⬩ • ◦ ⋄ ◦ ⋄ ◦⋄)
and ε62 = (⬩ ⬩ ◦ ⬩ ◦ ◦ ⋄ ⋄ • • •⋄).



Chapter 16. The Homotopy Type of BLσ for inv(σ) = 12 - Case 9 246

The structure of the attachment of the two 4-dimensional tori is highly
complex and challenging to describe precisely with our currently tools. There-
fore, we can only conclude that BLσ has 4 connected components of this type,
with Euler characteristic equal to 1.

Furthermore, there exist 25
= 32 thin ancestries. Consequently, BLσ has

32 thin connected components, all contractible. Summing up, BLσ has a total
of 100 connected components, distributed as follows:

(i) 72 are contractible;

(ii) 4 are inconclusive (for the moment), with Euler characteristic 1;

(iii) 24 are homotopically equivalent to a S1.

After completing the analysis of all the components of BLσ for each
σ ∈ S6 with inv(σ) ≤ 12, we arrive at our main result:

Theorem 3. Consider σ ∈ S6 and BLσ ⊂ Lo1
6.

1. For inv(σ) ≤ 11, every component of every set BLσ is contractible;

2. For inv(σ) = 12, except for σ = [563412], every component of every set
BLσ is contractible;

3. For σ = [563412], the set BLz has

(a) 8 values of z ∈ σ́Quat6 where there are five contractible connected
components: 4 thin and 1 thick;

(b) 32 values of z ∈ σ́Quat6 where there are a single contractible
connected component;

(c) 4 values of z ∈ σ́Quat6 where there are two connected components
homotopically equivalent to S1;

(d) 16 values of z ∈ σ́Quat6 where there are a single connected
component homotopically equivalent to S1;

(e) 4 values of z ∈ σ́Quat6 where there are a single inconclusive
connected component, with Euler characteristic equal to 1.



17
Some Information About BLσ for inv(σ) ≥ 13

For permutations σ ∈ S6 with inv(σ) ≥ 13, the difficulty increases
significantly. While we are not able to determine the homotopy type of
the components, we do have information about the orbits and the Euler
characteristics of their components.

The maximum dimension of the preancestries for σ with inv(σ) = 13 or
14 is 5, and for inv(σ) = 15 it reaches 6. This significantly complicates the
visualization of the components and, more importantly, makes interpreting
these drawings increasingly challenging and uncertain.

17.1
Some Information About BLσ for inv(σ) = 13

There are 14 permutations σ ∈ S6 with inv(σ) = 13. Let us present some
important information regarding these permutations.

1. There are 6 permutations with 2 orbits, each containing 32 elements.
For these permutations, the Euler characteristic of the components is 1,
indicating that they are possibly contractible.

2. There are 8 permutations with five orbits: three containing 16 elements
and two with 8 elements.

(a) Four permutations have four orbits whose components have Euler
characteristics equal to 1, suggesting potential contractibility, while
one orbit has a component with an Euler characteristic equal to 0,
suggesting a nontrivial homotopy type. Although we have drawn
the CW complexes for these components, which suggest they are
homotopically equivalent to S1, the complexity of these drawings
makes them difficult to present in full detail at this time.

(b) Four permutations exhibit three orbits with components that have
Euler characteristics equal to 1, indicating potential contractibility.
Two orbits, however, show components with Euler characteristics
equal to 2. For these, we have drawn the CW complexes and found
that, in one orbit, there are two copies of a contractible CW complex
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consisting of 56 0-cells, 96 1-cells, 46 2-cells, and 5 3-cells. In the
other orbit, there are two distinct components: one with 16 0-cells,
16 1-cells, and 1 2-cell, which is contractible, and another with 128
0-cells, 240 1-cells, 175 2-cells, 52 3-cells, and 6 4-cells. This latter
component has an Euler characteristic of 1, suggesting a potentially
trivial homotopy type.

17.2
Some Information About BLσ for inv(σ) = 14

There are 5 permutations σ ∈ S6 with inv(σ) = 14.

1. Four of these permutations have three orbits: two with 16 elements and
one with 32 elements. The Euler characteristic of the components for
these permutations is 1, suggesting that they are potentially contractible.

2. There is one permutation with nine orbits: six of these have components
with an Euler characteristic of 1, indicating a potentially trivial homo-
topy type. Two orbits have components with an Euler characteristic of
0, and, based on the distribution of the ancestries, we hypothesize that
these components are homotopically equivalent to S1. Specifically, these
components consist of 256 0-cells, 576 1-cells, 416 2-cells, 100 3-cells, and
4 4-cells. Unfortunately, representing these components graphically ex-
ceeds the capabilities of our current tools. The remaining orbit has an
Euler characteristic of 2, for these components, we have drawn the CW
complexes and observed that they disconnect, resulting in two copies of a
contractible CW complex. The component has 112 0-cells, 216 1-cells 128
2-cells, 24 3-cells and 1 4-cell. The complexity of these drawings makes
them difficult to present in full detail at this time.

17.3
Some Information About BLσ for inv(σ) = 15

There is only one permutation η ∈ S6 with inv(σ) = 15, known as the top
permutation. Its five orbits are separated into two with 8 elements and three
with 16 elements. Furthermore, by Proposition 6.1.1, BLz,thick is nonempty and
connected.

From Chapter 15 in [1] we already know that there exists a noncon-
tractible component of BLη, with Euler characteristic equal to 2 and 480 0-
cells, 1120 1-cells, 864 2-cells, 228 3-cells and 6 4-cells. The homotopy type of
this component remains unknown; additional techniques will be necessary to
solve this question.
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The remaining four orbits have components with Euler characteristic
equal to 1, suggesting that they are potentially contractible. One of these
orbits, the one with a positive real part, includes one 6-dimensional cell.
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