6 Referências Bibliográficas

- 1 PIRES DE SOUZA, E.J.S.; JARDIM, J.L.; MACEDO, N.J.P. Power System Transient Stability Assessment Using Dynamic Equivalents and Transient Energy Functions, V Symposium of Specialists in Electric Operational and Expansion Planning, Vol. II, p. 413-417, 1996.
- 2 PIRES DE SOUZA, E.J.S.; MACEDO, N.J.P.; MEIRELES, M.F.; JARDIM, J.L. Aplicação de Equivalentes Dinâmicos Baseados em Coerência em Estudos com Simulador em Tempo Real de Sistemas Elétricos, XIV SNPTEE, FL/GAT/09, 1997.
- 3 PIRES DE SOUZA, E.J.S.; LEITE DA SILVA, A.M. An Efficient Methodology for Coherency-Based Dynamic Equivalents, IEE Proc., Part C, Vol. 139, N° 5, p. 371-382, September 1992.
- 4 BROWN, W.T.; CLOUES, W.J. Combination Load-Flow and Stability Equivalent for Power System Representation on a A-C Network Analyzers, AIEE Trans., v. 74, p.782-787, 1955.
- 5 BROWN, H.E.; SHIPLEY, R.B.; COLEMAN, D.; NIED JR., R.E. A Study of Stability Equivalents, IEEE Trans., PAS-88, p.200-207, 1969.
- 6 WARD, J.B. Equivalent Circuits for Power-Flow Studies, AIEE Trans., v. 68, p. 373-382, 1949.
- 7 UNDRILL, J.M.; TURNER, A.E. Construction of Power System Electromechanical Equivalents by Modal Analysis, IEEE Trans., PAS90, p. 2049-2059, 1971.
- 8 NISHIDA, S.; TAKEDA, S. Derivation of Equivalents for Dynamic Security Assessment, Electrical Power & Energy Systems, v. 6, n. 1, p.15-23, 1984.
- 9 CHANG, A.; ADIBI, M.M. **Power System Dynamic Equivalents**, IEEE Trans., PAS-89, p. 1737-1744, 1970.
- 10 DE MELLO, R.W.; PODMORE, R.; STANTON, K.N. **Coherency-Based Dynamic Equivalents**: Applications in Transient Stability Studies, Proc. PICA Conf., p.23-31, 1975.
- 11 PODMORE, R. Identification of Coherent Generators for Dynamic Equivalents, IEEE Trans., PAS-97, p. 1344-1354, 1978.
- 12 GERMOND, A.J.; PODMORE, R. Dynamic Aggregation of Generating Unit Models, ibid., PAS-97, p. 1060-1069, 1978.

- 13 LEVENBERG, K.A. Method for the Solution of Certain Nonlinear Problems in Least Squares. Quarterly of Applied Mathematics. v.ll n.2, p. 164-168, 1944.
- 14 MARQUARDT, D.W. An Algorithm for Least Square Estimation on Nonlinear Parameters. SIAM Journal on Numerical Analysis. v.2 n.11, p. 431-441, 1963.
- 15 Programa EDINCO, Cálculo de Equivalentes Dinâmicos por Coerência: Manual do Usuário, Versão P02-12/2002, Furnas – Puc-Rio – FPLF, Janeiro 2003.
- 16 Programa ANAREDE, Análise de Redes, Manual do Usuário, V07-08/99, Cepel, Agosto 1999.
- 17 Programa ANATEM, Análise de Transitórios Eletromecânicos, Manual do Usuário, V09-12/01, Cepel, Dezembro 2001.
- 18 KUNDUR, P. **Power System Stability and Control**. McGraw-Hill, Inc., 1994.
- 19 ARAÚJO PEDRO, M.B.D. Agregação Dinâmica de Modelos de Sistemas de Excitação e Cálculo de Equivalentes Dinâmicos, Dissertação de Mestrado, PUC/Rio, Abril 1999.
- 20 TINNEY, W. F.; POWELL, W. L. The REI Approach to Power Network Equivalents. Proc. PICA Conf., pp. 314-320, 1977.

Apêndice 1: Dados do Sistema Teste

O sistema teste New England é utilizado para avaliar a metodologia empregada. Seu diagrama unifilar encontra-se na figura A.1.1.

Figura A.1.1 – Diagrama unifilar do Sistema New England

Os dados de barras encontram-se na tabela A.1.1, onde a área 1 representa o sistema interno e a área 2 o sistema externo. Os dados de linhas e transformadores encontram-se na tabela A.1.2, e os parâmetros considerados nas unidades geradoras na tabela A.1.3. A base utilizada é de 100 MVA.

Barra N°	Tipo	Tensão (pu)	Ângulo (graus)	Geração (MW)	Carga (MW) (MVAr)		Área
1	PQ	1,000		0,0	0,0	0,0	1
2	PQ	1,000		0,0	0,0	0,0	1
3	PQ	1,000		0,0	322,0	2,4	2
4	PQ	1,000		0,0	500,0	184,0	2
5	PQ	1,000		0,0	0,0	0,0	2
6	PQ	1,000		0,0	0,0	0,0	2
7	PQ	1,000		0,0	233,8	84,0	2
8	PQ	1,000		0,0	522,0	176,6	2
9	PQ	1,000		0,0	0,0	0,0	2
10	PQ	1,000		0,0	0,0	0,0	2
11	PQ	1,000		0,0	0,0	0,0	2
12	PQ	1,000		0,0	9,5	88,0	2
13	PQ	1,000		0,0	0,0	0,0	2
14	PQ	1,000		0,0	0,0	0,0	2
15	PQ	1,000		0,0	320,0	153,0	2
16	PQ	1,000		0,0	329,4	32,3	2
17	PQ	1,000		0,0	0,0	0,0	2
18	PQ	1,000		0,0	158,0	30,0	2
19	PQ	1,000		0,0	0,0	0,0	2
20	PQ	1,000		0,0	680,0	103,0	2
21	PQ	1,000		0,0	274,0	115,0	2
22	PQ	1,000		0,0	0,0	0,0	2
23	PQ	1,000		0,0	247,5	84,6	2
24	PQ	1,000		0,0	308,6	-92,2	2
25	PQ	1,000		0,0	224,0	47,2	1
26	PQ	1,000		0,0	139,0	17,0	1
27	PQ	1,000		0,0	281,0	75,5	2
28	PQ	1,000		0,0	206,0	27,6	1
29	PQ	1,000		0,0	283,5	26,9	1
30	PV	1,048		250,0	0,0	0,0	1
31	PV	1,010		563,3	9,2	4,6	2
32	PV	1,020		650,0	0,0	0,0	2
33	PV	0,997		632,0	0,0	0,0	2
34	PV	1,012		508,0	0,0	0,0	2
35	PV	1,049		650,0	0,0	0,0	2
36	PV	1,050		560,0	0,0	0,0	2
37	PV	1,028		540,0	0,0	0,0	1
38	Vθ	1,027	6,6	0,0	0,0	0,0	1
39	PV	1,030		1000,0	1104,0	250,0	1

Tabela A.1.1 – Dados de barras

Da barra	Para barra	Resistência (%)	Reatância (%)	Susceptância (Myar)	Tape (pu)
1	2	0.350	4 110	69.870	(P)
1	39	0,550	2 500	75,000	
2	3	0,130	1,510	25 720	
2	25	0,700	0.860	14 600	
2	30	0,700	1,810	14,000	1 000
3	4	0,010	2 130	22 140	1,000
3	18	0,130	1 330	21,380	
	5	0.080	1,350	13 420	
4	14	0,080	1,200	13,820	
5	6	0,030	0.260	4 340	
5	8	0,020	1,120	14 760	
6	7	0,080	0.920	11,700	
6	11	0,000	0,920	13 800	
6	21	0,070	2,500	15,670	1.000
7	8	0,010	2,300	7 800	1,000
8	0	0,040	3,630	38.040	
9	30	0,230	2,500	120,000	
10	11	0,100	2,500	7 200	
10	11	0,040	0,430	7,200	
10	32	0,040	2,000	7,290	1.000
10	11	0,010	2,000		1,000
12	13	0,160	4,350		1,000
12	14	0,100	1,010	17 230	1,000
14	15	0,090	2 170	36,600	
15	16	0,180	0.940	17 100	
16	17	0,070	0,890	13 420	
16	19	0,160	1,950	30,400	
16	21	0.080	1 350	25 480	
16	24	0.030	0 590	6 800	
17	18	0,070	0.820	13 190	
17	27	0,130	1 730	32 160	
19	20	0.070	1,380	52,100	1.000
19	33	0.070	1,420		1.000
20	34	0.090	1.800		1.000
21	22	0.080	1,400	25.650	-,
22	23	0.060	0.960	18.460	
22	35	0,010	1,430	- ,	1,000
23	24	0.220	3,500	36.100	,
23	36	0.050	2,720		1.000
25	26	0,320	3,230	51,300	,
25	37	0.060	2,320		1,000
26	27	0,140	1,470	23,960	
26	28	0,430	4,740	78,020	
26	29	0,570	6,250	102,900	
28	29	0,140	1,510	24,900	
29	38	0,080	1,560		1,000

Tabela A.1.2 – Dados de linhas e transformadores

Gerador N°	H (s)	D (pu/pu)	Xe (%)	Xd (%)	Xq (%)	X'd (%)	X''d (%)	T'd ₀ (s)	T''d ₀ (s)	T''q ₀ (s)
1	42,0	4,00	1,25	10,00	6,90	3,10	2,83	10,20	0,050	0,10
2	30,3	9,75	3,50	29,50	28,20	6,97	4,00	6,56	0,048	0,12
3	35,8	10,00	3,04	24,95	23,70	5,31	3,70	5,70	0,048	0,11
4	28,6	10,00	2,95	26,20	25,80	4,36	3,00	5,69	0,050	0,10
5	26,0	3,00	5,40	67,00	62,00	13,20	8,90	5,40	0,045	0,09
6	34,8	10,00	2,24	25,40	24,10	5,00	3,83	7,30	0,050	0,07
7	26,4	8,00	3,22	29,50	29,20	4,90	3,80	5,66	0,040	0,06
8	24,3	9,00	2,80	29,00	28,00	5,70	3,80	6,70	0,048	0,12
9	34,5	14,00	2,98	21,06	20,50	5,70	3,80	4,79	0,030	0,09
10	500,0	10,00	0,30	2,00	1,90	0,60	0,40	7,00	0,050	0,14

Tabela A.1.3 – Dados das máquinas (MD02 – Anatem)

Apêndice 2: Formulação REI

O equivalente REI é composto por uma estrutura Radial (R), Equivalente (E) em uma única barra e Independente (I) do restante do sistema. As figuras A.2.1 e A.2.2 apresentam, respectivamente, o sistema considerando as injeções de potência $S_1,...,S_n$ de um grupo de unidades geradoras coerentes, e o sistema com a injeção total, S_R , do gerador equivalente do grupo em uma barra fictícia R. Esta barra é conectada às demais barras do sistema por meio de uma malha fictícia denominada malha REI. Sendo assim, a barra ativa R possui injeção S_R igual à soma das n injeções S_i conhecidas. A malha REI não possui perdas e o método preserva a identidade das unidades geradoras como fontes de tensão controlada. Sua conexão não deve alterar as condições elétricas da rede original.

Figura A.2.1 – Injeções de potência complexa de um grupo com unidades geradoras coerentes

Figura A.2.2 – Inserção da malha REI no grupo de nós ativos

A figura A.2.3 apresenta a malha REI. A ligação interna da malha é em estrela e seus elementos passivos lineares não são aterrados. A barra fictícia G é também passiva e é comum a todos os geradores do grupo coerente. Sua tensão é arbitrada nula. Após a conexão da malha REI, as n barras ativas do grupo coerente tornam-se barras passivas e, juntamente com as demais barras passivas do sistema externo, podem ser eliminadas pelo processo de redução guassiana, preservando as condições operativas do sistema original.

Figura A.2.3 – Representação da ligação interna em estrela da malha REI

A injeção de potência equivalente, S_R , a corrente I_R e a injeção de corrente I_i nas barras de conexão, são dadas por:

$$S_{R} = \sum_{i=1}^{n} S_{i}$$
(A.2.1)

$$I_{R} = \sum_{i=1}^{n} I_{i}$$
 (A.2.2)

$$I_{i} = \frac{S_{i}^{*}}{V_{i}^{*}}$$
(A.2.3)

A tensão na barra fictícia R, V_R , é a média ponderada das n tensões das barras. A eq. (A.2.4) determina seu valor.

$$V_{\rm R} = \frac{S_{\rm R}}{I_{\rm R}^*} \tag{A.2.4}$$

Considerando $V_G = 0$, os braços de admitância da malha REI são dados por:

$$Y_{i} = \frac{-S_{i}^{*}}{|V_{i}|^{2}}$$
(A.2.5)

$$Y_{R} = \frac{S_{R}^{*}}{|V_{R}|^{2}}$$
(A.2.6)

Apêndice 3: Método de Levenberg-Marquardt

Seja uma função objetivo F onde sua primeira e segunda derivadas são conhecidas em um problema de otimização multivariável.

O modelo quadrático desta função objetivo pode ser obtida considerando os três primeiros termos da expansão em serie de Taylor, avaliados na estimativa atual x_k da solução. O índice k indica a quantidade calculada em x_k .

Tem-se:

$$F(x_{k} + p) \cong F_{k} + g_{k}^{T}p + \frac{1}{2}p^{T}G_{K}p$$
(A.3.1)

onde,

p: vetor passo para o mínimo

g: gradiente de F (∇F)

G: matriz Hessiana de F $(\nabla^2 F)$

O valor mínimo do lado direito da eq. (A.3.1) será atingido se p_k minimizar a função quadrática a seguir:

$$\Phi(\mathbf{p}) = \mathbf{g}_{\mathbf{k}}^{\mathrm{T}} \mathbf{p} + \frac{1}{2} \mathbf{p}^{\mathrm{T}} \mathbf{G}_{\mathbf{k}} \mathbf{p}$$
(A.3.2)

Para $\nabla \Phi(p_k) = 0$, determina-se um ponto estacionário p_k da eq. (A.3.2), que satisfaz o sistema linear abaixo:

$$G_{k}p_{k} = -g_{k} \tag{A.3.3}$$

Seja F(x) uma função dada pela soma dos quadrados de funções nãolineares, onde o fator $\frac{1}{2}$ foi incluído para evitar o surgimento de um fator 2 nas derivadas:

$$F(x) = \frac{1}{2} \sum_{i=1}^{m} f_i^2(x)$$
 (A.3.4)

Seja J(x) a matriz Jacobiana de dimensão $m \times n$ da função vetorial f(x) e $G_i(x)$ a matriz Hessiana de dimensão $n \times n$ de $f_i(x)$. Da eq. (A.3.4), resulta:

$$g(x) = J^{T}(x)f(x)$$
 (A.3.5)

$$G(x) = J^{T}(x)J(x) + Q(x)$$
 (A.3.6)

onde,

$$f(x) = [f_1(x), f_2(x), ..., f_m(x)]^T$$

$$Q(x) = \sum_{i=1}^{m} f_i(x) G_i(x)$$

Substituindo as eq. (A.3.5) e (A.3.6) na eq. (A.3.3), resulta:

$$\left(\mathbf{J}_{k}^{\mathrm{T}}\mathbf{J}_{k}+\mathbf{Q}_{k}\right)\mathbf{p}_{k}=-\mathbf{J}_{k}^{\mathrm{T}}\mathbf{f}_{k}$$
(A.3.7)

A direção de busca do método de Levenberg-Marquardt é definida como a solução da equação:

$$(\mathbf{J}_{k}^{\mathrm{T}}\mathbf{J}_{k} + \lambda_{k}\mathbf{I})\mathbf{p}_{k} = -\mathbf{J}_{k}^{\mathrm{T}}\mathbf{f}_{k}$$
 (A.3.8)

onde λ_k é um escalar positivo e I é a matriz identidade. As estimativas da solução são obtidas pela eq. (A.3.9).

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{p}_k \tag{A.3.9}$$

A cada iteração é necessário calcular e inverter uma aproximação da matriz Hessiana de dimensão $n \times n$. O esforço computacional deste método é reduzido para n pequeno.