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Abstract

Oliveira, Guilherme Dantas de; Ierusalimschy, Roberto (Advisor). For-
malization of Key Algorithms from LPeg. Rio de Janeiro, 2025.
62p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Parsing Expression Grammars (PEGs) are a class of deterministic formal
grammars originally described by Ford. They are widely used to describe
and parse machine-oriented languages and have been implemented by several
projects. One such project is LPeg, a Lua library that compiles PEGs into
optimized code that is run by a specialized virtual machine.

The implementation of LPeg features two key algorithms that have never
been published or verified before. First, LPeg has its own implementation of the
well-formedness check introduced by Ford, which is crucial for ensuring that
parsing terminates. Second, LPeg implements an algorithm that computes the
set of first characters that may be accepted by a pattern, which it uses to
optimize the virtual-machine code for certain patterns.

This work formalizes these algorithms and proves their correctness using
the Coq proof assistant. We also prove their termination using a gas-based
approach.

Keywords
Parsing Expression Grammars; Well-formedness; LPeg.



Resumo

Oliveira, Guilherme Dantas de; Ierusalimschy, Roberto. Formalização
de Algoritmos-Chave de LPeg. Rio de Janeiro, 2025. 62p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Gramáticas de Análise Sintática de Expressão (PEGs, do inglês Parsing
Expression Languages) são uma classe de gramáticas formais determinísticas
originalmente descritas por Ford e amplamente utilizadas para descrever e
analisar linguagens de programação. PEGs foram implementadas por diversos
projetos. Um desses projetos é LPeg, uma biblioteca Lua que compila PEGs
para código otimizado que é executado por uma máquina virtual especializada.

A implementação de LPeg apresenta dois algoritmos-chave que nunca
foram publicados ou verificados formalmente. Primeiramente, LPeg possui sua
própria implementação da verificação de boa-formação introduzida por Ford,
essencial para garantir que a análise sintática termine. Em segundo lugar, LPeg
implementa um algoritmo que computa o conjunto de primeiros caracteres que
podem ser aceitos por um padrão, utilizado para gerar código de máquina
virtual mais eficiente para certos padrões.

Este trabalho formaliza esses algoritmos e prova que estão corretos
usando o provador de teoremas Coq. Além disso, provamos que esses algoritmos
terminam utilizando uma abordagem baseada em consumo de gás.

Palavras-chave
Gramáticas de Análise Sintática de Expressão; Boa formação; LPeg.
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Mathematics, rightly viewed, possesses not
only truth, but supreme beauty—a beauty cold

and austere, like that of sculpture, without
appeal to any part of our weaker nature,

without the gorgeous trappings of painting or
music, yet sublimely pure, and capable of a

stern perfection such as only the greatest art
can show.

Bertrand Russell, A History of Western Philosophy.



1
Introduction

Parsing Expression Grammars (PEGs) are a type of formal grammar
introduced by Ford (1) to describe and parse machine-oriented languages.
In contrast to Context-Free Grammars (CFGs), established by Chomsky (2),
PEGs are deterministic, which makes them particularly suitable for parsing
programming languages and structured data formats.

PEGs have been implemented by several projects and in a variety of
programming languages. One such implementation is LPeg (3), a library for
the Lua programming language. Following the SNOBOL tradition, patterns
in LPeg are first-class citizens and can be programmatically constructed in a
bottom-up fashion. Starting from basic primitives such as character classes,
patterns can be combined through the use of operators: * for sequences,
+ for ordered choices, ˆ (caret) for repetitions, and so on.

LPeg features several interesting algorithms in its implementation, but
two algorithms stand out for their complexity and lack of formal documenta-
tion: The well-formedness check and the first-set computation.

The first algorithm, the well-formedness check, ensures that a pattern is
complete, meaning it yields a match result for any input string. The concept
of well-formedness was introduced by Ford as a conservative approximation
to completeness, after proving that the problem of detecting completeness is
undecidable, and noticing that incompleteness is caused by left-recursive rules
and degenerate loops.

The well-formedness algorithm proposed by Ford iteratively constructs
a set of well-formed expressions until a fixed-point is reached. A grammar
is then deemed well-formed if its expression set matches the set of well-
formed expressions derived from the fixed-point iteration. Koprowski et al. (4)
formalized a similar algorithm for an extended definition of PEGs and proved
its correctness using the Coq proof assistant.

Meanwhile, the well-formedness check implemented in LPeg does not use
iteration, fixed-point checks, or data structures to represent sets of expres-
sions. These details make the algorithm simpler to implement, specially in
programming languages with modest standard libraries, such as C. Moreover,
this alternative algorithm has neither been published nor formally verified yet,
which makes it an interesting research topic.

The second algorithm implemented in LPeg that we highlight in this work
is the first-set algorithm. It takes a pattern and returns the first-set and the
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emptiness value of the pattern. The definition of first-set is well-established in
the area of CFGs, but their application in PEGs has not yet been documented
in the literature. Basically speaking, the first-set of a pattern is the set of first
characters that can be accepted by the pattern. More precisely, a pattern fails
any string that starts with a character that is not in its first-set.

The first-set algorithm also returns an emptiness value, which, when false,
indicates that the pattern fails to match the empty string. (This Boolean value
corresponds to the inclusion of ε in the first-set of some formalizations for
CFGs.) This other return value is necessary because the first-set cannot be
used to determine whether a pattern fails the empty string, because it has
no first character. Together, both return values help LPeg optimize certain
patterns, such as ordered choices.

Both aforementioned algorithms implemented in LPeg are complex and
lack formal documentation, which can make them difficult to maintain and
reason about. This work aims to bridge this gap. We present and analyze these
algorithms, proving their correctness using the Coq proof assistant1. Moreover,
we also prove their termination through a gas-based approach. Also, during
the process of proving key properties about these algorithms, we have noticed
a few issues that could be reviewed in future versions of LPeg.

The remainder of this work is structured as follows: Chapter 2 presents
the syntax and semantics of PEGs. In Chapter 3 we formalize the well-
formedness algorithm and prove its correctness and termination. Chapter 4
does the same for the first-set algorithm. In Chapter 5, we analyze how our
work differs from prior research, highlighting key differences and improvements.
Finally, Chapter 6 summarizes our findings and outlines directions for future
research.

1The code is publicly available on GitHub at https://github.com/guidanoli/peg-coq

https://github.com/guidanoli/peg-coq


2
Syntax and Semantics of PEGs

When Ford (1) introduced PEGs, he also defined a syntax with several
useful constructions for practical language description purposes: literal strings
(e.g. “abc”), character classes (e.g. [a–z]), any character (.), non-terminals,
optionals p?, zero-or-more repetitions p⋆, one-or-more repetitions p+, not-
predicates !p, and-predicates &p, sequences p1 p2, and ordered choices p1 / p2.

However, for the purposes of formal analysis, Ford realized it would be
more convenient to define an abstract syntax for PEGs that represents its
essential structure. This abstract syntax does not include several aforemen-
tioned constructions, which are treated as syntactic sugar, and includes two
new constructions: empty (ε) and single characters (e.g. ‘a’).

With these new constructions, Ford desugars the PEG syntax as follows.
First, the any-character pattern (.) is reduced into a character class with all
characters in the alphabet. Then, literal strings are reduced into sequences
of characters, and character classes are reduced into choices of characters.
And-predicate patterns &p are reduced into !(!p), optionals p? into p / ε, and
one-or-more repetitions p+ into p p⋆.

This desugared syntax allowed Ford to reduce the size of proofs, as
there were fewer cases to be treated during case analysis. However, for
the purposes of formalizing the first-set algorithm, we realized it would be
beneficial for us to have our own desugaring of the PEG syntax. Compared
to Ford’s desugared syntax, our desugared syntax includes and-predicates &p

and replaces characters (e.g. ‘a’) with character sets (e.g. [a–z]).
Characters and character sets have equivalent expressiveness, as charac-

ter sets can be reduced into choices of characters. However, in our case, we
prefer character sets as they allow us to simplify the definition of the first-set
algorithm. Moreover, we decided to keep and-predicates &p and repetitions p⋆

to stay more loyal to the implementation of LPeg, which doesn’t translate &p

into !(!p) and p⋆ into A← pA/ε, handling them differently in the first-set algo-
rithm. LPeg keeps &p and p⋆ patterns because they lead to smaller and more
efficient virtual machine code, when compared to their desugared equivalents.
We also denote non-terminals by Ri, where i is the index of the rule in the
grammar. Our desugared syntax is depicted in Figure 2.1.

Having defined the syntax of PEGs, we now define their semantics. In
the context of a grammar, a pattern is parsed against an input string, and the
match may be either a success or a failure. In the case of a success, the pattern
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Pattern p := ε [cs] Ri p⋆ !p &p p1 p2 p1 / p2

Figure 2.1: Our desugared syntax of PEGs.

leaves the unconsumed suffix of the input string as a result.
To be more precise, we define a match predicate. The predicate takes a

grammar g, a pattern p, and an input string s, and returns a match result
res. It is denoted as (g, p, s) m−→ res. A successful match result is represented
by s′, the unconsumed suffix of the input string, while a failed match result is
represented as ⊥.

The predicate is inductively defined in Figure 2.2. The empty pattern ε

matches any string, without consuming anything. A character set pattern [cs]
matches only strings that start with a character in the set {cs}, and consumes
this character. The nonterminal pattern Ri matches the ith rule of the grammar.
The repetition pattern p⋆ matches p as many times as possible in sequence. The
not-predicate pattern !p matches iff p does not match. (It never consumes any
input, as either p or !p always fail.) The and-predicate pattern &p matches iff p

matches, but without consuming any input. A sequence pattern p1 p2 matches
p1 followed by p2. Lastly, the pattern p1 / p2 constitutes an ordered choice: It
first tries to match p1, and, if that fails, tries to match p2.

In case the reader is not familiar with the semantics of PEGs, it can
be helpful to go through some examples. Let us start with the pattern [ab],
which matches the letters “a” or “b”. Unsurprisingly, this pattern matches and
consumes the whole string “a”, leaving the empty string as a result. It also
matches the string “baby”, consuming just the first letter “b” and leaving the
suffix “aby” unconsumed. Meanwhile, for strings that do not start with either
the character “a” or “b”, the pattern fails. For example, the pattern fails for
the empty string and for the string “kaaba”.

If we wish the pattern to match zero or more letters “a” or “b”, we can
use the repetition operator on the previous pattern, resulting in the pattern
[ab]⋆. This pattern matches the string “baby”, consuming the prefix “bab” and
leaving the letter “y” unconsumed. It also matches the empty string.

Some repetitions, however, are incomplete, meaning they may yield no
match result. Take, for example, the pattern ε⋆, which matches ε as many times
as possible. The repetition body ε always matches and consumes no input, so
the match never makes any progress and gets stuck in an infinite loop.

Some grammar rules can also be incomplete if they reference themselves
while consuming no input in-between. These are so-called left-recursive rules.
The simplest example of such a rule is Ri ← Ri. We will get into greater detail
about them later in this chapter.
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(g, ε, s) m−→ s
(m-eps)

(g, [cs], nil) m−→⊥
(m-set-nil)

a ∈ cs

(g, [cs], a :: s) m−→ s
(m-set-cons-in)

a ̸∈ cs

(g, [cs], a :: s) m−→⊥
(m-set-cons-not-in)

g[i] = Some p (g, p, s) m−→ res

(g, Ri, s) m−→ res
(m-nonterminal)

(g, p, s) m−→⊥
(g, p⋆, s) m−→ s

(m-rep-fail)

(g, p, s) m−→ s′ (g, p⋆, s′) m−→ res

(g, p⋆, s) m−→ res
(m-rep-succ)

(g, p, s) m−→ s′

(g, !p, s) m−→⊥
(m-not-succ)

(g, p, s) m−→⊥
(g, !p, s) m−→ s

(m-not-fail)

(g, p, s) m−→ s′

(g, &p, s) m−→ s
(m-and-succ)

(g, p, s) m−→⊥
(g, &p, s) m−→⊥

(m-and-fail)

(g, p1, s) m−→⊥
(g, p1 p2, s) m−→⊥

(m-seq-fail)

(g, p1, s) m−→ s′ (g, p2, s′) m−→ res

(g, p1 p2, s) m−→ res
(m-seq-succ)

(g, p1, s) m−→ s′

(g, p1 / p2, s) m−→ s′ (m-choice-succ)

(g, p1, s) m−→⊥ (g, p2, s) m−→ res

(g, p1 / p2, s) m−→ res
(m-choice-fail)

Figure 2.2: The match predicate.
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Besides making repetitions of patterns and referencing rules, we can also
chain patterns together with the sequence operator. For example, the pattern
[ab]⋆ [y] matches the string “baby” but not the string “babies”.

If we wish a pattern to be optional, similar to how the p? operator from
the complete PEG syntax does, we can make a choice between this pattern
and the empty pattern ε. For example, the pattern [ab]⋆ ([y] / ε) matches both
strings “baby” and “babies”, but leaves the suffix “ies” unconsumed.

We can also choose to fail when a given pattern matches, through the
not-predicate operator !p. Let us say, for example, that the consumed input
prefix must not contain the substring “aa’. This behavior is implemented in the
pattern (!([a] [a]) [ab])⋆. This pattern matches the strings “baba” and “baaba”,
but leaves the suffix “aaba” unconsumed.

We can also check whether a pattern matches but not consume any input.
That is possible with the and-predicate operator &p. For example, the pattern
&[ab] checks whether a string starts with either the character “a” or “b”,
but does not consume it. This pattern matches the string “baby”, while not
consuming any characters, and fails to match the string “kaaba”.

One aspect of PEGs that can vary depending on the implementation is
how rules are identified and referenced, that is, the set of nonterminals. The
original syntax proposed by Ford uses strings (1). Meanwhile, LPeg allows rules
to be identified by arbitrary Lua values (5). Meanwhile, our formalization uses
natural indices to identify the rules, as it allows us to represent grammars as
lists of rules in Coq.

Regarding the match predicate, we can already state two important, yet
simple, properties. First, the predicate is deterministic: Given a grammar, a
pattern, and an input string, there is at most one possible match result. We
state this property below as a lemma, which, like every other lemma in this
text, was proven in Coq by us.

Lemma 2.1. If (g, p, s) m−→ res1 and (g, p, s) m−→ res2, then res1 = res2.

The second property states that the result string is a suffix of the input
string. We use the symbol “⪯” to denote the suffix relation. This lemma might
seem obvious, but we assure the reader that it will be necessary later to prove
lemmas by induction on the length of the input string.

Lemma 2.2. If (g, p, s) m−→ s′, then s′ ⪯ s.

An important characteristic of this predicate, which has profound conse-
quences in our formalization efforts, is that it not represent a total function:
Not all combinations of grammars, patterns, and input strings relate to a match



Chapter 2. Syntax and Semantics of PEGs 16

result. This may happen for several reasons, which we will go through in the
following paragraphs.

The first reason is that the grammar may be empty, meaning it does not
have any rule. This is a problem, because we use the first rule of the grammar
as the initial pattern. If the grammar is empty, then there is no first rule.

The second reason is that the pattern may reference a non-existent rule.
This problem is not exclusive to our formalization, which references rules by
indices. Ford and LPeg also suffer from this problem, because, in order to
textually describe a recursive grammar, you need to use some form of reference,
which may be invalid.

The third reason for a pattern to not yield a match result is because of
so-called left-recursive rules. To illustrate what we mean by such, consider the
following rule.

Ri ← Ri (2.1)
If we were to parse the pattern Ri, we would resolve it to the body of

the ith rule, which is also the pattern Ri. In doing so, neither the pattern nor
the input string would change, which clearly leads to an infinite loop. This is
the simplest example of a left-recursive rule.

The previous example involves only one rule. Left-recursive rules, how-
ever, can also involve multiple rules. The following grammar, for example, has
three rules, one referencing another, all of which are left-recursive.


Ri ← Rj

Rj ← Rk

Rk ← Ri

The reader might notice that, in both examples, there are rules referenc-
ing one another. However, this doesn’t necessarily imply in left recursion. The
following rule, for example, references itself, but is not left-recursive.

Ri ← [cs] Ri / ε (2.2)
What makes the rule from Equation (2.1) left-recursive, but not the one

from Equation (2.2), is a subtle, yet important difference. In Equation (2.1),
the nonterminal pattern Ri is always visited with the same input string as
the one provided to the rule. Meanwhile, in Equation (2.2), the nonterminal
pattern Ri is always visited with an input string shorter than the one provided
to the rule, since the character set pattern [cs] always consumes a character
when it matches. Given that input strings are finite, we can prove that this
rule yields a result for any input string. The proof is carried out by induction
on the length of the input string, using Lemma 2.2.
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The fourth and last reason for the lack of a match result are so-called
degenerate loops, which are repetition patterns p⋆ whose body p may match
without consuming any input. If p matches, but does not consume any input,
then it will do so infinitely many times. One example of a degenerate loop is
the pattern ([cs]⋆)⋆.

In any of these cases, a match result is not guaranteed to exist. In practice,
we would like to ensure that a grammar yields a match result for any input
string. This property is called completeness.

g is complete ⇐⇒ ∀s,∃res, (g, R0, s) m−→ res (2.3)

Ford (1) showed that the problem of knowing whether a grammar is
complete is undecidable. He then presented a conservative approximation to
completeness known as well-formedness, which is decidable.

We formalize this well-formedness check as a computable function wf that
takes a grammar and returns a Boolean value indicating whether the grammar
is well-formed or not. We also prove its correctness by showing that, for any
given grammar g, if wf g = true, then g is complete.

How LPeg implements this function wf is the focus of the next chapter, as
well as its proof of correctness. All definitions and proofs are publicly available
on this project’s GitHub repository1.

1https://github.com/guidanoli/peg-coq

https://github.com/guidanoli/peg-coq


3
Well-formedness Algorithm

In this chapter, we present the well-formedness algorithm implemented
in LPeg and prove its correctness. We begin by introducing the signature of
the function verifygrammar, which implements the well-formedness algorithm
in Coq: it takes a grammar g and a natural number gas as parameters and
returns an optional Boolean value. The parameter gas is decremented on every
recursive call, in order to convince Coq that the function terminates for every
input. If this parameter ever reaches zero, the function returns None, signaling
it ran out of gas. Otherwise, it returns Some b, where the Boolean value b

indicates whether the grammar is well-formed or not.
We proved in Coq that, for any input grammar g, there exists a lower

bound for the parameter gas for which verifygrammar returns Some b. We
do not need to assume anything about the grammar, because the function
performs all the necessary checks. This works as a proof of termination for the
algorithm. In practice, this results allows LPeg to implement this function in C
without the gas parameter, as it is not necessary.

Lemma 3.1. ∀gas ≥ mingasvg(g), ∃b verifygrammar g gas = Some b.

We define this lower bound in Figure 3.1. The function takes into account
|g|, the number of rules in the grammar, and ||g||, the size of the grammar. We
define the size of a pattern p, also denoted as ||p||, as the number of nodes in
its abstract syntax tree, and the size of a grammar g as the summation of the
sizes of its rules, that is, ∑

r∈g ||r||. One neat property about grammar rules
is that they are always smaller than the grammar themselves, as displayed in
Lemma 3.2. This property follows from the definition of grammar sizes, and
from the fact that pattern sizes are non-negative.

Lemma 3.2. ∀r ∈ g, ||r|| ≤ ||g||.

At this point, it can be hard to explain the rationale behind this equation,
as we haven’t discussed each step in-depth yet. We will therefore leave the
explanation for this lower bound to Section 3.2, when we introduce the left
recursion check.

mingasvg(g) = (|g|+ 2) · ||g||

Figure 3.1: The well-formedness function gas lower bound.
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wf g = match verifygrammar g mingasvg(g) with
| Some b⇒ b

| None⇒ true

end

Figure 3.2: The well-formedness function.

With this lower bound, we can define the function wf, which takes a
grammar g and returns a Boolean value indicating whether g is well-formed.
It basically calls verifygrammar with the gas lower bound. If verifygrammar
returns Some b, then wf returns b. If, otherwise, verifygrammar returns None,
then wf returns true. This last case is irrelevant, because we know it cannot
happen. Nevertheless, we return true to demonstrate that the function and
gas estimation are correct. Figure 3.2 displays the function wf.

Let us now get into the function verifygrammar, which is divided into
four steps. Each step is implemented by a different function. The first two
functions, named coherent and lcoherent, do not receive a gas parameter, as
they are defined recursively on the structure of patterns and lists of patterns,
respectively. This structural recursion is enough to convince Coq that these
functions terminate. Meanwhile, the last two functions, named lverifyrule
and lcheckloops, receive a gas parameter, as their recursion goes beyond the
structure of patterns, and involves visiting arbitrary grammar rules. Therefore,
in order to prove that verifygrammar terminates, we need to provide lower
bounds for the gas parameter of both lverifyrule and lcheckloops.

The implementation of these functions will be discussed in the following
sections. For now, let us briefly go over them. The first two steps are relatively
simple, while the third and fourth steps are more complex, as they involve
symbolically parsing each rule.

The first step of the algorithm is trivial. It merely ensures the existence
of the first rule of the grammar, given that it is used as the starting point for
parsing the grammar.

The second step is similar to the first one, as it makes sure that every rule
in the grammar only references rules that exist in the grammar. This ensures
that we can safely dereference any nonterminal patterns later on. This step is
an extended version of the previous one for lists of patterns.

The third step ensures that the grammar contains no left-recursive rules.
It does so by symbolically executing the parsing routine for each rule in the
grammar and checking whether it can reach the same rule twice without
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coherent g p =
match p with
| ε⇒ true

| [cs]⇒ true

| Ri ⇒match g[i] with
| Some p⇒ true

| None⇒ false

end
| p⋆ ⇒ coherent g p

| !p⇒ coherent g p

| &p⇒ coherent g p

| p1 p2 ⇒ coherent g p1 ∧ coherent g p2

| p1 / p2 ⇒ coherent g p1 ∧ coherent g p2

end

Figure 3.3: The coherence function.

consuming any input.
The fourth and final step makes sure that the grammar contains no

degenerate loops, which are repetitions of patterns that may match while
consuming no input.

If a grammar passes all these checks, then it is considered well-formed. In
the following sections, we go into each of these steps in greater detail. We also
define equivalent inductive predicates for each step and for the verifygrammar
function, to aid us in the proofs. We also prove these predicates follow the
corresponding fixed-point definitions.

3.1
References to nonexistent rules

The verification process starts by checking whether every nonterminal
pattern references an existing rule in the grammar. This process is quite simple,
but we present it here in the name of completeness.

We say a pattern is coherent in respect to a grammar if all of its
nonterminals reference existing rules in the grammar. Figure 3.3 defines a
fixed-point function that performs this verification. To aid us in later induction
proofs, we also define an equivalent predicate in Figure 3.4. Lemma 3.3 states
that the predicate is deterministic on the result, and Lemma 3.4 states that
the predicate follows the function. It is easy to see that both lemmas together
imply that the predicate is equivalent to the function.
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(g, ε) c−→ true
(c-eps)

(g, [cs]) c−→ true
(c-set)

g[i] = Some (p)
(g, Ri) c−→ true

(c-nonterminal-some)

g[i] = None

(g, Ri) c−→ false
(c-nonterminal-none)

(g, p) c−→ res

(g, p⋆) c−→ res
(c-rep)

(g, p) c−→ res

(g, !p) c−→ res
(c-not)

(g, p) c−→ res

(g, &p) c−→ res
(c-and)

(g, p1) c−→ res1 (g, p2) c−→ res2

(g, p1 p2) c−→ res1 ∧ res2
(c-seq)

(g, p1) c−→ res1 (g, p2) c−→ res2

(g, p1 / p2) c−→ res1 ∧ res2
(c-choice)

Figure 3.4: The coherence predicate.

lcoherent g rs = match rs with
| nil⇒ true

| r :: rs′ ⇒ coherent g r ∧ lcoherent g rs′

end

Figure 3.5: The coherence function for lists of patterns.

Lemma 3.3. If (g, p) c−→ res1 and (g, p) c−→ res2, then res1 = res2.

Lemma 3.4. If coherent g p = res, then (g, p) c−→ res.

Figure 3.5 trivially generalizes the coherence check for a list of patterns.
This function is defined over an arbitrary list of rules, but is meant to be called
for the whole grammar. We also define, in Figure 3.6, an inductive predicate
equivalent to this function to be later used in proofs by induction. We also
show that this predicate is deterministic and follows the original fixed-point
definition. See Lemmas 3.5 and 3.6.

Lemma 3.5. If (g, rs) lc−→ res1, and (g, rs) lc−→ res2, then res1 = res2.

Lemma 3.6. If lcoherent g rs = res, then (g, rs) lc−→ res.
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(g, nil) lc−→ true
(lc-nil)

(g, r) c−→ b1 (g, rs) lc−→ b2

(g, r :: rs) lc−→ b1 ∧ b2
(lc-cons)

Figure 3.6: The coherence predicate for lists of patterns.

Finally, we prove that if a list of patterns passes the list-based check,
then any pattern in the list passes the individual check.

Lemma 3.7. If (g, rs) lc−→ true, then, ∀r ∈ rs, (g, r) c−→ true.

3.2
Left-recursive rules

In general, we consider a rule to be left-recursive if it can wind up in
itself without consuming any input in-between. This brings us to the heart of
the algorithm that detects left-recursive rules. On a high level, it symbolically
parses each rule, until it either consumes some input, visits some rule twice
without consuming any input, or simply finishes.

The algorithm categorizes patterns into three groups. If a pattern can
be parsed until its end without consuming any input, it is said to be nullable.
If, otherwise, it always consumes some input, it is categorized as non-nullable.
Alternatively, if it can lead to some rule twice, without consuming any input,
it is categorized as left-recursive.

In order to check whether a pattern is guaranteed to consume some input,
the algorithm uses a conservative approximation proposed by Ford (1), which
makes two assumptions. The first one is that !p may match, and the second
one is that, in the case of p1/p2, it may visit p2, without checking whether p1

always matches. For illustrative purposes, we present a simple counterexample
for each assumption.

A counterexample for the first assumption is the pattern !ε, which never
matches. Meanwhile, for the second assumption, a simple counterexample is
the pattern ε/p2, because ε always matches, and, therefore, p2 is never visited.
By the simplicity of the counterexamples, the reader might think that these
cases can be easily spotted. However, Ford (1) proved that the general case of
this problem is undecidable: If there were such an algorithm, then you could
determine whether the language of two arbitrary patterns p1 and p2 have a
non-empty intersection, which is a knownly undecidable problem, by running
this hypothetical algorithm for the pattern !p1&p2.

One of the conditions for our algorithm to yield a result is when it visits
a pattern that is guaranteed to consume some input. As a result, it exclusively



Chapter 3. Well-formedness Algorithm 23

visits patterns that may be reached without consuming any input. Therefore,
if the algorithm revisits a rule, this means a path exists in which the parsing
routine may reach the same rule and with the same input string, which would
indicate that such rule is left-recursive. We will now discuss possible ways to
detect when a rule has been visited twice.

One possible way to detect left-recursive rules is through a set of visited
rules, which is checked and updated every time a nonterminal pattern is visited.
For a grammar with n rules, this set could be implemented as an array of n

Boolean values, each representing a rule. This method achieves a computation
and spatial completity of O(n).

Another approach, which is simpler and takes less memory space, uses a
counter of visited rules, which starts at zero and gets incremented every time a
rule is visited. If this value ever surpasses the number of grammar rules, then
we know, by the pigeonhole principle, that some rule has been visited more
than once. In the case of grammars with left-recursive rules, we may visit
more rules than necessary, however, we are not particularly worried about the
performance of the algorithm in the case of errors.

LPeg adopts this last approach. Our formalization follows LPeg, though
with a small twist: instead of counting visited rules from zero until the limit,
we count to-be-visited rules from the limit down to zero. This simplifies our
formalization by moving the limit calculation out of the algorithm body, and
letting the limit be passed down as a parameter instead.

At this point, it is important to draw a distinction between exhausting
the counter of to-be-visited rules and correctly identifying a left-recursive rule.
When the algorithm starts, the counter is initialized with the provided limit.
It is then decremented every time a rule is visited. If the counter ever reaches
zero, then attempting to visit any rule will return an error. The algorithm
does not determine whether this error indicates left recursion, because it would
require the algorithm to check whether the limit is greater than the number
of grammar rules. Instead, we leave it to the caller to provide a high enough
limit, in which case the algorithm indeed correctly labels rules as left-recursive
by returning an error.

Because of this shift in responsibilities, we adapt the nomenclature for
the counter parameter and associated error, based on an analogy with call
stacks. If, every time a rule is visited, it were pushed onto a stack k, then we
could think of the counter parameter d as the stack depth limit; and surpassing
it would be similar to a stack overflow error.

For the sole purpose of helping us prove certain properties about the
algorithm, we will also include this stack k, a list of rule indices, as an
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output, though it doesn’t affect the algorithm. As we will soon see, it is either
appended, passed along, or ignored. It works as a trace of the inner workings
of the function, a high-level concept we only use for proving lemmas about
this algorithm. LPeg also implements this output, but it is only used when
formatting error messages about left-recursive rules.

We now describe the algorithm for detecting left-recursive rules, starting
with its inputs and outputs. It receives a pattern, a grammar, and a stack
depth limit, and returns a label and a stack. We represent labels by optional
Boolean values Some true (nullable), Some false (non-nullable) and None

(stack overflow error); and stacks by either nil (an empty stack) or i :: k (a
rule of index i concatenated with a stack k). For now, we will work with this
signature, but beware that the actual function, displayed in Figure 3.7, receives
an extra parameter which we will introduce later in this section.

The function is defined recursively. In most cases, it calls itself for each
sub-pattern. In the case of nonterminal patterns, however, it calls itself for
the referenced rule. Furthermore, the function propagates any stack overflow
errors. This means that, if some recursive call returns None, signaling a stack
overflow, and a stack k, then the function also returns None and k.

For the empty pattern ε, the function returns a label Some true and
nil, because it is nullable and doesn’t visit any nonterminal. We categorize it
as nullable because it may match while consuming no input. In particular, it
always matches while consuming no input.

As for character set patterns [cs], the function returns Some false and
nil, because it is non-nullable, meaning it always consumes some input when
it matches. It also doesn’t visit any nonterminal.

For a nonterminal pattern Ri, the function first checks the stack depth
limit d. If d = 0, it returns None and nil, signaling a stack overflow and that it
didn’t visit any nonterminal. Otherwise, if d ≥ 1, then the function calls itself
for the ith rule of the grammar, while passing a stack depth limit of d − 1. If
this recursive call returns a label res and a stack k, then the function returns
res and i :: k. This way, the stack accumulates the indices of the grammar
rules in the same order in which they are visited.

For a repetition pattern p⋆, the function evaluates p, which returns res

and k, to check for any stack overflow errors. If res ̸= None, then it returns
Some true and k, as it can match while consuming no input, in case p fails.
We assume that p can fail because, in the final verification step, we ensure
that p is non-nullable, and we know that non-nullable patterns fail to match
the empty string.

Predicate patterns !p and &p are evaluated in the same way as repetition
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verifyrule g p d nb 0 = None

verifyrule g p d nb (1 + gas) =
match p with
| ε⇒ Some (Some true, nil)
| [cs]⇒ Some (Some nb, nil)
| p′⋆ ⇒ verifyrule g p′ d true gas

| !p′ ⇒ verifyrule g p′ d true gas

| &p′ ⇒ verifyrule g p′ d true gas

| Ri ⇒match g[i] with
| None⇒ None

| Some p′ ⇒match d with
| 0⇒ Some (None, nil)
| 1 + d′ ⇒match verifyrule g p′ d′ nb gas with

| Some (res, k)⇒ Some (res, i :: k)
| None⇒ None

end
end

end
| p1 p2 ⇒match verifyrule g p1 d false gas with

| Some (Some true, k)⇒ verifyrule g p2 d nb gas

| Some (Some false, k)⇒ Some (Some nb, k)
| res⇒ res

end
| p1 / p2 ⇒match verifyrule g p1 d nb gas with

| Some (Some nb′, k)⇒ verifyrule g p2 d nb′ gas

| res⇒ res

end
end

Figure 3.7: The left recursion detection function.
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eval g Jp1 / p2K d nb = match eval g p1 d nb with
| (Some nb′, k)⇒ eval g p2 d nb′

| (None, k)⇒ (None, k)
end

Figure 3.8: Pseudocode of the evaluation of choice patterns.

patterns, but for different reasons. Repetition patterns are nullable because
they can always match without consuming any input. Meanwhile, predicate
patterns are nullable by approximation, under the assumption that p may
match, in the case of &p, or fail to match, in the case of !p.

For a sequence pattern p1 p2, the function first evaluates p1. If p1 is non-
nullable, then so is the sequence p1 p2, and the function returns the same label
and stack as p1. Note that p2 is not even evaluated in this case, because it would
be visited with a shorter input string during parsing. This is the only case in
which the nullable property comes into play in this algorithm. If, otherwise, p1

is nullable, then it evaluates p2 and returns the same label and stack as p2.
Finally, for a choice pattern p1 / p2, it first evaluates p1. If it returns

Some b1, indicating that p1 did not overflow the stack, then it evaluates p2. If
it also returns Some b2, then the function returns Some (b1∨ b2) and the same
stack as p2.

The algorithm we’ve just described is quite similar to the one imple-
mented in LPeg. There is, however, one small difference related to the use of
tail calls as an optimization technique. In C, tail calls are implemented with
goto statements. To apply this optimization technique, LPeg adds an extra
parameter to the function to work as an accumulator for the nullable property.
Without this accumulator parameter, the evaluation of choice patterns p1 / p2

would rely solely on recursion. It would evaluate p1 and p2, then perform a
Boolean or operation on the results.

With the addition of a Boolean parameter nb, we can turn the evaluation
of p2 into a tail call. Instead of making the Boolean or operation explicitly,
we let the accumulator do it under-the-hood. This works because, in the base
cases of the recursion, in which the function would return either Some true

or Some false, we return instead Some (true ∨ nb) and Some (false ∨ nb),
which get simplified to Some true and Some nb, respectively. Figure 3.8 shows
a Coq-like pseudocode of how choice patterns are evaluated with the Boolean
parameter nb.

We would also like to highlight how this nullable accumulator allows the
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evaluation of repetitions and predicates to be rewritten as tail calls. Previously,
we would have to check if p evaluated to None, before returning Some true.
Now, we can simply pass true as the nullable accumulator, which guarantees
that, if p does not evaluate to None, it evaluates to Some true.

There are some ways in which this function could be implemented in
Coq as a fixed-point. The classical way is to add a gas parameter, which gets
decremented in every recursive call. We make the function return an optional
value, such that, if the gas parameter ever reaches zero, it returns None. Other
ways are providing a well-formedness proof, or a measure function. We choose
the first strategy, because it is the simplest to implement.

Finally, Figure 3.7 presents the algorithm defined as a fixed-point func-
tion. It returns an optional value, because we adopted the gas strategy, but
also because it cannot evaluate nonterminal patterns that reference nonexis-
tent rules. In this case, the function also returns None. In all other cases, the
function returns Some (res, k), with res being a label, and k, a stack.

At this point, the reader should be warned that we will not attempt to
prove the correctness of this function in isolation. In fact, we will not even
try to formally define left-recursive rules. This might frustrate the reader, but
we assure you that such proof will not be necessary. Instead, we will later
prove the correctness of the whole algorithm once we introduce all steps of
the verification process. In this section, we will simply prove that the label
returned by the function is monotonic and eventually constant with respect to
the gas counter and stack depth limit.

A function f is said to be monotonically increasing if, for any x and y,
such that x ≤ y, it is always true that f(x) ≤ f(y). In the case of the verifyrule
function, this will be true for the gas counter and stack depth limit parameters,
and the order between optionals is None < Some res, for any res. This means
that, if the function ever returns Some res, increasing the gas counter or the
stack depth limit will not alter the return value.

A function f is eventually constant if, for some N and for any x and
y, such that x, y ≥ N , it is true that f(x) = f(y). In the case of verifyrule
function, this will be true for the gas counter and stack depth limit parameters
and for the label return value. This means that both the gas counter and stack
depth limit have lower bounds for which the returned label stabilizes.

About this fixed-point definition, we will initially prove some basic
lemmas. Starting with Lemma 3.8, we state that, if the function returns
Some (res, k), then increasing the value of the gas parameter will not change
the result. This is what we mean by the function being monotonic and
eventually constant with respect to the gas counter.
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Lemma 3.8. If verifyrule g p d nb gas = Some (res, k),
then ∀gas′ ≥ gas, verifyrule g p d nb gas′ = Some (res, k).

Lemma 3.9 states that, for any coherent pattern and grammar, there
exists a lower bound for the gas parameter, for which the function returns
Some (res, k). The lower bound takes into account the size of the pattern ||p||,
the size of the grammar ||g||, and the stack depth limit d.

Lemma 3.9. If (g, p) c−→ true, and (g, g) lc−→ true,
then, ∀gas ≥ ||p||+ d · ||g||, ∃res ∃k verifyrule g p d nb gas = Some (res, k).

Proof. For most patterns, the proof follows from induction on the pattern p.
Meanwhile, for non-terminal patterns, the proof follows from induction on the
stack depth limit d. We show below how the lower bound for a rule r and stack
depth limit d is derived from a non-terminal Ri that references r and stack
depth limit d + 1. We use Lemma 3.2 to show that ||g|| ≥ ||r||.

gas ≥ ||Ri||+ (d + 1) · ||g||

≥ 1 + (d + 1) · ||g||

≥ 1 + ||g||+ d · ||g||

≥ 1 + ||r||+ d · ||g||

Now, we would like to prove that the label returned by the verifyrule
function is monotonic and eventually constant with respect to the stack depth
limit. We discard the returned stack in this context because, in the case of
left-recursive rules, the stack returned by the function will, in fact, diverge.
However, we are not interested in the output stack, in this case. What really
matters to the following steps of the verification process is the label. In
particular, we would like to make sure that no rule in the grammar is marked
with the label None, meaning “stack overflow”.

In order to prove such lemma, we realized an inductive, gasless predicate
would be better suited than the fixed-point definition, as it would be easier to
perform proofs by induction, and without having to deal with a gas parameter.
Figure 3.9 defines such predicate, denoted as (g, p, d, nb) vr−→(res, k). It takes a
grammar g, a pattern p, a stack depth limit d, and a nullable accumulator nb,
and outputs a result res, and a stack trace k.

In order to reach our final goal of proving that the label returned by the
verifyrule function is monotonic and eventually constant with respect to the
stack depth limit, we need to first prove some intermediary lemmas. First, we
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(g, ε, d, nb) vr−→(Some true, nil)
(v-eps)

(g, [cs], d, nb) vr−→(Some nb, nil)
(v-set)

(g, Ri, 0, nb) vr−→(None, nil)
(v-nonterminal-zero)

g[i] = Some p (g, p, d, nb) vr−→(res, k)
(g, Ri, d + 1, nb) vr−→(res, i :: k)

(v-nonterminal-succ)

(g, p, d, true) vr−→(res, k)
(g, p⋆, d, nb) vr−→(res, k)

(v-rep)
(g, p, d, true) vr−→(res, k)
(g, !p, d, nb) vr−→(res, k)

(v-not)

(g, p, d, true) vr−→(res, k)
(g, &p, d, nb) vr−→(res, k)

(v-and)
(g, p1, d, false) vr−→(None, k)
(g, p1 p2, d, nb) vr−→(None, k)

(v-seq1)

(g, p1, d, false) vr−→(Some false, k)
(g, p1 p2, d, nb) vr−→(Some nb, k)

(v-seq2)

(g, p1, d, false) vr−→(Some true, k1) (g, p2, d, nb) vr−→(res, k2)
(g, p1 p2, d, nb) vr−→(res, k2)

(v-seq3)

(g, p1, d, nb) vr−→(None, k)
(g, p1 / p2, d, nb) vr−→(None, k)

(v-choice1)

(g, p1, d, nb) vr−→(Some nb′, k1) (g, p2, d, nb′) vr−→(res, k2)
(g, p1 / p2, d, nb) vr−→(res, k2)

(v-choice2)

Figure 3.9: The left recursion detection predicate.

need to relate the predicate and the fixed-point definition together, so that we
can apply the proofs about the former to the latter.

We begin with Lemma 3.10, which states that, for identical input, the
predicate yields the same output. We can therefore state that the predicate is
deterministic.

Lemma 3.10. If (g, p, d, nb) vr−→(res1, k1), and (g, p, d, nb) vr−→(res2, k2),
then res1 = res2 and k1 = k2.

Lemma 3.11 shows that every result returned by the fixed-point definition
can be inductively constructed using the predicate definition.

Lemma 3.11. If verifyrule g p d nb gas = Some (res, k),
then (g, p, d, nb) vr−→(res, k).
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Lemma 3.12 shows that, if a pattern evaluates to either nullable or non-
nullable, then increasing the stack depth limit doesn’t affect the result. This is
expected, because, in both cases, it doesn’t surpass the limit, and increasing
it preserves this property by transitivity.

Lemma 3.12. If (g, p, d, nb) vr−→(Some nb′, k),
then ∀d′ ≥ d, (g, p, d′, nb) vr−→(Some nb′, k).

Lemma 3.13 shows that, on stack overflow, the output stack k has length
d. That is expected, because a stack overflow happens when the stack is full
before trying to visit a rule.

Lemma 3.13. If (g, p, d, nb) vr−→(None, k), then |k| = d.

Lemma 3.14 states that the output stack only contains references to
existing rules in the grammar. Since we are identifying rules by their indices
in a list, we prove this by showing that these indices are less than the number
of rules in the grammar, denoted as |g|. This lemma may seem trivial, but it
is necessary for us to later prove, using the pigeonhole principle, that a stack
with more rules than the grammar will have at least one repeated rule.

Lemma 3.14. If (g, p, d, nb) vr−→(res, k), then ∀i ∈ k, i < |g|.

Lemma 3.15 states that, for any evaluation that results in a stack
overflow, we can pick any rule i from the output stack k, and evaluate it
with a certain stack depth limit, so that it also results in a stack overflow, and
returns a suffix of the original stack k, starting from i.

Lemma 3.15. If (g, p, d, nb) vr−→(None, k1 ++ i :: k2),
then (g, Ri, 1 + |k2|, nb′) vr−→(None, i :: k2).

Under the same assumptions, Lemma 3.16 shows that, if we evaluate a
rule i from the stack with an increased stack depth limit and it still results
in a stack overflow and returns a stack i :: k3, then we can increase the stack
depth limit of the original evaluation by the same amount, it will also result
in a stack overflow, and return a stack that ends with i :: k3.

Lemma 3.16. If (g, p, d, nb) vr−→(None, k1 ++ i :: k2),
and (g, Ri, 1 + |k3|, nb′) vr−→(None, i :: k3), and |k2| ≤ |k3|,
then (g, p, 1 + |k1|+ |k3|, nb) vr−→(None, k1 ++ i :: k3).

Lemma 3.17 shows that, if an evaluation results in a stack overflow, and
a rule i occurs more than once in the output stack, then we can increase the
stack depth limit by a certain amount, and both conditions will still hold true.
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lverifyrule g rs gas :=
match rs with
| nil⇒ Some true

| r :: rs′ ⇒ let d := |g|+ 1 in
match verifyrule g r d false gas with
| Some (Some b, k)⇒ lverifyrule g rs′ gas

| Some (None, k)⇒ Some false

| None⇒ None

end
end

Figure 3.10: The left recursion detection function for lists of patterns.

Lemma 3.17. If (g, p, d, nb) vr−→(None, k1 ++ i :: k2 ++ i :: k3),
then ∃d′, such that (g, p, d′, nb) vr−→(None, k1 ++ i :: k2 ++ i :: k2 ++ i :: k3).

Finally, we present the main lemma that we wanted to prove. Lemma 3.18
shows that, if an evaluation with a stack depth limit greater than the number
of grammar rules yields a result, then any evaluation with an even greater
stack depth limit yields the same result. The stacks can be different, but they
are irrelevant for our purpose of identifying left-recursive rules.

Lemma 3.18. If (g, p, d, nb) vr−→(res, k), and d > |g|,
then, for any d′ ≥ d, ∃k′, such that (g, p, d′, nb) vr−→(res, k′).

We now explain the proof of this lemma. For the cases in which the eval-
uation does not result in a stack overflow, the proof follows from Lemma 3.12.
Now, in the case of a stack overflow, we know from Lemma 3.13 that the length
of the stack k is equal to the stack depth limit d, which, in this case, we assume
to be greater than n, the number of grammar rules. Therefore, |k| > n. We
know from Lemma 3.14 that the stack only contains valid grammar rule in-
dices. That is, ∀i ∈ k, i < n. We use these two observations and the pigeonhole
principle to conclude that the stack must have at least one repeated rule. From
Lemma 3.17, we show that we can increase the stack depth limit arbitrarily,
and it will still result in a stack overflow.

Having defined the algorithm that checks if a pattern is free of left
recursion, we now use this definition to create a function that performs this
check for a list of patterns. Figure 3.10 defines this function, which receives a
grammar, a list of patterns, and a gas counter, and returns an optional Boolean
value indicating whether all patterns in the grammar are free of left recursion.
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(g, nil) lvr−→ true
(lvr-nil)

(g, r, d, false) vr−→(Some nb, k) (g, rs) lvr−→ b

(g, r :: rs) lvr−→ b
(lvr-cons-some)

|g| < d (g, r, d, false) vr−→(None, k)
(g, r :: rs) lvr−→ false

(lvr-cons-none)

Figure 3.11: The left recursion detection predicate for lists of patterns.

This new function provides values for two of the parameters of the
underlying function: the stack depth limit d, initialized with |g|+ 1, the lower
bound from Lemma 3.18, and the nullable accumulator nb, initialized with
false. We could have omitted the gas counter, by providing the lower bound
from Lemma 3.9, but we decided to postpone this omission to the top-most
definition of well-formedness in our formalization.

We provide a lower bound for the gas parameter, for which the function
returns some result. Note that we’re assuming that both the grammar g and
the list of rules rs are coherent, because they could be different. In practice,
however, they will be the same. In this case, where rs = g, the equation for
the lower bound can be simplified to (|g| + 2) · ||g||. That is the origin of the
lower bound of the verifygrammar function as displayed in Figure 3.1.

Lemma 3.19. If (g, g) lc−→ true and (g, rs) lc−→ true,
then, ∀gas ≥ ||rs||+ (|g|+ 1) · ||g||, ∃res lverifyrule g rs gas = Some res.

Proof. The proof follows by induction on the list of rules rs, and from the gas
lower bound for the function verifyrule from Lemma 3.9, substituting the stack
depth limit d with |g|+ 1.

We will use this function for verifying that the grammar contains no
left-recursive rules, since it’s implemented as a list of rules. Since we will
also be using it in our proofs, we will need an analogous inductive definition.
Figure 3.11 defines this predicate, which also receives a grammar and a list of
patterns, and yields a Boolean value indicating whether all patterns in the list
are free of left recursion.

This predicate differs from the function in one aspect. While the function
provides an exact value for the stack depth limit, the predicate allows any
stack depth limit to identify a pattern as either nullable or non-nullable. That
is because, according to Lemma 3.12, the returned label stays constant with
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increasing stack depth limits in such cases. In the general case, however, a stack
depth limit greater than the number of rules in the grammar is necessary.

We prove some lemmas about this predicate. Lemma 3.20 states that this
predicate is deterministic, and Lemma 3.21 states that it follows the fixed-point
definition.

Lemma 3.20. If (g, rs) lvr−→ b1 and (g, rs) lvr−→ b2, then b1 = b2.

Lemma 3.21. If lverifyrule g rs gas = Some b, then (g, rs) lvr−→ b.

Lemma 3.22 states that, if a list of patterns passes the check, then every
pattern in the list passes the individual check, being either nullable or non-
nullable.

Lemma 3.22. If (g, rs) lvr−→ true,
then, ∀r ∈ rs, ∃d ∃b ∃k (g, r, d, nb) vr−→(Some b, k).

Before we end this section, there is one final lemma we would like to
present, which uses all the predicates of the verification algorithm we have
defined up until now. Lemma 3.23 shows that, if a grammar is free of incoherent
and left-recursive rules, then any coherent pattern is either nullable or non-
nullable.

Lemma 3.23. If (g, p) c−→ true, and (g, g) lc−→ true,
and (g, g) lvr−→ true, then ∃d ∃b ∃k, such that (g, p, d, nb) vr−→(Some b, k).

3.3
A simpler algorithm for detecting nullable patterns

Once we have made sure a grammar is free of left-recursive rules, the
next step is to check for degenerate loops, which involves checking if certain
patterns are nullable. To this end, we could use the algorithm we have just
described in Section 3.2, but LPeg implements a simpler version, which takes
advantage of the fact that the grammar contains no left-recursive rules.

The difference between the algorithm from Section 3.2 and this simpler
version can be seen, for example, in the case of choice patterns p1 / p2. More
specifically, if p1 is nullable, the function from Section 3.2 would still need
to evaluate p2, as it could potentially lead to left recursion. Meanwhile, if we
assume that p2 cannot lead to left recursion, then if p1 is nullable, we can state
that p1 / p2 is nullable, without having to visit p2. We can also avoid visiting
sub-patterns in the cases of repetition patterns and predicate patterns, because
they are all nullable.

In Figure 3.12, we define this simpler version as a fixed-point, which
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nullable g p d 0 = None

nullable g p d (1 + gas) =
match p with
| ε⇒ Some Some true

| [cs]⇒ Some Some false

| p⋆ ⇒ Some Some true

| !p⇒ Some Some true

| &p⇒ Some Some true

| Ri ⇒match g[i] with
| Some p⇒match d with

| 0⇒ Some None

| 1 + d′ ⇒ nullable g p d′ gas

end
| None⇒ None

end
| p1 p2 ⇒match nullable g p1 d gas with

| Some Some true⇒ nullable g p2 d gas

| res⇒ res

end
| p1 / p2 ⇒match nullable g p1 d gas with

| Some Some false⇒ nullable g p2 d gas

| res⇒ res

end
end

Figure 3.12: The nullable function.

takes a grammar, a pattern, a stack depth limit, and a gas counter, and
returns an optional label. Possible return values are, therefore, None (out-
of-gas), Some None (stack overflow), Some Some true (nullable), and
Some Some false (non-nullable).

The gas parameter is still necessary to convince Coq that the function
terminates, and because it could be called with an incoherent pattern or with
a grammar that contains an incoherent rule. The stack depth limit is also
necessary because the function could be called with a grammar that contains
a left-recursive rule. For these two reasons, this function may still return None

(out-of-gas) or Some None (stack overflow).
In reality, however, this function should only be called after the grammar

and pattern are guaranteed to be coherent and free of left-recursive rules. For
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this reason, implementations of this algorithm such as the one in LPeg are able
to safely drop both parameters, and return just a Boolean value indicating
whether the pattern is nullable or not.

Also note that, unlike the function from Figure 3.7, this function does
not receive a nullable accumulator as parameter and does not return a stack.
The nullable accumulator is not necessary, thanks to the assumption that the
grammar contains no left-recursive rules, and the output stack was only used
for proofs, which we will be able to reuse from Section 3.2.

Just as we did for the function from Section 3.2, we prove that this
simpler version is also monotonic with respect to the gas counter.

Lemma 3.24. If nullable g p d gas = Some res,
then, ∀gas′ ≥ gas, nullable g p d gas′ = Some res.

Besides that, we also prove the function is eventually constant with
respect to the gas counter by giving a gas lower bound for which the function
returns some result for any coherent pattern and grammar.

Lemma 3.25. If (g, p) c−→ true, and (g, g) lc−→ true,
then, ∀gas ≥ ||p||+ d · ||g||, ∃res nullable g p d gas = Some res.

Furthermore, we would also like to prove that this function is eventually
constant and monotonic with respect to the stack depth limit. However, in
order to do that, we found it better to first define an equivalent inductive
predicate. Figure 3.13 defines the predicate (g, p, d) n−→ res which takes a
grammar g, a pattern p, a stack depth limit d, and returns a label res.

About this predicate, we proved some basic lemmas. First, we proved
that it is deterministic.

Lemma 3.26. If (g, p, d) n−→ res1, and (g, p, d) n−→ res2, then res1 = res2.

We also proved that it follows the fixed-point definition.

Lemma 3.27. If nullable g p d gas = Some res, then (g, p, d) n−→ res.

We also tied this predicate to the one from Section 3.2, showing how
similar they are, when the nullable accumulator is false, and the pattern is
either nullable or non-nullable.

Lemma 3.28. If (g, p, d, false) vr−→(Some b, k), then (g, p, d) n−→Some b.

We also proved that if a pattern was identified as either nullable or non-
nullable, then increasing the stack depth does not impact the result.

Lemma 3.29. If (g, p, d) n−→Some b, then ∀d′ ≥ d, (g, p, d′) n−→Some b.
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(g, ε, d) n−→Some true
(n-eps)

(g, [cs], d) n−→Some false
(n-set)

(g, p⋆, d) n−→Some true
(n-rep)

(g, !p, d) n−→Some true
(n-not)

(g, &p, d) n−→Some true
(n-and)

g[i] = Some p

(g, Ri, 0) n−→None
(n-nonterminal-zero)

g[i] = Some p (g, p, d) n−→ res

(g, Ri, 1 + d) n−→ res
(n-nonterminal-succ)

(g, p1, d) n−→None

(g, p1 p2, d) n−→None
(n-seq-none)

(g, p1, d) n−→Some false

(g, p1 p2, d) n−→Some false
(n-seq-some-false)

(g, p1, d) n−→Some true (g, p2, d) n−→ res

(g, p1 p2, d) n−→ res
(n-seq-some-true)

(g, p1, d) n−→None

(g, p1 / p2, d) n−→None
(n-choice-none)

(g, p1, d) n−→Some false (g, p2, d) n−→ res

(g, p1 / p2, d) n−→ res
(n-choice-some-false)

(g, p1, d) n−→Some true

(g, p1 / p2, d) n−→Some true
(n-choice-some-true)

Figure 3.13: The nullable predicate.
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Maybe the most important lemma about the nullable predicate relates
to the match predicate. It states that a non-nullable pattern never matches
without consuming some part of the input string.

Lemma 3.30. If (g, p, d) n−→Some false, then ∄s such that (g, p, s) m−→ s.

This lemma is used to prove that, when matching a non-nullable pattern,
the output string is a proper suffix of the input string. We use the symbol “≺”
to denote this relation.

Lemma 3.31. If (g, p, d) n−→Some false, and (g, p, s) m−→ s′, then s′ ≺ s.

Finally, we show that the predicate is eventually constant with respect
to the stack depth limit, past a lower bound given by the number of rules in
the grammar, denoted as |g|.

Lemma 3.32. If (g, p) c−→ true, and (g, g) lc−→ true, and (g, g) lvr−→ true,
and (g, p, d) n−→ res, where d > |g|, then, ∀d′ ≥ d, (g, p, d′) n−→ res.

3.4
Degenerate loops

After making sure that all rules are coherent, and that the grammar is
free of left-recursive rules, the next step is to look for degenerate loops, which
are repetition patterns p⋆ where p is nullable. To detect nullable patterns, we
use the algorithm from Section 3.3.

Figure 3.14 defines this step of the verification process as a fixed-
point, which takes a grammar, a pattern, a stack depth limit, and a gas
counter, and returns an optional label. Possible return values are None (out-
of-gas), Some None (stack overflow), Some Some true (degenerate), and
Some Some false (non-degenerate).

This fixed-point does not visit rules referenced by nonterminal patterns.
Instead, each rule is checked separately. In this case, the stack depth limit
parameter is simply passed down on to the function that checks whether a
pattern is nullable or not. However, as we’ve discussed in Section 3.3, actual
implementations can safely drop this parameter, given that the grammar has
been checked for left-recursive rules already.

Just as with the other gas-based functions, we would like to prove that
this function is monotonic with respect to the gas counter. Lemma 3.33 states
that, if this function returns some label, then increasing the gas counter won’t
change the returned label.

Lemma 3.33. If checkloops g p d gas = Some res,
then, ∀gas′ ≥ gas, checkloops g p d gas′ = Some res.
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checkloops g p d 0 = None

checkloops g p d (1 + gas) =
match p with
| ε⇒ Some Some false

| [cs]⇒ Some Some false

| Ri ⇒ Some Some false

| !p⇒ checkloops g p d gas

| &p⇒ checkloops g p d gas

| p⋆ ⇒match nullable g p d gas with
| Some Some false⇒ checkloops g p d gas

| res⇒ res

end
| p1 p2 ⇒match checkloops g p1 d gas with

| Some Some false⇒ checkloops g p2 d gas

| res⇒ res

end
| p1 / p2 ⇒match checkloops g p1 d gas with

| Some Some false⇒ checkloops g p2 d gas

| res⇒ res

end
end

Figure 3.14: The degenerate loop detection function.

Moreover, Lemma 3.34 states that, for any coherent pattern and gram-
mar, there exists a lower bound for the gas parameter, for which the function
returns some result.

Lemma 3.34. If (g, p) c−→ true, and (g, g) lc−→ true,
and gas ≥ ||p||+ d · ||g||, then ∃res checkloops g p d gas = Some res.

We would also like to prove that this function is monotonic and eventually
constant with respect to the stack depth limit. However, in order to do that, it
is better to work with an inductively-defined predicate. Figure 3.15 shows the
predicate we have defined. It takes a grammar, a pattern, and a stack depth
limit, and returns an optional Boolean value.

As usual, we first prove some basic lemmas about the predicate.
Lemma 3.35 states that the predicate is deterministic, meaning that, for the
same input, it yields the same output.

Lemma 3.35. If (g, p, d) cl−→ res1, and (g, p, d) cl−→ res2, then res1 = res2.
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(g, ε, d) cl−→Some false
(cl-eps)

(g, [cs], d) cl−→Some false
(cl-set)

(g, Ri, d) cl−→Some false
(cl-nonterminal)

(g, p, d) cl−→ res

(g, !p, d) cl−→ res
(cl-not)

(g, p, d) cl−→ res

(g, &p, d) cl−→ res
(cl-and)

(g, p, d) n−→None

(g, p⋆, d) cl−→None
(cl-rep-lr)

(g, p, d) n−→Some true

(g, p⋆, d) cl−→Some true
(cl-rep-nullable)

(g, p, d) n−→Some false (g, p, d) cl−→ res

(g, p⋆, d) cl−→ res
(cl-rep-non-nullable)

(g, p1, d) cl−→None

(g, p1 p2, d) cl−→None
(cl-seq-none-1)

(g, p2, d) cl−→None

(g, p1 p2, d) cl−→None
(cl-seq-none-2)

(g, p1, d) cl−→Some b1 (g, p2, d) cl−→Some b2

(g, p1 p2, d) cl−→Some (b1 ∨ b2)
(cl-seq-some)

(g, p1, d) cl−→None

(g, p1 / p2, d) cl−→None
(cl-choice-none-1)

(g, p2, d) cl−→None

(g, p1 / p2, d) cl−→None
(cl-choice-none-2)

(g, p1, d) cl−→Some b1 (g, p2, d) cl−→Some b2

(g, p1 / p2, d) cl−→Some (b1 ∨ b2)
(cl-choice-some)

Figure 3.15: The degenerate loop detection predicate.



Chapter 3. Well-formedness Algorithm 40

lcheckloops g rs gas = match rs with
| nil⇒ Some false

| r :: rs′ ⇒ let d := |g|+ 1 in
match checkloops g r d gas with
| Some Some false⇒ lcheckloops g rs′ gas

| Some Some true⇒ Some true

| res⇒ None

end
end

Figure 3.16: The degenerate loop detection function for lists of patterns.

Lemma 3.36 states that every result returned by the function can be
constructed using the predicate. We therefore say the predicate follows the
function.

Lemma 3.36. If checkloops g p d gas = Some res, then (g, p, d) cl−→ res.

Lemma 3.37 states that, if the predicate yields some result, then increas-
ing the stack depth limit will not alter the result.

Lemma 3.37. If (g, p, d) cl−→Some res, then, ∀d′ ≥ d, (g, p, d′) cl−→Some res.

Finally, Lemma 3.38 states that, for any coherent pattern and grammar
without left-recursive rules, the label returned by the predicate is constant
when the stack depth limit is greater than the number of rules in the grammar.

Lemma 3.38. If (g, p) c−→ true, and (g, g) lc−→ true, and (g, g) lvr−→ true,
and (g, p, d) cl−→ res, where d > |g|, then, ∀d′ ≥ d, (g, p, d′) cl−→ res.

Having defined the algorithm that checks if a pattern contains any
degenerate loops, we now define a function that performs this check for a
list of patterns. Naturally, we will be using this function to check all the rules
of a grammar. Figure 3.16 displays this function, which takes a grammar, a
list of patterns, and a gas counter, and returns an optional Boolean value,
indicating whether it has found any degenerate loop. We pass |g| + 1 as the
stack depth limit to the underlying function.

We prove that there is a lower bound for the gas counter for which this
function returns some result, assuming the grammar contains no incoherent
or left-recursive rules, and that the list of patterns only contains coherent
patterns. In reality, we will be calling this function while passing g as the rs

parameter, so, in our case, it would suffice to state that g contains no incoherent
or left-recursive rules.
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(g, nil) lcl−→ false
(lcl-nil)

(g, r, d) cl−→Some b1 (g, rs) lcl−→ b2

(g, r :: rs) lcl−→ b1 ∨ b2
(lcl-cons)

Figure 3.17: The degenerate loop detection predicate for lists of patterns.

Lemma 3.39. If (g, g) lc−→ true, and (g, rs) lc−→ true, and (g, g) lvr−→ true,
then, ∀gas ≥ ||rs||+ (|g|+ 1) · ||g||, ∃b lcheckloops g rs gas = Some b.

In order to abstract away the gas counter, and to help us in later induction
proofs, we also define an equivalent inductive predicate for this list-based
degenerate loop checker. Figure 3.17 displays this predicate, which takes a
grammar and a list of patterns, and returns a Boolean value, indicating whether
none of the patterns in the list contain a degenerate loop.

As usual, we prove some basic lemmas about this predicate. Lemma 3.40
states that it is deterministic, and Lemma 3.41 states that it follows the fixed-
point definition.

Lemma 3.40. If (g, rs) lcl−→ b1, and (g, rs) lcl−→ b2, then b1 = b2.

Lemma 3.41. If lcheckloops g rs gas = Some b, then (g, rs) lcl−→ b.

We also prove that if a list of patterns passes this list-based check, then
each pattern in this list also passes the individual check.

Lemma 3.42. If (g, rs) lcl−→ false, then ∀r ∈ rs, ∃d (g, r, d) cl−→Some false.

3.5
Correctness

Having introduced each step of the well-formedness algorithm, we can
now present the definition of the verifygrammar function, which implements
the algorithm step-by-step. It starts by checking whether the grammar defines
a first rule, and whether every rule in the grammar is coherent. It then makes
sure the grammar contains no left-recurive rules, and no degenerate loops, in
this order. Figure 3.18 displays the function.

Now, let us prove that the well-formedness check is correct. To do so, we
first define an inductive predicate equivalent to the verifygrammar function to
help us in proofs by induction. Figure 3.19 presents this predicate, which takes
a grammar and returns a Boolean value indicating whether the grammar passes
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verifygrammar g gas =
match coherent g R0 with
| true⇒match lcoherent g g with

| true⇒match lverifyrule g g gas with
| Some true⇒match lcheckloops g g gas with

| Some b⇒ Some ¬b

| None⇒ None

end
| res⇒ res

end
| false⇒ Some false

end
| false⇒ Some false

end

Figure 3.18: The well-formedness function with gas.

(g, R0) c−→ false

g
vg−→ false

(vg1)
(g, R0) c−→ true (g, g) lc−→ false

g
vg−→ false

(vg2)

(g, R0) c−→ true (g, g) lc−→ true (g, g) lvr−→ false

g
vg−→ false

(vg3)

(g, R0) c−→ true (g, g) lc−→ true (g, g) lvr−→ true (g, g) lcl−→ true

g
vg−→ false

(vg4)

(g, R0) c−→ true (g, g) lc−→ true (g, g) lvr−→ true (g, g) lcl−→ false

g
vg−→ true

(vg5)

Figure 3.19: The well-formedness predicate.
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all the checks. It is based on the predicates presented in the previous sections.
Lemma 3.43 states that the predicate is deterministic, and Lemma 3.44 states
that it follows the fixed-point definition.

Lemma 3.43. If g
vg−→ b1, and g

vg−→ b2, then b1 = b2.

Lemma 3.44. If verifygrammar g gas = Some b, then g
vg−→ b.

In order to prove correctness, we need to generalize the pattern from
R0 to any pattern p, and to break down the function wf into its separate
steps. We need to make this generalization because the match predicate is
defined recursively on the current pattern. The generalized theorem we need to
prove is the following: Given a grammar g and a pattern p, if g only contains
coherent rules that do not lead to left recursion and that do not have any
degenerate loops, and if p is coherent and does not have degenerate loops,
then ∀s,∃res (g, p, s) m−→ res.

We begin the proof by doing a strong induction on n, the length of the
input string s, which gives us the inductive hypothesis “IHn”. This hypothesis
states that for any input string shorter than s and any pattern, we can assume
that the match yields some result. From Lemma 3.23 and the assumption that
the grammar contains no left-recursive rules, we can infer that the pattern
also does not lead to left recursion. This gives us the inductive predicate
(g, p, d, nb) vr−→(Some b, k), which tells us that p is either nullable or non-
nullable. We do an induction on this predicate and handle each case separately.

Let us start with the basic patterns. The case of the empty pattern ε is
trivial, as it matches any input string without consuming anything. The case
of the character set pattern [cs] is also simple. If s is the empty string, the
pattern fails to match. Otherwise, the string may or may not begin with the
character a ∈ cs. If it does, then it matches while consuming a. Otherwise, it
fails to match.

The sequence pattern p1 p2 has two cases: one in which p1 is non-nullable
and p2 is not visited, and another in which p1 is nullable and p2 is visited. In
both cases, we have an inductive hypothesis stating that p1 has a match result
for input string s. If this match result is a failure, then the whole sequence
p1 p2 also fails. If the match result is a success, then p1 leaves a suffix string s′

unconsumed. Let us handle this case for both scenarios separately.
If p1 is non-nullable, then we can use Lemma 3.31 to state that s′ is a

proper suffix of s, and therefore shorter than s. This allows us to use IHn, and
state that p2 has a match result for the input string s′. This implies that the
sequence has this same match result.
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Otherwise, if p1 is nullable, then we can use Lemma 2.2 to state that s′

is a suffix of s. This means that s′ is either equal to s, or a proper suffix of s.
If s is equal to s′, then we can use the inductive hypothesis to state that p2

yields a match result for s′ = s. Otherwise, then we can use IHn in the same
way as the previous case, because s′ would be shorter than s.

Now let us consider the case of the choice pattern p1 / p2. Similar to
the case of the sequence pattern, we have induction hypotheses for p1 and p2

yielding a match result for the input string s. This case is simpler because s is
the same input string for both choice options, so these induction hypotheses
are enough to prove this case.

The case of the repetition pattern p⋆ is the most interesting one, as we
get to use the fact that p must be non-nullable in the proof. From the induction
step, we have the inductive hypothesis that p yields a match result for the input
string s. If p fails to match, then p⋆ matches without consuming anything. If,
otherwise, p matches, then it leaves a string s′ unconsumed. Since p is non-
nullable, s′ must be a proper suffix of s. Therefore, we can use IHn to state
that p⋆ yields a match result res for s′, because it is shorter than s. In this
case, p⋆ also yields res for s.

The case of the predicates !p and &p are pretty straightforward. We first
use the inductive hypothesis that p yields a match result for the input string
s. If p matches, then &p matches without consuming anything, and !p fails to
match. Otherwise, if p fails to match, then so does &p, and !p matches without
consuming anything.

Finally, we prove the case of the non-terminal pattern Ri, which is
surprisingly simple. From the induction step, we are given p, the ith rule of
the grammar. From the initial hypotheses, we know that p is coherent and
free of degenerate loops, because it is a grammar rule. We can then use the
inductive hypothesis from the verifyrule predicate to state that p yields a match
result for the input string s.

Theorem 3.45. Given a grammar g and a pattern p, if g only contains
coherent rules that do not lead to left recursion and that free of degenerate loops,
and if p is coherent and free of degenerate loops, then ∀s,∃res (g, p, s) m−→ res.

Having proved Theorem 3.45, we can finally prove the original theorem,
which states that, for any grammar g that satisfies wf g = true, and for any
input string, the non-terminal pattern R0 yields a match result.

Lemma 3.1 states that the function verifygrammar returns Some b when
given a gas counter greater or equal to mingasvg(g). In the implementation of
the function wf, we pass mingasvg(g) as the gas counter for the function verify-
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grammar. Therefore, if wf returns true, then it must be because verifygrammar
returned Some true.

If the function verifygrammar returns Some true, then, according to
Lemma 3.44, we can construct the predicate g

vg−→ true. We can see that
this only happens when the input grammar has passed all the checks. From
Figure 3.19, we can see that this implies in several other predicates, many
of which are necessary to use Theorem 3.45. There are only two missing
predicates: (g, R0) c−→ true, which states that the initial pattern is coherent,
and (g, R0, d) cl−→ false, which states that it does not contain any degenerate
loops.

We can derive both predicates from the fact that R0 is a rule, which we
have checked already. We use Lemma 3.7 to prove that R0 is coherent, and
Lemma 3.42 to prove that it contains no degenerate loops. With this, we are
able to prove the original theorem.

Theorem 3.46. For any grammar g, if wf g = true, then g is complete.



4
First-set Algorithm

In Chapter 3, we presented the well-formedness check implemented in
LPeg, which ensures that the input PEG is complete. However, this is not the
only role of this algorithm: It also ensures that other algorithms implemented
in LPeg terminate, as they traverse patterns in similar ways. This chapter
presents one such algorithm, which we label as the first-set algorithm.

The first-set algorithm is responsible for computing the set of first
characters that can possibly be accepted by a pattern, and a Boolean value
that indicates whether the pattern may accept the empty string. We call this
Boolean value the emptiness value of the pattern. The key properties of the
algorithm, which we later prove, are the following: Any pattern fails any string
that starts with a character that is not in the first-set of the pattern; and the
pattern fails the empty string if its emptiness value is false.

Both are conservative approximations, which means that a full first-set
and an emptiness value of true are the safest options, yet the least useful ones.
That is because LPeg uses this algorithm and its properties to optimize certain
patterns in the code generation phase. So, ideally, we would like the first-set
to be as small as possible, and the emptiness value of false as common as
possible, so that LPeg is able to optimize code more often.

One of the patterns that LPeg tries to optimize using this algorithm is
the ordered choice. As a base reference, we display below the code that LPeg
generates for an ordered choice p1 / p2 without any optimizations.

Choice(L2)

p1

Commit(Lend)

L2 : p2

Lend :

This unoptimized code starts with a choice instruction, which creates a
checkpoint for the initial match state, so that, if p1 fails, it is able to restore this
state before running p2. If, instead, p1 succeeds, it runs a commit instruction,
which deletes this checkpoint and jumps to Lend.

However, if p1 and p2 have disjoint first-sets, and p1 has an emptiness
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value of false, then LPeg generates the following optimized code.

TestSet(first(p1), L2)

p1

Jump(Lend)

L2 : p2

Lend :

This optimized code begins with an instruction (test set) that checks
whether the input string starts with a character in the first-set of p1, and
jumps to L2 if not. In the case where the input string is empty, we know that
p1 would fail, because p1 has an emptiness value of false. If, otherwise, the
input string starts with a character that is not in the first-set of p1, then we
know that p1 would also fail, by the key property of first-sets. So, in either
case, we know that p1 would fail, making the choice pattern equivalent to p2.
That is why, in the case of failure, the test-set instruction jumps to the code
of p2, without ever running the code of p1.

Meanwhile, the test-set instruction succeeds if the input string starts
with a character that is in the first-set of p1, and, therefore, is non-empty. In
this case, because the first-sets of p1 and p2 are disjoint, we know that this
character is not in the first-set of p2. And, from the key property of first-sets,
this means that p2 would fail, making the choice pattern equivalent to p1. So,
in this case, LPeg simply executes the code of p1.

This optimization significantly improves the performance LPeg when
matching some choice patterns. This improvement is possible by replacing the
costly creation/restoration/deletion of checkpoints with inexpensive jumps and
inspections on the input string.

In this chapter, we discuss the first-set algorithm and prove its key
properties.

4.1
Building intuition

Before we formally define the algorithm, we would like to first develop
some intuition for the function signature. We start with an informal definition:
the function receives a pattern and returns the set of first characters that can
be accepted by the pattern. Let us try to informally define the first-set of some
simple patterns using this initial signature.

Starting with ε and p⋆, we know both patterns accept every input string,
so it makes sense for this function to return the full character set, which we
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represent as Σ. As for the character set pattern [cs], we know that it only
accepts strings that start with a character in the set {cs}.

F(ε) = Σ

F(p⋆) = Σ

F([cs]) = {cs}

However, when we try to define the first-set of sequence patterns, we run
into some issues. To better comprehend them, it can be helpful to mentally
compute the first-set of some simple sequences, using the pattern types for
which we have defined the function so far. This may give us some intuition as
to how the first-set of sequences may be derived from its sub-patterns. It is
worth highlighting that these definitions are informal and derived purely from
intuition. The actual formal definitions are presented later in this chapter.

F(ε ε) = Σ

F([cs1] ε) = {cs1}

F(ε [cs2]) = {cs2}

F([cs1] [cs2]) = {cs1}

F([cs1] [cs2]⋆) = {cs1}

F([cs1]⋆ ε) = Σ

F([cs1]⋆ [cs2]) = {cs1} ∪ {cs2}

F([cs1]⋆ [cs2]⋆) = Σ

From the examples above, we can observe that when p1 is non-nullable,
the first-set of p2 doesn’t seem to be relevant to the first-set of the sequence.
That is because p1, being non-nullable, is guaranteed to consume a character.
As a result, p2 is given a proper suffix of the original string, which doesn’t
contain its first character. Based on this observation, we can define the function
for sequences p1 p2 where p1 is non-nullable as the first-set of p1.

F(p1 p2) =

F(p1) if p1 is non-nullable

. . .? if p1 is nullable

We still need to define the function for the case where p1 is nullable.
From the patterns we have defined so far, only the empty pattern ε and the
repetition pattern [cs1]⋆ are nullable. Let us see their behavior in sequence with



Chapter 4. First-set Algorithm 49

the character set pattern [cs2].

F(ε [cs2]) = {cs2}

F([cs1]⋆ [cs2]) = {cs1} ∪ {cs2}

Note that, when alone, their first-sets are equal. However, when in
sequence with the same pattern, the resulting first-sets differ. This discrepancy
indicates that we cannot define F(p1 p2) as a pure function of F(p1) and F(p2).
Instead, we would have to break the definition down for each case of p1.

F(ε p2) = F(p2)

F(p⋆ p2) = F(p) ∪ F(p2)

. . .

With this signature, we would have to define the function for every
nullable pattern twice: one when alone, and another when followed by another
pattern. However, we would like to define the function recursively only once
for each pattern type.

To solve this issue, LPeg adds an accumulator parameter for the first-set
of the following pattern in the sequence. When the pattern is not followed by
a pattern, LPeg uses the full character set as the accumulator. We call this
accumulator the follow-set. Let us adapt our definitions for this new signature:
For each basic pattern p1, we can derive the definition of F(p1, follow) from the
previous definition of F(p1 p2), and by replacing F(p2) with the new parameter
follow.

F(ε, follow) = follow

F(p⋆, follow) = F(p, follow) ∪ follow

F([cs], follow) = {cs}

The first-set of the character set pattern [cs] does not use the follow
parameter, because it doesn’t depend on the first-set of the following pattern.
This is because the character set pattern is non-nullable. We later prove this
property for any non-nullable pattern.

The case of the sequence pattern is interesting, as it demonstrates the
follow-set working as an accumulator: In the case where p1 is nullable, we
use the first-set of p2 as the follow-set of p1. As for the case in which p1 is
non-nullable, we use the first-set of p1 with any follow-set. We choose the
full character set as the follow-set to demonstrate this independence from the
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accumulator, but any character set could be used.

F(p1 p2, follow) =

F(p1,F(p2, follow)) if p1 is nullable

F(p1, Σ) if p1 is non-nullable

Let us now define the first-set of the other pattern types. Starting with
the choice pattern p1/p2, we intuitively define it as the union of the first-sets
of p1 and p2, passing down the follow-set parameter to each sub-call.

F(p1/p2, follow) = F(p1, follow) ∪ F(p2, follow)

The case of the not-predicate pattern !p highlights the conservative
nature of first-sets. From the first-set of p, we can only infer the set of first
characters that make p fail, and, therefore, make !p succeed. This, however,
gives us no information about first characters that make p succeed, and,
therefore, make !p fail. Therefore, in general, we cannot use the first-set of
p to compute the first-set of !p.

There is, however, information that we can extract from the follow-set
parameter. When !p is followed by a pattern p2, the follow-set indicates which
first characters make p2 fail. Given that !p doesn’t consume any input, these
first characters also make the sequence !p p2 fail, so they should be part of the
first-set of !p. Therefore, we could, in general, use the follow-set as the first-set
of any predicate. However, for the specific case of ![cs], LPeg instead computes
the first-set of patterns as Σ \ {cs}.

F(!p, follow) =

Σ \ {cs} if p = [cs]

follow otherwise

One topic for future research is to investigate whether it would be possible
to replace Σ with the provided follow-set parameter in LPeg.

As for the and-predicate pattern &p, we use both the first-set of p and
the follow-set. That is because in order to match the sequence &p p2, the
input string must match both p and p2. Conversely, if the string starts with a
character that is not in the first-set of either pattern, the sequence fails. So, in
this case, we define the first-set as the intersection of both sets.

F(&p, follow) = F(p, Σ) ∩ follow

One subtle difference between this definition and the actual implemen-
tation of the algorithm in LPeg is the follow-set parameter used to calculate
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the first-set of p. While LPeg simply passes along the follow-set parameter,
we provide the full character set Σ. This change was necessary for us to prove
the key property of first-sets in Coq, which we will show later in this chapter.
Future research may check whether passing along the follow-set parameter is
incorrect, equivalent, or even better than passing Σ as the follow-set.

Finally, in order to define the case of the non-terminal pattern, we need
to add the grammar as a parameter, so that we can look up the referenced
grammar rule. In all cases, this grammar parameter is simply passed along to
each recursive call.

F(g, Ri, follow) = F(g, p, follow) if g[i] = Some p

This case brings up the topic of termination, as it does not define the
recursion on the structure of the pattern, like the other cases do. Instead,
termination in this case relies on the assumption that the input PEG is well-
formed, and, therefore, free of left-recursive rules.

On a deeper level, termination is derived from the way in which the
well-formedness and first-set algorithms traverse patterns similarly. The most
interesting case is that of the sequence pattern: when p1 is non-nullable, both
algorithms do not visit p2. In the case of the well-formedness check, visiting
p2 is not necessary because the whole sequence is non-nullable, and any rules
visited in p2 would be matched against a proper suffix of the input string s

(avoiding infinite loops).
Meanwhile, in the case of the first-set algorithm, visiting p2 can be

avoided for two reasons: If p1 is non-nullable, then, as we later prove, its
emptiness value is false, which means that it fails the empty string. If p1

fails the empty string, then so does the sequence, which allows the emptiness
value of the sequence to also be false, regardless of the emptiness value of p2.
The second reason is that, if p1 is non-nullable, then its first-set is independent
of the follow-set parameter, which, in the general case, would be the first-
set of p2. Therefore, when p1 is non-nullable, we can provide any follow-set
parameter, such as Σ, in order to avoid making a recursive call to p2.

4.2
Matching the empty string

Besides the first-set of a pattern, the algorithm implemented in LPeg
also returns a Boolean value, which indicates whether the pattern may match
the empty string, a property we call emptiness. It is another conservative
approximation: the value true has no meaning, while the value false indicates
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that the pattern fails to match the empty string. LPeg needs this information
because it cannot use the first-set to verify whether a pattern fails the empty
string, since the empty string has no first character.

Let us see how LPeg computes the emptiness of patterns. The base cases
are quite simple. The empty pattern ε and the repetition pattern p⋆ match
every input string, which includes the empty string. So, for these patterns, the
function returns true.

The character class pattern [cs], as with any non-nullable pattern, does
not match the empty string. Therefore, the value for this pattern is false.

For the not-predicate pattern !p, LPeg is rather conservative, always
returning true. In fact, this seems to be the only case making the emptiness
value a conservative approximation. If instead this function were to call itself
recursively for p and negate its emptiness value, we would effectively compute
whether the pattern matches the empty string. However, the cases of !p where
p matches the empty string are not common nor useful in practice.

The and-predicate pattern &p and the non-terminal pattern Ri simply
forward the Boolean value from the underlying pattern, because they fail if
and only if the underlying pattern fails.

The sequence pattern p1 p2 matches the empty string if both p1 and p2 do.
Intuitively, this would mean that the emptiness value of the sequence would be
the Boolean and of the emptiness values of p1 and p2, but that is not exactly
what is implemented in the algorithm. As we have discussed at the end of the
previous section, when p1 is non-nullable, p2 is not visited, and, therefore, the
emptiness value of p2 is not calculated. However, we don’t need this value,
since the emptiness value of p1 is false in this case, which allows for the short-
circuit evaluation of the Boolean and expression to false. Meanwhile, when
p1 is nullable, the emptiness value of both p1 and p2 are computed, and their
Boolean and is calculated normally.

Finally, the case of the choice pattern p1/p2 is similar to that of the
sequence pattern, but instead of a Boolean and operation, it performs a
Boolean or of the emptiness values of p1 and p2. That is because the choice
matches the empty string if one of the options does.

4.3
Formal definition

Figure 4.1 presents the formal definition of the first-set algorithm. It takes
a grammar, a pattern, a follow-set, and some gas, and returns an optional tuple.
The recursion is defined on the gas parameter, so that, if it reaches zero, the
function returns None. Otherwise, the function returns Some (b, first), where
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F g p follow 0 = None

F g p follow (1 + gas) =
match p with
| ε⇒ Some (true, follow)
| [cs]⇒ Some (false, {cs})
| p⋆ ⇒match F g p follow gas with

| Some (b, first)⇒ Some (true, first ∪ follow)
| None⇒ None

end
| !p⇒match p with

| [cs]⇒ Some (true, Σ \ {cs})
| otherwise⇒ Some (true, follow)
end

| &p⇒match F g p Σ gas with
| Some (b, first)⇒ Some (b, first ∩ follow)
| None⇒ None

end
| Ri ⇒match g[i] with

| Some p⇒ F g p follow gas

| None⇒ None

end
| p1 p2 ⇒match nullable g p1 gas with

| Some false⇒ F g p1 Σ gas

| Some true⇒match F g p2 follow gas with
| Some (b2, first2)⇒ b2 ⊗ (F g p1 first2 gas)
| None⇒ None

end
| None⇒ None

end
| p1 / p2 ⇒ (F g p1 follow gas)⊕ (F g p2 follow gas)
end

Figure 4.1: The first-set function.
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b⊗ res =
match res with
| Some (b′, first′)⇒ Some (b ∧ b′, first′)
| None⇒ None

end

res1 ⊕ res2 =
match res1, res2 with
| Some (b1, first1), Some (b2, first2)⇒ Some (b1 ∨ b2, first1 ∪ first2)
| otherwise⇒ None

end

Figure 4.2: The auxiliary ⊗ and ⊕ functions.

b is the emptiness value, and first is the first-set. If b = false, then the pattern
fails to match the empty string; and if a string starts with a character x /∈ first,
then it is guaranteed to fail to match that string. The follow-set parameter is
an accumulator that should be initialized with the full character set Σ. In order
to improve the legibility of the function for sequence and choice patterns, we
also define in Figure 4.2 the auxiliary functions ⊗ and ⊕, respectively.

Having formally defined the first-set algorithm, we now prove its key
properties. We begin by proving that if the function returns some result for
some gas amount, it will return the same result if you provide a higher gas
amount. In some sense, this means the function is stable when you increase
the gas amount.

Lemma 4.1. If F g p follow gas = Some res,
then, ∀gas′ ≥ gas,F g p follow gas′ = Some res.

One natural consequence of this lemma is that, for the same grammar,
pattern, and follow-set, the function cannot return contradicting results.

Lemma 4.2. If F g p follow gas = Some res,
and F g p follow gas′ = Some res′,
then res = res′.

The previous two lemmas show how consistent the return of the function
is, but both assume the existence of a gas amount for which the function
returns some result. However, we know this is not always the case. In fact,
for ill-formed grammars, it may return None for any gas amount. So, it is
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important to prove that, for well-formed PEGs, there exists a lower bound
for the gas amount, for which the function returns some result. This lower
bound effectively shows that the algorithm terminates even without the gas
parameter, as it is implemented in LPeg.

Lemma 4.3. If wf g = true,
then ∀gas ≥ ||p||+ (1 + |g|) · ||g||,
∃res,F g p follow gas = Some res.

Having proved termination, let us now focus on the key properties of the
first-set algorithm, starting with the emptiness value. We prove that, for well-
formed PEGs, if b = false, then the pattern fails the empty string (denoted
as nil). Note that, in this case, the follow-set parameter is irrelevant.

Lemma 4.4. If wf g = true,
and F g p follow gas = Some (false, first),
then (g, p, nil) m−→⊥.

Now, we prove lemmas about the relation between the follow-set param-
eter and the first-set return value. These lemmas are necessary to prove a more
important lemma later in this section. We start by proving that if the follow-
set parameter is incremented by an extra set (through a set union operation),
then the first-set return value is incremented by a subset of this extra set. Note
that the emptiness value stays the same with this follow-set increment.

Lemma 4.5. If F g p follow gas = Some (b, first),
then ∀extra, ∃extra′ ⊆ extra,
such that F g p (follow ∪ extra) gas = Some (b, (first ∪ extra′)).

A particular case is when this extra set is the first-set itself, as if it were
fed back into the function through the follow-set parameter. In this case, the
first-set output by the function is the same, since first∪ extra′ ≡ first when
extra′ ⊆ first. This particular lemma is the one we actually use to prove the
more important lemma.

Lemma 4.6. If F g p follow gas = Some (b, first),
then F g p (follow ∪ first) gas = Some (b, first).

The following lemma is the cornerstone of the key property of first-sets: If
p matches some string s, leaving a suffix s′ unconsumed, then s must be either
empty or start with a character that is in the first-set of p. We also assume
that the input PEG is well-formed, and that s′ is either empty or starts with
a character in the follow-set. This last assumption is necessary to prove the
lemma in the case of the sequence pattern.
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Lemma 4.7. If wf g = true,
and F g p follow gas = Some (b, first),
and (g, p, s) m−→ s′,
and s′ either is empty or starts with x ∈ follow,
then s either is empty or starts with y ∈ first.

In the case of the and-predicate pattern &p, we noticed that it would
be easier to prove this lemma if we passed Σ as the follow-set of p. That
is because &p matches when p matches, but p leaves an unconsumed suffix
s′ that is discarded and whose starting character (if non-empty) we know
nothing about. Ultimately, we cannot say that s′ is either empty or starts with
a character in an arbitrary follow-set. Instead, we use Σ as the follow-set of p,
as this turns this hypothesis into a tautology.

Finally, we prove the key property of first-sets: For a well-formed PEG,
if the emptiness value is false, then the pattern fails for any string that does
not start with a character in its first-set. Note that we use the full character
set Σ as the follow-set.

Lemma 4.8. If wf g = true,
and F g p Σ gas = Some (false, first),
and s either is empty or starts with x /∈ first,
then (g, p, s) m−→⊥.

Besides this main property, we also prove that, for non-nullable patterns,
the follow-set parameter does not influence the result.

Lemma 4.9. If nullable g p gasn = Some false,
and F g p follow1 gas1 = Some res1,
and F g p follow2 gas2 = Some res2,
then res1 = res2.

This lemma explains why, in the cases of character set patterns and
sequence patterns with non-nullable first patterns, the follow-set parameter
can be completely ignored. We can also observe that, in the case of repetitions
p⋆, LPeg passes along the follow-set parameter to p, but any follow-set could
be provided, given that p is non-nullable from the well-formedness property.

Another fact about non-nullable patterns is that their emptiness value is
always false. From the key property of emptiness values, this indicates that
non-nullable pattern fail to match the empty string, which we know is true.

Lemma 4.10. If nullable g p gasn = Some false,
and F g p follow gas = Some (b, first),
then b = false.
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4.4
Application in LPeg

Having proved the key properties of the first-set algorithm, we would
like to formalize its application in LPeg. As discussed at the beginning of this
chapter, LPeg uses this algorithm when generating code for choice patterns,
making use of test-set instructions. Despite this optimization occurring at the
virtual machine code level, we would like to formalize it at the syntactic level.

The test-set instruction basically checks whether the input string starts
with a character in a given set {cs}, jumping to a given label if it does not.
We can check the first character of the input string through the character set
pattern [cs], and emulate the logic of “if pcond matches, then try p1, otherwise
try p2” through the following pattern construction.

&pcond p1 / !pcond p2

In the optimized code of the choice pattern, the test-instruction checks if
the input string starts with a character in the first-set of p1, and jumps to the
code of p2 if it does not. This instruction is followed by the code of p1, which
is executed if the check succeeds. We can represent this optimized code as the
following pattern. Let {first1} denote the first-set of p1.

&[first1] p1 / ![first1] p2

We now prove the correctness of this optimization. Assuming the gram-
mar g and patterns p1 and p2 are well-formed, and that the first-sets of p1

and p2 are disjoint, and that the emptiness value of p1 is false, we first prove
that if the original choice pattern matches a string s, the optimized choice also
matches s, yielding the same unconsumed suffix s′. We also need to assume
that s′ either is empty or starts with a character in the follow-set of p2.

Lemma 4.11. If g, p1 and p2 are well-formed,
and s′ either is empty or starts with x ∈ follow,
and F g p1 Σ gas1 = Some (false, first1),
and F g p2 follow gas2 = Some (b, first2),
and first1 ∩ first2 = ∅,
and (g, p1 / p2, s) m−→ s′,
then (g, &[first1] p1 / ![first1] p2, s) m−→ s′.

As for the case in which the choice fails, we also show the optimized
choice fails as well. The proof follows from two facts: The choice fails either
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because of p1 or p2; And, for any input string, either &[first1] matches and
![first1] fails, or the other way around.

Lemma 4.12. If (g, p1 / p2, s) m−→⊥,
then (g, &[first1] p1 / ![first1] p2, s) m−→⊥.
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Related Work

Ford (1) introduced PEGs and provided initial theoretical results about
them. He proved that the problem of knowing whether a PEG is complete is
undecidable, and presented well-formedness as a conservative approximation
to completeness. In this approximation, he defined the conservative notion of
nullable expressions, which can accept an input string without consuming any
characters. Ford’s well-formedness algorithm is the main source of inspiration
for LPeg’s well-formedness algorithm. However, we did not prove whether they
are equivalent. This would require formalizing Ford’s algorithm in Coq.

Medeiros et al. (6) presented a conservative extension to the semantics of
PEGs based on bounded left recursion and proved its correctness. They have
also proved that every PEG in this extension is complete, assuming that every
non-terminal is valid. We have chosen not to go in this direction, as our main
goal was to formalize LPeg, which categorizes left-recursive rules as ill-formed.

Ribeiro et al. (7) formalized the syntax and semantics of PEGs using
the Agda proof assistant. They also formalized the well-formedness verification
process in a way similar to a typing procedure. Expressions are typed according
to the set of nonterminals that can be reached without consuming any character
(called head-set) and whether the expression is nullable, following Ford’s
definition.

The most interesting restrictions in this typing are those on nonterminal
expressions and repetitions. For nonterminals, the typing prohibits the nonter-
minal itself from being contained in its head-set. For repetitions p⋆, it prohibits
p from being nullable. Although correct, this method does not provide a direct
algorithm for this verification, instead relying on a typing algorithm.

Koprowski et al. (4) developed TRX, a parser interpreter formalized
using the Coq proof assistant. Their work extended PEGs to support semantic
values and actions, and focused on extracting parsers from them with proofs
of termination and correctness.

They formalized a well-formedness check for these extended PEGs that
is largely based on Ford’s original work: The algorithm iteratively computes a
set of well-formed expressions until a fixed-point is reached, and then checks
if this set coincides with the expression set of the grammar. Although proven
correct, this algorithm seems harder to implement using low-level programming
languages, when compared to the algorithm implemented in LPeg, which is
written in C in order to better interact with the Lua C API.
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Blaudeau et al. (8) specified a verified packrat parser interpreter for PEGs
in PVS, emphasizing the formal verification of the parsing process. In order
for their algorithm to correctly detect left recursion, they assume there exists
a correct order for visiting non-terminals. However, they do not provide an
algorithm for computing such an order.

In contrast, our work presents a direct and practical algorithm for veri-
fying the well-formedness of PEGs. By providing concrete implementation de-
tails, we offer a more straightforward approach to well-formedness verification
compared to the formal proof-based methods of the aforementioned works.

Another contribution of our work is the formalization of the first-set
algorithm implemented in LPeg. Although the concept of first-sets is well-
established in the area of context-free grammars (2), to the extent of our
knowledge their application in PEGs has not been documented yet. We
proved the key properties of the first-set algorithm, and the soundness of its
application in LPeg, as an optimization technique during the code generation
phase.
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Conclusion

In this work, we formalized two key algorithms implemented in LPeg:
the well-formedness check and the first-set computation. Both algorithms were
defined as functions in Coq using a fixed-point construction, with the recursion
being defined on a gas parameter. We proved that both algorithms terminate
by providing a lower bound for the gas parameter. While the well-formedness
check guarantees this property for any input PEG, the first-set computation
assumes the input PEG has successfully passed the well-formedness check.

Besides proving their termination, we have proved these algorithms are
correct, in their own respective ways. For the well-formedness check, we have
proved that it correctly detects complete PEGs, which, in turn, guarantees
that parsing terminates. Meanwhile, for the first-set algorithm, we have proven
that it computes the set of first characters that make a pattern fail, and that
it checks whether the pattern fails for the empty string.

Moreover, we used the properties of the first-set algorithm to prove that
an optimization performed by LPeg on certain choice patterns is correct. This
optimization is also performed on other types of patterns, but we leave the
proof of their correctness as a topic for future research.

Still on the topic of future research, while formalizing these algorithms,
we identified some details that deserve future review, as they could lead to
future improvements in LPeg. In the particular case of the first-set algorithm,
we modified the definition for the and-predicate pattern &p so that we would
be able to prove the key properties of the algorithm. Future research should
investigate whether it would be possible to prove these properties for the actual
implementation in LPeg. Furthermore, we suspect the case of the pattern ![cs]
could be reviewed to make the first-set even smaller, and, therefore, more likely
to be used in optimizations.

Future work may also seek to measure the computational and space
complexity of these algorithm in terms of some notion of grammar size,
such as the total number of nodes in the abstract syntax tree of rules. Such
measurements may even help us find opportunities for improvements.
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