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Abstract 

Oreiro, Victor Goulart; Klötzle, Marcelo Cabús. Machine Learning 

Forecasts of EU ETS Carbon Prices with Economic, Financial, and 

Policy Uncertainty Variables. Rio de Janeiro, 2025. 75 p. Dissertação de 

Mestrado - Departamento de Administração, Pontifícia Universidade 

Católica do Rio de Janeiro. 

 

This dissertation analyzes an index representing the price of carbon traded in 

the European Union Emissions Trading System (EU ETS). By applying a variety 

of models, traditional econometric approaches (ARIMA), Machine Learning 

(CatBoost and Random Forest), and Deep Learning techniques (LSTM) were 

explored. The study utilized a comprehensive set of variables, encompassing 

traditional economic and financial indicators, as well as alternatives measures 

related to political, economic, and policy uncertainty. To avoid the risk of 

overfitting and to improve variable selection, the LASSO regularization technique 

was applied. In addition to selecting variables to reduce dimensionality, LASSO 

provided insights into the factors influencing carbon price formation. Among the 

selected uncertainty variables, the UK Economic Policy Uncertainty and the 

Climate Transition Risk Index (a proxy for perceived climate policy transition risk) 

stood out, showing relevance in explaining the dynamics of the S&P Carbon Credit 

EUA Index. Variable selection via LASSO yielded significant performance gains 

in out-of-sample tests, reducing overfitting and enhancing the models' 

generalization capabilities. The consistency of the results was confirmed through 

time series adequate cross-validation and the Diebold-Mariano test, which verified 

whether there was a statistically significant difference between the performance of 

the models. The findings highlight the potential of alternative uncertainty indicators 

and machine learning methods for forecasting environmental asset prices, showing 

superior predictive performance in several key validation settings compared to the 

univariate ARIMA model under the metrics, tests, and validation strategies used. 
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Resumo 

Oreiro, Victor Goulart; Klötzle, Marcelo Cabús. Previsões com 

Aprendizado de Máquina dos Preços de Carbono do EU ETS com 

Variáveis de Incerteza Econômica, Financeira e Política. Rio de Janeiro, 

2025. Número de páginas 75. Dissertação de Mestrado - Departamento de 

Administração, Pontifícia Universidade Católica do Rio de Janeiro. 

 

Esta dissertação analisa um índice do preço do carbono negociado no EU ETS. 

Por meio da aplicação de diversos modelos, foram exploradas abordagens 

econométricas tradicionais, aprendizado de máquina, e aprendizado profundo. O 

estudo utilizou um conjunto abrangente de variáveis, incluindo indicadores 

econômicos e financeiros tradicionais, bem como medidas alternativas relacionadas 

à incerteza política, econômica e regulatória. Para evitar o risco de sobreajuste e 

aprimorar a seleção de variáveis, foi aplicada a técnica de regularização LASSO. 

Além de permitir a redução de dimensionalidade, o LASSO ofereceu insights sobre 

os fatores que influenciam a formação dos preços de carbono. Entre as variáveis de 

incerteza selecionadas, destacaram-se o índice de Incerteza de Política Econômica 

do Reino Unido e o Índice de Risco de Transição Climática, ambos com relevância 

na explicação da dinâmica do índice S&P Carbon Credit EUA index. A seleção de 

variáveis via LASSO resultou em ganhos significativos de desempenho nos testes 

fora da amostra, reduzindo o sobreajuste e melhorando a capacidade de 

generalização dos modelos. A consistência dos resultados foi confirmada por meio 

de validação cruzada para séries temporais e pelo teste de Diebold-Mariano, que 

verificou a existência de diferenças estatisticamente significativas no desempenho 

dos modelos. Os resultados evidenciam o potencial de indicadores alternativos de 

incerteza e de métodos de aprendizado de máquina na previsão de preços de ativos 

ambientais, apresentando desempenho preditivo superior, em diversos cenários de 

validação, quando comparado ao modelo univariado ARIMA, segundo as métricas, 

testes e estratégias de validação utilizados. 
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Previsão de séries temporais; Incerteza geopolítica; Seleção de variáveis via 

LASSO; Aprendizado de máquina; Sistema de Comércio de Emissões da União 

Europeia (EU ETS) 
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1 Introduction 

As climate change accelerates, the urgency of finding effective tools to 

support the energy transition has never been greater. Carbon markets have gradually 

emerged as one of the more promising approaches in this space. They are gaining 

traction, but not without their share of complications. Among these mechanisms, 

the European Union Emissions Trading System (EU ETS) stands apart. Its scale, 

maturity, and global influence have turned it into a key benchmark for emissions 

pricing across the world. 

The EU ETS plays a foundational role in shaping carbon prices, serving as a 

model for similar frameworks in other regions. Yet, climate governance is 

becoming increasingly layered, harder to navigate, and more unpredictable. In 

response, both academic and market communities are turning their attention to tools 

that can help make sense of carbon price trends and to forecast them. 

Carbon credits behave in a way that sets them apart from traditional financial 

assets. Their prices are shaped by a wide-ranging combination of forces: regulatory 

decisions, macroeconomic dynamics, energy shocks, political tension, investor 

behavior, and more. Earlier research often relied on models like AutoRegressive 

Integrated Moving Average (ARIMA), Vector AutoRegression (VAR), or 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) to analyze 

these trends. These models tend to struggle when faced with abrupt shifts or 

nonlinear behavior, which carbon prices exhibit often. 

In recent years, advances in machine learning have opened up new 

possibilities. Especially for time series data that defy regular patterns. Models such 

as Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest, 

CatBoost, and Long Short-Term Memory (LSTM) recurrent neural networks have 

shown promise. They are better equipped to handle the complexities: high 

dimensionality, non-linear interactions, and unpredictable shifts; that traditional 

models cannot well capture. Still, despite the growing interest, there is a surprising 

lack of consistent and comparative studies applying these techniques specifically to 

carbon markets. 

More specifically, few studies include political or geopolitical uncertainty 

indicators in their forecasting frameworks, even though these variables often 
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influence investor sentiment and regulatory behavior. Similarly, rigorous model 

validation, using techniques like rolling cross-validation or significance testing 

through the Diebold-Mariano test, is still not widely adopted in this field. This 

dissertation steps into that gap. 

It proposes a structured forecasting approach focused on the S&P Carbon 

Credit EUA Index. The methodology brings together variable selection through 

LASSO, a mix of linear and nonlinear forecasting models, and a statistical 

evaluation framework that includes both out-of-sample R² metrics and rolling 

window validations, applied in both expanding and fixed forms. It also tests the 

statistical significance of performance differences between models using the 

Diebold-Mariano test. 

The central goal is to figure out which forecasting models perform best under 

conditions of real-world uncertainty. And just as important, to identify which 

variables, from macroeconomic, financial, energy-related, regulatory, and 

geopolitical indicators, actually help improve predictive accuracy. 

To tackle this, the study relies on a comprehensive dataset containing 63 

explanatory variables of various types and frequencies. LASSO regularization is 

used for predictor selection, followed by the application of five forecasting models: 

ARIMA, LASSO, Random Forest, CatBoost, and LSTM. These models are 

evaluated using standard forecast error metrics: Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Scaled 

Error (MASE), and Symmetric Mean Absolute Percentage Error (sMAPE); under 

cross-validation rolling window conditions.  

Finally, the Diebold-Mariano test determines if differences in forecast 

accuracy between models are statistically meaningful, which adds value to the 

conclusions. 

The rest of this dissertation is organized as follows. Section 2 explores the 

theoretical background: the economic and regulatory foundation of carbon markets, 

how geopolitical uncertainty shapes price formation, and a critical review of the 

forecasting literature, particularly studies on the EU ETS. Section 3 outlines the 

research methodology, explaining how the dataset was built and processed, how 

variables were selected, and how forecasting models and validation techniques were 

implemented. Section 4 presents the results, focusing on model comparisons, 

variable interpretation, and statistical evaluation. Finally, Section 5 concludes the 
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study by summarizing its key findings, noting its contributions to the literature, and 

pointing toward future research opportunities. 

1.1. Justification 

As carbon markets become more deeply embedded in climate policy, they are 

also drawing increasing attention from researchers trying to understand how they 

work. Within this growing field, the EU Emissions Trading System (EU ETS) 

stands out. It is the most mature and institutionally structured emissions pricing 

mechanism to date, and its influence goes well beyond Europe, affecting investment 

flows and regulatory frameworks around the world. 

With the global push for decarbonization accelerating, understanding what 

drives carbon credit prices is both timely and critical. These assets do not respond 

to a single force. Instead, their value is shaped by a web of factors: shifts in the 

economy, movements in financial markets, changes in the energy landscape, new 

regulations, and episodes of political tension. These influences do not stay 

permanent. They move, collide and evolve. They often do so in ways that are not 

linear or easy to predict. 

Because of that, traditional forecasting models tend to not perform so well. 

Structural changes, like the introduction of the Market Stability Reserve (MSR) or 

the more recent Carbon Border Adjustment Mechanism (CBAM), create sudden 

shifts, disrupt patterns, and test the limits of standard modeling. These are not just 

policy adjustments. They represent turning points that change how the market 

behaves. 

In recent years, machine learning and neural network approaches have made 

significant progress in a wide range of fields, especially in finance and energy. They 

have shown they can handle, to some extent, noise, nonlinearity, and complexity. 

Yet when it comes to carbon markets, their use is still surprisingly narrow. Most 

studies either apply one or two models without appropriate comparison, or they skip 

key ingredients like robustness checks and statistical tests. 

Even more rare are works that bring together a diverse set of forecasting 

approaches and evaluate them systematically. Especially while also accounting for 

qualitative dimensions, like uncertainty, investor sentiment, or geopolitical risk, 
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that cannot be easily measured but clearly shape market expectations as this study 

demonstrate. 

It sets out to build a forecasting framework that is reliable, testable, and above 

all, useful. A model setup that does not just chase accuracy but also helps make 

sense of a complex, shifting market. The aim is to offer tools that researchers can 

replicate, that policymakers can trust, and that investors can use to make better-

informed decisions. 

1.2. General Objective 

This research sets out to estimate, assess, and compare the ability of different 

forecasting models to predict price movements in the S&P Carbon Credit EUA 

Index. These models are not applied in isolation. More than just benchmarking 

models, the study aims to uncover which forecasting approaches perform best when 

exposed to the kinds of complexity and unpredictability that define carbon markets. 

1.3. Specific Objectives 

i. To develop a multivariate dataset that brings together variables from across 

macroeconomic, financial, energy, regulatory, and geopolitical uncertainty 

domains. All of them aligned to a monthly frequency. LASSO regression 

will be applied to sort through the noise and isolate the predictors that matter 

most. 

ii. To compare the forecasting performance of different models using rolling 

cross-validation and standard error metrics. Differences in model accuracy 

will also be tested for statistical significance through the Diebold-Mariano 

test. 

iii. To identify the core explanatory drivers behind price movements in the S&P 

Carbon Credit EUA Index. This involves not just ranking variables but also 

reflecting on what their predictive power implies for policy, regulation, and 

market behavior. 

 

 

 



2 Theoretical Framework 

The dissertation is anchored in three foundational pillars. First, the economic 

and institutional structure of the EU ETS. Second, the impact of geopolitical and 

macroeconomic uncertainty on the pricing of environmental assets. And third, the 

main forecasting approaches applied to time series within carbon markets. 

Together, these three elements provide a broad yet detailed framework for 

understanding not only the economic forces that shape carbon pricing, but also the 

technical and conceptual challenges that come with trying to model them. 

2.1. The Carbon Market and the EU ETS 

Growing international decarbonization commitments has encouraged many 

countries and economic blocs to adopt carbon pricing instruments. These 

mechanisms aim to factor the social cost of greenhouse gas (GHG) emissions 

directly into market decisions, pushing emitters toward more efficient reductions. 

The core idea behind carbon markets is relatively simple. Emitters either 

reduce their emissions or pay to offset them by purchasing allowances (Santikarn 

et al., 2021; Narassimhan et al., 2018). 

Among the available instruments, Emissions Trading Systems (ETS) have 

taken center stage. These systems place a ceiling on total emissions and allocate or 

auction tradable allowances to sectors under regulation. The EU ETS, launched in 

2005, is the most advanced version of this model. It is widely viewed as the gold 

standard for emissions trading globally, both for its design and its influence 

(Ellerman and Buchner, 2007; Santikarn et al., 2021). 

Today, the EU ETS covers roughly 40% of total emissions across the 

European Union (EU). It spans several high-emission sectors, including energy and 

heavy industry, and more recently, has extended its reach to aviation. 

2.1.1. Evolution and Phases of the EU ETS 

Since its inception, the EU ETS has evolved through a series of regulatory 

phases, each one marked by structural changes that shaped its current form. Phase 

I (2005–2007) served mainly as a pilot. It was characterized by an overallocation 
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of allowances and had little effect on actual emissions reductions. Still, it was a 

crucial step, a period of institutional learning and experimentation (Ellerman and 

Buchner, 2007). 

Phase II (2008–2012) aligned with the first commitment period of the Kyoto 

Protocol. It came with tighter rules and a more refined design, yet it continued to 

face challenges, particularly in the form of persistent oversupply and unstable prices 

(Chevallier, 2011). 

Phase III (2013–2020) marked a turning point. It brought deeper reforms, 

including a centralized system for allocating allowances, expanded sector coverage, 

and a transition from free distribution to auction-based mechanisms (Verde et al., 

2019). 

Phase IV (2021–2030) represents the most substantial leap forward. New 

stability mechanisms have been introduced, along with long-term regulatory signals 

designed to address price instability and rebuild market confidence. Among the 

standout reforms are the MSR, which reshaped how supply is managed (Perino, 

2018), and the CBAM, crafted to tackle carbon leakage while aligning trade and 

climate objectives (European Commission, 2021; Branger et al., 2016). 

2.1.2. Adjustment Mechanisms and Recent Reforms 

In effect since 2019, the MSR was built to bring more balance to the system. 

It works automatically, pulling surplus allowances out of the market to help reduce 

excess volatility and promote price stability. Beyond its technical design, its 

influence on expectations has been notable. Research shows that the MSR has 

significantly changed how prices are formed, making them more responsive to 

forecasts about future supply and regulatory actions (Perino and Willner, 2016; 

Perino, 2018). 

Meanwhile, the CBAM was designed to discourage companies from shifting 

operations to countries with weaker climate policies. Though still in the early stages 

of implementation, CBAM already signals a shift in how cross-border carbon policy 

is treated, and it may play a growing role in shaping price behavior and market 

expectations (European Commission, 2021). 

Together with broader European climate initiatives, like the "Fit for 55" 

package (European Commission, 2021), these reforms have reshaped the character 
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of the EU ETS. Today, allowance prices no longer reflect just energy supply and 

demand or basic market fundamentals. They are also deeply tied to political signals 

and institutional decisions that influence market behavior (Koch et al., 2014). 

2.1.3. Pricing Instruments and Market Dynamics in the EU ETS 

Within the EU ETS, the primary asset traded is the European Union 

Allowance (EUA), which grants the right to emit one metric ton of CO₂ equivalent 

(tCO₂e). EUA prices are determined on secondary markets through auctions and 

over-the-counter (OTC) trades, and are influenced by a wide set of factors, ranging 

from regulatory expectations and sectoral demand to external shocks like weather 

conditions, energy prices, and economic growth (Benz and Trück, 2009; 

Hintermann et al., 2016; Koch et al., 2014). 

Literature has consistently shown that carbon prices in this environment 

behave differently from traditional financial assets. The market often experiences 

high volatility, abrupt regime changes, and exogenous shocks driven by regulatory 

reforms or geopolitical events (Chevallier, 2011; Oberndorfer, 2009). These 

characteristics make it difficult for conventional econometric models to perform 

well, as they often rely on assumptions of linearity, structural stability, and ergodic 

behavior (Han et al., 2019). 

Beyond the usual supply and demand variables, more recent research 

highlights the growing influence of non-economic factors, such as political risk 

perception, regulatory uncertainty, and overall market sentiment, on carbon pricing 

(Pastor and Veronesi, 2012; Baker et al., 2016; Caldara and Iacoviello, 2022). As a 

result, recent models increasingly include qualitative and institutional indicators to 

improve predictive accuracy. 

2.2. Geopolitical and Macroeconomic Uncertainty 

Carbon markets are subject to a high degree of institutional, regulatory, and 

political instability. They are not only shaped by economic cycles and energy price 

shocks, but also answer to radical shifts in environmental governance, unexpected 

legal rulings, and geopolitical tensions, all of which can reshape how market 

participants assess risk (Chevallier, 2011). 
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This kind of uncertainty is especially evident within the EU ETS. The 

system’s regulatory complexity, combined with its central role in the EU’s climate 

framework, amplifies its sensitivity to external shocks. Empirical studies confirm 

that carbon credit prices are not just about market demand or energy fundamentals. 

They are also influenced by institutional expectations and political or economic 

sentiment (Benz and Trück, 2009; Oberndorfer, 2009; Pastor and Veronesi, 2012). 

Several real-world events have demonstrated this vulnerability. The United 

States (U.S.) decision to withdraw from the Paris Agreement in 2017, the energy 

supply crisis that destabilized Europe in 2021, the consequences of the war in 

Ukraine, and the EU’s ongoing reforms to its emissions market, especially the 

implementation of mechanisms like the CBAM. All of these have left marks on 

how carbon prices behave. 

Caldara and Iacoviello (2022) argue that geopolitical shocks can have lasting 

consequences for investment flows and asset valuations. This is particularly true for 

sectors that are exposed to political and regulatory risk, like environmental markets. 

Given this context, it is no surprise that more recent forecasting models have 

begun to include variables that capture uncertainty and perceptions of risk. Baker 

et al. (2016) show that economic policy uncertainty meaningfully influences market 

behavior. Bringing this kind of variable into forecasting models adds nuance, it 

helps capture market reactions during periods of disruption or regulatory change, 

when systems are under stress. 

2.2.1. Sources of Instability and Institutional Dynamics 

Carbon markets, especially regulated ones like the EU ETS, are highly 

sensitive to institutional changes, geopolitical disruptions, and shifts in climate 

policy. These factors make allowance prices unstable and harder to predict 

(Oberndorfer, 2009; Chevallier, 2011). 

The literature recognizes that exogenous events, such as energy crises, 

pandemics, court rulings, or even national elections, can affect how economic 

agents perceive risk. In the case of the EU ETS, structural reforms, especially the 

implementation of the MSR, have influenced not only the expected supply and 

demand of the allowances but also increased uncertainty of the regulatory trajectory 
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(Perino, 2018). Other recent instruments, such as the CBAM and the Fit for 55 

package, contribute further to this uncertainty. 

Geopolitical factors, such as the war in Ukraine, international sanctions, or 

trade disputes between major economies, also influence energy prices, and by 

extension, the carbon market itself (Caldara and Iacoviello, 2022; Wang et al., 

2025). 

The legal uncertainty surrounding climate litigation and the reluctance of 

some countries to commit to long-term emission targets are also seen as reasons for 

uncertainty in climate governance (Battiston et al., 2017; Dai et al., 2022). 

These factors make carbon markets quite different from conventional 

financial markets. Prices do not move just because of market fundamentals, but also 

based on how people understand new rules and regulations. Pastor and Veronesi 

(2012) point out that pricing assets linked to public policy requires models that 

incorporate not only economic fundamentals but also expectations around 

government action. 

This is why recent research increasingly uses numeric indicators to measure 

institutional and political uncertainty. Beyond improving empirical control, these 

indicators enhance the performance of forecasting models applied to regulated 

markets (Battiston et al., 2017; Dai et al., 2022), as the next sections will explore. 

2.2.2. Uncertainty Indicators and Risk Sentiment 

To incorporate institutional, economic, and geopolitical uncertainty in 

forecasting models, several indices have been developed in recent years based on 

automated text analysis of newspapers, policy documents, and expert reports. These 

indicators condense large volumes of media coverage into structured time series 

and are now widely used in empirical research (Baker et al., 2016; Caldara and 

Iacoviello, 2022). 

The measurement of economic uncertainty has become an essential tool for 

understanding the effects of public policy on markets. One of the most common 

indicators is the Economic Policy Uncertainty Index (EPU), developed by Baker et 

al. (2016), which counts how often newspapers mention terms linked to economic 

and policy uncertainty. 
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Building on the EPU, several other indicators have been introduced to capture 

specific dimensions of uncertainty: 

• Overall Equity Market Volatility (EMV Overall) Tracker: This is the main 

index created by Baker et al. (2019). It measures stock market volatility based on 

how often newspapers mention terms related to the economy, markets, and 

uncertainty. The EMV tracker moves closely with the VIX and helps explain what 

kind of news is driving market volatility. It also serves as the base for more specific 

indexes, like those focused on macro news or monetary policy. 

• Macroeconomic News and Outlook EMV Tracker: measures uncertainty 

based on news related to GDP, inflation, employment, and financial markets (Baker 

et al., 2019). 

• The Policy-Related EMV Tracker (Policy-Related EMV): captures the 

portion of stock market volatility driven by political events and discourse, including 

fiscal and monetary policy, regulation, and national security. It helps identify which 

political factors are shaping market fluctuations, especially during periods of 

heightened uncertainty (Baker et al., 2019). 

• Energy and Environmental Regulation EMV Tracker (EMV EER): focuses 

on uncertainty in energy and climate-related regulation, using the same approach 

(Baker et al., 2019). 

• EMV Tracker: Infectious Disease: developed to measure the economic 

impact of the COVID-19 pandemic (Baker et al., 2019). 

• Monetary Policy Uncertainty Index (MPU): captures uncertainty related to 

central bank actions, with versions based on news (MPU Word News) and academic 

papers (MPU 10 papers) (Baker et al., 2016). 

• US–China Trade Tension Index (UCT): measures the intensity of trade 

conflict between the world’s two largest economies, developed by Rogers et al. 

(2024). 

• Geopolitical Risk Index (GPR): tracks global geopolitical tensions based on 

the frequency of words related to war, military threats, terrorism, and instability 

(Caldara and Iacoviello, 2022). 

• Global Economic Policy Uncertainty (GEPU): measures worldwide policy 

uncertainty, with variants adjusted for purchasing power parity (PPP) and real-time 

data (Davis, 2016). 
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• Economic Uncertainty Related Queries (EURQ): developed by Bontempi et 

al. (2021), this index uses Google search volume related to uncertainty in the U.S. 

and Italy. 

• UK Policy Uncertainty Index (UK EPU): a version for United Kingdom 

(UK) of the EPU adapted for the UK context (using local newspapers) (Baker et al. 

2016). 

• Climate Policy Uncertainty Index (CPU): focuses specifically on climate 

and energy policy, based on the EPU structure (Gavriilidis, 2020). 

• Energy-Related Uncertainty Indexes (EUI): created by Dang et al. (2023), 

these measure energy-related uncertainty in 28 countries using data from the 

Economist Intelligence Unit. 

• Climate Risk Index (CRI): combines the Physical Risk Index (PRI) and 

Transition Risk Index (TRI) to assess the exposure of European financial markets 

to physical and transition-related climate risks (Bua et al., 2024). 

• Twitter Economic Uncertainty Index (TEU) and Twitter Market 

Uncertainty Index (TMU), created by Baker et al. (2021), use machine learning and 

real-time Twitter data to track changes in public sentiment and how people perceive 

economic or market risks. There are different versions of the index: TEU-USA, 

based on tweets from users in the US; TEU-WGT, which gives more weight to 

tweets that get more retweets; and TEU-ENG, which includes all tweets written in 

English (regardless of the location). These versions help capture uncertainty from 

different points of view, in a quicker and more flexible way than traditional news 

sources. 

Bringing these indicators into the analysis adds value. They help capture 

uncertainty from multiple angles which is essential for understanding how shifting 

policies or global events that impact asset prices. Without them, models risk 

ignoring the dimensions of influence that shape market behavior. 

These indices are becoming more visible in academic work, particularly in 

studies focused on asset pricing, systemic risk, and return forecasting. That said, 

their use in environmental markets is still catching on and it is a growing field. Early 

evidence points in a clear direction: when included in predictive models, these 

uncertainty measures tend to improve performance, especially during moments of 

crisis or rapid policy shifts (Zhang et al., 2022). 
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What makes them so useful is not just their content, but their variety. Their 

thematic diversity and methodological scope allow them to pick up on dynamics 

that more conventional variables might miss. And in markets like the EU ETS, 

where institutional signals, political decisions, and geopolitical tensions all 

influence heavily on pricing, that kind of range matters. It turns abstract risk into 

something measurable. 

2.2.3. Empirical Applications and Predictive Relevance 

Researchers in economics and finance have widely adopted political, 

regulatory, and geopolitical uncertainty indices in recent years. Recent studies show 

that variables like the GPR, EMV, MPU, TEU, and EPU have significant 

explanatory power over financial assets, affecting returns, volatility, and portfolio 

decisions (Pastor and Veronesi, 2012; Caldara and Iacoviello, 2022; Baker et al., 

2016). 

In traditional financial markets, these indices have already been used to 

forecast stock returns, credit spreads, interest rates, and implied volatility. Pastor 

and Veronesi (2012), for example, show that uncertainty around economic policy 

affects risk premia and the valuation of firms exposed to regulation. Supporting 

this, Gulen and Ion (2016) also show that rising EPU levels reduce corporate 

investment in the U.S., showing how uncertainty affects real business decisions. 

Caldara and Iacoviello (2022) also show that spikes in geopolitical risk negatively 

affect global markets and raise overall risk aversion. 

Although this type of research is well established in finance, it is still new in 

forecasting models for environmental markets. Zhang et al. (2022) note that 

geopolitical events and political decisions can significantly alter the behavior of the 

European carbon market. Dai et al. (2022) argue that adding qualitative proxies 

improves the predictive accuracy of models applied to EUA prices, especially when 

markets face changes in regulation or political pressure. 

Han et al. (2019) also point out that conventional linear models tend to 

underperform in uncertain settings, and suggest using more flexible methods, based 

on statistical learning, that can include external variables and nonlinear dynamics. 

In this dissertation, the decision to include uncertainty indices from 

policyuncertainty.com and the GPR index follows that methodological 
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recommendation. These indicators are used as explanatory variables across 

different forecasting models so that their contribution to improving the performance 

of EUA price predictions can be tested, especially during periods of systemic 

instability. 

By combining statistical rigor with qualitative risk proxies, this empirical 

strategy aims to contribute to a growing research agenda that sees uncertainty as a 

central factor in price formation within dynamic, regulated, and geopolitically 

sensitive environmental markets. 

Beyond uncertainty indicators, recent literature has also explored how 

financial variables and market indicators shape the demand for sustainable assets 

like carbon credits. For example, Baker et al. (2018) and Fatica et al. (2021) show 

that investor behavior toward green bonds is closely linked to risk appetite and the 

cost of capital, both of which directly influence the financing of climate transition 

projects. These insights are particularly relevant to carbon markets, where the 

appeal of environmental instruments depends on broader financial and regulatory 

conditions. For this reason, variables like credit spreads and interest rates are also 

included to indirectly capture the cost of financing and market sentiment toward 

green assets. 

2.3. Previous Works 

The literature on carbon price forecasting has grown more diverse as 

emissions trading systems mature. In this context, the following sections present 

different approaches developed to address the empirical and structural challenges 

of this market, organized into seven key areas. 

2.3.1. Traditional Econometric Approaches 

A significant part of the literature still relies on classical statistical models, 

like ARIMA and GARCH, to represent the stochastic behavior of carbon price 

series (Alberola et al., 2008). In contrast, Chevallier (2011) adopts a more advanced 

application based on Factor-Augmented VAR (FAVAR) models, incorporating 

macroeconomic and energy markets shocks to capture structural dynamics often 

missed by simpler models. 
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But since these models assume linearity, they do not handle well the kind of 

abrupt changes often seen in carbon markets. Aatola et al. (2013) show that 

structural breaks have a strong effect on price patterns in the EU ETS, highlighting 

the need for approaches that can handle sudden changes in both the regulatory and 

economic environment. Han et al. (2019) go further by using nonlinear methods to 

model carbon price volatility, showing the limits of traditional approaches. 

2.3.2. Hybrid Models, Machine Learning, and Deep Architectures 

Because of the limits of traditional models, many studies now use hybrid 

methods that mix statistical tools with machine learning. Zhu and Chevallier (2017) 

combined ARIMA with support vector machines and improved forecasting 

accuracy. Later, Ji et al. (2019) expanded this by including Convolutional Neural 

Network (CNN) and LSTM networks. They found that this approach worked well 

for predicting carbon prices in unstable markets. 

Hou et al. (2022) used LASSO, support vector regression, and other simple 

machine learning methods to predict CO₂ emissions in China. They used sliding-

window cross-validation and showed that good feature selection greatly improves 

accuracy, especially with small datasets and many variables, like in carbon price 

forecasting. 

Huang et al. (2021) built a hybrid model combining GARCH and LSTM to 

capture complex time patterns in carbon prices. Xu et al. (2020) went further, using 

machine learning with network theory and Extreme Learning Machines (ELMs) to 

improve generalization. 

Other recent studies have explored attention-based models for forecasting 

carbon prices. For example, Wu and Du (2024) propose a dual-stream transformer 

model with cross-attention, achieving better results than LSTM and Gated 

Recurrent Unit (GRU) in the European carbon market. Jenko and Costa (2024) use 

the Temporal Fusion Transformer (TFT) to jointly forecast prices and emissions in 

multivariate energy systems, reporting significant performance gains. This trend is 

also supported by the work of Lim et al. (2021), who introduced the TFT. By 

combining recurrent neural networks with attention mechanisms, TFT strikes a 

balance between accuracy and interpretability, making it particularly effective for 

handling volatile time series like carbon pricing. 
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Zhang (2003) proposed a hybrid model that separates linear and nonlinear 

parts of a time series. The idea is to use ARIMA to deal with the linear patterns 

first, and then apply a neural network to model the remaining, more irregular 

behavior. Even though this was first used in other areas, this kind of approach 

became popular in finance and environmental studies, because it helps to better 

understand and predict complex movements, like those we see in carbon markets.  

More recently, Liu et al. (2024) developed a hybrid GARCH-LSTM model to 

forecast carbon prices in five regional markets across China. By combining 

conditional volatility modeling with the ability of neural networks to capture 

nonlinear and long-term patterns, the model significantly improved forecasting 

accuracy, especially in the Hubei, Shenzhen, and Shanghai markets. 

Deep learning models, especially LSTM networks, are now widely used in 

financial time series forecasting. In a systematic review covering 2005 to 2019, 

Sezer et al. (2020) highlight LSTM as the most widely used deep learning 

architecture in this field, due to its ability to capture nonlinear behavior and long-

term dependencies in economic data. Smyl (2020) also presents a hybrid model that 

combines exponential smoothing with LSTM, which won the M4 international 

forecasting competition. This result supports the idea that deep learning models, 

when regularization and complexity control are applied, can offer strong 

performance in complex financial contexts. 

Around the same time, Oreshkin et al. (2019) presented N-BEATS, a fully 

connected neural network that breaks away from traditional recurrent and 

convolutional models. It stood out in the M4 competition for its strong performance 

and also offers interpretable results through basis expansion, which makes it a solid 

choice for dynamic markets such as the EU ETS. 

Even with all these advances, including hybrid approaches, deep 

architectures, and attention mechanisms, forecasting financial and environmental 

time series remains challenging. In one of the largest comparative studies in the 

field, Makridakis et al. (2020, 2022) present the results of the M4 and M5 

Competitions, which tested over 100,000 time series using a wide range of 

forecasting methods, including neural networks and ensemble models. While the 

M4 focused broadly on statistical and ML methods, the M5 centered specifically 

on financial time series during COVID-related uncertainty. Both studies show that 

predictive performance tends to decline sharply for longer horizons or in periods of 
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structural change, conditions that are quite common in carbon markets. These 

findings highlight the importance of using strong methodological practices like 

time-series validation, complexity control, and variable filtering, all of which are 

incorporated into the framework proposed in this dissertation. 

2.3.3. Regime-Switching and Time-Varying Parameter Models 

Lin and Zhang (2022) highlight something key about the EU ETS: carbon 

prices tend to respond sharply to institutional and regulatory shifts. When policy 

frameworks change, the impact reaches beyond surface-level price dynamics, it 

often disrupts the core relationships that traditional econometric models rely on. 

These models, which assume a certain degree of stability and linear behavior, start 

to underperform. They were not built to handle regime shifts or nonlinear 

fluctuations. 

Because of this, researchers have started moving in another direction. More 

flexible modeling approaches are gaining ground, that do not lock in static 

relationships, but instead adjust to regime changes. Markov-Switching models are 

a good example. Hamilton introduced them in 1989, and since then, the have been 

widely used to detect changes in volatility, especially when the market moves 

through periods of uncertainty like economic crises or policy shifts. Chevallier 

(2011), in his work on the European carbon market, observed that prices frequently 

switch patterns switching between patterns that tend to fade quickly, usually in 

reaction to unexpected events like policy changes or market disruptions. 

Time-varying parameter (TVP) models offer another perspective. Unlike 

fixed models, they allow the relationship between variables to shift over time. That 

is crucial in a context like the EU ETS, where new rules or reforms can quickly 

alter how prices react to inputs. Ellerman and Buchner (2007), as well as Aatola et 

al. (2013), argue that tracking these structural changes is essential if we want our 

models to reflect market behavior with any accuracy. 

Recent studies that use TVP-VAR setups let the model’s coefficients change 

over time. Sometimes it is oil or gas. Other times, electricity or even the stock 

market. These links do not stay fixed. After 2016, when the Paris Agreement started 

reshaping global policy and mechanisms like the MSR kicked in, those dynamics 

began shifting even more. Because these relationships do not stay stable for long, 
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models that can adjust over time are key to tracking how prices behave in a 

changing policy context (Li et al., 2021). 

Overall, regime-switching and time-varying models are valuable tools for 

analyzing volatile markets. But they need a lot of data, computing power, and fine-

tuning, which can limit their use in real-time forecasting. 

2.3.4. Mixed-Frequency and MIDAS Regression Models 

Forecasting usually comes with the problem of mismatch between the 

frequencies of available data. While financial market prices are typically available 

in intervals ranging from seconds and minutes to daily or even monthly 

observations, many important explanatory variables, such as macroeconomic 

indicators, fiscal data, or uncertainty indexes, are released weekly, monthly, or 

quarterly. Unfortunately, standard aggregation methods might lead to information 

loss, poor lag specification, and distortions in predictive results. 

To handle this, mixed-frequency is a useful way to work with time-frequency 

inconsistencies. Among these, the MIDAS (Mixed Data Sampling) model, 

introduced by Ghysels et al. (2006), is being one of the most widely used. MIDAS 

allows variables with different frequencies to be included directly in the modelling, 

using weights to reflect how each lag of the lower-frequency data affects 

predictions. 

In the context of carbon markets, mixed-frequency models have shown 

promising results. Zhao et al. (2018) applied the MIDAS approach to combine 

monthly economic data with daily energy indicators when forecasting EU ETS 

prices. They found that including mixed-frequency variables significantly improved 

forecasting accuracy.  

Similarly, Niu and Liu (2024) used a GJR-GARCH-MIDAS model to 

estimate the volatility of EUA futures, showing that monthly macroeconomic 

variables increased the model’s robustness in response to market shocks. These 

studies show the potential of MIDAS models in environmental time series, which 

often involve unstable patterns. 

2.3.5. Effects of Energy and Fuel Prices 



26 

 

Previous studies on carbon pricing show that energy prices, particularly fossil 

fuels, strongly influence the behavior of emission allowances. This is because oil, 

natural gas, and coal prices directly affect the operating costs of regulated 

companies, which in turn influences their emission-reduction strategies and demand 

for carbon credits. Chevallier (2011) found that energy price shocks significantly 

affect EUA prices, especially when combined with macroeconomic factors. 

Supporting this, Bredin and Muckley (2011) identified a negative relationship 

between energy and carbon prices, linking rising energy costs to a drop in the appeal 

of emissions trading. 

Also, energy source substitution often responds to relative price shifts. For 

example, when natural gas becomes more expensive than coal, there is an incentive 

to shift toward more carbon-intensive power generation. This increases the demand 

for EUAs. This mechanism is known as energy arbitrage and is well documented in 

studies like Benz and Trück (2009) and Creti et al. (2012). 

For this reason, most carbon price forecasting models incorporate energy 

prices, either directly or through related indicators. Common variables are Brent 

crude, natural gas, thermal coal, and electricity spot prices. Their inclusion 

significantly improves model accuracy. Dai et al. (2022) and Benz and Trück 

(2009), for instance, show strong links between energy market shocks and carbon 

price volatility in the EU ETS. 

Global energy markets have also become increasingly relevant for regional 

carbon prices. Due to rising integration in trade, finance, and climate policy, EUA 

prices are now more exposed to external shocks like OPEC+ decisions or 

geopolitical risks (Creti et al., 2012). 

In short, including energy prices as explanatory variables is not only 

statistically helpful, but also conceptually justified, since the energy variables plays 

a key role in shaping the marginal cost of emissions reduction. 

2.3.6. Carbon Market Dynamics and Policy Interventions 

The EU ETS is a regulatory system that is in constant evolution, shaped by 

policy decisions that directly influence supply and demand for the allowances. The 

literature highlights how rule changes, such as revisions in free allocation, cap 
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adjustments, or the introduction of market stability mechanisms, can significantly 

affect carbon prices (Ellerman and Buchner, 2007; Aatola et al., 2013). 

One example is the MSR, which started operating in 2019 to reduce price 

volatility by automatically adjusting the number of allowances in circulation. Perino 

and Willner (2017) found that the MSR helped the system to gain credibility, 

pushing EUA prices higher and signaling stronger long-term regulatory 

commitment. 

Another important change is the introduction of CBAM in 2023. It was rolled 

out step-by-step to bring EU climate rules in line with global trade standards. 

Basically, it taxes imports from countries with weaker environmental rules, which 

connects trade, politics, and carbon pricing in new ways (European Commission, 

2021). 

Even when people expect them, policy changes still shape how the market 

reacts. As Calel (2013) says, emissions trading only works if prices stay steady and 

trustworthy. If the rules change too fast or are not very clear, it can scare investors 

away from green technologies. 

Some studies show that policy and political factors can affect carbon prices 

even more than economic ones. Even though not all of them say exactly how much, 

research by Dai et al. (2022) and Caldara and Iacoviello (2022) makes it clear that 

uncertainty in politics or the economy can shake up environmental markets. So, 

including these variables in carbon price forecasts is justified. 

2.3.7. Market Sentiment and External Influences 

In addition to macroeconomic forces, energy prices, and regulatory 

developments, carbon markets are also shaped by less tangible, but equally 

impactful factors: investor sentiment and political confidence. These elements, 

particularly when tied to policy uncertainty, can intensify volatility in markets like 

the EU ETS. What makes them so influential is their ability to shift expectations 

even in the absence of observable changes in fundamentals (Pastor and Veronesi, 

2012; Caldara and Iacoviello, 2022; Baker et al., 2016). 

Recent research has begun to highlight the role of text-based uncertainty 

indicators in improving predictive models for environmental assets. Zhang et al. 

(2022), for example, emphasize the growing inclusion of these variables in carbon 
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price forecasting. Their advantage lies in their ability to detect external shocks and 

structural breaks, that traditional variables might miss. This is echoed in the work 

of Baker et al. (2016) and Caldara and Iacoviello (2022), where both provide strong 

empirical support for incorporating these indicators in markets that are sensitive to 

political and policy-driven risks. 

Some studies have pushed the boundary even further. Wang et al. (2025) 

investigated how EPU and GPR influence the volatility of European carbon futures. 

Using a QARDL model, they found that both indicators were significant predictors, 

though GPR, in particular, had a more persistent impact during periods of 

instability. In a different context, Liu and Lü (2023) compared the performance of 

GPR and CPU indexes against conventional macroeconomic variables when 

modeling the volatility of China's carbon neutrality index. Their results, derived 

from GARCH-MIDAS and GARCH-RKV-MIDAS frameworks, suggest that 

uncertainty metrics carry greater explanatory power in such models. 

Another contribution comes from Ghani et al. (2024), who assessed the 

forecasting accuracy of several uncertainty indexes across sectors exposed to 

climate risk, such as renewables and transportation. Their findings reinforce the 

idea that GARCH-MIDAS models are well suited to volatile, regulation-sensitive 

environments like those found in environmental finance. 

Interestingly, financial innovation is also entering the equation. Jin et al. 

(2020) explored the role of green bonds as a stabilizing instrument within carbon 

markets. Their study shows that green bonds can act as a hedge against EUA price 

fluctuations, offering an additional financial mechanism that deserves consideration 

in forecasting frameworks. 

  



3 Methodology 

This study builds predictive models to estimate carbon price movements in 

the EU ETS, using machine learning applied to economic and financial time series. 

The methodological strategy follows four main steps: (i) preprocessing and 

preparation of variables, (ii) feature selection using LASSO regression, (iii) training 

and evaluation of forecasting models, and (iv) performance comparison using the 

Diebold-Mariano test. 

The focus is on forecasting the S&P Carbon Credit EUA Index, which is 

available in weekly frequency and was converted to monthly for this study. The 

target variable is modeled based on a broad set of explanatory variables, including 

macroeconomic, monetary, uncertainty, financial, and environmental indicators, all 

denominated in U.S. dollars. 

Because the data is monthly, the modeling had to deal with some challenges, 

especially regularization and overfitting, since the number of observations was 

relatively limited. To address this, LASSO regression was used for variable 

selection, and rolling window validation was applied with clear separation between 

training and testing periods. We also used formal statistical tests to compare how 

the models performed. 

The modeling process began by transforming all series to ensure stationarity, 

a key requirement for linear models and to reduce spurious autocorrelation. After 

that, all variables were standardized using the z-score method. Then we applied 

LASSO regression with cross-validation to find the most important predictors and 

drop redundant or noisy variables. This technique is especially suitable for high-

dimensional datasets and helps reduce multicollinearity, as shown by Hastie et al. 

(2009). 

Next, we trained five forecasting models: one linear (LASSO), two tree-based 

(Random Forest and CatBoost), one statistical (ARIMA), and one deep learning 

model (LSTM). The idea was to compare different modeling approaches and see 

how each one performs under different scenarios. 

Because flexible models like LSTM are prone to overfitting, we applied 

additional regularization strategies such as dropout, adaptive learning rate 

scheduling, and internal validation based on time splits. These techniques help 
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make the training process more stable and reduce model variance, as recommended 

in deep learning research for time series (Goodfellow et al., 2016; Brownlee, 2018). 

We validated the models using a rolling window cross-validation, more 

appropriate for time series modelling. Two types of rolling windows were tested, 

expanding and fixed, to check how each model adapts to different information 

structures. This strategy is particularly appropriate for financial settings, where data 

accumulates over time and forecasts must be made using only past information, 

closely simulating real-world decision-making (Tashman, 2000). 

We also used the Diebold-Mariano test to verify whether differences in model 

performance were statistically significant. 

This methodology aims to balance predictive accuracy with statistical rigor 

and practical usefulness. The combination of modern machine learning, complexity 

control, and rigorous time-based validation provides a solid framework for 

understanding carbon price behavior. 

3.1. Data, Sources, and Preprocessing 

This study uses monthly data from the S&P Carbon Credit EUA Index, 

covering October 2014 to October 2022 (94 observations). 

The explanatory variables were selected with a broad scope in mind, aiming 

to reflect the many forces that drive carbon prices. These include macroeconomic 

and financial indicators, as well as political, geopolitical, regulatory, and 

environmental influences. 

To ensure robustness and credibility, the independent variables were gathered 

from widely recognized sources: Eurostat, Bloomberg Terminal, Investing.com, 

Yahoo Finance, and policyuncertainty.com. In total, the model included 63 

explanatory variables. These spanned categories such as energy commodity prices 

(like Oil, Natural Gas, and Coal); macroeconomic indicators (European 

unemployment, European oil exports, Euro yield curves, European Inflation); 

financial metrics (Bitcoin, Commodity indexes, DXY, U.S. Treasury yields (10-

year), and bond indexes from FTSE); monetary aggregates (M2 for the U.S., China, 

and Eurozone); central bank balance sheets (FED and ECB); stock indexes (MSCI 

Europe, S&P500, FTSE100); volatility indicators (OVX, MOVE); and uncertainty 
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indexes (detailed in Section 2.2.2). Lagged values of the carbon index itself were 

also included as a predictor. 

Since the variables came in daily, weekly, and monthly formats, we 

standardized daily/weekly by taking the last available value for each month. 

Once aligned, the next step was testing for stationarity, a crucial prerequisite 

for time series modeling. We applied the Augmented Dickey-Fuller (ADF) test and 

log-differenced the series where needed. Any variable with a p-value above 0.05 

was differenced, and when that was not enough, a second difference was applied, 

following the guidance of Harris and Sollis (2003). The carbon index series itself 

(dependent variable) was second-differenced to eliminate unit roots. 

A methodological note is warranted regarding the Eurozone monetary 

aggregate M2 (ECB M2). Although its ADF test resulted in a p-value slightly above 

the conventional 5% threshold (p=0.075), applying a second differencing 

significantly reduced forecasting performance for LASSO. After additional tests 

(KPSS and Jarque-Bera) confirmed acceptable stationarity, we decided a single 

difference was sufficient. This choice involves a pragmatic trade-off, common in 

empirical applications, between statistical strictness and predictive effectiveness 

(Harris and Sollis, 2003; Hyndman and Athanasopoulos, 2018). 

With stationarity addressed, we moved on to z-score normalization. Each 

variable had its mean subtracted and was divided by its standard deviation, a 

standard transformation aligned with Hyndman and Athanasopoulos (2018) and the 

Scikit-Learn documentation (Pedregosa et al., 2011). This step is especially 

important for models sensitive to variable scales. Besides improving performance, 

standardization helps prevent a single feature from dominating the model and tends 

to speed up training in gradient-based architectures like recurrent neural networks 

(Goodfellow et al., 2016). 

However, in time series modeling, normalization needs extra care to avoid 

data leakage. This happens when test set statistics accidentally influence the 

training process. To prevent this, normalization was done using only the training 

data for each rolling window. In other words, for each split in the time-series cross-

validation, we calculated the mean and standard deviation from the training set only, 

and applied them to both the training and test sets. This ensures no future 

information leaks into the past and keeps the forecasting process realistic. 
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This best practice is widely recommended in time-series forecasting 

(Hyndman and Athanasopoulos, 2018; Brownlee, 2018), and it was strictly 

followed throughout the out-of-sample testing in this dissertation. Conditional 

normalization is particularly critical for models like LSTM, which are very 

sensitive to data scale and time flow. 

Finally, before entering the modeling phase, we applied penalized LASSO 

regression to select the most relevant variables. This helped cut down the number 

of predictors, reduce collinearity, and filter out noisy variables. The penalty 

parameter λ was chosen using cross-validation, ensuring stable and robust variable 

selection. 

3.2. Econometric and Machine Learning Models 

To forecast the European carbon index, we tested five models: LASSO 

regression, Random Forest, CatBoost, LSTM, and ARIMA. These models were 

chosen to represent a range of methodological approaches, combining traditional 

statistical tools with modern machine learning and neural network techniques. The 

goal was to compare how linear vs. nonlinear models capture patterns in the data. 

All models were implemented in Python using well-established libraries like 

scikit-learn (Pedregosa et al., 2011), catboost, statsmodels, and torch, along with 

custom scripts for validation control, regularization, and model setup. We based the 

parameter settings on literature recommendations and fine-tuned them using Time 

Series Split cross-validation, which helps preserve the time structure and prevent 

data leakage. 

3.2.1. LASSO Regression 

LASSO regression, introduced by Tibshirani (1996), was used here as both a 

linear prediction model and a tool for automatic variable selection. What makes 

LASSO different is the L₁ penalty it adds to the regression coefficients. This creates 

a sparse solution, and many coefficients are reduced to zero, so variable selection 

happens as part of the estimation. 

Its cost function is defined as: 
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Where 𝒚𝒊 represents the target variable, 𝒙𝒊𝒋 are the explanatory variables, 𝛃𝒋 

are the regression coefficients and 𝛌 is the regularization parameter that controls 

how strong the penalty is. Larger values of 𝛌 apply more shrinkage to the 

coefficients (eventually pushing some of them to zero) and help keep the model 

more compact and interpretable. 

In practice, the model was implemented using the LassoCV function from the 

scikit-learn library, with cross-validation based on the TimeSeriesSplit method. A 

grid of 1,000 lambda values was tested, spaced logarithmically across the range 𝛌 ∈

[𝟏𝟎−𝟒, 𝟏𝟎𝟏]. This approach helped balance regularization and overfitting control, 

while also respecting the time structure of the dataset. 

Beyond serving as a standalone model, LASSO was also used during 

preprocessing as a feature selection filter. The final model coefficients were used 

to decide which variables to keep: all predictors with non-zero coefficients were 

selected. This reduced set of variables was then passed to alternative versions of the 

Random Forest, CatBoost, and LSTM models. It helped reduce dimensionality and 

added another layer of complexity control. 

LASSO was chosen as the filtering method because it is robust in high-

multicollinearity environments, something typical in economic and financial 

datasets, where variables often move together (Hastie et al., 2009). In this study, it 

proved especially effective in removing noisy features and boosting out-of-sample 

performance in more complex models. 

That made it particularly useful in this case, where the goal was to forecast 

carbon prices with a small sample and a large number of predictors. Because of the 

high dimensionality and multicollinearity in the data, LASSO worked well as an 

automatic variable selection method. Its ability to act both as a prediction model 

and a feature selector made it a natural first step in the analysis (Tibshirani, 1996; 

Hastie et al., 2009). 

3.2.2. ARIMA 
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ARIMA, developed by Box and Jenkins (1970), is a classic tool for modeling 

univariate time series, especially useful when capturing linear trends and 

autocorrelation over time. The ARIMA structure includes three main components: 

autoregressive (AR), moving average (MA), and integration (I). This allows the 

model to handle both time persistence and non-stationarity in the series. 

The general ARIMA(p,d,q) model can be written as: 

 
𝚽(𝑳)(𝟏 − 𝑳)𝒅𝒚𝒕 = 𝚯(𝑳)𝛆𝒕 (2) 

Where 𝚽(𝑳) and 𝚯(𝑳) are the lag polynomials for the autoregressive and 

moving average terms, and d is the number of differences applied to make the series 

stationary. 

In this study, the ARIMA model was applied solely to the dependent variable. 

Results from the ADF test showed that two differences were necessary to achieve 

stationarity. Based on these results, the ARIMA (0,2,2) specification was selected 

as the best fit. The choice was guided by the Akaike Information Criterion (AIC), 

in line with the recommendations from Hyndman and Athanasopoulos (2018), who 

emphasize AIC’s balance between simplicity and predictive performance. 

Although ARIMA is known for its straightforward design, it was deliberately 

included in the model comparison as a classical statistical benchmark. Its role here 

was not to outperform more sophisticated techniques but to serve as a point of 

reference. Including it allows us to assess whether the added complexity of machine 

learning methods actually translates into meaningful gains in forecasting accuracy. 

3.2.3. Random Forest Regressor 

To go beyond the limits of traditional linear models, this study also uses non-

parametric approaches that are more suitable for high-dimensional data and 

complex variable interactions. One of the most popular of these is the Random 

Forest algorithm, proposed by Breiman (2001). It is a tree-based machine learning 

method that uses bootstrap aggregation, also known as bagging. Its main advantage 

is reducing variance and avoiding overfitting, while still performing well with noisy 

data and many variables. 
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The prediction of a Random Forest model is simply the average of the 

predictions made by all B decision trees in the ensemble. Each tree is trained on a 

different random subset of the data. In mathematical terms: 

 
�̂� =

1

𝐵
∑ 𝑇𝑏(𝑋)

𝐵

𝑏=1

 (3) 

Where B is the total number of trees, and 𝑻𝒃(𝑿) is the prediction of the B-th 

tree trained on a different bootstrap sample. This process helps reduce variance and 

makes the model more robust, especially in situations where collinearity and noise 

are present in the data. 

In this study, the Random Forest model was implemented using 100 trees 

(n_estimators=100), with a maximum depth of 6 (max_depth=6). We also set 

min_samples_split=5 and min_samples_leaf=3, based on tuning done during early 

testing. These hyperparameters were fixed to ensure stability across the rolling 

window validation process and to keep the results comparable with the other 

models. 

Because it is an ensemble method, Random Forest handled multicollinearity 

relatively well and remained effective even with predictors that had low individual 

importance. It showed solid out-of-sample results, especially when combined with 

LASSO for variable selection, which helped focus the model on the most relevant 

inputs. 

3.2.4. CatBoost 

CatBoost (short for Categorical Boosting) is a gradient boosting algorithm 

developed by researchers at Yandex (Prokhorenkova et al., 2018). Unlike XGBoost 

or LightGBM, CatBoost improves how categorical data is handled and includes 

built-in mechanisms to reduce overfitting. 

Although the dataset used in this study does not include categorical variables, 

CatBoost still performs well thanks to techniques like ordered boosting and 

mechanisms to prevent prediction shift. These features make it especially robust 

when working with small datasets, like monthly time series. 



36 

 

Technically, CatBoost follows the standard gradient boosting approach. 

Models 𝒉𝒎(𝒙)are fitted one after the other to reduce a loss function 𝑳(𝒚, �̂�). At 

each iteration m, the prediction is updated as: 

 

 𝒚(𝒎)̂ = 𝒚(𝒎−𝟏)̂ + 𝛈 ⋅ 𝒉𝒎(𝒙) (4) 

 

Where 𝛈 is the learning rate, and 𝒉𝒎(𝒙) is the base learner trained at iteration 

m.  

CatBoost stands out because of how it processes training data internally. The 

ordered boosting technique avoids information leakage between training examples 

and limits sequential dependencies, which helps reduce overfitting, especially when 

the number of observations is small (Prokhorenkova et al., 2018). 

In this study, CatBoost was implemented with 300 iterations (iterations=300), 

a learning rate of 0.01 (learning_rate=0.01), and tree depth of 4 (depth=4). These 

values were chosen based on preliminary tests using time-based validation, aiming 

for a model that is simple but effective. We tested CatBoost with both the full 

variable set and the reduced version selected by LASSO, to evaluate its 

performance under different levels of complexity. 

The model was trained using the CatBoostRegressor function from the 

catboost library, with verbose=0 to integrate smoothly with the rolling window 

loop. All variables were standardized before training, following the same 

preprocessing steps used for the other models and ensuring no data leakage, as 

explained earlier. 

The results showed that CatBoost was stable and effective in capturing 

nonlinear patterns among economic variables. Its performance improved even more 

when combined with LASSO-selected features, suggesting that even tree-based 

models can benefit from prior dimensionality reduction and multicollinearity 

control, particularly in small samples. 

3.2.5. LSTM Neural Networks (Long Short-Term Memory) 

LSTM, introduced by Hochreiter and Schmidhuber (1997), is a recurrent 

neural network widely used for time series tasks in finance and economics. Unlike 
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standard Recurrent Neural Network (RNN), LSTM has memory cells with gates 

that decide which information to keep, update, or forget over time. This helps the 

model learn long-term relationships in the data without losing information, which 

is a common problem in simpler recurrent networks (Goodfellow et al., 2016). 

The LSTM cell works based on a set of equations that define how the forget, 

input, and output gates operate: 

 𝒇𝒕 = 𝛔(𝑾𝒇[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇) 

𝒊𝒕 = 𝛔(𝑾𝒊[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊) 

𝑪�̃� = 𝐭𝐚𝐧𝐡(𝑾𝑪[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝑪) 

𝑪𝒕 = 𝒇𝒕 ⋅ 𝑪𝒕−𝟏 + 𝒊𝒕 ⋅ 𝑪�̃� 

𝒐𝒕 = 𝛔(𝑾𝒐[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐) 

𝒉𝒕 = 𝒐𝒕 ⋅ 𝐭𝐚𝐧𝐡(𝑪𝒕) (5) 

 

In the LSTM structure, 𝒙𝒕 is the input at time t, 𝒉𝒕 is the hidden state, and 

𝑪𝒕 is the cell’s internal state. The sigmoid function 𝛔 is used to control what 

information passes through the gates. The weight matrices W and the bias terms b 

are parameters learned during training. The hyperbolic tangent function 𝑡𝑎𝑛ℎ is 

used to keep the values between -1 and 1. 

In this work, we implemented a robust version of the LSTM model to reduce 

overfitting issues, condition that is common in neural networks, especially when 

working with limited data. The architecture used had two stacked LSTM layers 

(num_layers=2), each with 32 hidden units (hidden_size=32), a dropout of 0.3 

between layers, and a fully connected output layer at the end. 

The model was built using the PyTorch library (Paszke et al., 2019) and 

trained with the Adam optimizer (lr=0.005) and MSE as the loss function. 

We applied several regularization techniques to stabilize training. First, early 

stopping monitored validation loss using 10% of the training set. Second, a learning 

rate scheduler dynamically adjusted the learning rate during training. Third, input 

standardization was applied using only the training set in each window to prevent 

data leakage (Brownlee, 2018). Each model was trained for up to 200 epochs, with 

a patience of 10 epochs without improvement in validation loss. 

The model was trained and evaluated using structured time-based validation, 

including both rolling windows and sequential splits (TimeSeriesSplit). For each 
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window, point-by-point forecasts were made and evaluated using robust error 

metrics (MAE, MSE, RMSE, sMAPE, MASE). 

As pointed out by Bergmeir and Benítez (2012), this type of model is very 

sensitive to temporal information leakage, so it’s crucial to use validation methods 

that respect the data order, like the rolling windows used in this study. 

We chose LSTM because it can capture nonlinear dynamics and lagged 

relationships, both common features in economic and financial time series. In 

highly volatile contexts with many uncertainty factors, like the carbon market, this 

flexibility is key. The added robustness in the network setup, including 

regularization, time-based validation, and sequential standardization, played an 

important role in achieving stable and accurate out-of-sample performance. 

3.3. Validation Strategies and Performance Evaluation 

Once all models were defined and implemented, the next step was to evaluate 

how well each one performed in forecasting future values. This stage is critical in 

time series analysis, particularly in finance, where preserving the natural temporal 

flow of information is essential. Ignoring the order of data can introduce bias and 

lead to overly optimistic results. To avoid that, this study followed best practices 

designed to reflect how models would behave in a real-world forecasting scenario. 

Research by Bergmeir et al. (2018) and Cerqueira et al. (2020) highlights the 

advantages of using rolling window validation over standard cross-validation 

methods when working with time series. These rolling techniques maintain the 

sequential nature of data, allowing for more realistic out-of-sample evaluation. 

Unlike k-fold cross-validation, which randomizes the data and can introduce 

data leakage, time series models demand validation strategies that respect 

chronology. As Tashman (2000) and Bergmeir et al. (2018) point out, shuffling 

observations breaks the time dependency that these models rely on. Because of that, 

this analysis used two validation setups: one with a fixed-size rolling window and 

another with an expanding window that incorporates more data at each step. 

The choice is not arbitrary. Bergmeir and Benítez (2012) showed that 

traditional cross-validation often give biased performance estimates for time series 

models, especially those like neural networks that are sensitive to lagged inputs. 
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Their work strongly supports rolling window methods for maintaining the integrity 

of time-based patterns and ensuring fair comparisons across forecasting models. 

For each split in the validation process, we applied a comprehensive set of 

error metrics. These metrics capture different facets of forecasting accuracy. Some 

focus on scale, others on percentage deviation or average error. They have become 

standard tools in applied forecasting research, particularly in large-scale benchmark 

studies and international forecasting competitions (Makridakis et al., 2018; 

Hyndman and Koehler, 2006). 

3.3.1. Out-of-Sample R² with Temporal Validation 

The out-of-sample coefficient of determination (R²) was also used to measure 

how much better a model performs compared to a simple forecast based on the 

historical average of the target variable. Even though R² is usually linked to in-

sample fit, it can also be used in forecasting tasks, especially with rolling window 

setups, to measure the added value of a model over a naive baseline (Kuhn and 

Johnson, 2013; Bergmeir et al., 2018). We used the classic formula implemented 

through the r2_score function from the scikit-learn library, which compares the 

model’s squared errors to the ones from a constant mean forecast. 

The formula used for R² is: 

 
𝑅2 = 1 −

∑(𝑦𝑡 − 𝑦�̂�)2

∑(𝑦𝑡 − �̅�)2
 (6) 

 

where 𝒚𝒕 are the actual values in the test set, 𝒚�̂� are the predicted values from 

the model, and �̅� is the average of the actual values. A positive R² means the model 

performs better than the naive mean forecast. A negative value means it performed 

worse. 

The out-of-sample R², which compares model predictions against a naive 

baseline, should not be the sole indicator of predictive accuracy, as relying 

exclusively on this comparative metric can be misleading. The literature strongly 

recommends using a combination of metrics, complemented by formal statistical 

tests, to obtain a complete and robust evaluation of forecasting performance, 

particularly in economic and financial applications, where data can be volatile and 
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prone to abrupt changes (Hyndman and Athanasopoulos, 2018; Bergmeir et al., 

2018). 

3.3.2. Expanding Rolling Window Cross-Validation 

In expanding window validation, the training set starts with an initial block 

of data that gradually increases over time. At each new step, fresh observations are 

added to the training window, while the test set remains fixed in size. This structure 

mirrors the way information is processed in real economic contexts, where agents 

learn progressively, adjusting their expectations as new data becomes available 

(Tashman, 2000). 

Formally, if t is the total number of observations and h is the size of the test 

window, the training and testing sets at each iteration i are defined as: 

 
Train𝑖 = {1,2, … , 𝑡𝑖},  Test𝑖 = {𝑡𝑖 + 1, … , 𝑡𝑖 + ℎ} (7) 

 

where 𝒕𝒊 increases at each step. 

For this study, we applied three expanding windows, each calibrated to ensure 

a balanced representation across the full sample period. The idea was to make sure 

that every model had exposure to different market conditions at different stages of 

training. 

Importantly, models were retrained from scratch at each iteration. No 

information carried over from one window to the next. Just as crucial, input 

variables were standardized using only the statistics from the current training set, 

not the full dataset. This step, although sometimes overlooked, is critical for 

preserving the integrity of time-based validation. As Bergmeir et al. (2018) 

emphasize, using global statistics can leak future information into the past, which 

compromises the realism of forecasting results. 

By strictly applying this window-by-window approach, we ensured that our 

performance measures reflect a true out-of-sample setting, one that closely 

resembles how forecasting would work in practice. 

3.3.3. Fixed Rolling Window Cross-Validation 
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The fixed window strategy keeps the training set size constant throughout the 

iterations. Each time the window moves forward, the oldest data is dropped and the 

newest data is added, so the number of training observations stays the same. This 

method is useful when only the most recent information is considered relevant for 

forecasting, which is often the case in volatile or fast-changing environments like 

financial and energy markets. Research has shown that this approach can lead to 

more stable performance when there are regime shifts or structural changes 

(Tashman, 2000; Cerqueira et al., 2020). 

The training and test sets for iteration i are defined as: 

 Train𝑖 = {𝑡𝑖 − 𝑤 + 1, … , 𝑡𝑖},  Test𝑖 = {𝑡𝑖 + 1, … , 𝑡𝑖 + ℎ} (8) 

 

where w is the fixed size of the training window. 

Here as well, three validation blocks were used to match the expanding 

window setup and allow direct comparison. The models were re-estimated at each 

step, and the data was standardized using statistics from the training set only. 

The fixed window is often recommended when there are signs of structural 

breaks or regime changes, as it tests how well models adapt to recent market 

behavior. This is especially important when older data may no longer represent 

current patterns, a point emphasized by Hyndman and Athanasopoulos (2018) and 

Cerqueira et al. (2020). 

3.3.4. Evaluation Metrics 

The evaluation metrics used in this study follow well-established practices in 

time series forecasting literature, as discussed by Hyndman and Koehler (2006). 

Five different metrics were applied. Each one captures different aspects of model 

performance, and they work as complementary tools. 

All these metrics were applied to the out-of-sample predictions generated 

under both TimeSeriesSplit and rolling window (fixed and expanding) setups. This 

approach is in line with recommendations from Hyndman and Athanasopoulos 

(2018), who suggest evaluating models over distinct time blocks to simulate real-

world forecasting situations and avoid overfitting. 
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The MSE was used as the main metric, since it gives more weight to larger 

errors and is sensitive to outliers. This makes it a good choice for capturing severe 

prediction mistakes (Hyndman and Koehler, 2006). It was also used as the base 

metric in the Diebold-Mariano statistical test to compare models (see section 3.5). 

Using MSE here helps check whether the performance differences between two 

models are statistically significant over time (Diebold and Mariano, 1995; Harvey 

et al., 1997). 

 
MSE =

1

𝑛
∑(𝑦𝑡 − 𝑦�̂�)2

𝑛

𝑡=1

 (9) 

 

The MAE gives a straightforward measure of average prediction error in the 

same units as the target variable. It is less sensitive to outliers than MSE, making it 

a solid choice to evaluate absolute accuracy. RMSE is the square root of MSE, 

which puts the result back on the same scale as the original data. This metric is 

especially useful when we want to emphasize big errors, and it performs well when 

prediction errors are roughly normally distributed (Hyndman and Koehler, 2006; 

Chai and Draxler, 2014). Both metrics are widely used in forecasting studies 

because they reflect different dimensions of accuracy. 

 

MAE =
1

𝑛
∑|𝑦𝑡 − 𝑦�̂�|

𝑛

𝑡=1

 (10) 

 

 

RMSE = √
1

𝑛
∑(𝑦𝑡 − 𝑦�̂�)2

𝑛

𝑡=1

 (11) 

 

The sMAPE expresses forecast error in percentage terms and treats over and 

under predictions symmetrically. It uses both predicted and observed values in the 

denominator, which helps avoid distortion when the actual values are close to zero. 

This makes sMAPE useful for comparing models across different time series scales. 

However, some studies show that sMAPE can behave unpredictably in extreme 

cases, so it is best used alongside more robust metrics (Hyndman and Koehler, 

2006). 
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sMAPE =
100%

𝑛
∑

|𝑦𝑡 − 𝑦�̂�|

(|𝑦𝑡| + |𝑦�̂�|)/2

𝑛

𝑡=1

 (12) 

 

The MASE, introduced by Hyndman and Koehler (2006), was especially 

useful in this study because it compares model performance to a simple naive 

forecast, usually defined as 𝑦�̂� = 𝑦𝑡−1. A MASE value below 1 means the model is 

doing better than the naive benchmark, which is important in financial time series 

where simple rules often perform surprisingly well. 

 

MASE =

1
𝑛

∑ |𝑦𝑡 − 𝑦�̂�|𝑛
𝑡=1

1
𝑛 − 1

∑ |𝑦𝑡 − 𝑦𝑡−1|𝑛
𝑡=2

 (13) 

 

Combining these metrics provides a more complete view of model 

performance, balancing absolute error, sensitivity to outliers, and comparison to 

naive baselines. All of them were applied consistently to every out-of-sample 

validation window, and the average results were calculated for each metric at the 

end of every cycle. This kind of setup, as recommended by Tashman (2000) and 

Hyndman and Koehler (2006), ensures that results do not rely on a single measure 

and supports stronger conclusions about model performance. This full set of metrics 

was applied systematically across all out-of-sample validation windows. 

3.4. Diebold-Mariano Test 

An essential step in this study was to formally compare the predictive 

performance of the models. For that, we used the Diebold-Mariano (DM) test, 

proposed by Diebold and Mariano (1995), which checks if the difference in 

forecasting errors between two competing models is statistically significant. The 

DM test is widely used in time series and economic forecasting contexts (Hyndman 

and Athanasopoulos, 2018). 

The DM test starts from the null hypothesis that both models have the same 

forecasting accuracy, meaning that their expected errors are equal. The test statistic 

is based on the series of differences between the loss values (usually squared errors) 

from each model across the forecast horizon. In this study, we used MSE as the loss 



44 

 

function, since it is sensitive to large deviations and commonly used in predictive 

modeling. 

Using the DM test is particularly important in situations like this, where we 

are dealing with non-stationary time series, possible regime shifts, and structural 

breaks, all common in the carbon market. In these cases, just comparing average 

metrics like MSE, RMSE, or MAE may miss key differences at specific points in 

time (Pesaran and Timmermann, 1995). Because the DM test evaluates the 

prediction errors step by step, it is known to be more sensitive to those fluctuations. 

The DM test is also well-suited for handling serial correlation in forecast 

errors, a common issue in rolling window validation. To apply the test properly, we 

used the Newey-West adjustment for estimating variance, with the optimal lag set 

as int(1.2 ⋅ 𝑇1/3), as suggested by Diebold and Mariano (1995). We also included 

the correction proposed by Harvey et al. (1997), which adjusts the test statistic for 

small samples and improves accuracy when there is residual autocorrelation. The 

use of the DM test is well established in the forecasting and time series literature as 

a formal way to compare predictive models (Diebold and Mariano, 1995; Hyndman 

and Athanasopoulos, 2018). 

The test statistic is calculated as: 

 

𝐷𝑀 =
�̅�

√2π𝑓�̂�(0)
𝑇

 
(14) 

 

where  �̅� is the mean difference in forecasting errors between the two models 

across T periods, and  �̂�(�̅�) is a robust estimate of the variance of that mean, 

adjusted for possible autocorrelation in the residuals. 

In forecasting, it is not enough to show that one model has a lower average 

error. As discussed by Pesaran and Timmermann (1995), it is important to apply 

tests that check both the statistical and economic relevance of these differences. 

That is why using the DM test here helps confirm whether the differences in 

performance are meaningful or just random noise. 

We ran pairwise comparisons between all five main models under both 

modeling setups (with and without variable selection via LASSO). The forecast 
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errors used were the ones from the rolling window validations, in both expanding 

and fixed formats, so we could capture performance differences more reliably. 

The DM test results, presented in the next chapter, point out which models 

actually outperformed the rest. This test is especially useful to go beyond just 

looking at average error metrics and gives statistical evidence when one model is 

actually better than another. 

3.5. Limitations 

Despite the use of a robust and systematic methodology, a few limitations 

remain that are worth highlighting: 

(i) Variable selection via LASSO: While LASSO plays a valuable role in 

reducing dimensionality, it can also exclude variables that may be theoretically 

important, even if they are not strong predictors in a specific window. Moreover, 

the set of selected variables tends to shift depending on the estimation window, 

which can affect the internal consistency of the forecasting results. 

(ii) Sensitivity of complex models such as LSTM: Recurrent neural networks 

like LSTM are powerful but computationally demanding. They rely heavily on 

hyperparameter tuning and large datasets to reach their full potential. Due to 

computational constraints, we were not able to perform a comprehensive 

hyperparameter search, which may have limited the LSTM’s overall performance 

in this context (although its great final result). 

(iii) Assumptions behind rolling window validation: Using fixed and 

expanding windows does a good job of replicating real-time forecasting setups. 

Still, it assumes some level of structural stability across windows. In the case of 

carbon markets, where external shocks, regulatory reforms like CBAM, and 

changes to the EU ETS are common, this assumption does not always hold. 

(iv) Structural limits in forecasting financial time series: No matter how 

advanced the model, forecasting carbon prices remains a difficult task. These assets 

are heavily exposed to political uncertainty, sudden macroeconomic events, and 

institutional shifts. Such volatility makes long-horizon predictions particularly 

fragile, regardless of the algorithm used. 

(v) Treatment of the ECB M2 variable: One methodological exception 

involved the ECB M2 monetary aggregate. Although its ADF p-value (0.075) was 
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slightly above the usual 5%, we opted for a single differencing. This choice was 

based on the fact that applying a second difference substantially worsened model 

performance for LASSO. While the decision was supported by the KPSS and 

Jarque-Bera tests (which confirmed acceptable stationarity and normal distribution 

after the first difference), it still introduced a small inconsistency in preprocessing. 

Beyond these technical aspects, it is also worth noting that the models 

employed here are predictive in nature, not causal. While LASSO helps enhance 

predictive power by filtering variables, its selections should not be interpreted as 

definitive drivers of carbon price movements. 

Even with rolling window validation, abrupt disruptions, such as the COVID-

19 pandemic or geopolitical crises, can easily distort forecasts. These limitations do 

not undermine the findings, but they should be kept in mind when interpreting the 

results or applying the framework to future data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 Data Analysis 

This chapter delivers the empirical results from the forecasting models and 

validation strategies introduced in Chapter 3. The aim is to systematically compare 

how different models perform in forecasting the S&P Carbon Credit EUA index. 

4.1. Descriptive Statistics 

Table 1 shows the main descriptive statistics for the variables selected by 

LASSO. These statistics are commonly used in financial research, along with the 

results of stationarity tests for the explanatory variables included in the forecasting 

models. Given the macroeconomic, financial, and uncertainty nature of the dataset, 

many series required first or even second differencing to achieve stationarity. 

 

Table 1 - Descriptive Statistics and Stationarity Tests (ADF and JB) 

Variable Mean Median SD Min Max Kt Sk ADF JB 

S&P Carbon 

Credit EUA Lag 
0.00 0.01 0.18 0.46 0.60 4.27 0.37 0.01 0.01 

UK EPU 0.01 0.03 0.33 0.68 0.84 2.70 0.17 0.03 0.68 

European Oil 

Exports 
0.00 0.00 0.06 0.14 0.14 2.63 0.05 0.01 0.75 

MSCI Europe 

Index 
0.00 0.00 0.05 0.18 0.17 5.02 -0.39 0.05 0.00 

Climate Risk 

TRI 
-0.01 -0.01 0.02 0.08 0.11 9.04 1.25 0.01 0.00 

ECB M2 0.00 0.00 0.02 0.07 0.05 3.28 -0.09 0.08 0.81 

FTSE Interest 

Rate 
0.00 0.00 0.02 0.07 0.06 4.13 -0.24 0.01 0.05 

Policy-Related 

EMV 
0.00 0.04 0.35 0.82 0.87 2.58 -0.20 0.01 0.52 

MPU World 

News 
0.02 -0.02 0.47 0.80 1.45 3.43 0.66 0.01 0.02 

Industry Index 

(Europe) 
0.00 0.00 0.01 0.04 0.04 8.02 -0.50 0.01 0.00 

UCT 0.00 0.00 0.18 0.48 0.52 2.99 0.16 0.01 0.83 

FTSE High 

Yield 
0.00 0.00 0.04 0.15 0.22 13.93 1.56 0.01 0.00 

EMV EER 0.31 0.27 0.24 0.00 1.17 4.27 1.09 0.03 0.00 
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Variable Mean Median SD Min Max Kt Sk ADF JB 

GPR 0.01 0.00 0.22 0.60 0.62 3.70 0.21 0.01 0.27 

HICP 0.00 0.00 0.01 0.02 0.02 5.59 -0.06 0.01 0.00 

Bloomberg 

Commodity 

Index 

0.00 0.00 0.04 0.12 0.14 4.27 -0.12 0.02 0.04 

GSCI Industrial 

Metals 
0.00 0.00 0.07 0.19 0.17 2.84 -0.15 0.01 0.79 

Natural Gas 0.01 -0.01 0.14 0.42 0.36 3.91 -0.12 0.01 0.18 

Bitcoin 0.04 0.05 0.23 0.62 0.52 3.08 -0.30 0.01 0.50 

TEU ENG 0.01 0.03 0.60 2.41 2.20 6.53 -0.10 0.01 0.00 

Energy Risk 

Global 
0.00 -0.01 0.21 0.39 0.76 3.97 0.81 0.01 0.00 

EMV Overall 0.00 0.02 0.30 0.82 0.95 3.21 -0.04 0.01 0.90 

TMU WGT 0.04 -0.08 0.83 1.72 2.27 2.68 0.31 0.01 0.38 

FED M2 0.00 -0.01 0.09 0.26 0.38 5.95 0.53 0.01 0.00 

Note: SD = Standard Deviation; Min = Minimum; Max = Maximum; Kt = Kurtosis; Sk = 

Skewness; ADF = Augmented Dickey-Fuller test p-value; JB = Jarque-Bera test p-value. 

 

The Eurozone monetary aggregate M2 (ECB M2), received a different 

treatment. Although its ADF p-value was 0.08, a little above the conventional 5% 

threshold, it was differenced only one time. This decision followed empirical 

testing: when this variable was included in its second differenced form, the out-of-

sample performance of the models worsened, particularly LASSO, which is highly 

sensitive to the information content of its inputs. This approach aligns with the 

principle that, in predictive modeling, practical forecasting accuracy can sometimes 

justify small deviations from strict statistical criteria (Hyndman and 

Athanasopoulos, 2018; Shmueli, 2010). Since the main goal of this study is 

forecasting, and not structural inference, the practical predictive gain justified its 

inclusion at a little more relaxed significance level. 

On the other hand, the U.S. monetary aggregate M2 (FED M2), had to be 

differenced twice, as its first difference still showed a high p-value (0.71) in the 

ADF test. This behavior is typical of an I(2) process, meaning the series contains 

two unit roots so it requires second differencing to achieve stationarity. It reflects 

the presence of a highly persistent stochastic trend that cannot be removed with a 

single differencing. 
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While the ADF p-value suggested borderline non-stationarity, other 

diagnostics reinforced the decision to include ECB M2 in the model. The Jarque-

Bera p-value for ECB M2 is 0.81, indicating no significant deviation from 

normality. The KPSS test statistic for ECB M2 is 0.144, well below the critical 

values for rejecting the null of stationarity. These results support the conclusion that 

first differencing was sufficient and that the series probably behaves as stationary 

in practice (Kwiatkowski et al., 1992; Harris and Sollis, 2003). This multiple testing 

approach, using both ADF and KPSS, follows recommendations from the time 

series literature to improve the robustness of stationarity diagnosis. Together with 

the Jarque-Bera test, this reinforced the statistical adequacy of the first-differenced 

series. 

This cautious approach to variable transformation was consistently applied 

throughout the dataset. Most explanatory variables were accepted as stationary at 

the 5% level after one or two rounds of differencing, with exceptions like the one 

discussed. 

In addition to stationarity, Table 1 summarizes key features of the 

distributional shape of the series. Several variables show skewness and excess 

kurtosis, common features in financial and economic time series. Yet most pass the 

Jarque-Bera test, indicating that normality is a reasonable assumption for the 

majority of inputs. This contributes to model stability, particularly for regularized 

techniques like LASSO, which tend to perform better with input distributions that 

are approximately symmetric and not heavy-tailed (Zou and Hastie, 2005; 

Brownlee, 2018). 

Taken together, these diagnostics confirm that the dataset was well-prepared 

and statistically adequate to modeling. 

Since the main goal of this work is forecasting accuracy, not causal inference, 

using a tighter statistical filter but with some flexibility was the best approach. This 

pragmatic balance between statistical theory and empirical performance reflects a 

growing trend in applied forecasting, particularly in volatile domains such as 

finance and environmental economics (Shmueli, 2010; Hyndman and 

Athanasopoulos, 2018). 

4.2. Variable Selection and Economic Interpretation via LASSO 
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After completing the LASSO-based variable selection outlined in Section 

3.2.1, this section presents the final set of variables retained in the model, along 

with their standardized coefficients. 

Before running the estimation, all predictors were standardized using z-

scores. This step is essential in LASSO regression, as it ensures the regularization 

penalty applies equally across variables, independently of their original scale. With 

the optimal penalty parameter in place, the model identified 24 predictors with non-

zero coefficients. 

The selected variables cover macroeconomic, financial, energy, regulatory, 

climate, uncertainty, and geopolitical aspects, as well as lagged values of the carbon 

price series itself. This composition provides a comprehensive foundation for the 

predictive model. 

Table 2 lists each selected variable and its corresponding standardized 

coefficient. What stands out is the frequency with which qualitative and 

institutional indicators appear in the model. These are often difficult to quantify, 

yet they were consistently retained. So this highlight something important: even in 

data-driven models, investor sentiment and institutional signals may play a stronger 

role in shaping price expectations than purely numerical trends would suggest. 

 

Table 2 - LASSO Selected Variables (Standardized Coefficients) 

Explanatory Variable Standardized Coefficient 

S&P Carbon Credit EUA Lag -0.074 

UK EPU* -0.045 

European Oil Exports 0.030 

MSCI Europe Index 0.030 

Climate Risk TRI* -0.026 

ECB M2 0.024 

FTSE Interest Rate -0.018 

Policy-Related EMV* -0.018 

MPU World News* 0.017 

Industry Index (Europe) -0.016 

UCT* -0.015 

FTSE High Yield 0.015 

EMV EER* -0.012 

GPR* -0.011 

HICP 0.010 
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Table 2 - LASSO Selected Variables (Standardized Coefficients) 

Explanatory Variable Standardized Coefficient 

Bloomberg Commodity Index -0.008 

GSCI Industrial Metals -0.007 

Natural Gas -0.006 

Bitcoin -0.003 

TEU ENG* -0.003 

Energy Risk Global* -0.003 

EMV Overall* -0.003 

TMU WGT* -0.002 

FED M2 0.002 

Note: This table reports variables selected by the LASSO regularization procedure. 

Coefficients are standardized to allow magnitude comparison across predictors. 

Asterisks (*) indicate qualitative (text-derived) or institutional variables. 

 

While LASSO is primarily used for forecasting, the variables it selects, along 

with the sign of their coefficients, can still offer valuable insights into the 

determinants of carbon prices. Since regularization shrinks coefficient magnitudes, 

they should not be taken as precise measures of impact. Still, a positive coefficient 

on an uncertainty index, for example, suggests that carbon prices tend to rise as 

perceived risk increases. Such patterns help build intuition about market dynamics, 

even though they do not imply causality. 

Among the variables tied to environmental policy and transition risk, one 

stood out: the Climate Risk TRI, which entered the model with a negative 

coefficient of -0.026. Built from text-based data, TRI captures how uncertain the 

regulatory environment appears around decarbonization and energy transition 

policies. That negative sign is consistent with earlier findings. Unexpected policy 

changes or abrupt shifts in climate regulations tend to amplify risk and supress the 

value of regulated assets (Battiston et al., 2017). 

TRI’s inclusion in the model suggests that carbon markets respond negatively 

when public discourse around ecological transition becomes more intense. This 

may reflect expectations of future changes in permit allocation, shifts in regulated 

demand, or revisions to sectoral incentives. This interpretation aligns with both 

theory and recent empirical evidence. Battiston et al. (2017) found that sudden 

changes in climate policy can sharply reprice assets, particularly in heavily 

regulated sectors. Similarly, Bua et al. (2024) show that shocks to the TRI influence 
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investor behavior, especially in the post-2015 period, affecting green and brown 

assets differently. 

On the macro-financial side, some variables reflecting liquidity and real 

economic activity were retained. The ECB’s monetary aggregate M2 (ECB M2) 

appeared with a positive coefficient (0.024), suggesting that monetary expansion 

may drive up carbon credit prices, possibly by boosting demand in regulated sectors 

or in sustainable assets more broadly. That aligns with work by Fatica et al. (2021), 

who highlighted liquidity’s role in supporting the valuation of green assets. The 

U.S. monetary aggregate (FED M2), differenced twice, also had a positive 

(although smaller) effect (0.002). However, it would be misleading to claim ECB 

M2 had a stronger influence, given the different treatment in transformations 

applied to each series. But in general, European assets tend to be more 

representative to the determination of European carbon prices, probably due to 

market’s geographic and institutional scope. 

Two indicators supported the idea that stronger economic activity pushes 

carbon prices higher. The MSCI Europe index and European oil exports were both 

selected, each with coefficients of 0.030. This fits with prior studies, such as Creti 

et al. (2012), which linked carbon prices to economic growth and commodity trade 

activity in the European context. 

Energy prices, by contrast, had negative signs. Natural gas futures entered 

with a coefficient of -0.006, and the Bloomberg commodity index with -0.008. One 

possible interpretation is that higher input costs lower the demand for carbon 

credits, either because they make compliance more costly or because they draw 

political focus away from tightening regulations. This echoes findings from Bredin 

and Muckley (2011), who observed that energy shocks can weaken carbon pricing, 

especially in times of policy uncertainty. 

The HICP inflation index entered with a moderate positive coefficient 

(0.010), suggesting that carbon prices may respond to general price dynamics, or 

may behave like regulated assets that retain value during inflationary periods. Koch 

et al. (2014) noted a comparable long-term link between inflation and EUA prices. 

Political and geopolitical uncertainty indicators also played a significant role. 

The UK EPU had the largest absolute coefficient (-0.045) among all variables. That 

is particularly interesting given that the UK left the EU ETS in 2020 (although this 

study comprises the period from 2014 to 2022). Even so, instability in the UK’s 



53 

 

climate policy seems to spread across the region, possibly affecting broader 

expectations in the European market. Similar regional spillovers have been 

documented by Zhang et al. (2022) and Benz and Trück (2009). 

The Policy-Related EMV was also retained, with a strong negative 

coefficient, reinforcing that global regulatory uncertainty matters for the pricing of 

environmental assets. That is consistent with studies by Wang et al. (2025) and 

Ghani et al. (2024), which suggest a tight link between policy volatility and investor 

risk premiums. 

Geopolitical tension, captured by the GPR, showed a negative coefficient (-

0.011). It points to a familiar mechanism: in periods of conflict or diplomatic 

tension, investors demand a higher premium for long-term or regulated assets, 

reducing demand in carbon markets (Caldara and Iacoviello, 2022). 

Interestingly, indicators based on social media sentiment were also kept. The 

TEU ENG index came in with a coefficient of -0.003, and TMU WGT slightly 

lower at -0.002. This suggests that carbon markets are increasingly sensitive not 

only to traditional indicators, but also to digital sentiment captured by online 

discourse. 

The US-China Trade Tension Index (UCT) also entered with a negative 

coefficient (-0.015), suggesting that diplomatic tensions and trade barriers between 

the world’s two largest economies can affect negatively European carbon prices. 

This reflects systemic interdependencies, as also highlighted by Zhang et al. (2022) 

and Ghani et al. (2024). 

Two FTSE fixed-income indexes were selected: the high-yield bond index 

(0.016) and the interest rate index (-0.018). The high-yield signal suggests that in 

times of rising credit risk, investors may turn to alternatives, like carbon credits. 

That is in line with evidence showing a growing shift toward ESG products in 

riskier markets (Baker et al., 2018; Fatica et al., 2021). The interest rate index 

reinforces the idea that rising rates, by increasing capital costs, discourage long-

term investment, particularly in projects tied to energy transition or environmental 

goals, which rely heavily on financing and are subject to regulation (Bredin and 

Muckley, 2011). 

Lastly, the model retained the lag of the carbon index itself, with a coefficient 

of -0.074, the highest absolute value in the set. This highlights a strong 

autoregressive component, likely reflecting mean-reverting behavior. Regulated 
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markets often move this way, balancing between policy signals and short-term 

corrections. Chevallier (2011) observed this pattern, identifying short memory 

structures in carbon prices, consistent with markets that are regularly rebalanced by 

regulatory supply-demand adjustments. 

In summary, the LASSO model retained a suitable set of variables that 

influence carbon pricing. By reducing the original 63 variables to 24, the model did 

not lose predictive power; instead, it became more interpretable and stable in out-

of-sample forecasts. While the goal here was predictive performance, the results 

still shed light on the kinds of forces shaping carbon markets. As noted by Creti et 

al. (2012), Dai et al. (2022), and Ghani et al. (2024), carbon pricing is not driven by 

any single factor, but rather by the combined weight of economic fundamentals, 

political signals, and evolving perceptions of risk. 

4.3. In-Sample and Out-of-Sample Evaluation 

The empirical analysis began by testing how well the proposed models 

performed under both in-sample and out-of-sample conditions. This initial step 

served two purposes: spotting early performance trends and identifying signs of 

overfitting that might undermine predictive reliability. To do this, we ran the 

models twice, once using the full set of explanatory variables, and again using the 

reduced subset selected via LASSO. The idea was to compare results and see how 

variable selection shaped overall forecast accuracy. 

While in-sample evaluation is, of course, limited by its reliance on past data, 

it still offers a useful benchmark for how well each model fits the observed series. 

Out-of-sample testing, on the other hand, tells a different story. Using time-based 

cross-validation, specifically TimeSeriesSplit with five folds, gives a more realistic 

picture of how the models might perform in real-world forecasting. 

Table 3 brings together the results for all five models, tested with and without 

variable selection. A few consistent patterns emerged, but there were also some 

surprises. As expected, non-linear models generally posted stronger in-sample R² 

scores, with LSTM achieving the highest fit in both feature setups. However, this 

performance did not generalize well when using the full feature set, where the out-

of-sample R² turned negative, a clear sign of overfitting. When combined with 

LASSO-selected features, however, LSTM’s predictive performance improved 
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substantially, outperforming the other models. Interestingly, CatBoost and Random 

Forest showed slightly better out-of-sample performance when trained on the 

LASSO-selected features. 

 

                      Table 3 - R² In-Sample and Out-of-Sample Results 

Model 
R² In-sample (Full 

features) 

R² In-sample 

(LASSO) 

R² Out-of-sample 

(Full features) 

R² Out-of-sample 

(LASSO) 

LASSO 0.702 0.752 0.177 0.287 

CatBoost 0.711 0.715 0.114 0.172 

Random Forest 0.835 0.836 0.131 0.190 

LSTM 0.849 0.854 -0.210 0.333 

ARIMA 0.474 0.474 0.095 0.095 

Note: R² values are shown for in-sample and out-of-sample performance under both 

full and LASSO-selected feature sets. The out-of-sample R² measures how well each 

model predicts unseen data compared to a naive baseline. Higher values indicate 

better predictive performance. 

 

More meaningful insights come from the out-of-sample validation. LASSO 

maintains stable performance in both scenarios, showing its ability to generalize. 

The LASSO model also gained from its own selection process. When it was trained 

only on the predictors it had selected through regularization (a setup we could call 

LASSO-LASSO) its out-of-sample performance improved noticeably, with R² 

rising from 0.177 to 0.287. 

  This result for LASSO reinforces the benefits of combining regularization 

and model parsimony in complex settings. In contrast, ARIMA struggled to 

maintain accuracy in the out-of-sample results. This supports earlier critiques by 

Han et al. (2019) and Aatola et al. (2013), who pointed to the model’s sensitivity to 

regime shifts and instability in parameter estimation. 

Machine learning models such as CatBoost, Random Forest, and LSTM 

exhibited a pattern of behavior. While they risk overfitting in their raw form 

(especially for LSTM with the full set of variables), using LASSO for variable 

selection was crucial for reducing this risk and, more importantly, improving out-

of-sample forecast performance. LSTM, in particular, benefited greatly from the 

prior LASSO selection, showing significant improvement compared to the version 

without feature selection. While this pattern was expected due to the model’s 
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sensitivity to high-dimensionality, the degree of improvement was still striking, 

especially considering the relatively small sample size and high noise typical of 

financial market data. 

This result supports the findings of Sezer et al. (2020), who highlight the 

potential of LSTM models in high-dimensional settings with complex 

nonlinearities, as long as they are assisted by proper pre-selection processes. The 

combination of L1 regularization (LASSO) and recurrent neural networks can, 

therefore, be seen as an effective hybrid architecture for modeling environmental 

financial markets, as suggested by Ji et al. (2019) and Zhang (2003) in other 

economic contexts. 

These results highlight the need to evaluate not just average accuracy, but also 

model consistency and predictive robustness. Good in-sample performance can be 

misleading if it is not accompanied by generalization ability, especially in series 

subject to geopolitical shocks and regulatory changes, as is the case with carbon 

prices. This reinforces the importance of combining multiple performance metrics 

with time-aware validation tools. 

In the next sections, these findings will be explored with more rigorous 

validation, allowing us to observe how the models behave over time and under 

forecasting conditions closer to the reality faced by economic agents and regulators. 

4.4. Evaluation with Rolling Window Cross-Validation 

After the earlier in-sample and out-of-sample analysis, this section goes 

deeper into how robust the models really are performing, using rolling window 

cross-validation in both expanding and fixed setups. This kind of time-based 

validation is widely recommended in the economic and financial literature (Pesaran 

and Timmermann, 1995; Tashman, 2000) because it better reflects how decisions 

are made in real time. It keeps the order of the data intact and helps avoid data 

leakage. 

4.4.1. Expanding Rolling Window 

In the expanding window setup, the training window gets larger with each 

new iteration, adding more recent information as it moves forward. The results, 
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shown in Table 4, reveal clear performance improvements across all models when 

LASSO is used to select the most relevant variables. 

The biggest improvement came from the LSTM. Its MSE dropped from 

0.0277 (0.0049) to 0.0170 (0.0025), and its RMSE went down from 0.1660 (0.0153) 

to 0.1300 (0.0095). The sMAPE, which is important for measuring percentage 

errors in a balanced way, also improved a lot, going from 123.522% (11.2156) to 

102.775% (9.1329). These results confirm that reducing the number of variables 

helped the model perform better, more consistently, and with less risk. 

 

                   Table 4 - Expanding Window Cross-Validation Results 

Model MSE MAE RMSE sMAPE MASE 
Feature 

Set 

ARIMA 
0.0242 

(0.0054) 

0.1216 

(0.0103) 

0.1547 

(0.0179) 

188.384 

(4.3013) 

0.6925 

(0.0944) 

Full 

features 

CatBoost 
0.0238 

(0.0070) 

0.1139 

(0.0117) 

0.1531 

(0.0220) 

131.088 

(19.3791) 

0.6475 

(0.0864) 

LASSO 
0.0239 

(0.0076) 

0.1231 

(0.0116) 

0.1531 

(0.0255) 

122.173 

(8.5040) 

0.7024 

(0.1130) 

LSTM 
0.0277 

(0.0049) 

0.1283 

(0.0154) 

0.1660 

(0.0153) 

123.522 

(11.2156) 

0.7254 

(0.0478) 

Random 

Forest 

0.0239 

(0.0064) 

 

0.1180  

(0.0092) 

0.1538 

(0.0200) 

124.546 

(18.7176) 

0.6712 

(0.0793) 

ARIMA 
0.0242 

(0.0054) 

0.1226 

(0.0103) 

0.1547 

(0.0179) 

188.384 

(4.3013) 

0.6925 

(0.0944) 

LASSO 

Selected 

Features 

CatBoost 
0.0226 

(0.0072) 

0.1104 

(0.0111) 

0.1492 

(0.0231) 

126.815 

(23.5936) 

0.6278 

(0.0869) 

LASSO 
0.0182 

(0.0058) 

0.1094 

(0.0241) 

0.1337 

(0.0211) 

109.088 

(22.2578) 

0.6226 

(0.1513) 

LSTM 
0.0170 

(0.0025) 

0.0981 

(0.0052) 

0.1300 

(0.0095) 

102.775 

(9.1329) 

0.5584 

(0.0603) 

Random 

Forest 

0.0235 

(0.0083) 

0.1195 

(0.0127) 

0.1518 

(0.0261) 

127.833 

(21.2241) 

0.6811 

(0.1119) 

Note: Reported values correspond to means with standard deviations in parentheses. 

Forecasting performance was evaluated using an expanding-window cross-validation 

approach. 
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The MASE for LSTM also showed a clear improvement, dropping from 

0.7254 (0.0478) to 0.5584 (0.0603). Since it is below 1, this indicates that the model 

outperformed the naive benchmark. 

The LASSO model, when applied using only the variables it had previously 

selected (in LASSO-selected features), delivered competitive results against the 

others: an MSE of 0.0182 (0.0058) and an sMAPE of 109.088% (22.2578). This 

highlights that, despite being a linear model, LASSO can perform competitively. In 

this case it performed even greater when applied on top of its own selected features. 

CatBoost improved slightly, although with a higher standard deviation on 

some metrics. Random Forest, on the other hand, showed no clear gains and even 

registered a small drop in some metrics. For example, CatBoost saw its sMAPE 

drop from 131.088% to 126.815%, although with higher standard deviation 

(19.3791 to 23.5936); while its MASE went from 0.6475 (0.0864) to 0.6278 

(0.0869). This behavior is consistent with the literature, which highlights the natural 

robustness of ensemble models to noise and multicollinearity (Breiman, 2001; 

Prokhorenkova et al., 2018). 

The ARIMA model, being univariate, was not affected by variable selection 

and showed weaker results, especially with compared to LASSO-Selected Features 

models. Its sMAPE for example stayed above 180% (precisely 188.384 (4.3013)), 

confirming its limitations in capturing the complex dynamics of the carbon market. 

4.4.2. Fixed Rolling Window 

In the fixed window setup, the size of the training set remains constant 

throughout the evaluation. This approach reflects a forecasting environment where 

only the most recent data is considered relevant, a useful assumption in markets that 

are prone to structural breaks or regime shifts, such as the EU ETS. 

The results, shown in Table 5, generally confirmed the patterns observed 

earlier. Once again, the LSTM model using the LASSO-selected variables 

outperformed all others across every error metric, although with a bit more 

fluctuation. It posted the lowest MSE at 0.0267 (0.0139), and its RMSE fell to 

0.1597 (0.0427). sMAPE came in at 106.6670% (11.4217), the best among all 

models tested. MASE, too, remained solid, landing at 0.6781 (0.2568). 
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                    Table 5 - Fixed Window Cross-Validation Results 

Model MSE MAE RMSE sMAPE MASE Feature Set 

ARIMA 0.0421 (-) 0.1441 (-) 0.2051 (-) 195.440 (-) 0.7205 (-) 

Full 

Features 

CatBoost 
0.0331 

(0.0122) 

0.1307 

(0.0196) 

0.1795 

(0.0359) 

153.315 

(19.7233) 

0.7305 

(0.2114) 

LASSO 
0.0331 

(0.0130) 

0.1319 

(0.0233) 

0.1791 

(0.0386) 

153.209 

(33.4340) 

0.7401 

(0.2392) 

LSTM 
0.0369 

(0.0179) 

0.1397 

(0.0333) 

0.1874 

(0.0519) 

135.835 

(9.8020) 

0.7859 

(0.2897) 

Random 

Forest 

0.0345 

(0.0144) 

0.1334 

(0.0176) 

0.1827 

(0.0411) 

141.064 

(17.6481) 

0.7444 

(0.2003) 

ARIMA 0.0421 (-) 0.1441 (-) 0.2051 (-) 195.440 (-) 0.7205 (-) 

LASSO 

Selected 

Features 

CatBoost 
0.0316 

(0.0108) 

0.1274 

(0.0159) 

0.1758 

(0.0322) 

144.037 

(16.0282) 

0.7110 

(0.1905) 

LASSO 
0.0380 

(0.0042) 

0.1475 

(0.0114) 

0.1947 

(0.0110) 

152.840 

(34.0117) 

0.8186 

(0.1707) 

LSTM 
0.0267 

(0.0139) 

0.1200 

(0.0257) 

0.1597 

(0.0427) 

106.667 

(11.4217) 

0.6781 

(0.2568) 

Random 

Forest 

0.0330 

(0.0132) 

0.1299 

(0.0102) 

0.1793 

(0.0362) 

134.656 

(24.1619) 

0.7210 

(0.1485) 

Note: Reported values are means with standard deviations in parentheses. All models 

were evaluated using a fixed rolling-window cross-validation scheme. For the ARIMA 

model, standard deviations are not reported in some cases due to non-convergence in 

the last two windows. This likely occurred because the maximum likelihood estimation 

used by ARIMA can fail when data in a window lacks sufficient variation or information 

to reliably estimate model parameters. 

 

By contrast, LASSO showed signs of instability in this setup. Its MSE 

increased slightly from 0.0331 to 0.0380, MAE rose from 0.1319 to 0.1475, RMSE 

moved from 0.1791 to 0.1947, and MASE climbed to 0.8186. That relatively high 

MASE suggests that LASSO’s forecasts, when compared against a naive baseline, 

were considerably less reliable in this configuration. The model’s performance 

appears to have been more sensitive to the fixed window design, likely due to the 

reduced training size and an inability to adjust effectively to shifting regimes. 

Linear models, by nature, often struggle under these conditions. Without the 

flexibility to adapt quickly, they tend to lose stability and generalization ability 

when working with shorter, non-expanding datasets. 
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CatBoost and Random Forest, on the other hand, handled the setup with more 

consistency. Both models maintained competitive performance, including after the 

variable selection step. In fact, they showed modest gains in certain metrics. For 

instance, CatBoost achieved an MSE of 0.0316 (0.0108) and brought its sMAPE 

down to 144.0370% (16.0282), a noticeable improvement over its full-variable 

version at 153.3150% (19.7233). This pattern matches what is found in the 

literature, where these algorithms are known to handle changes in feature sets well 

(Prokhorenkova et al., 2018). 

Meanwhile, ARIMA had the weakest performance across all metrics and 

showed no change, as it does not react to changes in the explanatory variables. 

4.4.3. Comparative Takeaways 

Looking at the overall picture, some strong conclusions stand out: 

(i) In general variable selection using LASSO made a real difference in 

predictive performance. It was not just a quick fix; it helped reduce variance and 

made the models more stable overall. This was especially true for LSTM, which 

tends to be more sensitive to irrelevant inputs (Sezer et al., 2020). 

(ii) LSTM, in fact, was the model that reacted most strongly to preprocessing. 

Initially, it lagged behind in the early tests. But once the right variables were 

selected, it climbed to the top, outperforming the others in most metrics under 

rolling window evaluation. 

(iii) The true predictive robustness of the models only became clear under 

sequential validation.  

(iv) In the expanding window setup, LASSO performed noticeably better 

when using the variable set it had previously selected. That is probably not a 

coincidence. Expanding windows allow models to gradually learn from more data, 

and it can learn more stable and reliable patterns. And when the noise (those less 

relevant predictors) is removed in advance, the model starts from a cleaner place. It 

overfits less in the early stages and refines better as more observations come in. 

This behavior fits well with what Bergmeir et al. (2018) describe about model 

stability in time series cross-validation. It also echoes findings from Hou et al. 

(2022), who show LASSO’s potential when paired with cross-validation strategies 

in forecasting tasks. 
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(v) Interestingly, LASSO’s performance was more fragile under the fixed 

window validation. Unlike the expanding setup, where it gained from accumulating 

more data, here the model struggled to generalize. Its MSE, MAE, and MASE 

increased, suggesting that linear models like LASSO may be more sensitive to 

reduced sample sizes and abrupt shifts in data structure. This reinforces the 

importance of matching model type to validation design, and shows that 

regularization alone cannot fully compensate for structural limitations. 

This analysis highlights how important it is to use multiple validation 

windows, as recommended by Tashman (2000) and Hyndman and Athanasopoulos 

(2018). It also shows that, when it comes to forecasting carbon prices, which are 

clearly nonlinear and unstable, deep learning models combined with regularization 

techniques offer a promising path forward. 

4.5. Diebold-Mariano Test 

To complement the analysis of model performance, the Diebold-Mariano 

(DM) test was applied. This statistical test is used to compare the predictive 

accuracy of two competing models by looking at the differences in their forecast 

errors over time. 

The test was run using both the full set of explanatory variables and the 

reduced set selected by LASSO, covering all possible pairwise combinations of the 

models evaluated. 

The Diebold-Mariano test results for the main model comparisons are shown 

in Table 6. The table highlights which performance differences are statistically 

significant at the 5% level. 

 

Table 6 - Diebold-Mariano Test Results 

Model 1 Model 2 
Loss 

Function 
DM Statistic p-value Feature Set 

LASSO CatBoost MSE -9.627 0.000 

Full Features 
LASSO 

Random 

Forest 
MSE -9.059 0.000 

LASSO ARIMA MSE -8.588 0.000 

LASSO LSTM MSE -16.151 0.000 
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Table 6 - Diebold-Mariano Test Results 

Model 1 Model 2 
Loss 

Function 
DM Statistic p-value Feature Set 

CatBoost 
Random 

Forest 
MSE 0.860 0.393 

CatBoost ARIMA MSE -0.906 0.368 

CatBoost LSTM MSE -10.510 0.000 

Random 

Forest 
ARIMA MSE -1.661 0.101 

Random 

Forest 
LSTM MSE -9.834 0.000 

ARIMA LSTM MSE -9.139 0.000 

LASSO CatBoost MSE -15.960 0.000 

LASSO Selected 

Features 

LASSO 
Random 

Forest 
MSE -13.774 0.000 

LASSO ARIMA MSE -19.111 0.000 

LASSO LSTM MSE 8.874 0.000 

CatBoost 
Random 

Forest 
MSE 1.774 0.080 

CatBoost ARIMA MSE -8.174 0.000 

CatBoost LSTM MSE 23.198 0.000 

Random 

Forest 
ARIMA MSE -9.626 0.000 

Random 

Forest 
LSTM MSE 16.582 0.000 

ARIMA LSTM MSE 26.206 0.000 

Note: This table presents Diebold-Mariano (DM) test results based on mean squared 
prediction errors (MSE). Each row compares the forecast accuracy of two models. The 
sign of the DM statistic indicates the direction of performance: a negative value means 
that Model 1 achieved lower MSE than Model 2, while a positive value indicates the 
opposite. Statistical significance is assessed at the 5% level; p-values below 0.05 
indicate a meaningful difference in predictive accuracy. 

 

The results show clear differences in predictive power between the models, 

especially when considering the impact of variable selection. The version of the 

LSTM model that used variables selected in advance by LASSO outperformed the 

others in most comparisons, with statistically significant results. In all cases, for 

LASSO-Selected Variables, the test statistics were significant at the 5% level, 
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which means the LSTM had consistently lower mean squared errors compared to 

the other models, especially when compared to ARIMA, Random Forest, and 

CatBoost. 

This stronger performance of the LSTM-LASSO setup supports what Sezer 

et al. (2020) found, showing that recurrent neural networks can capture dynamic 

and nonlinear patterns more effectively when combined with appropriate 

dimensionality reduction techniques. In this study, the combo worked especially 

well for carbon market data, which tends to be volatile and influenced by many 

external shocks. 

Interestingly, the linear LASSO model also showed strong results, 

outperforming all models except LSTM-LASSO. This suggests that a linear model 

with L1 regularization is still able to capture a good part of the explainable variation 

in the data, which makes LASSO surprisingly competitive. When both models used 

the reduced set selected by LASSO, the LSTM regained the lead against LASSO 

(DM = 8.874, p = 0.000), highlighting the strength of neural networks when paired 

with effective dimensionality reduction. 

On the other hand, the tree-based models (Random Forest and CatBoost) 

performed in the middle: better than ARIMA, but not quite as strong as LASSO and 

LSTM-LASSO. 

ARIMA, as expected, was the least effective model overall. It consistently 

underperformed in almost every comparison, regardless of which variables were 

used. This confirms the model’s limitations in markets with complex structures and 

strong exposure to external shocks, as already discussed by Han et al. (2019) and 

Aatola et al. (2013). 

Beyond statistical significance, the actual DM test values reinforce the size 

of the performance gaps. The largest differences were seen between ARIMA and 

LSTM-LASSO, followed by comparisons between LASSO-LSTM and the 

ensemble models. The fact that p-values stayed below 0.05 across several windows 

and setups supports how solid these results are. 

In short, the Diebold-Mariano test not only confirms the previous results but 

makes them stronger by showing that the differences in performance are not due to 

chance or sample instability. In volatile markets like carbon credits, this kind of 

evidence is essential to support the use of more advanced forecasting techniques. 

The combination of neural networks and variable selection does not just deliver 
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better average results, it does so with statistical significance and consistency, which 

makes it a highly recommended approach for this type of forecasting problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 Conclusions 

The results revealed consistent patterns about how well the forecasting 

models worked in the European carbon market, and they also showed how 

important the methodological choices were, especially in variable selection and in 

dealing with complex time dynamics. This section brings together the main 

findings, based on the goals defined in Section 1 and the academic literature, 

focusing on what the results mean for forecasting in volatile and regulated markets. 

The main empirical takeaway was how much the models improved after 

applying LASSO for variable selection. The Machine Learning and Neural Network 

models did not perform greatly when using the full set of variables, often showing 

signs of overfitting, but once LASSO regularization selection was applied, the 

accuracy, stability, and simplicity improved a lot. This effect was most visible with 

the LSTM model, which went from underperforming to becoming the best overall, 

especially when tested in both fixed-window and expanding-window cross-

validation setups, and with DM test. 

This is in line with what Sezer et al. (2020) and Smyl (2020) found: deep 

neural networks can be highly effective in financial time series forecasting, as long 

as you use proper complexity control techniques like regularization, smart 

preprocessing, and structured validation. The combination of LASSO and LSTM 

worked well here to detect hidden patterns in a market shaped by complex 

interactions between macroeconomic, financial, regulatory, and geopolitical 

factors. 

Tree-based models like CatBoost and Random Forest did not lead the 

rankings, but they still showed solid and stable performance across both expanding 

and fixed window setups. This resilience, attributed to ensemble techniques like 

bagging and boosting (Breiman, 2001; Prokhorenkova et al., 2018), makes them 

useful alternatives in situations with a lot of noise and multicollinearity. However, 

their ability to handle multicollinearity may be somewhat limited in multivariate 

time series settings, where collinearity across lags and shifting regimes poses 

additional challenges. This is further supported by the fact that both models tended 

to perform slightly better when using the subset of variables selected by LASSO, 

suggesting that even ensemble methods benefit from prior dimensionality reduction 

in complex time series context. Even so, their overall consistency makes them 
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valuable when interpretability and robustness matter just as much as raw predictive 

accuracy. 

Interestingly, LASSO as a linear model also held up well and, in many cases, 

performed better than non-linear and non-parametric models like CatBoost and 

Random Forest, as shown especially in out-of-sample R² and the Diebold-Mariano 

test. This suggests that simpler models, when well specified, still have a solid place 

in more advanced forecasting modelling. 

One limitation observed was the performance drop of the LASSO model 

under the fixed rolling window setup when used with the reduced set of variables. 

Unlike in the expanding window configuration, where LASSO benefited from 

accumulating more data over time, its performance worsened here, likely due to the 

combined effect of smaller training sizes, reduced feature space, and greater 

exposure to structural breaks. This suggests that linear models with regularization 

may require both larger samples and broader information sets to maintain stability 

in dynamic environments with shifting regimes. 

ARIMA consistently fell behind. Its univariate, linear structure was not 

enough to handle the complexity of the carbon market, confirming what Han et al. 

(2019) and Lin and Zhang (2022) noted about the limitations of traditional models 

in settings with structural shifts and multiple sources of volatility. 

Applying the Diebold-Mariano test added another layer of statistical rigor to 

the analysis, confirming that the performance gains from LSTM-LASSO were 

statistically significant, not just random noise or luck. The consistency of these 

results makes it very relevant for practical use. 

Still, it is important to recognize that forecasting in markets with regulatory 

uncertainty and geopolitical shocks, like the EU ETS, comes with structural 

limitations. As highlighted by Makridakis et al. (2020) and Smyl (2020), even 

advanced models can struggle with long-term predictions or sudden regime 

changes. This study tried to reduce those limitations through rolling window 

validation, complexity control, and variable selection. But it is clear that the carbon 

market’s volatility remains a major challenge. 

To sum up, the results clearly answer a central research question: hybrid 

models that include dimensionality reduction and robust validation perform better 

than traditional approaches when forecasting the S&P Carbon Credit EUA Index. 

It is not about finding the one perfect model, but about understanding how 
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combining methods and testing multiple approaches helps address the complexity 

of the problem. 

This has direct implications for real-world use: the more stable forecasts of 

regularized models, the strong performance of LSTM with selected variables, and 

the reliability of LASSO as both filter and predictor offer practical tools for tasks 

like hedging, strategy planning, and climate policy evaluation in dynamic 

regulatory environments. 

5.1. Practical Implications and Potential Applications 

The insights developed in this research extend beyond theory. They carry 

practical weight, especially for regulators, policymakers, institutional investors, and 

risk managers who navigate the complexities of regulated carbon markets. 

From a policy perspective, the models developed here (especially LASSO and 

LSTM paired with LASSO) offer a solid tool to anticipate carbon price movements 

triggered by regulatory or geopolitical shocks. That political and regulatory 

uncertainty variables were consistently selected is telling. It suggests that these 

qualitative factors actively shape market expectations. In that sense, public agencies 

and climate policy institutions could adopt similar forecasting tools to track 

sentiment, gauge the potential impact of upcoming legislation, or run scenario 

simulations, like future reforms to the EU ETS or the rollout of CBAM. 

As carbon finance continues to expand, with more products like ETFs, 

carbon-linked derivatives, and sustainability-focused credit instruments entering 

the market, these results gain relevance in financial strategy. ESG-focused asset 

managers and large institutional investors, in particular, stand to benefit from 

improved predictive tools. When regulations shift or uncertainty spikes, better 

foresight becomes not just useful, but essential. 

Incorporating these forecasts into hedging strategies or pricing models allows 

investors to align risk exposure with expected returns, especially under emerging 

regulatory frameworks like the European Green Deal or the disclosure principles 

outlined by the Task Force on Climate-related Financial Disclosures (TCFD). Risk 

is no longer just about price, it is about policy, reputation, and environmental 

accountability. 
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And then there is the private sector. For firms directly subject to carbon 

market regulations (energy producers, airlines, heavy industries) access to more 

accurate carbon price forecasts has direct business implications. It can inform 

investment decisions, cost management strategies, and help quantify future 

environmental liabilities. In other words, better forecasting helps them remain 

competitive while meeting their decarbonization goals. 

In summary, the models analyzed in this study do more than contribute to 

academic forecasting literature. They offer practical tools for navigating the 

regulatory, economic, and political risks surrounding carbon markets. 

5.2. Path for Future Research 

This study adds to the literature by proposing a robust, replicable framework 

for forecasting carbon prices, one that does not just apply to the EU ETS. By 

combining variable selection with hybrid modeling techniques and statistical 

validation, it creates a reference point for both researchers and professionals 

navigating the complexities of carbon finance. 

Looking ahead, there are several promising directions for future work: 

(i) One path involves exploring hierarchical Bayesian models or temporal 

transformers. These approaches may offer better tools for capturing long-range 

dependencies and accounting for deeper structural changes over time. 

(ii) Another is expanding the use of mixed-frequency models, which allow 

researchers to incorporate indicators released at different temporal resolutions, such 

as daily energy prices and monthly macroeconomic data, without depending on 

arbitrary aggregation. 

(iii) A third area worth pursuing would be analyzing the impact of climate-

related events and policy announcements with higher temporal granularity. Things 

like EU ETS reform signals or CBAM regulatory milestones could offer new 

insight if studied with finer time resolution. 
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