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Abstract

Konopka, Thiago Fabricius; Carvalho, Márcio da Silveira (Advi-
sor). Two-Phase Flow Modeling in Highly Heterogeneous
Porous Media Using Brinkman Equation and Single and
Dual continuum Darcy Models. Rio de Janeiro, 2024. 179p.
Tese de Doutorado – Departamento de Engenharia Mecânica, Pon-
tifícia Universidade Católica do Rio de Janeiro.

Multiphase flow in highly heterogeneous porous media holds substantial
importance in the petroleum industry since there are large oil volumes in
vuggy and fractured reservoirs. In this study, Brinkman equation is employed
to model two-phase flow in highly heterogeneous porous media. Brinkman
model represents flow dynamics through the porous matrix and vugs using a
single differential equation without the need for interfacial conditions. However,
accurately characterizing the vugular and porous matrix regions remains a
challenging task, especially in reservoir-scale models that typically represent
geological formations with large areas. Reservoir simulations often involve
models discretized into computational cells, each with dimensions on the order
of several meters that are not fine enough do describe in detail the geometry
of the vugs and fractures embedded in the porous matrix. This investigation
explores two distinct approaches for generating equivalent properties of vugular
media. The first approach uses results from the Brinkman model to derive
equivalent properties for the single-continuum Darcy model at the same
level of discretization. The second approach employs upscaling by numerical
optimization to generate equivalent properties on a coarse scale. This method is
applied to both single-continuum and dual-continuum Darcy models. Single-
continuum models can effectively describe vugular structures characterized
by dispersed vugs in the porous matrix without strong fluid channeling.
However, for systems exhibiting substantial channeling, upscaling can only
be achieved through dual-continuum models. In both proposed approaches,
the determination of equivalent absolute permeability and equivalent absolute
permeability curves is imperative for an efficient upscaling process.

Keywords
Brinkman model; Two-phase flow; Equivalent relative permeability cur-

ves; Macroporosity; Upscale.



Resumo

Konopka, Thiago Fabricius; Carvalho, Márcio da Silveira.Modela-
gem de Fluxo Bifásico em Meios Porosos Altamente Hete-
rogêneos Utilizando a Equação de Brinkman e os Modelos
de Simples e Duplo Contínuo. Rio de Janeiro, 2024. 179p. Tese
de Doutorado – Departamento de Engenharia Mecânica, Pontifícia
Universidade Católica do Rio de Janeiro.

O fluxo bifásico em meios porosos altamente heterogêneos possui grande
importância na indústria do petróleo devido aos desafios apresentados pelas
características de permeoporosidade, fraturas e cavidades incorporadas na ma-
triz porosa. Neste estudo, a equação de Brinkman é utilizada para modelar o
fluxo bifásico em meios porosos altamente heterogêneos. O modelo de Brink-
man representa a dinâmica do fluxo através da matriz porosa e das cavidades
usando uma única equação diferencial, sem a necessidade de condições inter-
faciais. No entanto, caracterizar com precisão as regiões de cavidades e matriz
porosa permanece uma tarefa desafiadora, especialmente em modelos em es-
cala de reservatório que normalmente representam formações geológicas com
grandes áreas. Simulações de reservatório frequentemente envolvem modelos
discretizados em células computacionais, cada uma com dimensões da ordem
de vários metros que não descrevem a geometria das cavidades e fraturas pre-
sentes na matriz porosa. Esse estudo explora duas abordagens distintas para
gerar propriedades equivalentes para meios vugulares. A primeira abordagem
utiliza resultados do modelo de Brinkman para derivar propriedades equiva-
lentes para o modelo de Darcy 1φ1k na mesma escala. A segunda abordagem
emprega a teoria de homogeneização para gerar propriedades equivalentes em
uma escala mais grosseira. Essa teoria é aplicada a modelos de Darcy 1φ1k e
2φ2k . Modelos 1φ1k podem descrever efetivamente estruturas com cavidades
dispersas na matriz porosa sem uma canalização forte de fluido. No entanto,
para sistemas que exibem canalização substancial, a homogeneização só pode
ser alcançada por meio de modelos de contínuo duplo. Em ambas as aborda-
gens propostas, a determinação da permeabilidade absoluta equivalente e das
curvas de permeabilidade absoluta equivalentes é imperativa para um processo
de homogeneização eficiente.

Palavras-chave
Modelo de Brinkman; Escoamento bifásico; Curvas de permeabilidade

relativa equivalente; Macroposidades; Upscale.
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1
Introduction

1.1
Motivation

Fluid flow within a porous matrix with free-flow regions has extensive
significance across different sectors, including industry, environmental, and
biological systems. Examples of applications include filtration process [1, 2],
interactions between surface water and subterranean aquifers [3, 4], fluid
dynamics within textile materials [5], as well as the delivery of healing agents
within the intricate network of blood vessels and organic tissues [6]. Multiphase
flow in porous media with fractures and vugs of different sizes embedded in
a porous matrix is essential in petroleum production. Modeling multiphase
flow is challenging because free-flow regions, represented by fractures and vugs,
interact with porous regions. The development of accurate models that describe
the complex coupling of two-phase flow in the porous matrix and vugs is very
important in oil production optimization.

A significant portion of the world’s oil reserves are contained in carbonate
reservoirs. Among them, karstified carbonate reservoirs represent a subgroup
of the carbonate reservoirs with a significant role in oil production. Karstified
carbonate reservoirs are widespread in different regions around the world, like
Russia [7], China [8], the Middle East [9], and Brazil [10]. Particularly in Brazil,
the pre-salt fields located in the Santos sedimentary basin stand out as some
of the biggest recent oil discoveries. The term Pre-Salt describes the deposits
formed when the African and South American landmasses were separated,
resulting in the formation of the Atlantic Ocean. Within this stratigraphic
layer, the Santos Basin contains substantial deposits of petroleum. These
fields contain significant in-place volumes, favorable permeability and porosity
characteristics, and distinctive diagenesis features. Currently, Pre-salt accounts
for approximately 77 % of Brazil’s total oil production [11].

Carbonate formations exhibit considerable heterogeneity and anisotropy.
It is a direct result of their chemical composition, as well as the interaction of
depositional and diagenetic processes. These processes evolved spontaneously
over time. The gradual alteration has resulted in substantial permoporous
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differences, even over a small area. The comprehensive scheme presented by
Choquehe and Littleton (1970) [12] classifies carbonate porosity according to
the interrelationship between porosity and structure. Primary porosity origi-
nates at deposition. Secondary porosity occurs after initial sedimentary layer-
ing, as result of diagenetic transformations. The carbonate rocks have a natu-
ral propensity for diagenesis, caused by their chemical activity. Predominantly
constituted of calcite (CaCO3) and dolomite (CaMg(CO3)2), these minerals
undergo dissolution and, subsequently, are removed under the influence of wa-
ter, resulting in structural modifications within the carbonate matrix. The
diagenetic process produces a wide range of structural modifications, spanning
scales ranging from millimeter-size voids, to the formation of extensive cavern
systems that reach tens of meters. This phenomenon is also called karstification
[13].

Numerical simulations of flow through naturally fractured and karstified
reservoirs are extremely complex due to the simultaneous interaction of dif-
ferent scales, ranging from micropores (≈ 10−6 m) to macropores (structures
with dimensions stretching from millimeters to several meters). These voids
have a considerable effect on the permeability of the porous media. Further-
more, these macropores may have connections via fracture networks. This is a
phenomenon that can lead to considerable shifts in permeability, ranging over
orders of magnitude [14]. The cumulative consequence of these intricate in-
teractions, occurring in multiphase fluid flow, results in a noticeable decrease
in volumetric oil sweep efficiency. This is particularly true when contrasted
against comparatively homogenous rocks, such as sandstone.

In recent decades, a variety of methodologies have emerged to describe
fluid dynamics within geological formations. The mathematical and physical
approaches incorporated into these studies reflect their complex nature, with
intricate interactions occurring across multiple dimensions. Yao and Huang,
(2017) [15] describes two strategies for dealing with this problem: the Single
Domain Approach (SDA) and the Two Domains Approach (TDA). The
former, SDA, envelops flow dynamics within a singular domain, formulated
through a single equation. In contrast, TDA separates the porous matrix
and the free-flowing region into distinct domains. This approach requires the
careful establishment of appropriate interfacial conditions, thereby coupling
the differential equations underlying flow dynamics within each designated
domain. Generally, the Darcy equation is used to describe the fluid flow within
the porous matrix, while the flow within the free-flow regions is described by
Navier-Stokes or the Stokes equation, depending upon the context.

Brinkman (1947) [16] proposed a single domain approach to avoid the
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complexity of interfacial conditions between the porous matrix and the free-
flowing regions. Typically, the Brinkman model characterizes fine-scale flows,
with a subsequent scaling process that integrates it into larger, coarser-scale
models [17]. This model is also applicable in plug-scale flow descriptions [18].

Dual-continuum models are an alternative approach to represent natural
fractures and karstified reservoirs. Barenblatt et al. (1960) [19] presented a dual
continuum model that describe the flow through both the porous matrix and
the fracture network. The porous matrix is composed by interconnected blocks.
Fractures are characterized by their dimensions exceeding the characteristic
pore scale. Consequently, fractures display a higher permeability, yet their
volumetric capacity is small compared to the porous matrix. To complete
the representation, the porous matrix and the fractures couple through a
fluid transfer function that describe the fluid exchange between two different
domains.

1.2
Objectives

In this study, it is proposed a methodology for representing two-phase
flow in kartified porous media. Brinkman’s model is used to investigate the
fluid flow in heterogeneous porous media containing vugs in the fine scale.
The flow predictions obtained by the Brinkman model are used to generate
equivalent properties for single-continuum and dual-continuum Darcy models
in a coarse scale.

The two versions of a single-continuum (1φ1k) Darcy model are described
used in this analysis. Firstly, a heterogeneous Darcy model is used to compare
Brinkman and the Darcy models on a fine scale. In this approach, the vugular
region is described as a porous medium with high porosity and permeability.
The goal is to study the effects of viscous pressure drop in the flow through
vug and fractures. In addition, it seeks to compare the Brinkman and Darcy
models on the same scale. The second approach, a homogeneous Darcy
model, represents domain homogenization. To represent the fine-scale solution,
equivalent absolute permeability and equivalent relative permeability curves
are established on the coarse scale which is modeled through the Darcy model.
Using this methodology, equivalent properties can be established through
numerical optimizations for use on a coarse scale.

It is also explored the use of dual-continuum models to homogenize
the domain. Dual-continuum models distinguish porous matrix and fracture
attributes, providing detailed description of the flow through the porous matrix
and vug-fracture system. The 2φ2k model is used in these cases, where both the
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porous matrix grid and the fracture grid are treated as homogeneous domains.
The results are especially prominent for highly anisotropic porous media, with
flow occurring preferentially through vugs. Consequently, it is necessary to
establish equivalent absolute permeability and equivalent relative permeability
curves for the fracture grid to achieve these results.

For both the single-continuum and dual-continuum homogeneous models,
equivalent petrophysical properties are obtained through numerical optimiza-
tion. The Brinkman method produces a fine-scale solution. In the coarse scale,
the Darcy model is used, and the fine-scale results are represented through
equivalent petrophysical properties. In the literature, this procedure is com-
monly referred to as upscaling by history matching. The purpose of this study
is to fill a gap in the literature by describing how multiphase flow occurs in
a karstified porous media. As a result, it utilizes a methodology that is more
suited to understanding the physics of flow between a porous matrix and a
free-flow region, a characteristic of fluid flow in a high heterogeneous medium.
A second objective of this study is to generate equivalent petrophysical proper-
ties of kasrtified media that can be applied on a reservoir scale. The reservoir
models are often tens of kilometers long, making it impossible to describe
karst geometries at this scale. It is possible to represent karstified regions in a
reservoir by utilizing equivalent petrophysical properties.

1.3
Thesis Organization

This thesis is organized into five chapters, including this introductory
chapter.

Chapter 2 presents the literature review of heterogeneous porous media
flow modeling. This chapter introduces the main methodologies employed in
this study. It offers a comprehensive overview of the current state of the art
regarding models that depict the transition between free-flow regions and flow
within porous mediums. An overview of the key advancements in the dual-
continuum model is provided.

Chapter 3 outlines the formulation and the methodology employed for
implementing the numerical solution using finite element method for Brinkman
and Darcy models. It elucidates the fundamental equations, alongside the nu-
merical discretization, and the computational implementation of the solution.
Furthermore, it presents the analytical solutions employed for numerical vali-
dation. The equations for a black-oil simulator, similar to the one utilized in
the IMEX simulator, are presented in a generalized manner.

In chapter 4, the analysis and discussion of the results obtained using the
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methods presented in chapter 3 are presented. This analysis includes numerical
validations of the models used. Additionally, mesh testing and the methods
used to generate these meshes are discussed. Results are presented for two
different sets of vug configurations. The first set of synthetic vugs consists
of simple geometric shapes. A second set consist of vug configurations of
carbonate plug, obtained by micro tomography. In these cases, a comparison
is made between Brinkman’s model and both homogeneous and heterogeneous
single-continuum Darcy models.

In Chapter 5, the third set of cases derived from Lajedo Arapuá is
analyzed with dual-continuum models. This investigation examines models
with intricate vug geometries and illustrates how the homogeneous 2φ2k model
can be used to homogenize them. Cases with pronounced fluid channeling
through the vugular media can be homogenized using this technique.

Finally, chapter 6 presents the conclusions of this work, as well as
suggestions for future work.



2
Literature Review

This chapter provides a review of the existing literature, serving as a
basis for this study. It begins with a concise description of carbonate rocks
and vug formation processes. Furthermore, it provides insight into the most
appropriate methodologies for modeling fluid dynamics within this geological
context. There is a detailed description of the SDA and TDA methods. The
SDA review focuses on the Brinkman equation for modeling such porous media.
The TDA review focuses on exploring the interface conditions between porous
region and free region flows. A comprehensive overview of the major dual
continuum methods is also provided, with particular emphasis on the double
porosity (2φ1k) and double porosity and double permeability (2φ2k) methods.
Both academic research and industrial practices use these methods extensively.

2.1
Carbonate Rocks

Carbonate rocks, also called carbonates, are sedimentary rocks composed
of minerals such as calcium carbonate (CaCO3) or dolomite (CaMg(CO3)2).
These rocks are formed by the accumulation and hardening of sediments found
in freshwater and marine environments. They often contain preserved marine
organisms, such as coral, mollusks, and foraminifera. Carbonate rocks have
a wide variety of textures, which can provide a lot of information about
their formation and history. They can display crystalline textures composed of
fine-grained calcite crystals, or sparse textures with larger, sparkling crystals.
Others, such as those with oolitic textures, consist of small spherical grains
called ooids. A carbonate rock may be classified as mudstone, wackestone,
packstone, grainstone, or boundstone depending on the grain size and sorting
within the rock. Fine-grained mudstones can be distinguished from coarser-
sized grainstones [20]. Figure 2.1 illustrates the classification of carbonates
rocks based on their structural characteristics.
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Figure 2.1: Classification for carbonate sedimentary rocks [20].
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Carbonate rocks can be formed under a variety of environmental condi-
tions. In shallow marine environments, such as reefs, lagoons, and platforms,
organisms such as corals and mollusks contribute to carbonate deposition. In
deep oceanic conditions, carbonate muds can accumulate, forming deposits
similar to chalk. In freshwater settings, such as lakes and ponds, carbonates
accumulate, resulting in rocks such as travertine and tufa. Carbonate rocks
can dissolve over time due to acidic groundwater. This process creates karst
landscapes characterized by sinkholes, caves, and underground drainage sys-
tems.

Choquehe and Littleton (1970) [12] classified carbonate rocks based on
several factors, including pores and texture, as shown in figure 2.2. These clas-
sifications typically include primary and secondary porosity. Primary porosity
is formed during sediment deposition, often linked to the arrangement of skele-
tal fragments or grains. It is important to note that interparticle porosity is
found between individual grains within the rock, while intraparticle porosity
is found inside specific particles, such as fossil pores or single grains within
the rock. Moldic porosity results from the dissolution of more soluble miner-
als, leaving voids or cavities in the rock. Fenestral porosity arises from skeletal
material dissolution, leading to irregular voids. Secondary porosity develops
later due to various processes like dissolution, fracturing, or alteration. It is
called vuggy porosity, which consists of large and irregular pores that resemble
holes or voids formed by dissolution.

Fractures and karst are the main features that constitute to the rock
heterogeneity for fluid flow. A kasrt is a term used to describe rock areas
characterized by the formation or enlargement of void spaces, either unfilled
or occupied by breccias or sediment [13] . In these processes, minerals undergo
dissolution and are removed by the fluid that permeates the rock, often water
in this context. Figure 2.3 shows different scales of karts in nature.

Two karstification patterns were identified by Meyers (1988) [21]. The
first pattern, also called the classic pattern, is characterized by the enlargement
of bedding planes and joints. This occurs in crystallized carbonates with
minimal intergranular porosity and negligible permeability. This type of rock
typically yields expansive caves and a clear pattern of preferred pathways
through which fluids move. The second pattern, when dissolution occurs
primarily within intergranular pores, resulting in minor cavities, irregular
veins, or fissures without discernible structural or stratigraphic alignment.
This kind of karst are dispersed and diffused. Moreover, the classic karst
tends to penetrate carbonate rocks to depths of tens to hundreds of meters or
even thousands of meters. Karst with a dispersed dissolution pattern typically
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Figure 2.2: Classification of carbonate sedimentary rocks based on porosity
[12].

reaches only a few meters or, at most, tens of meters below the surface.
The most intense phase of karstification occurs in the first few meters of the
dissolution process. A schematic representation of the formation of these two
types of karst features are illustrated in figure 2.4.

Karst can also be classified according to how it was formed. It can be clas-
sified in two basic ways: hypogenic karst and epigenic karst. These processes
are illustrated in figure 2.5. Hypogenic karst is caused by acidic groundwater
that slowly dissolves the subsurface carbonate rocks. Consequently, caves and
grottos are formed underground as a result of this process. On the other hand,
epigenic karst develops at the rock surface. Generally, rock erosion and disso-
lution occur in the vadose zone (soil and rock layers that are unsaturated) and
the epiphreatic zone (rock layers that are saturated). Several surface features
are associated with epigenic karst formations, including sinkholes and lapiaz.

Fractures are structural discontinuities within geological formations
caused by mechanical stresses. Figure 2.6 shows a typical example of frac-
ture in rocks. A notable contrast in morphology exists between fractures and
karsts, where karsts exhibit substantially greater volume compared to frac-
tures. Fractures are caused by a combination of macroscopic forces, including
tectonic plate movements, which provide the necessary stress for the rock to
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Figure 2.3: An example of various vug and karst features in nature [15].

be sheared or opened, and microscopic factors including the elastic properties
of matrix grains and the structural arrangements within porous media, which
include pore morphology and microcracks. The microscopic characteristics of
a rock determine how fractures propagate. Fractures typically display a wide
variety of linkages and networks [23].

2.2
Mathematical Models for Flow Through Heterogeneous Porous Media

Yao and Huang (2017) [15] presented a comprehensive discussion on mod-
eling fluid flow through a porous medium embedded with fractures and vugs.
Two distinct methodologies emerge for coupling the free-flow domain with the
porous matrix: the Single Domain Approach (SDA) and the Two Domains Ap-
proach (TDA). In SDA, a single differential equation describes flow dynamics.
It is not necessary to have an interfacial condition between the porous matrix
and the free-flow domain. Conversely, the TDA establishes a boundary, treat-
ing the porous matrix and the free-flow as discrete entities, which requires the
introduction of interfacial conditions to establish a connection between the dif-
ferential equations delineating the flow in each respective domain. In essence,
the Darcy equation applies to porous matrix dynamics, while the Navier-Stokes
or Stokes equation describes free-flow region dynamics. The literature provides
a wide variety of interfacial conditions that attempt to capture the dynamic
relationship between the porous matrix and the free-flowing region. Beavers
and Joseph (1967) [25] (BJ) present the classic interface condition, expressed
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Figure 2.4: Schematic model of conduit-type kasrt (left) and diffuse karst
(right) [21].

(a) (b)

Figure 2.5: Schematic representation of epigenic kasrt (a) and hypogenic karst
(b). Adapted from [22].

as :

dut
dη = αBJ√

K
(ut − uD) , (2-1)

where ut is the tangential velocity in the free-flow region, η in the direction
normal to the interface, uD is the Darcy velocity in the porous matrix, K is
the absolute permeability, and αBJ is a dimensionless parameter called the slip
coefficient.

It is essential to determine αBJ because it has a direct impact on
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Figure 2.6: Example of fracture system.[24].

the accuracy of the representation of this interface condition. Nevertheless,
estimating this coefficient accurately is significantly challenging. Specifically,
αBJ shows a strong relationship with the porous matrix configuration at
the interface. Several references emphasize this point [26, 27, 28]. According
to Zang and Prosperetti (2009) [29], pressure gradients, shear stresses, and
Reynolds numbers influence αBJ . Liu and Prosperetti (2011) [30] developed
a boundary condition that refines the BJ condition, taking into account the
pressure gradient and the viscous shear stress. Saffman (1971) [31] provided
theoretical support for the validity of the BJ condition, though its applicability
is restricted to planar interfaces. Several modifications have been made to the
BJ equation in order to make it more versatile, so that it can be applied
to a wide range of geometric configurations. The proposal was supported
and elaborated in [32, 27, 33], exhibiting both physical and mathematical
rigor. Jones (1973) [34] applied homogenization theory to create an equivalent
interface condition aligned with the same principles.

Eggenweiler and Rybak (2020) [1] conducted numerical analyses of free
flow regions interacting with anisotropic porous media where the fluid velocity
at the interface has non-parallel trajectories. Numerical simulations did not
agree with the BJ interfacial coupling condition. By integrating porous and
free-flow regions with Stokes equations, they demonstrated the limitations
of the commonly used Beavers–Joseph and Beavers–Joseph–Saffman interface
conditions. The comparisons between coupled Stokes-Darcy simulations and
pore-scale models revealed that these interface conditions often fail when flow
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directions are not parallel to the porous medium interface, particularly when
full permeability tensors are used. Furthermore, they noted that discrepancies
between macro and microscale simulations were closely tied to the porous
medium’s geometry. All cases were applied to filtration processes, where
velocities within porous media are higher than in free-flowing media.

Brinkman (1947) [16] introduced a single domain approach, which is suc-
cessfully employed to describe fluid dynamics through a porous matrix cou-
pled with free-flow domains. This method eliminates any interfacial conditions
at the porous matrix interfaces with the free-flow region. Gray and O’Neill
(1976) [35] and Whitaker (1999) [36] deduced Brinkman equation through the
average volume method. Since then, several studies have been presented us-
ing the Brinkman equation to model karst and naturally fractured reservoirs.
Neale and Nader (1974) [37] demonstrated congruence between the BJ inter-
facial condition and the Brinkman equation. Additionally, Taylor (1971) [27]
deduced the BJ condition from the Brinkman equation. Krotkiewski et al.
(2011) [18] calculated the effective permeability of a carbonate rock containing
vuggs within a spatial volume measuring 13×13×21 cm3. Okabe and Blunt
[38] conducted an analysis of permeability within the context of vugs and
small-scale pores, successfully capturing the relationship between estimated
permeability and macroporosity. Multi-scale investigation was conducted us-
ing microtomography and multi-point statistics on a carbonate rock sample.
The permability was computed using the Lattice Boltzmann method. There
was good agreement between the computed average permeability and the mea-
sured permeability. Golfier et al. [39] investigated the macroscopic behavior
utilizing the Darcy-Brinkman model. They worked on numerical solutions for
fractured and cavity porous media. An explicitly analytical solution for effec-
tive permeability was derived and compared to the numerical solution. Dali
(2019) [40] employed the Brinkman formulation to solve 2-D flow in porous
media in carbonates with macropores. The geometry of the pore structure was
determined by microtomographic images of a carbonate rock sample. It was
confirmed the compatibility between Brinkman equation and BJ condition,
specifically to single-phase flows within karstified porous media. In particular,
this validation extends to scenarios in which the velocity within the free-flow
domain is much greater than that within the porous domain. A discrepancy
in velocity induces quasi-parallel flow directions within the free flow region
and the porous matrix, which leads to minimal numerical error. Cruz (2022)
[41] extended the previous study to a three-dimensional setting with similar
results. Dali (2019) [40] demonstrated that in studies of carbonate rock flows,
the velocities within the vugular regions are greater than those in the porous
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regions. Moreover, the velocities in the vugular regions are closely parallel to
principal vug orientation. It is therefore expected that, when applying BJ in-
terfacial conditions in reservoir studies, the velocity field should have fewer
distortions than those reported by [1], because the flow trajectory is parallel
to the porous media interface.

Establishing the αBJ parameter to simulate flow in carbonate rocks re-
mains challenging. This parameter is not affected only by the surface interac-
tion between the porous medium and the free-flow region, but also by various
flow parameters [29]. Due to the internal flow dynamics in the porous medium,
it is difficult to conduct laboratory measurements within this carbonate rock
samples. Furthermore, to the best of our knowledge, there appears to be a gap
in the literature concerning studies that integrate interfacial conditions with
multiphase flows, specifically in two-phase systems. Furthermore, oversimplifi-
cations using arbitrary values of αBJ may lead to significant errors. As a result,
the SDA methodology appears to be a promising approach for the purposes
outlined in this study. It simplifies the implementation process and reduces
uncertainties associated with the selection of αBJ parameter. Moreover, the
existing literature indicates that the Brinkman model exhibits strong correla-
tions with a variety of interfacial conditions [37]. A comprehensive exploration
of the Brinkman viscosity term (µ∗) is also presented in section 3.1.5.

There is relatively limited reference available for applying Brinkman’s
model to multiphase flows in comparison with its single-phase models. Co-
clite et al. (2014) [42], Bürger et al. (2016) [43] and Dine and Saad (2018)
[44] solved the Brinkman equation in an immiscible two-phase flow in a non-
homogeneous porous medium. Coclite et al. (2014) [42] utilized a weak form
combined with the finite difference method to demonstrate model conver-
gence. Meanwhile, Bürger et al. (2016) [43] used the Discontinuous Finite Vol-
ume Element (DFVE) method and the Runge–Kutta Discontinuous Galerkin
(RKDG) method, to solve the Brinkman equation effectively through the sat-
isfaction of discrete maximum principles and the attainment of numerically
robust outcomes. Dine and Saad (2018) [44] performed convergence analysis of
a combined non-conforming finite volume method with finite element methods
discretized in a triangular mesh. The authors established a numerical solu-
tion within the weak form and demonstrated convergence. However, solution
uniqueness proof remains inconclusive due to intrinsic nonlinearities. They
noted that the Brinkman equation adds diffusivity to the system compared to
the Darcy solution. Hallak et al. (2019) [45] investigated a five-spot drainage ge-
ometry, where a central karstified region interacts with the surrounding porous
matrix. This dynamic interplay was characterized by substantial contrasts in
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porosity and permeability between the two regions. In situations characterized
by high to moderate Darcy numbers, the Brinkman models result in diver-
gent fluid displacement fronts when compared with non-homogeneous Darcy
formulations with different porosity and permeability in each region.

In a study developed by Belhaj et al., (2005) [46], non-Darcy flow
is examined in terms of viscous, inertial, and convective effects in fluid
flow through porous media. A modified Brinkman formulation was used to
accommodate two-phase flow in multiphase conditions commonly encountered
in fractured petroleum reservoirs. In contrast to conventional models such
as Darcy’s equation, the researchers attempt to provide a more accurate
representation of fluid flow in reservoirs characterized by high velocities or
fractures. For scenarios involving high velocities, the modified Brinkman
formulation is suitable, whereas Darcy can be used for scenarios involving
low velocities.

Armiti-Juber and Rohde (2019) [47] conducted a series of two-phase stud-
ies employing an asymptotically flat domain, wherein the Brinkman model
demonstrated superior physical and numerical outcomes compared to the con-
ventional Darcy model. The Brinkman model accurately describes two-phase
flow in flat domains, particularly in high porosity media. In such environ-
ments, it incorporates effective viscosity and second-order terms. In particu-
lar Brinkman vertical equilibrium agrees excellently with the full two-phase
flow model, while being computationally more efficient. It is demonstrated
that the Brinkman vertical equilibrium model accurately describes satura-
tion overshoots and exhibits a spreading speed smaller than the Darcy model.
Armiti-Juber and Rohde (2019) [48] analyze weak solutions for a nonlocal
pseudo-parabolic model describing nearly uni-directional two-phase flow in
Brinkman regimes. The model describes homogenized flow of two immiscible
phases in a rectangular porous media domain, featuring equations for two dis-
tinct two-phase flow scenarios. The study concentrates on asymptotically flat
domains and includes a nonlocal evolution equation representing nearly uni-
directional two-phase flow. Armiti-Juber (2022) [49] examines two-phase flow
in thin porous media domains of Brinkman type. A weak solution to a coupled
two-phase flow model converges to a weak limit as the domain width-length
ratio approaches zero. With a single nonlocal evolution equation of saturation,
the reduced model captures the original coupled model effectively. As the geo-
metrical parameter diminishes, this convergence simplifies complex two-phase
flow phenomena in porous media.

Elkady et al. (2022) [50] study on non-Darcian immiscible two-phase flow
through porous materials investigates flow behavior and heat transfer charac-



Chapter 2. Literature Review 37

teristics in porous media using the Darcy-Forchheimer-Brinkman model. The
study aims to understand how porosity, inertia, friction, and saturation affect
the flow dynamics and thermal aspects of immiscible two-phase flow through
porous materials. Both numerical simulations and experimental validations
are conducted to analyze the hydrodynamic and thermal aspects of the flow,
with a focus on the channeling effect, velocity distribution, and the impact of
neglecting certain parameters like the Brinkman coefficient and flow inertia.
Regarding the Brinkman model influence, they concluded that the Brinkman
model in the study of non-Darcian immiscible two-phase flow through porous
materials is that neglecting the Brinkman coefficient enhances the channeling
effect and increases flow velocity near the solid boundary, resulting in faster
flow at the wall.

Two-phase flow using the Brinkman equation models fluid flow and heat
transfer, as well as two-phase fluid flow with suspended particles. Bhatti et al.
(2018) [51] investigated the impact of mass and bio-heat transfer on the peri-
staltic propulsion of two-phase flows through a Darcy-Brinkman-Forchheimer
porous medium. They aim to understand how the Brinkman equation influ-
ences heat and mass transfer effects in the presence of magnetic fields, compli-
ant walls, and chemical reactions. They concluded that the Brinkman number,
which represents the ratio of viscous dissipation to molecular conduction, plays
a significant role in temperature distribution. Due to viscous dissipation, a high
Brinkman number reduces conduction, which increases temperature. The study
conducted by Khan et al. (2022) [52] examined the generalized dusty Brinkman
type of fluid that flows between parallel plates under magnetic-hydrodynamic
(MHD) free convection. A generalized Brinkman type dusty fluid was studied
to examine the combined effect of a magnetic field and heat transfer. It has
been argued that the fractional model of dusty fluids of the Brinkman type
is more realistic than the classical model. The effect of time on Brinkman-
type fluid and dust particle velocity was highlighted, which demonstrated that
both velocities increased with the passage of time, indicating the dependence
on time of unsteady fluids.

Simulation of oil reservoirs involves partitioning vast domains spanning
tens of kilometers into discrete units with smaller dimensions, typically mea-
sured in meters. Unfortunately, refining meshes to capture vug geometry ac-
curately is both costly and impractical. Homogenization theory can be useful
in this scenario in order to accurately represent fluid flows in large domains.
In this method, two distinct scales are used in the analysis. The fine scale is
simulated using models that are capable of capturing detailed characteristics
of the flow. For flow in vugular porous media, the Darcy model is usually ap-



Chapter 2. Literature Review 38

plied to simulate the porous matrix, while the Navier-Stokes or Stokes models
are used to simulate the vugular regions. In the coarse scale, only the Darcy
model is used. The transfer of scale is generally accomplished through equiva-
lent properties, such as absolute permeability and relative permeability curves.

Argabost et al. (2004) [53] presented a homogenization approach for
single-phase, incompressible, viscous fluid considering a variety of vug con-
figurations, including layered vugs, meandering vug channels, constricted vug
channels, and disconnected vugs. Their findings indicate that connectivity be-
tween the vugs is crucial to predicting macroscopic properties. In their subse-
quent work, Argabost and Lehr (2006) [54], based on the homogenization of
single-phase flow, derived an analytical solution for simple geometries. Based
on this model, the vug can be represented through Poiseuille flow and alter-
nates from vug to matrix behaves as if the vugs have infinite permeability.
Argabost et al. (2009) [55] applied the Darcy-Stokes coupled equations with
the Beavers-Joseph-Saffman interfacial condition to create a macro-model for
vuggy porous media. The authors simulated field-scale aquifer flow using dif-
ferent synthetic vuggy media configurations to demonstrate the importance of
elements such as channel shape, aperture, and disconnectivity. Huang et al.
(2010) [56] proposed a mathematical flow model for a discrete fracture-vug
network (DFVN). Utilizing homogenization theory, they derived the equiva-
lent Darcy flow equation and obtained the theoretical formula for the effective
permeability tensor of fractured vuggy media. The examples illustrate that per-
meability of the medium is significantly affected fracture or vug sizes, though
it remains independent of the distribution of the fractures or vugs.

Popov et al. (2009) [14] applied the Brinkman equation on fine-scale
dynamics within a synthetic porous medium interlaced with vuggs and a
complex pattern of fractures resulting in connectivity between the vuggs.
This interaction resulted in a substantial increase in effective permeability.
Meanwhile, Qin et al. [57] and Gulbransen et al. (2010) [58] effectively
derived the absolute permeability from a local solution at a fine scale using
Brinkman equation. Subsequently, upscaled permeability is applied to solve
the Darcy equation at a coarse scale. Similarly, He et al. (2015) [59] proposed
a Brinkman model to simulate transient single-phase fluid flow in 2-D synthetic
representations of naturally fractured and karstified carbonate reservoirs. In
naturally fractured carbonate karst reservoirs, cavities and natural fractures
profoundly alter fluid transport patterns. Conversely, cavities alone do not
produce comparable effects. Campos (2022) [60] developed a single-phase
transient simulator based on the Brinkman equation. Compared to the dual-
continuum models, Brinkman results showed a strong correlation.
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Huang et al. (2013) [61] conducted a comprehensive investigation of two-
phase flow. They applied the methodology developed on Huang et al. (2010)
[56] to compute the absolute permeability of the coarsened grid. In the con-
text of two-phase flow, they introduced an innovative approach to calculating
relative permeability curves. On the fine grid, a distinction was made between
the relative permeability in the vuggy domain and the porous matrix. Conse-
quently, analytical techniques were employed to derive a novel pseudo-relative
permeability curve for the coarse grid. This pseudo-relative permeability curve
effectively captures the influence of the relative permeability curves of both
the porous media and the free-flow region. Yan et al. (2016) [62] investigated
two-phase flow in fractured-vuggy reservoirs. They employed homogenization
theory for small fractures and vugs, and modeled long fractures using the Em-
bedded Discrete Fracture Model (EDFM). The homogenization theory is used
to determine the equivalent absolute permeability. An analytical method is
used to determine the relative permeability for the coarse scale. This approach
simplifies the numerical simulation of flow in fractured-vuggy reservoirs by
avoiding unstructured meshing and numerical calculations for the entire reser-
voir.

2.2.1
Dual-Continuum Models

Dual-continuum models are one of the approaches used to model flow in
natural fractured and karstified reservoirs. Barenblatt et al. (1960) [19] pro-
posed the dual-continuum framework that provides a comprehensive method
for analyzing the flow through porous matrix and fractures independently. Ba-
sically, it consists of two equations that allow for independent modeling of two
distinct media. The main characteristic of this model lies in that the porous
matrix consists of interconnected blocks, whereas the fractures are wider than
the characteristic pore size. Thus, the fractures have higher permeability when
compared to the porous matrix. Moreover, the porous matrix and fractures are
coupled by a fluid transfer function to ensure effective fluid transfer between
them. Eq. (2-2) is also known as the dual-continuum model (2φ2k):

∇ · (Km∇pm)− α
(
pm − pf

)
= cmt µφ

m∂ρ
m

∂x
,

∇ ·
(
Kf∇pf

)
+ α

(
pm − pf

)
= cft µφ

f ∂ρ
f

∂x
,

(2-2)

where the superscripts m and f indicate the matrix and fracture domains and
α is a dimensionless parameter that measures the characteristic of fissured
rocks. The parameter α is generally represented as:
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α = Kmσ2 (2-3)

The authors assumed that the fluid transfer intensity between the porous
matrix and the fractures depends on the permeability of the matrix Km,
coupled with the width of fissure aperture (σ), that is, the fracture surface
per unit of rock volume, which is also known as the shape factor.

The shape factor reflects the geometric relation between the matrix and
the fracture. Due to its inherent nuances and associated uncertainties, the
parameter σ has received considerable attention. Many studies have been
conducted in order to provide a more accurate representation of σ. The
model proposed by Warren and Root (1963) [63] simplifies this approach by
assuming that the primary porosity system, or the porous matrix, is composed
of identical rectangular parallelepiped blocks with constant properties. The
secondary porosity system, referred as the fracture system, is characterized by
an orthogonal network with axes parallel to the edges of the matrix blocks and
spaced uniformly with constant width. According to this model, fluid can flow
between the matrix and the fracture, but not between different blocks of the
matrix. Consequently, fluid flow only occurs through the fractures, while the
matrix functions as a source/sink. It is commonly called dual porosity model or
just 2φ1k model. Figure 2.7 represents the idealization of a fracture reservoir.

Figure 2.7: Schematic representation of a fractured porous medium proposed
by Warren and Root (1963) [63].

In contrast to Warren and Root (1963) [63], which simplified the ma-
trix representation into cubic blocks surrounded by fractures, Kazemi et al.
(1976) [64] presented it as a rectangular block of varying dimensions. Thomas
et al. (1983) [65] contributed significantly by introducing a matrix-fracture
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formulation that was remarkably stable. In this formulation, fracture flow is
integrated seamlessly with matrix fracture flow, implicitly taking into account
variables such as pressure, water saturation, gas saturation, and oil saturation.
Gilman and Kazemi (1983) [66] modified the Kazemi et al. (1976) [64] model
by adding diagonal permeabilities in the grid cells. Gilman (1986) [67] refined a
2φ1k block model for representing heat transfer, gravity segregation, and other
transient phenomena. Quandalle and Sabathier (1989) [68] improved method
for the fluid transfer term between matrix and fracture in a dual-porosity
system. The method achieves higher accuracy and calculates flows related to
capillary, gravity, and viscous forces within the system.

To enhance the capabilities of the 2φ1k model, an improved model called
the 2φ2k model was introduced by Gilman and Kazemi (1988) [69] and Dean
and Lo (1988) [70]. In the 2φ2k model, fluid flows between matrix to ma-
trix and matrix to fracture block, allowing a more comprehensive representa-
tion of flow behavior. Other authors have refined the physical representation
of the 2φ2k models. Sonier et al. (1988) [71] proposed a gravity-driven fluid
exchange mechanism between the matrix and fracture. Coats (1989) [72] im-
proved the Warren and Root (1963) [63] model representing capillary pressure,
gravity, and viscous forces within the matrix-fracture transfer function in the
context of a compositional fluid model. Meanwhile, Ueda et al. (1989) [74]
introduced a gravitational model to predict the fluid phase vertical equilib-
rium. This model delineates a transition zone within the matrix block to more
effectively capture the nuanced manifestation of the transient saturation pro-
file. This is determined by the dynamic relationship of viscous, capillary, and
gravity forces. This marked enhancement precipitated a modification of the
shape factor, aligning it more effectively with empirical observations. Fung
(1991) [74] enhanced the dual-porosity/dual-permeability models by describ-
ing matrix/fracture drainage patterns block-to-block for gas and oil flow, using
a pseudo-capillarity potential. Uleberg and Kleppe (1996) [75] based on an ex-
tensive analysis of physical mechanisms and influential parameters impacting
fluid flow in fractured reservoirs, argues that a comprehensive model for such
reservoirs must integrate all primary flow mechanisms and processes. It encom-
passes a variety of factors including gravity, capillary forces, gravity drainage,
diffusion, capillary continuity, and reinfiltration. In mixed-wet systems, sim-
ulations demonstrated the importance of capillary continuity between matrix
blocks. Meanwhile, Lu and Blunt (2007) [76] proposed an improved transfer
function that accounts for displacement due to imbibition when capillary pres-
sure is positive, in combination with gravity drainage, for 2φ2k systems.
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2.3
Upscaling Methodology

Single-phase static upscaling techniques are common in reservoir studies.
Numerous studies have been conducted in this area, and the most important
ones are described below. The most common method used to upscaling porosity
from fine-scale models is the volumetric weighted arithmetic mean, which en-
sures preservation of pore volume [77]. In terms of permeability upscaling, there
are three main methods employed: averaging, which involves horizontal arith-
metic and vertical harmonic averages; Cardwell-Parsons directional averaging
[79]; and flow-based upscaling with closed boundary conditions [78, 80]. In
addition, Wen and Gomez-Hernández (1996) [81], Renard and Marsily (1997)
[82], Farmer (2002) [83], and Durlofsky (2003) [77] provide detailed literature
reviews on upscaling methods. These authors agree that flow-based techniques
are most effective for upscaling absolute permeability.

An effective upscaled model of fluid injection in heterogeneous reservoirs
typically requires more effort. Two-phase upscaling is recommended for pro-
cesses involving water or immiscible gases injection. When fine-scale simulation
data are available, pseudo-relative permeability curves are commonly used to
enhance the accuracy of coarse-scale simulation models. Various methodolo-
gies have been proposed to enhance the representation of small-scale results in
coarse-scale simulation models. Barker and Fayers (1994) [84] developed the
method of transport coefficients (also known as α-factors), which is a method
that uses modifiers introduced into flow terms to calculate the composition of
fluids flowing from a large grid block as compared to the average composition
of fluids within that block. Additionally, pseudo relative permeability curves
are used. The method was tested for various fluid systems with improved accu-
racy in the results, particularly in terms of component production rates. Barker
and Thibeau (1997) [85] conducted a comprehensive review of existing relative
permeability upscaling approaches. They highlighted significant limitations as-
sociated with pseudo-relative permeability curves during the upscaling of fine-
grid geological models to coarse-scale simulation models. They concluded that
pseudo-relative permeability curves are viable only in scenarios where capillary
or gravity equilibrium can be assumed at the coarse-scale grid block. Chen et
al. (2003) [86] proposed a coupled local–global upscaling method, where local
boundary conditions for computing upscaled properties are derived from global
coarse-scale flows. They demonstrated notable enhancements over conventional
local methods but did not explore specific global flow patterns or well effects,
potentially impacting upscaling accuracy. Chen and Durlofsky (2006) intro-
duced an adaptive local–global (ALG) upscaling method to tailor coarse-scale
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parameters for various global flow conditions. They implemented a threshold
to update upscaled properties only in high-flow regions, potentially enhancing
upscaling efficiency. Results on highly heterogeneous systems showed enhance-
ments over local and coupled local-global upscaling techniques. Zhang et al.
(2008) [88] proposed the Well Drive Upscaling (WDU) method, utilizing global
well drive and actual boundary conditions to address inappropriate boundary
conditions in single-phase upscaling. While presenting promising results, the
approach requires a fine-scale pressure solution for application. Moreover, this
method is suitable for effectively upscale the transmissibility since relative per-
meability is still a challenge to be represented block-to-block.

Regarding the application of dual-continuum techniques to upscaling,
Evazi and Jessen (2014) [89] proposed an approach to upscaling heterogeneous
reservoir models by splitting porosity. Based on flow capacity, this method clas-
sifies reservoirs into primary and secondary porosities. The authors rigorously
evaluate this approach against traditional single-porosity models, demonstrat-
ing its superior ability to capture preferential flow paths and enhance displace-
ment efficiency. There is evidence that the dual-porosity model is capable of
improving displacement efficiency representation in coarse-scale modeling, as
well as predicting breakthrough times and post-breakthrough responses with
increased accuracy. However, the overall workflow can be costly since fine-scale
models require streamline simulations to be obtained. As another disadvantage,
the strategy can be dependent on the original well locations and flow rates due
to the use of fine-scale results to divide the porous media. Rios et al. (2020)
[90] introduced an innovative 2φ2k upscaling approach. This method enhances
coarse-scale predictions accuracy compared to conventional techniques, partic-
ularly in reservoirs with significant heterogeneity. By addressing the optimistic
tendencies inherent in traditional upscaling methods, the proposed strategy of-
fers dependable outcomes even at large upscaling ratios. It consistently refines
traditional upscaling outcomes across diverse flow-direction scenarios. By us-
ing the flow and storage capacity as well as the Lorenz coefficient, fine-scale
porous media are segmented into primary and secondary systems. The respec-
tive properties for each coarse-scale are computed, and the flow is simulated
within the revised upscaled model using the 2φ2k model. According to the
results, the method is effective in reducing biases in sweep efficiency and oil
recovery factor estimations, as well as refining coarse-scale uncertainty profiles.
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2.4
Summary

Studies involving homogenization in domains where flow occurs simul-
taneously between the porous medium and the free flow region are relatively
common for single-phase flow. Generally, homogenization or volume averaging
techniques are used for this purpose. In this context, many studies use the
Brinkman equation on a fine scale and the Darcy model on a coarse scale for
single-phase studies. In comparison, few studies have been published using the
Brinkman equation to model two-phase flow. The homogenization of two-phase
flows has also been applied in relatively few studies.

This study aims to fill the gap in the literature regarding two-phase flow
modeling in kasritic systems. Brinkman two-phase flows model is applied on
a fine scale. Based on Brinkman results, upscale is applied to derive coarser
results. Based on a more realistic physical description of fine-scale results,
this study proposes a methodology for establishing equivalent petrophysical
properties on the coarse scale. Most of the upscaling methods mentioned above
focus on determining petrophysical properties on a reservoir scale. It is not
feasible to directly upscale highly detailed models, in which vug geometries
can be discretized, to reservoir scales, in which simulation cells span hundreds
of meters. This study aims to derive equivalent properties for describing
karst systems. In this sense, this method may be considered an intermediate
upscaling procedure in reservoir modeling, which connects the scale between a
rock sample of several centimeters and that of the field.



3
Flow Models and Solution Methods

This chapter details the methodologies employed in this study. It covers
the fundamental equations of the Brinkman and Darcy models for single and
two-phase flow, including the weak form of these equations for finite element
discretization. Furthermore, it details the analytic solutions from the litera-
ture for some simple problems used for solution method implementation vali-
dation. The chapter also outlines methodologies for comparing the Brinkman
model with the single-continuum and dual-continuum Darcy models. It pro-
vides insights into the approaches used for achieving equivalency in porous
media through the single-continuum model and the dual-continuum model.
Additionally, a brief overview of the black-oil model is included, as the double-
continuum models are solved using CMG’s commercial software. Furthermore,
the mesh tests for the cases studied in chapters four and five are presented.

It is first necessary to establish assumptions to simplify the physical and
mathematical models proposed in order for the problem to be posed correctly.
In all subsequent studies, the following hypotheses are be used.

1. Low Reynolds Flow;

2. Immiscible Fluids;

3. Capillary Pressure is neglected;

4. Gravitational effects neglected;

5. 2-D Domain;

6. Incompressible Fluid and porous matrix;

7. Isothermal flow and no chemical reactions;

8. Constant properties ;

9. The pore space is fully saturated with aqueous and oleic phases.

In order to provide a better understanding of these hypotheses, it is
worth highlighting a few of them. In a porous matrix as well as in free-flowing
media, capillary pressure is negated. As only horizontal flow is considered,
gravitational effects are ignored.
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3.1
Flow Models

3.1.1
Mass and Linear Momentum Conservation for Single Phase Model

Mass conservation is described by the following differential equation:

∂ρ

∂t
+∇ · (ρu) = q , (3-1)

where ρ is the density, u is the velocity vector, and q is a source / sink term.
Linear momentum conservation is governed by the Cauchy equation:

ρ
Du
Dt

= ρg +∇ · T , (3-2)

where g is the gravity force and T is the Cauchy stress tensor. In this study,
it is only considered Newtonian fluid. Thus, eq. (3-2) is simplified with the
assumptions of isotropic fluid and linear relation between the strain rate and
the viscous stress, i.e:

T = −pI + µ
(
∇u +∇uT

)
, (3-3)

where p is the pressure and µ is the dynamic viscosity.
The Navier-Stokes formulation is attained by expanding equation (3-2)

and subsequently implementing (3-3):

ρ

(
∂u
∂t

)
+ u · ∇u = ρg−∇p+ µ∇2u. (3-4)

For this analysis, it is assumed that the flow occurs at low Reynolds
numbers (Re � 1), i.e., momentum advection terms are much smaller than
viscous terms (u ·∇u� ∇2u). Gravity is also neglected since it is considering
horizontal two dimensional domain. With all the above hypothesis, the Navier-
Stokes equation is simplified to Stokes equation:

∇p = µ∇2u. (3-5)
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Since oil reservoir flows typically exhibit low velocities, the Skotes equa-
tion is suitable for simulating free-flow regions. Although high Reynolds num-
bers are present near wells at distances up to several tens of meters, in the
majority of reservoirs, the low Reynolds number hypothesis can be confidently
applied.

3.1.2
Darcy Equation for Single Phase Flow

Darcy’s law is a fundamental equation for modeling flow through porous
media [91]. Its popularity can be attributed to its ability to accommodate
intricate structures accurately, since microscopic pore space flow is simplified
to an average representation of fluid motion. Darcy’s law establishes a linear
relationship between flow magnitude and the potential gradient acting on fluid,
i.e:

uD = K

µ
(−∇p+ ρg∇z) (3-6)

where uD is the Darcy velocity, z is depth and K is the permeability. It is
assumed that the porous media is isotropic, so the permeability tensor can be
expressed by a single scalar variable.

3.1.3
Darcy Equation for Two-Phase Flow

This section presents the equations and underlying assumptions of Darcy
two-phase flow model. The fluids are considered immiscible in this model, and
there is no mass exchange between the phases or with the solid phase. It is
noteworthy that water is identified as the wetting phase, denoted by w, whereas
oil is identified as the non-wetting phase, denoted by o.

Furthermore, it is essential to establish equations that describe how
relative permeability and the capillary pressure vary with fluid saturation.
In this study, the porous media exclusively has water and oil, therefore:

Sw + So = 1, (3-7)

where Sw and So are the respective volume fractions for water and oil,
respectively.

In porous media, capillary forces are induced when two or more immis-
cible fluids come into contact. These fluids interact with one another and with
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the solid phase resulting in a contact angle with the porous medium walls.
The phenomena is inherently governed by cohesive forces at the molecular
level within the respective phases, as well as by adhesive forces between them.

The capillary pressure, denoted as pc, is conventionally characterized by:

pc(Sw) = po − pw, (3-8)

where po is the pressure within the non-wetting phase and pw is the pressure
within the wetting phase [3]. Capillary pressure can be described using a variety
of empirical and mathematical models. In the present study, capillary pressure
is neglected, i.e. pc = 0.

For two-phase flow, Darcy equation (eq. 3-6) is generalized as

un = Kkrn
µn

(−∇pn + ρng∇z) n = w, o , (3-9)

where krn is the relative permeability of each phase, which is a function of the
phases saturation.

Mass conservation equation for each phase (3-1) in flow through porous
media is expressed as:

∂(φρnSn)
∂t

+∇ · (ρnun) = qn n = w, o , (3-10)

where φ is the porosity.
The total Darcy velocity u is the summation of each phase Darcy velocity:

u = uo + uw. (3-11)

It is also necessary to define the phase mobility (λn), total mobility (λT ),
and fractional flow (fn), respectively:

λn = krn
µn

, (3-12)

λT = λw + λo, (3-13)
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fn = un
u . (3-14)

When capillary pressure is neglected, the fractional flow of each phase is
equal to the ratio between the phase and total mobilities,

fn = λn
λT
. (3-15)

Using the definition (3-7), it is only necessary to calculate the saturation
in one phase because the other one is easily obtained. It is chosen the wetting
phase, water (w). In this study, the capillary pressure and the gravitational
force are neglected. For simplification, it is assumed that water and oil have
identical density, ensuring uniform local fluid density. In addition, fluids and
porous matrix are treated as incompressible. Consequently, ρo, ρw, and φ are
constant. Thus, the mass conservation for the wetting phase becomes:

φ
∂Sw
∂t

+∇ · (fwu) = qn, (3-16)

where qn is a source/sink term.
Accordingly, the following set of equations are used to describe the Darcy

two-phase flow:

∇ · (u) = q, (3-17)

∇p = −K−1λ−1
T u, (3-18)

φ
∂Sw
∂t

+∇ · (fwu) = qw. (3-19)

3.1.3.1
Relative Permeability

The effective permeability of a fluid defines how easily a fluid can flow
through the porous medium in the presence of other fluids. The relative
permeability is defined as the ratio of the effective permeability to the absolute
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permeability of the medium and depends on the fluid saturation, krn =
f(Sn). Considering the complexity of the subsequent analysis, two models of
relative permeability were used. The first model is the Corey and Brooks [92]
correlation. This model represents the interaction between velocities in wetting
and non-wetting phases in porous media, and is widely used in the literature.
It is typically obtained through experiments in which rock samples are tested
under specific conditions for a specific scenario (pressure, temperature, oil,
water, and gas compositions). The relative permeability curves are written as
a power-law function of the saturation:

krw = k0
rw(Sm)nw , (3-20)

kro = k0
ro(1− Sm)no , (3-21)

Sm = Sw − Swi
1− Swi − Sor

, (3-22)

where Swi is the initial water saturation, Sor is the irreducible oil saturation,
k0
rw is the water relative permeabilty at the irreducible oil saturation, k0

ro is
the oil relative permeability at the initial water saturation, nw is the water
exponent and no is the oil exponent.

A second model is the LET correlation [93]. The relative permeability
curves are written as a function of saturation in terms of three parameters.
The LET model allows oil mobility to be adjusted at low water saturations
while maintaining special core analysis (SCAL) data at high water saturations.
At a field scale, this method has been successfully applied to the simulation of
oil production from a field in the Norwegian Sea. When compared to the Corey
and Brooks model, the LET model has the advantage of a greater degree of
freedom. The functional forms of the LET model are:

krw = k0
rw

(Sm)L
w

(Sm)Lw + Ew (1− Sm)Tw
, (3-23)

kro = k0
ro

(Sm)L
o

(1− Sm)Lo + Eo (Sm)T o
, (3-24)
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where only Swi, Sor, k0
rw and k0

ro have a physical meaning. Ln, En, and T n are
empirical parameters used to better fit the data.

3.1.4
Buckley–Leverett

The Buckley-Leverett model is used in this study to validate the im-
plementation of the Darcy and Brinkman numerical models. Buckley-Leverett
theory [94] refers to the displacement of immiscible two-phase flow within a
porous medium. The BL model is built upon assumptions of linear (1-D) flow
in an isotropic and homogeneous porous medium, with both fluids considered
incompressible. The water injection occurs at a constant rate, i.e., the velocity
along the inlet boundary is constant.

Displacement efficiency can be defined as:

ED = Amout of oil displaced

Initial Amount of oil in the porous medium
. (3-25)

Based on the eq. (3-10) and eq. (3-15), mass conservation of the water
phase can be written as:

φ
∂Sw
∂t

+ u∂fw
∂x

= 0. (3-26)

To calculate the displacement efficiency, it is necessary to establish
the saturation as a function of position and time, Sw (x, t). The boundary
conditions and the initial condition for this problem are:

Sw (x, 0) = Swi, x ≥ 0 (3-27)
Sw (0, t) = Swinj, t ≥ 0 (3-28)

where Swinj is the injection saturation.
The following variables are used to make equation (3-26) dimensionless:

xD = x

L
, (3-29)

tD =
∫ t

a

u
φL

dt. (3-30)
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Eq. (3-30) is also referred to as the dimensionless porous volume injected.
Thus it is possible to expand equation (3-26) using (3-29) and (3-30) as follows:

∂Sw
∂tD

+ ∂fw
∂Sw

∂Sw
∂xD

= 0. (3-31)

Writing eq. (3-31) as total differential equation,

dSw = ∂Sw
∂xD

dxD + ∂Sw
∂tD

dtD, (3-32)

with this it is defined the specific velocity for a given water saturation vSw in
terms of its position and injected pore volumes:

dxD
dtD

= −
∂Sw/∂tD
∂Sw/∂xD

≡ vSw . (3-33)

Substituting eq. (3-32) into eq. (3-33) gives:

vSw = dfw
dSw

, (3-34)

with this, it is possible to estimate the position of the water advection front
along the porous medium as a function of the injected volume for a given
Sw = s:

xD|Sw=s = dfw
dSw

∣∣∣∣∣
Sw=s

tD. (3-35)

Eq. (3-35) can be employed to compute the saturation at a specific
position relative to the injection point, considering a predetermined volume
of injected fluid as exemplified in figure 3.1.

3.1.5
Single-phase Brinkman Model

Brinkman equation [16] presents a mathematical formulation designed
to address the concomitant fluid flow occurring within both a free-flow region
and a porous matrix. Notably, the author has successfully incorporated the
Stokes diffusion term into Darcy’s law. The single-phase Brinkman equation
is represent as follows:
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Figure 3.1: Saturation profile obtained in a homogeneous, 1-D porous medium
for an arbitrary tD. Swf is the water front saturation in the xDf position. This
profile is obtained through equation (3-35).

∇p = µ∗∇2u− µ

K
u, (3-36)

where µ∗ is denominated the effective Brinkman’s viscosity.
Since the porous media is considered isotropic, the tensor is simplified to

a scalar in this study. Consequently, the porous matrix attains a real-valued
permeability, symbolized byK, while in the vugular domain,K is conceptually
infinite.

The determination of the effective Brinkman’s viscosity (µ∗) has at-
tracted considerable attention. Several studies suggest different values might
be used instead of fluid viscosity. Martys et al., (1994) [95] highlighted an
important observation: the effective viscosity parameter is intimately related
to the porosity of the porous medium. The porosity of the porous matrix
examined ranged from 50% to 80%. It is noteworthy that these values signif-
icantly exceed the average porosity levels found in carbonate rock reservoirs,
which typically range from 10 to 20 percent. Lundgren (1972) [96] conducted
an experiment on a bed of randomly dispersed spheres. During their inves-
tigation, they found a significant correlation between medium porosity and
effective Brinkman viscosity, specially for elevated porosity values. Neale and
Nader (1974) [37] performed an analysis to establish a correlation between the
Beavers-Joseph equation and Brinkman viscosities. This correlation was well
represented by the model αBJ =

√
µ∗/µ. Koplik et al., (1983) [97] indicated

that in comparison with pore-fluid viscosity, the effective Brinkman viscosity
is inferior. Brinkman formulation captures these effects with remarkable ac-
curacy. This results were reached for high porosity medium. Aurianlt (2009)
[98] indicated that the parameter µ∗ assumes parity with µ when dealing with
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high porosity. Moreover, the Brinkman equation cannot be applied to porous
media such as rock samples. Accordingly, Whitaker (1999) [36] presented a
concept of porosity correction, which is equivalent to the intrinsic velocity
and apparent flow velocity. Gilver and Altobelli (1994) [100] employed nuclear
magnetic resonance techniques to explore water flow through structured foams
with very high porosity. For a Reynolds number of 17, their experiments reveal
that the ratio of Brinkman viscosity to dynamic viscosity oscillates between
5.1 and 10.9. In their study, porosity (φ = 0.975) and advective effects are el-
evated. Hence, the flow behaviour in carbonate reservoirs is inconsistent with
high porosity and high Reynolds number (except near wells). Generally, for-
mulations addressing Brinkman’s viscosity term are tailored for high porosity
contexts [95, 96, 97, 98, 100], which diverges from the scenario this study aims
to investigate. Moreover, various studies present different perspectives on this
matter. For instance, [98] suggests the Brinkman viscosity term is equivalent
to the fludi viscosity for high porosity, while [95, 97] suggested correction on
Brinkman viscosity term for high porosity media. This issue remains an ongo-
ing debate and is not the focus of the present study.

The use of viscosity values that are different from those of the fluid
in the free-flow region has several implications. Often, this approach relies
on correlations derived from specific porous medium configurations and flow
regimes, which do not align with the conditions usually associated with
carbonate rock flows. Furthermore, a substantial amount of literature assumes
that Brinkman’s viscosity corresponds to the fluid viscosity in the free-flow
region. According to the literature [14, 17, 58, 57, 101, 53, 55, 54, 59, 102, 18,
38, 39, 40, 41, 60, 45], the most common value for µ∗ is the same as the fluid
viscosity in the free flow region µ∗ = µ and µ∗ = 0 at the porous matrix region.
In addition, the permeability at the free flow region is set as K →∞, making
the Darcy term tending to zero as sketched in figure 3.2.

3.1.6
Two-Phase Brinkman Model

Equation (3-36) is modified to represent the two phase flow. For simplifi-
cation, it is considered that water and oil have the same density. The velocity
in the vug region follows the same assumption as the Darcy total velocity,
which is u = uo + uw. Moreover, a simplified approach is chosen to examine
the viscosity of the mixture. This involved computing a saturation-weighted
average of individual phases’ viscosity. Within the scope of this study, µ∗ is
set as zero on the matrix domains and it is modeled on the two-phase flow as
proportional of each phase saturation locally in the free-flow region:
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Porous Media:
µ∗ = 0 and K = Kmatrix

Free-Flow Region:
µ∗ = µ and K =∞

Figure 3.2: Diagram illustrating of the Brinkman model. The yellow region
represent the porous matrix and the gray region represents the free-flow region.

µ∗ = µo (1− Sw) + µwSw. (3-37)

Through the imposition of these constraints upon µ∗ and K the Darcy
term becomes negligible within the vulgular region, while the Stokes term
is not considered within the porous matrix.Accordingly, the following set of
equations are selected to represent the Brinkman two-phase flow:

∇p = µ∗∇2u− u
KλT

, (3-38)

∇ · u = q, (3-39)

φ
∂Sw
∂t

+∇ · (f ∗u) = qw, (3-40)

where f ∗ must be define differently for the free-flow region and the porous
matrix. In the porous matrix region f ∗ = fw. In the free-flow domain, the
velocity of each phase is considered to be a linear function of the phase
saturation. Therefore, the free-flow region has f ∗ = Sw for the water phase.
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This approach was employed based on the experimental observations of Romm
(1966) [99]. Analogously, it is similar to considering a relative permeability
curve in ×.

As similar to the Darcy two-phase model, Corey and Brooks relative
permeability correlation [92] is used to characterize the two-phase flow in
the porous matrix, where the irreducible water saturation and residual oil
saturation are both assumed to be zero and Brooks exponents are nw = 2 and
no = 2, respectively. Furthermore, the endpoints of relative permeability, kro
at Sw = 0 and krw at Sw = 1, both have values of one.

Modeling flow within the free-flow depends on several simplified assump-
tions. However, as far as the author knowledge, there is no clear approach to
how phase velocity and phase viscosity should be treated appropriately for flow
in free-flow region interacting with the porous medium. Currently, this issue
remains unresolved.

3.2
Flow Domain, Initial and Boundary Conditions

In this study, different vug configurations are used to evaluate the
behavior of a two-phase flow in highly heterogeneous rectangular porous media.
In all the cases, the domain is initially saturated by non-wetting phase, oil (o),
being displaced by the injection of a wetting phase, water (w). Figure 3.3
represents a sketch of the flow domain. Ω ⊂ R2 is a rectangle representing a
porous medium containing vugs. The porous matrix domain ΩM and the vug
domain ΩV are defined as such: Ω = ΩM ∪ ΩV and ΩM ∩ ΩV = ∅.

ΩV

ΩM

Ω = ΩM ∪ ΩV

Γ3

Γ3

Γ1 Γ2

Figure 3.3: Schematic representation of the computational domains and their
boundaries conditions.

Water is injected through the left inlet boundary at a constant velocity,
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i.e u = uin and Sw = 1 along Γ1 in figure 3.3. The pressure in the outlet
boundary is constant, p = pout along Γ2. The top and botton boundaries are
considered impermeable, u · n = 0 on Γ3, i.e:

Sw = 0 at t = 0, (3-41)
Sw = 1 on Γ1 (3-42)

u = uin on Γ1 (3-43)
u · n = 0 on Γ3, (3-44)
p = pout on Γ2. (3-45)

3.3
Numerical Implementation

The finite element method (FEM) is used for solving the partial dif-
ferential equations (PDE) associated with the different models described in
the previous session. The continuous problem is converted into a discrete sys-
tem of equations to approximate the solution. An effective implementation
of the method requires an accurate representation of the geometry by finite
elements. The quality of the mesh is essential to the success of the solution.
Sections (3.5.1) and (3.5.2) discuss mesh generation in detail. The weak form is
obtained by multiplying the original PDE by a weight function and integrating
into the problem domain. This procedure converts a differential equation into
an algebric system of equation. The coefficients of the approximate solution’s
expansion in terms of the basis functions constitute the unknowns of the dis-
crete problem. The functions are restricted to specific local regions within the
domain, resulting in a sparse linear system.

It is possible to solve the Brinkman and Darcy equations numerically by
selecting the appropriate set of basis functions according to the particularities
of each set of equations. The type of elements and the order of the basis
functions play an important role in the accuracy and efficiency of a finite
element analysis. The Mixed Finite Element Method (MFEM) is chosen for the
solution of the pressure and velocity fields for Brinkman and Darcy equations.
The MFEM is an extension of the classical FEM. In particular, it is well
suited to the solution of problems involving coupled or interrelated physical
phenomena. A major advantage of MEFM over FEM in the context of this
study is that MEFM is locally conservative, which is essential for numerical
stability for solving the equations that are proposed.

A first attempt was made to model Brinkman’s two-phase problem
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using Taylor-Hood elements for the velocity and pressure fields, and the
Discontinuous Galerkin method for the saturation field, based on Dali [40],
Cruz [41], and Campos [60] single-phase investigation. However, it was not
possible to obtain a numerical solution for the saturation field. Although
Taylor-Hood basis functions can solve the single-phase Brinkman problem
without significant issues, this modeling approach lacks local conservation
at the element level. Consequently, these non-conservative effects introduce
numerical errors into the saturation field, leading to inherently non-physical
outcomes such as water saturation exceeding one.

In MFEM, the velocity and pressure fields are expanded in terms of dif-
ferent sets of basis functions. Far Darcy’s equations, it is used Raviart-Thomas
(RT ) and Discontinuous Galerkin (DG) for velocity and pressure fields, respec-
tively. In Brinkman formulation, the velocity field is expanded using Brezzi-
Douglas-Marini (BDM) functions, whereas the pressure field is expanded using
Discontinuous Galerkin method. The saturation field is discretized by the DG
method in both formulations. Raviart-Thomas basis functions are commonly
used to solve vector fields problems. The basis functions associated with RT0

are piecewise constant vector functions defined on the edges or faces of the
elements. The basis functions point outward from the centroids of the faces or
edges and are chosen to ensure compatibility and accuracy when estimating
constant vector fields. These basis functions are commonly used to model the
Darcy equation [103]. RT0 has three degrees of freedom and BDM1 is used to
expand the velocity field in the Brinkman formulation and the pressure field is
modeled using the Discontinous Galerking method of zero order (DG0). RT0

and BMD1 basis functions are described in more detail below.
RT and BDM are frequently used as approximation spaces Hdiv (Ω),

which definition is

Hdiv (Ω) =
{
u = (u1, u2) ε

(
L2 (Ω)

)2
| ∇ · u ε L2 (Ω)

}
. (3-46)

The Ω computational domain is described using triangles in this study. Assume
that Th represent a regular triangulation of Ω, where Th corresponds to the
mesh elements of T , Eh represents the interior edges of Th, and Pk(T ) describes
the space of bivariate polynomials of degree ≤ k on T .

A description of the basis functions for RTk is provided first, where

RTk(T ) = (Pk(T ))2 + xPk(T ), (3-47)
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and the RTk approximation space is defined by

RTk(Ω) = {uh | uh ∈ RTk(T ) ∀T ∈ Th,
uh · nij is continuous across eij, ∀eij ∈ Eh}

(3-48)

where eij is the edge of Eh and nij is a unit vector to eij.
The next step is to describe the basis functions for BDM . The BDMk(Ω)

approximating space is defined as follows:

BDMk(Ω) = {uh | uh ∈ BDMk(T ) ∀T ∈ Th,
uh · nij is continuous across eij, ∀eij ∈ Eh}

(3-49)

where basis functions for BDMk

BDMk((T ) = (Pk(T ))2, (3-50)

Most commonly in RTk and BDMk spaces continuity for uh · nij across
eij ∈ Eh can be illustrated graphically by showing degrees of freedom for uh ·n
on the edges of T ∈ Th. Figure 3.4 illustrates the degree of freedom for RT0

and BDM1. Finite Element computations impose restrictions on the test space
by selecting the appropriate basis functions. As part of these restrictions, the
derivatives of the approximation must be continuous. Additionally, the basis
functions exhibit a Lagrangian property in that their value is at their nodal
point, and their value vanishes at all other nodes. In order to compute the
basis functions, the integrals over T ∈ Thare transformed into integrals over
T̂ , where T̂ represents the reference triangle on which the basis functions are
defined. The vertices of the triangle T̂ are: (0,0), (1,0), and (0,1). Edge numbers
for T̂ are: edge 1 pertains to the edge opposite vertex (0, 0), edge 2 pertains to
the edge opposite vertex (1, 0), and edge 3 pertains to the edge opposite vertex
(0, 1). An edge’s normal basis functions are called ϕi, where ϕi is a vector. To
clarify, nk, where k = 1, 2, 3, describes the outer unit normal to each edge of
T̂ . Accordingly, ϕi · nk = 0, along the edge k for i 6= k. As a result, RT0(T̂ )
the basis functions are:

ê1 (ξ, η) =
√

2
ξ
η

 (3-51)
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ê1 (ξ, η) =
ξ − 1

η

 (3-52)

ê1 (ξ, η) =
 ξ

η − 1

 (3-53)

ϕ1 = ê1 (ξ, η) , ϕ2 = ê2 (ξ, η) , ϕ3 = ê3 (ξ, η) . (3-54)

The basis functions of BDM1(T̂ ) are:

ê1 (s1, s2) =
√

2
s2 − s1

 s2ξ

(s2 − 1) η

 (3-55)

ê1 (s1, s2) = 1
s2 − s1

s2ξ + η − s2

η (s2 − 1)

 (3-56)

ê1 (s1, s2) = 1
s2 − s1

 ξ (s2 − 1)
ξ + s2η − s2

 (3-57)

According to the proposed model, g1 = 1/2−
√

3/6 and g2 = 1/2 +
√

3/6
correspond to two Gaussian quadrature points on the interval [0,1], where
BDM1(T̂ ) basis functions are:

ϕ1
1 = ê1 (g1, g2) , ϕ1

2 = ê1 (g2, g1) , (3-58)

ϕ2
1 = ê2 (g2, g1) , ϕ2

2 = ê2 (g1, g2) , (3-59)

ϕ3
1 = ê3 (g1, g2) , ϕ3

2 = ê3 (g2, g1) , (3-60)

Discontinuous Galerkin (DG) method is used to solve partial differential
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Figure 3.4: An illustration of all degrees of freedom (Dof) of the Brezzi-Douglas-
Marini of first order basis functions (BDM1), Raviart-Thomas zero order basis
functions (RT0) and the Discontinous Galerking method of zero order basis
functions (DG0). Adapted from [106]

equations (PDEs) with discontinuities between adjacent elements. The DG
method offers significant advantages, including conservation at the elemental
level, adaptability to intricate geometries using high-order approximations,
reduced numerical dispersion, when appropriate slope limiters are used, and
spurious oscillations are prevented. This method is based on the ability to select
basis functions based on any field variable, its derivatives, or both that are
discontinuous across element boundaries while maintaining the global domain
continuity. Discontinuous Galerkin methods utilize the same space functions as
continuous Galerkin methods, but with a relaxed continuity between elements.
DGmethods involve the application of both test and basis functions marked by
discontinuities at region interfaces. This approach provides enhanced flexibility,
allowing for accurate encapsulation of discontinuities in the solution. The
method is particularly effective in scenarios involving heterogeneous materials,
interfaces delineating distinct regions, or non-continuous behaviors. A DG

method is suitable when dealing with hyperbolic equations, such as the
saturation eq. (3-40). Figure 3.5 sketches the representation of a DG2 model,
where it can be seen that the degree of freedom of two adjacent elements are
not common in the element boundaries.

Discontinuous Galerkin methods are designed to accommodate functions
that exhibit discontinuous behavior across certain interfaces within the do-
main. It is assumed that the same triangulation as RT and BDM of the Ω
domain. To fully characterize the Discontinuous Galerkin (DG) method, it is
necessary to provide additional definitions. In the case of element T , hE is the
diameter of the circle circumscribed in T . F is a mesh face or edge, where there
are two different mesh elements T1 and T2 such that F = ∂T1 ∩ ∂T2. If it is
a boundary element F = ∂T1 ∩ Γ. It is also important to define the interface
jumps and averages. Let g be any smooth scalar function,
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Figure 3.5: Schematic degrees of freedom (Dof) of a second order discontinuous
Galerkin finite element. All Dof are internal to the element [106].

{g} = 1
2 (g|T1+g|T2) , (3-61)

[g] = g|T1−g|T2 , (3-62)

where [·] and {·} are defined as the jump and average operators thought the
edge F , respectively. The DGk approximation space is defined by

DGk(Ω) =
{
uh | uh ∈ L2(Ω) | ∀T ∈ Th,uh |T ∈ DGk(T )

}
, (3-63)

The basis functions of DG0(T̂ ) are defined as follows. In accordance with
the definition of the vertices of the elementary triangle T̂ ,

ω1 (ξ, η) = 1, (3-64)

where ω1 is a scalar function.
Implicit Pressure Explicit Saturation (IMPES) algorithm is used to time

integrate the system of nonlinear equations governing two-phase flow in both
Brinkman and Darcy models [101, 104]. This method is simple to implement,
has extensive use in literature, the computational cost is relatively low when
compared to alternative approaches such as the simultaneous solution [107],
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and it has recognized accuracy.
The numerical solution is implemented using the FEniCS platform, which

is an open-source library designed to automate the computation of partial
differential equations (PDEs) through finite element methods. These libraries
are efficiently implemented in C++ and can be managed with C++ or Python
language [105]. The DOLFIN library is part of FEniCS and compile linear
systems composed of tensors of different ranks on meshes extending up to
three spatial dimensions. It is flexible enough to accommodate a wide range of
variational formulations and basis functions.

3.3.1
Weak Form of the Two-Phase Darcy Model

In this section, the weak formulation of the Darcy equation is presented.
Equations (3-17), (3-18), and (3-19) are discretized through the mixed finite
element method for velocity and pressure. The velocity field and the pressure
filed are described by RT0 and DG0. Discountiouns Galerkin method of order
zero was adopted to describe the saturation field. Additionally, the upwind
method, equation (3-78), is used to ensure numerical stability of the water
phase saturation equation (3-77). It is assumed that the porosity in the vugular
region is set to φV = 1 and that the permeability in the vugular region is set to
an arbitrary high value. Brinkman’s model and Darcy’s model are consistent
with respect to the relative velocities for each phase within the vug domain.
This consistency was achieved by incorporating the study conducted by Romm
(1966) [99], wherein the relative permeability curve was adopted as the× shape
in the Darcy model, i.e. no and nw are set as one. This approach has been
utilized by Hussien (2012) [108], Yan et al., (2016) [62], and Machado et al.,
(2020) [110] in their investigations of two-phase flow within vugs. In the vugs
the Swi and Sor are also considered zero.

As a first step, the weak form of Darcy velocity eq. (3-18) is presented.
The eq. (3-18) is multiplied by the weight function v

∫
Ω

unh
Kλ (Snwh)

· vdx+
∫

Ω
∇pnh · vdx = 0, (3-65)

where the superscript n is any time step. Integrating by parts the second term
of the eq. (3-65)

∫
Ω
∇pnh · v∂Ω =

∫
Ω
∇ · (v · pnh) ∂Ω−

∫
Ω
pnh · (∇ · v) ∂Ω (3-66)
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Applying the Gauss-Green theorem to the first term on the right-hand side,

∫
Ω
∇ · (v · pnh) ∂Ω =

∫
Γ

n · (pnh · v) ∂s, (3-67)

where ∂s represents the integration over the boundary. As a result, the equation
weak form is

(3-68)
∫

Ω

(
unh

KλT (Snwh)

)
· v dx−

∫
Ω
pnh∇ · v dx+

∫
Γ

n · (v pnh) ds = 0.

The weak form of mass conservation is given by:

∫
Ω

(∇ · unh) q ∂Ω = 0 (3-69)

where q is the weight function.
It is necessary to obtain the weak form of the equation for water phase

conservation. Using eq. (3-19), a temporal discretization is performed using
the finite difference method with explicit discretization of time

φ
Sn+1
wh − Snwh

∆t = ∇ · (fw (Snw)unh)) . (3-70)

Multiplying eq. (3-70) by the weight function r and integrating on Ω,

∫
Ω
φSn+1

wh r∂Ω−
∫

Ω
φSnwhr∂Ω = ∆t

∫
Ω
∇ · (fw (Snwh) unh) r∂Ω. (3-71)

Integrating by parts the last term of the eq. (3-71),

∫
Ω
∇ · (fw (Snwh) unh) r∂Ω =

∫
Ω
∇ (fw (Snwh) un

h) r∂Ω−
∫

Ω
∇rfw (Snwh) unh∂Ω,

(3-72)

and applying the Gauss-Green theorem to the first term on the right-hand
side,

∫
Ω
∇ (fw (Snwh) unh) r∂Ω =

∫
Γ

n · unhfw (Snwh) r∂s (3-73)

this term encapsulates the numerical flows at both the element interface and
domain boundary. The water phase conservation equation is modeled using
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the DG method, which requires this term to be integrated at the boundary
domain and between each element. Moreover, it is employed the upwind model
to designate the upstream cell for saturation calculation. It is only possible to
achieve numerical stabilization by applying upwind. Thus,

∫
Γ

n · unhfw (Snwh) r∂s =
3∑
i=1

∫
Γi

n · {fw (Snwh)Γ1 unh}up r∂s

+
∫
∂T 1

n · {fw (Snwh)Γ1 unh}up r∂S

+
∫
∂T 2

n · {fw (Snwh)Γ1 unh}up r∂S, (3-74)

where ∂S is the integration over the element boundary. The last two terms of
the above equation can be handled as,

∫
∂T 1

n · (fw (Snwh)Γ1 unh)up r∂S +
∫
∂T 2

n · (fw (Snwh)Γ1 unh)up r∂S (3-75)

=
∑
E∈εh

∫
E

[r] ·
{

(fw (Snwh) unh)up
}

dS

Furthermore, the saturation at the inlet boundary is weakly imposed

∆t
∫

Γ1
r · (fw (Snwh)Γ1 unh)up ds. (3-76)

Therefore, the saturation equation can be expressed as follows:

φ
∫

Ω

(
Sn+1
wh − Snwh

)
rdx−∆t

∫
Ω
∇r · fw (Snwh) unh dx

+ ∆t
∫

Γ
r · (fw (Snwh) unh)up ds+ ∆t

∑
E∈εh

∫
E

[r] ·
{

(fw (Snwh) unh)up
}

dS

+ ∆t
∫

Γ1
r · (fw (Snwh)Γ1 unh)up ds = 0

(3-77)

and the upwind is defined as:

(fw (Snwh) unh)up =


(fw (Snwh) unh)τh1

, if u · n ≥ 0,

(fw (Snwh) unh)τh2
, if u · n ≥ 0,

(3-78)

Therefore, the weak form of the set of differential equations for the Darcy
two-phase flow is written as:

(3-79)
∫

Ω

(
unh

KλT (Snwh)

)
· v dx−

∫
Ω
pnh∇ · v dx+

∫
Γ

n · (v pnh) ds = 0.
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∫
Ω

(∇ · unh) qdx = 0 (3-80)

φ
∫

Ω

(
Sn+1
wh − Snwh

)
rdx−∆t

∫
Ω
∇r · fw (Snwh) unh dx

+ ∆t
∫

Γ
r · (fw (Snwh) unh)up ds+ ∆t

∑
E∈εh

∫
E

[r] ·
{

(fw (Snwh) unh)up
}

dS

+ ∆t
∫

Γ1
r · (fw (Snwh)Γ1 unh)up ds = 0

(3-81)

3.3.2
Weak Form of the Two-Phase Brinkman Model

A mixed finite element method is used to obtain the solution for velocity
and pressure. It is used BDM1 for the velocity field, while DG0 is used for
the pressure field. BDM is an H(div)-conforming basis function space, thus
the normal component of velocity is continuous on inter-element boundaries.
Thus, it is necessary to adapt the BDM1 space to ensure continuity of the
tangential velocity from one element to another, since the Brinkman equation
combines simultaneously the Darcy and Stokes equations. Based on Juho et
al. (2011) [111], where the BDM basis functions have been modified to ensure
the conservation of the tangential velocity component across elements, it is
possible to employ such basis functions for description. The author used the the
Symmetric Interior Penalty Galerkin (SIPG) or the Nitsche method [109, 103]
method to ensure conservation of the tangential component of velocity. In eq.
(3-86), the penalty term is expressed by

∑
E∈εh

∫
E

(
γ

hE
[uh] · [v]−

{
∂uh
∂n

}
· [v]−

{
∂v
∂n

}
· [uh]

)
dS (3-82)

where γ is the positive penalty parameter and dS refers to the element
boundary. The selection of γ must be adjusted in accordance with the mesh
configuration. In chapter 4 and 5, a detailed discussion of determining the
appropriate value for γ is provided.

The saturation field is described using DG0. Furthermore, the upwind
method, eq. (3-78), is used the ensure numerical stability of the water phase
saturation eq. (3-16). Accordingly, the discretization of the saturation and mass
conservation equations follows the approach employed in the Darcy model eq.
(3-80) and eq. (3-77). Therefore, it is presented the weak form of the Brinkman
equation. Initially, the first term of the equ. (3-38) is integrated in parts,
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−
∫

Ω
µ∗∇2u v∂Ω =

∫
Ω
µ∗∇u · ∇v∂Ω −

∫
Ω
µ∗∇ · (v∇u) ∂Ω. (3-83)

Applying the divergence theorem to the last term of eq. (3-85),

∫
Ω
µ∗∇ · (v∇u) ∂Ω =

∫
Γ
µ∗n · (v∇u) ∂s = 0. (3-84)

Thus, it is obtained the weak form of linear momentum diffusion,

−
∫

Ω
µ∗∇2u v∂Ω =

∫
Ω
µ∗∇u · ∇v∂Ω (3-85)

The remaining terms of the weak form of the Brinkman equation are
eq. (3-79). The weak form of Brinkman eq.(3-86), total mass conservation eq.
(3-87) and water saturation eq.(3-88) are respectively,

∫
Ω
µ∗ (∇unh · ∇v) dx+

∫
Ω

(
unh

KλT (Snw)

)
· v dx

−
∫

Ω
pnh∇v dx+

∫
Γ
n · (v pnh) ds

+
∑
E∈εh

∫
E

(
γ

hE
[uh] · [v]−

{
∂uh
∂n

}
· [v]−

{
∂v
∂n

}
· [uh]

)
dS = 0

(3-86)

∫
Ω

(∇ · unh) qdx = 0 (3-87)

φ
∫

Ω

(
Sn+1
wh − Snwh

)
rdx−∆t

∫
Ω
∇r · fw (Snwh) unh dx

+ ∆t
∫

Γ
r · (fw (Snwh) unh)up ds+ ∆t

∑
E∈εh

∫
E

[r] ·
{

(fw (Snwh) unh)up
}

dS

+ ∆t
∫

Γ1
r · (fw (Snwh)Γ1 unh)up ds = 0

(3-88)

3.3.3
Weak Form of the Two-Phase Stokes Model

The Stokes equation is a limiting scenario of the Brinkman equation
within the free-flow region. Through the process of model validation, discussed
in section (3.6.2), the validity of the Stokes case is established through a
straightforward configuration involving creep flow between two stationary
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parallel plates. The imposition of the Dirichlet boundary condition (3-44)
encountered limitations due to the use of the BDM1 basis function. The
Dirichlet condition ensures the normal component of the velocity field for
this element. An alternative approach is required to accurately enforce the
tangential component of the velocity field on Γ3. Accordingly, Nitsche’s method
[109] is adopted to weakly enforce the non-slip boundary condition for the
Stokes equation. The weak formulation of the Stokes equation adapted to
consider the BDM1 element, i.e:∫

Ω
µ∗ (∇unh · ∇v) dx−

∫
Ω
pnh∇v dx+

∫
Γ
n · (v pnh) ds

+
∑
E∈εh

∫
E

(
α

hE
[uh] · [v]−

{
∂uh
∂n

}
· [v]−

{
∂v
∂n

}
· [uh]

)
dS

+ α

h

∫
Γ2

(v ⊗ n) : (u⊗ n)ds−
∫

Γ2
∇u : (v ⊗ n)ds

−
∫

Γ2
∇v : (u⊗ n)ds = 0.

(3-89)

The Stokes equation is solved by the MFEM method. Consequently, it is
necessary to simultaneously solve the weak mass conservation eq. 3-87 with
eq. (3-89),

3.4
Comparative Studies Between Brinkman and Darcy Model

The objective of this investigation is to simulate flow in intricate geome-
tries at the fine scale with greater detail using both Brinkman and a hetero-
geneous Darcy model and to derive equivalent properties for the coarse scale.
The following outlines the methodologies employed to achieve these objectives.

3.4.1
Heterogeneous Single-Continuum Darcy Model

The objective of comparing the Brinkman model with the heterogeneous
1φ1k Darcy model on the same scale is to evaluate the importance of viscous
dissipation in the free-flow region, which is not take into account in the
heterogeneous Darcy model. The results show the set petrophysical properties
of the vugular region that approximates the Brinkman solution. The first step is
to establish the porosity of the vugular region (φεΩV ), which is considered as one
for all cases. The next step involves establishing the absolute permeability for
the vug region. Using the equivalent absolute permeability evaluated from the
Brinkman solution Keq

1φ1k, it is possible to determine the absolute permeability
for the vug region using the heterogeneous 1φ1k Darcy model. The Kε

M is
kept constant while Kε

V is modified until the error reaches a minimum value.
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The superscript ε is used here to define the properties on the fine scale. This
concept is detailed in the next section.

3.4.2
Upscaling Methods

This study aims to develop methods for accurately describing two-phase
flow in a porous matrix containing vugs and fractures using a homogeneous
Darcy model, achieved through history matching approaches. As part of history
matching, petrophysical properties are modified to ensure the coarse-scale
results represent the fine-scale results correctly. It is important to mention
that the approach presented here is not intended to handle a direct transition
from a core scale to a reservoir scale. The idea of treating an entire reservoir
as homogeneous is not recommended. The method is aimed to determine
equivalent petrophysical properties of a cell or a limited region of a reservoir
model that contain vug and fractures.

3.4.2.1
Equivalent Properties of the Single-Continuum Model

Firstly, the methodology for the generation of the equivalent petrophys-
ical properties (upscaling) for the simple-continuous model is presented. Ac-
cordingly, the fine scale flow is described by eq. (3-38), (3-39), and (3-40) are
as follows:

∇pε = µ∗∇2uε − uε
KελεT

, (3-90)

∇ · uε = 0, (3-91)

φε
∂Sεw
∂t

+∇ · (f εwuε) = 0, (3-92)

where the superscript ε refers to fine-scale. The flow in the coarse scale (Darcy
model) is described by the following equations:

∇ · (u0) = 0, (3-93)
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∇p0 = u0

Keq
1φ1k(λT )eq1φ1k

, (3-94)

φeq1φ1k
∂(Sw)0

∂t
+∇ · ((fw)eq1φ1ku0) = 0, (3-95)

where the superscript (eq) represents the equivalent properties on the coarse
scale and subscript 0 denotes the solution at the coarse scale. Hence, to
accurately represent the fine scale at the coarse scale, it is essential to determine
the equivalent values for φeq1φ1k, K

eq
1φ1k, (kro)eq1φ1k, and (krw)eq1φ1k. Through the

application of averaging or integration within well-chosen REV the fine-scale
might be well represented in the coarse scale.

The selection of φeq1φ1k aims to represent the initial total oil and water
volumes within Ω. Keq

1φ1k is derived from the results of Brinkman’s single-
phase, steady-state flow model. Using the average pressure and velocity field
at the fine scale, Keq

1φ1k is computed to emulate the equivalent of Darcy’s
single-phase, steady-state flow model at the coarse scale. The selection of Swi
and Sor aligns with proportional quantities in the domain Ω. It is assumed
that the relative permeability endpoint (kro)eq1φ1k at (Sw)0 = 0 is equal one.
The relative permeability curves are determined numerically. The following
parameters are chosen for numerical optimization: (krw)eq1φ1k at (Sw)0 = 1,
(nw)eq1φ1k, and (no)eq1φ1k. It is employed the History Matching (HM) [113] method
as optimization procedure, where the equivalent relative permeability curve
for the homogeneous 1φ1k Darcy model is determined. An iterative process
is applied to compare water flow rates on Γ2 and the ∆p between Γ1 and
Γ2 between the homogeneous 1φ1k Darcy and Brinkman models, aiming to
optimize model parameters. More details about HM are given in section (3.4.3).
It is necessary to use two objective functions in this context, one to determine
the water flow rate in Γ2, equ. (3-96) and the other to determine the pressure
difference between Γ1 and Γ2, eq. (3-97). The root mean square error function
(RSME), eq. (3-96) and eq. (3-97), are applied as the objective functions to
minimize the difference between Brinkman and Darcy models, where Corey’s
water ((nw)eq1φ1k) and oil ((no)eq1φ1k) exponents and the end-point (krw)eq1φ1k at
(Sw)0 = 1, are the design variables.

RSMEQw =
√√√√ 1
n

n∑
i=1

(
(QB

w)i − ((Qeq
w )i)1φ1k

)2
(3-96)
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ΩV

ΩM

Ωeq
1φ1k≡

Figure 3.6: Schematic representation of the equivalent porous media (Ωeq
1φ1k),

where the dimensions and the petrophysical properties (porosity, absolute
permeability and relative permeability) are equivalent between Ω and Ωeq

1φ1k
.

RSME∆p =
√√√√ 1
n

n∑
i=1

(
(∆pi)B − (∆pi)eq1φ1k

)2
(3-97)

3.4.2.2
Equivalent Properties of the Dual-Continuum Model

The same principle is used as described in section (3.4.2.1), except that
in the case here u0, p0 and (Sw)0 are the equivalent physical quantities for
the homogeneous 2φ2k Darcy model. Figure 3.7 schematically illustrates how
this homogenization is applied in a dual-continuum porous medium. The
mathematical model for the coarse scale of the 2φ2k model is summarized
as follows:

(uw)m0 = − (krwK)m

µw
∇pm0 , (3-98)

(uo)m0 = − (kroK)m

µo
∇pm0 , (3-99)

(uw)f0 = − (krwK)f

µw
∇pf0 , (3-100)

(uo)f0 = − (kroK)f

µo
∇pf0 , (3-101)
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(φ)m ∂ (Sw)m0
∂t

= −∇ · (fwu0)m − (qw)m , (3-102)

(φ)m ∂ (So)m0
∂t

= −∇ · (fou0)m − (qo)m , (3-103)

(φ)f ∂ (Sw)f0
∂t

= −∇ · (fwu0)f − (qw)f , (3-104)

(φ)f ∂ (So)f0
∂t

= −∇ · (fou0)f − (qo)f , (3-105)

(qw)m = α (krw)m

µw

(
pm − pf

)
, (3-106)

(qo)m = α (kro)m

µo

(
pm − pf

)
, (3-107)

where the superscript m and f represents the matrix and fracture grids,
respectively.

ΩV

ΩM

Matrix Grid Fracture Grid

≡ +

Homogeneous 2φ2k

Figure 3.7: This diagram illustrates a homogeneous 2φ2k models. The light
red color represents the matrix petrophysical properties, and the light green
color represents the fracture grid petrophysical properties for the homogeneous
2φ2k Darcy model.

It is assumed that the porous matrix is well-defined. Thus, it is presumed
that the porous grid in the 2φ2k model has the same petrophysical properties as
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the porous matrix on the fine scale. Consequently, the equivalent petrophysical
properties of the fracture grid on the coarse scale are established to represent
properly the fluid flow obtained on the fine scale. The porosity of the fracture
domain (φ)f is set to a value that conserves the initial volume of fluid on
fine-scale volume. The Brinkman single-phase steady-state model is used to
calculate the equivalent absolute permeability of the 2φ2k model. As the
absolute permeability for the porous matrix grid is kept the same as on
the fine scale, the fracture grid absolute permeability (K)f is established to
represent the average results obtained by the Brinkman model on the fine scale.
(Swi)f and (Sor)f are assumed equal to zero. It is assumed that the relative
permeability endpoint at (kro)f at (Sw)0 = 0 is equal to one. The relative
permeability curves are determined using History Matching. The following
parameters are chosen for numerical optimization: (krw)f at (Sw)0 = 1, and
the six LET parameters (Ln, En, e Tn) for water and oil are varied. An
iterative process is applied to compare water flow rates on Γ2 between 2φ2k
and Brinkman models, aiming to optimize model parameters. The root mean
square error function (RSME), denoted by eq. (3-96) and eq. (3-97), serves as
the objective function to approximate the water flow rate obtained through
the Brinkman model (QB

w) to that of the water flow rate derived from the
homogeneous 2φ2k model ((Qeq

w )2φ2k). Additionally, it compares the pressure
difference between Γ1 and Γ2 in the Brinkman model (∆p)B) to that of the
homogeneous 2φ2k Darcy model ((∆p)eq2φ2k).

3.4.3
History Matching Procedure

Obtaining the equivalent homogeneous 1φ1k and 2φ2k Darcy models
requires establishment of equivalent relative permeability curves. In this study,
it is used the History Matching numerical procedure that minimized the
differences between the fine and coarse scales water flow rate on Γ2 and the
pressure difference between Γ1 and Γ2. For this purpose, IMEX and CMOST
software were used [113].

IMEX is a black oil reservoir simulator. It is part of CMG’s reservoir
simulation package, which includes both single and dual continuum models.
In the 1φ1k homogeneous model, the porous matrix is represented by a single-
continuum or grid. The dual-continuum approach, on the other hand, involves
two distinct continuums: one for the matrix and one for the fracture network.
These models capture complex flow dynamics and interactions between matrix
and fracture networks. The term "matrix grid" refers to the porous matrix,
while the term "fracture grid" refers to the vugular portion of the domain.
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The Black Oil model is widely used in reservoir engineering representa-
tion to predict hydrocarbon reservoir behavior. It is named as "black oil" be-
cause it primarily deals with oil reservoirs, including both oil and gas phases,
while neglecting some of the more complex thermodynamic properties and
phase behavior of fluids. Black Oil Model components include fluid phases (oil
and gas), fluid properties (PVT properties), phase behavior (phase equilibrium,
bubble point pressure, dew point pressure), material balance, and considera-
tions for well-bore and surface facilities. Equations (3-108), (3-109) and (3-110)
represent the black oil model for water, oil, and gas conservation:

∂

∂t

(
φρw
Bw

Sw

)
= −∇ ·

(
φρw
Bw

uw
)

+ qw, (3-108)

∂

∂t

(
φρo
Bo

So

)
= −∇ ·

(
φρo
Bo

uo
)

+ qo, (3-109)

∂

∂t

[
φ

(
ρg
Bg

Sg + Rsρg
Bo

So

)]
= −∇ ·

(
ρg
Bg

ug + Rsρg
Bo

uo
)

+ qg. (3-110)

Consequently, in order to maintain coherence with the Brinkman equa-
tion, the black oil model needs to be simplified. It is assumed oil formation
volume (Bo) and water formation volume (Bw) are considered constants and
equal to one, the fluids and rocks compressibility are set 10−10 1/kPa, and
the gas, oil and water densities are constant and equal to 1 kg/m3. Equation
(3-110) is beyond the scope of this study because there is no gas flow within
the porous medium.

History Matching is a common practice in reservoir engineering. History
Matching is defined as the method of examining and making adjustments to
model parameters based on past production data. This procedure typically
involves numerical methods through which the petrophysical properties of the
reservoir model are altered to ensure accurate production data representation.

CMOST History Matching workflow is described as follows. The first step
is to provide a reference solution to the IMEX model. In the cases studied here,
it is used the Brinkman fine scale solution regarding the water flow rate along
Γ2 and the ∆p between Γ1 and Γ2. CMOST takes the reference solution as
well as the black oil model as a starting point, modifying user-parameterized
properties through probability distribution functions. The adjustments are
made after evaluating the quality of each simulation run of the IMEX program.
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By using an optimization algorithm, the parameter space is explored in an
effort to minimize the objective function calculated from the initial simulations
of the experimental design. As the number of simulations increases, the results
converge closer to that of the reference solution, resulting in a satisfactory
solution.

The Designed Exploration and Controlled Evolution (DECE) optimiza-
tion algorithm is selected. As part of the CMOST DECE optimizer [113], CMG
has developed its own proprietary optimization method. As a result, only lim-
ited detail is provided regarding the methods and the mathematical description
of the methods used. The DECE optimization process consists of two phases:
an exploration phase followed by an evolution phase. The purpose of the de-
signed exploration phase is to systematically explore the search space in a
random but carefully planned manner in order to gain a comprehensive under-
standing of the solution space. To generate representative simulation datasets,
a combination of experimental design principles and search techniques is ap-
plied. During the controlled evolution phase, the simulation results from the
designed exploration phase are statistically evaluated. As part of the DECE
algorithm, each possible parameter value is meticulously analyzed, assessing
whether rejecting certain values would enhance the quality of the solution. As
a result of these rejections, the algorithm stores them and excludes them from
further exploration. A periodic review of these excluded values is conducted
by the DECE algorithm in order to mitigate the risk of getting trapped in
local minimum. In the event that the algorithm concludes that some of these
exclusions are no longer justified, they are revoked, and the candidate values
associated with these exclusions are reintroduced for consideration.

In this study, Latin Hypercube design experiments are employed to estab-
lish a sampling space, accessible within the Cmost software package [113]. The
Latin Hypercube method is a statistical approach designed to sample multi-
variate distributions efficiently. It categorizes input variables into k strata, en-
suring that each combination within a stratum is sampled precisely once. This
technique ensures comprehensive and uniform coverage of parameter spaces,
minimizes variance in estimations, and accommodates any number of variables.
The number of sample values for each parameter can vary without limit. Users
can input these values to be uniformly distributed (uniform distribution) or
non-uniformly distributed (non-uniform distribution). Sampling without re-
placement is employed to amalgamate sample values into design points. For
instance, for the first point, one value from each parameter set is randomly
selected. Subsequent selections exclude previously chosen points. Latin hyper-
cube sampling enhances the random design by considering input variables as
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random variables with known distribution functions. Each input variable’s dis-
tribution is divided into n strata of equal probability, with one sample taken
from each stratum. These sampled input values are then randomly assigned
across n cases.

In this study it is used the Gilman and Kazemi (1983) [66] shape factor
σ (eq.(2-3)) for the 2φ2k model. σ is given by the following expression:

σ = 4
[

1
L2
x

+ 1
L2
y

+ 1
L2
z

]
(3-111)

where Lx, Ly, and Lz are the length of matrix edges.

3.5
Mesh Generation

The study involves the generation of both structured and unstructured
meshes according to the geometry of the vug. Three families of vug geometry
are considered in this context. Firstly, synthetic vugs are simple structures
composed of rectangles. The second set of geometries are derived from the
Arapuá outcrop, which contains more complex structures. Further, a micro
tomography rock sample is used to demonstrate the methodology on a plug
scale. A detailed description of the methodology behind mesh generation is
provided below.

3.5.1
Structured Mesh Generation

Synthetic vug configurations consisted of simple geometries, with regular
and rectangular vugs within the porous matrix. The Donfin library is part of
the FEniCS Project and offers a user-friendly mesh generation method called
UnitSquareMesh(). This method generates structured square two-dimensional
triangular meshes. The length of each dimension of the synthetic flow domain is
one meter. The UnitSquareMesh() method requires specific input parameters
to determine the number of cells in each direction. As a result, rectangles
are subdivided into triangles. Figure 3.8 schematically illustrates how this
method generate different mesh configurations. In all the scenarios, it is used
the "crossed" option to divide each square element of the domain in order to
generate isotropic meshes. The selection of the number of elements considers
two criteria. Firstly, the vugs are discretized to capture flow nuances minimally.
Second, the solution is mesh independent.
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(a) UnitSquareMesh(4,3,
"right")

(b) UnitSquareMesh(4,3,
"crossed")

Figure 3.8: Example of two meshes configuration generate through the Dolfin
library.

3.5.2
Unstructured Mesh Generation

The meshes constructed for Lajedo Arapuá and the vug configuration
based on the micro tomography image of the carbonate plug are more sophis-
ticated than the ones used on the synthetic vug configuration, necessitating
an alternative methodology. The micro tomography image is used to study
two-phase flow through a vuggy porous medium. The geometry represents a
cross-section of a carbonate rock core obtained by a micro-tomography scan.
The core was extracted from the Morro do Chaves Formation, located in the
Sergipe-Alagoas Basin, in Brazil. The micro-tomography image is processed to
make it binary, with black pixels representing the vugs and gray pixels rep-
resenting the porous matrix. More details about the image processing can be
found on [40]. For the Lajedo Arapuá vug configurations, it is adopted the
approach developed by Dali (2019) [40] and Campos (2022) [60] which is sum-
marized in the following discussion. Based on the 3D geological model, 2D
black-and-white images are produced according to individual geological layers
where the color black is associated with the vug and the white is associated
with the porous matrix. A complete description of the Lajedo Arapuá is pro-
vided on section (5.1). Through the script developed by Dali (2019) [40], the
binary black-and-white images are interpreted. At the interface between the
black and white colors, there is a surface that separates the matrix from the
vug. This surface is interpreted as a point cloud and these points delineate
the interfaces between the porous matrix and the vugs regions. Subsequently,
based on this data set, the finite element mesh is generated using the Gmsh
software [112].
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3.6
Numerical Validation

This section provides the validation of the implementation of the models
presented in this chapter. The accuracy of the numerical results is evaluated
by comparing them with existing literature simple cases. The Brinkman
single-phase steady state model is numerically verified using a semi-empirical
equation developed by Yao and Huang (2017) [15]. Moreover, Brinkman
formulation is verified on its limit cases, where there is only porous matrix
or the free-flow region. The free-flow region scenario is validated by the flow
between two infinite parallel plates at low Reynolds numbers where a pressure
gradient is imposed between them. Considering the two-phase flow in porous
media the Buckley-Leverett analytical solution is used to evaluate the models.
To the best of author’s knowledge the are no analytical solution for the
Brinkamn equation. In spite of this, the model proposed in this study is
compared to the model developed by Hallack, which despite being based on a
differential set of differential equations, has a similarities with the model used
here, therefore making it possible to conduct a qualitative comparison between
them.

3.6.1
Darcy Two-phase

The validation for the Darcy two-phase flow is presented for the weak
form of the Darcy model (section 3.3.1) as well as the Brinkman model section
(3.3.2) when the Brinkman viscosity set to zero (µ∗ = 0), which recovers
Darcy formulation. Thus, assuming µ∗ = 0 there are two Darcy models and
both need validation because each is formulated differently. Brinkman’s model
employs the BDM1 basis functions, whereas Darcy’s model employs the RT0

basis functions. As both cases are Darcy models, Buckley-Leverett analytical
equation is used to verify them.

The numerical domain used for numerical validation is similar to figure
3.3, where Ω consists of a 1×1 m2 square characterized by uniform petro-
physical properties described in table 3.1. A constant water injection rate is
enforced at Γ1 while maintaining constant pressure at Γ2. For this analysis, a
mesh is generated using the Donfin library. It consists of 500 vertices in the
x-direction (the flow direction) and 20 vertices in the y-direction (perpendicu-
lar to flow direction). This design emphasizes refinement along the x-direction
to accurately capture the abrupt alteration in water saturation as the water
front progresses.

Figures 3.9 and 3.10 present the position of the water front as function of
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Parameter Value
φ 0.2
K 100 mD

Relative Permeability Model Corey
nw 2
no 2
Swi 0
Sor 0

kro at Sw = 0 1
krw at Sw = 1 1

µo 1 cp
µw 1 cp

u on Γ1 10−6 m/s
p on Γ2 1 atm
Sw on Γ1 1

Table 3.1: Porous matrix parameters for the numeric validation used in the
Brinkman and Darcy models.

tD both the Buckley-Leverett analytical solution and numerical solutions for
the Darcy model and Brinkman model (µ∗ = 0), respectively. It is considered
three distinct viscosity ratios between water and oil (µo/µw = 0.5, 1.0, and
2) across three different injected pore volumes (tD = 0.3, 0.5, and 0.7). In
all the scenarios examined, both methods demonstrate substantial agreement
between the numerical and analytical results. This alignment suggests that the
numerical models effectively capture the underlying physical phenomena.

3.6.2
Stokes Limit Case

Stokes model is a limit case of the Brinkman model. It typically occurs
in cases where there is no pores matrix region, only the free-flow region.
Mathematically, it occurs when the permeability approaches extreme high
values (K → ∞) and the porosity is equal to one. Figure 3.11 is a sketch
of the configuration chosen to solve the Stokes equation analytically. The two
plates remain stationary while a pressure gradient is applied to induce flow
between them. It is assumed that non-slip boundary conditions apply to the
plates. The analytical solution is given as:

up = h2

2µ
∂p

∂x

((
y

h

)2
− 1

4

)
(3-112)

In this example, the conditions are defined as follows: ∂p/∂x = −10 Pa/
m, h = 1m, and µ = 1 Pa ·m.
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Figure 3.9: Brinkman model two-phase flow numerical solution is compared
with the analytical Buckley-Leverett solution for the injection of three distinct
porous volumes (tD = 0.3, 0.5, and 0.7) across three different viscosity ratios
( µo
µw

= 0.5, 1.0, and 2.0). In this case, the Brinkman model has the µ∗ = 0.

Figure 3.12 presents a comparative analysis between the numerical results
derived from equation (3-89) and the analytical results from (3-112). Notably,
there is strong agreement between numerical and analytical outcomes where
the mean square root error is 8.61×10−6 m/s.
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Figure 3.10: Darcy two-phase flow model numerical solution is compared with
the analytical Buckley-Leverett solution for the injection of three distinct
porous volumes (tD = 0.3, 0.5, and 0.7) across three different viscosity ratios
( µo
µw

= 0.5, 1.0, and 2.0).

3.6.3
Brinkman Equation

A study conducted by Yao and Huang (2014) [15] established a semi-
empirical correlation for the velocity profile within a channel and a porous
matrix. This research employed a similar set up used by Beavers and Joseph
(1967) [25] to investigate flow interactions between the porous medium and a
free-flow channel. This experiment aimed to evaluate the influence of porous
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Figure 3.11: Velocity distribution between two stationary parallel plates under
an imposed pressure gradient.
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Figure 3.12: The velocity field of creep flow between two parallel plates,
modeled by the equation (3-89), is compared against the analytical solution
provided by the Stokes equation (3-112).

media on fluid velocity in free-flow regions. Figure 3.13 offers a schematic
representation of this experimental configuration, wherein a constant differen-
tial pressure is maintained across the observation window. They used Laser
Doppler Anemometry (LDA) to measure the velocity profile in the free-flow
region. As result, they proposed the equation (3-113) for the velocity profile
in this region. Therefore, this correlation is used to validate the velocity field
in the single-phase steady state Brinkman model.

In the experiment, the channel is partially filled with a porous media,
with φ equal to 0.45 and K equal to 5 ×10−5m2 and the ∂p/∂x = −0.33 Pa/
m. The free-flow region (h) has the dimension of 20 mm. Figure 3.14 presents
the semi-analytical and the numerical results. It is noted a good correlation
resulting in a RSME of 8.8 10−5 m/s between the analytic and numerical
solutions.
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Figure 3.13: Schematic configuration of the experimental apparatus used by
[15].



us =
(

1 + α√
K
y

)
uB + 1

2µ
(
y2 + 2βα

√
Ky

) dp
dx

uB = −K2µ

(
α2 + 2βασ

1 + ασ

dp
dx

)
σ = H√

K

(3-113)

0 0.5 1 1.5 2
·10−2

80

85

90

95

100

u (m/s2)

y
(m
m

)

Analytical Numerical

Figure 3.14: The single-phase steady state velocity field obtained by Brinkman
numerical solution is compared with the semi-analytical model proposed the
Yao and Huang (2017) [15], eq. (3-113).

3.6.4
Brinkman Two-Phase Equation

Despite the authors’ best efforts, it was not possible to find an analytical
solution to a two-phase flow using the Brinkman equation, even for a simple
case. Hence, it was decided to compare the numerical model with a numerical
case from the literature. The two models are not exactly the same and this
can cause some differences, as shown in figure 3.15. The results of this study
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is compared with those presented by Hallak et al. (2019) [45]. In his model,
Hallack considered a compressible porous medium with varying compressibil-
ity between the vugular and porous regions of the medium, where the vugular
compressibility was ten times greater than the matrix compressibility. Further-
more, the author split the Brinkman equation and the conservation equations
for the water and oil phases. By adding the conservation of mass, a system
of five differential equations was generated. Therefore, Hallack’s model differs
slightly from the approach proposed in this study, leading to discrepancies.

Figure 3.15: The saturation map for two different porous volumes is compared
between (a) Hallack’s model [45] and (b) this study’s model. Brinkman and
Darcy models are presented in both studies..

Figure 3.15 illustrates the water front advancement for two distinct tD
values for both models under consideration. As can be seen, the saturation
fields for tD = 0.3 differ slightly for the Brinkman and Darcy models between
the two studies. The disparities become more pronounced at tD = 0.7, wherein
the most significant variations are observed when considering the Darcy model
scenarios. As the two investigations use different mathematical modeling
approaches, these variations can be attributed to the fact that Hallack’s models
include compressibility effects, which were not considered in this study. One of
the noteworthy aspects of Darcy’s model is that there is a more pronounced
difference in saturation field in the vugular region. Hallack did not specify
which relative permeability curve was used in the vugular region. This study
uses a × curve. A closer examination at tD = 0.7 reveals that disparities exist
between the two investigations. For the Brinkman model, these differences are
minor and can be attributed to differences in the modeling of compressibility
between the two studies. In spite of the differences between the two studies, a
qualitative comparison between them is still feasible, as they both demonstrate
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a similar trend. In both studies, channeling is evident within the vugs in the
Brinkman model, a phenomenon that is not represented by the Darcy model.



4
Comparison Between Prediction of Brinkman and Single-
Continuum Models

4.1
Synthetic Domain

Five distinct sintetic vuggy configurations, as illustrated in Figure 4.1,
are considered in this study. The flow domain is a 1×1 m2 square porous media
containing embedded vugs. These configurations share the same macroporosity
but differ in size, shape, and position within the porous matrix. Macroporosity
is defined as the ratio of the vug domain’s volume to the entire domain’s
volume, denoted as φεV ug = V ε

ΩV /V
ε

Ω. For all of them, φεV ug are equal. The
petrophisical and fluid properties are presented in Table 4.1. Initially, the entire
domain Ω is saturated with oil (Sw = 0). The layout of the boundary conditions
is the same as in the figure 3.3. Water is injected at a constant velocity of
uin = [10−6, 0.0] m/s and Sw = 1 on Γ1. Moreover, the outlet pressure on Γ2

is kept constant along pout = 1 atm.

Figure 4.1: The five different domains (vug configuration (a)-(e)) where the
geometry and position of ΩV (black) is varied on the domain and in ΩM (gray).

4.2
Micro Tomography Image Domain

Amore realistic vug configuration, presented in figure 4.2, is used to study
two-phase flow through a vuggy porous medium. The geometry represents a
cross-section of a carbonate rock core obtained by a micro-tomography scan.
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Parameter Value
φεM 0.2
φεV ug 0.16
Kε
ii 100 mD

Relative Permeability Model Corey
nεw 2
nεo 2
Sεwi 0
Sεor 0

(kεro) at (Sw)0 1
(kεrw) at (Sw)1 1

µo 1 cp
µw 1 cp

u on Γ1 10−6 m/s
p on Γ2 1 atm
Sw on Γ1 1

Table 4.1: Porous matrix and fluid parameters for the synthetic cases, (a)-(e)
in the Brinkman fine scale model.

The core was extracted from the Morro do Chaves Formation, located in the
Sergipe-Alagoas Basin, in Brazil. The micro-tomography image is processed
to make it binary, with black pixels representing the vugs and gray pixels
representing the porous matrix. As for the petrophysical properties, all are the
same as those in Table 4.1, except that φεV ug = 0.135. The image was taken
from Dali (2019) [40]. Her study provides a comprehensive description of the
process of acquiring an image. Additionally, grayscale images are converted
into point clouds using a MATLAB algorithm. Data from this point cloud is
used by the Gmsh software to create the unstructured meshes that are used
in numerical simulations. Dali’s work comprehensively examines the entire
process of creating images from microtomography, treating and processing
them, creating meshes.

4.3
Mesh Test

The meshes are selected to achieve an optimal representation of flow dy-
namics while ensuring computational efficiency. This analysis is conducted to
identify suitable meshes for two-phase flow solutions. Furthermore, mesh se-
lection considers the consistency of meshes between the cases utilizing models
generated on the FEniCS platform and those generated using the IMEX soft-
ware. The consistency of meshes across the two solvers is performed as follows.
In both scenarios, mesh refinement is evaluated to improve the numerical so-
lution based on available computing resources. FEniCS models are limited by
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Figure 4.2: Micro tomography image domain, where ΩV (black) is the vug and
ΩM (gray) is the porous matrix. In this case φεV ug = 0.135.

the fact that they are run on a laptop with a simple configuration (Intel Core
i5-1035G1 CPU 1.00GHz × 8; Memory 8 GB RAM) , whereas IMEX soft-
ware has access to the Petrobras Cluster. Therefore, FeniCS mesh selection is
performed first. IMEX meshes are comparable in size to FEniCS meshes. Ad-
ditionally, IMEX mesh refinement is examined to determine whether improved
results can be obtained. Despite this, mesh refinement is not beneficial in any
of the cases evaluated. The process of coarsening meshes, also known as upgrid-
ding, is not considered. This approach is intentionally omitted in this study.
Since two-phase flow can be significantly affected by scale transformation when
meshes are coarse, this aspect of the study has been excluded.

Initially, the influence of the mesh is examined by comparing the nu-
merical solution of the homogeneous 1φ1k Darcy model with the analytical
solution of the Buckley-Leverett model (equation (3-35)). For this analysis, a
porous medium similar to Figure 3.3 is selected, containing only the porous
matrix. The petrophysical properties are described on table 4.1. The porous
medium is fully saturated with oil. Water is injected at a constant flow rate of
10−6 m3/s at Γ1 while a constant pressure of 1 atm is maintained at Γ2. This
configuration produces an isotropic and homogeneous porous medium, which
may be compared to the analytical Buckley-Leverett model.

Table (4.2) displays five distinct mesh configurations examined. In these
configurations, mesh refinement is performed along the horizontal axis, since
vertical flow is negligible. Figure 4.3 illustrates water saturation as a function of
horizontal position for tD = 0.5. As the mesh is refined, the numerical solution
adheres better to the analytical solution. The region with the abrupt saturation
change, where the water front is located, benefits most from mesh refinement. It
is observed that for solutions for Mesh III, there is substantial correspondence
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between the numerical results and the Buckley-Leverett analytical solution.
This test, however, is not sufficient to decide which mesh to use in the cases
with vugs. Thus, each synthetic domains has to be tested to verify the meshes’
consistency.

Mesh Nx Ny Elements RMSE
Mesh I 20 20 1,600 3.44 ×10−2

Mesh II 40 20 3,200 2.17 ×10−2

Mesh III 100 20 8,000 1.03 ×10−2

Mesh IV 250 20 20,000 7.29 ×10−3

Mesh V 500 20 40,000 6.50 ×10−3

Table 4.2: Mesh parameters used for the mesh test in the synthetic vug configu-
ration (a)-(e). Nx and Ny are the parameters used in the UnitSquareMesh(Nx,
Ny, "crossed") method.
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Figure 4.3: The influence of the mesh size on two-phase flow. As the mesh is
refined, the discontinuity region at the front is better represented

Supporting the previous analysis, mesh tests are conducted for the
five synthetic vug configurations. Table (4.3) displays five distinct mesh
configurations tested. The presence of vugs alters fluid dynamics, making the
vertical velocity component significant. Therefore, it is decided to keep the
same number of elements in x and y directions.

For the micro tomography sample, the mesh test takes other parameters
in consideration. The mesh generation parameters include the target mesh size
for boundaries (cl1), the target mesh size for the porous matrix-vug interface
(cl2), and the maximum characteristic length (clmax). Table (4.4) presents the
mesh parameters used in this analysis.
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Computational Time (s)
Mesh No. Elem. (a) (b) (c) (d) (e)
Mesh 1 1,600 3.1×102 3.2×102 3.3×102 6.8×102 1 3.6×102

Mesh 2 6,400 2.5×103 2.5×103 2.6×103 6.3×103 1 2.9×103

Mesh 3 25,600 2.1×104 2.1×104 2.1×104 4.9×104 1 2.0×104

Mesh 4 40,000 4.7×104 4.8×104 4.8×104 8.5×104 1 4.7×104

Mesh 5 57,600 8.9×104 9.0×104 1.2×105 2 2.1×105 1 8.1×104

Table 4.3: Mesh parameters used for the mesh test in the synthetic vug
configuration (a)-(e). It is also presented the computational time for each case.
The time step used in these experiments is 200 s. 1∆t = 100s. 2∆t = 150s

Mesh cl1 (m) cl2 (m) clmax(m) No. Elem. Comput. Time (s)
Mesh 1 8.0×10−4 8.0×10−4 8.0×10−4 3,944 4.3×103

Mesh 2 5.0×10−4 5.0×10−4 5.0×10−4 8,944 1.5×104

Mesh 3 2.5×10−4 2.5×10−4 2.5×10−4 32.518 1.2×105

Mesh 4 2.0×10−4 2.0×10−4 2.0×10−4 50,002 2.7×105

Table 4.4: Mesh parameters used for the mesh test in micro tomography
configuration. It is also presented the computational time for each case. The
time step used in these experiments is 2 s.

Figure 4.4 illustrates the variation of Wcut as a function of tD for all
vug configurations. Water cut (Wcut) is defined as the ratio between the
water flow and total flow rate along the outflow boundary Γ2. For the cases
(a)-(e) the Wcut exhibits minimal variance between Mesh 4 and Mesh 5.
Essentially, employing more refined meshes than Mesh 4 did not yield an
improved solution. Additionally, as depicted in figure 4.3, Mesh III provides a
satisfactory resolution when compared with the analytical solution. It is noted
that the simulation time increases significantly from Mesh 4 to Mesh 5 which
is not desired. Consequently, for the cases examined here, it is considered
appropriate to employ Mesh 4 for the synthetic vug scenarios. Mesh 4 has
40,000 elements for the four vug scenarios. This mesh configuration leads to
the Brinkman model and the Darcy model have 200,400 and 140,200 degrees
of freedom, respectively.

Mesh of 4 is selected for the micro tomography sample since more
refined meshes do not improve the water cut evolution. The resulting mesh
has 32,518 elements and the Brinkman and Darcy model has 163,022 and
114,029 degrees of freedom, respectively. Figures 4.5, 4.6, 4.7, 4.8, 4.9, and
4.10 illustrate the mesh for the five synthetic vug configurations (a)-(e) and
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Figure 4.4: Analyses of mesh impact on synthetic vug configuration (a)-(e)
and the micro tomography. It is presented the influence of mesh refinement on
Wcut as a function of tD.

the micro tomography sample, respectively.
The homogeneous 1φ1k model has the objective of the establishment of

an equivalent porous media through equivalent porosity, equivalent absolute
permeability and equivalent relative permeability curves. Specifically, equiva-
lent relative permeability curves are obtained through numerical optimization.



Chapter 4. Comparison Between Prediction of Brinkman and
Single-Continuum Models 92

Figure 4.5: Mesh of the synthetic vug configuration (a).

Figure 4.6: Mesh of the synthetic vug configuration (b).

For this task IMEX and CMOST are chosen. It is imperative that the meshes
employed in the Brinkman model align with those utilized by IMEX to prevent
undesired effects, such as scale-related effects due the the mesh on two-phase
flow. To achieve this compatibility, the same number of elements is employed
for both meshes. The only difference lies in the shape of these elements, as
IMEX utilizes rectangular structured meshes, while the Donfin library gener-
ates triangular structured meshes. The IMEX program generates these meshes
based on parameters defining the number of cells in each direction as well as
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Figure 4.7: Mesh of the synthetic vug configuration (c).

Figure 4.8: Mesh of the synthetic vug configuration (d).

the size of the edges. In the synthetic vugs, the mesh is generated with Nx =
200, Ny = 200, and Nz = 1, with each edge measuring 0.005 m. Figure 4.11
presents the IMEX mesh used to establish the equivalent 1φ1k domain

IMEX models use different boundary conditions when compared to those
employed in the Brinkman and Darcy models developed with the FEM using
the Dolfin library. IMEX directly imposes impermeable conditions on all
boundaries, with mass exchange occurring through well-surface coupling. In
essence, to emulate the inlet condition at Γ1 and the outlet condition at Γ2, a
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Figure 4.9: Mesh of the synthetic vug configuration (e).

Figure 4.10: Mesh of the micro tomography image.

producer well and an injector well are used, respectively.
These differences result in variations between the results obtained from

the finite element models and those generated by IMEX. Primarily, these
discrepancies arise because the well is coupled to the center of each cell, leading
to inaccuracies. To mitigate these differences, it is employed refined meshes on
the wells. It is advisable to refine the mesh within the edge cell that contains
the well and move the well to the refined cell at the model boundary. This
approach is implemented in this study, as illustrated in Figure 4.11. It can be
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seen in figure 4.11 that the first cell is subdivided five times in the direction
of the flow (horizontal direction). Another good practice used here is to set a
high permeability value in the cells containing the wells. This is done to ensure
uniform injection. In this study, these cells have 10 D of absolute permeability.

Figure 4.11: Porous matrix or matrix grid mesh configuration. This mesh
configuration is used for the synthetic vug configuration, homogeneous 1φ1k
Darcy model.

Based on the mesh configurations described earlier in this section, the
parameter γ of the penalty term in equation (3-86) is investigated. In this
analysis, γ was tested for the vug configuration (c) and using petrophysical
properties of Table 4.1. The initial value Cruz used for evaluation purposes
was derived from Cruz’s [41] approach, in which boundary conditions were
implemented utilizing the penalty model. Additionally, this value was system-
atically varied to assess its impact on the results. Since γ = 0, there is no
penalty term in the equation, resulting in numerical divergence. As shown in
Table 4.5, the results of the sensitive analysis to this parameter indicate that it
has a negligible impact on the results. The relative difference in permeability
between γ = 1 and γ = 35, for example, is 1.54× 10−9. Additionally, to evalu-
ate the numerical consistency of γ, it was necessary to compare the outcomes
of the Brinkman model with those of Darcy’s model. In the Darcy model, the
vug permeability was assumed to be 200 times higher than the matrix per-
meability. Both Brinkman and Darcy models yielded equivalent permeability
values which were closely aligned with those presented in Table 4.5, with a
relative difference less than 1 %. Therefore, throughout this chapter γ = 35 is
assumed.
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γ Keq
1φ1k [mD]

1 142.035
10 142.035
35 142.035
100 142.035

Table 4.5: The influence of γ on the absolute permeability of the vug configu-
ration (c).

4.4
Synthetic Domain Results

The following section presents the results for single-phase and two-phase
flow in the synthetic domain configurations. Section (3.2) details the boundary
conditions, sections (3.4.1) and (3.4.2) provide a detailed presentation of
homogeneous and heterogeneous Darcy scenarios, and section (4.1) outlines
the configuration employed for generating these scenarios

4.4.1
Single-Phase Flow

Figures 4.12 and 4.13 present the steady-state, single-phase flow velocity
magnitude field predicted by the Brinkman model for the different vug config-
urations. The velocity ratio between the vug interior and the adjacent porous
matrix exceeded 10, reaching values as high as 103 within selected zones close
to the vug-matrix interface for the configurations (a)-(d) and the one obtained
from the microtomography image. There are discernible areas of lower veloc-
ity within the boundaries of the porous matrix and vugs, delineated by blue
shading. In case (e), it is evident that there is only a slight distortion in the
velocity field near the lower and upper edge of the vug. For the other portions
of the domain, the velocity in the vug is close to the velocity within the porous
matrix. In these regions at the edge of the vug, there are also regions of low
velocity.

The velocity magnitude along line AA, located at the center of the
vugs, provides an interesting observation: the maximum velocity magnitudes
within the vugs in cases (a), (b), and (c) exhibit remarkable similarity,
despite differences in vug size configurations. Conversely, in case (d), the
velocity magnitude is higher. A single channel with very low flow resistance
is responsible for this phenomenon. In this study, this phenomenon is called
channeling. Fluid migrates from the porous matrix to the vug due to its lower
flow resistance, resulting in a low-velocity zone near the boundary between
the vug and the porous matrix. In comparison to case (e), where the vug is
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Figure 4.12: Velocity magnitude (m/s) field on the steady-state regime for the
vug configuration (a), (b), and (c). For each case, it is presented the velocity
profile in the cut AA.

aligned perpendicular to the flow, case (e) exhibits the smallest ratio between
vug and porous matrix velocity. In the microtomography image domain, which
is more representative of reality, the velocity magnitude within the vugs is
comparable to values obtained in synthetic domains. The dispersed distribution
of vugs eliminates any discernible preferential flow path. Within the porous
matrix, certain regions consistently exhibit low velocities, and these areas are
surrounded by vugs. The highest speeds are recorded in the region of the vug
in this case. Based on the velocity data, the Reynolds number can be estimated
in order to determine whether the simplifying assumptions are valid. Based on
water properties at standard temperature, the Reynolds number varies from
5.0 ×10−3 for the microtomography image to 0.8 for the synthetic vug sample
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Figure 4.13: Velocity magnitude (m/s) field on the steady-state regime for the
vug configuration (d), (e), and the micro tomography sample. For each case,
it is presented the velocity profile in the cut AA.

(d). Despite of the fact that Re for sample (d) is a little higher, it is still
possible to consider that the hypotheses are valid.

Figures 4.14 and 4.15 present the pressure distribution across section
BB along then center of the vugs. Clearly, the pressure gradient within
the vug areas is significantly smaller than in the porous matrix for all
vug configurations. In these regions, the resistance to flow is much lower
than in the surrounding porous matrix. Cases (a)-(c) exhibit nearly identical
pressure difference between Γ1 and Γ2, while case (d) displays a considerably
smaller pressure difference. This variation can be attributed to the distribution
of macroporosity throughout the domain, which substantially reduces flow
resistance in the horizontal direction. Due to the dimensions of the domain,
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the microtomography pressure gradient is smaller than that of the other cases.
It is observed, however, that the pressure profile over the domain is similar
to the pressure profiles observed in cases (a)-(e) in which the vugular region
exhibits a significantly smaller gradient of pressure compared to the porous
matrix.
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Figure 4.14: Pressure (Pa) field on the steady-state regime for the vug config-
uration (a), (b), and (c). For each case, it is presented the pressure profile in
the cut BB.

The absolute permeability for the homogeneous 1φ1k model (i.e. on the
coarse scale) is determined from the results obtained by the Brinkman model
for single-phase flow in the steady state. The results are presented in Table
(4.6)

A heterogeneous Darcy model has been used in the literature to analyze
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Vug Configuration Keq
1φ1k [mD] Kε

M [mD] Kε
V ug [mD]

(a) 1.41 1 5.3×102

(a) 14.11 10 5.3×103

(a) 141.17 100 5.3×104

(a) 1411.71 1000 5.3×105

(b) 1.41 1 5.9×102

(b) 14.19 10 5.9×103

(b) 141.92 100 5.9×104

(b) 1419.23 1000 5.9×105

(c) 1.42 1 1.5×102

(c) 14.20 10 1.5×103

(c) 142.05 100 1.5×104

(c) 1420.51 1000 1.5×105

(d) 2.38 1 7.6×101

(d) 23.89 10 7.6×102

(d) 238.94 100 7.6×103

(d) 2389.46 1000 7.6×104

(e) 1.42 1 1.5×103

(e) 14.20 10 1.5×104

(e) 142.05 100 1.5×105

(e) 1420.51 1000 1.5×106

Tomog 1.54 1 1.1×104

Tomog 15.40 10 1.1×105

Tomog 154.02 100 1.1×106

Tomog 1540.15 1000 1.1×107

Table 4.6: The permeability obtained through the Brinkman model (Keq
1φ1k)

and the estimated absolute permeability (Kε
V ug) for the vug region in the

heterogeneous Darcy model for vug configurations (a)-(e) and the micro
tomography sample.
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Figure 4.15: Pressure (Pa) field on the steady-state regime for the vug configu-
ration (d), (e), and the micro tomography sample. For each case, it is presented
the pressure profile in the cut BB.

flow through vuggy porous media. To model low flow resistance, the perme-
ability of the vuggy region is set to an arbitrarily high value. However, the
impact of this value on flow prediction is unclear. The flow field, calculated
by employing the heterogeneous Darcy model with different values of the vug
region permeability Kε

V ug, is employed to determine the equivalent absolute
permeability of the heterogeneous Darcy solution, denoted as Keq

hetD. The rela-
tive disparity in the equivalent permeability between the system computed us-
ing the Brinkman model and the heterogeneous Darcy solutions is graphically
presented in Fig.4.16 for the different vug configurations under consideration.
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Figure 4.16: The relative error between the single-phase steady state flow ob-
tained by the Brinkman model and the flow obtained by the heterogeneous
1φ1k Darcy model based on the vug permeability (Kε

V ) of the vug configura-
tions (a)-(e) and the micro tomography.

According to Fig.4.16, for vug configuration (d), characterized by a chan-
nel aligned with the flow, the difference is nearly 10 % when Kε

V ug → ∞. In
contrast, for vug configurations (a)-(e), the relative difference is significantly
lower, below 0.2 %. Interestingly, for synthetic configurations (a)-(d), there is
a specific value of the imposed vuggy permeability Kε

V ug that minimizes the
relative difference between the computed equivalent absolute permeabilities.
The results derived from the micro tomography image domain differ slightly
from those derived from synthetic vug configurations. The relative difference
between the equivalent permeability calculated with Brinkman and heteroge-
neous Darcy models decreases as the imposed permeability of the vug region in-
creases. The minimum difference, approaching 1 %, is asymptotically achieved
for Kε

V ug > 106. A comparable trend is observed in the vug configuration (e);
however the error is lower. Table (4.6) presents the Kε

V ug that minimizes the
differences between the computed absolute permeability, followed by the equiv-
alent permeability of the porous medium. The configurations of vugs (a), (b),
and (c), yield equivalent permeability values that are similar. Conversely, the
vug configuration (d) produces substantially higher equivalent permeability.
On the other hand, vug configuration (e) has the lower Keq

1φ1k. The results
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demonstrate the impact that vug distribution within the porous matrix has on
equivalent permeability.

Figure 4.17 shows the impact of matrix permeability (Kε
M) on the results.

This analysis aims to determine the influence of the porous matrix on the
optimum vug permeability that minimizes the differences between Brinkman
and the heterogeneous Darcy model. This is accomplished by varying the
porous matrix permeability on a fine scale and calculating the value of Keq

1φ1k

for each Kε
M , covering the range form 1 mD to 1000 mD.

Independent of the vug configuration, different values of vug permeabil-
ity minimize the error function for each matrix permeability value. Moreover,
the ratio between Kε

V ug and Kε
M is the same in all scenarios. Based on the

variation in the permeability of the matrix, it is evident that there is a change
in the pressure drop inside the vug. This means that the permeability of the
free-flowing region is also influenced by the surrounding porous medium. As a
result, establishing an absolute permeability for a vug region cannot be eval-
uated independently in the matrix, making Brinkman modeling crucial for
establishing equivalent petrophysical properties for the vug region. Therefore,
it is necessary to evaluate the vug permeability for each set of matrix perme-
ability, particularly for vug configurations (d).

As highlighted by the results discussed here and corroborated by previous
work [54, 56, 62, 61], vuggy porous media have equivalent petrophysical
properties that strongly depend on the geometry and configuration of vugs and
fractures, and the Brinkman model is useful for assessing equivalent properties
of heterogeneous porous media.

4.4.2
Two-Phase Flow

In this section, the displacement of oil by water injection is analyzed for
different configurations of vugs. Figure 4.18 displays the evolution of the water
saturation field predicted by the Brinkman model for the six vug configurations
at three dimensionless injected water porous volumes (tD). The first row of the
diagram illustrates the solution of water saturation through the porous matrix
alone (i.e., with no vugs). This scenario corresponds to the properties of the
porous matrix without a vugular system, which has a permeability of 100 mD
and porosity of 0.2. The evolution of the water front in case (d), with the
long vug aligned with the flow direction, differs significantly from the other
cases. Because of the lower flow resistance along the vug, the water front
accelerates, resulting in a non-uniform saturation profile and an early water
breakthrough (tD = 0.579). The low velocity regions in the porous matrix that
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Figure 4.17: The relative error between the Brinkman model and the heteroge-
neous Darcy model on a single-phase steady state flow is evaluated when the
matrix absolute permeability (Kε

M) is assessed for each of the vug configura-
tions (a)-(d) and the microtomography at 1mD, 10mD, 100mD, and 1000mD.
For each Kε

M and for each vug configuration the vug permeability (Kε
V ug) is

evaluated.
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are aligned with the flow direction result in lower water saturation. Despite the
higher velocity in the vugs compared to the porous matrix, the water front in
configurations (a)-(c) and (e) appears to be slower in the vug domain than in
the porous domain. This can be explained by the larger oil volume that must
be displaced in the vugs.

Figure 4.18: Comparison of the saturation field between a porous matrix
without vug modeled by Darcy equation, six distinct vugular configurations by
Brinkman model. These scenarios are analyzed at three different tD in order
to examine the impact of water injection on the saturation field.

Figure (4.19) illustrates the evolution of Wcut in terms of tD across
different vug configurations and the porous matrix devoid of vugs. The water
cut evolution in the porous matrix alone, represented by the dashed line in
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Figure 4.19: Analysis of the Wcut as a function of tD for the samples (a)-(e)
and the micro tomography image using the Brinkman model compared with
the porous matrix without vugs.

the plot, is abrupt due to a uniform water saturation front, resulting in water
breakthrough at tD = 0.81. In the configurations (a)-(c) and (e) the water
production curves exhibit similar evolution, but a slower water production
increase due to non-uniform water front. The water breakthrough times in
these cases are comparable and slightly lower than the porous matrix without
vugs: (a) tD = 0.797, (b) tD = 0.782, (c) tD = 0.774. For case (e), with the long
vug aligned perpendicularly to the main flow direction, water breakthrough is
tD = 0.83, which is slightly higher than the porous matrix value. As anticipated,
in case (d) the water breakthrough happens much earlier at tD = 0.579,
which is explained by the channeling effect, and the water cut growth is much
slower than in the other cases. The vug configuration derived from the micro
tomography image, demonstrates a water cut curve evolution similar to cases
(a)-(c). The water breakthrough occurs at tD = 0.71. This is attributed to the
uneven distribution of voids in the domains, resulting in an irregular water
front.

The heterogeneous Darcy model predictions are compared to the
Brinkman solution for all cases explored. In the two-phase heterogeneous Darcy
model, the value of the vug region permeability Kε

V ug is chosen as the one that
minimizes the difference to the equivalent absolute permeability predicted by
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the Brinkman model, which is shown in Tab.(4.6). Figure 4.20 shows the com-
parison between the water cut predictions of the heterogeneous Darcy and
Brinkman models. Both models predicted similar evolution for water produc-
tion for all vug configurations. Generally, water breakthrough occurs first in the
Darcy model. This small delay in water breakthrough in the Brinkman model
may be associated with the viscous dissipation in the vug domain, which is
not considered in the heterogeneous Darcy formulation.

The evolution of the pressure difference during oil displacement predicted
by both the Brinkman model and the heterogeneous Darcy models are pre-
sented in Fig.(4.21). The pressure difference is normalized by the pressure
difference at tD = 0, which corresponds to the pressure difference of oil single
phase flow. Notably, the results obtained with both Brinkman’s and Darcy’s
heterogeneous models are almost equal at tD = 0, since the heterogeneous
Darcy model is constructed to yield an absolute permeability very close to
that obtained with the Brinkman model (the relative difference is lower than 1
%). However, the evolution of the pressure difference predicted by each model
is quite different. In particular, the Brinkman model requires a higher inlet
pressure level to maintain an identical flow rate when compared to the het-
erogeneous Darcy model. In some instances, discrepancies may reach as high
as 40 %. The peak of pressure represents the advancement of the water front
as it crosses the interface between the matrix and the vug, as well as Γ2. On
the heterogeneous Darcy model, these peaks have a much lower intensity and
are almost imperceptible in the plot. The phenomenon may be attributed to
the viscous dissipation inside the vugs that is neglected in the heterogeneous
Darcy model. The pressure difference results show that using a heterogeneous
Darcy model to describe two-phase flow in vuggy porous media may lead to
inaccurate results, as it neglects the viscous pressure drop along the vugs.

The fine-scale Brinkman model is used in order to test the impact of
porous matrix on two-phase flow at permeability ranging from 1 mD to 1000
mD. Notably, the results for Wcut and ∆ptD

∆ptD=0
are the same across the six

scenarios, as depicted in figure 4.20 and 4.21 (the case of the porous matrix
with 100 mD). There is a variation in inlet pressure between scenarios that
is attributed to differences in flow resistance as a result of the variation of
equivalent permeability, as can be seen in Table (4.6).

In reservoir scale models, it is usually not feasible to use a mesh that
maps the vugular region. A single model cell should describe the complex
dynamics of flow through the porous matrix and vugs. For this purpose, a
homogenization of the domain is applied. In this study, Brinkman’s results are
used to determine equivalent relative permeability curves for a homogeneous
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Figure 4.20: The impact of the two-phase flow is examined by evaluating
the pressure difference as a function of the injected porous volume for both
the Brinkman and Darcy heterogeneous 1φ1k Darcy models. This analysis is
conducted for the vug configurations (a)-(e) and the micro tomography image.
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Figure 4.21: The impact of the two-phase flow is examined by evaluating the
dimensionless pressure difference as a function of the injected porous volume
for both the Brinkman and heterogeneous 1φ1k Darcy models. This analysis is
conducted for the vug configurations (a)-(e) and the micro tomography image.



Chapter 4. Comparison Between Prediction of Brinkman and
Single-Continuum Models 110

Darcy model. These curves are obtained by an optimization procedure, as
explained before. The Corey’s exponents and the relative permeability water
end-point of the equivalent relative permeability curves are determined such
that the difference between the water flow rate at the outlet boundary
predicted by the Brinkman and homogeneous Darcy models is minimized.
The water production curves predicted by the Brinkman model and the
optimized homogeneous Darcy model are presented in Fig.(4.22). In the
homogeneous Darcy results, the water cut curves exhibit a sudden change
due to uniform water saturation along the vertical direction. In the Brinkman
model predictions, the water cut increase occurs slower in response to a non-
uniform water front. Despite this small difference in behavior, the homogeneous
Darcy model describes the overall behavior for the synthetic geometries (a)-
(c), (e), and the micro tomography image domain. For the case with a long
vug aligned to the flow direction, the evolution of water production obtained
with Brinkman model presents two distinct inclinations, which is directly
related to the early breakthrough of the water front. This behavior cannot
be accurately captured by an homogeneous model. Furthermore, this behavior
is not physically coherent, since a homogeneous medium is expected to have
an abrupt evolution of the injected water saturation. The optimized Corey’s
parameters and the corresponding RMSE value, defined in eq.(3-96), for each
case are presented in Tab.4.7. As expected, the higher RMSE value is for case
(d).

Figure 4.23 presents the evolution of the pressure difference during oil
displacement for the Brinkman and the homogeneous 1φ1k Darcy model.
In cases (a)-(c), the pressure difference between inlet and outlet follows the
same pattern as in the Brinkman model. In the homogeneous model for
1φ1k, the same phenomenon is not observed. Sample (a) differs significantly
from cases (b) and (c). An explanation for this discrepancy can be found
in the occurrence of local minimums during History Matching. Nevertheless,
despite these variations, it can be concluded that the homogeneous 1φ1k model
effectively captures fine-scale effects on a coarse scale. This is particularly
evident in case micro tomography vug configuration, where the equivalent
pressure gradient closely matches throughout the operational range.

Consistency tests in numerical optimization are designed to determine
whether an optimization algorithm consistently produces dependable results
under different conditions. In general, consistency refers to the algorithm’s
ability to reach an optimal solution, or a close proximity to one, regardless
of minor changes in the parameter values or initial conditions. Evaluations of
this type are vital to ensuring the robustness and reliability of an optimization
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Figure 4.22: Comparative analysis of the homogeneous 1φ1k Darcy model
based on the new pseudo-relative permeability curves and the Brinkman model
for vug configuration (a)-(e) and the micro tomography image.
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Figure 4.23: The impact of the two-phase flow on the dimensionless pressure
difference as a function of the injected porous volume for both the Brinkman
and homogeneous 1φ1k Darcy models. This analysis is conducted for the vug
configurations (a)-(e) and the micro tomography image
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ΩM ΩV Ωeq
1φ1k

Case no nw no nw no nw k0
rw RMSE

a 2.00 2.00 1.00 1.00 1.40 1.16 0.91 3.10
b 2.00 2.00 1.00 1.00 1.58 1.00 0.76 1.90
c 2.00 2.00 1.00 1.00 1.59 1.00 0.76 0.98
d 2.00 2.00 1.00 1.00 1.89 0.77 1.00 5.77
e 2.00 2.00 1.00 1.00 1.38 1.00 0.88 3.12

Tomog 2.00 2.00 1.00 1.00 1.88 1.28 0.90 0.11

Table 4.7: The relative permeability parameters for each vug scenario for the
homogeneous 1φ1k Darcy model to determine Ωeq

1φ1k.

algorithm, as they enable the detection of potential issues such as numerical
instabilities, sensitivity to disruptions, or oscillatory behavior. Typically, these
assessments involve assigning the algorithm to a series of well-defined test
scenarios, where the optimal solution is either known or estimable, and
analyzing its performance in relation to each scenario. Aside from offering
valuable insight into the effectiveness and applicability of an optimization
algorithm across a variety of problem types, these assessments are also helpful
in determining which method is most appropriate for particular problems.

For this study, a consistency test is conducted on vug configuration
(c), where the inlet velocity in Γ1 is systematically altered on two additional
occasions. Specifically, concerning the velocity ascertained in the preceding
experiments, velocities are appraised in increments of five (uin = [5×10−6, 0.0]
m/s) and ten (uin = [10−5, 0.0] m/s ) times the initially evaluated velocity. All
other parameters remain consistent with those delineated in table 4.1.

Ωeq
1φ1k

Vug Configuration Inlet Velocity (m/s) nw no k0
rw

(d) 10−6 1.00 1.59 0.98
(d) 5× 10−6 0.96 1.57 1.00
(d) 10−5 0.91 1.67 1.00

Table 4.8: The relative permeability parameters for vug configuration (d) and
for the homogeneous 1φ1k Darcy model to determine Ωeq

1φ1k for three different
inlet velocities.

Figure 4.25 illustrates the outcomes of altering the inlet velocity con-
cerning Wcut and

∆ptD
∆ptD=0

as a function of tD. Brinkman model demonstrate
notable consistency, indicating that changes in the inlet velocity do not di-
rectly influence the results of Wcut and

∆ptD
∆ptD=0

. Following the analysis of the
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numerical optimization process performed by CMOST, historical matching is
again implemented to validate the results obtained by the Brinkman model in
the 1φ1k model. For the new inlet velocities, the same history matching pro-
cedure is followed. Table 4.8 summarizes the Corey parameters and figure 4.25
illustrates the relative permeability curve and fractional flow. As can be seen
from the Table 4.8 , the values of krw, nw, and no did not differ significantly
between the cases. The variations on fw curves are also minimal. Considering
the lack of a momentum transport term in the Brinkman equation, compared
to the Navier-Stokes equation, it would seem that the differences between sce-
narios altering the velocity at the inlet would be negligible. As for the history
matching, there is also a satisfactory representation due to the alteration in
inlet velocity, as both the relative permeability curves and the fractional water
flow are closely aligned.
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Figure 4.24: A comparison of relative permeability curves and fractional flow
under three different inlet velocities for vug configuration (d).

4.5
Discussion

Initially, the heterogeneous 1φ1k model is analysed. Arbitrarily assigning
a value to KV ug impacts the model outcomes. Selecting these values thought-
fully is essential, taking into account the distribution of geometries across the
domain. Where vugs are dispersed within porous matrix and exhibit a low flow
anisotropy, their permeability must be approximately five orders of magnitude
higher than that of the matrix. Adopting this practice may, however, lead to
challenges associated with poorly conditioned matrices in the numerical solver.

Machado et al. (2020) [110] proposed that karst formations exhibit con-
stant absolute permeability in two-phase flow scenarios while the porous ma-
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Figure 4.25: A comparison of relative permeability curves and fractional flow
under three different inlet velocities for vug configuration (d).

trix absolute permeability varies. This assumption cannot be inconsistent or
high KV ug/KM ratios. However, for less pronounced ratios, noticeable effects
on two-phase flow become apparent. The saturation field reveals significant
changes, altering saturation distribution across the domains in [110]. Never-
theless, the Brinkman model reveals that the porous matrix influences pressure
drop in free-flow regions. Consequently, the ratio KV ug/KM remains constant
for all porous matrix permeabilities. Since this ratio remains unchanged, there
is no discernible impact on two-phase flow, as evidenced in this study. Assum-
ing independent behavior of the free-flow region relative to the matrix may
lead misrepresentation of the flow dynamics, which results in over optimistic
conclusions in terms of oil and water productions, particularly when the porous
matrix exhibits favorable petrophysical properties. The reason for this is that
the porous medium becomes less heterogeneous, increasing recovery and de-
laying the arrival of water. The KV ug/KM ratio is expected to change when
advection effects are comparable to momentum diffusion ones; however it is
not the scope of this study.

Campos (2022) [60] compared the Brikman and Darcy models for a
transient single-phase flow. The author made a similar assumption to that
of [110], that is, the permeability of the vug remained unchanged while the
permeability of the matrix were altered. The flow difference between the
Brinkman and Darcy models is observed to increase with increasing matrix
permeability, particularly with the lowest ratio of KV ug/KM . Due to the
smaller difference in permeability between the vugular region and the matrix,
the single-phase flow is distorted in a pronounced manner. This may be due to
the fact that the permeability of the vug depends on the permeability of the
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matrix as explores in this chapter.
Another consideration when analysing the Brinkman model with the

1φ1k heterogeneous model is the challenge of simultaneously establishing
equivalent saturation and pressure fields. An approach similar to that used in
the homogeneous 1φ1k case might be feasible to address this issue. It may be
necessary to adjust the endpoints of the relative permeability curves or modify
the shape of the curves themselves in order to influence the system’s total
mobility. It may be possible to achieve saturation and pressure fields similar
to those observed in the Brinkman model by inducing a greater pressure drop
in the vugular region. However, this approach would still require the use of the
Brinkman model for numerical optimization. Therefore, this option does not
provide a compelling means of simplifying problem.

It is clear that diffusive aspects contribute to the development of the
saturation field in both Hallack et al. (2019) [45] and Coclite et al. (2014)
[42]. In this study, this influence does not manifest clearly in the saturation
field, but in the pressure field. As illustrated in figure 4.26, the saturation field
results obtained by the Brinkman model are compared to those obtained by the
heterogeneous 1φ1k model. Saturation distributions at the water front show
a slight disparity. When compared with Hallack et al. (2019) [45] and Coclite
et al. (2014) [42] studies, the difference are significantly and may be directly
related to boundary conditions. Due to the fact that Hallack et al. (2019) [45]
and Coclite et al. (2014) [42] do not perform the pressure analysis in the same
way as here, it is not possible to directly compare the results between the two.

In section 3.6.4 using a quarter-five-spot configuration with a central
karst region, a simulation similar to Hallack’s proposal was conducted to
investigate influence of imposing of different boundary conditions. Figure 3.15
illustrates that modifying the injection point has a notable impact on the
saturation field, highlighting the distinct variations between the Brinkman
and Darcy models concerning saturation. The Brinkman model exhibits more
pronounced channeling of the injected fluids and reduced sweep efficiency.
These findings align with the conclusions drawn by Hallack et al. (2019) [45].

In the examination of the six scenarios presented in this chapter, it is
demonstrated that the homogenization of a karstified porous medium within
a single-porosity model is achievable under conditions of low anisotropy and a
porous medium that does not exhibit pronounced channeling. Conversely, in
situations characterized by significant channeling, an alternative methodology
is necessary for modeling an equivalent porous medium. The next chapter
explores the modeling of such mediums through the dual-continuum model.

There are some limitations on the methodology described in this study.
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Figure 4.26: Comparison of the saturation field between a the Brinkman model
and the Darcy models at vug configuration (d). This scenarios is analyzed at
tD = 0.8 in order to examine the impact of water injection on the saturation
field.

It is common to treat relative permeability as the same in all directions on
a domain. In the case of homogenization of the domain, it is evident that
the flow pattern is different between cases (d) and (e) and the same relative
permeability curve cannot be used to describe both flow patterns. There is only
one difference between the two cases: the direction of the flow, which leads to
significant differences in the coarse-scale modeling of the two cases. It remains
an open issue to develop a comprehensive analysis that takes into account both
cases using a unified methodology. An alternative approach involves treating
relative permeability as a tensor quantity, as suggested by [114]. Nevertheless,
this particular approach is not explored in the present study.



5
Comparison Between Brinkman and Dual-Continuum Models

5.1
Lajedo Arapuá Outcrop

Lajedo Arapuá is an outcrop from Jandaíra formation located in the Po-
tiguar Basin, Rio Grande do Norte. This formation has an intense fractured
system associated with karst features making the porous media highly hetero-
geneous. Quadros (2019) [22] proposed a complete geological model, modeling
faceis, fractures and karsts. To characterize discrete faults and determine La-
jedo’s length, it was used a high-resolution aerial image captured by a drone
and a scanning line survey. The depositional facies and karst features were
modeled based on the Tijubina Outcrop, which exhibits a three-meter-thick
Jandara Formation exposure. Since both outcrops are in the same geological
context and are 380 meters apart, the author considered a suitable correla-
tion between them. Quadros (2019) [22] developed the karst model based on
the structural framework established for facies and fractures. Additionally,
he gathered insight from both the Tijubina Outcrop and Lajedo Arapuá. In
the Tijubina Outcrop, he differentiated zones with significant dissolution from
those without. This facilitated the characterization of permeability anisotropy
and helped the selection of preferential pathways within the simulation model.
In the Lajedo Arapuá, areas with intense fractures were associated with vege-
tation because they indicated water infiltration points. Additional infiltration
points were established based on the water table variation. Moreover, the model
encompassed the hypogenic karst features, highlighting a single deep infiltra-
tion point and a shallow exfiltration point. Figure 5.1 illustrates the 3D karst
model of Lajedo Arapuá.

The choice of the Lajedo Arapuá outcrop for this study is motivated
by two reasons. Firstly, its configuration corresponds to a real-world scenario,
adding complexity to the analysis. Secondly, the model is readily available
for numerical implementation. Quadros (2019) [22] elaborated a 3D geological
model which includes intricate karst features, fractures, and a porous matrix.
Machado (2020) [110] constructed the flow model for the Lajedo Arapuá site
using the IMEX software, relying on the geological model by Quadros (2019)
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Figure 5.1: Epigenetic (orange) and hypogenic (light blue) karst model of the
Arapuá area [22]. The figure has a vertical direction scalled by 20×.

[22]. Furthermore, Campos (2022) [60], based on the 3D geological model,
derived 2D geometries from Lajedo Arapuá layers. His study investigated
transient single-phase flow, employing both the Brinkman single-phase flow
model and an IMEX model. The convergence of these factors significantly
contributes to the development of scenarios.

Figure 5.2 illustrates three distinct vug configurations inspired by the La-
jedo Arapuá outcrop. In the study by Campos (2022) [60], due to convergence
issues at the field scale as reported by Quadros (2019) [22], the computational
domain had to be scaled down significantly, from hundreds of meters to 2.36
m × 2.06 m. Each vug configuration corresponds to a distinct layer within this
outcrop and emulates a particular geological formation observed in nature.
The Arapua10 model features poorly connected and dispersed vugs embedded
in the porous matrix. Arapua24 represents a karstified medium of the channel
type, where all macropores are interconnected. Arapua17 combines elements
of the two aforementioned configurations, with the majority of macroporos-
ity interconnected and a small volume of isolated elements within the porous
matrix.

Throughout this chapter, the porous matrix porosity and permeability
are assumed to be constant across the domain. The petrophysical properties
used in this study is summarized in table 5.1. The inlet velocity and outlet pres-
sure remain constant in all numerical experiments, with uin = [10−6, 0.0] m/s
and pout = 1 atm. At the inlet boundary, water is injected at a constant veloc-
ity, meaning Sw = 1 and u = uin on Γ1. The layout of the boundary conditions
is the same as in the figure 3.3.
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Parameter Value
φεM 0.2
Kε
ii 100 mD

Relative Permeability Model Corey
nεw 2
nεo 2
Sεwi 0
Sεor 0

kεro at Sw = 0 1
kεrw at Sw = 1 1

µo 1 cp
µw 1 cp

u at Γ1 [10−6, 0.0] m/s
p at Γ2 1 atm
Sw at Γ1 1

Table 5.1: Porous matrix and fluid parameters for the Arapua10, Arapua17,
and Arapua24 vug cenarios in the Brinkman fine scale model.

5.2
Mesh Test

Arapuá vug configurations meshes are examined to achieve an optimal
representation of flow dynamics while ensuring computational efficiency. This
analysis is conducted to identify suitable meshes for two-phase flow solutions.
The consistency of meshes across the two solvers is performed as the same
in chapter four. In both scenarios, mesh refinement is evaluated as an en-
hancement to the solution based on the available computing resources. As
the FEniCS models are run on a laptop with a simple configuration, they are
consistently limited in all cases, whereas the IMEX software has access to the
Petrobras Cluster. Consequently, FeniCS mesh selection is performed first. The
IMEX mesh is comparable to the FEniCS mesh in terms of size. Furthermore,
an investigation is conducted to determine whether mesh refinement in IMEX
would improve results. Simulations conducted in IMEX do not benefit from
mesh refinement. Coarsening meshes, also known as upgridding, is not consid-
ered. Similarly to chapter four, this approach is intentionally omitted in this
study. Since two-phase flow can be significantly affected by scale transforma-
tion when meshes are coarse, this aspect of the study has been excluded.

The mesh selection for the Arapuá cases is conducted according to
the same methodology presented in section 4. Table (5.2) and (5.3) details
the meshes evaluated for each configuration and the numerical performance
for them. The mesh generation parameters include the target mesh size for
boundaries (cl1), the target mesh size for the porous matrix-vug interface (cl2),
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Arapua10 Arapua17

Arapua24

Figure 5.2: The three different vug configuration base on the Lajedo Arapua
outcrop (Arapua10, Arapua17 and Arapua24) where the geometry and position
of ΩV (black) is varied on the domain and in ΩM (gray).

and the maximum characteristic length (clmax).
A comparative evaluation between the Brinkman model and the 2φ2k

model is conducted for Arapuá vug configurations. Thus, careful consideration
is given to mesh selection. It is intended to ensure that unstructured meshes
generated by Gmsh and structured meshes created by IMEX are equivalent.
The consistency of meshes across the two solvers is assessed as follows. Based on
the constraints imposed by the available computing resources, mesh refinement
is evaluated in both scenarios as a potential enhancement to the solution. The
FEniCS models are consistently limiting in all cases, since simulations are run
on a laptop with a simple configuration, whereas the IMEX software has access
to the Petrobras Cluster. As a result, FeniCS mesh selection is performed
first. In terms of size, IMEX meshes are comparable to FEniCS meshes. In
addition, an investigation is conducted to determine whether mesh refinement
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Number of Elements
Mesh cl1 (m) cl2 (m) clmax(m) Arapua10 Arapua17 Arapua24
Mesh a 0.100 0.100 0.100 1,424 2,144 1,480
Mesh b 0.060 0.060 0.060 3,730 5,080 2,824
Mesh c 0.030 0.030 0.030 14,210 18,116 14,446
Mesh d 0.017 0.017 0.017 43,932 52,034 44,082
Mesh e 0.015 0.015 0.015 56,086 75,280 56,508
Mesh f 0.100 0.015 0.100 2,218 23,136 19,770
Mesh g 0.050 0.015 0.050 5,978 27,136 24,634

Table 5.2: Mesh parameters used for the mesh test in the Arapua configura-
tions.

in IMEX would lead to improved results. When mesh refinement is applied
to simulations conducted in IMEX, no significant improvements in solution
quality are observed. Alternatively, coarsening meshes, known as upgriding, is
not considered. This approach is frequently used in upscaling studies, but is
intentionally omitted in this study. Two-phase flow can be significantly affected
by scale transformation when meshes are coarser. Consequently, this aspect of
the study has been excluded. Due to this, both fine and coarse scales exhibit
the same mesh size.

The mesh quality is assessed by comparing the area of triangular mesh
elements with that of IMEX’s structured mesh elements. Each square within
the IMEX grid has a 0.01 m length, i.e., each dimension of equation (3-111)
(Lx, Ly, and Lz) has a 0.01 m length.

Figure 5.3 represents the Wcut variation as function of tD for the three
Arapuá cases for seven mesh configurations. For the Arapua17 and Arapua24
scenarios, Mesh-g is selected. In the Arapua10 scenario, Mesh-d is selected.
Compared to Mesh-e, the numerical solution differed only marginally, but the
computation cost is significantly increased.

Figures 5.4, 5.5, and 5.6 show the selected meshes for the Arapua10,
Arapua17 and Arapua24 vug configurations, respectively. The primary differ-
ence between these cases lies in the porous matrix discretization. In Arapua10
the vugs are sparsely distributed across the porous matrix and occupy less
area than in the other cases. So cl1 and clmax have a bigger impact than cl2.
Comparing Mesh-g and Mesh-f, when cl1 and clmax are modified, the number
of elements are increased significantly. The porous matrix contains more ele-
ments, causing this difference in element counts. Conversely, in the Arapua17
and Arapua24 configurations, the cl2 parameter is the dominant factor in de-
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Arapua10 Arapua17 Arapua24
Mesh ∆t (s) C.T (s) ∆t (s) C.T (s) ∆t (s) C.T (s)
Mesh-a 200 2.3×103 100 3.7×103 100 3.9×103

Mesh-b 200 9.4×103 100 1.4×103 100 1.6×104

Mesh-c 200 7.9×104 100 1.1×105 100 1.3×105

Mesh-d 200 1.8×105 100 1.3×106 100 6.2×105

Mesh-e 100 7.2×105 100 2.6×106 100 1.2×106

Mesh-f 200 2.1×103 100 1.7×105 100 1.2×105

Mesh-g 200 9.6×103 100 2.4×105 100 1.6×105

Table 5.3: Computational times (C.T) and the ∆t used on the Arapuá vug
configurations.

termining the mesh structure. The mesh inside the vug and near the porous
matrix is controlled by this parameter. Therefore, the porous matrix regions
bordering the vugs are also refined. Due to the extensive area of the vug re-
gion adjacent to the porous matrix, it significantly influences mesh generation
within the matrix. This is evident in Figures 5.5 and 5.6. In these situations,
cl1 and clmax primarily affect regions near model boundaries.

On the IMEX, all meshes are structured square meshes with uniform edge
dimensions. The IMEX program generates these meshes based on parameters
defining the number of cells in each direction as well as the size of the edges.
In the Lajedo Arapuá cases, the mesh has Nx = 232, Ny = 206, and Nz = 1,
with an edge size of 0.01 m. Figure 5.7 shows the mesh generated by IMEX for
the porous matrix. Figure 5.8 illustrates the meshes in the homogeneous 2φ2k
fracture grid model. All three Lajedo Arapuá scenarios use the same mesh.

IMEX models use different boundary conditions when compared to those
employed in the Brinkman and Darcy models developed with the FEM using
the Dolfin library. IMEX directly imposes impermeable conditions on all
boundaries, with mass exchange occurring through well-surface coupling. In
essence, to emulate the inlet condition at Γ1 and the outlet condition at Γ2, a
producer well and an injector well are used, respectively.

These differences result in variations between the results obtained from
the finite element models and those generated by IMEX. Primarily, these
discrepancies arise because the well is coupled to the center of each cell, leading
to inaccuracies. To mitigate these differences, it is employed refined meshes on
the wells. It is advisable to refine the mesh within the edge cell that contains
the well and move the well to the refined cell at the model boundary. This
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Figure 5.3: Analyses of mesh impact on Lajedo Arapuá cases. It is presented
the influence of mesh refinement on Wcut as a function of tD.

approach is implemented in this study, as illustrated in figure 5.7. It can be
seen in figure 5.7 that the first cell is subdivided five times in the direction
of the flow (horizontal direction). Another good practice used here is to set
a high permeability value in the cells containing the wells. This is done to
ensure uniform injection. In this study, these cells have 10 D of absolute
permeability. On both the matrix grid and fracture grid, this procedure is



Chapter 5. Comparison Between Brinkman and Dual-Continuum Models 125

Figure 5.4: Mesh of the Arapua10 vug configuration (mesh d).

Figure 5.5: Mesh of the Arapua17 vug configuration (mesh g).

conducted. Additionally, in the 2φ2k model, the wells are opened to flow in
for the fracture grid and the matrix grid. As result the mesh configuration, σ
is calculated by the (3-111), where Lx, Ly, and Lz has a 0.01 m length. Thus,
the base case value for σ is equal to 1.2 ×105 m−2. Due to its low sensitivity
in this study, sigma remains unchanged during the upscaling process. This is
discussed in section 5.3.3, where the sensitivity of this parameter is examined.

In equation (3-86), the γ parameter can be affected by the mesh.
Therefore, the same evaluation as in chapter 4 is repeated. This chapter



Chapter 5. Comparison Between Brinkman and Dual-Continuum Models 126

Figure 5.6: Mesh of the Arapua24 vug configuration (mesh g).

Figure 5.7: Porous matrix or matrix grid mesh configuration. This mesh
configuration is used for homogeneous 2φ2k model. It is created by IMEX
software. Their differences are primarily the size of the domain and the number
of cells.

presents the computations for Arapua17 with γ varied according to table 5.4.
As before, the results of the sensitive analysis to this parameter indicate that
it has negligible impact on the results. As an example, the relative difference in
permeability between γ = 1 and γ = 35, for example, is 6.59×10−9. Therefore,
throughout this chapter γ = 35 is assumed.
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Figure 5.8: Here is an illustration of the mesh generated by IMEX for the
analysis of Arapuá scenarios. It represents the fracture grid of the homogeneous
2φ2k model and is used for the three Arapuá scenarios.

γ K [mD]
1 311.212
10 311.212
35 311.212
100 311.212

Table 5.4: The influence of γ on the absolute permeability of the Arapua17
vug configuration.

5.3
Arapuá Results

This section presents the results of the analysis conducted to determine
the equivalent absolute permeability and the equivalent relative permeability
curves for the homogeneous 2φ2k Darcy model using the Arapuá vug configura-
tions (section 5.1). Absolute permeability for the fracture grid is deduced based
on the single-phase steady state Brinkman model. Subsequently, a compara-
tive analysis is carried out between the Brinkman model and the homogeneous
2φ2k Darcy model in the context of two-phase flow. The generation of equiv-
alent porous media for the Arapuá models is accomplished through the use of
equivalent absolute permeability and equivalent relative permeability curves.
Additionally, the impact of shape factor on the generation of these equivalent
porous media is assessed. Finally, it is investigated the influence of viscosity
on equivalent relative permeability curves.
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5.3.1
Single-Phase Flow

Figure 5.9, 5.10, and 5.11 present the steady-state, single-phase flow
velocity magnitude field predicted by the Brinkman model across the three
Arapuá vug configurations. The velocity profile along the cuts CC and DD
is also presented in the figures. A distinct disparity is evident in the velocity
profile of the Arapua10 case when compared to other cases. In this sample, the
vugs are dispersed within the porous matrix and compose a relatively minor
portion of the total porous volume, which results in less pronounced variations
in the velocity field. Notably, the most significant variations in velocity are
observed at the interfaces between vugs and porous matrix. Similar phenomena
have been observed in synthetic vugs (section 4.4.1). Velocity differences can
be as large as five orders of magnitude. In the Arapua17 and Arapua24
scenarios, it becomes evident that the velocity is significantly reduced in the
central region of the porous matrix surrounded by fractures. In contrast, vugs
are characterized by high velocity areas. Essentially, the predominant fluid
flow between Γ1 and Γ2 occurs within the vugs. Based on the velocity data,
the Reynolds number can be estimated in order to determine whether the
simplifying assumptions are valid. Based on water properties at standard
temperature, the Reynolds is 6.4 ×10−1 Arapua24 vug configuration. Thus,
it is possible to consider that the hypotheses are valid.

Figures 5.12, 5.13, and 5.14 show the steady-state, single-phase flow
pressure distribution across the three Arapuá scenarios. The pressure along
the lenght (cut CC) is also shown. In Arapua10, vugs have a limited impact
on the pressure gradient. The gradient in this scenario is similar to the pressure
gradient in a porous matrix and it is only slightly distorted by the vugs. For
Arapua17 and Arapua24, the vugs and fractures significantly influence the
pressure gradient. It is particularly evident in the central regions of these
cases. Within the central porous matrix regions of these domains, the pressure
gradient is similarly low. Consequently, consistent with the velocity analysis
of these regions, it is evident that these areas make a limited contribution to
overall flow dynamics. As a result, the vug regions emerge as the dominant
pathways for flow in these vuggy porous media configurations.

Figure 5.15 shows the relative difference between the equivalent perme-
ability obtained from the homogeneous 2φ2k model and that derived from the
Brinkman model (Keq

1φ1k) as function to the fracture grid permeability (Kf ).
The equivalent permeability of the 2φ2k model on the coarse scale (Keq

2φ2k) is
a function of the relationship between Kf and Km. The assumption of a suffi-
ciently high absolute permeability value in the vuggy region leads to misrepre-
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Figure 5.9: Velocity magnitude field (m/s) on the single-phase steady-state
regime for the vug configuration Arapua10. It is presented the velocity profile
on cuts CC and DD.
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Figure 5.10: Velocity magnitude field (m/s) on the single-phase steady-state
regime for the vug configuration Arapua17. It is presented the velocity profile
on cuts CC and DD.



Chapter 5. Comparison Between Brinkman and Dual-Continuum Models 131

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

10−7

10−5

CC

x (m)

‖u
‖
(m

/s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10−7

10−5

DD

y (m)

‖u
‖
(m

/s
)

Figure 5.11: Velocity magnitude field (m/s) on the single-phase steady-state
regime for the vug configuration Arapua24. It is presented the velocity profile
on cuts CC and DD.
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Figure 5.12: Pressure (Pa) field on the single-phase steady-state regime for the
vug configuration Arapua10 using the Brinkman model. It is presented the
pressure profile on section CC.
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Figure 5.13: Pressure (Pa) field on the single-phase steady-state regime for the
vug configuration Arapua17 using the Brinkman model. It is presented the
pressure profile on section CC.
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Figure 5.14: Pressure (Pa) field on the single-phase steady-state regime for the
vug configuration Arapua24 using the Brinkman model. It is presented the
pressure profile on section CC.
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sentation of fluid flow, as shown in section (4.4.1). Notably, for each scenario,
there is a distinct value of Kf that minimizes error. The optimal Kf value
for each Arapuá scenario is presented in Table (5.5). Kf is a critical factor for
the homogeneous 2φ2k model. An arbitrary selection of these parameters can
lead to inaccuracies when establishing equivalent permeability. This model is
highly sensitive to fracture permeability variations.
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Figure 5.15: An analysis of the relative error between the single-phase steady
state flow obtained by the Brinkman model and the homogeneous 2φ2k Darcy
model for Arapua10, Arapua17, and Arapua24 vug configurations as a function
of fracture permeability (Kf ).

Arapua10 configuration is characterized by a dispersed and poorly inter-
connected vug configuration. Consequently, this vug configuration exhibits a
notably lower value ofKf than other scenarios. Furthermore,Kf is much lower
than the absolute permeability of the porous matrix. According to Barenblatt
et al., (1960) [19], fracture absolute permeability should be higher than porous
matrix absolute permeability. However, Arapua10 fails to meet this criteria.
In this case, the porous matrix dominates the fluid flow. As a result, the frac-
ture/vug flow becomes negligible. Consequently, employing the 2φ2k model
under such conditions is not recommended.

On the other hand, Arapua17 and Arapua24 configurations present
high Kf values compared with Km. The cause of this is the conduit-type
macroporosity. In this scenarios, the optimum value of Kf is approximately
twice as high as matrix absolute permeability. This substantial difference
emphasizes the influential contribution made by flow through fractures, thus
supporting the adoption of a dual continuum model.
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Sample VV [m3] Vm [m3] Keq
1φ1k [mD] Kf [mD]

Arapua10 0.18 0.96 108.98 11.11
Arapua17 0.78 0.79 311.21 231.97
Arapua24 0.55 0.85 322.68 251.24

Table 5.5: Properties for Arapua10, Arapua17, and Arapua24: porous volume
for matrix and vug domain, absolute permeability obtained through the
Brinkman model (Keq

1φ1k), and optimal fracture absolute permeability (Kf ).

5.3.2
Two-Phase Flow

Figures 5.16, 5.17, and 5.18 show the comparative two-phase flow results
for the Brinkman model and the homogeneous 2φ2k Darcy models. There are
two cases for the homogeneous 2φ2k model. In the reference scenario, the
absolute permeability is taken from table (5.5) and the relative permeability
curve is × type, where the phase mobility is linearly proportional to the
phase saturation. This scenario is chosen because it is common configuration
found in literature to model the karst features [108, 62, 110]. The second
scenario is after the history matching has been performed. The absolute
fracture permeability is obtained from table (5.5) and the equivalent relative
permeability curve is obtained through numerical optimization to provide
a more accurate representation of the Brinkman results. The results are
presented as accumulated oil production (NpD), water cut (Wcut) and the
pressure difference (∆p). In dual-continuum models analysis, the pressure
difference is not normalized at tD = 0 because at the initial simulation steps in
the IMEX simulator, the pressure difference is highly sensitive and fluctuates
significantly. It occurs due to pressure equilibrium between the two continuum
domains. Consequently, the pressure reference at tD = 0 lacks consistency
between the Brinkman model and the 2φ2k model.

Generally, there are two distinct trends for the reference case in the
homogeneous 2φ2k vug scenarios. For the homogeneous 2φ2k reference case,
there is a relative small discrepancy in terms of NpD, Wcut, and ∆p in
relation to the Brinkman model for the Arapua10 vug case, while the other
two cases differ significantly. In Arapua10 configuration, the porous matrix
significantly influences flow behavior due to the diffuse vug configuration.
Since fracture permeability is significantly lower than matrix permeability and
fracture porous volume is much smaller than the porous matrix, fluid flow is
dominated by matrix flow.
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Figure 5.16: It is presented here the NpD, Wcut, and ∆p as function of tD for
Brinkman model and the reference homogeneous 2φ2k Darcy model for the
Arapua10 scenario.
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Figure 5.17: It is presented the NpD and Wcut as function of tD for Brinkman
model and the homogeneous 2φ2k model for the Arapua17 scenario. It is shown
the results of the reference scenario and the modification of the curves of
relative permeability using the History Matching method.



Chapter 5. Comparison Between Brinkman and Dual-Continuum Models 139

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

tD

N
p D

Ref. Case

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

tD

N
p D

After HM

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

tD

W
cu
t

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

tD

W
cu
t

0 0.5 1 1.5 2
6

8

10

12

14

tD

∆
p
(k
Pa

)

0 0.5 1 1.5 2
6

8

10

12

14

tD

∆
p
(k
Pa

)

Brinkman Homogeneous 2φ2k

Figure 5.18: It is presented the NpD, Wcut. and ∆p as function of tD for
Brinkman model and the homogeneous 2φ2k model for the Arapua24 scenario.
It is shown the results of the reference scenario and the modification of the
curves of relative permeability using the History Matching method.
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Arapua17 and Arapua24 scenarios exhibit substantial differences in
terms of cumulative oil production, water cut evolution and the pressure
difference between the Brinkman and the reference 2φ2k homogeneous Darcy
model. Comparing the both models, there are significant discrepancies in NpD
final recovery, with deviations of 14.89 % and 15.97 %, respectively. The
discrepancies are even more pronounced in Wcut, indicating that the modeling
approach fails to adequately capture fluid flow behavior. Also, the outcomes
differ significantly in terms of ∆p.

NpD, Wcut and ∆p predictions are significantly improved when History
Matching is applied to the Arapua17 and Arapua24 scenarios. Figures 5.17
and 5.18 demonstrate how the optimized relative permeability curves of the
fracture grid improves the NpD, Wcut and ∆p predictions. In the Arapua17
scenario the discrepancy compared to the Brinkman model or the NpD final
recovery decreased from 17.49 % on the reference scenario to 0.52 % in the case
after the HM. For the Arapua24 scenario there is a reduction from 18.30 % on
the reference scenario to 2.00 % in the case after the HM. History matching
also improved Wcut and ∆p prediction. Despite the discrepancy between the
Brinkman model and the homogeneous 2φ2k model for the Arapua17 and
Arapua24 scenarios,Wcut and ∆p disparity are within an acceptable range. An
adequate representation of a highly heterogeneous vugular porous medium can
be achieved by incorporating a dual-continuum model with equivalent absolute
permeability and equivalent relative permeability curves for the fracture grid.

Figures 5.19, 5.20, and 5.21 display the saturation distribution for the
Arapua10, Arapua17, and Arapua24 configurations at three distinct tD values,
respectively. Brinkman’s model is compared with the homogeneous 2φ2k mod-
els after HM. Arapua10 case exhibits a different behavior from the other two
cases. Considering that the porous matrix contains dispersed vugs, the porous
matrix serves as the primary conduit for fluid flow within the porous medium.
The vugs has high permeability and porosity when compared with the the
porous matrix, causing smooth distortion of the advancing water front. In the
Arapua10 homogeneous 2φ2k model the water advances simultaneous within
both the matrix grid and fracture grid, indicating simultaneous breakthroughs
in both the porous matrix and fracture network.

Conversely, the flow patterns observed in Arapua17 and Arapua24 are
significantly influenced by the interconnected vug system, forming extensive
channels throughout the domain. This configuration creates zones of low flow
resistance, which serve as preferred pathways for fluid flow. Additionally,
after the History Matching process, Arapua17 and Arapua24 exhibit distinct
behaviors in the homogeneous 2φ2k model. In these cases, the fracture grid
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Figure 5.19: Saturation map of the Arapua10 scenario for three different tD
for Brinkman model and the reference homogeneous 2φ2k Darcy model.

Figure 5.20: Saturation map of the Arapua17 scenario for three different tD
for Brinkman model and the homogeneous 2φ2k Darcy model after HM.



Chapter 5. Comparison Between Brinkman and Dual-Continuum Models 142

Figure 5.21: Saturation map of the Arapua24 scenario for three different tD
for Brinkman model and the homogeneous 2φ2k Darcy model after HM.

plays a significant role, resulting in two distinct water-front advancement rates
across the porous and fracture grids. Moreover, the saturation distributions
differ significantly between these two grids due to variations in their equivalent
relative permeability curves. The combination of these factors closely resembles
the outcomes predicted by the Brinkman model for two-phase flow.

The homogeneous 2φ2k Darcy model significantly modifies the computa-
tional domain because all the vugular features are replaced for an homogeneous
domain. As a result, the equivalent absolute permeability and the equivalent
relative permeability curves not only incorporate the viscous diffusivity effects
that the Brinkman model incorporates into the model, but also encapsulated
the intricate geometry of the vug network.

Figure 5.22 illustrates the equivalent relative permeability curves and
the fractional flow after History Matching for the fracture domain. Arapua17
and Arapua24 exhibit different equivalent relative permeability curves for ho-
mogeneous 2φ2k models. This is explained by the fact that both scenarios
show differences in macroporosity distribution throughout the domain. Conse-
quently, numerical optimization is required to accurately capture the unique
characteristics of each domain. Table (5.6) summarizes the LET parameters
for the equivalent relative permeability curves for each geological scenario.
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Figure 5.22: The × relative permeability curve and equivalent relative perme-
ability curves and the fw as function tD for homogeneous 2φ2k Darcy model
for the Arapua17 and Arapua24 scenario.

5.3.3
Effect of Transfer Function

This section discusses how shape factor affects two-phase flow dynamics.
In order to achieve this, σ is varied from 1.2 × 103 to 1.2 × 107 m−2 across
the three geological configurations in the homogeneous 2φ2k Darcy models.
Each of these sigma values corresponds to the characteristic length in each
direction (Lx, Ly, and Lz) multiplied by ten and divided by ten, respectively.
The absolute and relative permeability curves of the porous matrix and the
fracture domain are kept constant.

Figure 5.23 present the NpD and the Wcut as functions of the tD for the
reference scenario of homogeneous 2φ2k Darcy models. It is observed that two-
phase flow dynamics are not affected by shape factor value. The two-phase flow
is only marginally affected by σ the Arapua10 scenario. Therefore, the shape
factor has no effect on the two-phase flow and is not considered in further
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evaluation.

5.3.4
Effect of viscosity

This section discusses how the oil viscosity affects the determination
of fracture equivalent relative permeability curves. Three different viscosity
scenarios are tested for the Arapua17 configuration. Oil viscosity is evaluated
additionally at 2 cp, 5 cp, and 20 cp, while the water viscosity remains constant
at 1 cp. Figure 5.24 illustrates the relation between NpD as a function of tD
on the reference scenario and after HM for the three viscosity scenarios. As
a result of the HM, the homogeneous fracture configuration shows significant
improvements. For all viscosity scenarios, figure 5.24 clearly illustrates the
enhanced adherence of NpD from the reference scenario to the after HM case.
Each of these case can be quantified by comparing the final recovery NpD to
the Brinkman model. Accordingly, the difference between the Brinkman model
from the reference scenario and the after-HM scenario is reduced as follows:
from 15.33 % to 2.31 % for µo of 2 cp, from 11.70 % to 5.85 % for µo of 5 cp,
and from 8.37 % to 0.57 % for µo of 20 cp.

Configuration µo [cp] Lo Eo To Lw Ew Tw krw

Arapua24 1.00 4.15 3.72 0.50 2.28 4.19 4.60 1.00
Arapua17 1.00 2.19 4.13 0.50 0.50 3.56 2.35 0.98
Arapua17 2.00 0.50 4.68 1.04 0.50 2.98 1.60 1.00
Arapua17 5.00 1.04 4.33 0.77 0.50 5.00 2.32 1.00
Arapua17 20.00 1.51 4.28 3.08 0.91 1.54 3.20 0.82

Table 5.6: Influence of fluid viscosity and 2φ2k models on LET parameters for
Arupa24 and Arapua17 vug scenarios.

Figure 5.25 illustrates the equivalent relative permeability curves and
the fractional flow obtained after history matching for the homogeneous 2φ2k
models. Overall, there is discrepancy between the equivalent relative perme-
ability curves for the viscosity scenarios presented, which are directly related
to the fluid viscosity. Table (5.6) presents the LET parameters for the equiv-
alent relative permeability curves associated with the vug configurations of
Arapua17 and Arapua24, as well as the homogeneous 2φ2k models, consider-
ing three different values of µo. Hence, to define an equivalent porous medium,
it is imperative to account for the characteristics of the fluids.

Consistency tests are also conducted for the 2φ2k models, as explained
in chapter four. For these tests, the Arapua24 model is selected, and the inlet
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Figure 5.23: An sensitivity analysis of three scenarios of σ is presented for the
homogeneous 2φ2k Darcy model.
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Figure 5.24: Influence of viscosity on NpD as a function of tD for the Arapua17
configuration on the homogeneous 2φ2k Darcy models.
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Figure 5.25: The × relative permeability and equivalent relative permeability
curves for homogeneous 2φ2k Darcy model for three different oil viscosity are
evaluated at Arapua17 scenario.

velocity is modified to two additional values. It is observed that the Wcut and
∆ptD

∆ptD=0
curves remain unchanged as the inlet velocity varies. This is attributed

to the absence of a momentum transport term in the Brinkman equation, which
distinguishes it from the Navier-Stokes equation. As a result, disparities caused
by varying inlet velocities are small. Hence, no significant alterations in the
outcomes are expected due to the velocity variation at the inlet.

In the Arapua24 scenario, the influence of the velocity at the inlet has
little effect on the overall result for the establishment of a homogeneous
2φ2k model. Figure 5.26 presents the fractional flow curves for the fracture,
indicating that variations in the LET parameters have little effect on the water
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Configuration uΓ1 [m/s] Lo Eo To Lw Ew Tw krw

Arapua24 5× 10−7 4.43 3.43 0.50 2.24 4.06 4.14 1.00
Arapua24 5× 10−6 4.68 3.92 0.53 2.42 4.40 4.68 1.00
Arapua24 10−5 4.53 3.7 0.59 2.49 4.30 4.53 1.00

Table 5.7: Influence of the inlet velocity on Arapua24 2φ2k models on LET
parameters.
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Figure 5.26: For the Brinkman model, an analysis of the influence of inlet
velocity is presented on the vug configuration Arapua24.

fractional flow. This can be attributed to the choice of methodology and the
low Reynolds number of the flow. Due to the absence of a momentum transport
term in the Brinkman equation, as opposed to the Navier-Stokes equation, it
appears that the variations resulting from modifing the inlet velocity would be
relatively small. The LET parameters responsible for generating these curves
are depicted in Table 5.7.

5.4
Discussion

In a manner similar to what has been done here, Campos (2023) [60]
compares the Brinkman model with a homogeneous 2φ2k model in single-phase
flow. Both studies utilized the same vug geometric system derived from Lajedo
Arapuá. Employing an optimization procedure, Campos established equivalent
petrophysical properties for the fracture grid. Initially comparing the results
derived from the Brinkman models, there was a reasonable agreement on the
equivalent permeability between both studies. Regarding the determination
of fracture absolute permeability, Campos utilized a porous matrix with 10
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Figure 5.27: A comparison of relative permeability curves and fractional flow
under four different inlet velocities for Arapua24 vug configuration on the 2φ2k
homogeneous Darcy model.

mD, differing from this study (100 mD). However, considering the Kf/Km

ratio, both studies yielded similar results. Based on the results of chapter
four, it has been demonstrated that the porous matrix affects the pressure
drop in the free-flow region and that the relationship between the porous
matrix and the vug region remains constant. In a homogeneous model of 2φ2k,
where the porous matrix remains constant, and the fracture permeability is
numerically calculated, this conclusion of section 4.4.1 can be extended. Both
studies have thus reached similar conclusions in terms of establishing equivalent
petrophysical properties for a 2φ2k model.

Campos (2023) [60] presented similar findings to the shape factor sensi-
tivity analysis. The study examined the impact of homogenization on a single-
phase transient problem, where σ had negligible influence on calculating equiv-
alent permeabilities in homogeneous scenarios. Similarly, in the current study,
this parameter demonstrated no influence on two-phase flow behavior. The
shape factor is intricately linked to the numerical mesh configuration. This
study does not involve upscaling the grid block (or upgriding), which means
there are no modification in the mesh cell dimensions. Therefore, this param-
eter is not upscaled. In addition, the sensitivity analysis indicates that the
numerical solution is not affected by the choice of σ within the established
range.

The methodologies presented in this study and those presented in Rios
(2020) [90] might be complementary at the reservoir scale. The heterogeneous
1φ1k model fails to capture the outcomes derived from the Brinkman model, as
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discussed in chapters four and five. Thus, even if regions of high flow capacity
are approximated at a finer scale in the 2φ2k mode may not accurately reflect
flow dynamics in this scale. Thus, it is necessary to use the Brinkman model in
the fine scale to correctly model fluid flow. Thus, after using the methodology
proposed here, an upscaling can be conducted at the reservoir scale. Thus, it
is possible to evaluate flow capacity at a field scale.

Kumar et al. (1997) [80] presents a critical discussion regarding the
impact of capillary and gravitational forces on the upscaling procedure. Over
chapter four and five, the capillary force is ignored. Thus, the viscous forces
is the main drive force in the cases presented here. As evidenced by the
findings in Arapua17 and Arapua24, this assumption is suitable because the
flow occurs predominantly in the free-flow region. It should be noted that in
such instances, minimal flow takes place within the porous matrix. The flow
within this matrix is typically directed towards the vug, where the majority
of the flow takes place. In the free-flow region, capillary forces are essentially
absent. Hence, the viscous forces are predominately over the capillary forces
even in scenarios considering capillary forces in the porous matrix. However,
for vugs dispersed in porous matrix, such as Arapua10 (or vug configuration
(a)-(c), (e) and the micortomography presented in chapter four) it is necessary
to evaluate on a case-by-case basis whether these capillary forces modeling may
be appropriate for the problem at hand. It is important to take into account
gravitational forces, which can be particularly significant in areas of free flow.
Particularly important is the establishment of equivalent properties vertically
within the reservoir. The omission of this intrinsic physics component must be
carefully assessed in order to avoid significant distortions in the application of
this methodology. This is one of the limitations of the proposed methodology,
which did not considered the gravitational effect. The present study does not
address this aspect, however, future research should explore this issue.

The homogeneous 2φ2k Darcy model is a suitable option for homogeniz-
ing porous media characterized by substantial channeling effects. As a result
of the enhanced degrees of freedom inherent in 2φ2k models, highly intricate
media can be homogenized effectively. Combining two distinct porous media
creates optimal conditions for the accurate representation of such complex
systems. As a result, the modeling approach proposed in this study, which in-
corporates a 2φ2k model provides a robust alternative for modeling karstified
and fractured porous media. Furthermore, its implementation is straightfor-
ward, necessitating numerical optimization process for generating the equiva-
lent petrophysical properties for the fracture grid.



6
Final Remarks

Brinkman equation is used to describe single and two-phase flows within
highly heterogeneous porous media, where vugs are embedded within a porous
matrix.

The single-continnum model is analyzed on two different scales. On the
fine scale, the heterogeneous 1φ1k Darcy model is used to determine the equiva-
lent properties using the results obtained by Brinkman’s modeling. In this case,
the vug permeability Kε

V ug is obtained through numerical computations to re-
cover the equivalent permeability predicted by the Brinkman solution (Keq

1φ1k).
In all cases, it was possible to find a Kε

V ug value that minimized the error
compared to the Brinkman model on the single-phase flow. The geometry and
distribution of the vugs within the domain affect the optimal value of Kε

V ug.
For the vug configurations (a)-(c) and (e), setting an arbitrary high value does
not result in significant errors. Nevertheless, for the configuration with a single
vug aligned with the flow direction, the error was as high as 9 %. The mi-
cro tomography sample has a similar behavior to cases (a)-(c); however, Kε

V ug

has an asymptotic behavior that minimizes the error to an acceptable level.
Considering two-phase flow, Brinkman and heterogeneous 1φ1k model exhibits
similar Wcut behavior for all vug configurations. Notwithstanding, a notable
disparity arises in the pressure dynamics during two-phase flow between the
Brinkman model and heterogeneous Darcy model. This divergence may be at-
tributed to the fluid viscous dissipation within the vugs, not considered in the
homogeneous Darcy model. Thus, the heterogeneous 1φ1k Darcy model can
not recover the results obtained on Brinkman model.

A homogeneous Darcy model is constructed through an optimization
procedure to reproduce the complex two-phase flow through a vugular porous
medium. Homogenization is effectively applied to all vug configurations ex-
cept for configuration (d). Using appropriate equivalent absolute and relative
permeability curves, the differences between the Brinkman model and the ho-
mogeneous Darcy model are minimized.

The Brinkman model exhibits significant disparities compared to the
reference homogeneous 2φ2k model for the case where there is a strong chan-
nelling effect. The homogenization of vugs yields significant differences from
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the Brinkman model to the reference homogeneous 2φ2k Darcy model. These
results show that arbitrarily setting the relative permeability as a ×-shape can
lead to inaccurate results. Thus History Matching is necessary to obtain the
equivalent relative permeability curves. To achieve homogenization in these
cases, it is essential to develop equivalent permeability curves. Moreover, the
equivalent relative permeability curves not only take into account the physical
differences between the Stokes and the Darcy terms, but also the effects of flow
through the intricate vug network. The great advantage of homogenization is
that it reduces the complexity of the geometry of the vugs, which are treated
through equivalent petrophysical properties. Fluid viscosity has effect on the
determination of equivalent relative permeability curves since there are sig-
nificant differences in relative permeability curves when fluid viscosity ratios
vary.

For karstified and fractured media, the current modeling paradigm
involves the emergence of the multi-porosity medium [115]. These models,
however, introduces complexities not only by increasing degrees of freedom,
given the presence of three or more porous media, but also by enhancing
modeling uncertainty, which are result of the transfer functions that link
matrix, fracture, and karst. It is possible that this increase in uncertainties
could compromise the accuracy of the model. Moreover, the introduction of
more degrees of freedom increases the computational expenses associated with
these models.

In conclusion, Brinkman model can be used to establish equivalent
properties for single-continuum and dual-continuum models. Single-continuum
model are suitable to homogenize dispersed vugs in the porous matrix an
vug configurations with low degree of channeling. On the other hand, dual-
continuum are indicated for vug configurations with strong channeling. It is
possible to determine properties such as absolute permeability and relative
equivalent permeability by using more reliable data. By adopting this ap-
proach, the models can be improved in terms of accuracy and reliability.

6.1
Future Studies

As a recommendation for future studies, there are direct implications for
reservoir engineers who require equivalent properties in their models. Further
scientific investigations are needed to gain a more profound understanding of
the physical phenomena associated with flow in highly heterogeneous porous
media.

In practical applications, it is necessary to efficiently and accurately
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generate equivalent properties. Machine learning models and convolutional
neural networks [116] hold significant promise in this area. By leveraging
a database of vuggy porous media images, these techniques can rapidly
produce equivalent properties for everyday use. However, it’s worthwhile to
acknowledge that generating the initial data set poses a challenge due to the
extensive computational time required for each scenario. This may be mitigated
through some optimization.

Models that take into account the modeling of three-phase flows or
compositional fluid models are highly relevant to pre-salt field scenarios, where
the injection of CO2-rich streams is common practice. As well as the extension
to a 3-D model to capture gravitational effects. It is necessary to evaluate the
modified IMPES method [117] to improve the code performance. Moreover,
it is necessary to implement a effective tool to establish the ∆t. Another
possibility is to use parallel computing. FEniCS project has the possibility
to easy implement parallel computing because this tool is readily available.

Another aspect worthy of attention is the interaction between flow phases
within the free-flow region. While there has been an attempt to assess the
existing literature on phase interaction in fractured media, it is noteworthy
that references in this domain are scarce. Moreover, relying on the assumption
that the velocity of each phase is directly proportional to its saturation
is a simplification. To address this gap, a more comprehensive and refined
literature review is essential, encompassing insights from other fields that
investigate liquid-liquid phase interaction. The utilization of such models
can be of immense value in offering a more detailed representation of flow
dynamics within vugs. This is especially relevant to gas-liquid flows. Given the
significantly higher mobility of gas than liquid, it is even more important to
model this type of flow accurately. In order to integrate the nuances of the
fine scale into the broader context of the coarse scale, homogenization theory
can be regarded as an invaluable tool. As a result, it is essential to explore
fine-scale models in more depth, in order to elucidate the underlying physics
and integrate these features into coarse-scale models.
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A
Codes

A.1
Brinkman Two-Phase

1 from fenics import *
2 import time
3 import ufl
4 import os
5

6

7 class PiecewiseConstant(UserExpression):
8 def __init__(self, values, markers, **kwargs):
9 self._values = values

10 self._markers = markers
11 super().__init__(**kwargs)
12

13 def eval_cell(self, values, x, cell):
14 values[0] = self._values[self._markers[cell.index]]
15

16 def value_shape(self):
17 return tuple()
18

19

20 def tensor_jump(v, n):
21 return ufl.outer(v, n)("+") + ufl.outer(v, n)("-")
22

23

24 def lmbdainv(s, mu_w, mu_o, no, nw):
25 return 1.0 / ((s**nw) / mu_w + ((1.0 - s) ** no) / mu_o)
26

27

28 # Fractional flow function

29 def F(s, mu_rel, no, nw):
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30 return s**nw / (s**nw + mu_rel * (1.0 - s) ** no)
31

32

33 def F_vugg(s):
34 return s
35

36

37 def mu_brinkman(s, mu_o, mu_w):
38 return s * mu_w + (1.0 - s) * mu_o
39

40

41 def BrinkmanIMPESGsmh(_folder_base, mu_w, mu_o, perm_darcy,
dt):↪→

42 dir1 = _folder_base + "/dir1"
43 dir2 = _folder_base + "/dir2"
44

45 try:
46 os.mkdir(dir1)
47 except OSError as error:
48 print(error)
49

50 try:
51 os.mkdir(dir2)
52 except OSError as error:
53 print(error)
54

55 mu = (mu_o + mu_w) / 2 # Pa.s

56 mu_b = (mu_o + mu_w) / 2 # Pa.s

57

58 mili_darcy = 9.86923e-16 # Porous media permeability

convertion factor md [m2] (1 Darcy = E-12 m2)↪→

59

60 k_matriz = perm_darcy * mili_darcy
61

62 kgf_cm2_to_Pa = 98066.5
63 pin = 2 * kgf_cm2_to_Pa # Pa

64 pout = kgf_cm2_to_Pa # Pa

65

66 dt = Constant(dt) # s
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67

68 phi = 0.2
69 mu_rel = mu_w / mu_o
70

71 sbar = Constant(1)
72

73 Kinv = Constant(1 / k_matriz)
74

75 mu = Constant(mu)
76 mu_b = Constant(mu_b)
77 t = 0
78 T = 5 * float(dt)
79

80 mesh = Mesh()
81 with XDMFFile(_folder_base + "/mesh/mesh.xdmf") as infile:
82 infile.read(mesh)
83

84 mvc = MeshValueCollection("size_t", mesh, 2)
85 with XDMFFile(_folder_base + "/mesh/domains.xdmf") as

infile:↪→

86 infile.read(mvc)
87 Markers = cpp.mesh.MeshFunctionSizet(mesh, mvc)
88

89 mvc = MeshValueCollection("size_t", mesh, 1)
90 with XDMFFile(_folder_base + "/mesh/boundaries.xdmf") as

infile:↪→

91 infile.read(mvc)
92 boundaries = cpp.mesh.MeshFunctionSizet(mesh, mvc)
93

94 order = 1
95 V = FiniteElement("BDM", mesh.ufl_cell(), order)
96 Q = FiniteElement("DG", mesh.ufl_cell(), order - 1)
97 R1 = FiniteElement("DG", mesh.ufl_cell(), order - 1)
98

99 Element = V * Q
100 W = FunctionSpace(mesh, Element)
101 R = FunctionSpace(mesh, R1)
102

103 (u, p) = TrialFunctions(W)
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104 (v, q) = TestFunctions(W)
105

106 s = TrialFunction(R)
107 r = TestFunction(R)
108

109 U = Function(W)
110 (u_, p_) = U.split()
111 S = Function(R)
112 s0 = Function(R)
113

114 s0.vector()[:] = 0.0
115

116 # ============= DEFINITION OF SPATIALLY-VARYING PARAMETERS

=====================↪→

117 marker_inner = 1
118 marker_outer = 0
119

120 no_outer = 2
121 nw_outer = 2
122 no_inner = 1
123 nw_inner = 1
124

125 no = {marker_inner: no_inner, marker_outer: no_outer}
126 nw = {marker_inner: nw_inner, marker_outer: nw_outer}
127

128 VVV = FunctionSpace(mesh, "DG", 0)
129

130 noo = PiecewiseConstant(no, Markers)
131 noo_proj = project(noo, VVV)
132 nww = PiecewiseConstant(nw, Markers)
133 nww_proj = project(nww, VVV)
134

135 # =========== END DEFINITION OF SPATIALLY-VARYING

PARAMETERS ===================↪→

136

137 bc1 = DirichletBC(W.sub(0), Constant((1.0e-6, 0.0)),
boundaries, 1)↪→

138 bc2 = DirichletBC(W.sub(0), Constant((0.0, 0.0)),
boundaries, 2)↪→
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139 # # # bc3 = DirichletBC(VQ.sub(0), Constant((0.0, 0.0)),

boundaries, 3)↪→

140 bc4 = DirichletBC(W.sub(0), Constant((0.0, 0.0)),
boundaries, 4)↪→

141

142 bcs = [bc1, bc2, bc4] # velocity BC

143

144 ds = Measure("ds", domain=mesh, subdomain_data=boundaries)
145 dx = Measure("dx", domain=mesh, subdomain_data=Markers)
146

147 alpha = 35
148 h = CellDiameter(mesh)
149 h2 = ufl.Min(h("+"), h("-"))
150

151 f = Constant((0.0, 0.0))
152 n = FacetNormal(mesh)
153

154 stab = (
155 mu * (alpha / h2) * inner(tensor_jump(u, n),

tensor_jump(v, n)) * dS↪→

156 - mu * inner(avg(grad(u)), tensor_jump(v, n)) * dS
157 - mu * inner(avg(grad(v)), tensor_jump(u, n)) * dS
158 )
159

160 a = (
161 mu_brinkman(s0, mu_o=mu_o, mu_w=mu_w) * inner(grad(u),

grad(v)) * dx(1)↪→

162 + inner(v, lmbdainv(s0, mu_w, mu_o, no_outer, nw_outer)
* Kinv * u) * dx(0)↪→

163 - div(v) * p * dx(1)
164 - div(v) * p * dx(0)
165 + div(u) * q * dx(0)
166 + div(u) * q * dx(1)
167 + stab
168 )
169

170 L = (
171 inner(f, v) * dx(0)
172 + inner(f, v) * dx(1)
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173 # - pin * dot(v, n) * ds(1)

174 - pout * dot(v, n) * ds(3)
175 )
176

177 un = 0.5 * (inner(u_, n) + abs(inner(u_, n)))
178 un_h = 0.5 * (inner(u_, n) - abs(inner(u_, n)))
179

180 stabilisation = (
181 dt("+") * inner(jump(r), jump(un * F(s0, mu_rel,

noo_proj, nww_proj))) * dS↪→

182 )
183

184 L3 = (
185 phi * r * (s - s0) * dx(0)
186 + r * (s - s0) * dx(1)
187 - dt * inner(grad(r), F(s0, mu_rel, noo_proj, nww_proj)

* u_) * dx(0)↪→

188 - dt * inner(grad(r), F_vugg(s0) * u_) * dx(1)
189 + dt * r * F(s0, mu_rel, no_outer, nw_outer) * un * ds
190 + stabilisation
191 + dt * r * un_h * sbar * ds(1)
192 )
193

194 a_s, L_f = lhs(L3), rhs(L3)
195

196 u_file = XDMFFile(dir2 + "/velocity.xdmf")
197 p_file = XDMFFile(dir2 + "/pressure.xdmf")
198 s_file = XDMFFile(dir2 + "/saturation.xdmf")
199

200 step = 0
201 parada = 1
202

203 # while t < T:

204 while step < 1e6:
205 # ===

206 _start_time = time.time()
207 t += float(dt)
208 solve(a == L, U, bcs)
209 solve(a_s == L_f, S)
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210 s0.assign(S)
211

212 if step % 2 == 0:
213 p_file.write(p_, t)
214 s_file.write(S, t)
215 u_file.write(u_, t)
216

217 step = step + 1

A.2
Darcy Two-Phase

1 from fenics import *
2 import time
3 import ufl
4 import os
5

6

7 class PiecewiseConstant(UserExpression):
8 def __init__(self, values, markers, **kwargs):
9 self._values = values

10 self._markers = markers
11 super().__init__(**kwargs)
12

13 def eval_cell(self, values, x, cell):
14 values[0] = self._values[self._markers[cell.index]]
15

16 def value_shape(self):
17 return tuple()
18

19

20 class Obstacle(SubDomain):
21 def inside(self, x, on_boundary):
22 return between(x[1], (0.3, 0.7)) and between(x[0],

(0.3, 0.7))↪→

23

24

25 def tensor_jump(v, n):
26 return ufl.outer(v, n)("+") + ufl.outer(v, n)("-")
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27

28

29 def lmbdainv(s, mu_w, mu_o, no, nw):
30 return 1.0 / ((s ** nw) / mu_w + ((1.0 - s) ** no) / mu_o)
31

32

33 # Fractional flow function

34 def F(s, mu_rel, no, nw):
35 return s ** nw / (s ** nw + mu_rel * (1.0 - s) ** no)
36

37

38 def DarcyIMPESRT(Nx, _folder_base, mu_w, mu_o, perm_darcy,
perm_vugg, dt):↪→

39

40 Ny = Nx
41 dir0 = _folder_base + "/Darcy_2_domai_RT"
42 dir1 = dir0 + "/dir1"
43 dir2 = dir0 + "/dir2"
44

45 try:
46 os.mkdir(dir0)
47 except OSError as error:
48 print(error)
49

50 try:
51 os.mkdir(dir1)
52 except OSError as error:
53 print(error)
54

55 try:
56 os.mkdir(dir2)
57 except OSError as error:
58 print(error)
59

60 mu = (mu_o + mu_w) / 2 # Pa.s

61

62

63 mili_darcy = 9.86923e-16 # Porous media permeability

convertion factor md [m2] (1 Darcy = E-12 m2)↪→
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64

65 k_matriz = perm_darcy * mili_darcy
66 k_vugg = perm_vugg * mili_darcy
67

68 kgf_cm2_to_Pa = 98066.5
69 pin = 2 * kgf_cm2_to_Pa # Pa

70 pout = kgf_cm2_to_Pa # Pa

71

72 dt = Constant(dt) # s

73

74 phi = 0.2
75 mu_rel = mu_w / mu_o
76

77 sbar = Constant(1)
78

79 Kinv_matriz = Constant(1 / k_matriz)
80 Kinv_vugg = Constant(1 / k_vugg)
81

82 mu = Constant(mu)
83

84 t = 0
85 T = 5 * float(dt)
86

87 mesh = mesh = UnitSquareMesh(Nx, Ny, "crossed")
88

89 order = 1
90 V = FiniteElement("RT", mesh.ufl_cell(), order)
91 Q = FiniteElement("DG", mesh.ufl_cell(), order - 1)
92 R1 = FiniteElement("DG", mesh.ufl_cell(), order - 1)
93

94 Element = V * Q
95 W = FunctionSpace(mesh, Element)
96 R = FunctionSpace(mesh, R1)
97

98 (u, p) = TrialFunctions(W)
99 (v, q) = TestFunctions(W)

100

101 s = TrialFunction(R)
102 r = TestFunction(R)
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103

104 U = Function(W)
105 (u_, p_) = U.split()
106 S = Function(R)
107 s0 = Function(R)
108

109 s0.vector()[:] = 0.0
110

111 # ============= DEFINITION OF SPATIALLY-VARYING PARAMETERS

=====================↪→

112 marker_inner = 1
113 marker_outer = 0
114

115 no_outer = 2
116 nw_outer = 2
117 no_inner = 1
118 nw_inner = 1
119

120 obstacle = Obstacle()
121

122 Markers = MeshFunction("size_t", mesh,
mesh.topology().dim())↪→

123 Markers.set_all(marker_outer)
124 obstacle.mark(Markers, marker_inner)
125

126 no = {marker_inner: no_inner, marker_outer: no_outer}
127 nw = {marker_inner: nw_inner, marker_outer: nw_outer}
128

129 VVV = FunctionSpace(mesh, "DG", 0)
130

131 noo = PiecewiseConstant(no, Markers)
132 noo_proj = project(noo, VVV)
133 nww = PiecewiseConstant(nw, Markers)
134 nww_proj = project(nww, VVV)
135

136 boundaries = MeshFunction("size_t", mesh,
mesh.topology().dim() - 1)↪→

137

138 left = AutoSubDomain(lambda x: near(x[0], 0.0))
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139 right = AutoSubDomain(lambda x: near(x[0], 1.0))
140 bottom = AutoSubDomain(lambda x: near(x[1], 0.0))
141 top = AutoSubDomain(lambda x: near(x[1], 1.0))
142

143 # Define boundary markers

144 left.mark(boundaries, 1)
145 top.mark(boundaries, 2)
146 right.mark(boundaries, 3)
147 bottom.mark(boundaries, 4)
148

149 # =========== END DEFINITION OF SPATIALLY-VARYING

PARAMETERS ===================↪→

150

151 bc1 = DirichletBC(W.sub(0), Constant((1.0e-6, 0.0)),
boundaries, 1)↪→

152 bc2 = DirichletBC(W.sub(0), Constant((0.0, 0.0)),
boundaries, 2)↪→

153 # # # bc3 = DirichletBC(VQ.sub(0), Constant((0.0, 0.0)),

boundaries, 3)↪→

154 bc4 = DirichletBC(W.sub(0), Constant((0.0, 0.0)),
boundaries, 4)↪→

155

156 bcs = [bc1, bc2, bc4] # velocity BC

157

158 ds = Measure("ds", domain=mesh, subdomain_data=boundaries)
159 dx = Measure("dx", domain=mesh, subdomain_data=Markers)
160

161 File(dir1 + "/domains.pvd") << Markers
162

163 alpha = 35
164 h = CellDiameter(mesh)
165

166

167 f = Constant((0.0, 0.0))
168 n = FacetNormal(mesh)
169

170

171 a = (
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172 inner(v, lmbdainv(s0, mu_w, mu_o, no_inner, nw_inner) *
Kinv_matriz * u) * dx(0)↪→

173 + inner(v, lmbdainv(s0, mu_w, mu_o, no_outer, nw_outer)
* Kinv_vugg * u) * dx(1)↪→

174 - div(v) * p * dx(1)
175 - div(v) * p * dx(0)
176 + div(u) * q * dx(0)
177 + div(u) * q * dx(1)
178

179 )
180

181 L = (
182 inner(f, v) * dx(0)
183 + inner(f, v) * dx(1)
184 # - pin * dot(v, n) * ds(1)

185 - pout * dot(v, n) * ds(3)
186 )
187

188 un = 0.5 * (inner(u_, n) + abs(inner(u_, n)))
189 un_h = 0.5 * (inner(u_, n) - abs(inner(u_, n)))
190

191 stabilisation = (
192 dt("+") * inner(jump(r), jump(un * F(s0, mu_rel,

noo_proj, nww_proj))) * dS↪→

193 )
194

195 L3 = (
196 phi * r * (s - s0) * dx(0)
197 + r * (s - s0) * dx(1)
198 - dt * inner(grad(r), F(s0, mu_rel, noo_proj, nww_proj)

* u_) * dx↪→

199 + dt * r * F(s0, mu_rel, no_outer, nw_outer) * un * ds
200 + stabilisation
201 + dt * r * un_h * sbar * ds(1)
202 )
203

204 a_s, L_f = lhs(L3), rhs(L3)
205

206 u_file = XDMFFile(dir2 + "/velocity.xdmf")
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207 p_file = XDMFFile(dir2 + "/pressure.xdmf")
208 s_file = XDMFFile(dir2 + "/saturation.xdmf")
209

210

211 step = 0
212

213 while step < 1e5:
214 # ===

215 t += float(dt)
216 solve(a == L, U, bcs)
217 solve(a_s == L_f, S)
218 s0.assign(S)
219 if step % 50 == 0:
220 p_file.write(p_, t)
221 s_file.write(S, t)
222 u_file.write(u_, t)
223

224 step = step + 1

A.3
Stokes

This code is exclusively used for the validation of the Stokes model using
the implementation of the BDM1 basis functions as presented in section 3.6.2.

1 from dolfin import *
2 import ufl
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 Nx = 50
7 Ny = 400
8 # Load mesh and subdomains

9 mesh = UnitSquareMesh(Nx, Ny)
10 n = FacetNormal(mesh)
11

12 order = 1
13 V = FiniteElement("BDM", mesh.ufl_cell(), order)
14 Q = FiniteElement("DG", mesh.ufl_cell(), order - 1)
15 Element = MixedElement([V, Q])
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16 W = FunctionSpace(mesh, Element)
17

18

19 boundaries = MeshFunction("size_t", mesh, mesh.topology().dim()
- 1)↪→

20 left = AutoSubDomain(lambda x: near(x[0], 0.0))
21 right = AutoSubDomain(lambda x: near(x[0], 1.0))
22 bottom = AutoSubDomain(lambda x: near(x[1], 0.0))
23 top = AutoSubDomain(lambda x: near(x[1], 1.0))
24

25 # Define boundary markers

26 left.mark(boundaries, 1)
27 top.mark(boundaries, 2)
28 right.mark(boundaries, 3)
29 bottom.mark(boundaries, 4)
30

31 ds = Measure("ds", domain=mesh, subdomain_data=boundaries)
32

33

34 bc2 = DirichletBC(W.sub(0), Constant((0.0, 0.0)), boundaries,
2)↪→

35 bc4 = DirichletBC(W.sub(0), Constant((0.0, 0.0)), boundaries,
4)↪→

36

37

38 # Collect boundary conditions

39 bcs = [bc2, bc4]
40

41 # Define variational problem

42 (u, p) = TrialFunctions(W)
43 (v, q) = TestFunctions(W)
44 f = Constant((0, 0))
45 mu = 1
46 pin = 10 # 1.0

47 pout = 0.0
48

49 alpha = 35
50 h = CellDiameter(mesh)
51 h2 = ufl.Min(h("+"), h("-"))
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52

53

54 def tensor_jump(v, n):
55 return ufl.outer(v, n)("+") + ufl.outer(v, n)("-")
56

57

58 stab = (
59 mu * (alpha / h2) * inner(tensor_jump(u, n), tensor_jump(v,

n)) * dS↪→

60 - mu * inner(avg(grad(u)), tensor_jump(v, n)) * dS
61 - mu * inner(avg(grad(v)), tensor_jump(u, n)) * dS
62 )
63

64 nitche = (
65 alpha / h * inner(outer(v, n), outer(u, n)) * ds(2)
66 - inner(grad(u), outer(v, n)) * ds(2)
67 - inner(grad(v), outer(u, n)) * ds(2)
68 + alpha / h * inner(outer(v, n), outer(u, n)) * ds(4)
69 - inner(grad(u), outer(v, n)) * ds(4)
70 - inner(grad(v), outer(u, n)) * ds(4)
71 )
72

73 a = (
74 mu * inner(grad(u), grad(v)) * dx
75 - div(v) * p * dx
76 + div(u) * q * dx
77 + stab
78 + nitche
79 )
80 L = inner(f, v) * dx - pin * dot(v, n) * ds(1) - pout * dot(v,

n) * ds(3)↪→

81

82

83 # Compute solution

84 w = Function(W)
85 solve(a == L, w, bcs)
86

87 # Split the mixed solution using deepcopy

88 # (needed for further computation on coefficient vector)
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89 (u, p) = w.split(True)
90

91 # Save solution in VTK format

92 ufile_pvd = File("u.pvd")
93 ufile_pvd << u
94 pfile_pvd = File("p.pvd")
95 pfile_pvd << p
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