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Abstract

Konopka, Thiago Fabricius; Carvalho, Marcio da Silveira (Advi-
sor). Two-Phase Flow Modeling in Highly Heterogeneous
Porous Media Using Brinkman Equation and Single and
Dual continuum Darcy Models. Rio de Janeiro, 2024. 179p.
Tese de Doutorado — Departamento de Engenharia Mecanica, Pon-
tificia Universidade Catoélica do Rio de Janeiro.

Multiphase flow in highly heterogeneous porous media holds substantial
importance in the petroleum industry since there are large oil volumes in
vuggy and fractured reservoirs. In this study, Brinkman equation is employed
to model two-phase flow in highly heterogeneous porous media. Brinkman
model represents flow dynamics through the porous matrix and vugs using a
single differential equation without the need for interfacial conditions. However,
accurately characterizing the vugular and porous matrix regions remains a
challenging task, especially in reservoir-scale models that typically represent
geological formations with large areas. Reservoir simulations often involve
models discretized into computational cells, each with dimensions on the order
of several meters that are not fine enough do describe in detail the geometry
of the vugs and fractures embedded in the porous matrix. This investigation
explores two distinct approaches for generating equivalent properties of vugular
media. The first approach uses results from the Brinkman model to derive
equivalent properties for the single-continuum Darcy model at the same
level of discretization. The second approach employs upscaling by numerical
optimization to generate equivalent properties on a coarse scale. This method is
applied to both single-continuum and dual-continuum Darcy models. Single-
continuum models can effectively describe vugular structures characterized
by dispersed vugs in the porous matrix without strong fluid channeling.
However, for systems exhibiting substantial channeling, upscaling can only
be achieved through dual-continuum models. In both proposed approaches,
the determination of equivalent absolute permeability and equivalent absolute

permeability curves is imperative for an efficient upscaling process.

Keywords
Brinkman model; Two-phase flow; Equivalent relative permeability cur-

ves; Macroporosity; Upscale.



Resumo

Konopka, Thiago Fabricius; Carvalho, Marcio da Silveira. Modela-
gem de Fluxo Bifasico em Meios Porosos Altamente Hete-
rogéneos Utilizando a Equacgao de Brinkman e os Modelos
de Simples e Duplo Continuo. Rio de Janeiro, 2024. 179p. Tese
de Doutorado — Departamento de Engenharia Mecanica, Pontificia
Universidade Catoélica do Rio de Janeiro.

O fluxo bifasico em meios porosos altamente heterogéneos possui grande
importancia na industria do petréoleo devido aos desafios apresentados pelas
caracteristicas de permeoporosidade, fraturas e cavidades incorporadas na ma-
triz porosa. Neste estudo, a equagao de Brinkman ¢ utilizada para modelar o
fluxo bifdsico em meios porosos altamente heterogéneos. O modelo de Brink-
man representa a dinamica do fluxo através da matriz porosa e das cavidades
usando uma tunica equacao diferencial, sem a necessidade de condigoes inter-
faciais. No entanto, caracterizar com precisao as regides de cavidades e matriz
porosa permanece uma tarefa desafiadora, especialmente em modelos em es-
cala de reservatorio que normalmente representam formagoes geoldgicas com
grandes areas. Simulagoes de reservatorio frequentemente envolvem modelos
discretizados em células computacionais, cada uma com dimensoes da ordem
de varios metros que nao descrevem a geometria das cavidades e fraturas pre-
sentes na matriz porosa. Esse estudo explora duas abordagens distintas para
gerar propriedades equivalentes para meios vugulares. A primeira abordagem
utiliza resultados do modelo de Brinkman para derivar propriedades equiva-
lentes para o modelo de Darcy 1¢1k na mesma escala. A segunda abordagem
emprega a teoria de homogeneizacao para gerar propriedades equivalentes em
uma escala mais grosseira. Essa teoria é aplicada a modelos de Darcy 1¢1k e
2¢2k . Modelos 191k podem descrever efetivamente estruturas com cavidades
dispersas na matriz porosa sem uma canalizacao forte de fluido. No entanto,
para sistemas que exibem canalizacao substancial, a homogeneizacao s6 pode
ser alcancada por meio de modelos de continuo duplo. Em ambas as aborda-
gens propostas, a determinacao da permeabilidade absoluta equivalente e das
curvas de permeabilidade absoluta equivalentes é imperativa para um processo

de homogeneizagao eficiente.

Palavras-chave
Modelo de Brinkman; Escoamento bifdasico; Curvas de permeabilidade

relativa equivalente; Macroposidades; Upscale.
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1
Introduction

1.1
Motivation

Fluid flow within a porous matrix with free-flow regions has extensive
significance across different sectors, including industry, environmental, and
biological systems. Examples of applications include filtration process [1, 2],
interactions between surface water and subterranean aquifers [3, 4], fluid
dynamics within textile materials [5], as well as the delivery of healing agents
within the intricate network of blood vessels and organic tissues [6]. Multiphase
flow in porous media with fractures and vugs of different sizes embedded in
a porous matrix is essential in petroleum production. Modeling multiphase
flow is challenging because free-flow regions, represented by fractures and vugs,
interact with porous regions. The development of accurate models that describe
the complex coupling of two-phase flow in the porous matrix and vugs is very
important in oil production optimization.

A significant portion of the world’s oil reserves are contained in carbonate
reservoirs. Among them, karstified carbonate reservoirs represent a subgroup
of the carbonate reservoirs with a significant role in oil production. Karstified
carbonate reservoirs are widespread in different regions around the world, like
Russia [7], China [8], the Middle East [9], and Brazil [10]. Particularly in Brazil,
the pre-salt fields located in the Santos sedimentary basin stand out as some
of the biggest recent oil discoveries. The term Pre-Salt describes the deposits
formed when the African and South American landmasses were separated,
resulting in the formation of the Atlantic Ocean. Within this stratigraphic
layer, the Santos Basin contains substantial deposits of petroleum. These
fields contain significant in-place volumes, favorable permeability and porosity
characteristics, and distinctive diagenesis features. Currently, Pre-salt accounts
for approximately 77 % of Brazil’s total oil production [11].

Carbonate formations exhibit considerable heterogeneity and anisotropy.
It is a direct result of their chemical composition, as well as the interaction of
depositional and diagenetic processes. These processes evolved spontaneously

over time. The gradual alteration has resulted in substantial permoporous
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differences, even over a small area. The comprehensive scheme presented by
Choquehe and Littleton (1970) [12] classifies carbonate porosity according to
the interrelationship between porosity and structure. Primary porosity origi-
nates at deposition. Secondary porosity occurs after initial sedimentary layer-
ing, as result of diagenetic transformations. The carbonate rocks have a natu-
ral propensity for diagenesis, caused by their chemical activity. Predominantly
constituted of calcite (CaCOj3) and dolomite (CaMg(CO3)s,), these minerals
undergo dissolution and, subsequently, are removed under the influence of wa-
ter, resulting in structural modifications within the carbonate matrix. The
diagenetic process produces a wide range of structural modifications, spanning
scales ranging from millimeter-size voids, to the formation of extensive cavern
systems that reach tens of meters. This phenomenon is also called karstification
[13].

Numerical simulations of flow through naturally fractured and karstified
reservoirs are extremely complex due to the simultaneous interaction of dif-
ferent scales, ranging from micropores (= 107° m) to macropores (structures
with dimensions stretching from millimeters to several meters). These voids
have a considerable effect on the permeability of the porous media. Further-
more, these macropores may have connections via fracture networks. This is a
phenomenon that can lead to considerable shifts in permeability, ranging over
orders of magnitude [14]. The cumulative consequence of these intricate in-
teractions, occurring in multiphase fluid flow, results in a noticeable decrease
in volumetric oil sweep efficiency. This is particularly true when contrasted
against comparatively homogenous rocks, such as sandstone.

In recent decades, a variety of methodologies have emerged to describe
fluid dynamics within geological formations. The mathematical and physical
approaches incorporated into these studies reflect their complex nature, with
intricate interactions occurring across multiple dimensions. Yao and Huang,
(2017) [15] describes two strategies for dealing with this problem: the Single
Domain Approach (SDA) and the Two Domains Approach (TDA). The
former, SDA, envelops flow dynamics within a singular domain, formulated
through a single equation. In contrast, TDA separates the porous matrix
and the free-flowing region into distinct domains. This approach requires the
careful establishment of appropriate interfacial conditions, thereby coupling
the differential equations underlying flow dynamics within each designated
domain. Generally, the Darcy equation is used to describe the fluid flow within
the porous matrix, while the flow within the free-flow regions is described by
Navier-Stokes or the Stokes equation, depending upon the context.

Brinkman (1947) [16] proposed a single domain approach to avoid the
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complexity of interfacial conditions between the porous matrix and the free-
flowing regions. Typically, the Brinkman model characterizes fine-scale flows,
with a subsequent scaling process that integrates it into larger, coarser-scale
models [17]. This model is also applicable in plug-scale flow descriptions [18].

Dual-continuum models are an alternative approach to represent natural
fractures and karstified reservoirs. Barenblatt et al. (1960) [19] presented a dual
continuum model that describe the flow through both the porous matrix and
the fracture network. The porous matrix is composed by interconnected blocks.
Fractures are characterized by their dimensions exceeding the characteristic
pore scale. Consequently, fractures display a higher permeability, yet their
volumetric capacity is small compared to the porous matrix. To complete
the representation, the porous matrix and the fractures couple through a
fluid transfer function that describe the fluid exchange between two different

domains.

1.2
Objectives

In this study, it is proposed a methodology for representing two-phase
flow in kartified porous media. Brinkman’s model is used to investigate the
fluid flow in heterogeneous porous media containing vugs in the fine scale.
The flow predictions obtained by the Brinkman model are used to generate
equivalent properties for single-continuum and dual-continuum Darcy models
in a coarse scale.

The two versions of a single-continuum (1¢1k) Darcy model are described
used in this analysis. Firstly, a heterogeneous Darcy model is used to compare
Brinkman and the Darcy models on a fine scale. In this approach, the vugular
region is described as a porous medium with high porosity and permeability.
The goal is to study the effects of viscous pressure drop in the flow through
vug and fractures. In addition, it seeks to compare the Brinkman and Darcy
models on the same scale. The second approach, a homogeneous Darcy
model, represents domain homogenization. To represent the fine-scale solution,
equivalent absolute permeability and equivalent relative permeability curves
are established on the coarse scale which is modeled through the Darcy model.
Using this methodology, equivalent properties can be established through
numerical optimizations for use on a coarse scale.

It is also explored the use of dual-continuum models to homogenize
the domain. Dual-continuum models distinguish porous matrix and fracture
attributes, providing detailed description of the flow through the porous matrix

and vug-fracture system. The 2¢2k model is used in these cases, where both the
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porous matrix grid and the fracture grid are treated as homogeneous domains.
The results are especially prominent for highly anisotropic porous media, with
flow occurring preferentially through vugs. Consequently, it is necessary to
establish equivalent absolute permeability and equivalent relative permeability
curves for the fracture grid to achieve these results.

For both the single-continuum and dual-continuum homogeneous models,
equivalent petrophysical properties are obtained through numerical optimiza-
tion. The Brinkman method produces a fine-scale solution. In the coarse scale,
the Darcy model is used, and the fine-scale results are represented through
equivalent petrophysical properties. In the literature, this procedure is com-
monly referred to as upscaling by history matching. The purpose of this study
is to fill a gap in the literature by describing how multiphase flow occurs in
a karstified porous media. As a result, it utilizes a methodology that is more
suited to understanding the physics of flow between a porous matrix and a
free-flow region, a characteristic of fluid flow in a high heterogeneous medium.
A second objective of this study is to generate equivalent petrophysical proper-
ties of kasrtified media that can be applied on a reservoir scale. The reservoir
models are often tens of kilometers long, making it impossible to describe
karst geometries at this scale. It is possible to represent karstified regions in a

reservoir by utilizing equivalent petrophysical properties.

1.3
Thesis Organization

This thesis is organized into five chapters, including this introductory
chapter.

Chapter 2 presents the literature review of heterogeneous porous media
flow modeling. This chapter introduces the main methodologies employed in
this study. It offers a comprehensive overview of the current state of the art
regarding models that depict the transition between free-flow regions and flow
within porous mediums. An overview of the key advancements in the dual-
continuum model is provided.

Chapter 3 outlines the formulation and the methodology employed for
implementing the numerical solution using finite element method for Brinkman
and Darcy models. It elucidates the fundamental equations, alongside the nu-
merical discretization, and the computational implementation of the solution.
Furthermore, it presents the analytical solutions employed for numerical vali-
dation. The equations for a black-oil simulator, similar to the one utilized in
the IMEX simulator, are presented in a generalized manner.

In chapter 4, the analysis and discussion of the results obtained using the
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methods presented in chapter 3 are presented. This analysis includes numerical
validations of the models used. Additionally, mesh testing and the methods
used to generate these meshes are discussed. Results are presented for two
different sets of vug configurations. The first set of synthetic vugs consists
of simple geometric shapes. A second set consist of vug configurations of
carbonate plug, obtained by micro tomography. In these cases, a comparison
is made between Brinkman’s model and both homogeneous and heterogeneous
single-continuum Darcy models.

In Chapter 5, the third set of cases derived from Lajedo Arapua is
analyzed with dual-continuum models. This investigation examines models
with intricate vug geometries and illustrates how the homogeneous 2¢2k model
can be used to homogenize them. Cases with pronounced fluid channeling
through the vugular media can be homogenized using this technique.

Finally, chapter 6 presents the conclusions of this work, as well as

suggestions for future work.



2

Literature Review

This chapter provides a review of the existing literature, serving as a
basis for this study. It begins with a concise description of carbonate rocks
and vug formation processes. Furthermore, it provides insight into the most
appropriate methodologies for modeling fluid dynamics within this geological
context. There is a detailed description of the SDA and TDA methods. The
SDA review focuses on the Brinkman equation for modeling such porous media.
The TDA review focuses on exploring the interface conditions between porous
region and free region flows. A comprehensive overview of the major dual
continuum methods is also provided, with particular emphasis on the double
porosity (2¢1k) and double porosity and double permeability (2¢2k) methods.

Both academic research and industrial practices use these methods extensively.

2.1
Carbonate Rocks

Carbonate rocks, also called carbonates, are sedimentary rocks composed
of minerals such as calcium carbonate (CaCOj3) or dolomite (CaMg(COs)s).
These rocks are formed by the accumulation and hardening of sediments found
in freshwater and marine environments. They often contain preserved marine
organisms, such as coral, mollusks, and foraminifera. Carbonate rocks have
a wide variety of textures, which can provide a lot of information about
their formation and history. They can display crystalline textures composed of
fine-grained calcite crystals, or sparse textures with larger, sparkling crystals.
Others, such as those with oolitic textures, consist of small spherical grains
called ooids. A carbonate rock may be classified as mudstone, wackestone,
packstone, grainstone, or boundstone depending on the grain size and sorting
within the rock. Fine-grained mudstones can be distinguished from coarser-
sized grainstones [20]. Figure 2.1 illustrates the classification of carbonates

rocks based on their structural characteristics.
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Carbonate rocks can be formed under a variety of environmental condi-
tions. In shallow marine environments, such as reefs, lagoons, and platforms,
organisms such as corals and mollusks contribute to carbonate deposition. In
deep oceanic conditions, carbonate muds can accumulate, forming deposits
similar to chalk. In freshwater settings, such as lakes and ponds, carbonates
accumulate, resulting in rocks such as travertine and tufa. Carbonate rocks
can dissolve over time due to acidic groundwater. This process creates karst
landscapes characterized by sinkholes, caves, and underground drainage sys-
tems.

Choquehe and Littleton (1970) [12] classified carbonate rocks based on
several factors, including pores and texture, as shown in figure 2.2. These clas-
sifications typically include primary and secondary porosity. Primary porosity
is formed during sediment deposition, often linked to the arrangement of skele-
tal fragments or grains. It is important to note that interparticle porosity is
found between individual grains within the rock, while intraparticle porosity
is found inside specific particles, such as fossil pores or single grains within
the rock. Moldic porosity results from the dissolution of more soluble miner-
als, leaving voids or cavities in the rock. Fenestral porosity arises from skeletal
material dissolution, leading to irregular voids. Secondary porosity develops
later due to various processes like dissolution, fracturing, or alteration. It is
called vuggy porosity, which consists of large and irregular pores that resemble
holes or voids formed by dissolution.

Fractures and karst are the main features that constitute to the rock
heterogeneity for fluid flow. A kasrt is a term used to describe rock areas
characterized by the formation or enlargement of void spaces, either unfilled
or occupied by breccias or sediment [13] . In these processes, minerals undergo
dissolution and are removed by the fluid that permeates the rock, often water
in this context. Figure 2.3 shows different scales of karts in nature.

Two karstification patterns were identified by Meyers (1988) [21]. The
first pattern, also called the classic pattern, is characterized by the enlargement
of bedding planes and joints. This occurs in crystallized carbonates with
minimal intergranular porosity and negligible permeability. This type of rock
typically yields expansive caves and a clear pattern of preferred pathways
through which fluids move. The second pattern, when dissolution occurs
primarily within intergranular pores, resulting in minor cavities, irregular
veins, or fissures without discernible structural or stratigraphic alignment.
This kind of karst are dispersed and diffused. Moreover, the classic karst
tends to penetrate carbonate rocks to depths of tens to hundreds of meters or

even thousands of meters. Karst with a dispersed dissolution pattern typically
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Figure 2.2: Classification of carbonate sedimentary rocks based on porosity
[12].

reaches only a few meters or, at most, tens of meters below the surface.
The most intense phase of karstification occurs in the first few meters of the
dissolution process. A schematic representation of the formation of these two
types of karst features are illustrated in figure 2.4.

Karst can also be classified according to how it was formed. It can be clas-
sified in two basic ways: hypogenic karst and epigenic karst. These processes
are illustrated in figure 2.5. Hypogenic karst is caused by acidic groundwater
that slowly dissolves the subsurface carbonate rocks. Consequently, caves and
grottos are formed underground as a result of this process. On the other hand,
epigenic karst develops at the rock surface. Generally, rock erosion and disso-
lution occur in the vadose zone (soil and rock layers that are unsaturated) and
the epiphreatic zone (rock layers that are saturated). Several surface features
are associated with epigenic karst formations, including sinkholes and lapiaz.

Fractures are structural discontinuities within geological formations
caused by mechanical stresses. Figure 2.6 shows a typical example of frac-
ture in rocks. A notable contrast in morphology exists between fractures and
karsts, where karsts exhibit substantially greater volume compared to frac-
tures. Fractures are caused by a combination of macroscopic forces, including

tectonic plate movements, which provide the necessary stress for the rock to
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Figure 2.3: An example of various vug and karst features in nature [15].

be sheared or opened, and microscopic factors including the elastic properties
of matrix grains and the structural arrangements within porous media, which
include pore morphology and microcracks. The microscopic characteristics of
a rock determine how fractures propagate. Fractures typically display a wide

variety of linkages and networks [23].

2.2
Mathematical Models for Flow Through Heterogeneous Porous Media

Yao and Huang (2017) [15] presented a comprehensive discussion on mod-
eling fluid flow through a porous medium embedded with fractures and vugs.
Two distinct methodologies emerge for coupling the free-flow domain with the
porous matrix: the Single Domain Approach (SDA) and the Two Domains Ap-
proach (TDA). In SDA, a single differential equation describes flow dynamics.
It is not necessary to have an interfacial condition between the porous matrix
and the free-flow domain. Conversely, the TDA establishes a boundary, treat-
ing the porous matrix and the free-flow as discrete entities, which requires the
introduction of interfacial conditions to establish a connection between the dif-
ferential equations delineating the flow in each respective domain. In essence,
the Darcy equation applies to porous matrix dynamics, while the Navier-Stokes
or Stokes equation describes free-flow region dynamics. The literature provides
a wide variety of interfacial conditions that attempt to capture the dynamic
relationship between the porous matrix and the free-flowing region. Beavers

and Joseph (1967) [25] (BJ) present the classic interface condition, expressed
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Figure 2.4: Schematic model of conduit-type kasrt (left) and diffuse karst
(right) [21].
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Figure 2.5: Schematic representation of epigenic kasrt (a) and hypogenic karst
(b). Adapted from [22].
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where u,; is the tangential velocity in the free-flow region, 7 in the direction
normal to the interface, up is the Darcy velocity in the porous matrix, K is
the absolute permeability, and a g is a dimensionless parameter called the slip
coefficient.

It is essential to determine ap; because it has a direct impact on
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Figure 2.6: Example of fracture system.|[24].

the accuracy of the representation of this interface condition. Nevertheless,
estimating this coefficient accurately is significantly challenging. Specifically,
apy shows a strong relationship with the porous matrix configuration at
the interface. Several references emphasize this point [26, 27, 28]. According
to Zang and Prosperetti (2009) [29], pressure gradients, shear stresses, and
Reynolds numbers influence ap;. Liu and Prosperetti (2011) [30] developed
a boundary condition that refines the BJ condition, taking into account the
pressure gradient and the viscous shear stress. Saffman (1971) [31] provided
theoretical support for the validity of the BJ condition, though its applicability
is restricted to planar interfaces. Several modifications have been made to the
BJ equation in order to make it more versatile, so that it can be applied
to a wide range of geometric configurations. The proposal was supported
and elaborated in [32, 27, 33], exhibiting both physical and mathematical
rigor. Jones (1973) [34] applied homogenization theory to create an equivalent
interface condition aligned with the same principles.

Eggenweiler and Rybak (2020) [1] conducted numerical analyses of free
flow regions interacting with anisotropic porous media where the fluid velocity
at the interface has non-parallel trajectories. Numerical simulations did not
agree with the BJ interfacial coupling condition. By integrating porous and
free-flow regions with Stokes equations, they demonstrated the limitations
of the commonly used Beavers—Joseph and Beavers—Joseph—Saffman interface
conditions. The comparisons between coupled Stokes-Darcy simulations and

pore-scale models revealed that these interface conditions often fail when flow
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directions are not parallel to the porous medium interface, particularly when
full permeability tensors are used. Furthermore, they noted that discrepancies
between macro and microscale simulations were closely tied to the porous
medium’s geometry. All cases were applied to filtration processes, where
velocities within porous media are higher than in free-flowing media.
Brinkman (1947) [16] introduced a single domain approach, which is suc-
cessfully employed to describe fluid dynamics through a porous matrix cou-
pled with free-flow domains. This method eliminates any interfacial conditions
at the porous matrix interfaces with the free-flow region. Gray and O’Neill
(1976) [35] and Whitaker (1999) [36] deduced Brinkman equation through the
average volume method. Since then, several studies have been presented us-
ing the Brinkman equation to model karst and naturally fractured reservoirs.
Neale and Nader (1974) [37] demonstrated congruence between the BJ inter-
facial condition and the Brinkman equation. Additionally, Taylor (1971) [27]
deduced the BJ condition from the Brinkman equation. Krotkiewski et al.
(2011) [18] calculated the effective permeability of a carbonate rock containing
vuggs within a spatial volume measuring 13x13x21 e¢m?®. Okabe and Blunt
[38] conducted an analysis of permeability within the context of vugs and
small-scale pores, successfully capturing the relationship between estimated
permeability and macroporosity. Multi-scale investigation was conducted us-
ing microtomography and multi-point statistics on a carbonate rock sample.
The permability was computed using the Lattice Boltzmann method. There
was good agreement between the computed average permeability and the mea-
sured permeability. Golfier et al. [39] investigated the macroscopic behavior
utilizing the Darcy-Brinkman model. They worked on numerical solutions for
fractured and cavity porous media. An explicitly analytical solution for effec-
tive permeability was derived and compared to the numerical solution. Dali
(2019) [40] employed the Brinkman formulation to solve 2-D flow in porous
media in carbonates with macropores. The geometry of the pore structure was
determined by microtomographic images of a carbonate rock sample. It was
confirmed the compatibility between Brinkman equation and BJ condition,
specifically to single-phase flows within karstified porous media. In particular,
this validation extends to scenarios in which the velocity within the free-flow
domain is much greater than that within the porous domain. A discrepancy
in velocity induces quasi-parallel flow directions within the free flow region
and the porous matrix, which leads to minimal numerical error. Cruz (2022)
[41] extended the previous study to a three-dimensional setting with similar
results. Dali (2019) [40] demonstrated that in studies of carbonate rock flows,

the velocities within the vugular regions are greater than those in the porous
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regions. Moreover, the velocities in the vugular regions are closely parallel to
principal vug orientation. It is therefore expected that, when applying BJ in-
terfacial conditions in reservoir studies, the velocity field should have fewer
distortions than those reported by [1], because the flow trajectory is parallel
to the porous media interface.

Establishing the apg; parameter to simulate flow in carbonate rocks re-
mains challenging. This parameter is not affected only by the surface interac-
tion between the porous medium and the free-flow region, but also by various
flow parameters [29]. Due to the internal flow dynamics in the porous medium,
it is difficult to conduct laboratory measurements within this carbonate rock
samples. Furthermore, to the best of our knowledge, there appears to be a gap
in the literature concerning studies that integrate interfacial conditions with
multiphase flows, specifically in two-phase systems. Furthermore, oversimplifi-
cations using arbitrary values of avg; may lead to significant errors. As a result,
the SDA methodology appears to be a promising approach for the purposes
outlined in this study. It simplifies the implementation process and reduces
uncertainties associated with the selection of ap; parameter. Moreover, the
existing literature indicates that the Brinkman model exhibits strong correla-
tions with a variety of interfacial conditions [37]. A comprehensive exploration
of the Brinkman viscosity term (u*) is also presented in section 3.1.5.

There is relatively limited reference available for applying Brinkman’s
model to multiphase flows in comparison with its single-phase models. Co-
clite et al. (2014) [42], Biirger et al. (2016) [43] and Dine and Saad (2018)
[44] solved the Brinkman equation in an immiscible two-phase flow in a non-
homogeneous porous medium. Coclite et al. (2014) [42] utilized a weak form
combined with the finite difference method to demonstrate model conver-
gence. Meanwhile, Biirger et al. (2016) [43] used the Discontinuous Finite Vol-
ume Element (DFVE) method and the Runge-Kutta Discontinuous Galerkin
(RKDG) method, to solve the Brinkman equation effectively through the sat-
isfaction of discrete maximum principles and the attainment of numerically
robust outcomes. Dine and Saad (2018) [44] performed convergence analysis of
a combined non-conforming finite volume method with finite element methods
discretized in a triangular mesh. The authors established a numerical solu-
tion within the weak form and demonstrated convergence. However, solution
uniqueness proof remains inconclusive due to intrinsic nonlinearities. They
noted that the Brinkman equation adds diffusivity to the system compared to
the Darcy solution. Hallak et al. (2019) [45] investigated a five-spot drainage ge-
ometry, where a central karstified region interacts with the surrounding porous

matrix. This dynamic interplay was characterized by substantial contrasts in
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porosity and permeability between the two regions. In situations characterized
by high to moderate Darcy numbers, the Brinkman models result in diver-
gent fluid displacement fronts when compared with non-homogeneous Darcy
formulations with different porosity and permeability in each region.

In a study developed by Belhaj et al., (2005) [46], non-Darcy flow
is examined in terms of viscous, inertial, and convective effects in fluid
flow through porous media. A modified Brinkman formulation was used to
accommodate two-phase flow in multiphase conditions commonly encountered
in fractured petroleum reservoirs. In contrast to conventional models such
as Darcy’s equation, the researchers attempt to provide a more accurate
representation of fluid flow in reservoirs characterized by high velocities or
fractures. For scenarios involving high velocities, the modified Brinkman
formulation is suitable, whereas Darcy can be used for scenarios involving
low velocities.

Armiti-Juber and Rohde (2019) [47] conducted a series of two-phase stud-
ies employing an asymptotically flat domain, wherein the Brinkman model
demonstrated superior physical and numerical outcomes compared to the con-
ventional Darcy model. The Brinkman model accurately describes two-phase
flow in flat domains, particularly in high porosity media. In such environ-
ments, it incorporates effective viscosity and second-order terms. In particu-
lar Brinkman vertical equilibrium agrees excellently with the full two-phase
flow model, while being computationally more efficient. It is demonstrated
that the Brinkman vertical equilibrium model accurately describes satura-
tion overshoots and exhibits a spreading speed smaller than the Darcy model.
Armiti-Juber and Rohde (2019) [48] analyze weak solutions for a nonlocal
pseudo-parabolic model describing nearly uni-directional two-phase flow in
Brinkman regimes. The model describes homogenized flow of two immiscible
phases in a rectangular porous media domain, featuring equations for two dis-
tinct two-phase flow scenarios. The study concentrates on asymptotically flat
domains and includes a nonlocal evolution equation representing nearly uni-
directional two-phase flow. Armiti-Juber (2022) [49] examines two-phase flow
in thin porous media domains of Brinkman type. A weak solution to a coupled
two-phase flow model converges to a weak limit as the domain width-length
ratio approaches zero. With a single nonlocal evolution equation of saturation,
the reduced model captures the original coupled model effectively. As the geo-
metrical parameter diminishes, this convergence simplifies complex two-phase
flow phenomena in porous media.

Elkady et al. (2022) [50] study on non-Darcian immiscible two-phase flow

through porous materials investigates flow behavior and heat transfer charac-
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teristics in porous media using the Darcy-Forchheimer-Brinkman model. The
study aims to understand how porosity, inertia, friction, and saturation affect
the flow dynamics and thermal aspects of immiscible two-phase flow through
porous materials. Both numerical simulations and experimental validations
are conducted to analyze the hydrodynamic and thermal aspects of the flow,
with a focus on the channeling effect, velocity distribution, and the impact of
neglecting certain parameters like the Brinkman coefficient and flow inertia.
Regarding the Brinkman model influence, they concluded that the Brinkman
model in the study of non-Darcian immiscible two-phase flow through porous
materials is that neglecting the Brinkman coefficient enhances the channeling
effect and increases flow velocity near the solid boundary, resulting in faster
flow at the wall.

Two-phase flow using the Brinkman equation models fluid flow and heat
transfer, as well as two-phase fluid flow with suspended particles. Bhatti et al.
(2018) [51] investigated the impact of mass and bio-heat transfer on the peri-
staltic propulsion of two-phase flows through a Darcy-Brinkman-Forchheimer
porous medium. They aim to understand how the Brinkman equation influ-
ences heat and mass transfer effects in the presence of magnetic fields, compli-
ant walls, and chemical reactions. They concluded that the Brinkman number,
which represents the ratio of viscous dissipation to molecular conduction, plays
a significant role in temperature distribution. Due to viscous dissipation, a high
Brinkman number reduces conduction, which increases temperature. The study
conducted by Khan et al. (2022) [52] examined the generalized dusty Brinkman
type of fluid that flows between parallel plates under magnetic-hydrodynamic
(MHD) free convection. A generalized Brinkman type dusty fluid was studied
to examine the combined effect of a magnetic field and heat transfer. It has
been argued that the fractional model of dusty fluids of the Brinkman type
is more realistic than the classical model. The effect of time on Brinkman-
type fluid and dust particle velocity was highlighted, which demonstrated that
both velocities increased with the passage of time, indicating the dependence
on time of unsteady fluids.

Simulation of oil reservoirs involves partitioning vast domains spanning
tens of kilometers into discrete units with smaller dimensions, typically mea-
sured in meters. Unfortunately, refining meshes to capture vug geometry ac-
curately is both costly and impractical. Homogenization theory can be useful
in this scenario in order to accurately represent fluid flows in large domains.
In this method, two distinct scales are used in the analysis. The fine scale is
simulated using models that are capable of capturing detailed characteristics

of the flow. For flow in vugular porous media, the Darcy model is usually ap-
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plied to simulate the porous matrix, while the Navier-Stokes or Stokes models
are used to simulate the vugular regions. In the coarse scale, only the Darcy
model is used. The transfer of scale is generally accomplished through equiva-
lent properties, such as absolute permeability and relative permeability curves.

Argabost et al. (2004) [53] presented a homogenization approach for
single-phase, incompressible, viscous fluid considering a variety of vug con-
figurations, including layered vugs, meandering vug channels, constricted vug
channels, and disconnected vugs. Their findings indicate that connectivity be-
tween the vugs is crucial to predicting macroscopic properties. In their subse-
quent work, Argabost and Lehr (2006) [54], based on the homogenization of
single-phase flow, derived an analytical solution for simple geometries. Based
on this model, the vug can be represented through Poiseuille flow and alter-
nates from vug to matrix behaves as if the vugs have infinite permeability.
Argabost et al. (2009) [55] applied the Darcy-Stokes coupled equations with
the Beavers-Joseph-Saffman interfacial condition to create a macro-model for
vuggy porous media. The authors simulated field-scale aquifer flow using dif-
ferent synthetic vuggy media configurations to demonstrate the importance of
elements such as channel shape, aperture, and disconnectivity. Huang et al.
(2010) [56] proposed a mathematical flow model for a discrete fracture-vug
network (DFVN). Utilizing homogenization theory, they derived the equiva-
lent Darcy flow equation and obtained the theoretical formula for the effective
permeability tensor of fractured vuggy media. The examples illustrate that per-
meability of the medium is significantly affected fracture or vug sizes, though
it remains independent of the distribution of the fractures or vugs.

Popov et al. (2009) [14] applied the Brinkman equation on fine-scale
dynamics within a synthetic porous medium interlaced with vuggs and a
complex pattern of fractures resulting in connectivity between the vuggs.
This interaction resulted in a substantial increase in effective permeability.
Meanwhile, Qin et al. [57] and Gulbransen et al. (2010) [58] effectively
derived the absolute permeability from a local solution at a fine scale using
Brinkman equation. Subsequently, upscaled permeability is applied to solve
the Darcy equation at a coarse scale. Similarly, He et al. (2015) [59] proposed
a Brinkman model to simulate transient single-phase fluid flow in 2-D synthetic
representations of naturally fractured and karstified carbonate reservoirs. In
naturally fractured carbonate karst reservoirs, cavities and natural fractures
profoundly alter fluid transport patterns. Conversely, cavities alone do not
produce comparable effects. Campos (2022) [60] developed a single-phase
transient simulator based on the Brinkman equation. Compared to the dual-

continuum models, Brinkman results showed a strong correlation.
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Huang et al. (2013) [61] conducted a comprehensive investigation of two-
phase flow. They applied the methodology developed on Huang et al. (2010)
[56] to compute the absolute permeability of the coarsened grid. In the con-
text of two-phase flow, they introduced an innovative approach to calculating
relative permeability curves. On the fine grid, a distinction was made between
the relative permeability in the vuggy domain and the porous matrix. Conse-
quently, analytical techniques were employed to derive a novel pseudo-relative
permeability curve for the coarse grid. This pseudo-relative permeability curve
effectively captures the influence of the relative permeability curves of both
the porous media and the free-flow region. Yan et al. (2016) [62] investigated
two-phase flow in fractured-vuggy reservoirs. They employed homogenization
theory for small fractures and vugs, and modeled long fractures using the Em-
bedded Discrete Fracture Model (EDFM). The homogenization theory is used
to determine the equivalent absolute permeability. An analytical method is
used to determine the relative permeability for the coarse scale. This approach
simplifies the numerical simulation of flow in fractured-vuggy reservoirs by
avoiding unstructured meshing and numerical calculations for the entire reser-

VOIr.

221
Dual-Continuum Models

Dual-continuum models are one of the approaches used to model flow in
natural fractured and karstified reservoirs. Barenblatt et al. (1960) [19] pro-
posed the dual-continuum framework that provides a comprehensive method
for analyzing the flow through porous matrix and fractures independently. Ba-
sically, it consists of two equations that allow for independent modeling of two
distinct media. The main characteristic of this model lies in that the porous
matrix consists of interconnected blocks, whereas the fractures are wider than
the characteristic pore size. Thus, the fractures have higher permeability when
compared to the porous matrix. Moreover, the porous matrix and fractures are
coupled by a fluid transfer function to ensure effective fluid transfer between
them. Eq. (2-2) is also known as the dual-continuum model (2¢2k):

V- (KmVpm) —a(pm —pf) = CZ’Wbmaﬂ,
ox
(2-2)

Hof

(KIS m_of) = of ot 2P

V- (KIVpT) + o (pm = pf) = g e
where the superscripts m and f indicate the matrix and fracture domains and
« is a dimensionless parameter that measures the characteristic of fissured

rocks. The parameter « is generally represented as:
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a=K"o? (2-3)

The authors assumed that the fluid transfer intensity between the porous
matrix and the fractures depends on the permeability of the matrix K™,
coupled with the width of fissure aperture (o), that is, the fracture surface
per unit of rock volume, which is also known as the shape factor.

The shape factor reflects the geometric relation between the matrix and
the fracture. Due to its inherent nuances and associated uncertainties, the
parameter o has received considerable attention. Many studies have been
conducted in order to provide a more accurate representation of o. The
model proposed by Warren and Root (1963) [63] simplifies this approach by
assuming that the primary porosity system, or the porous matrix, is composed
of identical rectangular parallelepiped blocks with constant properties. The
secondary porosity system, referred as the fracture system, is characterized by
an orthogonal network with axes parallel to the edges of the matrix blocks and
spaced uniformly with constant width. According to this model, fluid can flow
between the matrix and the fracture, but not between different blocks of the
matrix. Consequently, fluid flow only occurs through the fractures, while the
matrix functions as a source/sink. It is commonly called dual porosity model or

just 2¢1k model. Figure 2.7 represents the idealization of a fracture reservoir.

ACTUAL RESERVOIR MODEL RESERVOIR

Vugs Matrix Fracture Matrix block Fracture

Figure 2.7: Schematic representation of a fractured porous medium proposed
by Warren and Root (1963) [63].

In contrast to Warren and Root (1963) [63], which simplified the ma-
trix representation into cubic blocks surrounded by fractures, Kazemi et al.
(1976) [64] presented it as a rectangular block of varying dimensions. Thomas

et al. (1983) [65] contributed significantly by introducing a matrix-fracture
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formulation that was remarkably stable. In this formulation, fracture flow is
integrated seamlessly with matrix fracture flow, implicitly taking into account
variables such as pressure, water saturation, gas saturation, and oil saturation.
Gilman and Kazemi (1983) [66] modified the Kazemi et al. (1976) [64] model
by adding diagonal permeabilities in the grid cells. Gilman (1986) [67] refined a
2¢1k block model for representing heat transfer, gravity segregation, and other
transient phenomena. Quandalle and Sabathier (1989) [68] improved method
for the fluid transfer term between matrix and fracture in a dual-porosity
system. The method achieves higher accuracy and calculates flows related to
capillary, gravity, and viscous forces within the system.

To enhance the capabilities of the 2¢1k model, an improved model called
the 2¢2k model was introduced by Gilman and Kazemi (1988) [69] and Dean
and Lo (1988) [70]. In the 2¢2k model, fluid flows between matrix to ma-
trix and matrix to fracture block, allowing a more comprehensive representa-
tion of flow behavior. Other authors have refined the physical representation
of the 2¢2k models. Sonier et al. (1988) [71] proposed a gravity-driven fluid
exchange mechanism between the matrix and fracture. Coats (1989) [72] im-
proved the Warren and Root (1963) [63] model representing capillary pressure,
gravity, and viscous forces within the matrix-fracture transfer function in the
context of a compositional fluid model. Meanwhile, Ueda et al. (1989) [74]
introduced a gravitational model to predict the fluid phase vertical equilib-
rium. This model delineates a transition zone within the matrix block to more
effectively capture the nuanced manifestation of the transient saturation pro-
file. This is determined by the dynamic relationship of viscous, capillary, and
gravity forces. This marked enhancement precipitated a modification of the
shape factor, aligning it more effectively with empirical observations. Fung
(1991) [74] enhanced the dual-porosity/dual-permeability models by describ-
ing matrix/fracture drainage patterns block-to-block for gas and oil flow, using
a pseudo-capillarity potential. Uleberg and Kleppe (1996) [75] based on an ex-
tensive analysis of physical mechanisms and influential parameters impacting
fluid flow in fractured reservoirs, argues that a comprehensive model for such
reservoirs must integrate all primary low mechanisms and processes. It encom-
passes a variety of factors including gravity, capillary forces, gravity drainage,
diffusion, capillary continuity, and reinfiltration. In mixed-wet systems, sim-
ulations demonstrated the importance of capillary continuity between matrix
blocks. Meanwhile, Lu and Blunt (2007) [76] proposed an improved transfer
function that accounts for displacement due to imbibition when capillary pres-

sure is positive, in combination with gravity drainage, for 2¢2k systems.
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2.3
Upscaling Methodology

Single-phase static upscaling techniques are common in reservoir studies.
Numerous studies have been conducted in this area, and the most important
ones are described below. The most common method used to upscaling porosity
from fine-scale models is the volumetric weighted arithmetic mean, which en-
sures preservation of pore volume [77]. In terms of permeability upscaling, there
are three main methods employed: averaging, which involves horizontal arith-
metic and vertical harmonic averages; Cardwell-Parsons directional averaging
[79]; and flow-based upscaling with closed boundary conditions [78, 80]. In
addition, Wen and Gomez-Hernéndez (1996) [81], Renard and Marsily (1997)
[82], Farmer (2002) [83], and Durlofsky (2003) [77] provide detailed literature
reviews on upscaling methods. These authors agree that flow-based techniques
are most effective for upscaling absolute permeability.

An effective upscaled model of fluid injection in heterogeneous reservoirs
typically requires more effort. Two-phase upscaling is recommended for pro-
cesses involving water or immiscible gases injection. When fine-scale simulation
data are available, pseudo-relative permeability curves are commonly used to
enhance the accuracy of coarse-scale simulation models. Various methodolo-
gies have been proposed to enhance the representation of small-scale results in
coarse-scale simulation models. Barker and Fayers (1994) [84] developed the
method of transport coefficients (also known as a-factors), which is a method
that uses modifiers introduced into flow terms to calculate the composition of
fluids flowing from a large grid block as compared to the average composition
of fluids within that block. Additionally, pseudo relative permeability curves
are used. The method was tested for various fluid systems with improved accu-
racy in the results, particularly in terms of component production rates. Barker
and Thibeau (1997) [85] conducted a comprehensive review of existing relative
permeability upscaling approaches. They highlighted significant limitations as-
sociated with pseudo-relative permeability curves during the upscaling of fine-
grid geological models to coarse-scale simulation models. They concluded that
pseudo-relative permeability curves are viable only in scenarios where capillary
or gravity equilibrium can be assumed at the coarse-scale grid block. Chen et
al. (2003) [86] proposed a coupled local-global upscaling method, where local
boundary conditions for computing upscaled properties are derived from global
coarse-scale flows. They demonstrated notable enhancements over conventional
local methods but did not explore specific global flow patterns or well effects,
potentially impacting upscaling accuracy. Chen and Durlofsky (2006) intro-

duced an adaptive local-global (ALG) upscaling method to tailor coarse-scale
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parameters for various global flow conditions. They implemented a threshold
to update upscaled properties only in high-flow regions, potentially enhancing
upscaling efficiency. Results on highly heterogeneous systems showed enhance-
ments over local and coupled local-global upscaling techniques. Zhang et al.
(2008) [88] proposed the Well Drive Upscaling (WDU) method, utilizing global
well drive and actual boundary conditions to address inappropriate boundary
conditions in single-phase upscaling. While presenting promising results, the
approach requires a fine-scale pressure solution for application. Moreover, this
method is suitable for effectively upscale the transmissibility since relative per-
meability is still a challenge to be represented block-to-block.

Regarding the application of dual-continuum techniques to upscaling,
Evazi and Jessen (2014) [89] proposed an approach to upscaling heterogeneous
reservoir models by splitting porosity. Based on flow capacity, this method clas-
sifies reservoirs into primary and secondary porosities. The authors rigorously
evaluate this approach against traditional single-porosity models, demonstrat-
ing its superior ability to capture preferential flow paths and enhance displace-
ment efficiency. There is evidence that the dual-porosity model is capable of
improving displacement efficiency representation in coarse-scale modeling, as
well as predicting breakthrough times and post-breakthrough responses with
increased accuracy. However, the overall workflow can be costly since fine-scale
models require streamline simulations to be obtained. As another disadvantage,
the strategy can be dependent on the original well locations and flow rates due
to the use of fine-scale results to divide the porous media. Rios et al. (2020)
[90] introduced an innovative 2¢2k upscaling approach. This method enhances
coarse-scale predictions accuracy compared to conventional techniques, partic-
ularly in reservoirs with significant heterogeneity. By addressing the optimistic
tendencies inherent in traditional upscaling methods, the proposed strategy of-
fers dependable outcomes even at large upscaling ratios. It consistently refines
traditional upscaling outcomes across diverse flow-direction scenarios. By us-
ing the flow and storage capacity as well as the Lorenz coefficient, fine-scale
porous media are segmented into primary and secondary systems. The respec-
tive properties for each coarse-scale are computed, and the flow is simulated
within the revised upscaled model using the 2¢2k model. According to the
results, the method is effective in reducing biases in sweep efficiency and oil

recovery factor estimations, as well as refining coarse-scale uncertainty profiles.
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2.4
Summary

Studies involving homogenization in domains where flow occurs simul-
taneously between the porous medium and the free flow region are relatively
common for single-phase flow. Generally, homogenization or volume averaging
techniques are used for this purpose. In this context, many studies use the
Brinkman equation on a fine scale and the Darcy model on a coarse scale for
single-phase studies. In comparison, few studies have been published using the
Brinkman equation to model two-phase flow. The homogenization of two-phase
flows has also been applied in relatively few studies.

This study aims to fill the gap in the literature regarding two-phase flow
modeling in kasritic systems. Brinkman two-phase flows model is applied on
a fine scale. Based on Brinkman results, upscale is applied to derive coarser
results. Based on a more realistic physical description of fine-scale results,
this study proposes a methodology for establishing equivalent petrophysical
properties on the coarse scale. Most of the upscaling methods mentioned above
focus on determining petrophysical properties on a reservoir scale. It is not
feasible to directly upscale highly detailed models, in which vug geometries
can be discretized, to reservoir scales, in which simulation cells span hundreds
of meters. This study aims to derive equivalent properties for describing
karst systems. In this sense, this method may be considered an intermediate
upscaling procedure in reservoir modeling, which connects the scale between a

rock sample of several centimeters and that of the field.



3
Flow Models and Solution Methods

This chapter details the methodologies employed in this study. It covers
the fundamental equations of the Brinkman and Darcy models for single and
two-phase flow, including the weak form of these equations for finite element
discretization. Furthermore, it details the analytic solutions from the litera-
ture for some simple problems used for solution method implementation vali-
dation. The chapter also outlines methodologies for comparing the Brinkman
model with the single-continuum and dual-continuum Darcy models. It pro-
vides insights into the approaches used for achieving equivalency in porous
media through the single-continuum model and the dual-continuum model.
Additionally, a brief overview of the black-oil model is included, as the double-
continuum models are solved using CMG’s commercial software. Furthermore,
the mesh tests for the cases studied in chapters four and five are presented.

It is first necessary to establish assumptions to simplify the physical and
mathematical models proposed in order for the problem to be posed correctly.

In all subsequent studies, the following hypotheses are be used.

1. Low Reynolds Flow;

2. Immiscible Fluids;

3. Capillary Pressure is neglected;

4. Gravitational effects neglected;

5. 2-D Domain;

6. Incompressible Fluid and porous matrix;
7. Isothermal flow and no chemical reactions;
8. Constant properties ;

9. The pore space is fully saturated with aqueous and oleic phases.

In order to provide a better understanding of these hypotheses, it is
worth highlighting a few of them. In a porous matrix as well as in free-flowing
media, capillary pressure is negated. As only horizontal flow is considered,

gravitational effects are ignored.
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3.1
Flow Models

3.1.1
Mass and Linear Momentum Conservation for Single Phase Model

Mass conservation is described by the following differential equation:

dp B
aJrV-(pu)—q, (3-1)

where p is the density, u is the velocity vector, and ¢ is a source / sink term.

Linear momentum conservation is governed by the Cauchy equation:

u
—=pg+V- T, 3-2
Py =P8 (3-2)
where g is the gravity force and 7T is the Cauchy stress tensor. In this study,
it is only considered Newtonian fluid. Thus, eq. (3-2) is simplified with the
assumptions of isotropic fluid and linear relation between the strain rate and

the viscous stress, i.e:

T = —pl+ s (Vu+ va) | (33

where p is the pressure and p is the dynamic viscosity.
The Navier-Stokes formulation is attained by expanding equation (3-2)

and subsequently implementing (3-3):

p (E)ll) +u-Vu=pg—Vp+upVu (3-4)

ot
For this analysis, it is assumed that the flow occurs at low Reynolds
numbers (Re < 1), i.e., momentum advection terms are much smaller than
viscous terms (u-Vu < \va u). Gravity is also neglected since it is considering
horizontal two dimensional domain. With all the above hypothesis, the Navier-

Stokes equation is simplified to Stokes equation:

Vp = uV u (3-5)
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Since oil reservoir flows typically exhibit low velocities, the Skotes equa-
tion is suitable for simulating free-flow regions. Although high Reynolds num-
bers are present near wells at distances up to several tens of meters, in the
majority of reservoirs, the low Reynolds number hypothesis can be confidently

applied.

3.1.2
Darcy Equation for Single Phase Flow

Darcy’s law is a fundamental equation for modeling flow through porous
media [91]. Its popularity can be attributed to its ability to accommodate
intricate structures accurately, since microscopic pore space flow is simplified
to an average representation of fluid motion. Darcy’s law establishes a linear
relationship between flow magnitude and the potential gradient acting on fluid,

i.e:

K
up = - (=Vp+pgVz) (3-6)

where up is the Darcy velocity, z is depth and K is the permeability. It is
assumed that the porous media is isotropic, so the permeability tensor can be

expressed by a single scalar variable.

3.1.3
Darcy Equation for Two-Phase Flow

This section presents the equations and underlying assumptions of Darcy
two-phase flow model. The fluids are considered immiscible in this model, and
there is no mass exchange between the phases or with the solid phase. It is
noteworthy that water is identified as the wetting phase, denoted by w, whereas
oil is identified as the non-wetting phase, denoted by o.

Furthermore, it is essential to establish equations that describe how
relative permeability and the capillary pressure vary with fluid saturation.

In this study, the porous media exclusively has water and oil, therefore:

Sw+ S, =1, (3-7)

where S, and S, are the respective volume fractions for water and oil,
respectively.
In porous media, capillary forces are induced when two or more immis-

cible fluids come into contact. These fluids interact with one another and with
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the solid phase resulting in a contact angle with the porous medium walls.
The phenomena is inherently governed by cohesive forces at the molecular
level within the respective phases, as well as by adhesive forces between them.

The capillary pressure, denoted as p., is conventionally characterized by:

Pe(Sw) = Po — Pus (3-8)

where p, is the pressure within the non-wetting phase and p,, is the pressure
within the wetting phase [3]. Capillary pressure can be described using a variety
of empirical and mathematical models. In the present study, capillary pressure
is neglected, i.e. p. = 0.

For two-phase flow, Darcy equation (eq. 3-6) is generalized as

Kk,

Hn

u, = (=Vp, +pngVz) n=w,o, (3-9)
where k,,, is the relative permeability of each phase, which is a function of the
phases saturation.

Mass conservation equation for each phase (3-1) in flow through porous

media is expressed as:

a((ﬁg:;STL)‘FV‘(pnun) = M=W,0, (3-10)

where ¢ is the porosity.
The total Darcy velocity u is the summation of each phase Darcy velocity:
u=u, + Uy,. (3-11)

It is also necessary to define the phase mobility (A, ), total mobility (A7),

and fractional flow (f,,), respectively:

Ap = 2, (3-12)

Ar = Aw + Ao, (3-13)
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fo= (3-14)

When capillary pressure is neglected, the fractional flow of each phase is

equal to the ratio between the phase and total mobilities,

An

fnZYT-

(3-15)

Using the definition (3-7), it is only necessary to calculate the saturation
in one phase because the other one is easily obtained. It is chosen the wetting
phase, water (w). In this study, the capillary pressure and the gravitational
force are neglected. For simplification, it is assumed that water and oil have
identical density, ensuring uniform local fluid density. In addition, fluids and
porous matrix are treated as incompressible. Consequently, p,, py, and ¢ are

constant. Thus, the mass conservation for the wetting phase becomes:

6O T () = 0 (3-16)

where ¢, is a source/sink term.
Accordingly, the following set of equations are used to describe the Darcy

two-phase flow:

V(u) =g, (3-17)

Vp = —K ')\;'u, (3-18)
DSy B

QSW + % (fwu) = Qu- (3‘19)

3.1.3.1
Relative Permeability

The effective permeability of a fluid defines how easily a fluid can flow
through the porous medium in the presence of other fluids. The relative

permeability is defined as the ratio of the effective permeability to the absolute
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permeability of the medium and depends on the fluid saturation, k., =
f(Syn). Considering the complexity of the subsequent analysis, two models of
relative permeability were used. The first model is the Corey and Brooks [92]
correlation. This model represents the interaction between velocities in wetting
and non-wetting phases in porous media, and is widely used in the literature.
It is typically obtained through experiments in which rock samples are tested
under specific conditions for a specific scenario (pressure, temperature, oil,
water, and gas compositions). The relative permeability curves are written as

a power-law function of the saturation:

Krw = kgw(sm)nwv (3-20)
Ero = K2 (1 — S,)", (3-21)
Sw - Swi
= -22
Sm 1 - Swi - SOT’, (3 )

where S,,; is the initial water saturation, S, is the irreducible oil saturation,
k2, is the water relative permeabilty at the irreducible oil saturation, k2 is
the oil relative permeability at the initial water saturation, n, is the water
exponent and n, is the oil exponent.

A second model is the LET correlation [93]. The relative permeability
curves are written as a function of saturation in terms of three parameters.
The LET model allows oil mobility to be adjusted at low water saturations
while maintaining special core analysis (SCAL) data at high water saturations.
At a field scale, this method has been successfully applied to the simulation of
oil production from a field in the Norwegian Sea. When compared to the Corey
and Brooks model, the LET model has the advantage of a greater degree of

freedom. The functional forms of the LET model are:

Epw = kv(")w Lw (Sm)Lw Tw> (3_2?))
(Sm)” +E¥(1-25,)
LO
ko = kP (Sm) (3-24)

(1= Sp) 4+ B0 (S)"
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where only Sy, Sor, k2, and k2 have a physical meaning. L™, E™, and T" are

empirical parameters used to better fit the data.

3.1.4
Buckley—Leverett

The Buckley-Leverett model is used in this study to validate the im-
plementation of the Darcy and Brinkman numerical models. Buckley-Leverett
theory [94] refers to the displacement of immiscible two-phase flow within a
porous medium. The BL model is built upon assumptions of linear (1-D) flow
in an isotropic and homogeneous porous medium, with both fluids considered
incompressible. The water injection occurs at a constant rate, i.e., the velocity
along the inlet boundary is constant.

Displacement efficiency can be defined as:

Amout of oil displaced (3-25)

D™ Tnitial Amount of oil in the porous medium’

Based on the eq. (3-10) and eq. (3-15), mass conservation of the water

phase can be written as:

0S, Ofw
— 4+ u——=0. 3-26
¢ ot + ox ( )
To calculate the displacement efficiency, it is necessary to establish
the saturation as a function of position and time, S, (z,t). The boundary

conditions and the initial condition for this problem are:

Sw (£,0) = Syi, >0 (3-27)
Sw (O, t) - Swinja t Z 0 (3-28)

where Syn; is the injection saturation.

The following variables are used to make equation (3-26) dimensionless:

(3-29)

Ip =

U — t d =
T.
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Eq. (3-30) is also referred to as the dimensionless porous volume injected.

Thus it is possible to expand equation (3-26) using (3-29) and (3-30) as follows:

08y | O0fu Sy _
815,3 8Sw 895,3 B

0. (3-31)

Writing eq. (3-31) as total differential equation,

S 08,
dS, = —=d —Zdtp, 3-32
81‘ D Tp+t 8t D b ( )
with this it is defined the specific velocity for a given water saturation vg, in

terms of its position and injected pore volumes:

drp  9Swfotp
dtp  Sufoap USu: (3-33)
Substituting eq. (3-32) into eq. (3-33) gives:
dfuw
Vs, = E, (3—34)

with this, it is possible to estimate the position of the water advection front

along the porous medium as a function of the injected volume for a given
Sy = S:

dfuw
ol . = dng tp. (3-35)

Eq. (3-35) can be employed to compute the saturation at a specific
position relative to the injection point, considering a predetermined volume

of injected fluid as exemplified in figure 3.1.

3.1.5
Single-phase Brinkman Model

Brinkman equation [16] presents a mathematical formulation designed
to address the concomitant fluid flow occurring within both a free-flow region
and a porous matrix. Notably, the author has successfully incorporated the
Stokes diffusion term into Darcy’s law. The single-phase Brinkman equation

is represent as follows:
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Buckley-Leverett Solution
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Figure 3.1: Saturation profile obtained in a homogeneous, 1-D porous medium
for an arbitrary tp. Sy is the water front saturation in the xp; position. This
profile is obtained through equation (3-35).

Vp=p"Vu-— ﬁu, (3-36)
K
where p* is denominated the effective Brinkman’s viscosity.

Since the porous media is considered isotropic, the tensor is simplified to
a scalar in this study. Consequently, the porous matrix attains a real-valued
permeability, symbolized by K, while in the vugular domain, K is conceptually
infinite.

The determination of the effective Brinkman’s viscosity (u*) has at-
tracted considerable attention. Several studies suggest different values might
be used instead of fluid viscosity. Martys et al., (1994) [95] highlighted an
important observation: the effective viscosity parameter is intimately related
to the porosity of the porous medium. The porosity of the porous matrix
examined ranged from 50% to 80%. It is noteworthy that these values signif-
icantly exceed the average porosity levels found in carbonate rock reservoirs,
which typically range from 10 to 20 percent. Lundgren (1972) [96] conducted
an experiment on a bed of randomly dispersed spheres. During their inves-
tigation, they found a significant correlation between medium porosity and
effective Brinkman viscosity, specially for elevated porosity values. Neale and
Nader (1974) [37] performed an analysis to establish a correlation between the
Beavers-Joseph equation and Brinkman viscosities. This correlation was well
represented by the model ap; = \//T/u Koplik et al., (1983) [97] indicated
that in comparison with pore-fluid viscosity, the effective Brinkman viscosity
is inferior. Brinkman formulation captures these effects with remarkable ac-
curacy. This results were reached for high porosity medium. Aurianlt (2009)

[98] indicated that the parameter p* assumes parity with p when dealing with
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high porosity. Moreover, the Brinkman equation cannot be applied to porous
media such as rock samples. Accordingly, Whitaker (1999) [36] presented a
concept of porosity correction, which is equivalent to the intrinsic velocity
and apparent flow velocity. Gilver and Altobelli (1994) [100] employed nuclear
magnetic resonance techniques to explore water flow through structured foams
with very high porosity. For a Reynolds number of 17, their experiments reveal
that the ratio of Brinkman viscosity to dynamic viscosity oscillates between
5.1 and 10.9. In their study, porosity (¢ = 0.975) and advective effects are el-
evated. Hence, the flow behaviour in carbonate reservoirs is inconsistent with
high porosity and high Reynolds number (except near wells). Generally, for-
mulations addressing Brinkman’s viscosity term are tailored for high porosity
contexts [95, 96, 97, 98, 100], which diverges from the scenario this study aims
to investigate. Moreover, various studies present different perspectives on this
matter. For instance, [98] suggests the Brinkman viscosity term is equivalent
to the fludi viscosity for high porosity, while [95, 97] suggested correction on
Brinkman viscosity term for high porosity media. This issue remains an ongo-
ing debate and is not the focus of the present study.

The use of viscosity values that are different from those of the fluid
in the free-flow region has several implications. Often, this approach relies
on correlations derived from specific porous medium configurations and flow
regimes, which do not align with the conditions usually associated with
carbonate rock flows. Furthermore, a substantial amount of literature assumes
that Brinkman’s viscosity corresponds to the fluid viscosity in the free-flow
region. According to the literature [14, 17, 58, 57, 101, 53, 55, 54, 59, 102, 18,
38, 39, 40, 41, 60, 45], the most common value for p* is the same as the fluid
viscosity in the free flow region p* = p and p* = 0 at the porous matrix region.
In addition, the permeability at the free flow region is set as K — oo, making

the Darcy term tending to zero as sketched in figure 3.2.

3.1.6
Two-Phase Brinkman Model

Equation (3-36) is modified to represent the two phase flow. For simplifi-
cation, it is considered that water and oil have the same density. The velocity
in the vug region follows the same assumption as the Darcy total velocity,
which is u = u, + u,,. Moreover, a simplified approach is chosen to examine
the viscosity of the mixture. This involved computing a saturation-weighted
average of individual phases’ viscosity. Within the scope of this study, p* is
set as zero on the matrix domains and it is modeled on the two-phase flow as

proportional of each phase saturation locally in the free-flow region:
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Free-Flow Region:
p* = pand K = oo

[

Porous Media:
:u* =0and K = Kmatrix

Figure 3.2: Diagram illustrating of the Brinkman model. The yellow region
represent the porous matrix and the gray region represents the free-flow region.

© = fio (L= Syw) + flwSu- (3-37)

Through the imposition of these constraints upon p* and K the Darcy
term becomes negligible within the vulgular region, while the Stokes term
is not considered within the porous matrix.Accordingly, the following set of

equations are selected to represent the Brinkman two-phase flow:

Vi — i
Vp=p'Vu oS (3-38)
V-u=g, (3-39)
0Sw .
6O LT () = (3-40)

where f* must be define differently for the free-flow region and the porous
matrix. In the porous matrix region f* = f,. In the free-flow domain, the
velocity of each phase is considered to be a linear function of the phase

saturation. Therefore, the free-flow region has f* = S, for the water phase.
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This approach was employed based on the experimental observations of Romm
(1966) [99]. Analogously, it is similar to considering a relative permeability
curve in X.

As similar to the Darcy two-phase model, Corey and Brooks relative
permeability correlation [92] is used to characterize the two-phase flow in
the porous matrix, where the irreducible water saturation and residual oil
saturation are both assumed to be zero and Brooks exponents are n,, = 2 and
n, = 2, respectively. Furthermore, the endpoints of relative permeability, k.,
at S, =0 and k,,, at S, = 1, both have values of one.

Modeling flow within the free-flow depends on several simplified assump-
tions. However, as far as the author knowledge, there is no clear approach to
how phase velocity and phase viscosity should be treated appropriately for flow
in free-flow region interacting with the porous medium. Currently, this issue

remains unresolved.

3.2
Flow Domain, Initial and Boundary Conditions

In this study, different vug configurations are used to evaluate the
behavior of a two-phase flow in highly heterogeneous rectangular porous media.
In all the cases, the domain is initially saturated by non-wetting phase, oil (0),
being displaced by the injection of a wetting phase, water (w). Figure 3.3
represents a sketch of the flow domain. Q C R? is a rectangle representing a
porous medium containing vugs. The porous matrix domain {23, and the vug
domain 2y are defined as such: Q = Q;; U Qy and Q,, NQy = @.

I's

Qe

Fl QV FQ

Figure 3.3: Schematic representation of the computational domains and their
boundaries conditions.

Water is injected through the left inlet boundary at a constant velocity,
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ieu = u; and S, = 1 along I'; in figure 3.3. The pressure in the outlet
boundary is constant, p = p,; along I's. The top and botton boundaries are

considered impermeable, u-n =0 on I's, i.e:

Sp=0at t=0, (3-41)
Sw=1on I} (3-42)
u=u, on I (3-43)
u-n=0on I}, (3-44)
P = Pout on . (3-45)

3.3
Numerical Implementation

The finite element method (FEM) is used for solving the partial dif-
ferential equations (PDE) associated with the different models described in
the previous session. The continuous problem is converted into a discrete sys-
tem of equations to approximate the solution. An effective implementation
of the method requires an accurate representation of the geometry by finite
elements. The quality of the mesh is essential to the success of the solution.
Sections (3.5.1) and (3.5.2) discuss mesh generation in detail. The weak form is
obtained by multiplying the original PDE by a weight function and integrating
into the problem domain. This procedure converts a differential equation into
an algebric system of equation. The coefficients of the approximate solution’s
expansion in terms of the basis functions constitute the unknowns of the dis-
crete problem. The functions are restricted to specific local regions within the
domain, resulting in a sparse linear system.

It is possible to solve the Brinkman and Darcy equations numerically by
selecting the appropriate set of basis functions according to the particularities
of each set of equations. The type of elements and the order of the basis
functions play an important role in the accuracy and efficiency of a finite
element analysis. The Mixed Finite Element Method (MFEM) is chosen for the
solution of the pressure and velocity fields for Brinkman and Darcy equations.
The MFEM is an extension of the classical FEM. In particular, it is well
suited to the solution of problems involving coupled or interrelated physical
phenomena. A major advantage of MEFM over FEM in the context of this
study is that MEFM is locally conservative, which is essential for numerical
stability for solving the equations that are proposed.

A first attempt was made to model Brinkman’s two-phase problem
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using Taylor-Hood elements for the velocity and pressure fields, and the
Discontinuous Galerkin method for the saturation field, based on Dali [40],
Cruz [41], and Campos [60] single-phase investigation. However, it was not
possible to obta