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Abstract

Machado, Raphael de Marreiros Cordeiro; Saldanha, Nicolau Corção (Ad-
visor); Klivans, Caroline Jane (Co-Advisor). Domino tilings of 3-
dimensional cylinders. Rio de Janeiro, 2025. 59p. Tese de Doutorado
– Departamento de Matemática, Pontifícia Universidade Católica do Rio
de Janeiro.

We consider three-dimensional domino tilings of cylinders D × [0, N ],
where D ⊂ R2 is a fixed quadriculated disk and N ∈ N. A domino is a 2×1×1
brick. A flip is a local move in the space of tilings T (D × [0, N ]): two adjacent
and parallel dominoes are removed and then placed in a different position.
The twist is a flip invariant which associates an integer number to each tiling.
For certain disks D, called regular, any two tilings of D × [0, N ] sharing the
same twist can be connected through a sequence of flips when extra vertical
space is added to the cylinder. We prove that the absence of a bottleneck in a
hamiltonian disk implies regularity. Conversely, we show that the presence of
a bottleneck in a disk D often indicates irregularity. In many cases, we further
demonstrate that D belongs to a specific class of irregular disks, which we
define as strongly irregular. Furthermore, for any strongly irregular disk D, we
prove that the connected components under flips consist of exponentially small
fractions of T (D × [0, N ]).

Keywords
Three-dimensional tilings; Dominoes; Local moves; Flips; Con-

nected components under flips.



Resumo

Machado, Raphael de Marreiros Cordeiro; Saldanha, Nicolau Corção; Kli-
vans, Caroline Jane. Coberturas por dominós de cilindros tridi-
mensionais. Rio de Janeiro, 2025. 59p. Tese de Doutorado – Departa-
mento de Matemática, Pontifícia Universidade Católica do Rio de Ja-
neiro.

Consideramos coberturas por dominós de cilindros tridimensionais da
forma D × [0, N ], onde D ⊂ R2 é um disco quadriculado fixo e N ∈ N.
Um dominó é um paralelepípedo 2 × 1 × 1. Um flip é um movimento local
no espaço de coberturas T (D × [0, N ]): dois dominós adjacentes e paralelos
são removidos e colocados em uma posição diferente. O twist é um invariante
por flips que associa um número inteiro a cada cobertura. Para certos discos,
chamados regulares, quaisquer duas coberturas de D×[0, N ] que compartilham
o mesmo twist podem ser conectadas por uma sequência de flips quando espaço
vertical é adicionado ao cilindro. Provamos que a ausência de gargalos em um
disco hamiltoniano implica regularidade. Reciprocamente, mostramos que a
presença de gargalos em um disco D geralmente indica irregularidade. Em
muitos casos, demonstramos ainda que D pertence a uma classe específica de
discos irregulares, que definimos como fortemente irregulares. Além disso, para
qualquer disco fortemente irregular D, provamos que as componentes conexas
por flips consistem de frações exponencialmente pequenas de T (D × [0, N ]).

Palavras-chave
Coberturas tridimensionais; Dominós; Movimentos locais; Flips;

Componentes conexas por flips.
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1
Introduction

Problems involving domino tilings have been widely studied, particularly
due to their connections with topics such as dimer models and perfect match-
ings. The study of domino tilings originated in two dimensions, where a region
refers to a finite connected union of closed unit squares with vertices in Z2.
In this scenario, a domino is a rectangle with sides of length one and two,
formed by the union of two adjacent closed unit squares. A domino tiling of a
region is a covering of the region by dominoes with disjoint interiors. Figure 1.1
illustrates examples of domino tilings of planar regions.

Figure 1.1: Three planar regions and two domino tilings of each.

Numerous significant results are known for two-dimensional domino
tilings. Kasteleyn [10] demonstrated a connection between the number of
domino tilings of a region and the Pffafian of a skew-symmetric matrix, as
a consequence, the exact number of domino tilings of a m × n rectangle is
derived. Independently, Temperley and Fisher [24] reached the same conclusion
using a different method. Thurston [25] used arguments from combinatorial
group theory, originally developed by Conway and Lagarias [6], to establish
a criterion to decide whether a region admits a tiling. From a probabilistic
perspective, random tilings have been explored to obtain properties of a typical
domino tiling of a large region. Jockusch, Propp and Shor [9] investigated
random tilings of regions called Aztec diamonds and proved the celebrated
Artic Circle Theorem. Cohn, Elkies and Propp [4] later provided a new proof
of this result. For more general regions, Cohn, Kenyon and Propp [5] showed
that the behavior of random tilings is determined by a variational principle.

We are particularly interested in the problem of connectivity of domino
tilings via local moves. A flip is a local move involving two dominoes: two
adjacent and parallel dominoes are removed and placed in a different position
after a 90◦ rotation. The flip connectivity problem consists in characterizing
the connected components under flips of the space of tilings of a given region.

Thurston [25] proved that any two tilings of a quadriculated disk (i.e.,
a planar region homeomorphic to a closed disk) can be joined by a sequence
of flips. Saldanha, Tomei, Casarin and Romualdo [23] showed, for planar non-
simply-connected regions, the existence of a flip invariant called flux. Moreover,
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it is also proved that two domino tilings can be joined by a sequence of flips if
and only if they have the same flux. For example, in Figure 1.1, the tilings of
the disks can be connected through flips, unlike the tilings of the non-simply-
connected region.

Domino tilings, along with the questions previously discussed, can be
easily generalized to higher dimensions. However, the arguments used in two
dimensions do not extend straightforwardly and much less is known, even for
“well-behaved” regions. We focus on dimension three, where a region is a union
of closed unit cubes and a (3D) domino is a parallelepiped formed by two closed
unit cubes sharing a face.

Recently, Chandgotia, Sheffield and Wolfram [3] developed new tools
to extend the results in [5] to 3D domino tilings. In a different vein, the
transition of dimensions can drastically change the a priori expected result. For
instance, Pak and Yang [20] showed that the counting tiling problem becomes
computationally more complex in dimension three. Similarly, as we shall see,
the space of tilings of a contractible 3D region is not necessarily flip connected.

In the last decade, significant progresses have been made on the flip
connectivity problem, particularly in regions like cylinders [8, 13, 19, 22]. A
three-dimensional cylinder RN ⊂ R3 is a cubiculated region formed by the
cartesian product of a quadriculated disk D and an interval [0, N ] with N ∈ N.
The set of tilings of RN is denoted by T (RN).

We adopt the approach used in [19] and draw a tiling of RN by describing
its behavior at each floor D×[K−1, K]; for instance, see Figure 1.2. Specifically,
we depict a tiling as follows. We first fix the x-axis and the y-axis, the floors are
then exhibited in increasing order from the left to the right. A domino parallel
to either the x-axis or the y-axis, called a horizontal domino, is drawn as a
planar domino. A domino parallel to the z-axis, called a vertical domino, is
represented by two unit squares contained in adjacent floors, corresponding to
its lower and upper halves. To avoid confusion, the upper half, which appears
on the right-hand side, is left unfilled.

Figure 1.2: A tiling of a cylinder D × [0, 8].

In general, we consider cylinders where the underlying disk is balanced
and nontrivial. A disk D is balanced if it contains an equal number of black
and white unit squares; a unit square [a, a+ 1] × [b, b+ 1] ⊂ D with (a, b) ∈ Z2

is white if a+ b is even and black if a+ b is odd. Additionally, D is trivial if its
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unit squares are each adjacent to at most other two unit squares; for examples
of trivial disks see Figure 1.3 below. It is not difficult to show that any two
tilings of D× [0, N ] can be joined by a sequence of flips if D is trivial. However,
the discussion is much more subtle for nontrivial disks.

Figure 1.3: Six balanced quadriculated disks, the first three are trivial and the
last three are nontrivial.

Milet and Saldanha [18] introduced the twist of a tiling for a large class
of contractible cubiculated regions contained in R3. In this case, the twist is
a flip invariant assuming values in Z: given a tiling t of a suitable region, we
have an integer Tw(t). The twist is defined by a combinatorial formula that
counts certain pairs of dominoes oriented in different directions, in some sense
measuring how twisted a tiling is. This definition is presented in Section 2.3.

The twist is closely related to the Hopf number, an invariant studied in
physics whose existence is linked to the nontriviality of the third homotopy
group of the sphere π3(S2) = Z; for details, see [2, 7]. For regions more general
than cylinders, which are not necessarily contractible, Freire, Klivans, Saldanha
and Milet [8] provided a definition of the twist using homology theory. More
recently, Khesin and Saldanha [12] presented an interpretation of the twist of
a tiling as the relative helicity of a vector field.

In order to study the problem of connectivity by flips of the space of
tilings of cylinders, we consider two distinct but related equivalence relations.
Let D be a disk and consider tilings t1 ∈ T (RN1) and t2 ∈ T (RN2). We write
t1 ≈ t2 if N1 = N2 and there exists a sequence of flips joining t1 and t2. The
≈-equivalence classes are called connected components under flips.

We need two concepts to define the second equivalence relation. First,
let concatenation t1 ∗ t2 be the tiling of RN1+N2 formed by the union of t1

and the translation of t2 by (0, 0, N1). Second, for N ∈ 2N let the vertical
tiling tvert,N ∈ T (RN) be the tiling consisting solely of vertical dominoes. We
write t1 ∼ t2 if N1 ≡ N2 (mod 2) and there exist M1,M2 ∈ 2N such that
t1 ∗ tvert,M1 ≈ t2 ∗ tvert,M2 . Notice that if t1 ̸∼ t2 then t1 ̸≈ t2. However, as in
Figure 1.4, there are cases where N1 = N2 and t1 ∼ t2, while t1 ̸≈ t2.

Figure 1.4: Three tilings t1, t2, tvert,2 of [0, 4]2 × [0, 2]. A straightforward
verification shows that t1 ̸≈ t2 but t1 ∗ tvert,2 ≈ t2 ∗ tvert,2, so that t1 ∼ t2.
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The notion of regular disk is presented in [22]. A nontrivial balanced
quadriculated disk D is regular if whenever two tilings t1 and t2 of D × [0, N ]
have the same twist then t1 and t2 can be connected by a sequence of flips once
extra vertical space is added to the cylinder; equivalently, if Tw(t1) = Tw(t2)
then t1 ∼ t2. We say that a disk is irregular if it is not regular. Saldanha [22]
proved that the rectangle D = [0, L] × [0,M ] with LM even is regular if and
only if min{L,M} ≥ 3; and it was conjectured that “plump” disks are regular.

For a regular disk D, a natural question arises about the amount of
additional vertical space required to ensure that any two tilings of a cylinder
RN with the same twist are equivalent under flips. In this context, Theorem 2
of [22] shows that there exists a constant MD ∈ 2N (not depending on N)
such that any two tilings with the same twist become connected by flips when
concatenated with the vertical tiling of height MD. However, even for small
regions such as the 4 × 4 square, no estimates for MD are known.

We dedicate a considerable part of this thesis to investigate the regularity
of quadriculated disks. To this end, we study the domino group GD of a disk D.
As a set, GD is defined as the quotient

GD =
Å ⋃
N∈N

T (RN)
ã
/ ∼ .

For simplicity, we abuse notation and represent elements of GD by tilings,
rather than their equivalence classes. The group operation on GD is given
by the concatenation. The identity element is the vertical tiling and the
inverse of a tiling is obtained by taking its reflection on the xy plane. The
well-definedness of concatenation under ∼ and the equivalence between a
vertical tiling and a tiling concatenated with its inverse are detailed in
Section 2.1. In Section 2.2, we present a useful alternative description of the
domino group as the fundamental group of a CW-complex.

We frequently work with the even domino group G+
D, the normal subgroup

of index two of GD whose elements correspond to tilings of cylinders of even
height. In general, G+

D contains most of the relevant information for our
discussion. Notably, the twist defines a homomorphism from GD to the integers
Z, which maps G+

D onto Z for nontrivial disks, implying that GD is infinite; see
Section 2.3. It turns out that a disk D is regular if and only if the restriction
of this homomorphism to G+

D is an isomorphism. In such cases, the domino
group is a direct product of two groups: GD = Z ⊕ Z/(2).

We distinguish irregular disks by the behavior of their even domino
groups. A disk D is called strongly irregular if there exists an epimorphism
(i.e., a surjective homomorphism) from the even domino group G+

D to F2, the
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free group of rank two. The structure of G+
D provides information about the

space of tilings T (RN) for large values of N . In the regular case, where G+
D = Z,

it follows from [21] that the size of the largest connected component under flips
is Θ(N− 1

2 |T (RN)|). We adopt a different but similar approach to prove that
if D is strongly irregular then, for large N , the connected components consist
of exponentially small fractions of T (RN). In probabilistic terms, this result
is equivalent to Theorem 1.1.
Theorem 1.1. Consider a nontrivial balanced quadriculated disk D. If D
is strongly irregular then there exists a constant c ∈ (0, 1) such that the
following holds. Let T1 and T2 be two independent random tilings of D× [0, N ]
then P(T1 ≈ T2) = o(cN).

Remark 1.2. It follows from Theorem 12 of [21] that, for any nontrivial
balanced disk D, the probability P(Tw(T1) = Tw(T2)) is asymptotically
bounded below by N−1. Thus, by Theorem 1.1, if D is strongly irregular, then
P(T1 ≈ T2 | Tw(T1) = Tw(T2)) decreases exponentially with N . ⋄

The complete computation of the even domino group of a disk is not
necessary to establish its strong irregularity; this appears to be a significantly
more difficult task. From [22], we know that thin rectangles DL = [0, L]× [0, 2]
with L ≥ 3 are strongly irregular. Inspired by the ideas presented in [19], we
proceed to compute G+

DL
. Let SL = {ai : i ∈ Z̸=0 and |i| ≤

⌊
L−1

2
⌋
} be a set

of symbols and let RL = {(m,n) ∈ Z2 : max{|m|, |n|, |m − n|} <
⌊
L
2
⌋
}. Now,

consider the group described in terms of generators and relations

G+
L = ⟨SL | [am, an] = 1 for (m,n) ∈ RL⟩, (1.1)

where [am, an] = amana
−1
m a−1

n is the commutator of am and an. Therefore, in
other words, G+

L is the quotient of the free group on SL by the normal subgroup
generated by [am, an] with (m,n) ∈ RL.
Theorem 1.3. Let L ≥ 3 and consider the disk DL = [0, L] × [0, 2]. Then, the
even domino group G+

DL
is isomorphic to G+

L .

In most cases, we demonstrate the strong irregularity of a quadriculated
disk D by explicitly constructing a surjective homomorphism from G+

D to the
free group F2. This construction is based on the existence of floor configurations
composed of dominoes arranged in a staggered configuration, as the fifth floor
of the tiling exhibited in Figure 1.2. Although obtaining such disks is not
too hard, their description can be somewhat intricate. For instance, the disks
shown in Figures 1.5 and 1.6 are strongly irregular by Theorems 1.4 and 1.5,
respectively. Additional constructions of strongly irregular disks are discussed
in Section 5.2.
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Theorem 1.4. Let D be a balanced quadriculated disk D. Suppose that D
contains a unit square s such that D∖s has at least three connected components.
If the largest component of D ∖ s has size at most |D| − 4 then D is strongly
irregular.

Figure 1.5: Examples of strongly irregular disks; unit squares s as in Theo-
rem 1.4 are marked by a red line segment.

Theorem 1.5. Let D be a balanced disk D containing a domino d such that
D ∖ d is not connected. Suppose there exists a 2 × 2 square in D containing d.
If every connected component of D ∖ d that intersects a 2 × 2 square in D
containing d has size at most |D|−2

2 then D is strongly irregular.

Figure 1.6: Examples of strongly irregular disks; dominoes d as in Theorem 1.5
are marked by a red line segment.

Disks that are irregular but not strongly irregular seem to be rare. Indeed,
the only family of disks for which we demonstrate this phenomenon is as in
Figure 1.7, whose details we present in Section 5.1. We believe that these
are essentially the only examples of irregular but not strongly irregular disks.
Notice that, in contrast with Theorem 1.4, these disks can be disconnected
into three connected components by removing a unit square, with the largest
component having size |D| − 3.

Figure 1.7: Examples of irregular disks that are not strongly irregular, for these
disks the even domino group is isomorphic to Z2.

In addition to identifying irregular disks, we demonstrate that a substan-
tial class of disks is regular. As a consequence, the disks depicted in Figures 1.8
and 1.9 are regular. Two properties, both with graph-theoretical interpreta-
tions, determine the regularity of a disk.

There exists a natural identification between a disk D and a bipartite
graph G(D). The vertices of G(D) correspond to the unit squares in D, and
two vertices are connected by an edge if and only if their corresponding unit
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squares are adjacent. We refer to the properties of G(D) as properties of D. In
particular, D is called hamiltonian if G(D) has a hamiltonian cycle.

We also examine the presence of bottlenecks in D, which are related to
vertex cuts of size two of G(D). A bottleneck is defined by a domino d ⊂ D
that disconnects D, meaning that D ∖ d is not connected. Notice that all
examples of irregular disks presented in this thesis contain bottlenecks. In
fact, we conjecture that disks free of bottlenecks are regular.

Our first result on regular disks, which can be viewed as a particular
case of the second, establishes the regularity of bottleneck-free hamiltonian
disks. The second result shows the regularity of a hamiltonian disk obtained by
introducing narrow and small bottlenecks into an initially bottleneck-free disk.

Theorem 1.6. Let D be a nontrivial hamiltonian quadriculated disk. Suppose
that there exists no domino d ⊂ D such that D ∖ d is not connected. Then, D
is regular.

Figure 1.8: Examples of disks whose regularity follows from Theorem 1.6.

Theorem 1.7. Let D0 be a disk satisfying the hypothesis of Theorem 1.6.
Consider pairwise disjoint disks D1, . . . ,Dk such that |Di| < |D0| − 2 and
Di ∩ D0 is a line segment of length two. If D = ⋃k

i=0 Di is a hamiltonian disk
then D is regular.

Figure 1.9: Examples of disks whose regularity follows from Theorem 1.7.

Naturally, Theorems 1.6 and 1.7 motivate the question of whether
a bottleneck-free disk is hamiltonian, which is equivalent to determining
whether a solid grid graph with no vertex cut of size two formed by adjacent
vertices has a hamiltonian cycle. Zamfirescu and Zamfirescu [26] showed that
certain grid graphs with width greater than two are hamiltonian. Conversely,
Keshavarz-Kohjerdi and Bagheri [11] established conditions that a hamiltonian
rectangular truncated grid graph must satisfy. As a consequence, the first two
disks in Figure 1.10 are not hamiltonian. On the other hand, it is easy to
obtain examples of disks with small bottlenecks that fail to be hamiltonian, as
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the last two disks in Figure 1.10. Although our theorems do not apply directly,
the regularity of these four disks can be easily established by combining our
results with an additional analysis, as each disk becomes hamiltonian after
the removal of two specific unit squares. On a positive note, in light of
Theorem 1.5, the inequality in Theorem 1.7 regarding the size of the pairwise
disjoint disks is tight.

Figure 1.10: Four regular disks.

This thesis is based on the preprints [15] and [17].



2
Definitions

This chapter provides the necessary background to establish our results.
The content follows [22], the definitions and results are included to ensure the
text is self-contained. To avoid repetition, proofs are omitted.

The first section focuses on constructing a particular family of generators
of the even domino group of path-hamiltonian disks, i.e., disks whose associated
bipartite graph has a hamiltonian path. The second section presents an
alternative formulation of the domino group of a disk, which is particularly
useful for demonstrating the irregularity of disks. The third section is dedicated
to the definition of the twist of a tiling.

2.1
Plugs, corks and generators

Throughout this text we routinely abuse notation and neglect boundaries
when discussing quadriculated regions. Given two regions R and ‹R, we write
R ∖ ‹R for the quadriculated region formed by the closed unit squares that
are in R but not in ‹R. Similarly, we say that R and ‹R are disjoint if they do
not share any unit square. In that sense, two unit squares that have only one
or two vertices in common are said to be disjoint. Henceforth, unless stated
otherwise, we assume that all quadriculated disks are nontrivial and balanced.

Let D be a quadriculated disk. A plug p ⊂ D is a balanced subregion
of D, that is, a union of an equal number of white and black closed unit squares
contained in D; examples of plugs are exhibited in Figure 2.1. We distinguish
the empty plug p◦ = ∅ and the full plug p• = D. The complement p−1 = D∖p
of a plug p is also a plug. We denote by |p| the number of unit squares in p

and by P the set of plugs in D.

Figure 2.1: Six plugs of D = [0, 4] × [0, 3]. The first plug is a domino and its
complement is the second plug, the third and fourth plugs are disjoint, the
fifth plug is the full plug and the last plug is the empty plug.

Sometimes, it is useful to consider regions more general than cylinders.
Let p1, p2 ∈ P be two plugs and consider two nonnegative integers N1 and N2

such that N2 > N1 + 2. The cork RN1,N2;p1,p2 is defined as:

RN1,N2;p1,p2 = (D × [N1 +1, N2 −1])∪ (p−1
1 × [N1, N1 +1])∪ (p−1

2 × [N2 −1, N2]).
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In other words, RN1,N2;p1,p2 is obtained from D× [N1, N2] by removing the plug
p1 from the (N1 +1)-th floor and the plug p2 from the N2-th floor. For instance,
R0,N ;p◦,p◦ = RN . The set of tilings of RN1,N2;p1,p2 is denoted by T (RN1,N2;p1,p2).

A floor is a triple f = (p1, f
∗, p2), where p1 and p2 are two disjoint plugs

and f ∗ is a set of planar dominoes that defines a tiling of D ∖ (p1 ∪ p2). We
refer to f ∗ as the reduced floor, and we call f a vertical floor if f ∗ = ∅. Notice
that the inverse f−1 = (p2, f

∗, p1) of a floor f is also a floor.
We have an identification between tilings of corks (in particular, cylin-

ders) and sequences of floors. Indeed, as in Figure 1.2, tilings are essentially
drawn by exhibiting their corresponding sequences of floors. More specifically,
consider a tiling t of R0,N ;p1,p2 . The behavior of t at D × [K − 1, K] is de-
termined by a floor fK = (p1,K , f

∗
K , p2,K). The plug pi,K consists of the unit

squares [a, a+1]× [b, b+1] such that [a, a+1]× [b, b+1]× [K−3+ i,K−1+ i]
is a vertical domino in t, while f ∗

K corresponds to the horizontal dominoes of t
contained in D× [K−1, K]. Thus, p1,K and p2,K are disjoint and p1,K = p2,K−1;
with the conventions p1,1 = p1 and p2,N = p2. Therefore, t is completely de-
scribed by a concatenation of floors: t = f1 ∗ f2 ∗ . . . ∗ fN . Similarly, a tiling
can be described as a concatenation of tilings of corks and floors. Figure 2.2
illustrates an example of this construction.

Figure 2.2: A tiling of D × [0, 4] with D = [0, 4] × [0, 3] and its description by
the four floors fK = (p1,K , f

∗
K , p2,K). Notice that p1,1 = p2,4 = p◦.

An important fact is that pairs of vertical floors can be moved through
flips. For instance, consider a tiling t = t1 ∗ t2 with t1 ∈ T (R0,N1;p◦,p1) and
t2 ∈ T (R0,N2;p1,p◦). It turns out that t ∗ tvert,2 ≈ t1 ∗ tvert,p1 ∗ t2 ≈ tvert,2 ∗ t,
where tvert,p1 ∈ T (R0,2;p1,p1) is the tiling formed only by vertical dominoes
(see Lemma 5.3 of [22]). Therefore, the relation ∼ allows the addition of an
arbitrary even number of vertical floors between any two floors of a tiling. In
particular, concatenation is well-defined under ∼.

The inverse of a tiling t of RN1,N2;p1,p2 is defined as the tiling t−1 of
RN1,N2;p2,p1 obtained by reflecting t on the xy plane. In the language of floors,
if t = f1 ∗f2 ∗ . . .∗fN then t−1 = f−1

N ∗f−1
N−1 ∗ . . .∗f−1

1 . We have t∗t−1 ∼ tvert,p1

(see Lemma 4.2 of [22]).
A path of length k is a sequence γ = (s1, s2, . . . , sk) of distinct unit squares

in D such that si and si+1 are adjacent for all i. We say that γ is a cycle if
the initial and final squares s1 and sk are also adjacent. Therefore, a disk D is
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path-hamiltonian (resp. hamiltonian) if and only if it has a path (resp. cycle)
of length |D|. Figure 2.3 shows examples of hamiltonian cycles and paths, their
orientation and initial square are indicated by an arrow.

Figure 2.3: The first and the second example show a hamiltonian cycle and
a hamiltonian path in [0, 4]2. The third disk is path-hamiltonian but not
hamiltonian. The fourth disk is neither path-hamiltonian nor hamiltonian.

From now on, until the end of this section, consider a disk D with a fixed
hamiltonian path γ = (s1, s2, . . . , s|D|). We proceed towards the construction
of a family of tilings that generates the even domino group G+

D. Clearly, the
following arguments apply similarly to hamiltonian cycles, as we can transform
any cycle into a path by separating its initial and final squares.

We first need the notion of whether a domino respects γ. A domino d ⊂ D
respects γ if it is equal the union of si and si+1 for some i. A three-dimensional
domino d ⊂ RN respects γ if its projection on D is either a unit square or
a planar domino that respects γ. In view of Fact 2.1, it will be important to
consider the set Dγ composed by the dominoes in D that do not respect γ.

Fact 2.1 (Lemma 8.1 of [22]). Let D be a disk with a hamiltonian path γ. If
t ∈ T (R0,2N ;p,p) is a tiling whose dominoes respect γ then t ∼ tvert,p.

For each plug p ∈ P , we construct a tiling tp ∈ T (R0,|p|;p,p◦) whose
dominoes respect γ; by convention, tp◦ = ∅. To this end, it suffices to describe
the horizontal dominoes contained in each floor of tp. We proceed by induction
on |p|. Consider two unit squares of opposite colors si, sj ⊂ p with i < j and
j−i minimal. If j = i+1, the first floor (of tp) contains no horizontal dominoes.
Otherwise, the horizontal dominoes of the first floor are obtained by placing
dominoes along the path (si+1, si+2, . . . , sj−1), more precisely, si+1 ∪ si+2,
si+3 ∪ si+4,. . ., sj−2 ∪ sj−1. Similarly, the horizontal dominoes of the second
floor are obtained by placing dominoes along the path (si, si+1, . . . , sj). The
concatenation of these two floors with tp∖(si∪sj) (that we already constructed
by induction) defines tp; for an example, see Figure 2.4. Notice that different
choices of unit squares at minimal distance yield distinct tilings, which are
connected through flips by Fact 2.1.

Figure 2.4: A disk with a hamiltonian path, a plug p and the tiling tp.
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Remark 2.2. We can also obtain a tiling of R0,|p|;p,p◦ even when D is not path-
hamiltonian. By considering a spanning tree of D, the same procedure of using
unit squares at minimal distances produces a tiling tp. However, Fact 2.1 no
longer applies in this scenario, and distinct choices of unit squares at minimal
distance may result in tilings that are not equivalent under ∼. ⋄

Consider a floor f = (p1, f
∗, p2). Let fvert = (p2,∅, p−1

2 ) be a vertical
floor. Then, set tf = t−1

p1 ∗ f ∗ fvert ∗ tp−1
2

∈ T (RN) where N = |p1| + |p−1
2 | + 2.

Notice that dominoes in tf that do not respect γ must be in the floor f .

Fact 2.3 (Lemma 8.2 of [22]1). Let D be a disk with a hamiltonian path γ.
Consider N even and a tiling t ∈ T (RN) with floors f1, f2, . . . , fN , so that
t = f1 ∗ f2 ∗ . . . ∗ fN . Then,

t ∼ tf1 ∗ t−1
f−1

2
∗ . . . ∗ t(−1)(i+1)

f
(−1)(i+1)
i

∗ . . . ∗ t−1
f−1

N

.

We now consider a particular case of the construction above. A plug and
a domino d ⊂ D are compatible if they are disjoint, the set of plugs compatible
with d is denoted by Pd. For a domino d ⊂ D with a compatible plug p ∈ Pd,
let f = (p, d, (p∪ d)−1) be a floor and set td,p;γ = tf ; when the context is clear
we write td,p instead of td,p;γ. Notice that if d ̸∈ Dγ then Fact 2.1 implies that
td,p ∼ tvert. On the other hand, if d ∈ Dγ then d × [|p|, |p| + 1] is the only
domino in td,p that does not respect γ. For instance, see Figure 2.5.

Figure 2.5: The first row shows the disk D = [0, 3] × [0, 4] with a hamiltonian
path γ, and a domino d with a compatible plug p. The second row shows
td,p;γ = t−1

p ∗ f ∗ fvert ∗ tp∪d.

Fact 2.4 (Lemma 8.3 of [22]). Let D be a disk with a hamiltonian path γ.
Consider a floor f = (p, f ∗, p̃). Suppose that f ∗ = {d1, d2, . . . , dk}. Let p1 = p

and pi+1 = pi ∪ di. Then,

tf ∼ td1,p1 ∗ . . . ∗ tdi,pi
∗ . . . ∗ tdk,pk

.

Notice that Facts 2.3 and 2.4 imply that the even domino group G+
D is

generated by the set of tilings of the form td,p. It is possible to reduce this family
1There is a typo in the original result, and the −1 superscripts on the floors of even

parity are missing.
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of generators through the notion of flux between a domino and a plug, which
we now define. In order to define flux, it is important to distinguish whether
a unit square is black or white. To facilitate this distinction, we utilize the
path γ. For a unit square si, define color(si) = (−1)i. Then, si is identified as
white if color(si) = +1 and as black if color(si) = −1.

Consider a domino d ∈ Dγ, so that d = sk∪sl with l−k > 1. The domino
d decomposes the region D ∖ d into three subregions:

Dd,−1 =
k−1⋃
i=1

si, Dd,0 =
l−1⋃

i=k+1
si, Dd,+1 =

|D|⋃
i=l+1

si.

Clearly, each region Dd,j comes with a hamiltonian path γd,j. The regions Dd,−1

and Dd,+1 are not necessarily balanced and nonempty. However, Dd,0 is always
balanced and nonempty, as l−k > 1 and (sk, sk+1, . . . , sl) is a cycle. The union
of Dd,−1 and Dd,+1 is denoted by Dd,±1.

Consider a plug p ∈ Pd compatible with d, we define a triple of inte-
gers flux(d, p) = (flux−1(d, p), flux0(d, p), flux+1(d, p)) ∈ Z3. The coordinate
fluxj(d, p) is computed by summing color(si) = (−1)i over the unit squares si
contained in p ∩ Dd,j. Notice that flux−1(d, p) + flux0(d, p) + flux+1(d, p) = 0,
since p is a balanced subregion of D.

Fact 2.5 (Lemma 8.4 of [22]). Let D be a disk with a hamiltonian path γ.
Consider a domino d ∈ Dγ and two plugs p1, p2 ∈ Pd. If flux(d, p1) = flux(d, p2)
then td,p1 ∼ td,p2

Consequently, we obtain a family of generators of G+
D as follows.

Fact 2.6 (Corollary 8.6 of [22]). Consider a disk D with a hamiltonian path γ.
For each domino d ∈ Dγ, let Φd be the set of the possible triples flux(d, ·). For
each ϕ ∈ Φd, consider a plug pd,ϕ ∈ Pd such that flux(d, pd,ϕ) = ϕ. The even
domino group G+

D is generated by the family of tilings (td,pd,ϕ
).

2.2
The domino complex

Given a quadriculated disk D, we construct a 2-dimensional CW-complex
CD called domino complex. The domino group GD will correspond to the the
fundamental group of CD. The key idea is to associate each tiling of RN with
an oriented closed path of length N in the 1-skeleton of CD. To this end, we
convert the description of a tiling as a concatenation of floors into an oriented
path in CD by assigning an oriented edge to each possible floor configuration.
The 2-cells are then attached to attend flips.
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The 0-skeleton, the set of vertices of CD, is the set of plugs P . The
edges of CD represent two-dimensional domino tilings of subregions of D. More
precisely, attach an edge between two disjoint plugs p1 and p2 for each tiling of
D ∖ (p1 ∪ p2). In particular, plugs that are not disjoint do not share any edge.
For the special case p1 = p2 = p◦ (the empty plug), there is a loop based at p◦

for each tiling of D; there are no other loops in CD. This construction defines
the 1-skeleton of CD.

We now attach the 2-cells. First, attach a disk to each loop by wrapping
its boundary twice around the loop, so that the result is a projective plane. In
other words, each loop f is homotopically equivalent to a circle, and we attach
a disk via the map f ∗ f . For instance, see Figure 2.6.

Figure 2.6: Four loops in the complex CD for D = [0, 4]2, the four petals are
four projective planes.

The other 2-cells correspond to horizontal and vertical flips, and are
attached injectively to certain bigons and quadrilaterals. Notice that a bigon
consists of two distinct disjoint plugs p1 and p2 connected by two edges
representing distinct tilings of D ∖ (p1 ∪ p2). We attach a disk to each bigon
whose edges correspond to tilings which differ by a single flip, as in Figure 2.7.

Figure 2.7: Two bigons in the complex of D = [0, 4]2. In the first row we attach
a disk to the bigon. The two tilings in the second row do not differ by a single
flip. Therefore, we do not attach a disk to the bigon in the second row.

We attach a 2-cell to quadrilaterals corresponding to a single vertical
flip, each such quadrilateral is constructed as follows. Let p1, p2, p3, p4 be four
plugs such that p2 is disjoint from p1 and p4. Suppose that p2 equals a union
of p3 and two adjacent unit squares, i.e. a domino d ⊂ D. Let f ∗

1 be a tiling of
D ∖ (p1 ∪ p2) and f ∗

2 be a tiling of D ∖ (p2 ∪ p4). Therefore, f ∗
3 = f ∗

1 ∪ d and
f ∗

4 = f ∗
2 ∪ d are tilings of D ∖ (p1 ∪ p3) and D ∖ (p3 ∪ p4), respectively. Notice
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that p1, p2, p3, p4 and f ∗
1 , f

∗
2 , f

∗
3 , f

∗
4 thus define a quadrilateral in the 1-skeleton

of CD. Then, attach a 2-cell to this quadrilateral, as in Figure 2.8.

Figure 2.8: Two quadrilaterals in the complex of D = [0, 4]2. In the first row
we attach a 2-cell to the quadrilateral. The second row shows an example of a
quadrilateral where we do not attach a 2-cell.

This finishes the construction of the complex CD. In most cases, it is
impractical to draw the complex CD. For instance, if D = [0, 4]2 then CD has
12870 vertices and 36 loops. The calculation of the exact number of 1-cells and
2-cells requires a long computation.

In the complex CD, we specify an orientation each time we move along
an edge. Consider two distinct disjoint plugs p1 and p2 and let f ∗

1 be a tiling
of D ∖ (p1 ∪ p2), so that f ∗

1 is an edge of CD. We then denote the two possible
orientations of f ∗

1 through the language of floors , i.e. , by f = (p1, f
∗
1 , p2) and

f−1 = (p2, f
∗
1 , p1). Notice that, since projective planes are attached to loops,

the two possible orientations of a loop f = (p◦, f
∗,p◦) are homotopic.

The complex CD is related to tilings of cylinders of base D. Indeed, recall
from Section 2.1 that a tiling t of D × [0, N ] can be represented as sequence
of floors t = f1 ∗ f2 ∗ . . . ∗ fN . By the previous paragraph, the tiling t is then
described in CD by a closed oriented path of length N based at p◦.

Under this identification of tilings and paths, concatenation of paths in
CD corresponds to concatenation of tilings. In that sense, flips correspond to
homotopies between paths. Then, two tilings are equivalent under ∼ if and
only if their corresponding paths in CD are homotopic (see Lemma 5.4 of [22]).
We then have that GD = π1(CD,p◦).

The even domino group G+
D is a normal subgroup of index two of

GD. Then, G+
D is the fundamental group of a double cover C+

D of CD, i.e.,
π1(C+

D) = G+
D. The set of vertices of C+

D is the set P × Z/(2), which indicates
the plug and the parity of its position. Moreover, if p1 and p2 are two disjoint
plugs then each tiling f ∗

1 of D ∖ (p1 ∪ p2) corresponds to two edges in C+
D .

Indeed, for each i ∈ Z/(2), there is an edge f ∗
1,i between (p1, i+ 1) and (p2, i).

Therefore, fi = ((p1, i+ 1), f ∗
1,i, (p2, i)) and f−1

i = ((p2, i), f ∗
1,i, (p1, i+ 1)) define

two orientations of f ∗
1,i. We prefer to describe the orientation of an edge in

C+
D by a pair formed by an oriented edge in CD and an element i ∈ Z/(2).
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The oriented edge of CD indicates the initial and the final vertex, the element
of Z/(2) indicates the parity of the final vertex. For instance, an oriented
edge fi = ((p1, i + 1), f ∗

1,i, (p2, i)) in C+
D is described by the pair (f, i) where

f = (p1, f
∗
1 , p2) is an oriented edge in CD. Therefore, oriented edges in C+

D are
also called floors with parity. Notice that if fi = (f, i) then f−1

i = (f−1, i+ 1).

2.3
Twist

In this section, we briefly recall the definition of the twist of a tiling. First,
fix a black and white coloring of the unit cubes in R3 such that adjacent cubes
have opposite colors. For example, identify a cube [a, a+1]×[b, b+1]×[c, c+1],
with (a, b, c) ∈ Z3, as white if a+ b+ c is even and as black if a+ b+ c is odd.

For a three-dimensional domino d, let v(d) ∈ {±e1,±e2,±e3} ⊂ R3

denote the unit vector from the center of the white cube to the center of
the black cube of d. Consider a direction u ∈ {±e1,±e2} and define Su(d) as
the interior of the set (⋃

t∈[0,∞) d+ tu) ∖ d.
Given a tiling t of D × [0, N ] and two dominoes d1 and d2 of t let

τu(d1, d2) =

1
4 det(v(d2), v(d1), u), d2 ∩ Su(d1) ̸= ∅

0, otherwise

Notice that τu(d1, d2) = 0 unless d1 is a vertical domino and d2 is a horizontal
domino (or vice versa), with both contained in D × [K,K + 2] for some K.

The twist of t is defined as the sum:

Tw(t) =
∑

d1,d2∈t
τu(d1, d2)

From the definition, it is not difficult to see that the value of the twist
is not affected by flips. Moreover, we have that Tw(t−1) = −Tw(t) and
Tw(t1 ∗ t2) = Tw(t1) + Tw(t2) for any two tilings t1 ∈ T (RN1) and
t2 ∈ T (RN2). A more subtle property is that the twist is always an integer
and is independent of the choice of u (see [18]).

Therefore, the twist defines a homomorphism Tw : GD → Z. In the case
that D is a nontrivial balanced disk, the twist maps G+

D onto Z. Thus, the twist
and its restriction to the even domino group are surjective homomorphisms.

Fact 2.7 (Lemma 6.2 of [22]). Let D be a nontrivial balanced disk. There exist
N ∈ 2N and t ∈ T (RN) such that Tw(t) = 1. In particular, the restriction
Tw : G+

D → Z is surjective.



3
Flip connected components of strongly irregular disks

In this chapter, we prove Theorem 1.1. The strategy of the proof involves
the following steps. We begin by establishing a general result on random tilings
of cylinders. For a disk D, we show that for any fixed family of tilings of
RN0 , the probability that a random tiling of RN contains few tilings from
the fixed family decays exponentially as N goes to infinity. We then associate
the probability that two (independent) random tilings of RN are equivalent
under flips with the probability of a random tiling, formed alternately by
concatenations of tilings from the fixed family with others not in the family,
equals the vertical tiling. Given a surjective homomorphism ϕ : G+

D → F2,
where F2 is the free group generated by a and b with e as the identity, we
consider a fixed family of tilings corresponding to the values a, a−1, b, b−1, e.
By taking the image under ϕ, we then relate the probability that two random
tilings are equivalent under flips to the probability that a lazy random walk
on F2, which takes a deterministic step after each random step, returns to
the identity. Theorem 1.1 then follows from the fact that the later probability
decays exponentially as the length of the walk increases; as we show in the
subsequent section.

3.1
Permuted random walks

The main result of this section is Lemma 3.1 below. The first part of this
result was recently independently proved (in greater generality) in [1], while
the second part follows from a combination of the first part and the well known
fact that the return probabilities of a random walk on F2 decay exponentially
(e.g., the Varopoulos-Carne bound).

Lemma 3.1. Let s ∈ (0, 1
8). Let (Xt)t≥1 be a sequence of i.i.d. random variables

in F2 such that P(X1 = a) = P(X1 = b) = P(X1 = a−1) = P(X1 = b−1) = s

and P(X1 = e) = 1 − 4s. Consider a sequence (yt)t≥0 of elements in F2. Then
the following holds

1. P(y0X1y1 . . . Xtyt = e) ≤ P(X1 . . . Xt = e) for all t ≥ 0

2. There is α ∈ (0, 1) such that P(y0X1y1 . . . Xtyt = e) ≤ αt for all t ≥ 0.

We first establish a few combinatorial lemmas about finite subsets of F2.
Henceforth, we speak of a subset in F2 and its corresponding forest in the
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Cayley graph of F2 interchangeably. We order the words in F2 in increasing
order of length by stipulating that a < b < a−1 < b−1 and then following the
alphabetical order. For each n ≥ 1, let vn−1 denote the n-th word in F2. Then,
for instance, the first twelve words are: v0 = e, v1 = a, v2 = b, v3 = a−1,
v4 = b−1, v5 = aa, v6 = ab, v7 = ab−1, v8 = ba, v9 = bb, v10 = ba−1, v11 = a−1b.

Fix a positive real number s < 1
8 . Consider a finite set M ⊂ F2 and let 1M

be the characteristic function of M . Define the weight function wM : F2 → R
by wM(v) = (1 − 4s)1M(v) + s(1M(va) + 1M(vb) + 1M(va−1) + 1M(vb−1)).
Notice that wM has finite support and ∑

v∈F2
wM(v) = |M |. The M-weight of a

vertex v ∈ F2 is wM(v). The interior of M is the set formed by vertices with
M -weight equals 1; the number of interior points in M is denoted by iM . The
interior boundary (resp. exterior boundary) of M is the set formed by vertices
with M -weight equals 1 − ks (resp. ks) for some 0 < k ≤ 4. Equivalently, a
vertex belongs to the interior of M if it and all its neighbors are contained in
M . A vertex belongs to the interior boundary of M if it is contained in M and
has at least one neighbor not contained in M . A vertex belongs to the exterior
boundary of M if it is not contained in M but has at least one neighbor in M .

Notice that if M is a tree then its exterior boundary contains 2|M | + 2
elements. Moreover, since the sum of all M -weights equals |M |, the interior
boundary of a tree has at least

⌈2|M |+2
3

⌉
elements and iM ≤

⌊ |M |−2
3

⌋
.

We obtain a non-increasing sequence xM by ordering the nonzero
M -weights. Let |xM | be the number of terms of xM . Therefore, if M is a tree
then |xM | = 3|M |+2.Given two finite sets of the same cardinalityM1,M2 ⊂ F2

we say that xM1 ≥ xM2 if the sum of the first n terms of xM1 is greater than or
equal to the sum of the first n terms of xM2 for all 1 ≤ n ≤ min{|xM1|, |xM2|}.

In order to facilitate the reading we write the repeated terms of xM using
exponents. For instance, if M = {e, a, a2, a3} then xM has two terms equal to
1 − 2s, two terms equal to 1 − 3s and ten terms equal to s; therefore, we write
xM = ((1 − 2s)2, (1 − 3s)2, s10).

Example 3.2. Consider m ≥ 1 and let Mm = {v0, v1, . . . , vm−1} be the
set of the first m words in F2. Therefore, M is a tree and for m ≤ 5 we
have xM1 = (1 − 4s, s4), xM2 = ((1 − 3s)2, s6), xM3 = ((1 − 3s)2, 1 − 2s, s8),
xM4 = ((1 − 3s)3, 1 − s, s10) and xM5 = (1, (1 − 3s)4, s12).

For m > 5 consider l ≥ 1 and r ∈ {1, 2, . . . , 4 · 3l} such that
m = 2 · 3l − 1 + r. Notice that for every k ≥ 1 the words of length k are
v2·3k−1−1, v2·3k−1 , . . . , v2·3k−2. Thus, {v0, v1, . . . , v2·3l−2} is the set of all words
with length at most l. Therefore, an analysis of the three possible values of
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r − 3⌊ r3⌋ shows that

xMm = (12·3l−1−1+⌊ r
3 ⌋, 1 − s(3 − (r − 3⌊r3⌋)), (1 − 3s)4·3l−1−1+r−⌊ r

3 ⌋, s4·3l+2r).

Notice that 1 − s(3 − (r − 3⌊ r3⌋)) ∈ {1 − s, 1 − 2s, 1 − 3s}. ⋄

Let m ≥ 1. We are interested in obtain a subset of F2 of cardinality
m whose corresponding sequence is maximal under the partial order ≥. The
following lemma shows that such subset must be a tree.

Lemma 3.3. Let m ≥ 1 and consider M ⊂ F2 such that |M | = m. Then there
exists a tree M̃ ⊂ F2 such that |M̃ | = m, iM̃ = iM and xM̃ ≥ xM .

Proof. If M is a tree take M̃ = M . Then, suppose that M is a forest with n

connected components T1, T2, . . . , Tn. For k ∈ {0, 1, 2, 3}, let pk (resp. qk) be the
number of vertices with M -weight equals 1−(4−k)s (resp. (4−k)s). Therefore,
xM = (1iM , (1 − s)p3 , (1 − 2s)p2 , (1 − 3s)p1 , (1 − 4s)p0 , (4s)q0 , (3s)q1 , (2s)q2 , sq3).

For i ∈ {1, 2, . . . , n}, denote the exterior boundary of Ti by ∂eTi. Since
there exist no cycles in F2, we may assume, by possibly relabeling the exterior
boundaries, that ∂eT1∩(

n⋃
i=2

∂eTi) contains at most one element. Let w ∈ M∖T1

be a word of maximal length. Notice that w is a leaf of one of the connected
components of M .

We consider the two possible cases. First, suppose ∂eT1 ∩ (
n⋃
i=2

∂eTi) = ∅.
Let M ′ be the set with |M | elements obtained from M by performing
a rigid transformation on T1 that takes a leaf to a vertex in F2 ∖ M

adjacent to w. Thus, xM ′ = (1iM , (1 − s)p3 , (1 − 2s)p2+2, (1 − 3s)p1−2,

(1 − 4s)p0 , (4s)q0 , (3s)q1 , (2s)q2 , sq3−2).
Consider now the case in which ∂eT1 ∩ (

n⋃
i=2

∂eTi) = {u} for some u ∈ F2.

Thus, u belongs exactly to 2, 3 or 4 exterior boundaries. Suppose that there are
distinct numbers i, j, k ∈ {2, 3, . . . , n} such that ∂eT1∩∂eTi∩∂eTj∩∂eTk = {u},
the other cases are similar. Construct M ′ as in the previous paragraph:
perform a rigid transformation on T1 that takes a leaf to a vertex in F2 ∖M

adjacent to w. Consequently, xM ′ = (1iM , (1 − s)p3 , (1 − 2s)p2+2, (1 − 3s)p1−2,

(1 − 4s)p0 , (4s)q0−1, (3s)q1+1, (2s)q2 , sq3−1).
For any of the two cases above, we obtain a set M ′ such that |M ′| = m,

iM ′ = iM and xM ′ ≥ xM . Moreover, M ′ has n − 1 connected components. We
then obtain M̃ by repeating the argument above n− 2 times. ■

Lemma 3.4. Let m ≥ 5 and consider M ⊂ F2 such that |M | = m. If
iM < ⌊m−2

3 ⌋ then there exists M̃ ⊂ F2 such that |M̃ | = m, iM̃ = iM + 1
and xM̃ ≥ xM .
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Proof. We may assume, by Lemma 3.3, that M is a tree. Thus, there exists no
v ∈ M such that wM(v) ∈ {1 − 4s, 4s, 3s, 2s}. Let p1, p2 and p3 be the number
of vertices in M of degree 1, 2 and 3, respectively. Therefore, it follows that
xM = (1iM , (1 − s)p3 , (1 − 2s)p2 , (1 − 3s)p1 , s2m+2). For δ = ⌊m−2

3 ⌋ − iM , since
the sum of the M -weights equals m, we have p2 + 2p3 ≥ 3δ. We consider three
cases: p2 = 0, p3 = 0 and p2, p3 ̸= 0.

First, suppose p3 = 0. Then, p2 ≥ 3 and therefore there exist vertices
u, v, w ∈ M of degree 2. Let u1, u2 (resp. v1, v2) be the vertices in M which
are adjacent to u (resp. v). Assume, without loss of generality, that v2 belongs
to the connected component of M ∖ {v} that contains u. Analogously, assume
that u2 belongs to the connected component of M ∖ {u} that contains v.

Let M ′ be the set formed by the union of M ∖ {u, v} and the two
vertices in F2 ∖M which are adjacent to w. The tree M̃ with |M | vertices is
obtained from M ′ by performing two rigid transformations; Figure 3.1 shows
two examples of this construction. The first transformation is performed on
the connected component of M ′ that contains u1, and takes u1 to u. The
second transformation is performed on the connected component of M ′ that
contains v1, and takes v1 to v. Thus, xM̃ = (1iM +1, (1 − s)p3 , (1 − 2s)p2−3,

(1 − 3s)p1+2, s2m+2).

Figure 3.1: Two examples of a tree M with p3 = 0 and the construction of M̃.

Suppose p3 ̸= 0 and p2 ̸= 0. Then there exist vertices u, v ∈ M of degree
2 and degree 3, respectively. Let M ′ be the union of M ∖ {u} and the vertex
in F2 ∖M which is adjacent to v. Now, as in the previous paragraph, obtain
a tree M̃ by performing a rigid transformation; Figure 3.2 below shows an
example of this construction. Thus, xM̃ = (1iM +1, (1 − s)p3−1, (1 − 2s)p2−1,

(1 − 3s)p1+1, s2m+2).
Finally, suppose p2 = 0. Then, p3 ≥ 2 and there exist vertices u, v ∈ M of

degree 3. Let u1 (resp. v1) be the vertex adjacent to u (resp. v) not contained
in M.
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Figure 3.2: Examples of a tree M with p3, p2 ̸= 0 and the construction of M̃ .

We may assume that u is adjacent to a leaf. If not, since every vertex
adjacent to a leaf has degree at least 3, there exist leaves l1 and l2 adjacent to
a vertex of degree 4. Therefore, (M ∖ {l1}) ∪ {u1} contains a vertex of degree
3, which is adjacent to a leaf, and its corresponding sequence equals xM .

Let M̃ be the set obtained from M ∪{v1} by removing the leaf contained
in M which is adjacent to u; Figure 3.3 shows an example of this construction.
Notice that xM̃ = (1iM +1, (1 − s)p3−2, (1 − 2s)p2+1, (1 − 3s)p1 , s2m+2).

Figure 3.3: A tree M and the set M̃.

Therefore, for any of the three possible cases above, we obtain a tree M̃
with m vertices. Moreover, notice that iM̃ = iM + 1 and xM̃ ≥ xM . ■

Lemma 3.5. Consider m ≥ 1 and let Mm = {v0, v1, . . . , vm−1} be the set of
the first m words in F2. If M ⊂ F2 is such that |M | = m then xMm ≥ xM .

Proof. We may assume, by Lemma 3.3, that M is a tree. If m ≤ 5 the result
then follows by checking a few cases. If m > 5 then m = 2 · 3l − 1 + r for some
l ≥ 1 and r ∈ {1, 2, . . . , 4 · 3l}. Therefore, as in Example 3.2, we have that
xMm = (12·3l−1−1+⌊ r

3 ⌋, 1 − s(3 − (r − 3⌊ r3⌋)), (1 − 3s)4·3l−1−1+r−⌊ r
3 ⌋, s4·3l+2r).

By Lemma 3.4, it is sufficient to consider the case iM = ⌊m−2
3 ⌋. Let

p2 (resp. p3) be the number of vertices in M of degree 2 (resp. 3). Since
the sum of the terms of xM equals m, it follows that m−2−(p2+2p3)

3 = ⌊m−2
3 ⌋.

Therefore, r − 3⌊ r3⌋ = p2 + 2p3 and (p2, p3) ∈ {(0, 0), (1, 0), (2, 0), (0, 1)}. If
(p2, p3) ∈ {(0, 0), (1, 0), (0, 1)} then xM equals xMm . If (p2, p3) = (2, 0) then
xMm ≥ xM . ■

Let (Xt)t≥1 be a sequence of i.i.d. random variables which assume values
in F2 such that P(X1 = a) = P(X1 = b) = P(X1 = a−1) = P(X1 = b−1) = s

and P(X1 = e) = 1−4s. We denote by P (n, t) the probability that X1X2 . . . Xt

equals vn. For instance, P (0, 1) = 1 − 4s, P (0, 2) = (1 − 4s)2 + 4s2 and
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P (0, 3) = (1 − 4s)((1 − 4s)2 + 12s2). Notice that P (n, t) ≥ P (n + 1, t) for
every n ≥ 0.

Let y0, y1, . . . yt be fixed but arbitrary elements in F2 and consider the ran-
dom variable Z = y0X1y1 . . . Xtyt. We denote by Q(n, t) the probability that Z
equals vn. The following lemma compares the probabilities P (n, t) and Q(n, t).

Lemma 3.6. Let t ≥ 0 and m ≥ 1. If n0, n1, . . . , nm−1 ∈ N are distinct then
Q(n0, t) +Q(n1, t) + . . .+Q(nm−1, t) ≤ P (0, t) + P (1, t) + . . .+ P (m− 1, t).

Proof. The proof is by induction on t. The case t = 0 follows trivially, since
P (0, 0) = 1. It suffices to prove the result for Z = X1y1 . . . Xt−1yt−1Xt.
Indeed, the general case then follows by considering the distinct numbers
k0, k1, . . . , km−1 such that vki

= y−1
0 vni

y−1
t for all 0 ≤ i ≤ m − 1. Let

Z ′ = X1y1 . . . Xt−1yt−1 and define the two finite sets M = {vn0 , vn1 , . . . , vnm−1}
and Mm = {v0, v1, . . . , vm−1}. Let j > m be such that vnm , vnm+1 , . . . vnj

are the
elements in the exterior boundary of M. Suppose, without loss of generality,
that wM(vnk

) ≥ wM(vnk+1) for all k ≤ j − 1.

Notice that
m−1∑
i=0

Q(ni, t) = P(Z ∈ M) =
j∑
i=0

P(Z ′ = vni
)wM(vni

). By the
induction hypothesis,

j∑
i=0

P(Z ′ = vni
)wM(vni

) =
j∑
i=0

Å∑
k≤i

P(Z ′ = vnk
)
ã

(wM(vni
) − wM(vni+1))

≤
j∑
i=0

Å∑
k≤i

P (k, t− 1)
ã

(wM(vni
) − wM(vni+1)) (5.1)

On the other hand, Equation 5.1 equals

j∑
i=0

P (i, t− 1)wM(vni
) =

j∑
i=0

Å∑
k≤i

wM(vnk
)
ã

(P (i, t− 1) − P (i+ 1, t− 1))

and therefore, by Lemma 3.5, less than or equal to

j∑
i=0

Å∑
k≤i

wMm(vk)
ã

(P (i, t− 1) − P (i+ 1, t− 1)). (5.2)

The result then follows by noticing that Equation 5.2 equals

j∑
i=0

wMm(vi)P (i, t− 1) = P(X1X2 . . . Xt ∈ Mm) =
m−1∑
i=0

P (i, t).

■

As a corollary, we obtain Lemma 3.1.
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Proof of Lemma 3.1. The first part of the desired result follows from Lemma 3.6
by setting m = 1 and n0 = 0. For the second part, by the Varopoulos-Carne
bound (see, e.g., Theorem 13.4 of [14]), we obtain a constant α ∈ (0, 1) such
that P(X1 . . . Xt = e) ≤ αt for all t ≥ 0. ■

3.2
Proof of Theorem 1.1

Let N0 ∈ N and consider a set of tilings B ⊆ T (RN0). We say that a
tiling t of a cork RN1,N2;p1,p2 is formed by (k,M)-blocks of B if there exist
distinct nonnegative integers b1 < b2 < . . . < bk and tilings b1,b2, . . . ,bk ∈ B
such that, for each Mj = bj(2M + N0) + M + N1, the restriction of t to
D × [Mj,Mj + N0] equals bj. In other words, there are k specific subregions
in t, located at positions determined by N0 and M , where t coincides with a
tiling contained in B.

We denote by blockMB (t) the maximum nonnegative integer k such that
t is formed by (k,M)-blocks of B. The following lemma shows that blockMB (t)
is almost never very small. More precisely, except with exponentially small
probability, a uniform random tiling of D×[0, N ] contains linearly many blocks.
The proof uses the result from [21] stated below.

Fact 3.7 (Lemma 13 of [21]). Given a quadriculated region D ⊂ R2 there exist
λ1 > 0, c ∈ (0, 1) and a unit vector v1 ∈ RP with positive coordinates such that
(when N → ∞)

|T (R0,N ;p,p̃)| = (v1)p(v1)p̃λN1 (1 + o(cN)).

Furthermore, for all ϵ > 0 there exists Nϵ ∈ N such that if p0, pN ∈ P , j >
Nϵ, N > j +Nϵ and T is a random tiling of R0,N ;p0,pN

then

(v1)2
p − ϵ < P(plugj(T) = p) < (v1)2

p + ϵ.

Lemma 3.8. Consider a quadriculated disk D, N0 ∈ N and B ⊆ T (RN0).
There exist M ∈ 2N and constants c, c̃ ∈ (0, 1) such that the following holds. If
TN is a random tiling of RN with N > N0 then P(blockMB (TN) < c̃N) = o(cN).

Proof. Recall that p◦ is the empty plug. By Fact 3.7, there exist ϵ > 0 and
an even integer Nϵ ≥ |D| such that if j ≥ Nϵ, Ñ ≥ j + Nϵ and p0, pÑ ∈ P
then, for a random tiling T̃ of R0,Ñ ;p0,pÑ

, we have P(plugj(T̃) = p◦) > ϵ. Let
m = max

pi,pj∈P
|T (R0,Nϵ;pi,p◦)||T (R0,Nϵ+N0;p◦,pj

)| and δ = ϵ|B|m−1. We claim that

if Ñ = 2Nϵ +N0 then P(blockNϵ
B (T̃) ≥ 1) > δ.
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Since Nϵ ≥ |D|, by Remark 2.2, there exist tilings t1 of R0,Nϵ,p0,p◦ and t2

of R0,Nϵ,p◦,pÑ
. Thus, each tiling b in B defines a tiling t̃ = t1 ∗b∗t2 of the cork

R0,Ñ ;p0,pÑ
with plugNϵ

(̃t) = p◦ and blockNϵ
B (̃t) = 1. Moreover, notice that the

number of tilings of R0,Ñ ,p0,pÑ
such that the Nϵ-th plug equals p◦ is smaller

than m. Therefore, P(blockNϵ
B (T̃) ≥ 1 | plugNϵ

(T̃) = p◦) ≥ |B|m−1 and the
claim above is proved.

Take M = Nϵ and c̃ = δ
2(2M+N0) . For each i = 1, 2, . . . ,

⌊
N

2M+N0

⌋
let Ai

be the event that the restriction of TN to D × [(i− 1)(2M +N0), i(2M +N0)]
is formed by (1,M)-blocks of B. Notice that the previous paragraph implies
that P(Ai | TN constructed up to floor (i − 1)(2M + N0)) > δ. Therefore, we
have that P(blockMB (TN) < c̃N) ≤ P(X < c̃N) where X is a random variable
with binomial distribution Bin(

⌊
N

2M+N0

⌋
, δ). By writing X as a sum of i.i.d.

random variables with Bernoulli distribution Bern(δ), the result follows from
Chernoff’s inequality. ■

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let ϕ : G+

D → F2 be a surjective homomorphism.
Consider N0 ∈ 2N sufficiently large so that there exist tilings ba and bb of RN0

with ϕ(ba) = a and ϕ(bb) = b. Let be1 be the tiling tvert,N0 . We obtain four
distinct tilings be2 ,be3 ,be4 ,be5 from be1 by performing exactly one vertical
flip. Define the set B = {ba,b−1

a ,bb,b−1
b ,be1 ,be2 ,be3 ,be4 ,be5} ⊂ T (RN0).

Set s = 1
9 (importantly, s ∈ (0, 1

8) and we will be able to use Lemma 3.1
later). We have |B ∩ ϕ−1({x})| = s|B| for every x ∈ {a, a−1, b, b−1} and
|B ∩ϕ−1({e})| = (1−4s)|B|. By Lemma 3.8, there exist M ∈ 2N and c̃ ∈ (0, 1)
such that the probability that blockMB (Ti) is smaller than r = ⌈c̃N⌉ goes to
zero exponentially. We may therefore assume that T1 and T2 are formed by
at least (r,M)-blocks of B.

Let Br(RN) ⊂ T (RN) be the set of tilings of RN formed by at least
(r,M)-blocks of B. For each tiling t ∈ Br(RN) let b1,t < b2,t < . . . < br,t

be the first r nonnegative integers such that, for j = 1, 2, . . . , r and
Mj,t = bj,t(2M +N0) +M , the restriction of t to D × [Mj,t,Mj,t + N0]
equals a tiling in B. We now define an equivalence relation ≊ on Br(RN):
t̃ ≊ t̂ if and only if bj,t̃ = bj,t̂ (for all j) and t̃ equals t̂ in the region
(D × [0, N ]) ∖ (⋃r

j=1 D × [Mj,t̃,Mj,t̃ +N0]).
Let B1, B2, . . . , Bl be the ≊-equivalence classes. Notice that, for each

i ≤ l, there are fixed tilings t0,i, t1,i, . . . , tr,i such that Bi consists of all tilings
of the form t0,i ∗ b1 ∗ t1,i ∗ b2 ∗ t3,i ∗ . . . ∗ br ∗ tr,i with b1,b2, . . . ,br ∈ B. Thus,
each ≊-equivalence class has size exactly |B|r.

Suppose that T1 has been chosen first from Br(RN), say T1 = t. The
probability that there exists a sequence of flips joining T2 and t is less than
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or equal to the probability that ϕ takes T2 ∗ t−1 to the identity, as ϕ is
a homomorphism. We prove that the later probability decays exponentially
with N . To this end, it suffices to show that the conditional probabilities
P(ϕ(T2 ∗ t−1) = e | T2 ∈ Bi) are uniformly bounded in i by αr for some
constant α ∈ (0, 1).

Consider a sequence (Xt)t≥1 of i.i.d. random variables in F2 such that
P(X1 = e) = 1−4s and P(X1 = x) = s for x ∈ {a, a−1, b, b−1}. By construction,
P(ϕ(T2 ∗ t−1) = e | T2 ∈ Bi) = P(ϕ(t0,i)X1ϕ(t1,i) . . . Xrϕ(tr,i ∗ t−1) = e). The
result now follows from Lemma 3.1. ■



4
The domino group of thin rectangles

In this section we prove Theorem 1.3, that is, we compute the even
domino group of DL = [0, L] × [0, 2] for L ≥ 3. The strategy consists in con-
structing a homomorphism from G+

DL
to the group G+

L defined in Equation 1.1.
We then prove that this homomorphism is in fact an isomorphism.

The computation of G+
DL

is inspired by the results of [19], where a flip
invariant for tilings of duplex regions is exhibited. By performing a rotation, we
think of tilings of DL×[0, N ] as tilings of the duplex region [0, N ]×[0, L]×[0, 2].
Therefore, in this section, we say that a flip is horizontal if it is performed in
two dominoes contained in one of the two floors of the new rotated tiling; the
flip is vertical otherwise.

Let t be a tiling of DL × [0, N ] and orient each domino contained in t
from its white unit cube to its black unit cube. By projecting the two floors
of t on the plane z = 0, we obtain a diagram It on [0, N ] × [0, L] containing
oriented disjoint cycles and jewels, i.e., unit squares formed by the projections
of dominoes parallel to the z-axis. A cycle is trivial if it has length two and a
jewel is trivial if it is not enclosed by a cycle. The color of a jewel j is defined
as the color of its corresponding unit square in the rectangle [0, N ] × [0, L].
We write color(j) = +1 if j is white and color(j) = −1 if j is black. The
Figure 4.1 shows an example of a tiling and its associated diagram; we always
exhibit trivial cycles in green, counterclockwise cycles in red and clockwise
cycles in blue.

Figure 4.1: The first row shows a tiling t of D5 × [0, 6]. The second row shows
t after a rotation and its diagram It.

We order the jewels contained in It. Let j1 = [a, a + 1] × [b, b + 1] and
j2 = [c, c + 1] × [d, d + 1] be two jewels. If j1 and j2 are in different columns,
i.e. a ̸= c, we write j1 < j2 if a < c. If j1 and j2 are in the same column, i.e.
a = c, we write j1 < j2 if b > d. When this order is used, jewels are called
ordered jewels.

For a jewel j let wind(j) be the sum of the winding numbers around j over
all the cycles in It. Notice that wind(j) is an integer and |wind(j)| ≤

⌊
L−1

2
⌋
. We
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are especially interested in the winding numbers of jewels contained in the same
column. Consider the set RL = {(m,n) ∈ Z2 : max{|m|, |n|, |m − n|} <

⌊
L
2
⌋
}.

Figure 4.2 below shows the elements of R10 and two tilings of D10 × [0, 12],
notice that in the figure any two jewels j1 and j2 contained in the same column
are such that (wind(j1),wind(j2)) ∈ R10.

Figure 4.2: The square lattice with elements of R10 shown in black, and two
diagrams of tilings of D10 × [0, 12].

Lemma 4.1. Consider L ≥ 3. Then (m,n) ∈ RL if and only if there exist
N ∈ N and a tiling t of DL × [0, 2N ] such that It contains two jewels j1 and
j2 in the same column with (wind(j1),wind(j2)) = (m,n).

Proof. We first prove the if direction. Suppose that j1 = [a, a + 1] × [b, b + 1]
and j2 = [a, a + 1] × [c, c + 1] with b > c. Since wind(j1) = m there exists at
least |m| unit squares in [a, a+1]× [b+1, L]. Analogously, there exists at least
|n| unit squares in [a, a + 1] × [0, c]. Moreover, we must have at least |m − n|
cycles not enclosing both jewels. Therefore, there exists at least |m − n| unit
squares in [a, a+ 1] × [b+ 1, c]. Then, |m| + |n| + |m− n| ≤ L− 2 and we have
max{|m|, |n|, |m− n|} ≤ L−2

2 .
For the only if direction let (m,n) ∈ RL and take N sufficiently large.

In order to show the existence of a tiling t of DL × [0, 2N ] with the desired
properties we proceed backwards. Indeed, since a tiling is entirely determined
by its diagram, it suffices to construct It.

We first deal with the case in which |m|+|n| < ⌊L2 ⌋. Consider two disjoint
squares centered in the same column: sm of side 2|m|+1 and sn of side 2|n|+1.
Let the jewel j1 (resp. j2) be the center of sm (resp. sn). Construct |m| cycles
in sm and |n| cycles in sn such that wind(j1) = m and wind(j2) = n. Now, to
obtain It, fill the rest of [0, 2N ] × [0, L] with trivial cycles and trivial jewels.

We are left with the case |m| + |n| ≥ ⌊L2 ⌋, so that sign(m) = sign(n).
Suppose that |m| ≥ |n| and write |n| = |m| − r, where 0 ≤ r ≤ |m|. The
square s = [0, 2|m| + 2]2 is contained in [0, 2N ] × [0, L], since |m| < ⌊L2 ⌋. Let
j1 = [|m|, |m|+1]×[|m|+1, |m|+2] and j2 = [|m|, |m|+1]×[|m|−r, |m|−r+1].
Construct m cycles in s such that wind(j1) = m. We have wind(j2) = n, as
sign(m) = sign(n). The result then follows by proceeding as in the previous
paragraph. ■
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Recall that, as in Equation 1.1, G+
L = ⟨SL | [am, an] = 1 for (m,n) ∈ RL⟩,

where SL = {ai : i ∈ Z̸=0 and |i| ≤
⌊
L−1

2
⌋
}. We construct a map

Φ:
⋃
N≥1

T (DL × [0, 2N ]) → G+
L .

Consider a tiling t of DL × [0, 2N ] and let j1 < j2 < . . . < jk be the ordered
jewels in It. Define Φ(t) = b1 . . . bk where bi = a

color(ji)
wind(ji) if wind(ji) ̸= 0 and

bi = e if wind(ji) = 0.

Lemma 4.2. The map Φ induces a homomorphism ϕ : G+
DL

→ G+
L .

Proof. Notice that Φ preserves the group operation, given by concatenation of
tilings, as a consequence of the ordering of the jewels and the definition of Φ.
Thus, it suffices to check that Φ is invariant under flips. Let t be a tiling of
DL × [0, 2N ]. Consider a horizontal flip performed in two dominoes d1 and d2.
The horizontal flip either connects two disjoint cycles or disconnects a cycle
into two cycles. Suppose the former, the other case is similar. Therefore, d1 and
d2 are contained in distinct cycles. If either d1 or d2 is contained in a trivial
cycle then it is easy to see that the horizontal flip does not change the winding
number of any jewel. Then, suppose that d1 and d2 are contained in nontrivial
cycles, Figure 4.3 shows an example of the possible cases.

Figure 4.3: Two tilings and the effect of a horizontal flip (highlighted in
magenta) on their diagrams.

If d1 and d2 are contained in cycles having the same orientation then
the flip connects the two cycles preserving the orientation. If d1 and d2

are contained in cycles having opposite orientations then one cycle must be
enclosed by the other. The flip then creates a cycle with the same orientation
as the outer cycle. Moreover, the new cycle encloses only jewels enclosed by
the outer cycle but not by the inner cycle. Therefore, in any of the possible
cases, the flip preserves the winding number of the jewels. Then, Φ is invariant
under horizontal flips.

Consider a vertical flip that takes a trivial cycle to two adjacent jewels
(i.e., jewels whose corresponding unit squares are adjacent); a similar analysis
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holds for the reverse of this flip. The flip creates adjacent jewels j and j′ such
that j < j′, wind(j) = wind(j′) and color(j) ̸= color(j′). If j and j′ are in the
same column then the flip clearly preserves the value of Φ(t). Otherwise, the
definition of G+

L and Lemma 4.1 imply that the contributions of jewels between
j and j′ commute so that Φ is invariant under vertical flips. ■

Our objective is to prove that the homomorphism ϕ obtained above is an
isomorphism. To achieve this, we now study the even domino group G+

DL
. We

follow [19] to derive a family of generators of G+
DL

. A tiling t of DL × [0, N ] is
called a boxed tiling if its corresponding diagram It is composed of a nontrivial
jewel j and trivial jewels outside the square of center j and side 2| wind(j)|+1.

We prefer to work with boxed tilings due to some helpful properties.
Notably, we can move via flips the nontrivial jewel of a boxed tiling so that
the resulting tiling is a boxed tiling as well. Specifically, consider two boxed
tilings t and t̃ of DL × [0, N ]. Let j and j̃ be the nontrivial jewels of It and
It̃, respectively. If color(j) = color(j̃) and wind(j) = wind(j̃) then t ≈ t̃.
For instance, Figure 4.4 shows the process of moving a nontrivial jewel with
winding number equals 1. The extension to other cases follows inductively, by
initially transforming the outer cycle into a rectangle through flips.

Figure 4.4: The process of moving a nontrivial jewel via a sequence of flips.

The family of boxed tilings generates the even domino groupG+
DL

. Indeed,
every tiling of a cylinder DL × [0, 2N ] is ∼-equivalent to a concatenation of
boxed tilings.

Lemma 4.3. Let t be a tiling of DL × [0, 2N ]. Then, there exist M ∈ N and
boxed tilings t1, . . . , tk of DL × [0, 2M ] such that t ∼ t1 ∗ . . . ∗ tk.

Proof. This result is proved, in Lemma 7.4 of [19], for diagrams in Z2 instead
of [0, 2N ] × [0, L]. However, the same proof holds in our setting, since the
relation ∼ allows us to assume that N is arbitrarily large. ■

We now investigate relations between boxed tilings. The lemma below
shows that, under specific conditions, two boxed tilings commute with respect
to concatenation. Notice that the particular case, where the nontrivial jewels
of the two boxed tilings share the same color and winding number, follows
from the fact that we can move nontrivial jewels.
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Lemma 4.4. Consider boxed tilings t1 of DL× [0, 2N1] and t2 of DL× [0, 2N2].
Let j1 and j2 be the nontrivial jewels in It1 and It2, respectively. If color(j1) =
color(j2) and (wind(j1),wind(j2)) ∈ RL then t1 ∗ t2 ≈ t2 ∗ t1.

Proof. Let (m,n) = (wind(j1),wind(j2)), we focus on the diagram It1∗t2 . We
consider two cases: |m| + |n| < ⌊L2 ⌋ and |m| + |n| ≥ ⌊L2 ⌋. First suppose the
former. This case is a matter of moving the nontrivial jewels (as in Figure 4.4),
we proceed in three steps. Initially, move j1 to a jewel ‹j1 in [0, 2N1]×[2|n|+1, L]
and j2 to a jewel ‹j2 in [2N1, 2(N1+N2)]×[0, 2|n|+1]. Since L ≥ 2(|m|+|n|+1),
we can then move ‹j1 to a jewel “j1 in [2N2, 2(N1 + N2)] × [2|n| + 1, L] and‹j2 to a jewel “j2 in [0, 2N2] × [0, 2|n| + 1]. Finally, move “j1 (resp. “j2) in
[2N2, 2(N1 +N2)] × [0, L] (resp. [0, 2N2] × [0, L]) to obtain copies of t1 and t2.
For instance, Figure 4.5 shows a particular case (L = 6 and (m,n) = (1,−1))
of the general idea.

Figure 4.5: The diagram It1∗t2 and the effect of three sequences of flips.

We have R3 = {(0, 0)}, R4 = {(0, 0), (±1, 0), (0,±1), (1, 1), (−1,−1)}
and R5 = R4. The previous paragraph cover all cases with the exception of
(m,n) ∈ {(1, 1), (−1,−1)} for L = 4 and L = 5. However, in any of these two
cases, the nontrivial jewels share the same color and winding number, so that
t1 ≈ t2. Therefore, the result holds for L = 3, 4, 5.

If |m|+ |n| ≥ ⌊L2 ⌋ then sign(m) = sign(n). The proof follows by induction
on L. Perform a sequence of flips that takes the largest cycle which encloses
j1 to the cycle γ1 which encloses the region [1, 2N1 − 1] × [1, L− 1]. Similarly,
enlarge the largest cycle which encloses j2 to obtain the cycle γ2 which encloses
the region [2N1 + 1, 2N1 + 2N2 − 1] × [1, L− 1]. Since sign(m) = sign(n) there
exists a flip that connects γ1 and γ2 into a cycle γ; as before, enlarge γ to
obtain a cycle which encloses the region [1, 2N1 + 2N2 − 1] × [1, L− 1].

Now, the winding numbers of j1 and j2, when restricted to the region
[1, 2N1 + 2N2 − 1] × [1, L− 1], are m− sign(m) and n− sign(n), respectively.
Notice that (m − sign(m), n − sign(n)) ∈ RL−2. Then, by the induction
hypothesis, there exists a sequence of flips which commutes the nontrivial
jewels in [1, 2N1 + 2N2 − 1] × [1, L− 1]. Finally, undo the flips of the previous
paragraph to conclude that t1 ∗ t2 ≈ t2 ∗ t1. ■

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. We prove that the homomorphism ϕ : G+

DL
→ G+

L of
Lemma 4.2 is an isomorphism. Indeed, we obtain a map ψ : G+

L → G+
DL

such
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that ψ−1 = ϕ. To this end, we first define a homomorphism Ψ : F (SL) → G+
DL

from the free group generated by SL to G+
DL

.
Consider a nonzero integer |i| ≤

⌊
L−1

2
⌋
. Let ti be the boxed tiling, of the

cylinder DL× [0, 2(|i| + 1)], such that the nontrivial jewel ji in Iti
is the center

of the square [0, 2|i| + 1]2 and wind(ji) = i. Let Ψ be the homomorphism such
that Ψ(ai) = ti. Then, it follows from Lemma 4.4 that Ψ(amana−1

m a−1
n ) = e for

(m,n) ∈ RL. Thus, Ψ induces a homomorphism ψ : G+
L → G+

DL
.

By definition ϕ(ti) = ai, so that ϕ ◦ ψ equals the identity map. Now,
consider an arbitrary tiling t of DL × [0, 2N ]. By Lemma 4.3, t is ∼-equivalent
to a concatenation of boxed tilings. Moreover, we know that two boxed tilings
whose nontrivial jewels share the same color and winding number are also
∼-equivalent. Thus, there exists i1, i2, . . . , ik ∈ Z such that t ∼ tϵ1i1 ∗tϵ2i2 ∗ . . .∗tϵkik
for some ϵ1, ϵ2, . . . , ϵk = ±1. Then, ϕ(t) = ϕ(tϵ1i1 ∗ tϵ2i2 ∗ . . . ∗ tϵkik ) = aϵ1i1a

ϵ2
i2 . . . a

ϵk
ik

and therefore ψ ◦ ϕ(t) = t. ■

Remark 4.5. We are able to compute the domino group GDL
once we compute

the even domino group G+
DL

. Indeed, consider a tiling t1 of DL × [0, 1]. Then,
t1 is an element of order 2 in GDL

and generates a subgroup H. Since
t1 ∗ t1 ≈ tvert,2, every element in GDL

is a product of an element in G+
DL

and an element in H. Thus, the domino group is isomorphic to the inner
semidirect product of G+

DL
and H. More precisely, let ψ : Z/(2) → Aut(G+

L) be
the homomorphism defined by ψ(1)(ai) = a−1

−i for each ai ∈ SL. Therefore, the
semidirect product Z/(2) ⋉ψ G

+
L is isomorphic to the domino group GDL

. ⋄



5
Irregular disks

5.1
Non-strongly irregular disks

We show that the family of disks depicted in Figure 1.7 consists of
irregular disks that are not strongly irregular. To this end, we rely on concepts
from two-dimensional tilings, including the notion of flux introduced in [23],
which we briefly recall.

Consider a non-simply connected planar quadriculated region R, so that
the topological boundary of R is not a connected set. A cut of R is an oriented
path along the edges of the unit squares in R that connects a point on the
interior boundary to a point on the exterior boundary. The flux of a tiling
with respect to a cut is defined as the sum of contributions from each domino
crossing the cut. A domino contributes +1 if its white unit square is to the left
of the cut, and −1 if its white unit square is to the right.

For a region R with n holes, consider n disjoint cuts, each connecting the
exterior boundary to a distinct hole, and whose union does not disconnect R.
Theorem 1.1 of [23] shows that two tilings of R can be joined by a sequence
of flips if and only if their fluxes with respect to each of the n cuts are equal.
For an example, see Figure 5.1.

Figure 5.1: Tilings of a non-simply connected planar region with three cuts,
represented by red line segments. The first and second (resp. third) tilings have
(resp. do not have) the same flux with respect to all three cuts. The first two
tilings can be joined through a sequence of flips, while the third tiling cannot
be connected to them via flips.

Consider an integer L ≥ 3. Let DL be the disk formed by the union of
the rectangle RL = [0, 2L] × [0, 1] and the two unit squares s0 = [1, 2] × [−1, 0]
and sL = [2L− 2, 2L− 1] × [−1, 0]; Figure 1.7 exhibits DL for L = 3, 4, 5. We
prove the following result, which implies that DL is irregular but not strongly
irregular.

Proposition 5.1. The even domino group G+
DL

is isomorphic to Z ⊕ Z.
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We first establish a couple of lemmas to obtain two generators of G+
DL

.
To this end, we introduce the notion of nontrivial dominoes. Let d0 and dL be
the dominoes in DL that contain s0 and sL, respectively. A three-dimensional
domino is nontrivial if its projection on the xy-plane is equal to either d0 or dL.

By removing the nontrivial dominoes and omitting the dominoes con-
tained in (s0 ∪ sL) × [0, 2N ], a tiling of DL × [0, 2N ] can be viewed as a tiling
of a planar subregion of [0, 2L] × [0, 2N ]; see Figure 5.2 for an example. This
perspective allows us to apply results regarding the connectivity under flips of
two-dimensional tilings. Notice that the terms horizontal and vertical retain
their original sense.

Figure 5.2: Two tilings of D3 × [0, 4] and their depictions in a subregion of
[0, 6] × [0, 4]. In this subregion, a domino parallel to the x-axis (resp. y-axis)
corresponds to a three-dimensional horizontal (resp. vertical) domino.

Lemma 5.2. The even domino group G+
DL

is generated by tilings containing
exactly two nontrivial dominoes, which are also nonadjacent.

Proof. Consider an arbitrary tiling t of DL × [0, 2N ]. If t does not contain
nontrivial dominoes then t can be viewed as a planar tiling of [0, 2L]× [0, 2N ].
We then have t ≈ tvert,2N , as any two tilings of a quadriculated disk can be
joined by a sequence of flips.

Now, suppose that t contains nontrivial dominoes. By adding vertical
floors and moving some of them downwards (via flips), assume that the first and
last floors of t contain no nontrivial dominoes. Additionally, perform vertical
flips to eliminate adjacent nontrivial dominoes.

Notice that, due to the shape of DL, each nontrivial domino d×[K−1, K]
in t is accompanied by a vertical domino. Specifically, if d = d0 this vertical
domino covers the unit cube [0, 1]2 × [K − 1, K], and if d = dL covers the unit
cube [2L− 1, 2L]2 × [K − 1, K].

We construct a tiling t̃ from t using its 2D perspective as follows; see the
first two tilings in Figure 5.3. First, remove all dominoes except the nontrivial
dominoes and their accompanying vertical dominoes. Next, tile the remaining
part of each punctured 3 × 3 square centered at a nontrivial domino with
three dominoes. Finally, since consecutive nontrivial dominoes are separated
by an even number of floors, the remaining region is then tiled by horizontal
dominoes in the first and last floors and vertical dominoes elsewhere.
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Figure 5.3: The first tiling t covers D3 × [0, 10]. The second tiling t̃ is
constructed from t. The third tiling is obtained from t̃ by adding vertical
floors, a sequence of flips then results in the fourth tiling.

By construction, t̃ and t have the same flux with respect to the natural
cuts of length one that connect holes defined by the nontrivial dominoes to
the exterior boundary. Therefore, we have t̃ ≈ t. Moreover, no domino in t̃
crosses the line x = L, except for certain dominoes in the first and last floors.
Consequently, t̃ is determined by two tilings. Now, by adding vertical floors,
shifting one of these two tilings upwards, and performing a few flips after each
consecutive pair of nontrivial dominoes, t̃ decomposes into a concatenation of
tilings, each containing exactly two nontrivial dominoes; for an example, see
the last two tilings in Figure 5.3. ■

We distinguish eight tilings tL,1, tL,2, . . . tL,8 of DL× [0, 6]. For L = 3, the
two-dimensional perspective of these tilings are illustrated in Figure 5.4. For
L > 3, the tilings are derived from the case L = 3 by translating the dominoes
contained in ([4, 6] × [0, 1] × [0, 6]) ∪ ([4, 5] × [−1, 0] × [0, 6]) by (2L− 6, 0, 0),
and adding vertical dominoes in [4, 2L− 2] × [0, 1] × [0, 6].

Figure 5.4: The 2D representation of eight tilings of D3 × [0, 6].

Notice that the nontrivial dominoes in tL,j are separated by two floors.
However, this separation can be arbitrarily increased. For any positive even
k, let tL,j,k be the tiling obtained from tL,j by inserting k − 2 vertical floors
between the two nontrivial dominoes; in particular, tL,j,2 is equal to tL,j. Thus,
tL,j ∼ tL,j,k and the nontrivial dominoes in tL,j,k are separated by k floors.

Lemma 5.3. Let t be a tiling of DL× [0, 2N ] containing exactly two nontrivial
dominoes, which are also nonadjacent. There exists j such that tL,j ∼ t.

Proof. Without loss of generality, assume the nontrivial dominoes in t are of
the form d0 × [K − 1, K] and d0 × [M − 1,M ], with K < M . Since these
dominoes are not adjacent, we have M − 1 −K ≥ 2.
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Let d and d̃ be the vertical dominoes in t that cover the unit cubes
[0, 1]2 × [K−1, K] and [0, 1]2 × [M−1,M ], respectively. There are four possible
configurations, determined by whether the vertical dominoes covering these
unit cubes also cover the adjacent unit cube in the floor above or below. Choose
j ∈ {1, 2, 3, 4} such that the translation of d and d̃ by (0, 0, 2−K) is contained
in tL,j,M−1−K .

By adding vertical floors to the first and last floors, we can align the
nontrivial dominoes in t and tL,j,M−1−K , so that both tilings now have the
same height and contain the same nontrivial dominoes. Consequently, they
define two tilings of the same planar non simply connected region. The choice
of j implies that these two tilings have the same flux. Thus, it follows that
t ∼ tL,j,M−1−K . ■

Lemmas 5.2 and 5.3 imply that G+
DL

is generated by the tilings tL,j. We
now reduce this family to two generators. Notice that the first two tilings in
Figure 5.4 are inverses of each other, as are the last two tilings. The remaining
tilings are equivalent to the vertical tiling, as four flips transform each of them
into a tiling that contains no nontrivial dominoes. Thus, G+

DL
is generated

by the first and last tilings tL = tL,1 and t̃L = tL,8. Since tL and t̃L are
composed of vertical dominoes in [L, 2L]× [0, 1]× [0, 6] and [0, L]× [0, 1]× [0, 6],
respectively, and since vertical floors can be moved via flips, we have that tL
and t̃L commute: tL ∗ t̃L ∗ t−1

L ∗ t̃−1
L ≈ tvert.

Proof of Proposition 5.1. Given a tiling of DL × [0, 2N ] we obtain another
tiling by reflecting on the plane x + y = 2L − 1 the dominoes contained in
(sL ∪ ([2L − 2, 2L] × [0, 1])) × [0, 2N ]; as with the two tilings in Figure 5.2.
This construction defines an automorphism ψ : G+

DL
→ G+

DL
. Then, the map

ϕ : G+
DL

→ Z⊕Z that takes a tiling t to (Tw(t),Tw◦ψ(t)) is a homomorphism.
We have that ϕ(tL) = (−1, 1) and ϕ(t̃L) = (1, 1). Thus, the image of ϕ is
isomorphic to Z ⊕ Z. Moreover, since tL and t̃L commute, ϕ is injective. ■

Remark 5.4. In cases where G+
D is isomorphic to Z2, we can obtain a bound

on the size of the flip connected components of T (RN), as with Theorem 1.1.
Specifically, the size of the components isO(N−1|T (RN)|). Indeed, by following
the proof of Theorem 1.1, it suffices to show that there exists a constant C > 0
such that P(y0X1y1 . . . Xtyt = e) ≤ Ct−1 for all t ≥ 0, where (Xt)t≥1 denotes a
lazy random walk on Z2 and (yt)t≥0 is a sequence of elements in Z2. Since Z2 is
abelian, we have P(y0X1y1 . . . Xtyt = e) = P(X1X2 . . . Xt = (y0y1 . . . yt)−1),
and the desired bound then follows from a local central limit theorem.
We conjecture that the size of the largest flip connected component is in
fact Θ(N−1|T (RN)|). ⋄
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5.2
Strongly irregular disks

This section presents a study of strongly irregular disks. Preliminary
work from the author’s master’s thesis [16] established Theorem 5.5, which
demonstrates the strong irregularity of the disks depicted in Figure 5.5.
Theorem 1.5 generalizes a result from [16], while Theorem 1.4 presents a new
class of strongly irregular disks. The proofs of these theorems are similar and
are included to ensure the completeness of the text.

Theorem 5.5. Consider a balanced quadriculated disk D. Suppose there is a
2 × 2 square s ⊂ D such that D ∖ s is the union of two disjoint disks D1 and
D2 with |D1| = |D2|. Suppose s contains dominoes d1 adjacent to D1 and d2

adjacent to D2 such that D ∖ d1 and D ∖ d2 are not connected. Then, D is
strongly irregular.

Figure 5.5: Examples of strongly irregular disks; dominoes d1 and d2 as in
Theorem 5.5 are marked by a red line segment.

The proofs of strong irregularity rely on constructing surjective homo-
morphisms to the free group F2. To achieve this, we adopt a general strategy.
Given a disk D, we first construct a map Φ that takes oriented edges (floors
with parity) in C+

D to F2. In particular, Φ defines a homomorphism from the
free group on oriented edges to F2. Secondly, we verify that Φ maps the bound-
ary of any 2-cell to the identity. As a consequence, we obtain a homomorphism
ϕ : G+

D → F2 by taking the quotient of the free group on oriented edges by the
relations defining G+

D. In order to fix the ideas, consider Example 5.6, which
exhibits the only disk that we know of whose strong irregularity does not follow
from our results.

Example 5.6. Let D be the disk formed by the union of the rectangle
[0, 4] × [0, 1] and the two unit squares [1, 2] × [−1, 0] and [2, 3] × [1, 2]. We
construct a surjective homomorphism ϕ : G+

D → F2.
Let d = [1, 3] × [0, 1] be a domino and let p0 = [0, 1]2 ∪ ([2, 3] × [1, 2]) and

p1 = ([1, 2] × [−1, 0]) ∪ ([3, 4] × [0, 1]) be plugs. Then, f = (p0, d, p1) defines an
oriented edge of the complex CD. We then obtain four oriented edges in C+

D , i.e.,
floors with parity: f0 = (f, 0), f1 = (f−1, 0), f0

−1 = (f−1, 1) and f1
−1 = (f, 1).

We now define Φ for oriented edges in C+
D . Set Φ(f0) = a, Φ(f1) = b,

Φ(f0
−1) = a−1 and Φ(f1

−1) = b−1; all other edges are mapped to the identity.
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The map Φ takes the boundary of any 2-cell in C+
D to the identity, as fi

do not permit horizontal flips and the possible vertical flip is obtained by
moving consecutively along fi and fi

−1. Thus, Φ extends to a homomorphism
ϕ : G+

D → F2. Notice that ϕ(t) = a and ϕ(t̃) = b for the tilings t and t̃ shown
in Figure 5.6, so that ϕ is surjective. By following the ideas of Section 5.1,
one can further show that t and t̃ generate G+

D, implying that ϕ is in fact an
isomorphism. ⋄

Figure 5.6: Tilings t and t̃ of D × [0, 6]. The map Φ takes the second floor of
t and t̃ to a and b, respectively.

Proof of Theorem 1.4. We first consider the case in which D ∖ s has exactly
three connected components D1, D2 and D3. Suppose that |D1| ≤ |D2| ≤ |D3|.
By hypothesis, |D1 ∪ D2| ≥ 3. For i ∈ {1, 2, 3}, let si ⊂ Di be a unit square
adjacent to s and let di = s ∪ si be a domino.

We define two classes of floors F0 and F1. A floor (p0, f
∗, p1) belongs to

F0 if and only if:

1. f ∗ contains the domino d1.

2. p0 marks all white squares in D1 ∖ s1 and all black squares in D2.

3. p1 marks all black squares in D1 ∖ s1 and all white squares in D2.

A floor belongs to F1 if and only if its inverse belongs to F0; Figure 5.7 shows
an example of a disk and its classes F0 and F1. This defines four classes of
floors with parity: f0 = (F0, 0), f1 = (F1, 0), f0

−1 = (F1, 1) and f1
−1 = (F0, 1).

Figure 5.7: A disk and its two classes of floors F0 and F1.

We initially define a map Φ for oriented edges in C+
D . If a floor with parity

f is not contained in the classes defined above, let Φ(f) = e. Otherwise, set
Φ(f0) = a, Φ(f1) = b, Φ(f0

−1) = a−1 and Φ(f1
−1) = b−1.

Consider two adjacent floors with parity in C+
D (i.e., an oriented path of

length two) whose reduced floors contain the domino d1. We have only two
possibilities. First, both floors are neither in F0 nor in F1. Second, either the
first floor is in F0 and the second floor is in F1 or vice-versa. Since adjacent
edges have opposite parity, in any case we conclude that Φ maps this path of
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length two to the identity. With this observation in mind, it is straightforward
to check that Φ maps the boundary of any 2-cell to the identity. Therefore, Φ
extends to a homomorphism ϕ : G+

D → F2.
We now prove the surjectivity of ϕ. Suppose, without loss of generality,

that s is a white unit square. Let s̃3 ⊂ D3 and s̃2 ⊂ D2 be unit squares
adjacent to s3 and s2, respectively. Consider a floor f = (p0, d1, p1) in F0

such that p1 = p−1
0 ∖ d1. We may assume that s3 ̸⊂ p0 and s̃3 ⊂ p0. Since s

disconnects D, for any spanning tree of D, we have that s̃2 and s3 are the two
nonadjacent unit squares of opposite colors in p1 at minimal distance. Then,
by construction, the floors of tp1 (recall Remark 2.2) are contained neither
in F0 nor in F1. Let p = (p1 ∖ s3) ∪ s1 be a plug and g = (p, d3, p0) be
a floor. Analogously, the floors of tp are contained neither in F0 nor in F1.
Thus, t = t−1

p ∗ g ∗ f ∗ tp1 is a tiling such that ϕ(t) = a. Similarly, consider
the plug p̃ = (p0 ∖ s2) ∪ s1 and the floor g̃ = (p̃, d2, p1). Then, the tiling
t̃ = t−1

p̃ ∗ g̃ ∗ f−1 ∗ tp0 is such that ϕ(t̃) = b.
Now, consider the case in which there exists a fourth connected compo-

nent D4. By possibly relabeling the components, assume that |D1| ≤ |D2| ≤
|D3| ≤ |D4|. Proceed as in the previous case if |D3| > 1: define two classes
containing floors (p0, f

∗, p1) such that d1 ⊂ f ∗ and the plugs p0 and p1 mark
alternately the unit squares in D1 ∪ D2 ∪ D3.

Suppose that |D1| = |D2| = |D3| = 1. We define two classes of floors
F0 and F1. A floor (p0, f

∗, p1) belongs to F0 if and only if d1 ⊆ f ∗, s2 ⊂ p0

and s3 ⊂ p1. A floor belongs to F1 if and only if its inverse belongs to F0;
see Figure 5.8. As in the previous case, we have four classes with parity and a
homomorphism ϕ : G+

D → F2.

Figure 5.8: A disk and its two classes of floors F0 and F1.

Let f = (p0, d1, p1) be a floor in F0 such that p1 = p−1
0 ∖ d1. Let

p = (p1∖s3)∪s1 be a plug and g = (p, d3, p0) be a floor. Then, by construction,
the floors of tp1 and tp are contained neither in F0 nor in F1. Thus, we have
ϕ(t) = a for t = t−1

p ∗ g ∗ f ∗ tp1 . Similarly, we obtain t̃ such that ϕ(t̃) = b.■

Proof of Theorem 1.5. The proof consists of two cases. We define, in both cases,
two classes of floors F0 and F1. The class F1 contains a floor if and only if its
inverse belongs to F0, so that it suffices to define F0.

First consider the case in which there exists only one 2 × 2 square
containing d; denote this square by s. Let D0 be the connected component
of D ∖ d that intersects s. In this case, a floor (p0, f

∗, p1) belongs to F0 if and
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only if d ⊂ f ∗ and p0 (resp. p1) marks all black (resp. white) squares in D0; as
in Figure 5.9.

Figure 5.9: A disk and its two classes of floors F0 and F1.

The second case is based on the existence of two distinct 2 × 2 squares
s1, s2 ⊂ D such that d ⊂ s1 and d ⊂ s2. Let D1 (resp. D2) be the connected
component of D ∖ s that intersects s1 (resp. s2). Suppose that |D1| ≤ |D2|. In
this case, a floor (p0, f

∗, p1) belongs to F0 if and only if:

1. f ∗ contains the domino d.

2. p0 marks all black squares in D1 and all white squares in D2.

3. p1 marks all white squares in D1 and all black squares in D2.

Figure 5.10: A disk and its two classes of floors F0 and F1.

Notice that the classes of floors are nonempty. Indeed, by hypothesis, in
the first case |D∖d|−|D0| ≥ |D0| and in the second case |D∖d|−|D1|−|D2| ≥
|D2| − |D1|. Therefore, since D is balanced, in both cases there exist plugs
satisfying the required properties.

As in the proof of Theorem 1.4, we have four floors with parity which
define Φ for oriented edges in C+

D . By construction, in a floor (p0, f
∗, p1) of

class either F0 or F1, each connected component of D ∖ d that intersects a
2 × 2 square which contains d is marked alternately by p0 and p1. Then, again
as in the proof of Theorem 1.4, it is not difficult to check that Φ takes the
boundary of any 2-cell to the identity. Thus, Φ extends to a homomorphism
ϕ : G+

D → F2.
We are left to show that ϕ is surjective. Consider a floor f = (p0, d1, p1)

in F0 such that p1 = p−1
0 ∖ d1. Notice that, since d is contained in a

2 × 2 square, there exists a spanning tree of D whose set of edges does not
contain d. Then, by definition, the tilings t = t−1

p0 ∗ f ∗ (p1, ∅, p−1
1 ) ∗ tp−1

1
and

t̃ = t−1
p1 ∗ f−1 ∗ (p0, ∅, p−1

0 ) ∗ tp−1
0

are such that ϕ(t) = a and ϕ(t̃) = b. ■



6
Regular disks

This chapter is dedicated to the proofs of Theorems 1.6 and 1.7.

6.1
Hamiltonian disks

In this section, we present the advantages of using hamiltonian disks
and establish two technical lemmas. Although these results may initially seem
disconnected, their importance will become evident in the next section.

Lemma 6.1. Let D be a disk with a hamiltonian cycle γ = (s1, s2, . . . , s|D|).
Consider two dominoes d = sk∪sl and d̃ = si∪sj that do not respect γ. Suppose
that l−k ≥ 5. If i < k < j < l (resp. k < j < l < i) then max{k− i, l− j} ≥ 3
(resp. max{j − k, i− l} ≥ 3).

Proof. Let i < k < j < l, the other case is similar. Suppose, for a contradiction,
that k − i < 3 and l − j < 3. Since |Dd̃,0| is even and positive, j − i is an
odd number; analogously, l − k is odd. Thus, either k − i = 1 = l − j or
k − i = 2 = l − j. In the first case, (si, sk, sl, sj) defines a cycle of length
four and therefore corresponds to a 2 × 2 square in D. In the second case,
(sk, si+1, si, sj, sj+1, sl) defines a cycle of length six and therefore corresponds
to a 3 × 2 rectangle in D. Then, γ essentially follows one of the four patterns
shown in Figure 6.1.

Figure 6.1: Four possible configurations of γ.

However, in any of these four possibilities we have a contradiction with
the fact that s1 and s|D| are adjacent. Indeed, in the first three cases the cycle
(si, . . . , sj) defines two regions in D that separate s1 and s|D|. The fourth case
follows by the same argument once we observe that sj and sk are not adjacent,
as l − k ≥ 5. ■

Let D be a disk with a hamiltonian cycle γ = (s1, s2, . . . , s|D|). By
relabeling the unit squares, we can choose any unit square in D to be the
initial square of γ. We will need that a hamiltonian cycle starts at a corner,
i.e., a unit square that is adjacent to only other two unit squares. Let sSW be
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the southwesternmost unit square in D, i.e.,

sSW = [a, a+ 1] × [b, b+ 1], where

b = min{y ∈ Z : (x, y) ∈ D for some x ∈ Z} and a = min{x ∈ Z : (x, b) ∈ D}

Notice that sSW is a corner of D. Moreover, if s is a unit square adjacent to
sSW then D ∖ (s ∪ sSW ) is a path-hamiltonian disk.

A hamiltonian cycle corresponds to a simple closed curve that passes
through the center of every unit square in D, as in Figure 2.3. Thus, γ divides
D into two connected components, one of the components is contractible and
the other is non-contractible. The contractible connected component is called
the interior of γ, the non-contractible component is called the exterior of γ.
We say that a domino d = sk ∪ sl is contained in the interior (resp. exterior)
of γ if the line segment between the centers of sk and sl intersects the interior
(resp. exterior) of γ; for instance, see Figure 6.2. Notice that, except by s1∪s|D|,
every domino that does not respect γ is contained in either the interior or the
exterior of γ. This fact help us to prove Lemma 6.2 below.

Figure 6.2: The first (resp. second) example shows dominoes contained in the
interior (resp. exterior) of a cycle γ.

Lemma 6.2. Let D be a disk with a hamiltonian cycle γ = (s1, s2, . . . , s|D|)
starting at s1 = sSW . Consider two distinct dominoes d, d̃ ∈ Dγ. There
exist dominoes d1, d2, . . . , dn with d1 = d̃ and dn = d such that, for each
i ∈ {1, 2, . . . , n− 1}, one of the following holds:

1. di+1 is the union of a unit square in Ddi,0 and a unit square in Ddi,±1.

2. di+1 ⊂ Ddi,0 and Ddi,0 ∖ Ddi+1,0 is a disk.

3. di+1 ⊂ Ddi,±1 and Ddi,±1 ∖ Ddi+1,±1 is a disk.

Proof. Throughout the proof, we say that two dominoes d̄1, d̄2 ∈ Dγ form a
good pair if the result holds for d = d̄1 and d̃ = d̄2. We show that any two
dominoes that do not respect γ form a good pair. The proof is by induction on
|D|, with the base case being when |D| = 4. In this case, D is a 2 × 2 square
and the result follows vacuously.

In order to prove the induction step, we first consider the case that there
exists a domino d̂ that disconnects D; clearly, d̂ ∈ Dγ. By possibly changing the
orientation of γ (s1 = sSW still holds) we may assume that d̂ and s1 ∪ s|D| are
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disjoint. Notice that d̂ defines two other disks D1 = D∖Dd̂,0 and D2 = D∖Dd̂,±1

such that D = D1 ∪D2 and D1 ∩D2 = d̂; for instance, see Figure 6.3. The cycle
γ induces hamiltonian cycles γ1 in D1 and γ2 in D2; the union of the initial
and final squares of γ1 and γ2 constitute s1 ∪s|D| and d̂, respectively. Hence, by
the induction hypothesis, it suffices to show that s1 ∪ s|D| and d̂ form a good
pair. On the other hand, since d̂ is disjoint from s1 ∪ s|D| and s1 = sSW , we
have that Ds1∪s|D|,0 ∖ Dd̂,0 = D1 ∖ (s1 ∪ s|D|) is a disk.

Figure 6.3: A hamiltonian disk D with a domino d̂ that disconnects D and the
induced hamiltonian disks D ∖ Dd̂,0 and D ∖ Dd̂,±1.

Now, suppose there exists no domino that disconnects D. Therefore,
every domino d̂ ∈ Dγ ∖ {s1 ∪ s|D|} forms a good pair with a domino d̄

composed of a unit square in Dd̂,0 and a unit square in Dd̂,±1. Notice that
if d̂ is contained in the interior of γ then d̄ is contained in the exterior of γ,
and vice versa. Moreover, by possibly altering the orientation of γ, as in the
previous paragraph, it is not difficult to see that the 2×2 square that contains
s1 = sSW also contains a domino that forms a good pair with s1 ∪ s|D|. Thus,
the result follows once we prove that any two dominoes in the exterior of γ
form a good pair.

Let ∂D ⊂ D be the union of the unit squares not contained in the
topological interior of D. Let d1, d2, . . . , dj be the dominoes in ∂D that are
distinct from s1 ∪ s|D| and do not respect γ; for an example, see Figure 6.4.
Clearly, these dominoes are contained in the exterior of γ. Notice that every
domino in the exterior of γ is contained in the pairwise disjoint union
j⋃

m=1
Ddm,0 ∪ dm. Since γ induces a hamiltonian cycle in Ddm,0 ∪ dm, it follows

from the the induction hypothesis that dm form a good pair with every domino
in Ddm,0 that does not respect γ. We are left to show that dr and ds form a
good pair for any r, s ∈ {1, 2, . . . , j}.

Figure 6.4: A disk D with the interior of a hamiltonian cycle shown in red, and
the dominoes in ∂D that are distinct from s1 ∪ s|D| and do not respect γ.

The fact that there is no domino that disconnects D implies that every
non-corner unit square in ∂D is adjacent to a unit square not in ∂D, so that
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D∖ ∂D is connected. Then, by possibly relabeling the dominoes d1, d2, . . . , dj,
we may assume that for each m we have a unit square in Ddm+1,0 adjacent to
a unit square in Ddm,0 ⊂ Ddm+1,±1. Thus, dm and dm+1 form a good pair. ■

6.2
Proof of Theorems 1.6 and 1.7

The strategy of our proof is to demonstrate that a disk D satisfying either
Theorem 1.6 or Theorems 1.7 has a cyclic even domino group. We reduce the
family of generators of G+

D, as defined in Section 2.1, to a single element. To
achieve this, we demonstrate a series of results that reveal additional properties
of the flux for hamiltonian disks.

The following two lemmas show that for a given domino d ⊂ D, instead of
considering all possible triples flux(d, ·), it is sufficient to examine all possible
nonzero integers flux0(d, ·).

Lemma 6.3. Let D be a disk with a hamiltonian cycle γ = (s1, s2, . . . , s|D|)
starting at s1 = sSW . Consider a domino d ∈ Dγ with a compatible plug p ∈ Pd.
If flux0(d, p) = 0 then td,p ∼ tvert.

Proof. Suppose that p ∩ Dd,0 = ∅; otherwise, for the plug p̃ = p ∩ Dd,±1 we
have flux(d, p) = flux(d, p̃) and therefore, by Fact 2.5, td,p ∼ td,p̃. The tiling
td,p then covers the region Dd,0 × [|p|, |p| + 2] solely with vertical dominoes.

Let t1 be the tiling obtained from td,p by performing vertical flips along
γd,0, so that the restriction of t1 to (Dd,0 ∪ d) × [|p|, |p| + 1] is occupied only
by horizontal dominoes. Notice that Dd,0 ∪ d is a disk, as it is defined by the
cycle (sk, sk+1, . . . , sl) and neither s1 nor s|D| is contained in the interior of D.
Since the space of tilings of a disk is connected under flips, there exists a
sequence of horizontal flips that takes t1 to the tiling t2 whose restriction to
(Dd,0 ∪ d) × [|p|, |p| + 1] corresponds to the tiling induced by (sk, sk+1, . . . , sl).
Thus, td,p ≈ t1 ≈ t2 and every domino in t2 respects γ. It follows from Fact 2.1
that t2 ∼ tvert. ■

Lemma 6.4. Let D be a disk with a hamiltonian cycle γ = (s1, s2, . . . , s|D|)
starting at s1 = sSW . Consider a domino d ∈ Dγ and two plugs p1, p2 ∈ Pd.
If flux0(d, p1) = flux0(d, p2) then td,p1 ∼ td,p2.

Proof. Throughout this proof, in addition to γ, we also work with another
hamiltonian cycle γ̃. To avoid confusion, we distinguish the flux between a
domino and plug with respect to each cycle. Specifically, we denote the flux
with respect to γ̃ and γ by flux(·, ·; γ̃) and flux(·, ·; γ), respectively. Similarly,
we refer to the three subregions of D determined by a domino that does not
respect a given cycle.
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Suppose that d = sk ∪ sl with k < l, so that l − k ≥ 3. Consider
the hamiltonian cycle γ̃ = (sk+1, sk, . . . , s1, s|D|, s|D|−1, . . . , sk+2) obtained by
changing the initial square of γ; for instance, see Figure 6.5.

Figure 6.5: A disk with a hamiltonian cycle γ, a domino d and the cycle γ̃
obtained from γ.

We claim that if p is a plug compatible with d then td,p;γ ∼ td,p;γ̃. By
construction, a domino in td,p;γ̃ which does not respect γ and does not project
on d is of the form d1 × [N − 1, N ] with d1 = s1 ∪ s|D|. Then, from the facts
in Section 2.1, td,p;γ̃ is ∼-equivalent to a concatenation of td,p;γ and possibly
tilings td1,p̂;γ. However, we have flux(d1, p̂; γ) = (0, 0, 0) for any plug p̂ ∈ Pd1 .
Thus, by Lemma 6.3, td1,p̂;γ ∼ tvert. Therefore, td,p;γ ∼ td,p;γ̃.

Let p̂1 be the plug formed by the union of p2∩Dd,0;γ and p1∩Dd,±1;γ. Notice
that flux(d, p̂1; γ) = flux(d, p1; γ) and flux(d, p̂1; γ̃) = flux(d, p2; γ̃). Thus, by
the previous claim and Fact 2.5, td,p1;γ ∼ td,p̂1;γ ∼ td,p̂1;γ̃ ∼ td,p2;γ̃ ∼ td,p2;γ. ■

We now consider tilings td,p with large flux, those where | flux0(d, p)| ≥ 2.
In Lemma 6.5, we show that in certain cases, such tilings can be decomposed
into a concatenation of tilings with smaller flux. As a consequence, it follows
that the even domino group of a bottleneck-free disk is generated by tilings
with | flux0(·, ·)| = 1.

Lemma 6.5. Let D be a disk with a hamiltonian cycle γ = (s1, s2, . . . , s|D|)
starting at s1 = sSW . Consider a domino d ∈ Dγ such that D∖d is connected.
Let p be a plug compatible with d such that | flux0(d, p)| ≥ 2. Then, there exist
plugs p0, p1, p2 ∈ P and a domino d̃ ∈ Dγ that does not disconnect D such that:

1. td,p ∼ tϵ1
d̃,p1

∗ td,p0 ∗ tϵ2
d̃,p2

for some ϵ1, ϵ2 ∈ {−1, 1}.

2. max{| flux0(d̃, p1)|, | flux0(d, p0)|, | flux0(d̃, p2)|} < | flux0(d, p)|.

Proof. Since D ∖ d is connected, there exists a domino d̃ = si ∪ sj such that
si ∈ Dd,±1 and sj ∈ Dd,0. We have si ̸= s1; otherwise the fact that s1 is a
corner implies that sj = sD, which is not an element of Dd,0. Notice that D∖ d̃
is also connected, as d is formed by unit squares contained in Dd̃,0 and Dd̃,±1.
Suppose that si ∈ Dd,−1, the case si ∈ Dd,+1 is analogous.

Consider first the scenario where color(sj) = sign(flux0(d, p)). Suppose
d = sk∪sl, with k < l. Since | flux0(d, p)| ≥ 2, we have l−k ≥ 5. By Lemma 6.1
it follows that max{k − i, l − j} ≥ 3. Consequently, by Lemma 6.4, we may
assume, without loss of generality, that p satisfies the following conditions:
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1. p contains si ∪ sj and p ∩ Dd,0 (resp. p ∩ Dd,±1) consists only of unit
squares whose color matches color(sj) (resp. color(si)).

2. p contains a square in {sj+1, sj+2, . . . , sl−1} (resp. {si+1, si+2 . . . , sk−1})
if color(sk) = color(sj) and l − j ≥ 3 (resp. k − i ≥ 3).

3. p contains a square in {s1, s2 . . . , si−1} if color(sk) ̸= color(sj) and i > 2.

4. p contains s|D| if color(sk) ̸= color(sj) and i = 2.

Consider the plug p̂ = p ∪ d. By construction,

td,p ∼ t−1
p ∗ (p,∅, p−1) ∗ (p−1,∅, p) ∗ f ∗ fvert ∗ (p̂,∅, p̂−1) ∗ (p̂−1,∅, p̂) ∗ tp̂

where f = (p, d, p̂−1) and fvert = (p̂−1,∅, p̂). Thus, td,p contains four vertical
dominoes in d̃ × [|p| + 1, |p| + 5]. Perform three flips (Figure 6.6 shows these
flips for a specific hamiltonian disk) to conclude that

td,p ∼ . . . ∗ (p−1, d̃, p∖ d̃) ∗ (p∖ d̃, d, (p̂∖ d̃)−1) ∗ ((p̂∖ d̃)−1,∅, p̂∖ d̃) ∗ ((p̂∖ d̃, d̃, (p̂∖ d̃)−1) ∗ . . .

Then, it follows from Fact 2.3 that td,p ∼ t−1
d̃,p∖d̃ ∗ td,p∖d̃ ∗ td̃,p̂∖d̃.

Figure 6.6: A domino d and a plug p in a hamiltonian disk, and the effect of
thee flips in the tiling described by (p−1,∅, p) ∗ f ∗ fvert ∗ (p ∪ d,∅, (p ∪ d)−1).

A careful analysis shows that under the four conditions above we have
max{| flux0(d, p∖ d̃)|, | flux0(d̃, p̂∖ d̃)|, | flux0(d̃, p∖ d̃)|} < | flux0(d, p)|. In the
case where color(sj) ̸= sign(flux0(d, p)) we derive similar conditions that p
must satisfy. As a consequence, we have that td,p ∼ td̃,p ∗ td,p∪d̃ ∗ t−1

d̃,p∪d and
max{| flux0(d, p ∪ d̃)|, | flux0(d̃, p ∪ d)|, | flux0(d̃, p)|} < | flux0(d, p)|. ■

We now focus on tilings td,p where | flux0(d, p)| = 1. The objective is to
demonstrate that for any two such tilings td,p and td̃,p̃, we have td,p ∼ t±1

d̃,p̃
. To

this end, we first establish a partial result in this direction.

Lemma 6.6. Let D be a disk with a hamiltonian cycle γ = (s1, s2 . . . , s|D|)
starting at s1 = sSW . Consider a domino d̃ ∈ Dγ and a plug p̃ ∈ Pd such
that | flux0(d̃, p̃)| = 1. Then, for each d ∈ Dγ there exists p ∈ Pd such that
| flux0(d, p)| = 1 and t±1

d,p ∼ td̃,p̃.

Proof. Take the sequence of dominoes d1, d2, . . . , dn as in Lemma 6.2, so that
d1 = d̃ and dn = d. We claim that there exist plugs p1, p2, . . . , pn ∈ P such
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that p1 = p̃, | flux0(di+1, pi+1)| = | flux0(di, pi)| and tdi+1,pi+1 ∼ t±1
di,pi

. Notice
that the claim implies the desired result.

From now on, we use Lemma 6.4 repeatedly without further mention.
By construction, there are three possible relative positions of di and di+1.
To prove the claim, we examine each case separately. First, suppose that
di+1 = sk ∪ sl with sk ⊂ Ddi,0 and sl ⊂ Ddi,±1. Since | flux0(di, pi)| = 1,
we may assume that either pi = di+1 or p−1

i = di ∪ di+1. If pi = di+1

then, as in the proof of Lemma 6.5, tdi,pi
∼ t−1

di+1,p◦ ∗ tdi,p◦ ∗ tdi+1,di
. Thus,

by Lemma 6.3, tdi,pi
∼ tdi+1,di

. For p−1
i = di ∪ di+1, we similarly have that

tdi,pi
∼ tdi+1,p•∖(di∪di+1) ∗ tdi,p•∖di

∗ t−1
di+1,p•∖di+1

∼ tdi+1,p•∖(di∪di+1). Therefore, in
both cases, we obtain a plug pi+1 such that | flux0(di+1, pi+1)| = | flux0(di, pi)|
and tdi,pi

∼ tdi+1,pi+1 .
Secondly, suppose that Ddi,0 ∖ Ddi+1,0 is a disk and di+1 = sk ∪ sl with

sk, sl ⊂ Ddi,0. Then, Di = (Ddi,0 ∪ di) ∖ Ddi+1,0 is also a disk and has a
hamiltonian cycle γi induced by γ. Let γi,1 and γi,2 be the paths obtained
from γi by disconnecting the adjacent unit squares in di and di+1. There are
two cases: |γi,1| and |γi,2| are both either even or odd.

We obtain two tilings ti,1 ∈ T (Di × [0, 1]) and ti,2 ∈ T ((Di∖ di) × [0, 1])
by placing dominoes along γi,1 and γi,2; Figure 6.7 illustrates an example of
this construction. If |γi,1| and |γi,2| are even then (di ∪ di+1) × [0, 1] ̸∈ ti,1
and di+1 × [0, 1] ∈ ti,2. If |γi,1| and |γi,2| are odd then di × [0, 1] ̸∈ ti,1,
di+1 × [0, 1] ∈ ti,1 and di+1 × [0, 1] ̸∈ ti,2. Let f ∗

i,1 and f ∗
i,2 be the set of planar

dominoes that describes ti,1 and ti,2, respectively.

Figure 6.7: Two examples of a disk with a hamiltonian cycle γ and dominoes
di and di+1, the disk Di with paths γi,1 and γi,2, and the tilings ti,1 and ti,2. In
the first (resp. second) example |γi,1| and |γi,2| are both even (resp. odd).

Consider the tiling tdi,pi
= t−1

pi
∗ f ∗ fvert ∗ tpi∪di

. Since | flux0(di, pi)| = 1,
we may assume that pi ∩ Ddi,0 ⊂ Ddi+1,0. Then, tdi,pi

covers the region
(Ddi,0 ∖Ddi+1,0) × [|pi|, |pi| + 2] only with vertical dominoes. Since Di is a disk,
as in the proof of Lemma 6.3, we have a sequence of flips that takes tdi,pi

to
the tiling t = t−1

pi
∗ (pi, f ∗

i,1, (Di ∪ pi)−1) ∗ ((Di ∪ pi)−1, f ∗
i,2, pi ∪ di) ∗ tpi∪di

.
From Facts 2.3 and 2.4, if |γi,1| and |γi,2| are odd (resp. even) then t is
∼-equivalent to tdi+1,pi

(resp. t−1
di+1,pi∪di

). Thus, in any case, we have a plug
pi+1 such that tdi,pi

∼ t±1
di+1,pi+1

and flux0(di+1, pi+1) = flux0(di, pi). Finally,
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notice that a completely analogous argument holds in the third possible case,
when di+1 = sk ∪ sl with sk, sl ⊂ Ddi,±1 and Ddi,±1 ∖ Ddi+1,±1 is a disk. ■

For hamiltonian disks without bottlenecks, we now demonstrate the
existence of a domino that, in a certain sense, connects the family of tilings
with flux equals +1 to the family of tilings with flux equals −1. As a corollary,
we conclude that the even domino group of a bottleneck-free hamiltonian disk
is cyclic.

Lemma 6.7. Let D be a nontrivial quadriculated disk with a hamiltonian cycle
γ = (s1, s2 . . . , s|D|) starting at s1 = sSW . If no domino disconnects D then
there exist a domino d ∈ Dγ such that t−1

d,p ∼ td,p−1∖d for every plug p ∈ Pd

with flux0(d, p) = 1.

Proof. Notice that s1 is contained in a 3×3 square ‹D, as no domino disconnects
D and s1 = sSW . Suppose that in ‹D the cycle γ follows one of the three
patterns illustrated in Figure 6.8; the other cases are obtained by reversing the
orientation, and the argument proceeds similarly. We say that γ is of type i if
it follows the i-th possible pattern.

Figure 6.8: Three possible patterns of γ in ‹D.

Let d be the domino adjacent and parallel to s1 ∪ s|D|. Suppose that γ is
either of type 1 or type 3; the case where γ is of type 2 is analogous to the case
where γ is of type 1. Consider a plug p ∈ Pd such that flux0(d, p) = 1. Then, it
follows that flux0(d, p−1 ∖ d) = −1. By Lemma 6.4, it suffices to consider the
case in which p−1 ∖ d = s|D| ∪ si, where si ⊂ ‹D ∖ d denotes the unit square
adjacent to s2.

Consider the tiling td,p−1∖d = t−1
p−1∖d ∗ f ∗ fvert ∗ tp−1 . Insert vertical floors

around f and fvert to obtain a tiling t1 ∼ td,p−1∖d; the restriction of t1 to‹D × [|p−1 ∖ d|, |p−1 ∖ d| + 7] is shown in the first row of Figure 6.9. Let ti
be the tiling whose restriction to ‹D × [|p−1 ∖ d|, |p−1 ∖ d| + 7] is as in the
i-th first row of Figure 6.9 and which is equal to t1 outside this region. We
have t1 ≈ t2 and t3 ≈ t4 ≈ t5. Notice that the restrictions of t2 and t3 to‹D × [|p−1 ∖ d| + 2, |p−1 ∖ d| + 6] define two tilings, both with the same twist,
of a 3 × 3 × 4 box. Since the 3 × 4 rectangle is regular (see Lemma 9.2 of [22]),
it follows that t2 ∼ t3.

We focus on t4 when γ is of type 1. Let f1, f2, . . . , f7 be the seven floors
of t4 whose restriction is shown in Figure 6.9. By Facts 2.1 and 2.3, we have
t4 ∼ t−1

f−1
2

∗ tf3 ∗ t−1
f−1

4
∗ t−1

f−1
6

∗ tf7 , since all other floors of t4 contains only
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Figure 6.9: The i-th row shows the restriction to ‹D of seven floors of a tiling ti.

dominoes that respect γ. Now, it follows from Fact 2.4 and Lemma 6.3 that
t4 ∼ t−1

f−1
4

. On the other hand, t−1
f−1

4
= t−1

d,s1∪sj
, where sj ⊂ ‹D ∖ s2 is the unit

square adjacent to si. Finally, by Lemma 6.4, t−1
d,s1∪sj

∼ t−1
d,p. Similarly, when γ

is of type 3, we have t5 ∼ t−1
d,p. ■

Corollary 6.8. Let D be a nontrivial hamiltonian balanced quadriculated disk.
Suppose that no domino disconnects D. If d1, d2 ∈ Dγ and p1, p2 ∈ P are such
that | flux0(d1, p1)| = 1 = | flux0(d2, p2)| then t±1

d1,p1 ∼ td2,p2.

Proof. Take the domino d as in Lemma 6.7. By Lemma 6.6, there are plugs
p and p̃ with | flux0(d, p)| = 1 = | flux0(d, p̃)| such that t±1

d1,p1 ∼ td,p and
t±1
d2,p2 ∼ td,p̃. The result now follows from an application of Lemma 6.4. Indeed,

we have either td,p ∼ td,p̃ or td,p ∼ t−1
d,p−1∖d ∼ t−1

d,p̃, depending on whether
flux0(d, p) = flux0(d, p̃) or flux0(d, p) = − flux0(d, p̃). ■

The proof of Theorem 1.6 follows directly from the established results.
Proof of Theorem 1.6. Since D is nontrivial, by Fact 2.7, the twist Tw: G+

D → Z
is a surjective homomorphism. It follows from Lemma 6.5 and Corollary 6.8
that G+

D is cyclic. Consequently, the twist is an isomorphism. ■

Our approach to prove Theorem 1.7 is based on utilizing the established
regularity of bottleneck-free hamiltonian disks. We need an additional lemma
concerning generators td,p in the case where D ∖ d is not connected.

Lemma 6.9. Consider a disk D satisfying the hypothesis of Theorem 1.7. Let
d ∈ Dγ be a domino that disconnects D and consider a plug p ∈ Pd. Then, td,p
is ∼-equivalent to a concatenation of tilings t±1

d̃,p̃
with D ∖ d̃ connected.

Proof. We first distinguish four planar dominoes. Suppose that d ⊂ Di for some
i > 0, otherwise set d1 = d. Let d1 ⊂ D0 be the domino that contains the line
segment of length two defined by D0 and Di. Thus, D ∖ d1 is not connected.
Let d2 ⊂ D0 be the domino adjacent and parallel to d1 and denote by d3 and d4

the dominoes obtained after performing a flip on d1 and d2. Notice that D∖d2

is connected, and at least one of the regions D∖d3 or D∖d4 is also connected.
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Assume, without loss of generality, that the initial unit square of the
hamiltonian cycle of D is contained in D0. Then, we have Dd1,0 = Di. Notice
that Dd1,0 ∖ Dd,0 is a hamiltonian disk, as d and d1 disconnect D. Since
|Di| < |D0|−2, we can modify p to obtain a plug p1 such that p1 ⊂ Dd,0∪D0∖d1,
d2 ⊂ p−1

1 and flux0(d, p) = flux0(d, p1). For an example of this construction,
see Figure 6.10. It follows from Lemma 6.4 that td,p ∼ td,p1 . Furthermore, as
in the proof of Lemma 6.3, we have td,p1 ∼ t±1

d1,p1 .

Figure 6.10: A hamiltonian disk D where D0 is equal to a 4 × 4 square, a
domino d with a compatible plug p, and the domino d1 with a plug p1.

Since d2 ⊂ p−1
1 , a vertical flip modifies td1,p1 to now contain the dominoes

d2 × [K,K + 1] and d2 × [K + 1, K + 2], where K = |p1|. A horizontal flip then
takes d1 × [K,K+1] and d2 × [K,K+1] to d3 × [K,K+1] and d4 × [K,K+1].
Thus, Facts 2.3 and 2.4 imply that td1,p ∼ td3,p ∗ td4,p∪d3 ∗ t−1

d2,p∪d1 .
Therefore, the tiling td,p is ∼-equivalent to a concatenation of tilings

of the form t±1
d̃,p̃

. By Fact 2.1, we have t±1
d̃,p̃

∼ tvert if d̃ ̸∈ Dγ. Otherwise,
by construction, d̃ is either a domino that does not disconnect D or satisfies
flux0(d̃, p̃) = 0. The result then follows from Lemma 6.3. ■

We are now ready to prove Theorem 1.7.
Proof of Theorem 1.7. Lemmas 6.5, 6.6 and 6.9 imply that the even domino
group G+

D is generated by tilings td,p with d ⊂ D0 and p ∈ Pd such that D ∖ d

is connected and | flux0(d, p)| = 1. By Lemma 6.4, we may further restrict to
plugs contained in D0. We claim that each such tiling td,p is equivalent under
∼ to a tiling of D × [0, 2N ] whose restriction to (D∖D0)× [0, 2N ] is composed
solely of vertical dominoes. Notice that the desired result follows from the
claim, since D0 is regular by Theorem 1.6.

The hamiltonian cycle γ of D induces a hamiltonian cycle γ0 in D0.
The dominoes that respect γ0 but do not respect γ are exactly the dominoes
di ⊂ D0 that contain the line segment defined by D0 and Di. Let t be the
tiling of D × [0, 2N ] obtained from the tiling td,p;γ0 of D0 × [0, 2N ] by covering
the region (D∖D0) × [0, 2N ] with vertical dominoes. It follows from Facts 2.3
and 2.4 that t is ∼-equivalent to a concatenation of td,p;γ and possibly tilings
t±1
di,pi;γ such that flux0(di, pi) = 0. Thus, by Lemma 6.3, we have t ∼ td,p;γ and

the claim follows. ■
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