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Abstract

Lopes Neto, Stélio Henrique; Carvalho, Márcio da Silveira (Advisor);
Ribeiro, Sergio Santiago (Co-Advisor); Pradelle, Florian Alain Yan-
nick (Co-Advisor). Three-dimensional flow of thixotropic liquids
in coating dies. Rio de Janeiro, 2025. 74p. Dissertação de Mestrado –
Departamento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

Slot coating is largely used in the manufacturing of different functional
films, including battery electrodes. For optimum performance, the thickness
of the film deposited over the moving substrate must be uniform along the
cross-web direction. The flow uniformity is achieved by properly designing
the geometry of the internal cavities of the coating die. The optimized design
is strongly influenced by the liquid rheology, which needs to be accurately
described in the flow models. The rheological behavior of particle suspensions,
as those encountered in slot coating of battery electrodes, is very complex.
The viscosity varies orders of magnitude with the shear rate, and they show
thixotropic behavior. Usually, flow models used in the design of slot die cavities
do not take into account the time dependency of particle suspensions and the
flow is described assuming that the local viscosity is only a function of the
local deformation rate. This can lead to inaccurate description of the flow,
since the liquid structure does not change instantaneously after a step change
to a new stress level. This study addresses the three-dimensional internal
flow of thixotropic fluids. Time-dependent behavior is modeled using a kinetic
equation for the material fluidity, which is defined as the reciprocal of viscosity,
and specifies uniquely the material microscopic state. The model accounts
for the mechanisms of buildup and breakdown of the microstructure with no
postulated functions nor additional auxiliary parameters. A 3D finite element
numerical model, implemented in Python, based on the precompiled library
named Dolfin, developed within the open-source project FeniCs, allows for a
realistic representation of thixotropic fluid flow in complex geometries, such as
those present in the internal cavities of slot coating dies. The results show the
effect of thixotropy in the flow behavior and how they should be included in
the design of slot dies used for coating particle suspensions.

Keywords
Thixotropy; Coating Processes; 3D Finite Element Modeling.



Resumo

Lopes Neto, Stélio Henrique; Carvalho, Márcio da Silveira; Ribeiro, Ser-
gio Santiago; Pradelle, Florian Alain Yannick. Escoamento tridimen-
sional de fluidos tixotrópicos em barras de revestimento. Rio de
Janeiro, 2025. 74p. Dissertação de Mestrado – Departamento de Enge-
nharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A técnica de revestimento por fenda é amplamente utilizada na fabri-
cação de diversos filmes funcionais, incluindo eletrodos de baterias. Para um
desempenho ideal, a espessura do filme depositado sobre o substrato em mo-
vimento deve ser uniforme ao longo da direção transversal. A uniformidade
do fluxo é alcançada por meio de um projeto adequado da geometria das ca-
vidades internas da barra de revestimento. O projeto otimizado é fortemente
influenciado pela reologia do líquido, que precisa ser descrita com precisão nos
modelos de escoamento. O comportamento reológico de suspensões de partí-
culas, como as encontradas no revestimento de eletrodos de baterias, é muito
complexo. A viscosidade varia em ordens de magnitude com a taxa de cisa-
lhamento, e essas suspensões exibem comportamento tixotrópico. Geralmente,
os modelos de escoamento utilizados no projeto das cavidades da barra de
revestimento não consideram a dependência temporal da viscosidade das sus-
pensões de partículas, e o escoamento é descrito assumindo que a viscosidade
local é apenas uma função da taxa de deformação local. Isso pode levar a uma
descrição imprecisa do escoamento, uma vez que a estrutura do líquido não
muda instantaneamente após uma mudança abrupta para um novo nível de
tensão. Este estudo aborda o escoamento interno tridimensional de fluidos ti-
xotrópicos. O comportamento dependente do tempo é modelado usando uma
equação cinética para a fluidez do material, que é definida como o inverso da
viscosidade e especifica exclusivamente o estado microscópico do material. O
modelo leva em consideração os mecanismos de construção e desagregação da
microestrutura, sem funções postuladas nem parâmetros auxiliares adicionais.
Um modelo numérico de elementos finitos tridimensional, implementado em
Python e baseado na biblioteca pré-compilada chamada Dolfin, desenvolvida
dentro do projeto de código aberto FeniCs, permite uma representação rea-
lista do escoamento de fluidos tixotrópicos em geometrias complexas, como
as presentes nas cavidades internas das barras de revestimento por fenda. Os
resultados mostram o efeito da tixotropia no comportamento do escoamento e



como ela deve ser incluída no projeto de barras de revestimento usadas para
revestir suspensões de partículas.

Palavras-chave
Tixotropia; Processos de Revestimento; Elementos Finitos em 3D.
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“What we know is a drop, what we don’t
know is an ocean.”

Isaac Newton.



1
Introduction

1.1
Coating process

Coating is a fundamental process in modern fabrication techniques. In
this process, one or more liquid layers are deposited on a solid surface, often a
moving flexible substrate. The wet thickness of the coated films varies with the
product, typically on the order of 1 to 100 microns, or more. These layers are
then dried or cured to form solid films that serve specific functions (KISTLER;
SCHWEIZER, 1997).

Figure 1.1 depicts a schematic representation of a coating line. It outlines
the basic steps of applying a thin layer of liquid (coating) onto a continuously
moving substrate, such as a rolled paper or metal sheet.

Figure 1.1: Schematic representation of a coating line. (PEREZ; CARVALHO,
2007)

The process starts with the substrate preparation stage. This might
involve cleaning the substrate to remove any contaminants that could affect
the adhesion of the coating. In some cases, the substrate may also undergo
corona treatment to improve its wettability, facilitating even coating spread.

The following stage is liquid preparation, where the coating materials
are prepared and conditioned according to the desired properties. This might
involve mixing different components, filtering out any impurities, and adjusting
the fluid rheology. This stage is very important, since it determines fluid’s
viscosity behavior expected for the coating stage inlet.

The coating stage is where the prepared liquid is deposited onto the
moving substrate. Figure 1.1 shows a slot coating station, which is a common
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setup for applying a uniform layer of coating. In slot coating, the liquid is fed
through a narrow slot (or die) and then onto the substrate. The thickness of
the coating is controlled by the gap between the die and the substrate, as well
as the flowrate of the liquid and the moving substrate velocity.

Once the coating has been applied, it needs to be solidified or cured.
This can be achieved through various methods, such as heat drying or using
a chemical reaction to harden the coating. Sometimes, a final step is needed,
which may involve additional post-treatment processes. For instance, calen-
daring can be used to smooth out the surface of the coating, while lamination
involves bonding another layer of material to the coated substrate. The specific
post-treatment steps will depend on the desired properties of the final product.

Coating process is applied in the manufacturing of many different prod-
ucts, like paper, magnetic media, adhesive tapes, photographic films, and flex-
ible electronic circuits (PEREZ; CARVALHO, 2007). Moreover, coating is es-
sential for manufacturing high-quality products in automotive, aerospace, elec-
tronics, medical, and packaging sectors, ensuring durability, performance, and
aesthetics.

There are different types of coating processes commonly used in industrial
settings, some examples are blade-, slot-, slide-, extrusion-, curtain-, and
roll-coating (KISTLER; SCRIVEN, 1983). Each of those are more suitable
for specific applications and substrate characteristics. Curtain coating, for
example, is more applied to objects with complex geometries, while slot coating
is usually applied for flat substrates, specially in applications that require high
thickness accuracy,

Slot coating is distinguished in this last domain of applications due to its
unique benefits compared to other methods. A key advantage lies in the ability
to generate extremely consistent and accurate coverage over surfaces of a large
variety of materials. Slot coating allows for precise management of coating
thickness, guaranteeing uniform distribution across the substrate surface. This
level of precision is especially crucial in applications where consistent coating
is vital for the performance of the end product, such as in producing functional
films or electronic coatings.

Another significant advantage of slot coating is offering a notable benefit
in terms of material efficiency. With its precise control over a liquid film
application, slot coating minimizes waste, leading to more effective use of
resources and lower production costs. Furthermore, it is adaptable to a diverse
range of liquids, including solvents and particle suspensions, making it suitable
for several industrial purposes.

However, despite its many benefits, slot coating also presents specific
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challenges to optimize its efficiency and suitability for industrial settings.
Die design is one of those challenges, especially in applications involving
non-Newtonian liquids. Optimizing coating die geometry to ensure uniform
liquid distribution across the substrate width requires a deep understanding
of process hydrodynamics and precise fluid flow modeling.

Furthermore, precise control of process conditions, such as substrate
speed and liquid flow rate, is essential to ensure consistent coating quality.
Variations in process conditions can significantly affect coating thickness and
uniformity, underscoring the importance of robust process control systems and
continuous product quality monitoring.

The design of the slot coating die is critical to the process success, as it
directly determines the coating liquid flow behavior and consequently the film
thickness uniformity. Different die geometries are used in the industry, such
as T-dies, coat-hanger dies, and fishtail dies, as illustrated in Figure 1.2, each
with distinct advantages depending on specific application requirements. The
primary goal in die design is to ensure a uniform distribution of coating fluid
across the substrate entire width, while also minimizing pressure losses and
avoiding flow instabilities like streaks or air entrainment.

Figure 1.2: Different types of slot coating dies: (a) fishtail die, (b) T-die, (c)
coat-hanger die. (LIN et al., 2013)

The flow analysis through the internal passages of coating die manifolds
can be divided into four key sections, as illustrated schematically in Figure
1.3(SECOR, 1997):

– Feeding of the cavity,

– Flow through the cavity,
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– Flow through the cavity-slot transition, and

– Flow through the slot region.

Proper design and analysis of these flow sections are essential for achiev-
ing uniform coating thickness and avoiding common defects.

Geometric parameters are also important for achieving uniformity. The
design variables of the die, including die lips, cavity and feed slot dimensions,
shape, and inclination, help regulating flow distribution. Precise adjustments
in gap clearance and die lips position can minimize flow irregularities, ensuring
a smooth coating application. Variations in die geometry can disrupt the flow,
leading to non-uniformities in the coating layer, especially at high speeds.

Operating parameters such as web speed, coating thickness and flow rate
also contribute to the uniformity of the coating. Maintaining a consistent web
speed and feed flow rate helps ensure a stable coating bead and film thickness.

Finally, coating fluids properties, such as viscosity and surface tension,
directly impact flow behavior and represent a great modeling challenge in
die design. In many applications, complex fluids like emulsions and particle
suspensions need to be coated with precise thickness. Non-Newtonian fluids
like these, which often exhibit time-dependent behavior, require attention, as
their response to shear forces can vary across the coating width causing non-
uniform flow profile.

Figure 1.3: Schematic diagram of the general flow pattern in a coating die
manifold. (SECOR, 1997)

Lin et al. (2013) proposed a novel design for a coating die specifically
aimed at delivering suspensions while addressing common issues such as parti-
cle sedimentation and flow uniformity. The design incorporates two easily re-
placeable shims that allow for adjustments to maintain high shear rates, which
is essential for preventing particle sedimentation inside the die. The authors
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combined a one-dimensional lubrication approximation with three-dimensional
finite element simulations to optimize the die’s geometry, ensuring uniform flow
across the width of the die. Bingham model was applied to describe the coating
suspension behavior, which included viscoplastic characteristics. Experimental
validation using three different die designs (T-die, fishtail die, and coat-hanger
die) confirmed that the coat-hanger die offered the best performance in terms
of flow uniformity and minimizing particle sedimentation.

1.2
Particle suspensions and their non-Newtonian and thixotropic behavior

Particle suspensions are comprised of minute solid particles dispersed
within a liquid phase, the interaction between the particles may lead to com-
plex behavior. Many of these structured fluids are commonplace in everyday
scenarios, such as mud or blood. Ranging in size from 1 nanometer to 1 mi-
crometer, these particles form colloidal systems. Within colloidal systems, the
particles are sufficiently small to remain suspended without rapidly precipitat-
ing.

These particle suspensions have wide-ranging applications across vari-
ous industries. In the coating realm, they play an indispensable role in paints
and varnishes, ensuring uniform application. In the cosmetic industry, they
are present in creams and lotions, augmenting both texture and spreadability.
Within pharmaceuticals, they facilitate the formulation of medications contain-
ing insoluble active ingredients, thereby enhancing medication bioavailability.
In the lithium-ion battery sector, these suspensions are instrumental in the
fabrication of electrode materials, thereby contributing to energy efficiency.
In the food sector, they aid in maintaining homogeneity and consistency in
products such as sauces and beverages.

In a Newtonian fluid, stress and strain rate maintain a linear relationship,
with viscosity dependent solely on pressure and temperature. In contrast, the
microstructure of structured fluids, composed of suspended particles dispersed
within a liquid phase, stabilizes after prolonged exposure under constant stress
conditions, exhibiting distinctly non-Newtonian mechanical behavior.

The response of structured fluids to stress changes can be categorized
into two distinct types: instantaneous and time-dependent. In the case of
instantaneous response, the fluid’s microstructure immediately adjusts to
the new stress conditions, reaching equilibrium without any temporal delay.
However, for many structured fluids, the transition to a new equilibrium state
takes place over time, exhibiting time-dependent behavior.
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1.2.1
Time-independent fluids

Figure 1.4 presents different types of non-Newtonian fluid behaviors that
exhibit a time-independent response. These include fluids without yield stress,
such as pseudoplastic and dilatant fluids, as well as those with yield stress,
such as Bingham and Herschel-Bulkley fluids.

Figure 1.4: Different types of fluid behaviors.

Pseudoplastic fluids, also known as shear-thinning fluids, decrease in
viscosity with increasing shear rate. This means that as the fluid is subjected to
shaking or shearing, it becomes less viscous. Dilatant fluids, or shear-thickening
fluids, increase in viscosity with increasing shear rate. This behavior is the
opposite of pseudoplastic fluids; the more they are subjected to shaking or
shearing, the thicker and more resistant to flow they become.

Bingham fluids exhibit a yield stress that must be exceeded before they
begin to flow. Below this yield stress, they behave like a solid, and above it, they
flow like a viscous fluid. Herschel-Bulkley fluids represent a generalized form
of Bingham fluids. They display a yield stress and a non-linear relationship
between shear stress and shear rate once the yield stress is surpassed. This
means they require an initial force to start flowing, but their viscosity also
changes in a non-linear fashion with the applied shear rate.

Despite being commonly used, Power-law, Bingham and Herschel-
Bulkley models present some limitations while modeling particle suspensions.
The Power-law model, for example, can lead to numerical issues, such as pre-
dicting infinite viscosity at low shear rates and very low viscosities at high
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shear rates. On the other hand, the Bingham and Herschel-Bulkley models
may deviate from experimental results depending on particle concentration, as
they lack a smooth transition between the solid-like and fluid-like states.

In this study, a viscosity model proposed by Mendes e Dutra (2004) was
adopted to describe the rheological behavior of yield-stress fluids. The relation
between shear stress and shear rate is defined as the Equation 1-1.

τ = (1 − exp (−η0γ̇/τ0)) (τ0 +Kγ̇n) (1-1)
where, τ0 is the yield stress, η0 is the zero-shear-rate viscosity, γ̇ is the shear
rate, K is the consistency index, and n is the power-law index.

This model addresses the shortcomings of traditional models by introduc-
ing a continuous viscosity function, ensuring smooth transitions at the yield
stress point. This is crucial for accurately capturing the behavior of yield-stress
fluids, which typically exhibit a high viscosity plateau at low shear rates, fol-
lowed by a sharp viscosity drop once the yield stress is surpassed. By providing
this smooth transition, the model better represents the rheological behavior of
yield-stress fluids across a wide range of shear rates.

The advantages of this viscosity model is its ability to improve conver-
gence in numerical solutions, particularly in complex flow simulations involving
yield-stress fluids. Traditional models often present challenges due to discon-
tinuities or predictions of infinite viscosity at low shear rates, leading to nu-
merical instabilities and inaccurate results. In contrast, the proposed model
is continuous, with smooth derivatives, ensuring a stable transition between
different flow regimes and minimizing the risk of numerical errors.

This model is suitable for numerical simulations as it eliminates the need
for regularization, further enhancing computational efficiency. At extremely
low and high shear rates, it accurately predicts the Newtonian plateau, a be-
havior commonly observed in experimental studies of viscoplastic materials,
offering a more precise and reliable representation of their rheological proper-
ties in practical applications.

1.2.2
Time-dependent fluids

If a new equilibrium condition is not reached instantly after a step change
in stress, the structured fluid is considered time-dependent. Time-dependent
fluids exhibit a behaviors where their flow properties change over time under
constant shear. These fluids are characterized by viscosity variations that are
not solely dependent on the applied shear stress, but also on the time since
the change in flow condition. Two common phenomena associated with time-
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dependent fluids are thixotropy and rheopexy.
Thixotropy, in particular, is the focus of this research, since there is a

wide range of thixotropic fluids present in slot coating processes. These fluids
exhibit a shear-thinning behavior, which implies that the fluid’s resistance to
flow diminishes under higher shear forces. Remarkably, the viscosity change
observed in thixotropic fluids is reversible, meaning that the fluid regains its
original viscosity upon returning to the original flow condition.

Thixotropy was first defined in the early 20th century by Péterfi (1927)
as a mechanically induced sol-gel transition. The term itself is derived from
the Greek words thixis (stirring, shaking) and tropos (turning, changing). Over
time, the concept of thixotropy has evolved to encompass a broader range of
viscosity changes in response to shear forces, particularly in materials that
experience a reversible breakdown and recovery of their internal structure.

The studies by Mewis (1979) and Barnes (1997) were instrumental in
shaping the modern understanding of thixotropy as a time-dependent, re-
versible process. These studies showed that under shear, a material’s mi-
crostructure breaks down, reducing its viscosity, and upon removal of the stress,
the structure reforms and viscosity is restored. More recent work by Larson e
Wei (2019) highlights the significance of thixotropy in a variety of industrial
materials, such as drilling fluids, paints, and many biological substances.

Figure 1.5 illustrates the structural changes in a thixotropic material as
it undergoes shear and rest phases. Initially, the fluid is completely structured,
giving it an elastic, solid-like response. As shear is applied, the internal
structure begins to break down, transitioning to a partially structured state
that exhibits viscoelastic behavior. When the structure is completely broken
down under shear, the material displays a viscous, shear-thinning response.
Once the shear is removed and the fluid is allowed to rest, the structure
gradually reforms, eventually returning to its fully structured state, restoring
its original viscosity.

This behavior is central to the processing and application of various
materials, particularly in processes where control over flow and material
stability is essential, such as the coating process. Larson e Wei (2019) offer
a comprehensive contribution on how thixotropy manifests in other practical
applications, ranging from the flow and setting of paints to the handling of
drilling fluids. The structural breakdown that occurs under stress leads to a
time-dependent drop in viscosity, also observed in the processing of minerals,
metals, food products, pharmaceuticals, ceramics, gels, inks and concrete
(JAN; WAGNER, 2009).

In some applications thixotropic behavior is essential, allowing the ma-
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Figure 1.5: Breakdown and build-up of a 3D thixotropic structure. Adapted
from Barnes (1997).

terials to flow easily under shear but regaining its stability when at rest. For
instance, in the case of paints and other coatings, the material must be easy to
apply, flowing smoothly during application, but must also maintain its position
and not sag once the application is complete. Similarly, in drilling operations,
thixotropic drilling fluids are used to maintain wellbore stability by controlling
the flow and recovery of the material’s viscosity under different shear condi-
tions.

However, accurately modeling thixotropic materials presents significant
challenges. Mendes e Thompson (2012) highlight the need for improved models
that account for the combined effects of elasticity, plasticity, and thixotropy,
particularly in materials with yield stress. Larson e Wei (2019) suggest that
further advancements in microscopic models could help link phenomenological
equations with observed behaviors, providing more accurate predictions for
industrial applications.

Understanding and controlling the time-dependent properties of
thixotropic materials is critical for optimizing performance across a vari-
ety of industries. With ongoing research focused on better modeling and
measurement techniques, industries will be able to harness the unique prop-
erties of thixotropic fluids more effectively, improving product quality and
process efficiency.

1.3
Current solutions of slot coating flow

Coating liquids encompass a diverse range of substances, spanning from
pure compounds to complex formulations such as polymeric solutions, colloidal
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dispersions, particle suspensions, liquid crystals, and melts. It is noteworthy
that the majority of these liquids exhibit non-Newtonian behavior, charac-
terized by their intricate rheological properties. Among the pantheon of non-
Newtonian fluids, thixotropic fluids emerge as particularly significant players
in slot coating processes.

The works of MATSUBARA (MATSUBARA, 1979; 1980; 1983) present
one-dimensional models for the flow within coat-hanger dies, focusing on
residence time distribution and flow uniformity. These models treat the flow
in the manifold and the slot as independent, neglecting any direct interaction
between the two. In Matsubara (1979), the initial analysis of the coat-hanger
die flow aimed to optimize die geometry, ensuring flow uniformity and reducing
residence time. In Matsubara (1980), this analysis is extended to T-dies,
where the author proposed general equations for residence time distribution
and suggested ways to optimize die geometry. Lastly, in Matsubara (1983),
the author studied linearly tapered coat-hanger dies, demonstrating how
adjustments to the manifold and slot geometry can maintain flow uniformity
without considering interactions between the manifold and slot flows.

Liu, Liu e Tsou (1994) propose a unified lubrication approach combined
with one-dimensional lubrication approximation for the design of a coat-hanger
die. Using this approximation, the authors have developed general equations
for predicting flow uniformity and pressure distribution inside the die, while
considering non-Newtonian fluids, including power-law, Ellis, and Bingham
models.

In Yu e Liu (1998), the authors combined the one-dimensional lubrication
approximation with three-dimensional finite element simulations to optimize
the design of an extrusion die using the Carreau fluid model, which accounts
for the shear-thinning behavior of non-Newtonian fluids. The lubrication
approximation simplifies the analysis by assuming that the fluid motion is
locally fully developed and can be considered one-dimensional in both the
manifold and the slot section.

Huang, Gentle e Hull (2004) developed an approach to optimize the
design of coat-hanger dies using three-dimensional finite element simulations.
The study focused on improving flow uniformity in the die, employing the
Carreau-Yasuda model to describe the non-Newtonian behavior of the polymer
melt.

Han e Wang (2012) used a combination of the orthogonal array design
method and numerical simulations to optimize the geometry of a coat-hanger
die, focusing on achieving uniform outlet velocity and minimal residence time.
The investigated parameters include the manifold angle, the land height, and
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the slot gap, all of which significantly affect the flow characteristics. The study
utilizes three-dimensional simulations of non-isothermal polymer flow, modeled
using the Carreau fluid model, to obtain velocity and residence time profiles
across the die. The results show that the manifold angle and slot gap had the
most significant impact on both the outlet velocity and residence time, whereas
the land height has a smaller influence. While minimizing residence time is
critical for reducing thermal degradation of polymers, this approach could
pose challenges when dealing with thixotropic materials. Thixotropic polymers
require sufficient residence time under shear to fully develop their structure,
and minimizing the residence time can lead to inaccurate flow predictions, as
the fluid structure does not adjust instantaneously to changes.

Current solutions for analyzing flow in slot coating processes often sim-
plify the problem to make it more manageable and reduce computational costs.
Many models adopt one- or two-dimensional flow approximations, treating the
flow within the manifold and slot independently, which simplifies interactions
between these regions. Another common assumption is to consider the fluid
as time-independent, meaning its viscosity depends solely on shear rate, us-
ing non-thixotropic models like the Carreau or power-law to describe the fluid
rheological behavior.

This approach disregards experimental results obtained for some coating
fluids where viscosity decreases under sustained shear and gradually recovers
once the shear is removed. By neglecting thixotropy, these models also assume
the fluid’s internal structure adjusts instantly to changes in the shear field.

Neglecting thixotropy in slot coating models can lead to significant
inaccuracies in predicting the uniformity and stability of the coating layer.
Without accounting for the time-dependent changes in viscosity, models may
fail to capture fluid’s response to shear over time and indicate misleading
velocity profiles at the die exit. Bad die designs based on poor modeling, may
lead to non-uniform outlet velocities, which can create inconsistencies in the
coating thickness across the substrate, with some areas receiving more or less
material than intended.

Overlook time-dependent behavior can also lead to flow instabilities
within the coating layer, as variations in viscosity are not accurately repre-
sented. These instabilities may results in defects as streaks, waves, or uneven
spreading, which compromise the quality of the coated surface.

Figure 1.6 shows a simplified representation of the flow dynamics within a
slot coating die, illustrating two different flow regions: the distribution chamber
and the slot. The distribution chamber, which ensures fluid distribution across
the width of the die, has its geometry usually simplified by a circular cross-
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section area. Hence, the flow in this region can be described using the Poiseuille
flow along a tube according to the Equation 1-2.

Q(z) = πD4

128µ

(
−dp

dz

)
(1-2)

where Q(z) is the volumetric flow rate at each position z, D is the diameter of
the circular cross-section, µ is the viscosity of the fluid, and −dp

dz
is the pressure

gradient along the tube.
After passing through the distribution chamber, the fluid enters the slot,

where it flows between two parallel plates. The flow in this region is governed
by the Poiseuille flow between parallel plates, as described in Equation 1-3

qx = H3

12µ

(
−dp

dx

)
(1-3)

where qx represents the flow rate per unit width, H is the slot height, µ is the
viscosity, and − dp

dx
is the pressure gradient across the slot length.

These two descriptions are coupled such that the variation of the flow rate
along the cavity is equal to the flow rate through the slot, i.e., dQ(z)

dz
= −qs(z).

Flow in both regions — distribution chamber and slot — is highly
dependent on the fluid’s viscosity, therefore an accurate rheological model is
necessary to predict the fluid behavior under shear. Inaccuracies in modeling
viscosity or pressure gradients can lead to variations in the slot outlet velocity
profile.

Figure 1.6: Simplified representation of the flow within a slot coating die.

In order to drive liquid towards the end of the distribution chamber,
the pressure at the center needs to be higher than the pressure in the end.
If the slot length is constant, this would lead to a larger flow rate at the
center, leading to a non-uniform coating. To address this issue, the industry
has adopted two different strategies: the infinite cavity design, whose objective
is to make the pressure drop along the chamber negligible compared to the
pressure drop across the slot; and the coat-hanger die, at which the higher
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pressure difference along the slot at the center of the die is compensated by a
longer slot at the center.

The infinite cavity design achieves a more-or-less uniform flow by sig-
nificantly increasing the cross-sectional area of the distribution chamber. As
described by Equation 1-2, where the diameter of the distribution chamber
is raised to the fourth power, even small increases in the chamber’s diameter
lead to a substantial reduction in the pressure drop along the chamber. Conse-
quently, any small variation in the pressure difference within the distribution
chamber is sufficient to drive the flow sideways. By making the pressure inside
the cavity much higher than the outlet pressure, these small pressure differ-
ences become negligible, resulting in smaller variations of the average velocity
throughout the feed slot width.

Therefore, this design employs a large cross-section of the distribution
chamber and operates at higher pressures within the cavity, reducing the
influence of the pressure drop along the chamber compared to the pressure drop
across the slot. However, this approach requires that the die be constructed
from materials strong enough to resist elastic deformation due to the high
pressure in the cavity. This requirement leads to the use of larger dies, which
increases production costs and makes the system less economical.

Despite these drawbacks, the infinite cavity design offers a significant
advantage by serving a wide range of viscosities and flow rates, which makes
it a robust solution for handling thixotropic fluids. By ensuring uniform
pressure and flow distribution, this design effectively compensates for the time-
dependent viscosity changes inherent in thixotropic materials. Although the
higher costs and material demands are disadvantages, the ability to achieve
uniform coatings even with challenging fluid properties makes this the preferred
approach in many industrial applications.

In contrast, instead of increasing the cross-sectional area of the distribu-
tion chamber, the coat-hanger die modifies the length of the feed slot across
its width. In essence, the slot at the center of the die is extended relative to
the ends, creating a pressure drop distribution that compensates for the higher
flow rate tendency near the middle. Thus, even though the pressure may be
higher in the center of the chamber, the longer slot region there forces the fluid
to traverse a longer path before exiting. This extended flow path balances the
flow distribution, resulting in a more uniform flow.

In contrast to the infinite cavity design, which accommodates a broad
range of fluid behaviors by relying on large chamber cross-sections and high
operating pressures, the coat-hanger die uses a more geometrically tuned
approach. Rather than allowing the chamber’s diameter to dominate the
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pressure drop, the slot at the center of the die is extended relative to the
ends, creating a pressure drop distribution that compensates for the higher
flow rate tendency near the middle. Thus, even though the pressure may be
higher in the center of the chamber, the longer slot region there forces the fluid
to traverse a longer path before exiting. This extended flow path balances
the flow distribution, resulting in a more uniform flow without the extreme
pressures required by an infinite cavity. Consequently, the coat-hanger die can
be made smaller and lighter, consuming fewer materials and reducing overall
production costs.

However, this design strategy also places demands on the rheological
modeling of the fluid in question. While the infinite cavity design make it
robust for various complex fluids—including tixotropic ones—the coat-hanger
die must be customized for a specific rheology. If the actual fluid differs
significantly from the model used the flow can become uneven and yield a
suboptimal coating.

Despite these challenges, the coat-hanger die remains a used solution
when the target fluid’s properties are well-known. Industries that work with
a single or limited set of rheologically similar fluids can benefit from this
design strategy, trading the extra material and operating pressure demands
of the infinite cavity for a more compact, cost-effective design. However,
manufacturers must ensure their rheological models are reliable and account
for the fluid’s time-dependent.

1.4
Objectives

The study aims to develop a model that accounts for the thixotropic
effects in the design of the cavity of a coating die by numerically simulating the
three-dimensional flow of thixotropic fluids. By integrating the time-dependent
behavior of thixotropic fluids, the objective is to achieve more precise flow
predictions and a better understanding of how these properties influence the
pressure distribution and velocity profile within the coating die. The study
seeks to match falling pressure along the distribution chamber with decreasing
pressure drops down a shortening slot.

Accounting for time-dependent behavior allows the design of a distri-
bution chamber with smaller cross-sectional area, which reduces material re-
quirements and operational challenges associated with high-pressure systems.
It targets achieving lower pressures within the cavity, lowering the overall cost
of die manufacturing while maintaining the uniformity of the coating process.

The study focused on developing a three-dimensional thixotropic fluid
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model within a finite element method framework. The simulations were con-
ducted using a Fenics-based approach. This aimed to provide insights into the
interaction between the fluid’s thixotropic properties and the die geometry,
offering a more cost-effective alternative to current industrial solutions like the
infinite cavity design.

1.5
Outline

This dissertation is divided into six chapters.
In Chapter 1, the coating process is introduced, with a focus on slot coat-

ing and its industrial applications. The chapter also discusses the challenges of
coating particle suspensions, particularly their non-Newtonian and thixotropic
behavior, and reviews current modeling approaches and their limitations.

Chapter 2 presents the mathematical model used to describe thixotropic
fluid flow. It covers the thixotropic model, conservation equations, and the
nondimensionalization process to simplify the governing equations for numer-
ical simulations.

Chapter 3 details the numerical simulation methodology. It includes the
weak formulation of the governing equations, the finite element method, mesh
definition, boundary conditions, and the solution procedure using the FEniCS
framework.

In Chapter 4, the three-dimensional flow in a slot coating die is analyzed.
The geometric and rheological properties of the die are described, along
with the boundary conditions and mesh convergence analysis used to ensure
accurate simulations.

Chapter 5 presents the simulation results, comparing the flow behavior
predicted by the Generalized Newtonian Model (GNM) and the thixotropic
model. The effects of thixotropy on velocity, pressure, and fluidity fields are
discussed, along with the impact of geometric modifications on flow uniformity.

Finally, Chapter 6 summarizes the conclusions of the study, emphasizing
the importance of considering thixotropic effects in die design. It also suggests
future work, such as rheological characterization of battery slurries and further
optimization of die geometries.



2
Mathematical model

2.1
Thixotropic fluids and the thixotropic model

Mendes, Abedi e Thompson (2018) presents a groundbreaking constitu-
tive model for elastoviscoplastic thixotropic materials. This model significantly
departs from existing approaches by establishing a direct relationship between
the material’s microscopic state and fluidity (ϕv), which is the reciprocal of
the viscosity (FREDRICKSON, 1970). Consequently, the fluidity itself is used
as a measure of the microscopic state, eliminating the need for a structure
parameter (λ) in the formulation.

ϕv = 1
ηv

(2-1)

Furthermore, the researchers introduce a novel evolution equation for
fluidity. This equation stands out for its reliance solely on measurable material
functions, that are measurable by standard rheological experiments, avoiding
any postulated functions or parameters. To connect stress and kinematics, the
study employs a tensorial Oldroyd-B-like differential equation. The relaxation
and retardation times within this equation are also derived from measurable
functions of fluidity.

The mechanical response of the liquid is depicted in Figure 2.1, where it
is assumed that the material follows a Jeffreys analog. Accordingly, the fluidity
can be defined by Equation 2-2.

Figure 2.1: Mechanical response of a liquid modeled using a Jeffreys analog.

1
ϕv

= 1
ϕs

+ 1
ϕ∞

(2-2)
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where ϕv represents the current fluidity, ϕs denotes the structural fluidity, and
ϕ∞ indicates the fluidity when the fluid is fully unstructured, which is also the
maximum possible value of ϕv. As conditions approach full fluid unstructuring,
ϕv asymptotically tends towards ϕ∞. There is also a minimum value for ϕs

that denotes the fluidity of a fully structured fluid, referred to as ϕ0. Thus,
incorporating both the upper and lower limits of ϕv, a normalized fluidity (ϕ∗

v)
is defined in Equation 2-3.

ϕ∗
v = ϕv − ϕ0

ϕ∞ − ϕ0
(2-3)

Therefore, ϕ∗
v = 0 corresponds to the highest level of structuring,

indicating a fully structured state of the material. In contrast, ϕ∗
v = 1

corresponds to the lowest level of structuring, indicating a fully unstructured
state. The rate of change of the level of structuring is influenced by the current
fluidity and stress intensity. This relationship is described by the following
evolution equation, which governs how the structuring evolves over time based
on these parameters:

∂ϕ∗
v

∂t
+ u⃗ · ∇ϕ∗

v = f(σ, ϕ∗
v) (2-4)

where u⃗ represents the velocity vector field, σ is the current stress intensity,
given by σ = ηγ̇ with γ̇ =

√
2( ¯̄D : ¯̄D).The deformation tensor ¯̄D is defined as

¯̄D = 1
2 · (∇u⃗+ (∇u⃗)T ).
In steady-state flow conditions, f(σ, ϕ∗

v) = 0, and the fluidity ϕ∗
v is

assumed to reach equilibrium, denoted as ϕ∗
eq(σ). Since this equilibrium fluidity

is solely a function of the current stress, the dependence on f can be replaced,
and the evolution equation for ϕ∗

v can be written as in Equation 2-5.

∂ϕ∗
v

∂t
+ u⃗ · ∇ϕ∗

v = f(ϕ∗
eq(σ), ϕ∗

v) (2-5)
Thus, the dimensionless equilibrium fluidity can be expressed as in

Equation 2-6.

ϕ∗
eq(σ) =

[
1
σ

(
σ
K

) 1
n

]
(ϕ∞ − ϕ0) +

[
1
σ

(
σ
K

) 1
n

] (2-6)

where K represents the consistency index, n is the power-law index, the
expression includes Newtonian plateaus ϕ0 and ϕ∞ at both ends of the
stress range, characterizing the fluidity under low and high-stress conditions,
respectively. In this study, the model neglects yield stress σy. Equation 2-6,
derived from the Herschel-Bulkley equation, was used to fit the steady-state
data from a laponite suspension. It accurately reflects the behavior of the model
within the range of intermediate stresses, excluding the Newtonian plateaus.
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This equilibrium fluidity is measured during a very common rheological
experiment that allows to determine the steady-state or equilibrium viscosity
(ηeq) as a function of the shear rate (γ̇). These experiments are necessary for
understanding the material’s rheological properties, as they provide insight
into how the fluid behaves under various stress conditions. The relationship
between equilibrium viscosity and equilibrium fluidity is given by Equation 2-1,
allows the data to be expressed in terms of normalized fluidity (ϕ∗

eq).
Achieving a steady-state condition is particularly important for time-

dependent fluids, which may exhibit transient behaviors before reaching equi-
librium. Sufficient time must be allowed during experiments to ensure that the
fluid has fully responded to the applied stress and that no further changes in
fluidity or shear rate are occurring. This ensures the accuracy and reliability of
the measured data, which is crucial to determine the rheological characteristics
of the fluid.

Based on the construction and destruction experimental data collected
by Mendes, Abedi e Thompson (2018), an evolution equation for a laponite
suspension consistent with the experimentally observed behavior was proposed.
This equation, represented by Equation 2-7, captures the dynamics of buildup
and breakdown of the suspension’s liquid structure.

f(ϕ∗
eq, ϕ

∗
v) =


s

ta·ϕ∗
eq

(ϕ∗
eq − ϕ∗

v) s+1
s ϕ∗

v

s−1
s , 0 < ϕ∗

v ≤ ϕ∗
eq

−ϕ∗
v−ϕ∗

eq

tc
, ϕ∗

eq < ϕ∗
v ≤ 1

(2-7)

In the first case, when 0 < ϕ∗
v ≤ ϕ∗

eq, the microstructure undergoes
breakdown, where s is a positive parameter and ta represents the avalanche
time. The second case, when ϕ∗

eq < ϕ∗
v ≤ 1, the microstructure builds up, where

tc is the construction time. In this study, the parameters for construction
time and avalanche time will be modified to understand their influence on
thixotropy. Specifically, varying these parameters aims to analyze how the
fluid’s microstructure behaves under different time conditions. Since the fluid
being studied does not exist in reality, the focus is on examining the impact of
these characteristic times on thixotropy, using the parameter s as defined by
Mendes, Abedi e Thompson (2018) for a laponite suspension according to the
Equation 2-8.

s = 8
exp

(
ϕ∗

eq

0.09

)
− 1

+ 1.2 (2-8)

It is important to mention that different functional forms of f(ϕ∗
eq, ϕ

∗
v)

can be used, depending on the liquid transient response.
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2.2
Conservation equations

Fluid flow is commonly described by mass conservation and momentum
conservation equations, which are fundamental to understanding the behavior
of flowing fluids. It can be expressed as:

∂ρ

∂t
+ u⃗.∇ρ+ ρ∇.u⃗ = 0 (2-9)

∂ρu⃗

∂t
+ ρu⃗ · ∇u⃗ = ∇ · ¯̄T + ρg⃗ (2-10)

where, ρ denotes the fluid density, g⃗ indicates the body forces field (e.g.
gravity), and ¯̄T refers to the stress tensor. For a viscous fluid, the stress tensor
is defined as ¯̄T = 2η ¯̄D− p ¯̄I, where η stands for the local viscosity of the fluid,
p signifies the pressure field, ¯̄I is the identity tensor.

When examining the theories of steady-state and incompressible fluid
conditions, it is crucial to acknowledge that specific terms are intentionally
disregarded due to the incorporation of these assumptions in this research. By
adopting steady-state conditions, we ignore the time derivative terms in both
the mass conservation and momentum conservation equations

(
∂
∂t

= 0
)
. This

simplification is warranted when the flow variables remain constant over time,
enabling us to concentrate exclusively on spatial changes.

In addition, the assumption of incompressible fluid conditions implies
that the density of the fluid stays uniform across the flow domain

(
∂ρ
∂

= 0
)
.

Furthermore, inertial terms are neglected under the assumption that flow
velocities are sufficiently low to make acceleration effects insignificant. This
simplification applies in situations where the flow is characterized by slow and
viscous movement.

Body forces are also neglected (g⃗ = 0), indicating that the impact of
gravitational forces on fluid flow is considerably smaller in comparison to other
forces.

After making these simplifying assumptions, the mass and momentum
conservation equations are simplified to:

∇ · u⃗ = 0 (2-11)

∇ · ¯̄T = 0 (2-12)

2.3
Nondimensionalization of Equations

Dimensional analysis is a critical technique in mathematical modeling
that involves transforming equations into a dimensionless form. In Section 2.2,
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the governing equations for mass conservation, momentum conservation, and
fluidity were defined in their dimensional forms. To streamline the analysis
and facilitate numerical simulations, these equations are transformed into
their nondimensional forms. This process is essential for numerical solutions
using finite element methods, as it enables the normalization of parameters
and standardization of variables. By enhancing the stability and accuracy
of numerical methods, dimensional analysis facilitates better convergence of
solutions and more effective interpretation of results, increasing the efficiency
of finite element algorithms.

In the process of nondimensionalizing equations, scaling parameters are
used to define all variables in dimensionless forms. This transformation helps
to simplify and standardize mathematical models. Table 2.1 outlines the key
scaling parameters, their descriptions, and their primary dimensions.

Scaling Parameter Description Primary Dimensions
Lchar Characteristic length m
Uchar Characteristic speed m · s−1

ϕ∞ − ϕ0 Reference fluidity difference m · s · kg−1

Table 2.1: Scaling parameters used for nondimensionalization, including their
descriptions and primary dimensions.

The following equations define the non-dimensional variables using the
scaling parameters:

– Velocity: The non-dimensional velocity u⃗∗ is obtained by normalizing the
velocity with the characteristic speed.

u⃗∗ = u⃗

Uchar

(2-13)

– Pressure: The non-dimensional pressure p∗ is defined by scaling the
pressure with characteristic length and speed, and the reference fluidity
difference.

p∗ = p Lchar (ϕ∞ − ϕ0)
Uchar

(2-14)

– Spatial Coordinates and Gradient Operator: The nondimensional spatial
coordinates x⃗∗ and gradient operator ∇⃗∗ are obtained by scaling with
characteristic length.

x⃗∗ = x⃗

Lchar

(2-15)

∇∗ = Lchar ∇ (2-16)

– Fluidity: The non-dimensional fluidity ϕ∗ is defined by normalizing
the fluidity as described in Section 2.1. It is scaled by the reference
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fluidity difference ϕ∞ − ϕ0, where ϕ∞ represents the fluidity of the fully
unstructured fluid, and ϕ0 denotes the fluidity of the fully structured
fluid.

ϕ∗ = ϕ− ϕ0

ϕ∞ − ϕ0
(2-17)

– Time: The non-dimensional time t∗ is defined as the ratio of the charac-
teristic speed Uchar to the characteristic length Lchar.This results in time
being expressed in dimensionless units:

t∗ = t Uchar

Lchar

(2-18)

With these definitions, the equations are now expressed in their nondi-
mensional forms. The next step involves explicitly defining the nondimensional
versions of the governing equations for mass conservation, momentum conser-
vation, and fluidity.

Mass Conservation: After the simplifications assumptions, the dimen-
sional mass conservation equation can be written as:

∇ · u⃗ = 0 (2-19)
When transformed into nondimensional form, using the previously de-

fined nondimensional variables, the mass conservation equation becomes:

∇∗

Lchar

· u⃗∗ · Uchar = 0 (2-20)

∇∗ · u⃗∗ = 0 (2-21)
Momentum Conservation: The dimensional momentum conservation

equation with previous assumptions is expressed as:

∇ · ¯̄T = 0 (2-22)
To express this equation in its nondimensional form, it is necessary to

present it in an explicit form. Specifically, the viscosity term µ is replaced by
the fluidity ϕv, which is the reciprocal of the viscosity, as defined in Section 2.1.
This substitution transforms the momentum conservation equation into:

∇ ·
{

�2
ϕv

·
[1
�2
(
∇u⃗+ (∇u⃗)T

)]
− p ¯̄I

}
= 0 (2-23)

∇ ·
{

1
ϕv

·
[
∇u⃗+ (∇u⃗)T

]
− p ¯̄I

}
= 0 (2-24)

In its nondimensional form, incorporating the scaling parameters, the
momentum conservation equation is:
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∇∗

Lchar

·

 1
ϕ∗

v · (ϕ∞ − ϕ0) + ϕ0
·

∇∗ · u⃗∗ · Uchar

Lchar

+
(

∇∗ · u⃗∗ · Uchar

Lchar

)T


− p∗ · Uchar

Lchar · (ϕ∞ − ϕ0)
¯̄I
}

= 0
(2-25)

∇∗

���Lchar

·
{

1
ϕ∗

v · (ϕ∞ − ϕ0) + ϕ0
·
�
�

��Uchar

Lchar

[
∇∗ · u⃗∗ + (∇∗ · u⃗∗)T

]
−
�
�

��Uchar

Lchar

p∗

(ϕ∞ − ϕ0)
¯̄I
}

= 0
(2-26)

∇∗ ·
{

(ϕ∞ − ϕ0)
ϕ∗

v · (ϕ∞ − ϕ0) + ϕ0
·
[
∇∗ · u⃗∗ + (∇∗ · u⃗∗)T

]
− p∗ ¯̄I

}
= 0 (2-27)

After simplifying the terms of the momentum conservation equation, the
nondimensional Equation 2-27 can be expressed in a more compact form as:

∇∗ · ¯̄T ∗ = 0 (2-28)
Fluidity Equation: The dimensional equation for fluidity can be divided

into two distinct cases, each describing a different behavior of the microstruc-
ture.

For the breakdown of microstructure, when 0 < ϕ∗
v ≤ ϕ∗

eq, the dimensional
fluidity equation can be expressed as:

u⃗ · ∇ϕ∗
v = s

ta · ϕ∗
eq

(ϕ∗
eq − ϕ∗

v) s+1
s ϕ∗

v

s−1
s , 0 < ϕ∗

v ≤ ϕ∗
eq (2-29)

By applying the nondimensional variables, the equation transforms into
its nondimensional form:

Uchar

Lchar

· u⃗∗ · ∇∗ϕ∗
v = Uchar

Lchar

s

t∗a · ϕ∗
eq

(ϕ∗
eq − ϕ∗

v) s+1
s ϕ∗

v

s−1
s (2-30)

u⃗∗ · ∇∗ϕ∗
v = s

t∗a · ϕ∗
eq

(ϕ∗
eq − ϕ∗

v) s+1
s ϕ∗

v

s−1
s (2-31)

For the build-up of microstructure, when ϕ∗
eq < ϕ∗

v ≤ 1, the dimensional
fluidity equation can be written as:

u⃗ · ∇ϕ∗
v = −

ϕ∗
v − ϕ∗

eq

tc
, ϕ∗

eq < ϕ∗
v ≤ 1 (2-32)

The nondimensional form of this equation is given by:

Uchar

Lchar

· u⃗∗ · ∇∗ϕ∗
v = −Uchar

Lchar

ϕ∗
v − ϕ∗

eq

t∗c
(2-33)

u⃗∗ · ∇∗ϕ∗
v = −

ϕ∗
v − ϕ∗

eq

t∗c
(2-34)
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In conclusion, the nondimensional fluidity equation is given by:

u⃗∗ · ∇∗ϕ∗
v =


s

t∗
a·ϕ∗

eq
(ϕ∗

eq − ϕ∗
v) s+1

s ϕ∗
v

s−1
s , 0 < ϕ∗

v ≤ ϕ∗
eq

−ϕ∗
v−ϕ∗

eq

t∗
c

, ϕ∗
eq < ϕ∗

v ≤ 1
(2-35)

By converting the governing equations into their nondimensional form,
it enables a more generalized analysis of fluid properties such as fluidity and
characteristic times. This transformation enhances the efficiency of numerical
simulations, especially when employing finite element methods. It improves
computational stability and accuracy by nondimensionalization of the vari-
ables, which reduces the risk of numerical instabilities and minimizes the sen-
sitivity to small perturbations in the solution. Additionally, it helps balance
the scales in the system, preventing disproportionately large or small numbers
that can otherwise hinder the precision of numerical solvers. This normal-
ization not only accelerates convergence but also allows for more optimized
algorithms, leading to faster and more efficient solutions.



3
Numerical simulation

The presented problem involves a complex set of physical phenomena.
Hence, the task of developing a comprehensive analytical model is quite
challenging, especially since the system is inherently nonlinear and multi-
variable. Even in simplified flow scenarios, such as certain two-dimensional
Newtonian flows, analytical solutions to the governing partial differential
equations (PDEs) may not be feasible. Consequently, the solution requires the
aid of numerical methods to accurately solve coupled differential equations.

The Finite Element Method (FEM) emerges as a numerical technique for
solving the partial differential equations applied in this context. A computa-
tional framework that facilitates FEM implementation is the DOLFIN library
(LOGG; WELLS, 2010), which provides algorithms for discretizing and solving
a wide range of PDEs. In this study, a 3D finite element numerical model has
been proposed and implemented in Python, using the precompiled DOLFIN
library, which is developed within the open-source project FEniCS (LOGG;
MARDAL; WELLS, 2012).

3.1
Weak formulation

This section explores the finite element method, a numerical technique
used to solve partial differential equations over complex domains. Central to
this approach is to express all the fields, i.e. velocity, pressure and fluidity, as
linear combination of basis function and to rewrite the governing equations
according to the weak formulation. To derive the weak formulation, each
governing equation is multiplied by a corresponding weight function and
integrated over the domain Ω, ensuring the solution satisfies the equations
in an averaged sense across the entire domain.

For mass and momentum conservation equations, and fluidity equation,
the respective weight functions are chosen to reflect the nature of each
independent variable: scalar weight functions for mass and fluidity equations;
and a vector weight function for the momentum equation. This process leads
to the weighted residual method, where the integrated equations are expressed
as weighted residuals, capturing the approximation errors across the domain.

The weighted residual for the momentum conservation is shown in
Equation 3-1:
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∫
Ω

[
∇∗ · ¯̄T ∗

]
· v⃗∗ dΩ∗ = 0 (3-1)

where v⃗∗ represents the vector weight function for momentum conservation,
ensuring that the momentum equation is satisfied in its weak form.

Equation 3-1 can be rearranged using the tensor identity (ARIS, 2012):

∇ ·
( ¯̄A · ξ⃗

)
= ¯̄A : ∇ξ⃗ +

(
∇ · ¯̄A

)
· ξ⃗ (3-2)

Applying this identity, Equation3-1 can be written as:∫
Ω

∇∗ ·
( ¯̄T ∗ · v⃗∗

)
dΩ∗ −

∫
Ω

¯̄T ∗ : ∇∗v⃗∗ dΩ∗ = 0 (3-3)
Using the divergence theorem, the equation is written as:∫

Ω
∇∗ ·

( ¯̄T ∗ · v⃗∗
)
dΩ∗ =

∮
Γ

(
n⃗ · ¯̄T ∗

)
· v⃗∗ dΓ∗ (3-4)

Thus, the weighted residual of the momentum conservation Equation 3-3
can be expressed in a form where second derivative terms of the basis or weight
functions do not appear.∮

Γ

(
n⃗ · ¯̄T ∗

)
· v⃗∗ dΓ∗ −

∫
Ω

¯̄T ∗ : ∇∗v⃗∗ dΩ∗ = 0 (3-5)
These transformations allow easier definitions of certain boundary condi-

tions, which will become clearer in Section 3.4. Analogously, the same process
is applied to the mass conservation and fluidity equations, whose strong forms
are given by Equation 2-21 and Equation 2-35, respectively. Since these equa-
tions do not involve higher-order derivatives of velocity, pressure, or fluidity,
the resulting weak formulations are more straightforward. The weighted resid-
uals for the mass conservation and fluidity equations are shown in Equations
3-6 and 3-7. ∫

Ω
[∇∗ · u⃗∗] q∗ dΩ∗ = 0 (3-6)∫

Ω

[
u⃗∗ · ∇∗ϕ∗

v − f ∗(ϕ∗
eq, ϕ

∗
v)
]
m∗ dΩ∗ = 0 (3-7)

where q∗ and m∗ represent scalar weight functions, corresponding to the mass
conservation and fluidity equations, respectively. These scalar functions ensure
that the residuals for both equations are minimized over the entire domain Ω,
just as in the case of momentum conservation.

3.2
Base and Weight Functions

The Navier-Stokes equations exhibit instabilities when velocity and pres-
sure are treated in a coupled manner in the standard Galerkin formulation,
using interpolating polynomials of the same order. To mitigate this issue, Tay-
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lor and Hood elements are employed. These elements constitute a mixed space
where the basis function of the pressure element is linear continuous, while
the basis function of the velocity field employs a quadratic continuous ele-
ment. These elements are chosen to ensure the Ladyzhenskaya-Babuška-Brezzi
(LBB) condition, or inf-sup condition, which contributes to the stability and
convergence of the method.

For these two unknown fields, the Galerkin Finite Element Method is
used. In this method, the weight functions are the same as the basis functions,
and they are used to calculate the residual in the weak formulation.

In addition to the velocity and pressure fields, the current problem also
depends on the calculation of a fluidity field, for which a linear continuous
basis function is used. Unlike the other fields, the Galerkin method is corrupted
by non-physical numerical instabilities when the equations are predominantly
convective (i.e., with strong hyperbolic terms). One way to avoid this type of
instability is to use the Streamline-Upwind/Petrov-Galerkin (SUPG) stabilized
formulation (BROOKS; HUGHES, 1982). In this case, the fluidity weighting
functions are modified to:

m∗ = ψϕ∗ + hU(v⃗∗ · ∇ψϕ∗) (3-8)
where ψϕ∗ is the basis function and hU is the upwind parameter, which
was chosen to match the characteristic size of the smallest element in the
computational mesh.

3.3
Mesh definition

Considering the flexibility and adaptability needed to apply local re-
finement along the problem domain, an unstructured mesh with tetrahedral
elements (as shown in Figure 3.1) was used. Tetrahedral elements enable easier
modeling of complex geometries compared to other types of three-dimensional
elements, such as hexahedrons. Additionally, unstructured meshes assist in this
process by effectively filling domains with irregular boundaries and complex
geometries, as seen in slot coating applications.

There are numerous efficient and robust algorithms for generating such
meshes in complex three-dimensional domains. In this study, Gmsh, an open-
source 3D finite element mesh generator, was used (GEUZAINE; REMACLE,
2009). Gmsh employs the Delaunay method, which facilitates mesh creation
even on irregular surfaces.

Using this type of algorithm to generate unstructured tetrahedral meshes
allows for adaptive refinement. This means increasing the element density in
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a) Linear 4-node Tetrahedron b) Quadratic 10-node Tetrahedron

Figure 3.1: First and Second Order Mesh Elements.

regions requiring higher precision or where the solution varies rapidly, and
using lower element density in regions where the solution is smoother. This
approach significantly conserves computational resources.

3.4
Boundary condition

Boundary conditions are a crucial component in the solution of partial
differential equations and boundary value problems, providing essential infor-
mation about the solution behavior at problem’s domain edges. They serve
as mathematical constraints that define the solution value or derivative value
along the boundaries, enabling the determination of unique solutions.

Dirichlet boundary conditions specify the value of a variable on the
domain boundary, providing information about the solution’s behavior at
those locations. Neumann boundary conditions, on the other hand, specify
the derivative value of a variable along the boundary. The boundary is divided
into four parts in this study, as shown in Figure 3.2.

Figure 3.2: Schematic of the flow domain boundary.

– Inlet boundary: The inlet boundary represents the region where the
fluid enters the computational domain. During the simulation, Dirichlet
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boundary conditions were imposed at this boundary to define the velocity
and fluidity profiles of the inflowing fluid.

u⃗∗(x) = g⃗(x) ∀x ∈ Γ1

ϕ∗(x) = h(x) ∀x ∈ Γ1

where g⃗ and h is a known function defined on the boundary Γ1.

Since these conditions were imposed for velocity, the weighting functions
become zero at this boundary, canceling the term on the inlet boundary
in Equation 3-5.

Γ1 :
u⃗∗(x) = g⃗(x) −→

∮
Γ1

(
n⃗ · ¯̄T ∗

)
· ���

0
v⃗∗ dΓ∗ = 0 (3-9)

– Outlet boundary: The outlet boundary is the region where the fluid exits.
At this boundary, a fully developed flow is assumed, and the pressure is
set to p∗

out = 0. To apply this boundary condition, the stress tensor ¯̄T ∗ is
expressed in its expanded form as ¯̄T ∗ = 2

ϕ∗
¯̄D∗ − p∗ ¯̄I in Equation 3-5.

Γ2 :
p∗

out = 0; n⃗ ·
(
∇∗ · u⃗∗

)
= 0 −→

∮
Γ2

n⃗ ·

 2
ϕ∗

¯̄D∗ − �
�7

0
p∗ ¯̄I

 · v⃗∗ dΓ∗ = 0

(3-10)
– Wall boundary: The wall boundary is a solid surface along which the

fluid flows. Impermeability and no-slip conditions are imposed on this
boundary. For a stationary wall, the velocity is set to zero. Similar to the
inlet boundary condition, the weighting functions become zero, thereby
canceling the term on the wall boundary.

Γ3 :
u⃗∗(x) = 0 −→

∮
Γ3

(
n⃗ · ¯̄T ∗

)
· ���

0
v⃗∗ dΓ∗ = 0 (3-11)

– The symmetry boundary is defined as a line in two-dimensional flows
or a plane in three-dimensional flows where the fluid flow is symmetric.
At this boundary, there is no flow across the symmetry line or plane,
ensuring that the normal component of the velocity is zero. Additionally,
the stress tensor at the symmetry boundary is null, reflecting the absence
of shear stress and normal stress across the boundary

Γ4 :
{
n⃗ · u⃗∗ = 0; t⃗ ·

(
n⃗ · ¯̄T ∗

)
= 0 (3-12)
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3.5
Solution Procedure and Implementation

This work employs a general-purpose finite element code developed in
Python with the DOLFIN (FEniCS) framework, allowing the same imple-
mentation to handle arbitrary geometries by simply modifying the mesh and
boundary descriptions. The numerical simulations ran on a computer with an
Intel Core i9-7900X CPU (10 physical cores), 128 GB of DDR4 RAM, and a
parallel setup exploiting up to 20 processes. The solver uses the MUMPS li-
brary for linear systems and applies Newton’s Method to handle the nonlinear
equations, with an absolute tolerance of 10−9 and a relative tolerance of 10−10.

The approach helps highly nonlinear partial differential equations by
iterating on specific rheological parameters until convergence is achieved. The
solver tests a power-law index, attempts to converge at that setting, then
either adjusts it to a more aggressive (lower) or more conservative (higher)
level depending on whether the previous attempt succeeded or failed. The
fluid’s power-law index is reduced step by step until it reaches the target.
This stepwise strategy ensures robustness against strong nonlinearities by
continually reverting to a known good solution whenever the solver diverges.



4
Three-dimensional flow in slot coating die

This chapter outlines the fundamental aspects of modeling and simulat-
ing three-dimensional flow in a slot coating die, with a focus on the behavior
of thixotropic fluids. The geometry and rheological data used are based on the
work of Meng, Wang e Chen (2011), who conducted experiments and simula-
tions using the power-law model to describe the fluid’s rheological response.
This setup was later validated by Igali et al. (2020), ensuring the reliability of
computational fluid dynamics for this type of application.

The objective of this study is to implement a thixotropic model using
the geometry and fluid rheology described by Meng, aiming to analyze the
effects of thixotropy on the flow within the coating die. To achieve this, two
rheological models are compared: the Generalized Newtonian Model (GNM),
where viscosity is solely a function of the shear rate, and the Thixotropy Model,
which considers viscosity as dependent not only on the shear rate but also on
the fluid’s deformation history.

The methodology includes a detailed description of the geometric prop-
erties of the die, the rheological parameters of the fluid, and the boundary
conditions applied. A mesh convergence analysis is also conducted to ensure
the accuracy of the numerical results. This chapter serves as the foundation for
the presentation and discussion of the simulation results, which will be detailed
in the following chapter, where the effects of thixotropy and their implications
for slot die design will be explored.

4.1
Geometry properties

The schematic diagram of a coat-hanger die, shown in Figure 4.1,
illustrates the geometric parameters explored in this study. Specifically, A−A

represents the symmetry plane cross-section view, Ri is the radius of the die
inlet tube, R(x) denotes the radius of the manifold, α is the manifold angle, B
represents the land height, L is the half width of the die, and H is the height
of the slot.

The geometric parameters of the coat-hanger die are listed in Table 4.1.
The manifold radius is determined using Equation 4-1, where x represents the
distance from the symmetry plane A− A.

R(x) = 10(1 − (x/2L)) x ∈ (0 ∼ L) (4-1)
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Figure 4.1: Schematic representation of a coat-hanger die. (Adapted from
Meng, Wang e Chen (2011))

Table 4.1: Geometric parameters of coat-hanger die.

L (mm) H (mm) α (°) B (mm) Ri (mm)
168 1.5 30 50 10

4.2
Rheological properties

The analysis considers two different rheological models. The first model,
named Time-Independent Model (TIM), simplifies the fluid behavior by ignor-
ing time-dependent effects. It assumes that viscosity at each point is a function
of the local deformation rate, γ̇, without considering any temporal variations.

The rheological parameters K and n employed in this study were the
same as those utilized by Meng, Wang e Chen (2011), with values of 0.799
Pa.sn and 0.696, respectively. Furthermore, the Newtonian plateaus, ϕ0 and
ϕ∞, were defined based on standard values from battery manufacturing pro-
cesses, set at 0.02 Pa−1.s−1 and 100 Pa−1.s−1, respectively.

The primary objective of this study is to analyze the effects of thixotropy
on the slot coating process. This analysis will be conducted by evaluating
results at two different volumetric flow rates Q and varying values of the
thixotropy number (Λ), a dimensionless parameter used to define the char-
acteristic times of thixotropy which is defined as the ratio of the construction
or avalanche time to the characteristic liquid residence time Eq. (4-2). This
approach aims to provide a comprehensive understanding of how thixotropy
influences the velocity profile uniformity at the outlet of the coat-hanger die.
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Λ = t ·Q
L · Ā

(4-2)

where Ā denotes the mean cross-sectional area of the manifold, given by

Ā = 1
L

∫ L

0
πR(x)2 dx (4-3)

4.3
Dimensionless numbers

As outlined in Section 2.3, specific scaling parameters were chosen
to perform a dimensionless analysis of mass and momentum conservation
equations, and fluidity equations. To solve the slot coating die flow, the
maximum velocity from the imposed inlet velocity profile, determined by a
given volumetric flow rate, was chosen as the characteristic velocity and the
width of the slot gap was used as the characteristic length.

4.4
Boundary conditions

The boundary conditions for the flow within the coat-hanger can be
written as follows: A power law velocity profile as described by Chin (2012)
and given by Equation 4-4 is imposed at the inlet tube.

u(y, z) = Q

πR3

(
3n+ 1

R
1
n (n+ 1)

(
R

n+1
n −

(√
(y − y0)2 + (z − z0)2

)n+1
n

))
(4-4)

As discussed in the previous section, the maximum velocity from this
imposed inlet velocity profile was selected as the characteristic velocity. Con-
sequently, the non-dimensional form of this velocity profile, as defined by Equa-
tion 4-5, is applied at the inlet surface.

u∗(y, z) = 1 −

 [(y − y0)2 + (z − z0)2]
1
2

R


n+1

n

(4-5)

This velocity profile corresponds to an equilibrium fluidity, denoted as
ϕ∗

eq (Equation 2-6), which is imposed to maintain consistency in the flow
characteristics. At the outflow surface, a pressure value of p∗

out = 0 is applied.
Along the wall surfaces, impermeability and no-slip conditions are imposed,
i.e. u⃗∗ = 0.

To save computational time, only one-quarter of the domain geometry
is simulated, with symmetry boundary conditions applied to two surfaces.
Figure 4.2 provides a depiction of the model geometry and boundary conditions
for the flow within the coat-hanger. The figure details the entire system setup,
including the specific boundary conditions applied at each surface.
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Figure 4.2: Model geometry and boundary conditions for the coat-hanger.

4.5
Solution method

4.5.1
Mesh convergence analysis

In any numerical implementation, the computational domain discretiza-
tion influences the accuracy and reliability of the results. A well-constructed
mesh captures flow features and gradients effectively, whereas an inadequate
mesh can lead to numerical inaccuracies or convergence issues.

Mesh convergence analysis is used to validate numerical models and
ensure that simulation results are independent of the mesh element size. This
method involves systematically refining the mesh and assessing the impact on
key variables of interest. The primary goal is to reach a point where further
refinement does not produce significant changes in the results, indicating that
the solution has become mesh-independent.

The initial step involved generating a coarse mesh to conduct preliminary
simulations. This mesh provided a baseline for identifying regions within the
computational domain where the mesh needed to be refined.

A mesh refinement strategy was implemented, progressively increasing
the mesh density both globally and locally. Global refinement involved in-
creasing the total number of elements throughout the computational domain,
while local refinement focused on areas with expected high gradients, such as
near walls and slot. Figure 4.3 shows the meshes used in mesh test.

Simulations were performed on each of these meshes using identical solver
settings and boundary conditions to ensure consistency. The only difference
between the simulations was the density of the mesh. The results from each
mesh were compared by analyzing velocity profiles along the outflow plane of
the slot, and differences between successive mesh refinements were quantified
to assess convergence.

Building upon this approach, the mesh was systematically refined and the



Chapter 4. Three-dimensional flow in slot coating die 48

Figure 4.3: Meshes used in convergence analysis.

velocity at the outlet was evaluated using the Mean Absolute Percentage Error
(MAPE) as the convergence criterion. When the number of degrees of freedom
(DoF) increased from 627.723 to 1.161.635, the MAPE for outlet velocity was
3.46%. Further refinement of the mesh from 1.161.635 DoF to 2.909.794 DoF
decreased the MAPE to 1.09%. Among all geometries studied, this particular
configuration exhibited the largest MAPE difference, representing the worst-
case scenario.

To visualize these differences, Figure 4.4 presents the velocity profile
along the outlet for the various mesh resolutions. From this comparison,
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the curves for the finest meshes nearly overlap, confirming that additional
refinement has a negligible impact on the velocity distribution.

Figure 4.4: Velocity profile across the web direction for various mesh resolu-
tions.



5
Results

The main objective of this study is to analyze the influence of thixotropic
behavior on the flow inside coating dies, comparing the results obtained with
a viscous thixotropic model (MENDES; ABEDI; THOMPSON, 2018) with
those obtained with a GNM, which neglects time-dependent viscosity effects.
The comparison focuses on evaluating the influence of the model on flow char-
acteristics such as velocity distribution, pressure fields, and fluidity fields, pro-
viding a comprehensive understanding of how time-dependent microstructural
rearrangements affect the flow. It is important to note that most of die de-
sign procedure used in the industry neglects thixotropic effects. The results
presented here will show how accurate this hypothesis is.

Two flow rates are examined Q = 2.275 × 10−5m3/s and Q = 5.685 ×
10−4m3/s. Three thixotropic numbers (Λ) are analyzed: Λ = 0.05, Λ = 1,
and Λ = 5. For simplicity, the avalanche time is assumed to be equal to
the construction time. Therefore, the results discussed in this chapter do not
represent the behavior of any specific fluid. The lower thixotropic number
serves as a reference for approximating the time-independent scenario. As Λ
increases, the fluid’s internal structure becomes more resistant to immediate
rearrangement, emphasizing the role of time-dependent effects.

The initial simulation results revealed an uneven velocity distribution at
the die exit, with higher velocities near the edges compared to the slot center.
To address this, geometric modifications were implemented with the goal of
achieving a more uniform velocity profile. In industrial applications, it is a
common practice to use simulation results to guide a geometry optimization
process, in order to obtain better flow rate uniformity. The chapter will also
discuss the comparative results between the original and modified geometries,
highlighting how the adjustments improved the velocity distribution, bringing
it closer to the desired uniformity across the width of the die.

5.1
Velocity Fields

Figures 5.1 and 5.2 presents the velocity magnitude along the symmetry
plane at both flow rates and rheological models considered. Regardless of the
flow rate, all models exhibit qualitatively similar velocity field throughout the
distribution chamber and slot. In general, the velocity is lower at the slot, but
at all conditions, there is a region of high velocity near the edge of the slot.
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The geometry of the die cavity is such that it leads to a non-uniform flow rate
distribution.

The velocity profile along the width of the die is presented in Figures 5.3.a
and 5.3.b. The velocity u is normalized with respect to the average velocity
um and the width is normalized with respect to L. The dimensionless results
indicate no significant change in the curves shapes for the different tested
flow rates. For the lower thixotropic number, the exit velocity profile closely
resembles of the GNM, as expected. As thixotropic number increases, the
fluid’s microstructure responds more slowly, manifesting as localized variations
in the velocity at the exit.

For this particular geometry, the velocity tends to be higher at the ends of
the slot compared to the middle, regardless of the thixotropic parameter. This
makes the geometry undesirable for practical applications, as it fails to produce
a uniform velocity profile. Therefore, further modifications are necessary to
achieve a more even velocity distribution across the slot, ensuring a consistent
coating layer.

One key conclusion from these results is that the time-dependent nature
of viscosity has a significant impact on the flow, especially in geometries where
the velocity profile must be carefully controlled to avoid defects in the final
product. In the context of slot coating, neglecting thixotropic effects can lead
to inaccurate flow predictions and consequently non-optimal die design
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Figure 5.1: Velocity field at the central plane of the coat-hanger with Q =
2.275 × 10−5 m3.s−1: (a) time-independent model, (b) time-dependent model
Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent model
Λ = 5.
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Figure 5.2: Velocity field at the central plane of the coat-hanger with Q =
5.685 × 10−4 m3.s−1: (a) time-independent model, (b) time-dependent model
Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent model
Λ = 5.

Figure 5.3: Velocity distribution over the width for the Generalized Newtonian
model and thixotropic model at different values Λ: (a) Q = 2.275e−5 m3.s−1,
(b) Q = 5.685e−4 m3.s−1.
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5.2
Pressure Fields

Figures 5.4 and 5.5 show pressure fields along the symmetry plane at
both flow rates and provide information on how thixotropic behavior influences
the pressure distribution inside the coating die. As expected, the pressure is
higher along the distribution chamber. Moreover, because of the weaker flow
resistance, the pressure gradient along the distribution chamber is much lower
than that along the slot.

As thixotropic number increases, the pressure in the distribution chamber
rises. This effect is evident at both flow rates. The stress rises as the liquid
moves from the distribution chamber to the slot. For the time-independent
model, the liquid viscosity quickly drops to the value associated with the
higher stress. For the thixotropic model, the viscosity does not drops as fast
as the liquid moves to the slot, leading to higher viscosity and consequently
higher pressure. This may cause the equipment to be under-designed for the
mechanical stresses encountered, leading to premature mechanical failures.
This effect is stronger in the higher flow rate case.
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Figure 5.4: Pressure field at the central plane of the coat-hanger with Q =
2.275 × 10−5 m3.s−1: (a) time-independent model, (b) time-dependent model
Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent model
Λ = 5.
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Figure 5.5: Pressure field at the central plane of the coat-hanger with Q =
5.685 × 10−4 m3.s−1: (a) time-independent model, (b) time-dependent model
Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent model
Λ = 5.

5.3
Fluidity Fields

Figures 5.6 and 5.7 results the fluidity fields along the wall for both
rheological models and both flow rates. In the GNM scenario, there is a sudden
increase in fluidity when the fluid enters the slot and undergoes a high shear
rate due to the narrowing of the geometry, as the model assumes that the
viscosity responds instantly to changes in shear conditions.

However, as thixotropic number increases, the fluidity becomes more
affected by its deformation history over time. In this case, when the fluid leaves
the distribution chamber and enters the slot, the fluidity does not respond
instantaneously to changes in stress. Instead, the microstructure takes time
to adjust, which smooths out the transition between low and high fluidity
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regions. This results in a more gradual and continuous fluidity profile, without
the abrupt increases seen in the time-independent model. The lower fluidity
in the slot observed with the thixotropic model leads to higher pressure in the
distribution chamber discussed before.

Figure 5.6: Fluidity field at the wall of the coat-hanger with Q = 2.275 ×
10−5 m3.s−1: (a) time-independent model, (b) time-dependent model Λ =
5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent model Λ = 5.
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Figure 5.7: Fluidity field at the wall of the coat-hanger with Q = 5.685 ×
10−4 m3.s−1: (a) time-independent model, (b) time-dependent model Λ =
5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent model Λ = 5.

5.4
Modifications to the original geometry

In order to reduce the flow rate non-uniformity profile along the exit
of the slot observed, modifications were made to the design of the manifold.
Specifically, both the manifold radius and the manifold angle were adjusted.
These changes aimed to increase the resistance to fluid flow, thereby mini-
mizing the fluid’s tendency to preferentially flow toward the ends of the slot.
The aim of these modifications was to achieve a more uniform velocity profile
across the web direction.

Previous research, such as that conducted by Wang, Chen e Huang
(2006), has investigated the effects of the distributor’s geometric parameters
on the uniformity of transverse flow distribution. These insights informed the
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design adjustments made in this study, with the intent of improving flow
uniformity and performance during the coating process.

By implementing these changes, the goal was to ensure a more uniform
and efficient coating application, effectively overcoming the limitations of the
original geometry.

The radius of the manifold (R(x)) was adjusted, and the new radius is
now determined using Equation 5-1, which further helps to regulate the flow
distribution across the slot width. For the manifold angle (α), two modified
designs were proposed, First modification reduces the manifold angle from 30
degrees to 10 degrees as shown in Table 5.1 and Second modification uses 5
degrees instead (Table 5.2). These changes were intended to shorten the fluid’s
path in the middle of the slot and reduce the difference in flow resistance
between the slot’s center and its ends.

Table 5.1: Geometric parameters of First modification coat-hanger die.

L (mm) H (mm) α (°) B (mm) Ri (mm)
168 1.5 10 50 10

Table 5.2: Geometric parameters of Second modification coat-hanger die.

L (mm) H (mm) α (°) B (mm) Ri (mm)
168 1.5 5 50 10

R(x) = 10(1 − (4x/5L)) x ∈ (0 ∼ L) (5-1)
A comparison of the exit velocity profile predicted by the Generalized

Newtonian Model (GNM) for the original geometry and the two modifications
reveals how effectively the new designs address uniformity. Figure 5.8 presents
the dimensionless exit velocity u/um plotted against the slot width normalized
by L. The original design exhibits an increase near the edges, confirming the
tendency of fluid to accelerate toward the slot extremities. In both modified
geometries, the curves are substantially flatter, indicating an improved flow
distribution. First modification shows the most pronounced improvement,
whereas Second modification, with its slightly smaller angle, achieves even
more reduction in edge velocity.
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Figure 5.8: Comparison of exit velocity profiles for the Generalized Newtonian
Model across three geometries: the original design, First modification (α =
10◦), and Second modification (α = 5◦).

Although the primary objective of the design changes was to improve
velocity uniformity, the modifications also affect others flow characteristics,
including pressure and fluidity distributions. The following subsections present
representative fields for both modified geometries, similar to those shown
for the original geometry. For consistency, each set of figures corresponds
to simulations performed at the same flow rates and model parameters used
previously.

5.4.1
Velocity Fields

Figures 5.9 and 5.10 present the exit velocity distributions for the First
(α = 10◦) and Second (α = 5◦) modifications, respectively, at two different
flow rates. Each figure compare the dimensionless velocity profile u/um across
the slot width (x/L) for the Generalized Newtonian Model (GNM) and three
thixotropic cases, Λ = 5 × 10−2, Λ = 1, and Λ = 5.

Figure 5.9 shows the results for the First geometry modification, where
the manifold angle is reduced from 30◦ to 10◦. Unlike the original geometry, this
design does not benefit from a stronger thixotropic response. As Λ increases
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from 5 × 10−2 to 5, this particular manifold configuration slightly worsens the
exit velocity uniformity, which contrasts with the behavior observed in the
original geometry. The GNM curve remains closer to a uniform profile, while
the Λ = 5 profile reveals a pronounced rise toward the edge.

In contrast, Figure 5.10 shows the Second geometry modification, where
the manifold angle is reduced to 5◦. In this geometry, increased thixotropy
tends to improve velocity uniformity rather than diminish it. This enhanced
uniformity is evident at the lower flow rate (Figure 5.10.a), where the fluid has
sufficient time to adjust throughout the slot, resulting in flatter profiles. At
the higher flow rate (Figure 5.10.b), the velocity profile becomes uniform as Λ
rises from 5 × 10−2 to 1. However, at Λ = 5, the fluid’s microstructure does
not have enough time to fully reorganize within the slot, causing a velocity
dip in the center and a increase near the edge. This indicates that although
lower thixotropic numbers can improve a more uniform flow, higher thixotropic
numbers can lead to a different behavior.

These results demonstrate the importance of taking into account time-
dependent behavior when designing and optimizing slot coating dies, particu-
larly for thixotropic fluids. While time-dependency is often overlooked in favor
of simplified models, this analysis shows that assessing the fluid’s response time
is crucial to obtain an accurate prediction. Neglecting these effects can lead to
suboptimal slot geometry, which may result in defects during the coating pro-
cess. Therefore, incorporating thixotropic effects into simulations is necessary
to ensure the reliability and efficiency of the slot coating die design.

Figures 5.13 through 5.14 show the velocity magnitude fields along the
symmetry plane for each modified geometry under varying flow rates and
thixotropic parameters. These velocity fields help visualize how the reduced
manifold angle alters the fluid’s path, shifting flow more toward the slot’s
midsection and lessening the velocity pattern at the edge seen in the original
design. Although specific differences between GNM and higher Λ values have
already been detailed, these figures provide an over view of the fluid’s velocity
distribution in both the first modification and the second modification.
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Figure 5.9: Velocity distribution over the width of the First modification coat-
hanger for the Generalized Newtonian model and thixotropic model at different
values Λ: (a) Q = 2.275e−5 m3.s−1, (b) Q = 5.685e−4 m3.s−1.

Figure 5.10: Velocity distribution over the width for the Generalized Newtonian
model and thixotropic model at different values Λ: (a) Q = 2.275e−5 m3.s−1,
(b) Q = 5.685e−4 m3.s−1.
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Figure 5.11: Velocity field at the central plane of the First modification coat-
hanger with Q = 2.275 × 10−5 m3.s−1: (a) time-independent model, (b) time-
dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-
dependent model Λ = 5.

Figure 5.12: Velocity field at the central plane of the First modification coat-
hanger with Q = 5.685 × 10−4 m3.s−1: (a) time-independent model, (b) time-
dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-
dependent model Λ = 5.
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Figure 5.13: Velocity field at the central plane of the Second modification
coat-hanger with Q = 2.275 × 10−5 m3.s−1: (a) time-independent model, (b)
time-dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d)
time-dependent model Λ = 5.

Figure 5.14: Velocity field at the central plane of the Second modification
coat-hanger with Q = 5.685 × 10−4 m3.s−1: (a) time-independent model, (b)
time-dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d)
time-dependent model Λ = 5.
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5.4.2
Pressure Fields

Figures 5.15 through 5.18 show the pressure fields along the symmetry
for First and Second geometry modifications at both flow rates and rheological
models, and the general behavior is similar to what has been discussed in the
original geometry.

Figure 5.15: Pressure field at the central plane of the First modification coat-
hanger with Q = 2.275 × 10−5 m3.s−1: (a) time-independent model, (b) time-
dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-
dependent model Λ = 5.
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Figure 5.16: Pressure field at the central plane of the First modification coat-
hanger with Q = 5.685 × 10−4 m3.s−1: (a) time-independent model, (b) time-
dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-
dependent model Λ = 5.

Figure 5.17: Pressure field at the central plane of the Second modification
coat-hanger with Q = 2.275 × 10−5 m3.s−1: (a) time-independent model, (b)
time-dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d)
time-dependent model Λ = 5.
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Figure 5.18: Pressure field at the central plane of the Second modification
coat-hanger with Q = 5.685 × 10−4 m3.s−1: (a) time-independent model, (b)
time-dependent model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d)
time-dependent model Λ = 5.

5.4.3
Fluidity Fields

Finally, Figures 5.19 through 5.22 show the fluidity fields.
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Figure 5.19: Fluidity field at the wall of the First modification coat-hanger with
Q = 2.275 × 10−5 m3.s−1: (a) time-independent model, (b) time-dependent
model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent
model Λ = 5.

Figure 5.20: Fluidity field at the wall of the First modification coat-hanger with
Q = 5.685 × 10−4 m3.s−1: (a) time-independent model, (b) time-dependent
model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent
model Λ = 5.
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Figure 5.21: Fluidity field at the wall of the Second modification coat-hanger
withQ = 2.275×10−5 m3.s−1: (a) time-independent model, (b) time-dependent
model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent
model Λ = 5.

Figure 5.22: Fluidity field at the wall of the Second modification coat-hanger
withQ = 5.685×10−4 m3.s−1: (a) time-independent model, (b) time-dependent
model Λ = 5 × 10−2, (c) time-dependent model Λ = 1, (d) time-dependent
model Λ = 5.



6
Conclusions

The effect of thixotropy on the flow inside coating dies was evaluated
by comparing the predictions of the three-dimensional flow obtained with two
rheological models, one that neglects time-dependent behavior and another
that takes that into account. Both models considered have the same viscosity
as a function of shear rate.

Only lower thixotropic numbers lead to velocity distribution patterns
approaching those obtained with time-independent model, as expected. At
higher thixotropic values, it is possible to observe that despite time-dependent
behavior of fluids is often neglected, it plays an important role to slot
coating head design. Assessment of the fluid’s time-dependent characteristics
is essential in simulations that aim to accurately predict the flow rate profile
at the exit of the coating die. Neglecting this behavior for some fluids, may
lead to non-optimal slot geometry determination, which could lead to high film
thickness variation in the cross web direction.

Simulations were conducted for three different geometries under identical
boundary conditions and rheological properties of the liquid. The original
geometry considered was the one used by Meng, Wang e Chen (2011).The
first modification involved reducing the manifold angle (α) from 30 degrees
to 10 degrees and reducing the manifold radius. These changes were made to
increase the resistance to fluid flow through the manifold and in the middle of
the slot, aiming to reduce the tendency of the fluid to flow toward the end of
the slot and to achieve a more uniform velocity profile across the web direction.
The second modification used the same radius adjustment but set the manifold
angle to 5 degrees.

For both modified geometries, the results confirmed that the uniform
velocity distribution across the web direction was improved compared to
the original design. These results demonstrate the importance of considering
time-dependent models when designing and optimizing slot coating processes,
especially those involving structured fluids, which usually present thixotropic
behavior.

The rheological thixotropy model considered in this work represents the
behavior of a laponite suspension, but arbitrarily setting the avalanche and
construction time to be the same.

As future work, it would be valuable to perform a complete rheological
characterization of different slurries used in battery coating in order to perform
die design analysis specific for this class of fluids. An optimized die design leads
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to more uniform coated films and consequently improved performance of the
coated electrodes.
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