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Abstract

Maciel Gutierrez, Toméas Frederico; Valladdo, Davi M. (Advisor);
Pagnoncelli, Bernardo K. (Co-Advisor). PolieDRO: a novel analytics
framework with non-parametric data-driven regularization. Rio
de Janeiro, 2024. 90p. Tese de Doutorado — Departamento de Engenharia
Industrial, Pontificia Universidade Catolica do Rio de Janeiro.

PolieDRO is a novel analytics framework with applications to both
predictive and prescriptive realms. It harnesses the power and flexibility of
Data-Driven Distributionally Robust Optimization (DRO) to circumvent the
need for regularization hyperparameters, while extracting structure from the
underlying data.

In the field of predictive modeling, recent literature shows that traditional
machine learning methods such as SVM and (square-root) LASSO can be
written as Wasserstein-based DRO problems. Inspired by those results we
propose a hyperparameter-free ambiguity set that explores the polyhedral
structure of data-driven convex hulls, generating computationally tractable
regression and classification methods for any convex loss function. Numerical
results based on 100 real-world databases and an extensive experiment with
synthetically generated data show that our methods consistently outperform
their traditional counterparts.

In the prescriptive realm, we develop a portfolio optimization model
that employs the DRO approach simultaneously at the risk and return levels.
Applying this model to real financial data spanning several decades, we achieve

consistent superior performance compared to a benchmark.

Keywords
Distributionally Robust Optimization; Machine Learning; Portfolio Op-

timization; Predictive Analytics; Prescriptive Analytic.



Resumo

Maciel Gutierrez, Tomés Frederico; Valladao, Davi M.; Pagnoncelli, Ber-
nardo K.. PolieDRO: um novo framework analitico com regu-
larizacao nao paramétrica orientada por dados. Rio de Janeiro,
2024. 90p. Tese de Doutorado — Departamento de Engenharia Industrial,
Pontificia Universidade Catolica do Rio de Janeiro.

PolieDRO ¢é um novo framework com aplicagoes tanto no ambito predi-
tivo quanto prescritivo. Ela aproveita o poder e a flexibilidade da Otimizagao
Robusta a Distribuigdes (DRO) orientada por dados para evitar a necessidade
de hiperparametros de regularizagao, ao mesmo tempo em que extrai estrutura
dos dados subjacentes.

No ambito preditivo, a literatura recente mostra que métodos tradicionais
de aprendizado de maquina, como SVM e (square-root) LASSO, podem
ser formulados como problemas de DRO baseados em métricas de distancia
de Wasserstein. Inspirados por esses resultados, propomos um conjunto de
ambiguidades sem hiperparametros que explora a estrutura poliédrica de
involucros convexos orientados por dados, gerando métodos de regressao
e classificacdo computacionalmente viaveis para qualquer funcao de perda
convexa. Resultados numéricos baseados em 100 bancos de dados do mundo
real e um extenso experimento com dados gerados sinteticamente mostram que
nossos métodos superam consistentemente seus equivalentes tradicionais.

No ambito prescritivo, desenvolvemos um modelo de otimizacao de port-
folio no qual a abordagem DRO é empregada simultaneamente nos niveis de
risco e retorno. Aplicando este modelo a dados financeiros reais que abran-
gem varias décadas, alcangcamos um desempenho consistentemente superior

em comparacao com um benchmark tradicional.

Palavras-chave
Otimizacao Robusta a Distribui¢oes; Aprendizado de Maquina; Otimi-

zacao de Portfolio; Analise Preditiva; Analise Prescritiva.
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1
Introduction

In this thesis, we introduce a novel analytical framework that utilizes
Data-Driven Distributionally Robust Optimization (DRO) for both predictive
and prescriptive tasks. Our approach centers on our newly proposed data-
driven ambiguity set, characterized by properties that enable a finite reformu-
lation of distributionally robust optimization problems that were previously
intractable.

We begin by examining the traditional formulation of a DRO problem,

such as the one shown in Equation 1-1:

wmin {sup Ep[h(W;ﬂ)]}, (1-1)

peB PeP
where h(W, 3) is a cost function, the decision variable 3 € B C R represents

the vector of model coefficients and W is a random vector with probability
distribution P. The set B encompasses all feasible constraints on (3, while
P denotes the ambiguity set, or Distributional Uncertainty Set (DUS), which
encapsulates the potential distributions considered in the optimization process.

Building on this foundation, we develop a data-driven method to con-
struct an ambiguity set that allows for a computationally tractable reformula-
tion of the DRO problem. This reformulation underpins the proposed frame-
work, termed PolieDRO, which is applicable to both predictive and prescriptive
tasks under certain conditions. In Chapter 2, we explore predictive applications
within the field of Machine Learning. Through the PolieDRO framework, we
introduce novel methods for commonly used loss functions in both classifica-
tion and regression tasks. These new models obviate the need for regularization
hyperparameters while achieving performance that is competitive with tradi-
tional approaches. In Chapter 3, we turn our attention to prescriptive appli-
cations, specifically presenting a portfolio optimization model that employs a
distributionally robust approach to managing both risk and return. Our results
highlight the superior performance of this model when applied to real-world
financial data, compared to conventional benchmarks.

This thesis is organized into two main chapters, each designed to stand

alone, allowing for independent reading and understanding.



2
Predictive PolieDRO — Machine Learning

Predictive analytics comprises statistical/machine learning methods that
leverage the nowadays data-rich environment to perform accurately the tasks
of classification or regression. Most learning methods contain hyperparameters
(e.g., regularization coefficients), and their calibration is usually performed
in an ad-hoc manner. Such calibration is usually computationally intensive
and can become prohibitive to the point of hampering the use of some
algorithms by practitioners (SIVAPRASAD et al., 2020). The overall training
of machine learning models can be energy intensive to the point of generating
environmental concerns (ANTHONY; KANDING; SELVAN, 2020; HAO, 2019;
LACOSTE et al., 2019), and the hyperparameter calibration only amplifies the
problem.

This work aims to devise a high-performance alternative method that
bypasses the need for such hyperparameter calibration. One of our starting
points is the recent work of (BLANCHET; KANG; MURTHY, 2019). The
authors prove the equivalence of many popular machine learning (ML) methods
(e.g., SVM, square-root LASSO) to the Wasserstein-based DRO model

i { sup EPWW;M} , (2-1)
BEB | p.D(PPy)<A

where h(W, ) is the loss function, the decision variable 3 € B C R¢
is the vector of model coefficients and W = (X,Y) is a random vector,
with probability distribution P, comprising the dependent variable Y and its
covariates X. In the inner problem we have an ambiguity set or distributional
uncertainty set (DUS) in which function D(-) is some distance function between
P and the nominal distribution Py constructed based on the available data,
and the nonnegative scalar \ is a radius.

In (BLANCHET; KANG; MURTHY, 2019) the authors show that the
radius A can be interpreted as a regularization coefficient for several ML
methods. For instance, if h(W, ) is the hinge loss, the formulation (2-1) is
equivalent to the SVM classification method. If h(W, /3) is the log-exponential
loss, the formulation (2-1) renders the regularized logistic regression. For
regression methods, the square-root Lasso (BELLONI; CHERNOZHUKOV:;
WANG, 2011) can be represented by defining h(W, 3) as the root mean square
error of a linear model.

In this context, we argue that the DRO is a suitable framework for
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ML, whereby the aforementioned classical methods are particular cases. This
abstract view renders opportunities to develop new ML models by simply
changing the ambiguity set in (2-1) for a given loss function A(W; 3). The work
presents a potential bridge between two fields of research, namely DRO and
ML, which pave the way for the investigation of new parallels and connections.

That said, our objective is to propose a novel predictive analytics frame-
work by reformulating problem (2-1) with an ambiguity set that does not
depend on the user-defined regularization coefficient \. While the formulation
proposed in (BLANCHET; KANG; MURTHY, 2019) yields known ML meth-
ods, our goal is to extend the connection between the two worlds in order to
construct new methods. To this end, we construct an intuitive and efficient
way to forge a (hyperparameter-free) ambiguity set, which leads to a compu-
tationally tractable DRO for the case of convex loss functions. We obtain a
tractable formulation by considering the representation of the ambiguity set
proposed by (WIESEMANN; KUHN; SIM, 2014) combined with the polyhe-
dral structure of data-driven uncertainty sets based on (FERNANDES et al.,
2016).

In their work, the authors in (WIESEMANN; KUHN; SIM, 2014) propose
a framework that generalizes several DRO approaches from the literature, such
as constraints on the mean, variance, coefficient of variation, and higher-order
moment information, among others. This framework ensures the tractability
of the DRO problems it encompasses by defining a set of regularity conditions
on the distributional uncertainty set. In particular, we assume the regularity
condition described as consecutively nested convex hulls (see Figure 2.1),
each one associated with a confidence interval of its coverage probability. A
particular case of the ambiguity set proposed by (WIESEMANN; KUHN; SIM,

2014) can be written as
P ={Pe MR | P(W €C) € [p,pil,¥i € F}, (2-2)

where F ={0,1,2,...,Z} and the nested sets Cz C Cz_1 C ... C C; C Cy can
be interpreted as contour lines of the joint probability P!. This formulation
is powerful and flexible, but the literature lacks an efficient and intuitive way
to construct these sets in a data-driven manner. In Figure 2.1 we anticipate
the result of a polyhedral shape for the ambiguity set (in a two-dimensional
space), where the actual observations are used as vertices for the nested sets.

Based on this framework, we propose an entirely data-driven method to
specify the distributional uncertainty set, based on the observations of a ran-

dom vector X, with associated dependent variable Y. Contrary to most of the

INote that we enforce P, = Do=1 to ensure that P is a probability measure.
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Figure 2.1: A polyhedral ambiguity set examples.

literature so far (see (ESFAHANI; KUHN, 2018)), we do not use the available
data only to define the center of the distributional uncertainty set. We also
define the shape of the nested convex sets of P and the associated probabili-
ties, in a non-parametric fashion with ideas taken from (FERNANDES et al.,
2016). In short, we first obtain the polyhedral convex hull of all data points to
obtain the outer set, then we exclude extreme points, and repeat the process
recursively to obtain the inner sets, as illustrated in Figure (2.1) and explained
in detail in Section 2.2.2. With the construction of data-driven convex hulls
along with coverage probability estimates, the PolieDRO problem is fully spec-
ified as a single-level convex optimization problem and can be efficiently solved

by off-the-shelf convex solvers. In summary, our main contributions are:

— A novel predictive analytics framework based on a data-driven DRO

formulation that does not rely on hyperparameter calibration;

— A computationally tractable DRO reformulation for any problem with a

convex loss function;

— A new and iterative procedure to construct the data-driven convex hulls

that define the ambiguity set along with coverage probability estimates;

— Extensive numerical tests to evidence the competitive performance of the

framework for classification and regression problems.

2.1
Relevant literature

The DRO framework can be interpreted as a generalization of the two

main paradigms of optimization under uncertainty. On the one hand, Robust
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Optimization (RO) attempts to replace parameter uncertainty by considering
an uncertainty set for its values. On the other hand, Stochastic Optimization
(SO) deals with parameter uncertainty by considering a probability distribu-
tion of its values. Both methodologies are well-established and proven to have
excellent capabilities in solving real-world problems arising from many areas,
such as transportation, finance, and energy, among others (see (BEN-TAL;
GHAOUI; NEMIROVSKI, 2009a), (BERTSIMAS; BROWN; CARAMANIS,
2011), (SHAPIRO; DENTCHEVA; RUSZCZYNSKI, 2021)).

Nonetheless, each approach has some drawbacks. RO, for instance, may
lead to an under-specification of uncertainty as it does not consider possibly
available distributional knowledge, which can result in overly conservative
decisions. SO typically assumes full distributional knowledge; if the assumed
distribution is far from the true one the model can yield sub-optimal solutions.

The increased amount of noisy and incomplete data, together with the
need to consider both risk and ambiguity simultaneously, laid the ground for
the growth of a third paradigm: DRO, see (GOH; SIM, 2010; WIESEMANN;
KUHN; SIM, 2014; PARYS; ESFAHANI; KUHN, 2021) A typical formulation
of a DRO problem is given by 2-1, where the decision 5 must be taken to
minimize some function h, considering the random variable W which follows
some distribution P. Such distribution itself is uncertain and belongs to an
ambiguity set, i.e., the feasible set of the inner problem.

The DRO framework allows an extra degree of flexibility, as it can
replicate RO and SO formulations by the proper ambiguity set specification.
If we characterize P as a single possible distribution, we retrieve a classical SO
formulation. Instead, if we allow all possible distributions, with no imposed
structure based on the current observations, we reach the RO version. Thus, the
way we incorporate distributional knowledge into the ambiguity set is crucial
to balance how the decision-maker deals with the parameters’ uncertainty and
the distribution’s ambiguity.

In (WIESEMANN; KUHN; SIM, 2014) the authors study a generic class
of DRO problems that allow a tractable reformulation that offers striking mod-
eling power. Such a class of problems requires a set of regularity conditions that
ensure tractability while retaining expressiveness capabilities. As a starting
point, the optimization problem must be tractable if stripped of all distribu-
tionally robust constraints. In addition, the ambiguity set can be represented
in a standard form following two regularity conditions regarding its shape. Fi-
nally, the function h must be convex in the decision variable 5 and the random
vector W.

In (ESFAHANI; KUHN, 2018), the authors apply the Wasserstein metric
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to construct an ambiguity set for DRO problems that, under some assumptions,
can be reformulated as convex programs and, in some cases, even linear
programs. They also dwell on performance guarantees that validate such
formulations, with a particular application in mean-risk portfolio optimization,
as well as uncertainty quantification.

Such reformulation achieved empirical success for various applications.
In (KUHN et al., 2019) the authors present a variety of problems under which
this framework is applicable, such as classification and regression, under an
ML setting. It is important to remark that some classes of problems are more
challenging than others, and may require decomposition schemes as efficient
solution methodologies, see (GAMBOA et al., 2021). Part of this success is as-
sociated with its regularization properties, first explored in particular settings,
for example in (SHAFIEEZADEH-ABADEH; ESFAHANI; KUHN, 2015),
(CHEN; PASCHALIDIS, 2018) and (SHAFIEEZADEH-ABADEH; KUHN;
ESFAHANI, 2019), and later unified under the concept termed as variation
of loss by (GAO; CHEN; KLEYWEGT, 2020).

In this work, we expand the literature at the intersection of DRO and
ML by proposing a new framework. Based on the structured albeit generic
class of DRO problems studied in (WIESEMANN; KUHN; SIM, 2014) and
the underlying connections with the ML literature presented in (BLANCHET;
KANG; MURTHY, 2019), we develop a new methodology to construct data-
driven ambiguity sets. Such ambiguity sets comply with the constraints needed
for its tractability and give birth to a new framework for predictive analytics
that results in tractable variations of any ML method driven by a convex loss

function.

2.2
Proposed PolieDRO framework

In this section, we propose a novel Data-Driven DRO formulation as a
tractable convex optimization problem, assuming a specific structure in the
ambiguity set, namely convexity and polyhedral shape. Starting from the
general formulation proposed by (WIESEMANN; KUHN; SIM, 2014) and
briefly explained in Section 2.2.1, we present an efficient method for extracting
such structure from observable data, including how to calculate the coverage
probabilities associated with each portion of the ambiguity set obtained
in Section 2.2.2. Such structure aims to reflect the shape of the empirical
probability density of the observed random variable, with enough flexibility
to consider variations of it. Although entirely data-driven, such a procedure

forms an ambiguity set with characteristics that satisfy the requirements
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needed for the reformulation proposed in Section 2.2.3. Standard solvers can
efficiently solve such reformulation for any convex loss function. The choice of
the accompanying loss function—such as hinge loss, and least squares, among
others—enables the application on both regression and classification tasks. The
proposed DRO with a purely data-driven ambiguity set bypasses the need for

hyperparameter calibration on regression and classification tasks.

2.2.1
Theoretical background

For completeness, in this section, we adapt the results of (WIESEMANN;
KUHN; SIM, 2014) to our context. The following section uses these adapted
results to develop the PolieDRO framework.

Our starting point is the following formulation:

min max Ep[A(W, 5)] 2.3)

st. Pe{PeMR")|P(WeC)E [p,pi), Vi € F},

which is a particular case of the DRO proposed in (WIESEMANN; KUHN;
SIM, 2014). Here, h(W, 3) is the loss function, 3 € B C R? is the decision
variable, W € R™ is a random variable with probability distribution P and
F is a set of indices {1,2,...,J}. Albeit unknown, P is required to satisfy
the nested ambiguity set constraints on the convex sets whereas Cz C Cz_1 C
... C €1 C Cy, with a bounded Cp with probability one, i.e., p, = p, = 1. We
can then write the inner maximization problem (2-3) as

max /c h(w; 8)dP

PeP

s.t. /C LtweeydP > pi, Vi€ F A (2-4)
(0]
/ TiweeydP <pi, Vi€ F ik,
Co

where A and x are the dual variables associated with the respective constraints.
Naturally, this is not a solvable problem in its current form. Following
(WIESEMANN; KUHN; SIM, 2014), we write the problem’s Lagrangian

formulation:

L(P,k,\) = / h(w; B)dP

> (pi - /C LweeydP) M| (2-5)
_ ;7: {(/(,’0 ]I{weci}dp — E)Iiz}

Reorganizing the terms, we can then write:
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LPr N = [ [hwsB) = X ey ( — A)]dP
ieF (2-6)

- Z zpz - zpz

1eF
The Lagrange dual function g(\, k) can then be written as:

g\ k) = sup L(P,r,\)
PeP

= sup { /Co {h(W; 5) - Z H{weci}(ﬁi - )\i)}dp} (2‘7>

pep i€F

- Z iDi — /{zpz

1€F

Notice that the term within parenthesis can be analyzed as:

sup { /C'o [h(w; B) = Twecy (ki — /\i)]dp}

ieF
(2:8)
00, otherwise

Since we are only interested in the finite cost case, the dual problem

/\>r{)unn>0g()\ k) is given by:

mln Z zpz_ zpz

1EF
st h(w; B) = Y Truecy (i — Ni) <0, Yw € Cy (2-9)
i€F
A >0, Vie F
ki >0, VieF

Although we were able to remove the integrals by writing the dual version
of the problem, the problem is still not tractable, as the first constraint implies
an infinite amount of points to evaluate.

Proposition 2: Let R(w) be a constraint valid Yw € Cy, and ;e » C; be

a partition of Cy. Then, the following are equivalent:

R(w),Yw € Cy < R(w),Yw € C;,Vi € F (2-10)

Based on Proposition 2, we can rewrite the constraint:

w; B) — 3" Lwee (ki — Ai) < 0,Yw € G (2-11)
1EF
as <
— " Tjweey (ki — Ai) < 0,Yw € C;, Vi € F (2-12)

ieF
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Proposition 3: Consider the sets F = {0,1,...., I}, {V:}ier and {C; }icr
obtained from a procedure as defined in Algorithm 1. In addition, let w’ € C,
and U;cr C; a partition of Cy. Therefore, w' € C; for some ¢ € F. In
addition, we define the index sets of all supersets (antecedents of C;) by
A(i) ={i} n{i' € F:C; € Cy} and the index sets of all subsets (descendants

of C;) as D(i) = F \ A(i).

Thus we can write:

L w € {Cj}jean), w' ¢ {C;j}jep) for some j € F

2.2 Tweey = > 1

iE€F 7 EA(G)

Based on Proposition 3, we can rewrite the constraint:

h(w, 5) — Z H{weci}(ﬁi — )\z) S O,VYU c él,VZ < JT" (2—13)
ieF
as ©
h(w; ) = Y (ki—Xi) <0,YweC,Vie F (2-14)
i €A(7)

Since the constraint above is valid Vw € C;,Vi € F, we can write:

min{h(w;ﬁ)} - > (ki—XN)<0VieF (2-15)
wet; i€ A(%)
Finally, we rewrite this problem as

min > (ki = Aipi)

ieF
st. h(w; B) — Z (ki—N) <0, wel,VieF (2-16)
LEA(S)
A >0, VieF
ki > 0, Vi e F,

In (WIESEMANN; KUHN; SIM, 2014), the authors show that a simi-
lar reformulation is a generalization for many approaches from the DRO lit-
erature, such as models with constraints on the mean, variance, coefficient
of variation, and higher-order moment information, among others. It ensures
DRO tractability by requiring a set of regularity conditions on the ambigu-
ity set, mainly the consecutively nested convex hulls, each associated with a
confidence interval of its coverage probability. We enhance such reformulation
by constructing a purely data-driven polyhedral uncertainty set that does not

depend on a user-defined hyperparameter.
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2.2.2
Proposed Data-Driven Ambiguity Set

In this section, we propose a procedure to specify an ambiguity set
with desired properties, built entirely from a data-driven perspective. While
the majority of the literature uses the empirical distribution, that is, the
observations from the random data generating process, to define the center
of the distributional uncertainty set, our method leverages the data to define
the shape of the nested convex sets of P and the associated probabilities.

Our main idea takes advantage of the well-known N-dimensional Quick
Hull Algorithm (BARBER; DOBKIN; HUHDANPAA, 1996), which in turn
is a generic dimensional version of the algorithms proposed independently
by (GREENFIELD, 1990), (EDDY, 1977), (BYKAT, 1978) and (GREEN;
SILVERMAN, 1979).

The Quick Hull Algorithm aims to retrieve the polyhedron convex hull
C = Conv(A) of a given set of data points A, and the associated vertices
Vert(C) C A. Since the vertices are themselves points in the original set, we
iteratively apply the algorithm in the resulting subsets, after removing the
retrieved vertices, to construct a nested set of convex and polyhedral sets, as
specified by the original formulation (2-3).

Before formalizing the proposed procedure, we illustrate the construction
process with an example in a 2-dimensional space. We highlight that all steps
conducted are easily extended to higher dimensions, as there are no particular
properties of lower-dimensional spaces explored. Let Ag = {ws,ws,...,wy}
be the set of all observations of the random variable W, whose distribution
is unknown. As an illustrative example, consider w; = (w; 1, w;2) € R? i =

1,..., N, whereby we can visualize a given sample in Figure 2.2.
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Figure 2.2: Observed sample from random variable W.
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A first application of the Quick Hull algorithm gives us the polyhedron
convex hull Cy = Conv(Ap) and the associated set vertices Vert(Cy) C Ao,
which is a subset of all data observations. The result is shown in Figure 2.3.
After this first step, we define A; = Ap \ Vert(Cy) as the set of interior points
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Figure 2.3: Cy, the convex hull of A

of Cy and then apply the same procedure to Ay, obtaining its own convex
hull C; (see Figure 2.4). Note that we can also state that the set of vertices

Vert(Cy) = Ap\ A; comprises the set of all observations disregarding its interior

points.
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Figure 2.4: C;, the convex hull of Ay, nested inside Cy

We apply this routine again until there are no remaining points left. We
define Ay = Ay \ Vert(Cy) as the set of observations which are interior points
of C;. Then we use the Quick Hull algorithm once again, obtaining the convex

hull Cy and the associated vertices Vert(Cq) (see Figure 2.5). We repeat the
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procedure once again, obtaining C3 and Vert(Cs) starting from As. The final
configuration can be seen in Figure 2.6. Notice that this procedure implicitly
results in nested polyhedral convex sets, as required to apply our results derived

in the previous section.
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Figure 2.5: Cy, the convex hull of A, nested inside Cy and C;
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Figure 2.6: C3, the convex hull of Az, nested inside Cy, C; and Cs
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More generally, we describe the construction of the nested convex hulls

in Algorithm 1.

Algorithm 1: Nested Convex Hull Sets.
Input: Data sample {w;,ws, ..., wy} € R of the random variable W

1 Initialization:

2 Ay« {wy,we, ..., wx};

3 Apply the Quick Hull algorithm to Ap;
4 Co + Convex hull obtained from Ag;
5 Vert(Cy) < Set of vertices of Co;

6 i« 0

7 while |4; \ Vert(C;)| > 0 do

A1 < A\ Vert(Cy);

9 Apply the Quick Hull algorithm to A;1;
10 Ciy1 < Convex hull obtained from A;;
11 Vert(Ciy1) < Set of vertices of C;yq;
12 141+ 1;

13 7+ i-1;
14 Return: {4,}2,, {C}Z,, {Vert(C)YL,, F «+ {0,1,...,1};

To fully describe the proposed data-driven ambiguity set, we must
associate a probability coverage interval to each polyhedral convex set obtained
in Algorithm 1. We start from the empirical probability distribution I@’, where
p; is the probability that the random variable W € C;. In an ideal setting,
we would have at our disposal enough observations that would allow us to
construct the aforementioned {C;}~_, with a fraction of the total samples and
then use the remaining ones to calculate the empirical probabilities of being
placed in one of such hulls. However, such a procedure is not data efficient as
(i) it implies a choice between the partitions of the sample dedicated to which
step and (ii) it needs huge amounts of data, which are usually not available. To
circumvent this obstacle, we propose a single-step approximation in which the
same data set is used to build the convex hulls and estimate the probabilities
p;. In section 2.5.1 we provide a controlled experiment to assess the quality of
this approximation.

The quantity empirically obtained by evaluating how many observations

fall within each convex set C;, represented by its original points A;, is given
by:
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1 N
pi=—> L (w;)
N 2 Al

where Ix(z) =1 if 2 € X and [x(z) = 0 otherwise. Naturally, the outermost
convex hull Cy covers all observations Ag, hence py = 1. This associates the
original observations with the support of all distributions considered in the
ambiguity set.

After obtaining the empirical probabilities for each nested convex hull,
we must expand it further to calculate coverage intervals instead of point-wise
estimations. As we provide probability intervals, we allow the optimization
model to navigate within a space of probability distributions whose shape is
defined entirely by the observations of the random variable W to find the
optimal solution. To do so, notice that each quantity p; can be approximated
by a weighted sum of N Bernoulli random variables with mean p;. This implies
that

Np; ~ Binomial(N, p;)

We then make use of the Normal approximation of the Binomial distri-

bution, which results from the Central Limit Theorem in the following rela-
tionship (CASELLA; BERGER, 2001):

VNP P (o)1)
pi(l —pi)
Based on this relation, we define an approximate (1 — «)-confidence in-

terval of coverage probability for each set C; as [p;, P;] as a binomial proportion

confidence interval, with p. and p; given by:

_ . pi(l—pi) Pi(1 —p;)
[p,» Pl = [pi s\ TN Pkt N

where p, = py = 1, which retains the desired probability measure properties.

Vi e F

Using the distributional uncertainty (nested) subsets {C;};cx, and the asso-
ciated confidence intervals of their coverage probability, [p;,p;|, we define a
data-driven ambiguity set P that satisfies the general formulation of Equation
2-2.
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2.2.3
Finite reformulation

Given the data-driven convex hulls and the coverage probabilities, we
propose a finite convex reformulation of the semi-infinite programming problem
(2-16). Our reformulation is computationally tractable and we can harness the
power of off-the-shelf solvers for convex or even linear optimization problems,
depending on the choice of the loss function h(W; ).

Proposition 1: Suppose we have set of vertices Vert(C;) associated with
convex hulls C;, Vi € F. In addition, assume h(w; () is a convex function and B

is a convex set. Under these conditions, we can write (2-3) as the finite convex

problem
i iDi — \ipi
min H(w pi)
st. h(wi; B)— Y. (ki—N) <0, VjeV,VieF
IEA(i) (2-17)
Ai >0, VieF
K; Z 0, VZ S F
b e B,
where V; C {1,..., N} denotes the set of indices corresponding to the vertices

of C;. We have that Vert(C;) = {w,};ey,, which were obtained by the Quick
Hull algorithm.
Proof: We know from Section 2.2.1 that the inner problem in 2-3 can be

written as (2-16). However, the constraint

h(w; ) — > (ki —X) <0,Vw e Ciie F (2-18)
le A(4)
makes the problem semi-infinite and computationally expensive. Nonetheless,

as the constraint must be valid for all w € C; for each i € F, we know that
it must be valid for the maximum value of w as well. Given the maximization
is over the variable w, the summation term can be written outside the

optimization portion, resulting in:

max{h(w;@)} - > (m—=XN)<0VieF (2-19)

weds IEA(3)

Since by hypothesis we have convex polyhedral sets, and h(W;f) is a
convex function, the optimal objective value of these maximization problems,
for each ¢+ € F, is achieved in one of their respective vertices, whose indices are
given by V;. The sets V;, © € F, are also known by hypothesis, which allows us

to rewrite the semi-infinite constraint (2-18) as the finite version



Chapter 2. Predictive PolieDRO — Machine Learning 30

h(w;; B) — 3. (k= N) <0,Vj € Vi € F, (2-20)
I€A(D)

which concludes the proof. B

We have proposed the PolieDRO framework that incorporates a data-
driven regularization approach that does not require hyperparameters. Our
framework is designed to construct ambiguity sets in an efficient and purely
data-driven manner, making the resulting optimization problem numerically

tractable.

2.3
Selected applications

Given any convex function A(W; 3), we can write its PolieDRO formula-
tion (2-3), where the ambiguity set and its coverage probabilities are formed as
proposed in Section 2.2.2 as the convex finite optimization problem described
in equation (2-17). Such a class of problems can be efficiently solved using
off-the-shelf solvers, which allows the usage of the PolieDRO framework in
real-world applications.

For this section and the rest of this chapter, we explicitly represent the

dataset {x;, y; }jvzl separating features x; from labels y;. Moreover, we consider
that the probability distribution P in problem (2-3) only refers to the random
vector of features X. More objectively, we define W = X, only considering the
feature space, and the function h(X; 8) = Ep,, [((X,Y; 3)] as the conditional
expectation of the loss function ¢ over Y given X. In the finite reformulation

(2-17), we approximate the conditional expectation by its empirical benchmark

by )~ 3 i B),
”CJ" kek;

where IC; ={k € {1,..., N} |z, = x;}. It’s worth noting that in the majority
of applications, the set KC; typically consists of only one element, where k = j.
In simpler terms, each observation j possesses a unique set of features x;
that distinguish it. In such scenarios, we observe that the function h(w;; )
is approximated by the loss ¢(z;,y;; 8). For notation simplicity, we consider
this case to present the PolieDRO reformulation in the following subsections,
whereby we replace h(w;; ) by each specific loss function £(z;, y;; ).

As a consequence, we use the training set of features {x;}}_, to determine
the set of observations {Ai}if;l, the convex hulls {C)}/_, and the set of vertices’
indices {V}{_, following Algorithm (1), where F is also calculated in the

algorithm execution.
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To assess the PolieDRO framework applicability, we first investigate three
common loss functions that are used in well-known ML methods. We briefly
present such methods and their PolieDRO benchmarks that share the same
loss function at their core. Due to their generality, we apply them to two main

tasks in the field: classification and regression.

2.3.1
Hinge loss

The first loss function we investigate is the hinge loss, used in the task of
classification. The hinge loss aims to linearly penalize whenever an observation
is misclassified based on its features x;. In this formulation, we let y; € {—1, 1}
reflect the label of observation ¢, and [, the parameters to be tuned, be
represented by the pair (8, 8,), S € R, B, € R%:

0(xj,: o, By) = max{l — y;(B1%; — fo), 0} (2-21)

Naturally, such values of the parameters (g, 8;) need to be specified to build
a classifier.

A popular option is the so-called (soft-margin) support vector machine
(SVM), which is a class of methods proposed by (CORTES; VAPNIK, 1995)
that relax the requirement of linear separability of the simpler maximal margin
classifier and allows for points to be incorrectly classified. The soft-margin
support vector machine balances the minimization of total loss calculated
following (2-21) with the size of the classification margin using a normed-value

of B,. The final problem can be described as:

N
min 38,8+ €'Y max{1 - y;(87x; — 4),0} (2-22)
) ]:1

where C is a hyperparameter that needs to be tuned using a validation
procedure, for example.

Problem (2-22) can be represented equivalently as:

N
min 1[|34[3+C D&
min 2 181112 j:1§z

5]207 jzlv"')n

(2-23)

which is a convex quadratic optimization problem with efficient open-source
implementations. More about the implementation and solution of this problem
can be found in (HASTIE; TIBSHIRANI; FRIEDMAN, 2001).

In (BLANCHET; KANG; MURTHY, 2019), the authors show a reinter-
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pretation of this model as a DRO problem, where the hyperparameter C' is
understood to be the radius of a Wasserstein distance measure between the
empirical distribution and the set of considered distributions.

In contrast to both formulations, our implementation of the hinge loss
for a classification task under the PolieDRO framework does not rely on
a hyperparameterized balance between the total loss and the parameters’
magnitude or a distribution ball radius under some measure.

Given a set of training data {xj,y;}}_, , we apply Algorithm 1 to obtain
the convex hull sets and the vertices. We then plug the hinge loss function
(2-21) into formulation (2-17) to obtain a novel classification method. For
tractability, we make use of an additional variable 7 to implement the hinge loss

function as a constraint, where each 7; is associated with each w;, j € V;,i € F:

BO,BLA)HJ] i€F
S.t. n; — Z (I{l — /\l) <0, VjeV,ieF
1EA(G)
n > 1—y;(Bix;— Bo), Vj€V,ieF (2-24)
— VieViieF
A >0, Vie F
Ki Z O, Vi e F.

Remark: The final formulation of the PolieDRO version using the hinge
loss function is a linear optimization problem that does not rely on any
hyperparameter. In comparison with the SVM method, for example, we do
not require a validation procedure to calibrate the parameter C' as in (2-23),

learning all the necessary structures from the observed data.

2.3.2
Logistic loss

Still, in the classification task realm, we consider the logistic loss function.
Letting y; € {—1,1}, the logistic loss of a given observation x; with associated
label y; and parameters (5o, 8), o € R, B, € RP is given by:

0(x;, 5 Bo, By) = log (14 e W (PotArx)) (2-25)

Such loss function assumes the dependent variable Y, from which {y;}; is
observed, follows a Bernoulli distribution whose probability depends on the
observed X and the parameters (fy, 8,). To determine such parameters, we
typically use the maximum-likelihood method, which results in the following

unconstrained optimization problem:
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N
max > —log (1 4 e w0 A)), (2-26)
607/31 j=1

Albeit popular, the logistic regression can quickly become unstable and
sometimes it does not generalize well for untrained data. The regularized
logistic regression classifier is often a more suitable method. Similar to SVM,
this approach aims to control the overfitting to the training data by balancing
the total loss with a metric on the size of the estimated parameters, typically

using the l;-norm. The formulation is given in equation 2-27.

N
min " log (14 ¢ %% A9)) 4 )18, 3. (2-27)
IBOﬂ1 i=1

Under the PolieDRO framework, we bypass the mneed for
hyperparameter—in this case, the A\ value—calibration, which is dependent
on a heuristic procedure. Instead, we make use of the logistic loss function

and write the proposed formulation in (2-17) as:

W, 2P A

s.t. log (1 + e_yj('8°+5lij)) — Z (ki —N) <0, VjeV,ieF
IEA()
A >0, VieF
Kk; >0, Vi € F.
(2-28)

Equation (2-28) is a convex optimization problem that can be efficiently
solved. Notice that there is no need to use a heuristic procedure to select
a hyperparameter to be used in this approach. The parameters (5, 3,) are

directly obtained from a single run of the stated problem.

2.3.3
Mean Squared Error loss

Regression is another typical task in ML, where instead of predicting
a class based on the available features, one predicts continuous values. Such
quantities are called predictions, usually denoted as 7. For ease of notation, let
9; = f(x;;Bo, B1), that is, the j"-prediction is function of its corresponding
features and some need-to-be calibrated parameters.

To assess the quality of this function f, we need a loss function to compare
the predicted values ¢ with the actual observations y. The most popular one is

the mean squared loss (MSE). Given a set of observations {x;}_; and actual

N

observations of the dependent variable {y};_,, we aim to estimate the model

f that minimizes the MSE, given by:
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> (Z/j - Z?j)2 = (yj — [ (53 Bo, ,31))2 (2-29)

=1 =1

Although the]re are several i:lasses of functions to choose from, the
most common one is the linear regression model. In this case, under some
assumptions (see (HASTIE; TIBSHIRANI; FRIEDMAN, 2001)), we have
g = P+ ,BlTx. In this simpler setting, also known as the linear regression
method, the pair of parameters (fy, B,) is the one that minimizes the resulting

MSE (2-30).

N
(o B1) = angmin 3 (3, — o+ B1%,) (2-30)
0,P1  j=1

From an ML perspective, it is well known that there are some drawbacks
when implementing the linear regression method directly. For example, its es-
timation instability under high-dimensional settings and occasional overfitting
paved the way for several suggestions for improvement. One highly effective op-
tion is the LASSO (least absolute shrinkage and selection operator) regression
(TIBSHIRANTI, 1996) that performs an /; regularization to enhance the result-
ing model’s generalization power. To do so, it introduces a hyperparameter A
that needs to be heuristically calibrated to optimize the balance between the
resulting loss calculated and the parameter’s freedom of choice. The LASSO
method parameters are determined following the given convex optimization

problem:

607 1
It has been shown in (BLANCHET; KANG; MURTHY, 2019) that a

slight variation on the LASSO formulation (square-root LASSO, (BELLONTI;
CHERNOZHUKOV; WANG, 2011)) can be written as a DRO problem under a

Wasserstein-based metric. In this context, the hyperparameter A\ has a similar

N
(o B1) = argmin 3~ (y; — B — 87x;)” + A8l (2:31)
j=1

interpretation to the hyperparameter in the SVM and Regularized Logistic
Regression formulations explored before.
By using the PolieDRO framework we define ¢(x;,y;; 8) = (yj — (Bo +

2
,6{)9-)) and perform a regression by using the optimal solution (5§, 87) of the

following hyperparameter-free, convex quadratic optimization problem:

I iDi — Aipi
B P e

1EF
2 . .
s.t. (y] — (60 + ,B{X])) — Z (l‘fl - /\l) S 07 \V/] S Vi; 1€ F (2_32)
leA(7)
A >0, Vie F

/{Z‘ZO, Vi e F.
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2.4
Computational Experiments

In this section, we perform an extensive computational experiment to
compare the PolieDRO variation of the three loss functions in both classifi-
cation and regression tasks, detailed in Section 2.3. Such experiments were
performed both on synthetic data sets and real-world data sets, with great

variability between them.

24.1
Experimental setup

On the classification front, we tested two implementations of the
PolieDRO framework using common loss functions (hinge loss and logistic
loss). Such performance is measured in terms of accuracy. On the regression
front, we applied the common Mean Squared Loss function, measuring the
performance using the mean squared error. In both cases, we considered a
confidence level of 90% (that is, @ = 10%). In the section 2.5.2 we discuss
more details about such selection and perform a sensitivity analysis for all
conducted experiments.

To report in a more representative way the performance of the models,
we conducted a 5-fold cross-validation procedure for the standard models. Al-
though applied in the same data set for each problem, the training-testing
procedure is slightly different between the PolieDRO and the benchmarks.
While those models require some sort of calibration procedure, which ulti-
mately leads to a different sequence of steps, the PolieDRO approach avoids
such time-consuming and error-prone steps. In what follows we give a precise

description of the steps we undertook for each case:

Experiment iteration

1. Data Split: Randomly split the dataset into 2 parts: cross-validation
(80%) and testing set (20%).

2. benchmark models:

(a) Split the cross-validation set into 5 folds

(b) Train the model for a (discrete) variety of possible hyperparameters

using 4 out of the 5 folds as the training set.

(c) Calculate each trained model’s suitable performance metric apply-
ing it to the remaining fifth fold (validation fold).
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(d) Repeat items (2.2) and (2.3) for each possible combination of the
training set (combining 4 folds) and validation fold. This results in
a total of 5 executions of steps (2.2) and (2.3).

(e) For each hyperparameter-trained model, average its performance
metric from each repetition of the previous steps and select the

best-performing model.

(f) Retrain the best-performing model on the complete cross-validation

set, using the highlighted hyperparameter.

(g) Calculate the final performance on the (unused) testing set.
3. PolieDRO framework:

(a) Apply Algorithm (1) to the complete cross-validation set.

(b) Solve the appropriate optimization model using the output of the

previous step for a predefined desired significance level.

(¢) Calculate the final performance on the (unused) testing set.

It is worth highlighting that the training, validation and testing sets available
for the PolieDRO and benchmark models are the same at each iteration.

Notice that at each iteration we need to perform a significantly more
cumbersome sequence of steps for the traditional models, which are ultimately
dependent on the predefined set of possible values for the hyperparameters.
Additionally, such selection is highly sample-dependent, as a different random
split of the folds may ultimately lead to a different optimal hyperparameter.

It is crucial to point out that there is an inherent trade-off when
searching for the appropriate hyperparameter. Due to the discrete nature of the
procedure, the search for the optimal hyperparameter must balance exploration
(the number of candidate values) and feasibility (the time required to calculate
such sub-steps). That is, as the need for a more precise selection increases the
time and energy spent in the training step also increases. In addition, it is well
known that the configuration for selecting the best hyperparameter for ML
models has a direct impact on the model’s performance (see (YANG; SHAMI,
2020)). In the same work, the authors present several automatic optimization
techniques, highlighting different strengths and drawbacks.

On the opposite end, the PolieDRO-based models have a much more
streamlined process to be constructed, first by constructing the convex hulls
and then solving a tractable optimization problem. Naturally, such hulls vary

according to the sampled data.
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2.4.2
Computational Experiments with Real World Data Sets

To comprehensively compare the performance of the PolieDRO models
against their benchmarks with real-world data sets, we performed the experi-
ments on a selection of 100 problems from the UCI Machine Learning Reposi-
tory. On the classification front, we compared the SVM model and the logistic
regression with the PolieDRO applications of the hinge loss and the logistic
loss, respectively, using 70 different data sets. We conducted the one-versus-
rest problem of predicting the occurrence of the first class in each data set.
Such performance is measured in terms of accuracy. On the regression front,
we compared the PolieDRO framework applied to the MSE loss function with
the LASSO model on a total of 30 different data sets.

We repeat the entire experiment iteration five times for each comparison
and calculate the mean value of the relevant metrics, following (BERTSIMAS
et al., 2019). The results are organized in tables 2.1, 2.2 and 2.3. For each
data set, the best result (or multiple in the case of ties) for each comparison
(PolieDRO version against its nominal benchmark) is indicated in bold, ac-
cording to the selected performance measure. In addition, for the classification
task, the best method overall for the data set is underlined.

Finally, Table 2.4 summarizes the pairwise results for each loss function.
Such results are also seen in Figure 2.7, where we count as a win whenever the
PolieDRO framework application achieves a better result than the nominal
benchmark. Naturally, when comparing accuracy, in classification tasks, the
higher the better. On the regression tasks, the smaller the MSE the better
the result. In addition to pairwise comparisons, we also report in Table 2.5
the number of wins, ties, and losses between the best PolieDRO classification
method and the best nominal benchmark - that is, the underlined results in
tables 2.1 and 2.2

To capture some intuition behind the results, figures 2.8, 2.9, and 2.10
plot the comparison results for each loss function against two attributes of the
data set - the number of samples available n and the dimension of the feature
space d. As can be seen, there is no clear pattern indicating whether there is an
advantageous set of characteristics at first for the PolieDRO framework usage.
However, we highlight that the competitive overall performance indicates that
the PolieDRO framework application achieves superior results as compared to
the classical methods in the literature while bypassing the need for hyperpa-
rameter calibration. In other words, there is no apparent trade-off in place for
applying a distributionally robust and tractable optimization problem sharing

the same loss function as the common methods explored.
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Hinge Loss Logistic Regression
Data set Name n p PolieDRO Nominal PolieDRO Nominal
acute-inflammations-1 120 6 1.0000 1.0000 1.0000 1.0000
acute-inflammations-2 120 6 1.0000 1.0000 1.0000 0.9833
balance-scale 625 4 0.9488 0.9488 0.8928 0.9632
balloons-a 20 4 1.0000 0.8500 1.0000 1.0000
balloons-b 20 4 1.0000 0.9000 1.0000 0.8500
balloons-c 20 4 1.0000 0.8500 1.0000 0.8500
balloons-d 16 4 0.6667 0.6667 0.7333 0.5333
banknote-authentication 1372 4 0.9883 0.9890 0.9898 0.9898
blood-transfusion-service-center 748 4 0.7573 0.7530 0.7920 0.7922
breast-cancer 277 31 0.7614 0.7578 0.7600 0.7392
b-cancer-wisconsin-diagnostic 569 30 0.9385 0.9561 0.9491 0.9526
b-cancer-wisconsin-original 683 9 0.9676 0.9693 0.9588 0.9605
b-cancer-wisconsin-prognostic 194 32 0.7692 0.8205 0.7589 0.7333
car-evaluation 1728 15 0.9479 0.9472 0.9456 0.9576
climate-model-simulation-crashes 540 18 0.9625 0.9500 0.9500 9500
congressional-voting-records 232 16 0.9958 0.9785 0.9751 0.9751
connectionist-bench 990 10 0.9707 0.9696 0.9545 0.9545
connectionist-bench-sonar 208 60 0.7761 0.8195 0.7238 0.8195
contraceptive-method-choice 1473 11 0.6861 0.6795 0.6904 0.6904
credit-approval 690 9 0.8656 0.8656 0.8398 0.8398
dermatology 358 34 1.0000 1.0000 0.9944 0.9915
echocardiogram 62 7 0.7333 0.7538 0.8000 0.7846
ecoli 336 7 0.9611 0.9582 0.9611 0.9552
fertility 100 12  0.8500 0.8500 0.8500 0.8500
flags 194 58 0.7538 0.8264 0.8410 0.7743
glass-identification 214 9 0.7249 0.7163 0.7385 0.7385
haberman-survival 306 3 0.7475 0.7475 0.7180 0.7114
hayes-roth 132 4 0.6846 0.6846 0.7555 0.7329
heart-disease-cleveland 297 18 0.8610 0.8556 0.8400 0.8400
heart-disease-hungarian 294 6 0.7263 0.6947 0.8384 0.8384
heart-disease-switzerland 123 6 0.6500 0.6500 0.5272 0.6727
heart-disease-va 200 7 0.7411 0.7111 0.7307 0.7307
hepatitis 155 4 0.8000 0.8000 0.7250 0.8250
image-segmentation 210 19 0.9619 0.9857 0.9952 0.9952
indian-liver-patient 583 9 0.7258 0.7258 0.7517 0.7396

Table 2.1: Mean out of sample accuracy.
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Hinge Loss Logistic Regression
Data set Name n p PolieDRO Nominal PolieDRO Nominal
ionosphere 351 34 0.8285 0.8514 0.8742 0.8742
iris 150 4 1.0000 1.0000 1.0000 1.0000
lenses 24 5 0.8000 0.6800 0.7200 0.7600
letter-recognition 20000 16 0.9711 0.9728 0.9885 0.9902
libras-movement 360 90 0.8833 0.9155 0.9388 0.9722
mammography-mass 830 10 0.8384 0.8152 0.8277 0.8277
monks-problems-1 124 11  0.8400 0.7520 0.6880 0.6880
monks-problems-2 169 11 0.6470 0.6470 0.6352 0.6117
monks-problems-3 122 11 0.9284 0.8880 0.9326 0.8880
mushroom 5644 76  1.0000 1.0000 1.0000 1.0000
nursery 12690 19  1.0000 1.0000 1.0000 1.0000
ozone-level-detection-eight 1847 72 0.9268 0.9324 0.9322 0.9152
ozone-level-detection-one 1848 72 0.9696 0.9529 0.9700 0.9665
parkinsons 195 21  0.8615 0.8358 0.8615 0.8358
plannig-relax 182 12 0.7155 0.7155 0.7005 0.7225
gsar-biodegradation 1055 41 0.8786 0.8663 0.8473 0.8473
seeds 210 7 0.9333 0.9165 0.9619 0.9380
seismic-bumps 2584 20  0.9342 0.9342 0.9279 0.9346
soybean-large 266 63 0.7745 0.7872 0.7764 0.7625
soybean-small 47 37  1.0000 1.0000 1.0000 1.0000
spambase 4601 57  0.9265 0.9265 0.9230 0.9230

statlog-project-landsat-sat 4435 36 0.9846 0.9862 0.9833 0.9833
teaching-assistant-evaluation 151 52  0.7466 0.6800 0.7000 0.6933

thoracic-surgery 470 16 0.8446 0.8510 0.8744 0.8808
thyroid-disease-allbp 1947 25 0.9696 0.9697 0.9562 0.9600
thyroid-disease-allhyper 1947 25  0.9830 0.9794 0.9789 0.9789
thyroid-disease-allrep 1947 25 0.9697 0.9778 0.9742 0.9723
thyroid-disease-sick 1947 25 0.9537 0.9523 0.9475 0.9625
tic-tac-toe-endgame 958 18 0.9843 0.9842 0.9801 0.9732

wall-following-robot-nav-2 5456 2 0.6300 0.6120 0.6584 0.6557
wall-following-robot-nav-24 5456 24  0.7547 0.7543 0.7065 0.7536
wall-following-robot-nav-4 5456 4 0.6381 0.6229 0.6489 0.6139

wine 120 6 0.9714 0.9666 0.9028 0.8955
yeast 1484 8 0.6740 0.6740 0.6996 0.6828
Z00 101 16 1.0000 1.0000 1.0000 1.0000

Table 2.2: Mean out of sample accuracy.
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Figure 2.7: Pairwise comparison of the different methods for each loss function.

To further investigate the experiment’s results, figures 2.12, 2.13, and 2.14
plot the wins-ties-losses of the PolieDRO variation of each loss function against
the dimension of the feature space d and the winning method’s performance
measured out-of-sample (and reported in tables 2.1, 2.2, and 2.3). Both axes
are in log-scale for better visualization. In addition, since the MSE is not a
comparable metric across different datasets, we replace it with the root mean

square error (RMSE) normalized by the average value of the predicted variable.
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Regression

Data set Name n D PolieDRO LASSO
abalone 4177 9 2.1179 2.1216
airfoil-self-noise 1503 5 22.3516 23.3844
airline-costs 31 9 0.04281 0.04923
auto-mpg 392 8 3.9776 3.5618
automobile 159 31 0.2461 0.3684
beer-aroma 23 7 7.4046 8.5012
communities-and-crime 1993 100 383.4650  383.8383
computer-hardware 209 36 32.9909 33.6611
concrete-slump-test-compressive 103 7 2.89302 3.1134
concrete-slump-test-slump 103 7 7.5673 7.5291
construction-maintenance 33 4 3.5981 3.2313
cpu-act 8192 21 10.4719 10.4719
forest-fires 517 27 42.9497 43.1722
home-mortgage 18 6 18.1800 18.6598
housing 506 13 4.7854 4.7872
immigrant-salaries 35 3 1.7360 1.7360
japan-emigration 45 b} 168.6030 150.9830
kin8nm 8192 8 0.0413 0.0413
Ipga-2208 157 6 0.4291 0.4323
Ipga-2009 146 11 0.4676 0.5037
parkinsons-telemonitoring-motor 5875 16 77778 7.7964
parkinsons-telemonitoring-total 5875 16 10.3067 10.3043
pyrim 74 27 0.1434 0.1434
texas-jan-temp 16 3 1.2152 1.27907
triazines 186 60 0.1368 0.1330
tv-sales 31 8 3019.7855 3028.6666
wikidhe 435 53 6.6882 6.4113
wine-quality-red 1599 11 0.6169 0.6520
wine-quality-white 4898 11 0.7710 0.7650
yatch-hydrodynamics 308 6 9.2546 9.1323

Table 2.3: Average out of sample MSE.

Loss function Metric Wins Ties Losses Total data sets

Hinge Loss  Accuracy 29 22 19 70
Logistic Loss Accuracy 27 27 16 70
MSE Loss MSE 17 4 9 30

Table 2.4: Pairwise comparison for each loss function.

Metric Wins Ties Losses Total data sets

Classification Accuracy 29 21 20 70

Table 2.5: General classification task comparison.

41
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Figure 2.10: Mean squared loss performance against nominal LASSO.

Figure 2.11: Plot of PolieDRO version performance against benchmark for each
data set the dimension of feature space and number of samples.
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Figure 2.12: Hinge loss performance against nominal SVM.
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Figure 2.13: Logistic loss performance against nominal Regularized Logistic
regression.
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Figure 2.14: Mean squared loss performance against nominal LASSO.

Figure 2.15: Plot of PolieDRO version performance against benchmark for
each data set the dimension of feature space and out-of-sample accuracy of
the winning method.
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An interesting observation can be made regarding the classification loss
functions based on figures 2.12 and 2.13. In tables 2.6 and 2.7 we split the
performance for each comparison between so-called “hard” (optimal achieved
out of sample accuracy lower or equal to 80%) and “easy” problems (optimal
achieved out of sample accuracy greater than 80%). Similarly, we split the
regression task between “easy” and “hard” problems in the 10% out of sample
normalized RMSE line (see table 2.8 and figure 2.14).

Wins Ties Losses Total

Hard 11 9 2 22
Basy 18 13 17 48

Table 2.6: Performance of the PolieDRO hinge loss split between “hard” and
“easy” problems.

Wins Ties Losses Total

Hard 13 4 ) 22
Basy 14 23 11 48

Table 2.7: Performance of the PolieDRO logistic loss split between “hard” and
“easy” problems.

Wins Ties Losses Total

Hard 10 1 4 15
Basy 7 ) 3 15

Table 2.8: Performance of the PolieDRO Mean Squared Error loss split between
“hard” and “easy” problems.

Noticeably, the PolieDRO framework variation in each loss function ap-
plication has an even superior performance in “hard” problems against its
nominal benchmarks. Even though the nominal benchmarks have a regular-
ization procedure that aims to deal with overfitting and add robustness to the
estimation, the PolieDRO framework seems to do it in a more effective way,
and without hyperparameters. By construction, it optimizes over a distribu-
tion space shaped after the empirical observations without limiting itself to it.
Evidence indicates that especially in harder problems this approach delivers

better results.
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243
Computational Experiments with Synthetic Data Sets

To further investigate the performance of the PolieDRO models against
their benchmarks under conditions not present in the real-world data sets used
in 2.4.2, we conducted an additional experiment using synthetically generated
data sets. Both on the classification and regression fronts we measured the
performance by varying the number of available samples and the number of
features, thus varying the ratio between those parameters for each model to
assess the impact in each case.

To accommodate the particular characteristics of the classification and

the regression problems, we designed each variation distinctly.

Synthetic classification data

Inspired by (BERTSIMAS et al., 2019), the classification setting is
generated in three parts. For a given ratio n/d (sample size versus number

of features):

1. n,, points are generated as multivariate random normal, N(1.5e,1),
where e € R is the vector of ones of dimension d and I € R4 ig

the identity matrix. These points are given the label +1.

2. n,, points are generated as multivariate random normal, N(—1.5e,I) and

given the label —1.

3. m, outlier points are generated as multivariate random normal, N (0, 3I).

These points are randomly given the label +1 or —1.

where n = 2 x n,,, +n,. We designed the data generation process in a way that

the n, represents 20% of the total available data.

Synthetic regression data

Similarly, the regression setting is designed to allow the investigation of
different values of the ratio n/d. We start with a basic linear relationship with
an added random noise: y = 87 x +e. We consider 8 € R? as a vector of ones,
X ~ N(1.5e,I) and € ~ N(0,0.11I).

In both classification and regression settings, we considered the possible
number of dimensions (number of features) d = {2,10,100,1000} and the
sample size of n = {5, 10,50, 100, 500, 1000} (available for the cross-validation
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step). In each combination (d,n), we repeated the whole process 1,000 times.
Results are organized in Table 2.10.

The calculated means and standard deviation (SD) in Table 2.10 refer to
the difference in performance for each instance between the PolieDRO models
and their benchmarks. For classification problems, we used the accuracy of class
prediction as the proper measure, while for the regression we used the RMSE.
To provide a unified basis for comparison, the difference between performance

metrics is calculated as follows:

— For the classification problems, we calculate the difference between the
results of the PolieDRO model and their benchmarks. The greater the

difference, the better the relative performance for the PolieDRO version.

— For the regression problem, since the smaller the absolute metric the
better, we inverted the order and calculated the difference between the
benchmark models and the PolieDRO versions. In this way, we also have
the greater the difference, the better relative performance achieved by
the PolieDRO framework.

Besides reporting the mean and standard deviation of the difference
between the performance measures in each case, we also report the total wins
(W), ties (T) and losses (L) incurred by each PolieDRO version — that is, for
the hinge loss, the logistic loss and the MSE loss applications of the proposed
framework against their nominal benchmarks in Table 2.9.

Table 2.10 shows that the PolieDRO models consistently outperform
their benchmarks, with more wins than losses, suggesting that the PolieDRO
framework more frequently induces a slightly different and superior estimation
for the models compared to nominal methods. This trend is particularly
pronounced in high-dimensional conditions (when the n/d ratio is smaller).
To make it easier to understand, we have bolded the highest number among
the wins, ties, and losses for each row and model comparison.

It is important to note, however, that there are still a significant number
of ties, especially in the classification experiments. This indicates that in
some cases, both methodologies result in the same estimated values for the
loss function parameters. Nevertheless, when the estimated values differ, the
PolieDRO framework generally produces a better out-of-sample performance

metric than the nominal methods.
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Metric Wins Ties Losses Total

Hinge Loss  Accuracy 11 9 4 24
Logistic Loss Accuracy 10 11 3 24
MSE Loss RMSE 17 0 7 24

Table 2.9: Pairwise performance of the PolieDRO models against their nominal
benchmarks.
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2.5
Additional computational experiments

In this section we discuss additional computational experiments con-
ducted in order to provide numerical evidence regarding some choices made in

this work.

2.5.1
The estimation of empirical probabilities

During the process of estimating the data-driven ambiguity set, we must
obtain two results: (i) the polyhedral convex sets and (ii) their associated
probability coverage intervals. In section 2.2.2, we describe the data-driven
procedure and present the approximation used to estimate the intervals. In this
section, we present some results to endorse the approximation methodology
usage.

Consider the outcome of the Algorithm 1 application and the coverage
intervals associated to each convex hull C;. Ideally, the probability interval
[Bi’ p;] should include the true probability of a random point obtained from
the original data distribution to fall within the convex hull C;, considering
the specified significance level «. In this context, we refer to accuracy as the
percentage of probability intervals [Qi, P;] that includes the true probability p;.
In addition, another interesting property would be how well the approximation
that the outside hull Cy replicates the true distribution support - which we refer
to as coverage.

To assess such properties, we ran the following experiment considering
a random variable X that follows a Multivariate Normal distribution as the

data-generating process:

1. Let X ~ N(u,Y), where p is the unit vector of dimension d = 3 and X
is the d x d identity matrix;

2. Let N be the sample size used to construct the ambiguity set;

3. For a given N, we generate a sample and apply Algorithm 1, obtaining
the convex hulls {C;}7_, and probability intervals {[p., p;]}i=o;

4. For each convex hull C; we approximate the true probability coverage
value p; considering the data generating process distribution by gener-
ating an extremely large sample size S = 1.000.000 and verify whether
pi € [Bz" P;]- Such interval is calculated in step 3 using the sample with

size N;
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5. We calculate the experiment’s accuracy (percentage of estimated inter-
vals that contain the true probability) and coverage (percentage of the

distribution support within

We vary the sample size N from 10 to 10.000 and repeat the experiment
5.000 times for each value. We consider the significance level « = 10%. The
average accuracy is presented in Figure 2.16 and the average coverage is

presented in Figure 2.17.
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Figure 2.16: Average accuracy for a given sample size
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Figure 2.17: Average coverage for a given sample size

One can observe that as the sample size grows, both accuracy and
coverage converge to the expected values considering the significance level of
the experiment. Naturally, the quality of such approximation methodology

grows as the sample size grows. However, we argue that for a relatively small
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sample size, one can obtain a decent approximation. In addition, our empirical

results validate the method as the experiments in sections 2.4.2 and 2.4.3 show.

2.5.2
The choice of significance level

To apply the PolieDRO framework in classification or regression models,
one should define the value of the significance level a. Such value can be
interpreted as the flexibility of the probability coverage of each convex hull
that defines the hyperspace of distributions considered, that is, the ambiguity
set. The idea is that such convex hulls imply some structure that arises from the
data. The added flexibility controls the degree to which the resulting ambiguity
set considers possible distributions.

Those values should be considered statistical significance parameters,
using typical values such as a = 10%, a = 5%, or a = 1%. We repeat the
experiment considering the different values and display them in tables 2.11,
2.12, 2.13, 2.14 and 2.15 for the real world data sets and in tables 2.16, 2.17
and 2.18 for the synthetic data.

In tables 2.11, 2.12, 2.13, 2.14 and 2.15, we have highlighted in bold the
cases where the PolieDRO version outperformed its nominal benchmark for
each value of a. We have summarized the results in table 2.19.

For the synthetic datasets, we followed the same criteria as in Section
2.4.3. We identified the highest number of wins (W), ties (T), or losses (L) for
each experiment in tables 2.16, 2.17 and 2.18, and provided a summary of the
results in table 2.20.

Our results indicate that the choice of the statistical parameter o
has little impact on the study results. In most cases, it does not alter the
performance of the PolieDRO models, and in the few cases where it does, the

change is not substantial.
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Q Loss Function Metric Wins Ties Losses Total

Hinge Loss  Accuracy 29 22 19 70
0.10 Logistic Loss  Accuracy 27 27 16 70
MSE Loss RMSE 17 4 9 30

Hinge Loss  Accuracy 29 22 19 70
0.05 Logistic Loss Accuracy 25 26 19 70
MSE Loss RMSE 16 4 10 30

Hinge Loss  Accuracy 29 23 18 70
0.01 Logistic Loss Accuracy 25 26 19 70
MSE Loss RMSE 17 4 9 30

Table 2.19: Pairwise performance of the PolieDRO models against their nom-
inal benchmarks using real-world data sets, for varying «

«Q Loss Function Metric Wins Ties Losses Total

Hinge Loss  Accuracy 11 9 4 24
0.10 Logistic Loss  Accuracy 10 11 3 24
MSE Loss RMSE 17 0 7 24
Hinge Loss  Accuracy 10 10 4 24
0.05 Logistic Loss Accuracy 10 11 3 24
MSE Loss RMSE 17 0 7 24
Hinge Loss  Accuracy 10 10 4 24
0.01 Logistic Loss  Accuracy 9 12 3 24
MSE Loss RMSE 17 0 7 24

Table 2.20: Pairwise performance of the PolieDRO models against their nom-
inal benchmarks using synthetic data sets, for varying a

2.6
Conclusions

In this chapter, we develop the predictive PolieDRO, a novel analytics
framework based on a data-driven DRO formulation that does not rely on
the calibration of regularization hyperparameters. Our framework results in a
computationally tractable DRO formulation with practical applications, given
a convex loss function. At the core of our proposed methodology, there is a
new and iterative procedure to construct data-driven convex hulls that define
the ambiguity set along with probability estimates. We go beyond simpler
data-driven procedures that only define the first moments of the distribution
and we use the available data to define the whole shape of the distribution.
Such a procedure is based on well-known algorithms with efficient off-the-shelf

implementations.
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By exploring a bridge between the realms of Machine Learning and
Distributionally Robust Optimization, our new proposed framework results
in intuitive methods for prediction tasks, namely classification, and regression.
Besides its theoretical soundness, we evaluate the performance of such ideas
in an extensive numerical experiment with 100 real-world data sets. The
findings of such a broad experiment suggest that the resulting formulations
of the PolieDRO framework are competitive with common methods and their
variations that are known in the literature and practice. Our experiments
yielded an equal or better result in 72.8% of cases for the hinge loss, 77.14%
for the logistic loss, and 60.0% for the MSE loss.

In particular, our findings indicate a superior performance in so-called
harder problems, validating the DRO approach to the tasks of classification
and regression: 90.9% of cases for the hinge loss, 77.27% for the logistic loss,
and 73.3% for the MSE loss.

In addition, we explored the performance of the PolieDRO framework
under a synthetically generated experiment aimed at measuring the impact of
the ratio between the number of features and the number of samples available.
Based on a computationally intensive study, we achieved consistent results in
favor of the PolieDRO variations of the loss functions, indicating once again
its superior empirical evidence. On top of that, such competitive performance
is accompanied by the absence of a critical (and often criticized) step in an
ML experiment: the hyperparameterization step.

We believe that this work highlights the potential for DRO researchers to
contribute to the ML literature. By proposing new designs for the ambiguity
sets—ideally in a hyperparameter-free way—new frameworks can be devel-
oped, resulting in novel and computationally tractable approaches to tasks
handled by the ML community. In addition, our work reinforces the impor-
tance of having data-driven ambiguity sets that can model the shape of plau-
sible distributions more accurately, as opposed to simply requiring them to be
in a ball close to the nominal distribution. Moreover, the size of the “ball” is
a hyperparameter that usually has to be set by cross-validation to generate
empirically accurate models.

Future work includes embedding more advanced methods within our
framework such as CART, ensembles and deep learning architectures, as well

as Generative Adversarial Networks.



3
Prescriptive PolieDRO — Portfolio Optimization

One of the paramount challenges faced by financial firms is the strategic
allocation of their budgets across a diverse range of investment assets to
maximize company wealth, as outlined in (KOLM; TUTUNCU; FABOZZIC,
2014). Traditionally, this critical task was carried out through discretionary
trading, where decisions on portfolio composition were largely influenced by
the insights and judgments of experienced managers. However, recent years
have witnessed a significant pivot towards quantitative trading, propelled by
substantial advancements in mathematical modeling and computational tools,
alongside an increase in processing power and capabilities (SPIERS; WALLEZ,
2010). Roughly speaking, the latter investment technique is based on signals
produced by a computer program or investment model, with scarcely any
intervention from the portfolio manager. Following this upward trending, this
work focus on devising a quantitative-based methodology to identify a wealth-
maximizing portfolio allocation.

The concept of quantitative portfolio allocation has been extensively ex-
plored since Markowitz’s (1952) seminal work (MARKOWITZ, 1952), which
introduced the trade-off between high expected returns and controlled risk
exposure. Markowitz advocated for an "efficient allocation" that harmonizes
the portfolio’s expected return and its variance, setting a foundation for the
Mean-Variance analysis. Subsequent research challenged the use of variance as
the sole risk measure, leading to the exploration of semi-variance and other
risk metrics that better capture an investor’s risk aversion ((MAO, 1970;
CHOOBINEH; BRANTING, 1986; MARKOWITZ et al., 1993) and (HUANG,
2008)). This body of work expanded the analytical framework to include not
just expected value and semi-variance but also the impacts of higher moments
like skewness and kurtosis, as well as performance-based regularization metrics
on portfolio allocation ((CVITANI¢; POLIMENIS; ZAPATERO, 2008; HAR-
VEY et al., 2010) and (LI; QIN; KARC, 2010)).

In the quest for more effective risk management strategies, the 1990s
saw the emergence of distribution quantile-based risk measures, offering an
alternative to moment-based metrics. The Value-at-Risk (VaR), popularized
by the Basel II accord in 1999, became a pivotal tool in the industry, providing
a quantifiable measure of the potential financial losses at a specific confidence
level (we refer to (JORION, 2006) for a thorough discussion and applications
of this measure in the financial industry). Roughly speaking, VaR was designed
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to quantify the lower-tail quantile of the reward probability distribution
associated with a pre-specified confidence level, thus gauging the exposure of
the financial company and indicating the amount of capital that is needed
to fully cover possible losses. Despite its popularity in risk management,
VaR-based portfolio allocation models face several shortcomings, both from
a technical and computational viewpoints. On the one hand, the Value-at-
Risk lacks of convexity, and its ability to quantify extremely hazardous events
are limited. On the other hand, its incorporation into optimization problems
drastically increase the computational complexity. Hence, to cope with these
issues, specially the technical ones, an axiomatic approach were pursuit in
order to define desirable properties for a quantile-based risk measure, aiming
at better characterizing the agent’s behavior towards risk (ARTZNER et
al., 1999; GIORGI, 2005; FOLLMER; SCHIED, 2011). As a byproduct of
this axiomatization, a novel risk measure, named the Conditional Value-at-
Risk (CVaR), came up as a promising tool to devise desirable risk-averse
portfolio allocations. In a few words, the CVaR quantifies the average of
the worst-valued rewards of a portfolio up to its VaR level and cover all the
Value-at-Risk aforementioned shortcomings (PFLUG, 2000; STREET, 2010;
ROCKAFELLAR; URYASEV, 2002).

A critical aspect of implementing portfolios based on moment- or
quantile-based risk measures is their reliance on accurately specifying the joint
probability distribution of asset returns. An imprecise probabilistic model can
lead to ineffective decision-making, exposing investors to unexpected risks, a
concern highlighted by (SHAPIRO; NEMIROVSKI, 2005). In the particular
context of this work, this issue is of great significance since a decent characteri-
zation of the assets return uncertainty is still a challenging task'. In fact, there
is an strong empirical evidence against fitting a single candidate distribution
to the available information (e.g., historical data) and using such unique prob-
abilistic characterization to define risk-constrained portfolio allocations due to
a poor out-of-sample performance (see, for instance, (MICHAUD, 1989) and
the so-called error maximization effect).

Despite considerable efforts by both academics and practitioners, ac-
curately forecasting asset return dynamics remains unresolved. In response,
robust optimization has gained popularity for its ability to manage uncer-
tainty through constraints that enable worst-case scenario analysis, offering
a way to identify resilient portfolio allocations ((FABOZZI; HUANG; ZHOU,
2010; LIM; SHANTHIKUMAR; VAHN, 2012; KIM; KIM; FABOZZI, 2014;

'We refer to the review work done by (RESCHENHOFER et al., 2020) for an extensive
analysis.
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BAN; KAROUTI; LIM, 2018; JIN; LUO; ZENG, 2021)). From a modeling view-
point, its main advantage relies on the capability of the manager to char-
acterize the assets returns uncertainty by means of a set of constraints and
perform a worst-case analysis, thus identifying a feasible portfolio allocation
that is robust against the most unfavorable scenario within this set (BEN-
TAL; GHAOUI; NEMIROVSKI, 2009b). Nevertheless, a recurrent criticism
over robust-optimization-based models is its high level of conservatism since
the robust approach generally assimilate little available information regarding
the uncertainty probabilistic nature.

In order to extract the benefits from both robust- and distributionally-
based methodologies, a decision modeling structure, known as distributionally
robust optimization (DRO), has recently emerged as a powerful tool for ad-
dressing general decision-making problems in uncertain environments (BERT-
SIMAS; SIM; ZHANG, 2019; PARYS; ESFAHANI; KUHN, 2021). Generally
speaking, DRO-based models make use of a probabilistic description of the
uncertain factors, but recognizes that a precise characterization is of difficult
assessment, thus employing a worst-case analysis over a set of “credible” prob-
ability distributions — commonly referred to as a “Distributional Uncertainty
Set” (DUS). The major challenge for practical implementation of such decision-
modeling methodologies is precisely the appropriate design of the DUS. It
should encompass reliable information regarding the true probability distri-
bution, while keeping computational tractability. In the past years, many ar-
rangement ideas have been put forward in technical literature. For instance,
(SCARF, 1958; BERTSIMAS; POPESCU, 2005) and (LOTFI; ZENIOS, 2018)
proposed to describe the DUS as the set of all probability distributions with
a pre-specified mean and covariance matrix. Additionally, (DELAGE; YE,
2010) extended this formulation in order to consider a confidence interval
for these distribution moments and discussed a procedure to estimate such
interval based on historical data. Following a similar path, (WIESEMANN;
KUHN; SIM, 2014) conceived a general format for DUSs which comprises dis-
tributions with conic-representable confidence sets and mean within an affine
manifold. More recently, (BERTSIMAS; GUPTA; KALLUS, 2018) devised a
data-driven scheme to design computationally tractable uncertainty sets from
several statistical hypothesis tests. Furthermore, (PFLUG; WOZABAL, 2007)
make use of the Wasserstein metric to design the DUS as a ball centered at the
empirical distribution within a portfolio-allocation model and (ESFAHANTI;
KUHN, 2018) studied the general properties of DRO problems built using the
Wasserstein ball and its computational tractability. Finally, (BERTSIMAS;
SIM; ZHANG, 2019) developed a framework for solving adaptive distribution-
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ally robust linear optimization problems with a Second-Order Conic (SOC)
distributional uncertainty sets.

Despite the advancements in decision-making models, early research on
Distributionally Robust Optimization (DRO) often resorts to somewhat ar-
bitrary choices in defining the Distributional Uncertainty Set (DUS). These
choices include the criteria for distinguishing between distributions in distance-
based sets or specifying statistical properties like moments or independence
for moment-based sets. Such decisions can be particularly challenging to as-
sess accurately, especially in the context of portfolio allocation. This study
aims to introduce an innovative approach for constructing data-driven DUSs
tailored for distributionally robust portfolio allocation challenges. By leverag-
ing historical data, we develop a series of nested convex hulls, aligning with
the uncertainty set framework as conceptualized by (WIESEMANN; KUHN;
SIM, 2014). A key part of our methodology involves establishing a confidence
interval for the probability measures of these convex hulls, ensuring that the
dynamics of asset returns are captured endogenously and non-parametrically,
directly from the data, thereby reducing the risk of model misspecification.

Our methodology’s standout feature is its simplicity and lack of reliance
on parametric assumptions, allowing for a direct learning process from the data
to understand the probabilistic behavior of asset returns. This approach not
only provides a nuanced characterization of the uncertainty but also avoids
the pitfalls of predefined structural assumptions. To address the potential
non-convexity in the resulting optimization problem, we offer an efficient
solution strategy that converts the complex problem into a manageable,
single-level formulation. This adjustment makes the problem compatible with
existing mathematical programming techniques or straightforward application

in standard software solutions. The contributions of this research are twofold:

1. We propose a cutting-edge method for designing data-driven DUSs for
use in distributionally robust portfolio allocation. This method includes
optimizing the expected value of the portfolio while incorporating Con-
ditional Value-at-Risk (CVaR) for risk assessment. The approach uti-
lizes nested convex hulls derived from historical data, integrated within
the general uncertainty set structure as suggested by (WIESEMANN;
KUHN; SIM, 2014), alongside a novel procedure for calculating the con-

fidence interval for each convex hull’s probability measure.

2. We introduce a single-level equivalent reformulation that simplifies the
computational complexity to depend merely on the size of the historical

data used. Through exploiting the unique properties of our distributional
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Portfolio
allocation (x;)

00 00
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Figure 3.1: Manager decision structure at a given time frame ¢

uncertainty set construction, we streamline the portfolio allocation prob-
lem into a form that is both practical and efficient for high-frequency

trading applications, thanks to its reduced computational demands.

Notation. In the remainder of this chapter, n-dimensional vectors will be
represented by lower-case bold symbols, e.g., ¢ = [cy,...,c,]". Additionally,
following the standard practice for decision under uncertainty modeling, all
random variables will be defined from a measurable space (2, F) to a compact
set and represented with a tilde symbol (e.g., 7). We also denote by M (R")
and Py(R™) the spaces of non-negative measures and probability functions

on R™, respectively, and by H(Z) the convex hull of a set of points Z =

{z1,.. ., 20}

For the sake of illustration, Figure 3.1 depicts the framework and manager

decision structure at a given time frame t¢.

3.1
Portfolio Allocation under Uncertainty

The main objective of this work is to propose a novel methodology to
design data-driven distributional uncertainty sets for distributionally robust
portfolio allocation problems. For expository purposes, the decision structure
here assumed follows a standard one-period model, in which, at a given time
frame ¢, the portfolio manager should define its strategy aiming at maximizing
the company’s wealth at ¢ + 1, without complete knowledge regarding the
asset price dynamics between both time frames. More precisely, we consider
available for investment a set of N = {1,...,n} assets, whose returns over the
capital invested from ¢ to t + 1 are uncertain and represented by a random
vector #; = [Fiy, -+ ,7n,  defined on a compact set Z; C R™. A collection of
J sequentially observed past data R;j £ [f;_j,-++ , 1] up to time frame ¢

is also assumed available. In this context, the manager must define a financial
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allocation of its current budget — x, = [T14y ... ,xnvt]T, that maximizes the

company’s wealth at the beginning of t + 1.

3.1.1
Ambiguity-Constrained Portfolio Allocation

In practical applications, the set of feasible allocations is generally
assembled as a byproduct of two main guidelines. From a managerial viewpoint,
on the one hand, a collection of constraints are commonly imposed to the
quantitative model aiming at shaping the set of feasible allocations to comprise
the manager’s so-called “operational region”. Such constraints are a priori
defined by the decision maker and may consist of budget, leverage, operational
costs, short-sale or portfolio norm restrictions (DEMIGUEL et al., 2009;
BROWN; SMITH, 2011; FERNANDES et al., 2016). On the other hand,
from a risk management point-of-view, the concept of acceptability functionals
and acceptance sets are typically adapted into the portfolio allocation model
(PFLUG; WOZABAL, 2007; FOLLMER; SCHIED, 2011). Roughly speaking,
the acceptance set comprises only those allocations whose risk level, measured
by an acceptability functional, is bearable.

Formally, for a given time frame t, let X; C R™ to denote the a priori
defined “operational region” and ¢ : X; x =; — R the company’s wealth at the
beginning of ¢t 4+ 1 for a given portfolio allocation x; € X, under an uncertain

return over capital invested 7, € =, i.e.,
O(xi,7:) = (1+70) ' x. (3-1)

In order to characterize the acceptance set, in this work, we resort to the
widely used a-percentile acceptability functional, the Conditional Value-at-
Risk (ROCKAFELLAR; URYASEV, 2002; STREET, 2010). A key challenge,
however, for the practical implementation of such measure is its intrinsic
dependence upon a well-defined probability function that drives the future
dynamics of the uncertain factors. For the particular context of this work,
this representation is of difficult assessment from all available information
(e.g., Rt.s), thus most portfolio allocation decisions are made under ambiguity
(PFLUG; WOZABAL, 2007; RESCHENHOFER et al., 2020). Hence, in order
to cope with this modeling issue, and accommodate the uncertainty on a precise
probabilistic specification, we take into account a distributional (uncertainty)
set P, with probability functions defined over Z;, and extend the concept

of a CVaR-based acceptance set to ensure acceptability for all probability
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functionals within this pre-defined distributional set as follows:

At: {Xte.)(t

CVaRgP’) (qb(xt, %J) >I,, VPe P(Rw) } (3-2)

In (3-2), the functional CVaR® is evaluated with respect to the probability
function P and I'; represents a minimum level of wealth desired by the manager
at the beginning of the next time frame. For didactic purposes, we explicitly
identify the distributional uncertainty set P with the collection of historical
data R j, wherein J indicates the “size” of window chosen by the manager to
design the DUS. We highlight that the acceptance set A; captures both the
manager’s risk aversion, by means of the CVaR functional, and its aversion to
ambiguity through the imposition of acceptance over all probability functions
within the distributional uncertainty set P.

In this context, following a Markowitz decision structure, at a given
time frame ¢, the manager’s problem resumes to identify, within all acceptable
allocations x; € A;, the one that maximize its expected wealth at the beginning
of t+1,

x¢ €A QGP(Rt,J

X, € arg maX{ inf : E@ {gb(xt,f“t)] } (3-3)

Note that, similarly to (3-2), the expected wealth also requires a prob-
abilistic representation for the future dynamics of the uncertain factors, thus
also of difficult assessment from available information. Therefore, aiming at en-
suring robustness on the portfolio allocation, a worst-case functional over the
distributional set P(R; ) is applied in (3-3). In the next section, the method-
ology proposed in this work to design the data-driven distributional sets for

the portfolio allocation model is presented in detail.

3.2
Data-Driven Distributional Uncertainty Set

A crucial aspect for a practical implementation of the distributionally ro-
bust portfolio allocation model (3-3) is an adequate design of the distributional
uncertainty set P. Generally speaking, the main ideas discussed on technical
literature are based on distributional moments or distance between probabil-
ity functions. We argue, however, that these design methods largely rely on
an appropriate specification of a set of parameters, for which a poor choice
may lead to low quality or over-conservative solutions (SHAPIRO, 2017). Fur-

thermore, for the particular context of this work, an appropriate estimation of
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the standard moment- and distance-based DUS parameters based on available
information is a difficult task. In this context, the main goal of this section is,
thus, to describe an alternative methodology to efficiently design and construct
data-driven, non-parametric, distributional uncertainty sets for the portfolio
allocation problem (3-3).

The topological structure of the distributional set considered in this work
is based on the canonical form developed by (WIESEMANN; KUHN; SIM,
2014). More precisely, for a given time frame ¢ and a training dataset R;;
of size J, let C;(Riy) € =, Vi eI = {1,...,1} be a collection of the so-
called “confidence subsets” of the support set =;. The concept behind the
distributional uncertainty set is, thus, to take into account all probability
functions P € Py(R™) whose measure of each set C;(-) matches their “true”
value p;;. It should be highlighted, however, that a precise specification of
each {pi:}ier is of difficult assessment. Therefore, in order to cope with this
issue, we soften this restriction and comprise a coverage probability interval for
each {p;;}icz. Formally, the distributional uncertainty set considered in this

work is given by

P(Ris) = {IP € Po(R")

P(ﬁ € Ci(Rt,J)) € |p,Pu), Vi€ I}, (3-4)

where P, = [py,...,P;,]" and p, = [Bu’ e ’Bl,t]T defines the boundaries of
the coverage probability interval for p;;, with p, <p,.

The methodology proposed in this work to assemble the distributional
set (3-4) involves the construction of the confidence subsets {CZ-(-)}ZEI as a se-
quence of nested convex hulls and the coverage probability from confidence in-
tervals of proportion measures, both wholly extracted from the given historical
dataset R, ;. More precisely, the proposed procedure starts by identifying the
extreme points &, ; that define the convex hull of Ry ; —i.e., &4 5 2 T(Ry.5);
and assign Ci(R:.s) = H(R:s). From a modeling perspective, we assume that
H(Ry,s) covers the support set =, thus we attribute p,, = Py = 1. Then,
since from convex theory &, ; C Ry, we continue the procedure by remov-
ing &4y from the training data and assigning the next confidence subset as
Co(Riy) =H (Rt, 7\ &, J), with corresponding set of extreme points denoted
by &s,,7. At this point, in order to define the probability interval {222, t,ﬁu} of

the confidence subset Cy(R, s), we make use of the so-called Wilson Interval
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(WILSON, 1927) of a proportion measure, i.e.,

é1

Doy i L%J <]I{?'€C2(Rt,J)}>

by the Central Limit Theorem (CASELLA; BERGER, 2001). Therefore, a
probability coverage for p,; can be constructed from the standard Wald
bilateral [-confidence interval (AGRESTI; COULL, 1998; BROWN; CAI;
DASGUPTA, 2001), i.e.,

J

1_
b N(pu,ww), (35)

. (1 o (1 — P
N G (3:5)

R (11— Do(1 — P
p2’t — p27t + @ 1( 2 /B> pQ,t( J pQ,t); (3_7>

where ®(-) denotes the standard Normal cumulative distribution function.

The procedure carries on until the number of historical points remaining
to construct coverage probability interval falls behind a given threshold e,
which implicates that the significance of the confidence interval (3-6)—(3-7)
is sufficiently low (AGRESTI; COULL, 1998; BROWN; CAI; DASGUPTA,
2001). Algorithm 2 depicts the procedure proposed in this work to construct
the distributional uncertainty set (3-4).
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Algorithm 2: Convex Hull Sequence-based Distributional Uncer-

tainty Set
Input: Training dataset R; s, confidence level g € (0,1) and threshold

e > 0;

Initialization: Set Ky «+ Ry, &1y + 0 and I + 1;

Ju—

while TRUE do

N

3 for 7 € K; do
4 ﬁfeImKJtmm
5 L 5[7,5,] <— g[,t,J U {’IA“}

6 | Set C/(Riy) = H(EI,W) and compute p,, and p;, using (3-6) and
(3-7), respectively.

7 if }IC[ \ SMJ‘ < ¢ then

8 ‘ Return: {C,-(-),E,-JJLGZ, p,and p,.

9 else

10 || Set I I+1, Ky Ky \ Ermrpg and Eryy 0

Note that, from a computational point-of-view, Algorithm 2 has the desir-
able characteristics of running in a finite number of steps, in polynomial time.
Furthermore, at a given iteration I, the steps to identify the level-set-wise ex-
treme points £, ; can be computed in parallel, thus potentially improving the
scalability and computational performance of the DUS construction algorithm.
Figure 3.2 illustrates the concept of the distributional uncertainty set design
proposed in this work. Essentially, each gray-shaded polytope in the left panel
of Figure 3.2 represents the sequence of confidence sets in (3-4) constructed
from the available training dataset (black dots) and the right panel of Figure
3.2 depicts an interpretation of the distributional set considered in this work.
In fact, note that the topological description of the DUS in (3-4) is based on the
specification of a collection of level sets whose probability measure fit within
an a priori defined interval. We argue that this representation of a distribu-
tion function embeds significantly more structural information regarding the
“true” unknown data-generating distribution into the distributional set than
other widely used metrics for DUS construction (e.g., moment- or distance-

based metrics). However, we also recognize that the proper specification of
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these elements (level sets and probability intervals) is a key challenge for the
practical implementation of (3-4) in real applications. Therefore, the main
purpose of the design procedure proposed in this work is to entirely extract
from the training dataset information both the level sets and their probability

interval, without relying in a particular parametrization.

Figure 3.2: Left panel represents the sequence of confidence sets (each gray-
shaded polytope) in (3-4) constructed from the available training dataset
(black dots) and the right panel depicts an interpretation of the distributional
set considered in this work.

3.3
Single-Level Equivalent Formulation

The structure of the portfolio allocation problem (3-3) considered in this
work falls within the class of a two-level system of optimization problems,
not suitable thus for the application of standard mathematical programming
algorithms or the direct implementation on commercial solvers. Nevertheless,
by leveraging on convex analysis and duality theory, in this section, a procedure
to reformulate the proposed non-convex optimization problem (3-3) into a
single-level, linear programming problem is discussed. Fundamentally, the
main challenge to solve (3-3) relies on the capability to efficiently handle the
distributional uncertainty set P, both in the acceptance set (3-2) and in (3-3).
For expository purposes, to begin with, Lemma 1 shows that the acceptance

set A; has a tractable reformulation.

Lemma 1. For a given time frame t, let R, ; be a finite set of historical
data with size J and P(Rti J) the distributional uncertainty set defined in
(3-4) with confidence subsets {Ci (Rt,ﬁ} o

i

with respective probability interval

{(ﬂ’pi) }iez’ and level-set-wise extreme points {(C/‘Z"t,J}iGI constructed using

Algorithm 2. Then, a portfolio allocation X, € A; if and only if there isn € R
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and ()\, 0) € ]le‘ X R‘f' that satisfy the constraint system

n—-I>1—-a)"! (Z <p7;0i —pi/\z‘)>;

1€T

i (ez - )\z) 2> max {77 - gb(}A(t,’f‘t),O}’ i ’IA"t S g@‘7t7j, 1€ 7.

J=1

Proof. : Recalling from (3-2), by making use of the CVaR-representability
result presented in (ROCKAFELLAR; URYASEV, 2002) and (STREET,
2010), the acceptance set proposed in this work can be equivalently written
with the following hierarchical structure of optimization problems:

PeP(Ry,5) neRr

At: {Xt S Xt

inf {max {fxt(n,]P’)}} > Ft} : (3-8)
with fx, : R x P(Ry,s) defined as:
fr,(n,P) = 1 — (1 — a>_1E(P) {max {77 — qb(xt, f‘t),O}}, Vx €X

and qﬁ(xt, %t) = (1+7;) "xs, as in (3-1). Firstly, note that 7, has finite support
since =y C C;(Ry,y), by construction. Thus, there exists a compact set Z2 C R
such that:

arg max {fxt (n, IP)} C Z, VPeP(Ris). (3-9)

neR

Furthermore,

2

1. fx,(n,-) is concave® in n € R, hence continuous in Z; and

2. fx,(+,P) is linear, thus convex, in P € P(R; ;) because E is a linear

operator® in P.

Therefore, based on Fan’s MiniMax Theorem (BORWEIN; ZHUANG,

2See, for instance, Theorem 10 in (ROCKAFELLAR; URYASEV, 2002).
3We refer to Chapter 3 of (KUBRUSLY, 2006) for a thorough discussion on integral
representations and properties.
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1985), the CVaR-based the acceptance set is equivalent to:

f— ] >
A, {Xt € X Trl?eag{ { PE;%;J) {th(na]P))}} = Ft}

= {xt € &, | max {n - (1- a)_1<JPe7S??7%J) {EUP’) {max {n- QS(Xt,'f't),O}} })} > Ft}

dneZz;

0= (=) (_sw {50 max{o - o) 0}]}) 2

]P’E'P(Rt“]
(3-10)

= XtGXt

Note that the remaining optimization problem in (3-10) coincides with

the optimal value of the following optimization problem over non-negative

measures:

ma ma; — o(x¢,7),0p |du(? 3-11
;LEMJr?(R") /TA‘Gcl(Rt,J) ( X {77 ¢< £y )7 }) lu( ) ( )

subject to:
/ du(#) > p, N VieTZ, (3-12)

PECi(Re,y) "

dp(r) <Dy 10, VYieI, (3-13
S, ) < (3-13)
where M (R") is the set of non-negative measures on R”, and A = {\y, ..., \;}

and @ = {6,,...,0;} are the Lagrangian multiplier of constraints (3-12)
and (3-13), respectively. It worth highlighting that, since Py, = Pie = 1 by
construction, every feasible measure in (3-12)—(3-13) is directly identified with
a probability measure P € Py(R™). The dual of the problem (3-11)—(3-13) is
given by:

min ) <pi9¢ - pi&-) (3-14)

1€T

subject to:

I

ieT {f‘GCz‘(Rt,J)

0;, \; > 0, Viel. (3-16)

}(91- = \i) = max {n—¢(x,#),0}, V#eC(R); (3-15)

Since the confidence subsets {Ci(Rn J)}EZ
within Z, for each i € {1,...,1 — 1}, let C;(Rs.y) = Ci(Rs.y) \ Cit1(Rs) be

a partition of the support set of 7,. In this context, equation (3-15) can be

are nested in an increasing order
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equivalently re-written as:

zij (0; = \j) = max{n—o(x,7),0}, V#eCiRy), i€l (317)

j=1
Then, for a given i € Z, we can reformulate equation (3-17) as:

i

> (6]- — )\j) >  max {max {n — ¢(Xt,f'),0}}. (3-18)

j=1 #€Ci(Re,1)

Since max {77 — qﬁ(xt, 'f'),O} is convex in ? € C;(Ry.;), the optimal set of the
optimization problem in the right-hand-side of (3-18) is contained within the
set of extreme points of C;(R: ;). Thus,

i (ej - Aj) > max {n - gb(xt,'f“),()}, Ve, iel. — (3-19)

J=1

Following this result, the acceptability constraint is satisfied if 3 n € Z
such that

)

j=1
. V'f“eé'i,tﬂ],iel
1T (1-0) g 8 (- )

0;, i >0,

Viel.

Thus, the CVaR-based acceptance set can be equivalently re-written as

follows:

IneR, (A0) R xRL;

€L

-1

zi: (ej_)\j> zmax{n—¢(xt’f~)’0}’ V'f“EEi,tJ, 1 €T,
=1

(3-20)

]

Generally speaking, Lemma 1 implies that verifying the acceptability of
a given portfolio allocation X; € A; can be performed in polynomial time.

Furthermore, from a prescriptive viewpoint, the CVaR-based acceptance set

((9j — )\j) > max {77 — ¢(Xt,’f'>,0},
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(3-2) with P(Ru J) constructed based on Algorithm 2 keeps the tractability
of the main decision-making problem, whenever the latter is tractable. In the
particular context of this work, next, we show that the proposed portfolio

allocation problem (3-3) has also a tractable, single-level linear, reformulation.

Theorem 1. For a given time frame t, let R ; be a finite set of historical
data with size J and P(Rtﬁ]) the distributional uncertainty set, as defined in
(3-4), with confidence subsets {Ci (Rt,J) }ieI with respective probability interval
{(Qi,@) }iez’ and level-set-wise extreme points {Ei’t’J}ieI’ constructed using
Algorithm 2. The data-driven distributionally robust portfolio allocation model

(3-3) has the following equivalent single-level linear reformulation

max > (pi tAZ@) — pi7t9§2)> (3-21)
x¢, A1 9(1) ieT ’
(D 51 A2 g(2)
subject to:
3 <A§2> _ 9§2>) < 6(xi,#) Vie&,, icT, (3-22)
j=1
2202 >0, Viel; (3-23)
77(1) - > (1 - 04)_1 (Z (Pi‘gzo) - pf‘ﬁ)) ) (3-24)
1€l

3 (95” _ Ag.”) > 50, V#e&y, icl, (325
j=1
o >0 = (i, 7)), Vi€, i€T; (3-26)
s >0, Vi€, i€l (3-27)
AV oM >0, VieI; (3-28)
Xy € Xt. (3-29)

Proof. : Following the results of Lemma 1, it remains only to derive the

Y

reformulation of the inner optimization problem infgep(r, ) E@ [gb(xt, 1~°t>
which has optimal value coincident with the following optimization problem

over non—negat ive measures:

i x;, P ) du(? 3-30

o min, /ﬁeclmt,‘])cb( : ) () (3-30)
subject to:

du(#) <3, ,, AP VieT; 3-31

Jcem,, ) < z (3:31)

/ du(#) > p. . 0P Viel, (332
7€Ci(Ry,7) ’
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with M (R") denoting the set of non-negative measures on R”, and A? =
IS\ )\g)} and 8% = {68), ...,0%} the Lagrangian multiplier of con-
straints (3-31) and (3-32), respectively. We highlight, nevertheless, that by
construction, Py =D = 1, thus every measure that is feasible in (3-31)—
(3-32) has a direct identification with a probability measure Q € Py(R™).
From now on, the roadmap of the reformulation procedure follows similarly to
Lemma 1. Firstly, we take the dual of problem (3-30)-(3-32), presented next
in (3-33)—(3-35).

2 - 52
A{%ae)((?) Z (pz‘,t)‘i B pi,tei ) (3-33)
’ €L
subject to:
2 _ @) < . R | _
,;Z]I{f-eci(nt“])} <)\z 91 ) = ¢(Xt; T)) V rec Cl(Rt’J), (3 34)
A2 9® >0, Viel (3-35)

Problem (3-33)—(3-35) is a semi-infinite optimization problem, thus non-
tractable for standard mathematical programming algorithms. Next, by mak-
ing use of the design structure of the confidence sets {Ci(Ru J)}ieI, we cre-
ate the following partition of the support set of 7, by setting C;(R.;) £
Ci(Riy) \ Cix1(Ry,y). As a consequence, equation (3-34) can be equivalently
re-written as follows:

7

> <)‘§2) - 95‘2)) < ¢<Xt,’f°>7 V#eC(Ry), i €Z;

j=1

< min {gzﬁ(xt,f“)}, Vel

#€Ci(Ry,s)
< cb(xt,'f") V€&, i€l
Thus, the inner optimization problem infgep(r, ;) E@ [(b (xt, i"t) in (3-3) is
equivalent to the following linear programming problem:
max (p. AR —pz-t@@)) (3-36)
A2 g2 it =it )
subject to:
> (A§2) - 9§2’> < 6(x,7) Vi€ &y, icT; (3-37)
j=1
A 9 >, Viel (3-38)

Finally, by making use of the main result in Lemma 1, the data-
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driven distributionally robust portfolio allocation problem model (3-3) has

the following equivalent single-level linear reformulation:

2 _ 5 9@ ;

s, T (0 -ml?) ()
7D §MHAR) g(2)
subject to:
Z ()\;2) — QJ(.?)) < gzﬁ(xt, f“) Vi€, i€T; (3-40)
j=1
X200 > 0, vieT (1

1
n —T; > (1 -« (Z (piez(l) - pz)‘z(l))> ; (3-42)
€L

3 <9§.1) - A§1>) > 5V, Vi€, i€T; (3-43)
j=1
o) =™ = (xi,#), Ve, €T, (3-44)
5721) >0, Ve, i el; (3-45)
AW 6 > 0, VieT; (3-46)
Xt € Xt, (3_47>

where 6 = {5’9)}% is an auxiliary variable to account for the truncation
recit,J
function max {77 — ¢<xt, f“),()} in Lemma 1.

]

By virtue of Theorem 1, the data-driven distributionally robust portfo-
lio allocation model (3-3) can be efficiently solved by standard mathematical
programming algorithms or direct implemented on commercial solvers. In the
next section, a set of numerical experiments is performed aiming at illustrating

the applicability and effectiveness of the proposed portfolio allocation method-

ology.

3.4
Numerical Experiments

In this section, we consider a numerical experiment for the single-period
portfolio allocation problem to illustrate the applicability and effectiveness of

the proposed methodology.
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34.1
Experimental Set Up

To evaluate the performance of our methodology in a practical setting, we
conduct experiments using real financial data. Specifically, the experiments uti-
lize data sets from the Kenneth R. French database 4 . This includes stocks from
the New York Stock Exchange (NYSE), American Stock Exchange (AMEX),
and NASDAQ), which are represented through capitalization-weighted indexes
across different industry sectors. For our analysis, we employ daily data from
five industrial portfolios, namely Consumer (Cnsmr), Manufacturing (Manuf),
High Technology (HiTec), Health (Hlth), and Others (Other). We use daily
data since mid 1932 until the end of 2023, totaling almost 24.000 trading days.
We conduct the experiment on a rolling-horizon fashion, where at each day the
model determines the allocation of its current budget on each of the available
investment options.

Without loss of generality and for expository reasons, in this work, we
assume a standard short-selling constraint, where ¢ represent the cost incurred

as a percentage of the amount negotiated:

X, = {xt eR} |3 (wf,u) €R} xRY :

+ -\ _ .
(ui,t - ui,t) =0;

1

n

(2

Tig = Tig—1(1 + Fip1) + (1 — C)U:t — (I +ouy,, Viell,...

In addition, notice that the data-driven distributionally robust portfolio
allocation model (3-3) requires the choice of a value for 7, which determines

the quantity of past trading days used to construct the DUS.

3.4.2
Portfolio Allocation Analysis

Our initial analysis compares the strategy derived from the DRO model
to a naive strategy that allocates an equal portion of the portfolio to each
asset at the start of each trading session. To ensure a fair comparison of both
strategies in terms of risk, we used the out-of-sample CVaR ~ of the naive

strategy as the risk constraint value for the DRO model. In case such value

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french /data_ library.html
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results in an unfeasible problem for a given step, we opted to minimize the risk
measure, following the work of (STREET, 2008).

In this experiment, we consider an initial wealth of $1 and three different
values for J: 30, 180, and 360 days. For each setting we present the cumulative
wealth and the portfolio allocation for the whole trading period in Figures 3.3,
3.4, and 3.5

The results are illustrated in Figures 3.3, 3.4 and 3.5.
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Figure 3.3: Left panel shows the cumulative wealth comparison between naive
model and the DRO model with 7 = 30. Right panel displays the portfolio
composition.
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Figure 3.4: Left panel shows the cumulative wealth comparison between naive
model and the DRO model with 7 = 180. Right panel displays the portfolio
composition.

Noticeably, the model utilizing the last J = 180 days in each trading ses-
sion demonstrates superior cumulative performance. Nonetheless, all variations
of the DRO model surpass the benchmark performance. For better visualiza-

tion, Figure 3.6 compares the three variations of the DRO model.

3.43
Efficient Frontier
A good measure of the suitability of a portfolio allocation model is the

efficient frontier that results from adjusting the risk constraint. In Markowitz’s
(1952) seminal work (MARKOWITZ, 1952), the concept of the trade-off
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Figure 3.5: Left panel shows the cumulative wealth comparison between naive
model and the DRO model with J = 360. Right panel displays the portfolio
composition.
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Figure 3.6: Cumulative wealth comparison the DRO model with J = 30,
J =180 and J = 360

between higher risk tolerance and higher expected return was established. This
concept has since been crucial in evaluating the balance between these values.
In other words, an adequate model should reflect a higher expected return
when the allocator tolerates a higher risk, at least within a certain range.

To assess the adequacy of our proposed model, we present the efficient
frontiers for each variation of our model in Figure 3.7, varying the CVaR
constraint from a loss of 10% to 0%. It is important to note that the nature of
our model is inherently robust, as the optimal allocation considers the worst
end of the spectrum of possible distribution of returns within the data-driven
ambiguity set. This may lead to negative expected returns, as it does in our
experiment settings. Nonetheless, this does not compromise the consistency of
the frontier, which reveals coherent and quasi-monotonic risk-return profiles;

i.e., the higher the risk tolerance, the higher the expected return.
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3.4.4
Trailing Analysis

Although the results shown in Figures 3.3, 3.4, and 3.5 demonstrate
superior cumulative performance, it can be argued that this performance is
heavily dependent on the starting point of the trading session. To provide
a more comprehensive analysis, we conduct a trailing analysis to assess
cumulative results across different window sizes, varying both the starting and
ending points.

Figures 3.8 and 3.9 present the results of the trailing analysis for the
model using J = 180. It is evident that the larger the trailing window, the
better the model performs compared to the benchmark. The dates on the x-
axis indicate the finishing points for given trading sessions, with each figure
corresponding to a different rolling window size.

Finally, for the considered values of 7, we show in Figure 3.10 the
proportion of trailing windows where the model outperformed the benchmark
for a given trailing rolling window size. The results suggest that each option
eventually outperforms the benchmark from a certain point. Additionally, the
model with smaller values for the composition of the DUS achieves more

consistent results.

3.5
Conclusions

In this chapter, we applied the PolieDRO framework to the prescriptive
task of portfolio optimization. By simultaneously addressing both risk and re-
turn aspects, we developed a highly flexible and robust model. Our approach
leverages the inherent strengths of Data-Driven Distributionally Robust Opti-
mization to create a portfolio allocation strategy that adapts to varying market
conditions and uncertainties.

The PolieDRO framework consistently outperformed a traditional bench-
mark, particularly over longer investment horizons. Our findings underscore
the efficacy of the PolieDRO framework in providing a more reliable and ad-

vantageous portfolio optimization strategy compared to naive methods.
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Figure 3.7: Top: Efficient frontier considering J = 30. Middle: Efficient frontier
considering J = 180. Bottom: Efficient frontier considering J = 360
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Figure 3.8: Left panel displays the trailing result for J = 180, with rolling
windows of 360 days. Right panel shows the result with rolling windows of
1440 days
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Figure 3.9: Trailing analysis for J = 180, with rolling windows of 7200 days.
Right panel shows the result with rolling windows of 14.400 days
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Figure 3.10: Proportion of trailing windows where the model outperformed the
benchmark for a given trailing window size.
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Closing remarks

In this thesis, we have introduced a novel analytical framework that
leverages Data-Driven Distributionally Robust Optimization (DRO) for both
predictive and prescriptive tasks. Our approach utilized a proposed data-driven
ambiguity set with properties that enabled a finite reformulation of previously
intractable distributionally robust optimization problems.

Chapter 2 explored predictive applications in the field of Machine Learn-
ing. By applying the PolieDRO framework, we proposed new methods for
commonly used loss functions in both classification and regression tasks. These
new models successfully eliminated the need for regularization hyperparame-
ters while maintaining competitive performance compared to traditional ap-
proaches.

Chapter 3 focused on prescriptive applications by presenting a portfolio
optimization model that employed a distributionally robust approach to both
risk and return aspects. The results demonstrated the superior performance of

our model in real-world financial data.

Overall, our findings highlight the potential of the PolieDRO framework
to improve both predictive and prescriptive analytics, offering robust and
efficient solutions across various applications.
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