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Abstract

Rego, Venícius Garcia.; Lopes, Hélio (Advisor); A. Correia, Fer-
nando (Co-Advisor). Evaluating LLM In-Context Few-Shot Learn-
ing on Legal Entity Annotation Task. Rio de Janeiro, 2024. 78p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

A considerable amount of legal documents is available on the Internet
nowadays. Even so, knowledge extraction activities, such as Named Entity
Recognition (NER), in the legal domain are still challenging, even more so
when are not in English. One of the reasons is the low amount of annotated
corpora available, combined with the burden and cost of developing a new
one. The legal annotation task is itself challenging due to limitations on both
time and human resources. The emergence of Large Language Models (LLMs)
has attracted attention due to their capability of reasoning using only in-
context information about the tasks. Recent studies present significant results
regarding its usage in document annotation tasks; in some cases, the model
is comparable to human annotators. Thus, in this work, we evaluate LLM’s
in-context few-shot learning capability on a legal NER, assessing its usage in
an annotation task process with humans. To do so, our study is based on
the data gathered along an annotation task previously conducted to produce
a corpus of legal decisions written in Portuguese, published by Brazilian
Supreme Federal Court (STF), dedicated to the NER, and annotated by law
students. Our experiments showed that the LLM can produce highly accurate
annotations, without any gradient update. Thus, may can assist annotators in
the annotation process, reducing the amount of time and effort and making
the annotation task more efficient.

Keywords
LLM; Legal; Legal Entity Annotation; Few-Shot Learning.



Resumo

Rego, Venícius Garcia.; Lopes, Hélio; A. Correia, Fernando. Avaliando
LLM na Tarefa de Anotação de Entidades Legais Utilizando
Few-Shot Learning. Rio de Janeiro, 2024. 78p. Dissertação de Mes-
trado – Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

Um número considerável de documentos no domínio do Direito estão
disponíveis hoje na Internet. Mesmo assim, atividades de extração de infor-
mação, como Reconhecimento de Entidades Nomeadas (REN), no domínio do
Direito, continuam desafiadoras, principalmente quando não são em Inglês. Um
dos motivos é a escasses de corpus anotados, combinado com a dificuldade e
custos de desenvolvimento. A tarefa de anotação de dados legais é custosa por
limitações de tempo e de recursos humanos. O surgimento dos Modelos de Lin-
guagem Grandes (LLMs) atraiu atenção por conta da capacidade de performar
tarefas apenas com uma descrição ou exemplos de como realizar a atividade,
em linguagem natural, passados no contexto. Estudos recentes apresentaram
resultados significativos em relação a utilização de LLMs na tarefa de anotação
de documentos, em alguns casos, a performance do modelo era comparável a
de anotadores humanos. Portanto, neste trabalho, propomos avaliar a capaci-
dade de LLMs na tarefa de anotação de entidades nomeadas em documentos
do domínio do Direito utilizando Few-shot Learning, verificando sua utiliza-
ção no processo de anotação junto com humanos. Para realizar a avaliação,
utilizamos um corpus em Português dedicado ao REN contendo decisões do
Supremo Tribunal Federal (STF) que foram previamente anotadas por estu-
dantes de Direito. Os resultados obtidos mostram que LLMs são capazes de
reconhecer corretamente as entidades presentes no texto e de produzir ano-
tações precisas sem a necessidade de treinar novamente o modelo, portanto,
podem auxiliar no processo de anotação, diminuindo a carga de trabalho dos
anotadores e tornando a tarefa de anotação mais eficiente.

Palavras-chave
LLM; Direito; Anotação de Entidades Legais; Few-Shot Learning.
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1
Introduction

Despite the large number of legal documents available on the Internet
nowadays, the Named Entity Recognition (NER) tasks —a subtask from
the field of Natural Language Processing (NLP)— in the legal domain are
still challenging. One of the reasons is the low amount of annotated corpora
available, combined with the burden and cost of developing a new one.

Addressing this gap for corpus in Portuguese, Correia et al. (2022)
developed the most extensive known corpus for legal NER, containing 594
decisions issued by the Brazilian Supreme Court (STF) between 2009 and
2018. The annotation process employed was composed of two short training
efforts and a longer final task. It was supported by the collaboration of 95 law
students who performed the task over months under close supervision.

Some aspects of the annotation task in Correia et al. (2022) were based
on Leitner, Rehm and Moreno-Schneider (2020). Similar studies also present
annotated corpus in the legal domain Cao et al. (2022), Brito et al. (2023).
In some of these works, the annotations were made by the authors themselves
(LEITNER; REHM; MORENO-SCHNEIDER, 2020) or a small team of non-
specialists (CAO et al., 2022), which, due to the data nature and volume,
may overwhelm the annotators and increase the effort and time spent on the
annotation task. An additional burden is annotation inconsistency and human
subjectivity, which lead to long iterations for inspection and review. In Brito
et al. (2023), the first annotation step took over two months, even with 36
legal experts (i.eg., public prosecutors and judges).

Thus, performing an annotation task in the legal domain is challenging
due to limitations in terms of both time and specialized human resources.
Furthermore, it is worth mentioning that none of these works mention the cost
related to the annotation task, which makes it reasonable to assume that cost
is also a limiting factor — the more annotators involved and the greater the
expertise, the more expensive the annotation task is likely to be.

One of the recent changes in NLP was the shift from task-specific to
task-agnostic models, where task-specific models are designed for particular
tasks. In contrast, task-agnostic models aim to be versatile across a range of
tasks. Those models gained popularity due to their effectiveness in learning
general representations over unlabeled data that can later be fine-tuned to
adapt a task-agnostic model to perform a desired task (BROWN et al., 2020).
However, even this final step of fine-tuning may not be necessary, and a pre-
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trained Language Model can be zero-shot transferred to perform standard NLP
tasks (BROWN et al., 2020; RADFORD et al., 2019).

In this sense, Large Language Models (LLMs) demonstrate powerful in-
context, few-shot learning capability on many text-annotation tasks, compa-
rable with or even outperforming human annotators (GILARDI; ALIZADEH;
KUBLI, 2023). Moreover, this prompting-based approach requires no large
training sets, unlike fine-tuning a language model for a new task (WEI et al.,
2022), which is useful when dealing with limited corpora scenarios. However,
even with this powerful demonstration, the capabilities of LLMs on legal NER
have not yet been truly explored.

1.1
Research Goal

Due to the powerful few-shot learning capability on many text-annotation
tasks, LLMs could be added to the annotation task to aid the annotators in
recognizing named entities in the text and speeding up the annotation task.

Given the remarkable performance of LLMs and the development gap of
legal annotated corpora, our main research question is:

MRQ: How to use Large Language Models in the Legal Named
Entity Recognition task?

Moreover, the process developed to resolve the MRQ has to be reliable
and replicable, and the resulting annotations must be capable of being vali-
dated.

Thus, seeking to answer the MRQ, this work presents a legal named
entity recognition process with LLMs using Few-shot learning. Our study had
as reference the annotation performed in Correia et al. (2022) and the corpus
presented by them. A specific set of prompts was constructed and sent to every
LLM in the study, considering the entity definitions and guidelines presented
in their work. We also used the annotations from the two shorter efforts to
create the examples database, performing the few-shot learning.

We also address the following research questions and sub-questions:

RQ1: How do we select a valuable set of examples for the prompt
engineering process?

RQ1.a: How do selected examples affect LLM’s performance and
generation of annotations?

RQ2: What number of examples should be used to perform the
task?
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RQ2.a: How does the number of examples affect LLM’s perfor-
mance and generation of annotations?

RQ3: How do we evaluate the annotations generated by the LLMs?

To answer the RQ1 and RQ2, we assessed the annotation capabilities of
six different LLMs, both open- and closed-source, at a coarser-grained level
and in a strict- and relaxed-match way (LI et al., 2023b). Our experiments
were split into two phases. In the first phase, the experiments were conducted
on five documents (totaling 17,568 tokens, with 337 annotations covering 2,873
tokens). We also evaluated each model’s sensitivity to in-context examples by
changing the selection strategy and the number of examples in the prompt.
Three example selection strategies were developed: random selection, similarity
selection, based on the similarity between examples and the input text, and
clustering selection, selecting the most representative set of examples. Further,
in the second phase, we select the best model and configuration, based on the
result of the prior phase, for annotating an additional 53 documents within
134,711 tokens and 2,585 annotations covering 21,311 tokens.

As a result, we find no significant differences in performance among the
example selection strategies. Also, increasing the number of examples led to
overall performance improvement in two of the six models. In contrast, for
one model, it led to worse performance. The smaller models struggled to
recognize and annotate the entities correctly. On the other hand, the larger
models surpassed an F1 score of 0.70 in the first phase, and the best model
achieved 0.76 in the second phase. Thus, the LLMs can generate good-quality
annotations by recognizing most entities in the decisions. They may also be a
valuable asset in helping the annotators with the annotation process.

1.2
Expected Contributions

– We present a new legal named entity recognition process that leverages
LLMs’ in-context few-shot learning capabilities.

– We present a reliable evaluation of the annotations generated, comparing
them with those made by human annotators on the most extensive corpus
known for legal NER.

– We assess the LLM’s sensitivity to in-context examples by changing how
they were selected and the impact of the number of examples included
in the prompt.
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1.3
Overview

This work is organized as follows: Chapter 2 describes the background
and definitions providing the context and concepts required to understand this
proposed process. Chapter 3 presents the related work that guided and founded
this work. Chapter 4 presents the corpus acquired to evaluate the LLMs
annotations capabilities, and also describes each entity included. Chapter
5 presents the proposed process for legal NER using LLMs, the examples
database, prompt construction, and the example selection strategies developed.
Chapter 6 describes the experiments executed to evaluate the LLMs in the
proposed process and presents a detailed analysis of the results. Finally,
Chapter 7 presents our conclusion of the proposed process, and reiterates the
contributions and research questions that have been answered.



2
Background and Definitions

This chapter contextualizes the background of the NER tasks and Legal
NER and provides the definitions of important concepts such as Transformer
architectures. Finally, it also describes large language models and introduces
the LLMs selected for this work.

2.1
Named Entity Recognition

Named Entity Recognition (NER) is a sub-task of Information Extraction
(IR) that aims to identify and categorize pieces of text into predefined types
of information elements called Named Entities (NE) (NADEAU; SEKINE,
2007; MARRERO et al., 2013), e.g., Person, Location, and Organization
(GRISHMAN; SUNDHEIM, 1996). So, formally, given a sequence of tokens
s = ⟨t1, t2, ..., tn−1, tn⟩ the output of a NER system will be a set of predefined
labels l = ⟨l1, l1, l2, ..., lk−1, lk⟩ and their corresponding tokens where they
were mentioned. The NER task is also a fundamental pre-processing step for
other tasks in natural language processing (NLP), such as text summarization,
question answering, knowledge base construction, etc (LI et al., 2023b).

The three most common strategies employed in NER tasks are described
in the following sub-sections.

2.1.1
Rule-based

The text is labeled using hand-coded rulings based on grammatical or
syntactic-lexical patterns, which demands extreme expertise in the domain.
These rules can be designed using domain-specific gazetteers, which link named
features to their location and type (GOODCHILD; HILL, 2008), such as anchor
links on Wikipedia (GATTANI et al., 2013; TORISAWA et al., 2007), using
part-of-speech tagging, and synonym dictionaries (LI et al., 2023b).

This approach often has flaws due to limitations on the rules, like
incomplete dictionaries, and due to domain-specific rules, they cannot be
transferred to other domains. Combined with other techniques, the rule-
based approach can also be used to extract information and post-process
for classification using supervised, semi-supervised, or un-supervised models
(FETAHU et al., 2021).
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2.1.2
Unsupervised Learning Approach

In this approach, mainly a Clustering-based system, the named entities
are extracted using a semantic vector to group the unlabeled data by context
similarity (LI et al., 2023b). For example, Zhang and Elhadad (2013) developed
an unsupervised biomedical entity recognition system for clinical and biological
text by similarity between the entity class and the candidates from the corpus.
The entity classes and the text from the corpus were represented by signature
vectors using an inverse document frequency (IDF) based technique and cosine
similarity to categorize the text.

2.1.3
Supervised Learning Approach

In this approach, supervised models are trained using annotated data
samples to perform a multi-class classification or a sequence label task. From
the data features, these models learn to recognize similar patterns from unla-
beled data. Some of the models that have been applied to supervised NER are
Hidden Markov Models (HMM) (EDDY, 1996), Decision Trees (QUINLAN,
1986), Conditional Random Fields (LAFFERTY; MCCALLUM; PEREIRA,
2001) or more recently deep architecture like BERT models (DEVLIN, 2018).

The supervised learning approach requires a prior step of manual annota-
tion, and this process is often costly. Moreover, a large training set is necessary
for deep architectures, so this approach may not be feasible for limited-source
scenarios.

2.1.4
Named Entity Recognition in the Legal Domain

Implementing and applying artificial intelligence approaches in the legal
domain to reduce the exhaustive and redundant work for legal professionals,
turning the legal system more efficient, has become a research hot-spot
nowadays (ZHANG et al., 2023).

Furthermore, as many of the resources in this field are presented in text
form, such as decisions, contracts, and legal opinions, most of the legal tasks
are based on NLP (ZHONG et al., 2020). Therefore, information extraction
tasks, including NER, can greatly benefit the legal domain.

Some of the applications enabled by NER in legal texts are providing links
to cited laws and legal cases, clustering similar documents, extraction of events
and relationship of documents, legal search and summarizing, quantifying
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citation relevance, legal judgment prediction, and so on (ARAUJO et al., 2018;
ZHANG et al., 2023; CORREIA et al., 2022).

Most of the NER systems focus only on the flat annotations, e.g., person,
location, and organization. Still, legal texts are more complex and specific
compared to general fields (ZHANG et al., 2023). The same person entity in
the legal context may be referencing the judge who wrote the ruling, lawyers,
the person accused, the name of the author of an academic citation cited in
the decision, etc. All this semantic information will be lost considering only a
flat annotation.

To this end, many research studies that aim to develop annotated corpora
for legal NER work with the idea of nested named entities to capture these
details on legal documents, such as Leitner, Rehm and Moreno-Schneider
(2020), Cao et al. (2022), Correia et al. (2022), Brito et al. (2023). Moreover,
as suggested by Ringland et al. (2019), the benefit of the nested entity
recognition approach is the capture of important information such as entity-
entity relationships, entity attribute values, and part-whole relationships.

In Leitner, Rehm and Moreno-Schneider (2020), the legal entities are
described as either designations, the title of legal documents, and consist of
a long title, short title, and an abbreviation or references to acts, norms, or
contracts.

2.2
Transformer

Recurrent neural models, like LSTM and GRU, present a natural con-
straint of sequential computation due to their generation process, where they
generate a sequence of hidden states ht based on previous hidden states ht−1

and the input position t. This constraint hinders parallelization, becoming
critical at longer sequence lengths (VASWANI, 2017).

To this end, Vaswani (2017) developed the Transformer model architec-
ture that eschews the recurrence process and relies entirely on an attention
mechanism to compute representations of input and output. This mechanism
relates different positions of the sequences, creating dependencies even for dis-
tant positions, without sequence-aligned RNNs or convolution, then allowing
significantly more parallelization. Figure 2.1 shows the proposed Transformer
model architecture.

The Transformer consists of two stacks: an encoder and a decoder.

– Encoder: is composed of a stack of 6 identical layers, and each layer has
two sub-layers; the first is a Multi-Head Attention layer, and the second
is a position-wise fully connected feed-forward network.
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– Decoder: is another six identical layers stack, as the encoder, with the
addition of one more Multi-Head Attention layer, that operates over the
encoder output. Moreover, the self-attention sub-layer is also modified
to prevent positions from obtaining subsequential information.

Figure 2.1: The Transformer model architecture extracted from Vaswani (2017)

The Multi-Head Attention consists of several scaled dot-product atten-
tion layers, running in parallel, between queries and keys of dimension dk, and
values of dimension dv, as presented in Figure 2.2. The dot-product of the
query with all keys is scaled by dividing for

√
dk, and then applying a softmax

function to obtain the weights on the values.
The Equation 2-1 presents the attention function computed on a set of

queries, keys, and values packed together in the matrices Q, K, and V.

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (2-1)

Each attention result is concatenated and once again projected. Thus,
the Multi-Head Attention can be described as follows:
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MultiHead(Q, K, V ) = Concat(head1, ..., headh)W o (2-2)
Attention = (QW q

i , KW k
i , V W v

i ) (2-3)

Figure 2.2: Scaled Dot-Product Attention and Multi-Head Attention extracted
from Vaswani (2017)

2.2.1
BERT

Proposed in Devlin et al. (2018), Bidirectional Encoder Representations
from Transformer, or BERT, are multi-layer bidirectional Transformer-based
models designed to pretrain deep bidirectional representations from the un-
labeled text. The BERT models can be easily transferred to another task by
including an additional output layer and then fine-tuning the model with-
out architectural changes. Figure 2.3 shows the two-step framework for BERT
models.
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Figure 2.3: BERT procedures for pre-training and fine-tuning extracted from
Devlin (2018)

To adapt to many downstream tasks, the BERT input representation
can be both a single sentence and a pair of sentences in one token sequence. In
the input sequence, the first token is always the special token [CLS] used for
classification tasks, and the [SEP] special token is used to separate the pair of
sentences. The special token [MASK] is only used during the deep bidirectional
representations training, where some random percentage of the input sequence
is masked for further prediction.

2.3
Large Language Models

Large Language Models (LLM) refer to Transformer-based (VASWANI,
2017) models containing billions of parameters that were pre-trained on a mas-
sive volume of unlabeled corpora. The LLMs emerged from the pivoting of NLP
task-specific models to general-purpose models, such as BERT, with the pre-
training and fine-tuning paradigm and the findings of capacity improvement
on downstream tasks by scaling up pre-trained language model and data size
Brown et al. (2020).

The evolution process of language models came through to only specific
task helpers or language modeling to complex task solvers (ZHAO et al.,
2023) nowadays with the latest LLMs development by OpenAI (2023a), Google
(2023), Anthropic (2023), Meta (2024). To this end, these foundation models
are pre-trained using next-word prediction to learn the language structure and
representations. Finally, to follow instructions and behave as expected, they
are post-trained in a supervised fine-tuning process with paired instructions
and responses and human feedback (DEEPMIND, 2024; DUBEY et al., 2024;
OPENAI et al., 2024; CHRISTIANO et al., 2017).
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However, due to their size, they require larger computing resources for
training, which makes it difficult to adopt LLMs; for example, for training, the
new Llama 3.1 requires 16 thousand GPUs, each one with 80 GB and 240 PB
for storage (DUBEY et al., 2024). Some architecture optimizations emerged
to minimize these costs, such as the Mixture-of-Experts (MoE), implemented
in the DeepSeek V2 model (DEEPSEEK-AI et al., 2024), which can save 42%
of training costs.

2.3.1
Prompt

The prompt is an instruction in natural language that guides the model
to predict the desired output (DONG et al., 2024). An instruction can be
described as the bridging of different combinations of an input X, single or
a group of sentences, for classification, textual entailment, NER, etc; and
an output Y, which can be one or multiple labels, or any sequence for text
generation tasks (LOU; ZHANG; YIN, 2024).

The process of finding and constructing the prompt that improves the
performance of LLMs for the downstream tasks is called prompt engineering.
In this process, several strategies and tactics are applied to leverage the LLM’s
capabilities of resolving tasks given demonstrations (OPENAI, 2023b; LIU et
al., 2023). One kind of prompt strategy is the Few-shot in-context learning, in
which a set of supervised demonstrations is included with the instruction to
condition to desired output; this strategy does not require parameter update
and is performed on pre-trained LLMs (DONG et al., 2024).

2.3.2
LLMs Inference Parameters

The LLMs have parameters that control how the model generates re-
sponses. With these parameters, the models can generate different responses
based on different values provided. The most commonly used are:

– Max output tokens: Controls the maximum number of tokens gener-
ated on response.

– Temperature: Controls the randomness of the sequence generated,
with values close to 0, tokens with high probability tend to be chosen,
generating more concise and precise responses; values close to 1 lead to
more diverse or creative results.

– topK - Controls how the model selects the tokens for output. A topK of 1
means that the token selected is the most probable among all the tokens,
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and a topK of 3, for example, means that the next token is selected from
among the 3 most probable using the temperature.

– topP - Controls how the model selects the tokens for output, to the
most to least probable, until the sum of their probabilities equals the
topP value. When the sum of their probabilities reaches the topP value,
one of the sampled tokens is selected using the temperature parameter.

The LLMs used in this work are presented in the following sections.

2.3.3
Gemini 1.5

Gemini 1.5 Pro and Gemini 1.5 Flash are the latest generation of multi-
modal models from Deepmind (2024). These models included major advances
in sparse and dense scaling, training, and distillation and are capable of recall-
ing fine-grained information from millions of tokens of context (DEEPMIND,
2024), and were pre-trained across many different domains, including web doc-
uments, codes, image, audio and video content.

The Gemini 1.5 Pro is a sparse mixture-of-expert (MoE) Transformer-
based model that learns to direct inputs to a subset of the model’s parameters
for processing; this conditional computation allows the growth of the model
and data size while keeping only one or few experts running for a given input.
Moreover, the Gemini 1.5 Flash, a lightweight variant, is a transformer decoder
distilled from the Gemini 1.5 Pro model, with the same multimodal capabilities
and lower latency, designed for efficiency with minimal regression in quality.

The Gemini 1.5 Pro model has an input token limit of two million tokens
and an output of eight thousand; the Gemini 1.5 Flash has an input limit of
one million tokens and the same output limit as the Pro version.(DEEPMIND,
2024).

2.3.4
Llama 3.1

The Llama 3.1 developed by Dubey et al. (2024) is a dense Transformer-
based model with a context window of up to 128 thousand tokens, the overview
of Llama 3.1 parameters is present in Table 2.1. The largest model has 405
billion parameters. The Llama 3.1 was pre-trained on a corpus of about 15
trillion multilingual tokens, compared to 1.8T tokens from the previous Llama
2.

The dataset developed in (DUBEY et al., 2024) for language model pre-
training was made from a variety of data sources, most obtained from the web,
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containing knowledge up to the end of 2023. Furthermore, the collected data
was submitted to several cleaning processes to ensure high-quality training
data. Some of the cleaning processes were:

– Safety Filtering: to remove domains ranked as harmful or containing
high volumes of Personally Identifiable Information (PII).

– De-duplication: on URL-level, to keep only the most recent version
of pages relative to each URL, document-level removing near duplicate
documents, and line-level to remove lines that appeared more than 6
times in each bucket of 30M documents.

– Heuristic Filtering: heuristics to remove additional low-quality docu-
ments, outliers, and documents with excessive repetitions.

–

The final dataset contains 50% of tokens corresponding to general knowl-
edge, 25% of mathematical and reasoning tokens, 17% code tokens, and 8%
multilingual tokens.

Table 2.1: Overview of the key hyperparameters of Llama 3.1 extracted from
Dubey et al. (2024)

8B 70B 405B
Layers 32 80 126

Model Dimension 4,096 8192 16,384
FFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key/Value Heads 8

Peak Learning Rate 3 × 10−4 1.5 × 10−4 8 × 10−5

Activation Function SwiGLU
Vocabulary Size 128,000

Positional Embeddings RoPE(θ = 500, 000)

The results reported by Dubey et al. (2024) suggest that Llama 3.1 405B
performs on par with leading solutions such as GPT-4 across a variety of
tasks. On the other hand, the smaller versions with 8B and 70B parameters
outperform alternative models with a similar number of parameters, such as
Mistral 7B, Mixtral 8x22B, and GPT-3.5 Turbo.
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2.3.5
GPT-4o mini

The GPT-4o mini is the most cost-efficient small model from OpenAI,
more than 60% cheaper than the GPT-3.5 Turbo. Moreover, it supports text,
image, video, and audio inputs and has an input context window of 128
thousand tokens and up to 16 thousand output tokens per request. This model
was pre-trained with data collected up to October 2023. Furthermore, the
GPT-4o mini surpasses other small models on academic benchmarks across
both textual and multimodal.

2.3.6
DeepSeek V2

The DeepSeek V2 developed by DeepSeek-AI et al. (2024) is an economi-
cal training and efficient inference MoE model, composed of 236B parameters,
of which 21B are activated for each token, with an input context window
of 128 thousand tokens. The DeepSeek V2 also adopts a modification in the
Multi-Head Attention proposed in Devlin (2018), a Multi-Head Latent Atten-
tion (MLA), which compresses and caches part of the computation in MLA,
ensuring efficient inference.

Figure 2.4: DeepSeek V2 performance on Multi-task Language Understanding
on MMLU benchmark extracted from DeepSeek-AI et al. (2024)

The model was pre-trained on high-quality data and in a variety of
source corpus containing 8.1T tokens. Further, the model was submitted
to a supervised fine-tuning process and reinforcement learning to improve
the instruction-following and align with human preference. Compared with
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the previous DeepSeek version with 67B parameters, it obtained a stronger
performance, as shown in Figure 2.4, while saving 42.5% of training costs and
generating the tokens 5.76 times faster.



3
Related Work

The emergence of LLMs has attracted the scientific community’s atten-
tion due to their powerful in-context, few-shot learning capability, and many
works have appeared trying to explore and evaluate their performances in in-
formation extraction for data annotation tasks, aiming to discover time-saving
and cost-effective approaches(ALDEEN et al., 2023; XIE et al., 2023; WANG
et al., 2023; LI et al., 2023a).

Aldeen et al. (2023) evaluates LLM data annotation capabilities across
ten different datasets with a diverse number of classes using three prompt
strategies. The datasets used for evaluation were Website Classification, Ques-
tion Classification, Banking Queries, Sarcasm Headlines, Mental Health, Emo-
tions, Spam Messages, News Headlines, Amazon Reviews, and Twitter Topic
Classification. Furthermore, the prompt strategies implemented are as follows:
(1) a baseline straightforward approach, with only a task description with-
out the label’s context; (2) to improve the annotations’ accuracy and context
understanding, a description of each label is provided; and finally in (3), was
attributed a role of specialist annotator, instructing the LLM to use the exper-
tise in data annotation and labeling, combining with the prompt (1). The three
prompt strategies aim to assess the LLM’s behavior due to their significant in-
fluence on generated responses. GPT-3.5 and GPT-4 models were evaluated
on the ten datasets. Moreover, for the GPT-3.5 two values of temperature pa-
rameter were tested: 0.25 and 1. As a result, the GPT-4 model was the most
proficient model across many datasets. Moreover, some prompts worked bet-
ter for certain tasks, and their effectiveness can vary depending on the task
and the nature of the data. Finally, no significant differences were observed in
GPT-3.5 performance between using 0.25 or 1.0 temperature, indicating that
adjusting this parameter only, had minimal impact on the datasets tested.

Our work is similar to Aldeen et al. (2023) regarding improving the
annotations by providing a better context understanding describing each label
and the task. Still, we opted not to implement the other approaches; we believe
the straightforward approach is too shallow to help in a more challenging
domain.

The temperature results observed in Aldeen et al. (2023) are corroborated
by Renze and Guven (2024), which also investigates the effect of temperature
sampling. A total of nine LLMs, Claude 3 Opus, Command R+, Gemini
1.0 Pro, Gemini 1.5 Pro, GPT-3.5 Turbo, GPT-4, Llama 2 7 and 70B, and
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Mistral Large, were tested on a multiple-choice question-and-answer (MCQA)
exam developed using LLMs benchmark problems randomly sampled. The
experiment results suggest again that sampling temperature from 0.0 to 1.0
does not produce statistically significant differences in performance on MCQA.
Due to observed results in Aldeen et al. (2023) and Renze and Guven (2024),
our work set the temperature parameter to 0. in all experiments to provide a
more constant output while not affecting the performance.

Regarding the use of LLMs on NER tasks, Xie et al. (2023) explores zero-
shot learning as Aldeen et al. (2023) and few-shot learning. Xie et al. (2023)
enables the model to extract relevant information by analyzing the syntactic
structure of the input text. The extraction can either made by LLM itself by
providing syntactic hints, ‘First, let’s perform Parf-of-Speech tagging. Then,
we recognize named entities based on the Part-of-Speech tags‘, in the input
instruction or using a parsing tool. The syntactic information contained noun
phrases, Part-of-Speech tags, constituency and dependency trees, and word
segmentation only for Chinese. Moreover, as it is challenging to recognize all
entities at the same time, even when the label size is large, or the data is
from an out-of-distribution domain, it adopts a decomposed strategy where the
NER task is broken down into simpler sub-problems; the recognition process
is a multi-turn dialogue where the LLM recognizes one type of entity per
dialogue iteration. GPT-3.5 was the main subject of the evaluation, but GPT-
3 and Llama2 were also evaluated. The GPT-3.5 was evaluated across seven
benchmarks from general-domain as ACE05, ACE04, OntoNotes 4, MSRA,
Weibo NER, and for domain-specific PowerPlantFlat and PowerPlantNested
containing either flat entities or nested. As a result, the proposed strategies
improved zero-shot and few-shot NER across the seven benchmarks. The
decomposed strategy for zero-shot achieves a significant improvement of 9.22%
of F1 for domain-specific and 3.82% for general-domain compared to the
base method which does not divide. Moreover, using the parsing tool exhibits
consistent improvements across six datasets. The strategies also improved the
few-shot, which achieves 0.57 of F1 on Ontonotes 4 using 10-shots and 0.42 of
F1 on PowerPlantFlat using 10-shots.

Due to the legal domain’s natural difficulty even for legal professionals,
our work adopted a decomposed strategy, dividing the legal NER tasks
into sub-problems. Our work differs from the Xie et al. (2023) because
our recognition process is not a multi-turn dialogue. The annotations are
made entirely separated, and further, with all annotations for each entity
generated, we combine the annotations in a single document. Besides, we also
implemented a few-shot strategy, as corroborated by Xie et al. (2023). This
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approach demonstrates significant improvement compared to zero-shot.
Furthermore, Wang et al. (2023) adapt LLMs to NER by transforming

the sequence labeling task to a generation task, instructing them to gener-
ate labeled sequences by surrounding the entities with special marks, and also
proposes a self-verification to review the extracted entities to handle the hal-
lucination problem. (WANG et al., 2023) conducted the experiments using
GPT-3 on both flat and nested NER datasets, and the LLM achieved compa-
rable performances to supervised baselines, demonstrating remarkable ability
in a low-resource scenario.

Similar to Wang et al. (2023), our work adapts the legal NER tasks to a
sequence labeling task. Through prompt engineering, we conduct the LLM to
generate the same sequence, adding special symbols to mark the legal entities.

On the other hand, works like Li et al. (2023c) focused on creating a
framework of collaboration between human annotators and LLMs, allocating
some data for an LLM to annotate based on the quantified confidence of
how well the model can annotate these data points. The results showed that
the confidence scores generated by LLM are well-calibrated and can achieve
more efficient and accurate work allocation using this score than the random
allocation baseline. We deeply believe in the collaboration of LLMs and human
annotators, and similar to Li et al. (2023c), this work proposes a process
that leverages the LLMs’ annotations capabilities to help the annotators by
reducing the workload.

Deferring from previous presented works, which focused mainly on only
one LLM, our work evaluates six LLMs, both open- and closed-source, to
better assess and comprehend the actual scenario of LLM’s in-context few-
shot learning capabilities on the NER task.



4
Data Acquisition

The dataset used in our experiments developed in Correia et al. (2022)
has 594 decisions published by STF between 2009 and 2018, divided into two
classes of documents: monocratic single justice decisions (261 documents) and
collegiate decisions (333 documents). Moreover, each decision has two levels of
nested legal entity annotation: four coarser legal named entities and twenty-
four nested ones (fine-grained). The four coarser named entities on the first
level are Academic Citations, Legislative References, Persons, and Precedents.

4.1
Academic Citations

Represents a direct citation of books, articles, and journals written by
judges on the decision, often used to support arguments in a ruling. Although
academic citations are rare regarding the other entities, they can offer valuable
information of the influence of certain authors in the legal debate (CORREIA
et al., 2022). Correia et al. (2022) mapped six possible fine-grained entities
within an academic citation. An example of an academic citation is shown in
Figure 4.1.

Figure 4.1: Academic Citation example with the author, title, and publisher
information

Total Per excerpt
min max average std median

Sentences 62,933 3 551 105.97 81.33 93.0
Tokens 1,782,395 121 16,087 3,000.66 2,501.79 2,692.5
Coarser-grained 33,055 1 267 55.65 42.44 47.0
Fine-grained 57,573 0 507 96.92 69.21 81.0

Table 4.1: Counting of sentences, tokens, coarse and fine-grained annotations
collected from Correia et al. (2022).
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4.2
Legislative references

Citations to legislative references, a fundamental part of legal reasoning,
consist of articles, laws, sections, and constitution references mentioned in the
decisions. This entity has seven possible fine-grained entities. An example of
legislative reference is present in Figure 4.2

Figure 4.2: Legislative Reference example with the author, title, and publisher
information

4.3
Persons

This entity represents name, surname, titles, and treatment pronouns
as long as they are followed by the name and not within other entities. The
primary purpose is disambiguation regarding personal identification on the
other entities. Also, this is the only coarser-grained entity in the corpus with
no fine-grained elements linked to it. The Figure 4.3 presents an example of a
Persons entity.

Figure 4.3: Persons example

4.4
Precedents

Citations to prior court decisions in the ruling. As cited in Leibon et al.
(2018), precedent citation undoubtedly has great value in common-law-based
judicial systems, such as in the United States and Canada, where courts are
bound to their previous rulings. The precedent references in STF do not follow
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Coarser-grained Entity Per Excerpt Total Average Tokens
Academic Citation 2.99 1,775 24.60
Precedents 15.33 9,108 10.27
Legislative Reference 17.22 10,229 8.41
Person 20.11 11,943 3.38

Table 4.2: Number of annotations by each Coarser-grained Entity collected
from Correia et al. (2022).

a formal standard; they may appear with a legal procedure identification or
temporal element like the judgment date or the decision’s publication date
to identify which decision is being referenced, or even both. The precedent
citations can tell the importance and relevance of a given legal procedure to
the court (CORREIA et al., 2022). An example of precedent is present in
Figure 4.4.

Figure 4.4: Precedent example in orange with the legal procedure class and
number information

Table 4.1 presents the overall counting of sentences, tokens, coarser and
fine-grained annotations and by each excerpt. The corpus has a variability of
excerpt lengths; some excerpts are very small, with only a few tokens, while
others reach over 16,087. Moreover, the number of coarser-grained presents in
the excerpt also has great amplitude, with a minimum of one and a maximum
registered of 267 annotations and an average of 55 annotations.

The number of inner elements (fine-grained elements) linked to each
coarser-grained element illustrates the complexity related to the recognition
task. Furthermore, Table 4.2 presents each coarser-grained element’s total
occurrences and its average size (in number of tokens), where we suppose that
the larger and rarer the element, the more challenger its recognition will be.



5
Methodology

The proposed process uses a minimal set of manually annotated doc-
uments, the Minimal Golden Dataset (MGD), to extract the examples used
in the prompt engineering step. Three strategies were developed for selecting
these examples based on random selection, clustering selection, which chooses
the most representative subset of examples, and similarity selection, based on
the similarity distance between input text and examples. The resulting prompt
provides task-specific context, including definitions for every named entity and
a carefully chosen set of examples illustrating how to perform the annotations.

Figure 5.1: Proposed Process.

Figure 5.1 presents an overview of the proposed process, a straightforward
process composed of two subprocesses: the first for the examples gathering and
the second for the annotation task itself. The first subprocess begins with the
annotation task to build the Minimal Golden Dataset. In the following step, we
extract sentences from the MGD containing at least one of the defined entities
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to compose the Example Database, where these sentences are then encoded
and stored.

In the second subprocess, we have as input the collection of documents to
be annotated. The first step consists of breaking every document into a set of
excerpts. For every excerpt, we selected a set of examples, using one of the three
selection strategies stated before, and included them in the prompt provided
to the LLM for individual annotation of each entity. Finally, we compile all the
responses into a single document, consolidating the annotations for all entities.
Suppose two or more annotations of different entities collide in the same
tokens. In that case, a heuristic treatment is applied, where each entity has a
priority level, to the least to most: Person, Legislative Reference, Precedent,
and Academic Citation; as an example, if a person annotation collides with an
academic citation, the tokens of academic citation will be selected.

In the following subsections, we present a detailed description regarding
the MGD, the construction of the examples database, the prompt description,
and the strategies for example selection.

5.1
Minimal Golden Dataset (MGD)

An MGD is required to create the examples database, which provides
the context needed to perform the LLM‘s few-shot learning for the annotation
generation process. This minimal golden dataset represents an annotated
corpus that should contain a few manually annotated documents and include
all entities’ examples. Since the MGD significantly impacts the examples
collection, its quality reflects on the LLM performance. That’s why domain
specialists must participate in this annotation step.

The size of the MGD, in terms of the number of documents and tokens,
may vary according to the annotation task domain. In this study, we have
evaluated the impact of the number of examples on the LLMs’ performance,
and our results (described in Section 6.3) have shown that a few dozen examples
are enough for this annotation task. So, due to its small size, the effort, time,
and human resources required for its production will be lower.

5.2
Examples Database

The Examples Database is a collection of examples of each entity
extracted from the MGD after compiling the annotations made by each
annotator and defining the annotation classes. At this point, several steps of
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cleaning and selection can be applied to ensure a high-quality set of examples.
See the Section 6.1.2 for the details.

In summary, the examples are sentences containing at least one an-
notation for each entity. Thus, each entity ek has its own examples set
Sek = {s1, s2, ..., sn−1, sn}, and the size of Sek is limited by the number of
sentences where the ek is present, without repetition.

Furthermore, each entity example sn in Sek is masked, removing the
annotation class information or any special mark, which will used to represent
the input text. Thus, each entity ek also has a masked example set Mek =
{m1, m2, ..., mn−1, mn}.

Finally, the Examples Database can be more rigorously described as a
collection of tuples ⟨ek, sen , men⟩ where ek is the labeled class, sen is the n-th
example of ek, and men the respective mask for the n-th example.

5.3
Prompt Construction

The developed prompt described in Figure 5.2, first provides information
about the task’s context on the top level of the prompt, followed by an explicit
description of the entity extracted from the guidelines in (CORREIA et al.,
2022), improving the comprehension of the entity. Moreover, it describes how
to perform the annotation task, assigning the beginning tag (@@) and the end
tag (##) for every annotated entity (WANG et al., 2023).

Furthermore, we also include a few input-output examples demonstrating
the task in the prompt. For example, for the excerpt:

“As Súmulas 282 e 356 do STF dispõem respectivamente”

we have the following response:

“As @@Súmulas 282 e 356 do STF## dispõem respectivamente”

The process to select the examples used in the prompt is described in
Section 5.4.

Finally, we give the sentence that needs to be annotated and expect
the LLM response with the same text and the annotations’ special markers
addition.
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Figure 5.2: Prompt structure for Academic Citation entity annotation. The
text in dashed lines is passed as a system message, and the continuous text
is passed as a user message. The text marked in red is the task and entity
description, in yellow the few-shot, and in blue the input sentence. Finally, in
green, the LLM completion.

5.4
Example Selection Strategies

For LLMs few-shot evaluation, we adopted three different ways for
example-selection: (1) Randomized, in this strategy, we select k sentences
randomly, and each sentence has an equal chance to be selected; (2) Clustering,
the sentences are grouped into k groups, where k is equal to the length of
the few-shot set. Further, the centroid of each group is selected and used as
an example. Since the centroids had to be actual sentences, we used the K-
Medoids model to create the clusters; (3) Similarity, k sentences are selected
based on cosine similarity with the input (LIU et al., 2021).

To increase the retrieval results for both (1) and (2) example strategy
selection, the sentences were embedded using a task-related encoder (LIU et al.,
2021), in this case, the Legal-BERTimbau1 model, a BERT model fine-tuned
with over 30,000 Portuguese legal documents available online.

1https://huggingface.co/rufimelo/Legal-BERTimbau-base



6
Experiments

This chapter describes the experiments executed to evaluate the LLMs
in the proposed process and presents a detailed analysis of the results. This
chapter is organized as follows: Section 6.1 presents the data, LLMs, metrics,
and other configurations used in the evaluation. Section 6.2 describes the
experiment conducted to estimate the best configuration of the number of
examples and selection strategy for each LLM and discusses the results. Finally,
Section 6.3 presents the results of the best model on the prior experiment on
large data.

6.1
Experimental Setup

A total of six LLMs were selected, open- and closed-source. We tested the
Gemini 1.5 Pro variant model and 1.5 Flash through the Gemini API1, GPT-4
O mini from OpenAI2, DeepSeek Chat V2 using DeepSeek API3, Llama 3.1
405B and Llama 3.1 70B through DeepInfra platform4, the pricing for each
LLM is presented in the Table 6.1.

Because of the LLMs’ cost and the combinatory number of examples,
selection strategies, and LLMs, we needed to reduce the number of documents
used for the evaluation. To do so, we performed a stratified selection of
approximately 10% of the dataset, totaling 58 documents, to create the
validation set with five documents and the test set with 53 documents. Table

1https://ai.google.dev/gemini-api
2https://platform.openai.com/
3https://platform.deepseek.com/
4https://deepinfra.com/

Table 6.1: LLMs pricing in US dollars per one million tokens. Accessed on July
25, 2024

Model Input Price Output Price
DeepSeek V2 $ 0,14 $ 0,28

Gemini 1.5 Pro $ 3,50 $ 10,50
Gemini 1.5 Flash $ 0,35 $ 1,05

GPT-4o mini $ 0,50 $ 1,50
Llama 3.1 405B $ 2,70 $ 2,70
Llama 3.1 70B $ 0,52 $ 0,75
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6.2 presents the number of annotations and tokens for each entity on the
validation set and for the test set.

Table 6.2: Number of annotations and tokens for each named entity on the
validation set

Entity
Validation Set Test Set

Annotations Tokens Annotations Tokens
Person 144 505 916 3,137
Legislative Ref. 95 823 824 6,867
Precedent 80 1,013 693 7,410
Academic Cit. 18 532 152 3,897

337 2,873 2,585 21,311

For all experiments, we set the temperature parameter to zero, which
alters the level of randomness of the generation, providing a more constant
output, for reproducibility purposes, and as suggested by Renze and Guven
(2024), Aldeen et al. (2023), changes in temperature from 0.0 to 1.0 do not
have a statistically significant impact on LLM’s performances, so we discard
changes in this parameter.

Moreover, we split the decisions from both validation and test sets by
sentences with a minimum length of 2000 tokens.

Since our purpose is to provide a reliable evaluation of LLM’s perfor-
mance in the legal named entity annotation task, we used the annotations on
the validation and test set as ground truth and measured the performances of
LLMs in an exact-match and relaxed-match way (LI et al., 2023b):

– Exact-match: the LLM annotations boundaries and type must match
the golden annotation.

– Relaxed-Match: the LLM annotations must assign the correct entity
and overlap the ground truth, regardless of its boundaries.

allowing us to calculate the precision, recall, and F1-score metrics.

6.1.1
MGD Setup

Based on (CORREIA et al., 2022) work, we got the annotations obtained
during the two shorter training sessions of the annotators in the annotation
activity and used them as MGD5. Thus, the MGD contains a total of ten

5The annotation data built in these training sessions were kindly provided and
anonymized by the authors of the referenced work (CORREIA et al., 2022).
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annotated documents. During these shorter trainings, all annotators had the
same set of decision excerpts. Meanwhile, in the final annotation session,
every excerpt was annotated on average by 5.4 students. So, by selecting only
documents from the training session instead of the other documents from the
corpus, we reduced the chances of contaminating the examples database, as
the LLMs would only have access to annotations produced before the long final
annotation effort, making our results more reliable.

6.1.2
Examples Database Setup

From the MGD, we calculated the number of annotations for each
annotator, excluding the annotators with none or very few annotations, and
then the annotation’s percentage of votes for the most voted class. Figure 6.1
presents the distribution of the annotations’ percentage of votes for each entity
after the annotator’s removal.

Figure 6.1: Pertange of votes for each annotation per entity.

After defining the annotations classes, we extracted the sentences con-
taining at least one annotation for each entity. Figure 6.2 shows the distribution
of the number of tokens in the sentences collected for each entity. The sentences
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containing academic citations tend to be more extensive regarding other en-
tities. This is related to the length of academic citation, with more tokens on
average, as present in Table 4.2. The sentences’ length median for the rest of
the entities is below 100 tokens, but sometimes the number of tokens reaches
over 700.

Figure 6.2: Number of tokens in the sentence per entity.

Although these more extensive sentences may appear commonly on a rul-
ing, including them in the examples database will greatly increase the context
sent to the LLMs, sometimes leading to an unpractical and unaffordable price.
Thus, to turn around this problem and uniform the length of the sentences
for both four entities, we apply a filter in the academic citations sentences
by median and the persons, precedents, and legislative references on the third
percentile. The resulting distributions are present in the Figure 6.3.

Figure 6.3: Number of tokens in the sentence per entity after filtering process.

Some observations regarding the annotations on MGD are as follows:
some entities are easier to identify and distinguish from others. Most Academic
Citation annotations receive over 80% of the annotator’s vote — even so,
there’s no annotation with 100% of votes. The percentage of votes for the
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others is more spread. For the Person entity, some annotations received less
than 40% of the votes, showing that most of the annotators did not recognize
or distinguish it from the rest of the entities.

Moreover, the precedent annotations were mostly wrongly labeled as a
person, followed by legislative references and academic citations. In legislative
reference annotations, the precedent was the most common entity wrongly
assigned, in second the person. The person appears again as the most wrongly
assigned to the academic citation. See the Appendix 9.2 for more details.

Therefore, even if the Person entity was created for disambiguation as
presented in Section 4.3, this entity often led to misinterpretation and showed
difficulty annotating. Consequently, it potentially will also be a challenge to
the annotation process using LLMs.

6.2
Tuning Experiment

We conducted an exhaustive search on the validation set to find the best
configuration for the number of examples and selection method. As stated
before, we used three selection methods: random, similarity, and clustering, and
changed the number of examples between 4, 8, 16, and 32. This analysis was
applied to each of the six selected models. Additionally, each combination was
executed five times with different seeds, and the same examples were provided
to all models. Figure 6.4 provides an overview of the models’ performances.

Figure 6.4: LLMs’ average performances on validation set with strict-match.

It was observed that the Gemini 1.5 Pro achieved the best result among
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Figure 6.5: LLMs’ Performance Cost-benefit on the validation set with strict
match

all LLMs, followed by its smaller version, Gemini 1.5 Flash, Llama 3.1 405B,
and DeepSeek V2. Lastly, the Llama 3.1 70B and GPT-4o mini struggled to
annotate a significant portion of the entities. We also calculate the cost-benefit
ratio of each model by the number of examples in the context. To each K, we
find the ratio between the response and the prompt, which includes the entity
description, examples, and input text information. Finally, we calculate the
costs for processing 1 million tokens for each LLM using the pricing presented
in Section 6.1. As a result, alongside DeepSeek V2, the Gemini 1.5 Flash offers
the best cost-benefit ratio with 16 examples, delivering quality annotations at
a lower price, as depicted in Figure 6.5.

Overall, there were no significant differences between the developed
selection methods, indicating that LLMs can generalize even when using
random examples (see Appendix 9.4 for more details). Regarding the number of
examples, both the Gemini Pro and Flash improved their annotations with an
increased number of examples. At the same time, no significant differences were
observed in the Llama 3.1 405B, 70B, and GPT-4o mini. However, DeepSeek
V2’s performance worsened with the increased context of using 32 examples
compared to 16.

Based on the significance testing and cost-benefit analysis, the optimal se-
lection strategy for all models is random selection, as no significant differences
were found among the three strategies; thus, it is not required to implement
similar-retrieval-based strategies. Moreover, for Gemini 1.5 Pro and Gemini
1.5 Flash, 16 examples are the outstanding number, as they provide similar
performance to 32 examples but at a lower cost. For Llama 3.1 405B, Llama 3.1
70B, and GPT-4o Mini, four examples are sufficient; there were no significant
differences in performance, and it is way cheaper. Finally, DeepSeek performed



Chapter 6. Experiments 45

Figure 6.6: LLMs’ average performances with strict-match on the validation
set for each entity using the best configuration of the number of examples and
selection strategy.

better with 16 examples. Table 6.3 summarizes these conclusions.

Table 6.3: Best configuration for each model considering significance tests and
cost-benefit analysis

Model Selection Strategy Number of Examples
Gemini 1.5 Pro Random 16

Gemini 1.5 Flash Random 16
Llama 405B Random 4
Llama 70B Random 4

GPT-4o mini Random 4
DeepSeek V2 Random 16

Figure 6.6 shows the individual analysis for each entity and model using
the best configuration. The Gemini 1.5 Pro once again achieved the best result,
with over 0.70 F1-Score for all entities, including the rarer ones like Academic
Citation. The other models achieved results close to the Gemini 1.5 Pro in the
individual analysis, except for the Person entity, which the other five models
struggled with. For the entity Precedent, Legislative References, and Academic
Citations, the Llama 3.1 405B, DeepSeek V2, and Gemini 1.5 Flash models
exchanged positions for best performance. Thus, it is possible to develop a
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multi-LLM approach and target the models that performed best for each entity,
improving costs and time for generating annotations.

6.2.1
Gemini 1.5 Pro

The Gemini 1.5 Pro achieves the best performance of all models and
presents an improvement with increasing examples in the context. With 16 or
more examples, the model registered a remarkable score of over 0.80 F1 among
all selection strategies. However, the model reached 0.65 of F1 when only four
examples were used, as described in Figure 6.9.

Figure 6.7: Gemini 1.5 Pro performance on validation set with strict-match.

The performance for each entity was balanced, and the model got a high-
quality annotation for all four entities. The entity where the model scored most
was Legislative Reference, with a median close to 0.90. It was followed by
Academic Citation, which, due to its length, is more challenging and obtained
a median of approximately 0.85 F1; the third was the Person, and lastly, the
Precedent, as seen in Figure 6.6.
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(a) Number of marker errors by
number of examples in context

(b) Distance between the sequence generated
and the input by the number of examples in

context

Figure 6.8: Gemini 1.5 Pro generation capabilities. (a) denotes the number of
errors in the generation of special marks, @@ without closing and ## without
opening up with @@. (b) shows the similarity of the response generated with
the input using Levenshtein Similarity.

Regarding the generation capabilities, as shown in Figure 6.8, the model
generated a sequence mostly identical to the input, despite the special marks,
across all numbers of K. However, with only four examples, the model could
not complete 700 annotations, which matches the performance observed in
Figure 6.7, and each time when the number of examples increases, the model
generates fewer marker errors.

6.2.2
Gemini 1.5 Flash

The Gemini 1.5 Flash, a smaller variant of the 1.5 Pro, also performed
well, achieving over 0.70 F1-Score. The model also demonstrated similar
improvement as observed in the Gemini 1.5 Pro, with the number of examples
increasing, as depicted in Figure 6.9.
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Figure 6.9: Gemini 1.5 Flash performance on validation set with strict-match.

The best performance was for the Legislative Reference entity, followed
by Academic Citation, Precedent, and lastly, the Person entity with a median
below 0.6, which is compatible with the difficulty to distinguish and recognize
associated as we saw in Figure 6.6.

(a) Number of marker errors by
number of examples in context

(b) Distance between the sequence generated
and the input by the number of examples in

context

Figure 6.10: Gemini 1.5 Flash generation capabilities. (a) denotes the number
of errors in the generation of special marks, @@ without closing and ##
without opening up with @@. (b) shows the similarity of the response generated
with the input using Levenshtein Similarity.

Moreover, as depicted in Figure 6.10, the model also generated more
marker errors when submitted to fewer examples, and with the increase, the
errors were minimized. Also, the model generates more distant responses than
the Gemini 1.5 Pro, which could be associated with generation interruptions
when the model does not finish the sequences or extra information. This
distance is greater for the academic citation annotations.
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6.2.3
Llama 3.1 405B

The Llama 3.1 405B model performed stable across all combinations
of the number of examples and the selection strategy, with no significant
differences, scoring around 0.70 of F1 as shown by Figure 6.11. Demonstrating
a strong performance even with fewer examples demonstrating the task.

Figure 6.11: Llama 3.1 405B performance on validation set with strict-match.

Furthermore, the Llama 3.1 405B model presents minimal marker errors
and generates sequences that closely align with the input for Precedent,
Legislative Reference, and Person entities (as presented in Figure 6.12). For
academic citation, the model exhibits the same behavior observed for the
Gemini 1.5 Flash, indicating that adhering to the instruction to respond with
the same text and add special marks proves more challenging for this entity.

However, despite these large differences, the model shows remarkable
performance for academic citation, all above 0.70 of F1 score, using four
examples and strategy random, as shown in Figure 6.6. The model also achieves
the best performance for legislative reference annotation and the worst for the
person entity.

Although the Gemini 1.5 Pro scored the highest performance, the Llama
3.1 405B can offer more reliability in the results because it is an open-source
model, as cited in (CHEN; ZAHARIA; ZOU, 2024) the GPT-3.5 and GPT-4
capabilities to follow user instructions worsened over time, occasioning many
behavior drifts. These results may be related to other closed-source models,
making the Llama 3.1 405B the most trustworthy model.
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(a) Number of marker errors by
number of examples in context

(b) Distance between the sequence generated
and the input by the number of examples in

context

Figure 6.12: Llama 405B generation capabilities. (a) denotes the number of
errors in the generation of special marks, @@ without closing and ## without
opening up with @@. (b) shows the similarity of the response generated with
the input using Levenshtein Similarity.

6.2.4
Llama 3.1 70B

The Llama 3.1 70B obtained a moderate performance, close to 0.55 of
F1, as shown by Figure 6.13. The results in Brown et al. (2020) that scaling
up the model size significantly impacts the model’s performance and larger
models that are more proficient at in-context learning are reinforced by the
observed results. The Llama 3.1 405B was significantly better than Llama 3.1
70B, similar to Gemini 1.5 Pro and Gemini 1.5 Flash.

Figure 6.13: Llama 3.1 70B performance on validation set with strict-match.

Moreover, the model demonstrates similar capabilities as Llama 405B
in following the annotation instructions and does not produce many marker
errors. However, the model presented even more severe deviations for text
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generation for academic citation than Llama 405B and Gemini 1.5 Flash, as
described in Figure 6.14, which may have interfered negatively, as observed in
the individual entity analysis (Figure 6.6).

(a) Number of marker errors by
number of examples in context

(b) Distance between the sequence generated
and the input by the number of examples in

context

Figure 6.14: Llama 70B generation capabilities. (a) denotes the number of
errors in the generation of special marks, @@ without closing and ## without
opening up with @@. (b) shows the similarity of the response generated with
the input using Levenshtein Similarity.

Besides, with only four examples, the Llama 3.1 70B demonstrated strong
legislative reference annotation capabilities, even more than larger models such
as DeepSeek V2, and in summary, performed better than the GPT-4o mini.

6.2.5
GPT-4o mini

The GPT-4o mini obtained the worst performance among all models.
It could not correctly identify and annotate most entities present using the
portion and examples selected across the three strategies, not surpassing the
0.50 F1-Score mark. The LLM seems to follow the instructions correctly,
generating coherent results. Still, with serious flaws in adding the annotations’
special markers, reaching more than 350 marker errors even with 32 examples
(Figure 6.16), and adding up the values, it was the model that generated the
most marking errors, which matches the results observed in Figure 6.15.
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Figure 6.15: GPT-4o mini performance on validation set with strict-match.

Based on our prior results and in Aldeen et al. (2023), we can presumably
see that GPT-4o will perform better than GPT-o, given that it is a larger
version. However, we cannot precisely estimate the extent of the improvement.
Still, due to GPT-4o mini results, the GPT-4o may be slightly below the
Gemini 1.5 Pro, which is the direct concurrent among the larger models.

(a) Number of marker errors by
number of examples in context

(b) Distance between the sequence generated
and the input by the number of examples in

context

Figure 6.16: GPT-4o mini generation capabilities. (a) denotes the number of
errors in the generation of special marks, @@ without closing and ## without
opening up with @@. (b) shows the similarity of the response generated with
the input using Levenshtein Similarity.

6.2.6
DeepSeek V2

The DeepSeek V2 model also achieved remarkable performance, as
presented in Figure 6.17, close to or exceeding 0.70 of F1. It fulfilled the
instructions of the annotation special marks, was the model with fewer marker
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errors, only six errors including all five executions using four examples, and
generated mostly identical sequences to input, similar to Gemini 1.5 Pro,
depicted in Figure 6.18. Also, the LLM is one of the most cost-benefit models,
with only $ 0,14 per million tokens, the lowest price among all examined
models. This price is mostly due to the economical MoE architecture developed
in DeepSeek V2, which can save 42% of training costs.

Figure 6.17: DeepSeek V2 performance on validation set with strict-match.

(a) Number of marker errors by
number of examples in context

(b) Distance between the sequence generated
and the input by the number of examples in

context

Figure 6.18: DeepSeek V2 generation capabilities. (a) denotes the number of
errors in the generation of special marks, @@ without closing and ## without
opening up with @@. (b) shows the similarity of the response generated with
the input using Levenshtein Similarity.

Besides, Gemini 1.5 Pro and Flash improved by constantly increasing the
number of samples, while the DeepSeek V2 performed worse with 32 examples
compared to 16. The additional examples may act as a noise, or the information
vanishes with the context increase, which oddly contradicts the results reported
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by DeepSeek-AI et al. (2024) in the Haystack experiment (Figure 6.19), which
measures the models’ capabilities to retrieve information at any in-context
depth and context length.

Figure 6.19: Evaluation results on the “Needle In A Haystack” (NIAH) tests
for DeepSeek V2 extracted from (DEEPSEEK-AI et al., 2024)

6.3
Benchmarking of Optimal Model

To validate the experiment’s results in the validation set, the Gemini
1.5 Pro was executed five times, with different seeds, on the test set using 16
examples and the random selection strategy. The results obtained with strict-
match and for relaxed-match are shown in Table 6.4.

With strict-match, the Gemini 1.5 Pro achieved an average F1-Score
of 0.66, and with relaxed-match 0.76, a significant improvement of 10% on
average.

Figure 6.20: Gemini 1.5 Pro performance on evaluation experiment for each
entity with relaxed-match
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Moreover, the annotation of Precedent entities was significantly worse.
As shown in Figure 6.20, the median of all the other entities is above 0.75,
while the Precedent’s median is close to 0.60. This result is related to the lack
of a formal standard of precedent references in the STF.

However, the model performed well overall in the largest set, even with
the increased variability of the entities.

Table 6.4: Gemini 1.5 Pro results on Test set with strict- and relaxed-match

Strict-Match Relaxed-Match
It. Precision Recall F1-Score Precision Recall F1-Score

1

Acad. Citation 0.69 0.75 0.71 0.72 0.83 0.77
Leg. Reference 0.77 0.70 0.73 0.82 0.75 0.78

Person 0.6 0.59 0.60 0.71 0.69 0.70
Precedent 0.73 0.63 0.68 0.76 0.66 0.70

0.7 0.67 0.68 0.75 0.73 0.73

2

Acad. Citation 0.63 0.71 0.67 0.66 0.81 0.72
Leg. Reference 0.76 0.73 0.74 0.81 0.78 0.79

Person 0.67 0.64 0.66 0.76 0.73 0.74
Precedent 0.69 0.54 0.61 0.72 0.58 0.64

0.69 0.65 0.67 0.74 0.72 0.72

3

Acad. Citation 0.68 0.71 0.69 0.73 0.80 0.76
Leg. Reference 0.69 0.65 0.67 0.75 0.71 0.73

Person 0.67 0.64 0.66 0.78 0.74 0.76
Precedent 0.57 0.48 0.52 0.58 0.47 0.52

0.65 0.62 0.63 0.71 0.68 0.69

4

Acad. Citation 0.69 0.69 0.69 0.75 0.77 0.76
Leg. Reference 0.71 0.66 0.69 0.77 0.71 0.74

Person 0.7 0.66 0.68 0.82 0.76 0.79
Precedent 0.62 0.56 0.59 0.64 0.58 0.61

0.68 0.64 0.66 0.74 0.7 0.72

5

Acad. Citation 0.69 0.74 0.71 0.72 0.82 0.77
Leg. Reference 0.71 0.69 0.7 0.77 0.74 0.76

Person 0.72 0.69 0.7 0.83 0.79 0.81
Precedent 0.59 0.58 0.59 0.59 0.63 0.61

0.68 0.67 0.67 0.73 0.74 0.74

6.3.1
Multi-LLM Approach

Based on the results observed so far, we have also employed a cost-benefit
multi-LLM approach for entity annotation. In this approach, we mix up the
models Llama 405B for legislative reference annotation using four examples,
DeepSeekV2 for academic citation using 16 examples, and Gemini 1.5 Flash
for precedent annotation, following the individual analysis on Figure 6.6. For
all models, the examples were selected using the random strategy.

Gemini 1.5 Flash’s performance in Precedent annotation was close to
Llama 405B, so we decided to keep it for diversity. Furthermore, as none of
the three models performed well in annotating the person entity, we used the
Gemini 1.5 Pro results.
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The strict- and relaxed-match results are in Table 6.5. The approach
using multiple LLMs yielded good results, surpassing the approach using only
Gemini 1.5 Pro in both strict- and relaxed-match, achieving F1 scores of
0.69 and 0.75, respectively. Llama 3.1 also performed well, similar to Gemini
1.5 Pro, with a median F1 score of 0.75, as shown in Figure 6.21, which is
impressive considering only four examples were used. Additionally, DeepSeek
V2 also demonstrated good performance on the test set, similar to what was
observed on the validation set, with an average F1 score of 0.74 in the relaxed-
match, reaching an F1 score of 0.81. Gemini 1.5 Flash exceeded its validation
set performance and was also better than Gemini 1.5 Pro, showing a high
capacity to generalize using the selected examples.

Table 6.5: Multi-LLM Approach results on Test set with strict- and relaxed-
match

Strict-Match Relaxed-Match
It. Precision Recall F1-Score Precision Recall F1-Score

1

Acad. Citation 0.65 0.78 0.71 0.65 0.86 0.74
Leg. Reference 0.73 0.60 0.65 0.77 0.70 0.73

Person 0.61 0.60 0.60 0.71 0.70 0.70
Precedent 0.81 0.67 0.73 0.84 0.68 0.75

0.69 0.63 0.68 0.74 0.74 0.73

2

Acad. Citation 0.70 0.72 0.71 0.80 0.82 0.81
Leg. Reference 0.82 0.60 0.69 0.90 0.66 0.76

Person 0.72 0.70 0.71 0.82 0.78 0.80
Precedent 0.75 0.66 0.70 0.75 0.70 0.73

0.74 0.68 0.70 0.82 0.74 0.77

3

Acad. Citation 0.63 0.71 0.66 0.66 0.81 0.73
Leg. Reference 0.76 0.66 0.70 0.79 0.72 0.75

Person 0.66 0.64 0.65 0.77 0.73 0.75
Precedent 0.76 0.63 0.69 0.79 0.61 0.69

0.71 0.65 0.67 0.75 0.72 0.73

4

Acad. Citation 0.62 0.74 0.67 0.62 0.84 0.71
Leg. Reference 0.75 0.59 0.66 0.77 0.67 0.72

Person 0.70 0.65 0.67 0.81 0.74 0.77
Precedent 0.78 0.64 0.70 0.83 0.67 0.74

0.72 0.65 0.67 0.76 0.73 0.74

5

Acad. Citation 0.64 0.72 0.67 0.67 0.83 0.74
Leg. Reference 0.82 0.63 0.71 0.91 0.69 0.78

Person 0.73 0.69 0.71 0.84 0.80 0.82
Precedent 0.78 0.69 0.73 0.82 0.74 0.78

0.75 0.69 0.71 0.81 0.76 0.78

The differences observed in person entity annotation are due to the treat-
ment of heuristic collisions: with fewer collisions occurring, more person an-
notations were preserved. These results highlight the importance of analyzing
and utilizing different LLMs to build cost-effective solutions, targeting the best
models for each entity. Additionally, it demonstrates that the process devel-
oped for annotating legal entities supports the addition of one or more LLMs
during the annotation phase.
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Figure 6.21: Multi-LLM approach performance on evaluation experiment for
each entity with relaxed-match

6.3.2
Concluding Remarks

Performing a few-shot NER in such a real-world problem is challenging
and requires strong generalization abilities from the models. Moreover, the data
on which the models were submitted in training has a substantial impact on
the recognition, as observed, different models were better in different entities.
Although, in summary, the larger models were better at recognizing and
generating the labeled sequences than the smaller models tested, we can stand
this and conclude that lightweight models with less than 70B parameters could
not be able to annotate most of the entities.

Furthermore, there are no significant differences between the three devel-
oped example selection strategies. In a limited-source scenario, the examples
could be selected randomly and do not require semantically similar retrieval
solutions. Moreover, regarding the number of examples included in the prompt,
some models improved by constantly increasing the number of samples, while
others worsened or did not present any differences. Thus, the impact of a num-
ber of examples depends on each LLM architecture or the pre-trained data.

Therefore, Table 6.6 shows the relaxed-match results on the test set of
Gemini 1.5 Pro, which was the best model on the tunning experiment, and the
Multi-LLM approach. The two approaches obtained similar F1 scores, 0.76 for
Gemini 1.5 Pro and 0.75 for Multi-LLM. The Gemini 1.5 Pro annotated more
tokens, while the Multi-LLM was more accurate. Both solutions obtained a
remarkable performance on the academic citation, legislative reference, and
person annotations, all above 0.73 of F1. However, the Gemini 1.5 achieves
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Table 6.6: Gemini 1.5 Pro and Multi-LLM approach median performance on
the test set.

Gemini 1.5 Pro Multi-LLMEntity Precision Recall F1-Score Precision Recall F1
Academic Cit. 0,72 0,81 0,76 0,66 0,83 0,74
Legislative Ref. 0,77 0,75 0,76 0,79 0,69 0,75

Person 0,78 0,74 0,76 0,81 0,74 0,77
Precedent 0,64 0,58 0,61 0,82 0,68 0,74

0,75 0,74 0,76 0,80 0,72 0,75

moderate performance for precedent, not generalizing as well as the Multi-
LLM solution, as presented in Figure 6.21.
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Conclusion

In this work, seeking to answer the MRQ, we developed a process for
legal entity annotation using LLM in-context learning capabilities, as presented
in Chapter 5.

To answer the RQ1, we developed three different strategies to select
the examples for the prompt engineering process: a randomized selection, a
similarity-based selection between the input and the examples, and finally, a
clustering selection to choose the most representative subset of examples. As a
result, we found no significant difference between the strategies implemented.
Thus, the LLMs could generalized even with randomly sampled examples and
do not require similar-retrieval-based methods, as seen in Section 6.2.

We also evaluated the number of examples that should be used to perform
the task, answering the RQ2, and all six models achieved a remarkable
performance with less than 32 examples. For the Llama 3.1 405B, only
four examples were sufficient to annotate 70% of the legislative references,
as presented in Section 6.3.1. In Section 6.2, we answered the RQ2.a and
found that some models improve their performance by increasing the examples
included in the prompt, such as Gemini 1.5 Pro and Gemini 1.5 Flash. On the
other hand, the DeepSeek V2 worsened with increasing from 16 to 32 examples,
suggesting that additional examples vanished or acted as noise, which oddly
contradicts the experiments in DeepSeek-AI et al. (2024). Therefore, the
impact of the number of examples depends on the models’ architecture and pre-
trained data — some models will perform better with more or fewer examples.

Regarding the RQ3, we have compiled each entity annotation excerpt
on a single document and compare them with the ground truth annotations
manually annotated by specialists in Correia et al. (2022), in two ways: in a
strict-match manner when the type and boundaries of the generated annotation
must match the ground-truth, and in a relaxed-match where only the types
must match, despite the boundaries, as mentioned in Section 6.1. The first
manner provides a more rigorous evaluation than relaxed-match.

Finally, our findings show that LLMs are indeed capable of making high-
quality annotations, even for those rarer entities as academic citations. Our
best results are 0.76 F1 on average, scored by Gemini 1.5 Pro with only an
entity description and a set of examples demonstrating the task. These results
are close to the proposed Multi-LLM approach with a 0.75 F1 score on average.
Thus, due to the observed results, the LLMs could assist the annotators in
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the annotation process by highlighting legal entities in the text, reducing the
burden and mitigating inconsistencies and subjective problems.

7.1
Future Work

For future work, we plan to evaluate more LLMs, such as GPT-4o and
Claude 3.5 Sonnet, both top-notch models for OpenAI (2023a) and Anthropic
(2023) to better assess the results shown by Gemini 1.5 Pro. We also plan
to run the experiments and analysis using the remaining documents from the
corpus to evaluate the LLMs in an even more diverse scenario.

Moreover, we intend to review the generated annotations deeply and
investigate the DeepSeek V2 performance with 32 examples to understand
the behavior shown in Section 6.2. And so on, assess the proposed process in
another legal corpus, or even in a different domain, to ensure that it can be
transferred and whether LLMs produce again highly accurate annotations.

We also plan to create a new version of the corpus used in this work by
implementing an LLM-in-the-loop annotation process with humans. These an-
notators will have access to the prior annotations and the LLMs’ suggestions
to refine and increment the corpus. We aim to create an annotation process
that reduces the annotators’ workload while mitigating subjectivity and incon-
sistency.
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Appendix

9.1
Entity Ontology

In this section, we describe the ontology for each entity extracted from
Correia et al. (2022).

Table 9.1: Academic Citations ontology extracted from Correia et al. (2022).

Fine-grained Entity Type Description

Title Text The work published title.
Collection Title Text The collection title, if the publication is part

of a collection (e.g., journal title).
Author Text The publication first author.
Co-author Text The publication co-author(s).
Publisher Text The work’s publisher.
Year of Publication Number Year of publication of the work.

Table 9.2: Legislative References ontology extracted from Correia et al. (2022).

Fine-grained Entity Type Description

Legal Act Text The legislative act that was cited (e.g., Fed-
eral or State Constitution, Legal Statutes).

Institution Text When the act is not legislative, such as reg-
ulations or internal rules, which institution
issued it (e.g., STF internal rules or Federal
Reserve resolution).

Origin Text The Federation entity that issued regulation,
municipality, state, or the Union.

Section Number The legal act section.
Paragraph Number The legal act paragraph.
Subsection Letter The legal act subsection.
Clause Letter The legal act clause.



Chapter 9. Appendix 66

Table 9.3: Precedents ontology extracted from Correia et al. (2022).

Fine-grained Entity Type Description

Legal Procedure Number Number The number that identifies the legal proce-
dure in court.

Legal Procedure Class Text Signals the kind of legal procedure. It is of-
ten used along the case number to uniquely
identify a legal procedure within STF.

Legal Procedure Origin Text Indicates from what state (or federation
unit) the legal procedure came, usually just
the acronym (e.g., RJ stands for Rio de
Janeiro).

Decision type Text Indicates if the decision referred is related
to an internal appeal or motion.

Reporting Justice Text Identifies the Justice responsible for the de-
cision (if a monocratic decision, the Justice
is also the origin).

Court Text The court which rendered the decision.
Judgment date Date When the decision was taken.
Publication date Date When the decision was introduced to the

official record.

9.2
Annotations Percentage of Votes on Examples Database

In this section, we describe the percentage of votes for each annotation
present on the examples database and assess the misassignments produced by the
annotators for each entity.
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Figure 9.1: Percentage of votes for each annotation.

Figure 9.2: Number of precedent annotations assigned as other entities. (a)
shows the number of precedent annotations which has some part mistakenly
assigned as another one, two, or three entities. (b) expands the scenario where
the precedent annotation was wrongly assigned with only one other entity.
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Figure 9.3: Number of legislative references annotations assigned as other
entities. (a) shows the number of legislative reference annotations which has
some part mistakenly assigned as another one, two, or three entities. (b)
expands the scenario where the legislative reference annotation was wrongly
assigned with only one other entity.

Figure 9.4: Number of academic citation annotations assigned as other entities.
(a) shows the number of academic citation annotations which has some part
mistakenly assigned as another one, two, or three entities. (b) expands the
scenario where the academic citation annotation was wrongly assigned with
only one other entity.
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Figure 9.5: Number of person annotations assigned as other entities. (a) shows
the number of person annotations which has some part mistakenly assigned as
another one, two, or three entities. (b) expands the scenario where the person
annotation was wrongly assigned with only one other entity.

9.3
Annotation Capabilities per Entity Length

In this section, we present an analysis of the annotations recall per entity
length to assess whether some model flaws are strictly due to entity length.
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(a) Acad. Citation Recall per
Annotation Length

(b) Leg. Reference Recall per
Annotation Length

(c) Person Recall per Annotation
Length

(d) Precedent Recall per Annotation
Length

Figure 9.6: Gemini 1.5 Pro Random K=16 recognition capabilities per anno-
tations’ length.
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(a) Acad. Citation Recall per
Annotation Length

(b) Leg. Reference Recall per
Annotation Length

(c) Person Recall per Annotation
Length

(d) Precedent Recall per Annotation
Length

Figure 9.7: Gemini 1.5 Flash Random K=16 recognition capabilities per
annotations’ length.
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(a) Acad. Citation Recall per
Annotation Length

(b) Leg. Reference Recall per
Annotation Length

(c) Person Recall per Annotation
Length

(d) Precedent Recall per Annotation
Length

Figure 9.8: Llama 3.1 405B Random K=4 recognition capabilities per annota-
tions’ length.
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(a) Acad. Citation Recall per
Annotation Length

(b) Leg. Reference Recall per
Annotation Length

(c) Person Recall per Annotation
Length

(d) Precedent Recall per Annotation
Length

Figure 9.9: Llama 3.1 70B Random K=4 recognition capabilities per annota-
tions’ length.
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(a) Acad. Citation Recall per
Annotation Length

(b) Leg. Reference Recall per
Annotation Length

(c) Person Recall per Annotation
Length

(d) Precedent Recall per Annotation
Length

Figure 9.10: GPT-4o mini Random K=16 recognition capabilities per annota-
tions’ length.
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(a) Acad. Citation Recall per
Annotation Length

(b) Leg. Reference Recall per
Annotation Length

(c) Person Recall per Annotation
Length

(d) Precedent Recall per Annotation
Length

Figure 9.11: DeepSeek V2 Random K=16 recognition capabilities per annota-
tions’ length.

9.4
Statistical Tests

In this section, we present the statistical test results on the validation set
for each LLM to determine whether there are significant differences between the
examples selection strategy and the impact of the number of examples.
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9.4.1
Statistical Test for Gemini 1.5 Pro

Table 9.4: Gemini 1.5 Pro Games-Howell Post-hoc test for the number of
examples on the validation set

4 8 16 32

4 p-value - 0.286 <.001 <.001
8 p-value - <.001 <.001
16 p-value - 0.250
32 p-value -

Table 9.5: Gemini 1.5 Pro Kruskal-Wallis test results by examples selection
strategy on the validation set

X2 df p-value

F1-Score 0.764 2 0.682

9.4.2
Statistical Test for Gemini 1.5 Flash

Table 9.6: Gemini 1.5 Flash Tukey Post-hoc test for the number of examples
on the validation set

4 8 16 32

4 p-value - 0.229 <.001 <.001
8 p-value - <.001 <.001
16 p-value - 0.754
32 p-value -

Table 9.7: Gemini 1.5 Flash Kruskal-Wallis test results by examples selection
strategy on the validation set

X2 df p-value

F1-Score 0.917 2 0.632
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9.4.3
Statistical Test for Llama 3.1 405B

Table 9.8: Llama 3.1 405B Kruskal-Wallis test results by examples selection
strategy on the validation set (α = 0.01)

X2 df p-value

F1-Score 3.08 3 0.379

Table 9.9: Llama 3.1 405B ANOVA test results by examples selection strategy
on the validation set (α = 0.01)

F df df2 p-value

F1-Score 4.01 2 57 0.023

9.4.4
Statistical Test for Llama 3.1 70B

Table 9.10: Llama 3.1 70B Kruskal-Wallis test results by examples selection
strategy on the validation set (α = 0.01)

X2 df p-value

F1-Score 1.60 3 0.660

Table 9.11: Llama 3.1 70B ANOVA test results by examples selection strategy
on the validation set (α = 0.01)

F df df2 p-value

F1-Score 2.09 2 57 0.133

9.4.5
Statistical Test for GPT-4o mini

Table 9.12: GPT-4o mini ANOVA test results by examples selection strategy
on the validation set (α = 0.01)

F df df2 p-value

F1-Score 2.97 3 56 0.039
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Table 9.13: GPT-4o mini ANOVA test results by examples selection strategy
on the validation set (α = 0.01)

F df df2 p-value

F1-Score 0.890 2 57 0.416

9.4.6
Statistical Test for DeepSeek V2

Table 9.14: DeepSeek V2 Tukey test results for the number of examples on the
validation set (α = 0.01)

4 8 16 32

4 p-value - 0.404 0.140 0.687
8 p-value - 0.927 0.047
16 p-value - 0.009
32 p-value -

Table 9.15: DeepSeek V2 ANOVA test results by examples selection strategy
on the validation set (α = 0.01)

F df df2 p-value

F1-Score 0.0102 2 57 0.990
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