
Matheus Moraes Ferreira

Assistente Virtual utilizando Transformers
Generativos Pré-treinados no Contexto de

Gerenciamento de Reservatórios

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para a obtenção
do grau de Mestre pelo Programa de Pós-graduação em Infor-
mática da PUC-Rio.

Orientador : Prof. Alberto Barbosa Raposo
Co-orientador: Dr. Paulo Roberto da Motta Pires

Rio de Janeiro
Outubro de 2023

Matheus Moraes Ferreira

Assistente Virtual utilizando Transformers
Generativos Pré-treinados no Contexto de

Gerenciamento de Reservatórios

Dissertação apresentada como requisito parcial para a obtenção
do grau de Mestre pelo Programa de Pós-graduação em In-
formática da PUC-Rio. Aprovada pela Comissão Examinadora
abaixo.

Prof. Alberto Barbosa Raposo
Orientador

Departamento de Informática – PUC-Rio

Dr. Paulo Roberto da Motta Pires
Co-orientador

Petróleo Brasileiro S.A. – Petrobras

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática – PUC-Rio

Profa. Melissa Lemos Cavaliéri
Departamento de Informática – PUC-Rio

Rio de Janeiro, 02 de Outubro de 2023

Todos os direitos reservados. É proibida a reprodução total
ou parcial do trabalho sem autorização da universidade, do
autor e do orientador.

Matheus Moraes Ferreira

Matheus Moraes Ferreira, bacharel em Ciência da Com-
putação pela Universidade Federal Rural do Rio de Janeiro
(2020).

Ficha Catalográfica
Moraes Ferreira, Matheus

Assistente Virtual utilizando Transformers Generativos
Pré-treinados no Contexto de Gerenciamento de Reservatórios
/ Matheus Moraes Ferreira; orientador: Alberto Barbosa Ra-
poso; co-orientador: Paulo Roberto da Motta Pires. – Rio de
janeiro: PUC-Rio, Departamento de Informática, 2023.

v., 53 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Processamento de linguagem
natural;. 3. Aprendizagem de máquina;. 4. Large Language
Models;. 5. GPT;. 6. Assistente virtual inteligente.. I. Bar-
bosa Raposo, Alberto. II. Pires, Paulo Roberto da Motta. III.
Pontifícia Universidade Católica do Rio de Janeiro. Departa-
mento de Informática. IV. Título.

CDD: 004

Agradecimentos

Gostaria de agradecer primeiramente a Deus, por ter permitido que eu chegasse
aqui e defendesse este trabalho. Em seguida gostaria de agradecer aos meus pais
e minha família, por sempre ter me apoiado e nunca ter deixado faltar nada.
Também gostaria de agradecer à minha companheira Helena Birschner, uma
pessoa incrível, que sempre esteve comigo me apoiando e me ajudando, prin-
cipalmente durante esse processo. Gostaria de agradecer ao meu orientador,
Prof. Alberto Barbosa Raposo, pelo acompanhamento e atenção durante todo
esse processo e a ajuda fornecida para conclusão desse trabalho. Gostaria de
agradecer a banca por ter aceitado o convite e ter contribuído construtiva e pos-
itivamente com melhorias para esse trabalho. Gostaria de agradecer também ao
Paulo Pires, meu co-orientador, por todo o apoio e confiança no projeto e por
toda a ajuda, tanto profissional, técnica e pessoal, durante todo o processo,
se mostrando uma pessoa incrível e um grande amigo. É muito importante
agradecer a PUC-Rio e ao Tecgraf por toda as oportunidades de crescimento
pessoal, profissional e acadêmico. Gostaria de agradecer também Luiz Elerati
(meu líder de projeto), e Leandro Nazareth (meu gerente), por terem propor-
cionado todo apoio e confiança para início, desenvolvimento e finalização deste
trabalho, forneceram toda a ajuda possível. Fernanda Gramorelli (Petrobras),
Jacilene Torres (TIC/Petrobras), Rodrigo Vitória Lopes (TIC/Petrobras), Pa-
tricia Ferreira (CENPES/Petrobras) por também acreditarem no projeto e
terem fornecido todos os meios para a conclusão do projeto e também a Petro-
bras por ter acreditado e viabilizado a execução de toda a pesquisa aqui real-
izada. Gostaria de agradecer também a Fabio Souza, Roberta Netto e Karin
Santos por terem fornecido detalhes valiosos do sistema alvo e por terem aju-
dado a escrever o conjunto de treinamento, o que foi muito valioso para garantir
a representatividade do conjunto. Gostaria de agradecer a equipe de desen-
volvimento que garantiu um sistema bem construído e fácil de trabalhar. Por
último e não menos importante, gostaria de agradecer aos meus amigos que
sempre me apoiaram e de uma forma ou de outra tiveram alguma contribuição
positiva na minha vida.

O presente trabalho foi realizado com apoio da Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Fi-
nanciamento 001.

Resumo

Moraes Ferreira, Matheus; Barbosa Raposo, Alberto; Pires, Paulo
Roberto da Motta. Assistente Virtual utilizando Transformers
Generativos Pré-treinados no Contexto de Gerenciamento de
Reservatórios. Rio de Janeiro, 2023. 53p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Com a crescente popularização das técnicas de Inteligência Artificial, prin-
cipalmente voltadas ao processamento de linguagem natural, testemunhamos
um notável avanço nos Large Language Models (modelos de linguagem avança-
dos), dos quais o Generative Pre-trained Transformer (GPT) consiste no
exemplo mais notável. Consequentemente, assistentes virtuais têm conquis-
tado zuma presença significativa em diversas áreas da vida contemporânea.
Neste trabalho, é proposta uma metodologia para desenvolver uma assistente
virtual inteligente, baseada em um modelo gerador, capaz de compreender
a língua portuguesa do Brasil, bem como o domínio específico da Indústria
de Óleo e Gás. Essa assistente tem a capacidade de interpretar comandos tex-
tuais fornecidos pelos usuários e executar ações correspondentes em um sistema
corporativo. Essa metodologia é o resultado de uma cuidadosa análise de dife-
rentes modelos generativos disponíveis, buscando identificar aquele que melhor
se adequa aos requisitos da assistente virtual inteligente em português. Para
treinamento é criado um dataset representativo com os conceitos necessários e
específicos do sistema e da indústria do petróleo. É adotado um processo de
refinamento que permite identificar eventuais falhas e aperfeiçoar a compreen-
são da assistente para garantir respostas precisas e direcionadas. Também são
abordados neste trabalho os desafios e limitações inerentes aos modelos gene-
rativos, bem como estratégias para superá-las a fim de obter gerações mais
precisas e seguras.

Palavras-chave
Processamento de linguagem natural; Aprendizagem de máquina;

Large Language Models; GPT; Assistente virtual inteligente.

Abstract

Moraes Ferreira, Matheus; Barbosa Raposo, Alberto (Advisor); Pires,
Paulo Roberto da Motta (Co-Advisor). Virtual assistant using pre-
trained generative transformers in the context of reservoir
management. Rio de Janeiro, 2023. 53p. Dissertação de Mestrado –
Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

With the growing popularity of Artificial Intelligence, specially related to
Natural Language Processing, we notice a remarkable development of Large
Language Models, which finds in the Generative Pre-Trained Transformers
(GPT) their most outstanding example. As a result, virtual assistants have
being gaining significant presence in various areas of modern life. In this work,
we present the development of an intelligent virtual assistant, based on a ge-
nerative model. The assistant understands Brazilian Portuguese and is trained
on the specific jargon of the Oil and Gas Industry. This assistant has the ability
to interpret textual commands provided by users and execute corresponding
actions within a corporate system. This methodology is the result of a careful
analysis of different available generative models, aiming to identify the one
that best suited the requirements of an intelligent virtual assistant in Por-
tuguese. Additionally, it involves the creation of a representative dataset, with
concepts specific to the system and the Oil and Gas Industry, to effectively
train the assistant. A refinement process allows the identification of potential
flaws and the improvement of the assistant’s understanding to ensure accurate
and targeted responses. Furthermore, this work presents the challenges and the
inherent limitations of generative models, and proposes strategies to overcome
them in order to achieve more precise and secure generations.

Keywords
Natural language processing; Machine Learning; Large Language

Models; GPT; Virtual intelligent assistant.

Sumário

1 Introdução 11
1.1 Motivação 12
1.2 Questões e objetivos de pesquisa 12
1.3 Estrutura do trabalho 13

2 Contextualização e trabalhos relacionados 14

3 Metodologia 21
3.1 Estrutura do sistema alvo 21
3.2 Modelo pré-treinado 22
3.3 Fine-tuning e training data 22
3.4 Restrição das respostas 25
3.5 Tokenização 25
3.6 Escopo e treinamento 27

4 Resultados 28
4.1 Treinamento 28
4.2 Caso 1 29
4.3 Caso 2 30
4.4 Caso 3 31
4.5 Caso 4 32
4.6 Caso 5 33
4.7 Resumo de resultados 34
4.8 Fuga do contexto 35
4.9 Comandos incompletos 37
4.10 Limites de compreensão do modelo 38

5 Conclusões e trabalhos futuros 43
5.1 Principais contribuições 44
5.2 Limitações 44
5.3 Trabalhos futuros 45

6 Referências bibliográficas 47

A Anexos 50
A.1 Resultados por Caso 50

Lista de figuras

Figura 2.1 Etapas principais de processamento dos Transformers. Repro-
dução: Hugging Face [24] 14
Figura 2.2 Funcionamento das cabeças de atenção em um processo de
tradução. Reprodução: TensorFlow [25] 16
Figura 2.3 Derivações da tecnologia dos Transformers. Reprodução:
Internet [25] 17
Figura 2.4 Ilustração do fine-tuning para tarefas específicas. Na esquerda
é apresentado o modelo pré-treinado com um dataset genérico; na direita
é representado o seu fine-tuning para três diferentes tarefas (MNLI, NER,
SquAD). Reprodução: BERT [3] 18

Figura 3.1 Estrutura do sistema 21

Figura 4.1 Loss do treinamento 29
Figura 4.2 Caixa de seleção para complementação de comando requisi-
tada pela assistente no sistema alvo. 38

Figura A.1 Resultado Caso 1 50
Figura A.2 Resultado Caso 2 51
Figura A.3 Resultado Caso 3 51
Figura A.4 Resultado Caso 4 52
Figura A.5 Resultado Caso 5 53

Lista de tabelas

Tabela 3.1 Hiperparâmetros de treinamento 27

Tabela 4.1 Recursos computacionais e tempo para treinamento. 28
Tabela 4.2 Similaridade entre as respostas observadas e o ground truth. 35
Tabela 4.3 Ilustração de alguns comandos inválidos 36

Lista de siglas

IA – Inteligência Artificial
PLN – Processamento de Linguagem Natural
IHM – Interação Humano-Máquina
E&P – Exploração e Produção
BERT – Bidirecional Encoder Representations from Transformers
GPT – Generative Pre-Trained Transformer
LLM – Large Language Models
RAIL – Responsible AI Licenses
BLOOM – BigScience Large Open-science Open-access Multilingual
API – Application Programming Interface
JSON – JavaScript Object Notation
ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

1
Introdução

Na Ciência de Dados e Inteligência Artificial (IA), a linguagem natural
(ou humana) recebe representações matemáticas de modo a se tornar codifi-
cável e manipulável através de sistemas computacionais. Essas representações
se dão através dos chamados modelos de linguagem. Esses modelos usam
aprendizagem de máquina para recriar o comportamento da linguagem natu-
ral. Deste modo, assimilando a correlação entre palavras, tornam-se aptos a
fazer previsões sobre a sequências que compõem frases, a traduzir um texto
ou, até mesmo, a responder a perguntas de forma inteligente.

Atualmente, os modelos de linguagem vêm ganhando notoriedade devido
ao rápido avanço na capacidade de lidar com ambiguidades da linguagem
humana e na compreensão de contextos complexos. Tornam-se cada vez
mais proficientes na interpretação de sutilezas emocionais, humor e sarcasmo,
oferecendo respostas naturais e apropriadas ao contexto.

O acelerado desenvolvimento desses modelos abre importantes possibi-
lidades para o Processamento de Linguagem Natural (PLN) e para a IA de
modo geral. Com avanços em áreas como a compreensão de linguagem humana,
geração de texto, tradução automática e reconhecimento de fala, os modelos
de linguagem têm se mostrado cada vez mais capazes de imitar e até mesmo
superar as habilidades humanas em algumas tarefas relacionadas à linguagem.

Isso tem implicações significativas para uma variedade de campos, desde
recursos para Interação Humano-Computador (IHC) — por exemplo, assis-
tentes virtuais e chatbots — até análise de sentimentos em redes sociais e na
criação de conteúdo automatizado.

No entanto, os modelos de linguagem também apresentam limitações e
impõe desafios [22]. Sua efetividade se mostra muito sensível à qualidade e à
representatividade dos dados usados para o treinamento [23]. Da mesma forma,
as respostas fornecidas pelo modelo dependem da precisão e confiabilidade
das instruções fornecidas pelos usuários. Isso traz implicações relevantes. No
aspecto técnico, os modelos podem encontrar dificuldades para adaptação a
contextos específicos ou muito especializados [10, 11]. No aspecto ético e moral,
podem acabar refletindo desigualdades ou preconceitos sociais presentes no
conjunto de dados utilizado para treinamento [20].

Capítulo 1. Introdução 12

1.1
Motivação

A Indústria de Óleo e Gás apresenta uma complexa cadeia de valor,
que abrange uma ampla gama de processos e operações. Desde o segmento de
Exploração e Produção (E&P), também conhecido como upstream, até o Refino
e Abastecimento, ou downstream, uma infinidade de dados e informações são
coletadas das mais diversas fontes e precisam ser processadas e interpretadas.

Na Engenharia de Petróleo, em particular na disciplina de Reservatórios,
há a necessidade de análise e interpretação de dados e informações de diferentes
origens, formatos, representatividade e qualidade [27, 29]. Datasets extensos,
compostos por dados sísmicos, informações de perfuração de poços, registros
da produção e estudos de reservatórios, tornam a vida de geocientistas e
engenheiros de petróleo desafiadora. Isso exige não apenas o conhecimento
amplo acerca de diversos processos, mas também a familiaridade com sistemas
computacionais especializados, com avançadas interfaces.

Inspirado pela popularização recente dos chatbots movidos por derivados
do modelo Generative Pre-trained Transformer (GPT) [2], o desenvolvimento
de uma assistente virtual capaz de realizar tarefas complexas e específicas em
um sistema corporativo se apresenta como uma solução atrativa e eficiente
para auxiliar as equipes de Reservatórios nas suas tarefas diárias.

1.2
Questões e objetivos de pesquisa

A presente pesquisa tem por objetivo endereçar as seguintes questões:

1. É possível incorporar uma assistente virtual à interface complexa de um
sistema corporativo pré-existente?

2. Caso afirmativo, como fazer isso e quais tecnologias usar?

3. Como contornar limitações das estratégias escolhidas?

Portanto, o objetivo principal deste trabalho é propor uma metodologia
para a construção de uma assistente virtual inteligente capaz de receber ins-
truções textuais em português do Brasil e de controlar um sistema corporativo,
fornecendo instruções estruturadas a partir da entrada recebida. Além disso,
são discutidas algumas limitações apresentadas pelos modelos de linguagem
treinados em contextos genéricos, e sugeridas estratégias para contorná-las.

Capítulo 1. Introdução 13

O sistema corporativo1, alvo para a assistente virtual, realiza a integração
de múltiplas bases de dados especializadas, permitindo a visualização e análises
avançadas de informações essenciais à rotina das equipes de Reservatórios.

O papel da assistente aqui proposta é aprimorar a experiência do usuá-
rio, aumentando sua produtividade. Para tanto, ela interpreta comandos em
linguagem natural e, a partir deles, aciona as funcionalidades requeridas pelo
usuário sem exigir dele o domínio completo da interface convencional do sis-
tema.

Na literatura, não são comuns exemplos de assistentes virtuais baseados
na família GPT. Modelos adaptados para o contexto da Indústria de Óleo e
Gás, em português do Brasil, são mais escassos ainda. Essa, portanto, é a uma
importante contribuição deste trabalho.

1.3
Estrutura do trabalho

Os capítulos subsequentes desta dissertação estão organizados da seguinte
forma:

– O capítulo 2 traz uma revisão bibliográfica que contextualiza a técnica
aqui pesquisada e expõe a lacuna bibliográfica que se pretende endereçar.

– O capítulo 3 descreve, em linhas gerais, o sistema corporativo alvo e a
metodologia adotada para implementação e treinamento da assistente
virtual.

– O capítulo 4 apresenta os resultados do treinamento e dos testes realiza-
dos com a assistente.

– O capítulo 5 encerra as conclusões e discussões acerca de trabalhos
futuros a partir dos resultados aqui obtidos.

1Por questões de confidencialidade e proteção da propriedade intelectual, detalhes do
sistema alvo são omitidos no texto.

2
Contextualização e trabalhos relacionados

Desde sua introdução [1], a tecnologia dos Transformers tem permitido
o desenvolvimento de modelos cada vez mais avançados de PLN, capazes de
entender, gerar e manipular a linguagem humana com uma precisão e fluência
progressivamente maiores.

Uma característica fundamental dos Transformers é sua independência
de uma estrutura sequencial, o que lhes permite, diferente de outras arquite-
turas, lidar com entradas de comprimentos variáveis.

O funcionamento de um modelo Transformers geralmente é dividido
em duas etapas principais: a etapa de codificação (encoding) e a etapa de
decodificação (decoding). A figura 2.1 ilustra tais etapas.

Figura 2.1: Etapas principais de processamento dos Transformers. Reprodu-
ção: Hugging Face [24]

Na codificação, o texto fornecido como entrada para o Transformers
é transformado em um conjunto de vetores que representam as informações
contidas nessa entrada. Esses vetores são chamados de vetores de codificação
ou embeddings. Uma vez que codifica palavras, a técnica recebe o nome de word
embedding. Para realizar a codificação, o Transformers utiliza vários estágios
de atenção.

A função do mecanismo de atenção é focar o modelo nas partes relevantes
da entrada. Isso possibilita ao modelo contextualizar cada palavra em relação
às outras presentes, tornando possível o “entendimento” do seu significado no
contexto em que ela se encontra.

Capítulo 2. Contextualização e trabalhos relacionados 15

Para isso, o mecanismo de atenção utiliza ‘cabeças de atenção’ (attention
heads) que inferem individualmente o significado de cada palavra. Os significa-
dos sugeridos por cada cabeça são confrontados para se alcançar um consenso
sobre a relação de cada palavra com as outras palavras presentes na entrada.
Deste modo, maximizam a probabilidade da palavra ser interpretada no con-
texto correto.

É possível notar esse comportamento na figura 2.2. São apresentadas oito
cabeças de atenção especializadas na tradução do inglês para o português. Cada
uma delas corresponde a um quadro na figura. Nos quadros, são representadas
as palavras de entrada em inglês e as palavras de saída esperada em português.
Cada posição da matriz representa a magnitude da correlação entre as palavras
de entrada e saída; magnitudes maiores apresentam uma coloração mais
amarelada, magnitudes menores tendem ao azul escuro. Na prática, cada
quadro representa uma matriz de correlação construída por cada cabeça de
atenção a partir do conjunto de treinamento.

Capítulo 2. Contextualização e trabalhos relacionados 16

Figura 2.2: Funcionamento das cabeças de atenção em um processo de tradu-
ção. Reprodução: TensorFlow [25]

Capítulo 2. Contextualização e trabalhos relacionados 17

Na etapa de decodificação, o modelo constrói a saída palavra por palavra,
usando um token especial de início de sequência como entrada inicial ([START],
na figura 2.2). A cada estágio de geração, o modelo utiliza o mecanismo de
atenção para identificar e salientar as partes relevantes da entrada e saída
parcial. A saída parcial fornecida por cada estágio é representada por um
conjunto de word embeddings, progressivamente atualizados pelos estágios
anteriores.

Derivados da arquitetura dos Transformers surgiram os Large Language
Models (LLMs), que estão entre as tecnologias de IA mais sofisticadas dos
últimos anos. Trata-se de modelos treinados em grandes conjuntos de dados
de texto — ou corpus (plural corpora) — e podem gerar texto coerente,
responder perguntas e até mesmo realizar tarefas criativas, como compor poesia
ou escrever histórias.

Dentre os LLMs mais famosos estão o GPT [2], da OpenAI1, e o
BERT (Bidirectional Encoder Representations from Transformers) [3], da
Google2. Desde então começaram a surgir variantes do GPT [5, 6, 7], que são
consideradas o estado da arte na geração de texto. Por sua vez, as variantes
do BERT [15, 16, 17] se revelam eficientes para identificação de entidades
nomeadas, análise de sentimentos e preenchimento de máscaras. A figura 2.3
ilustra as principais variantes dos modelos BERT e GPT.

Figura 2.3: Derivações da tecnologia dos Transformers. Reprodução: Internet
[25]

1https://openai.com/
2https://www.google.com/

Capítulo 2. Contextualização e trabalhos relacionados 18

Tanto o GPT quanto o BERT têm sido amplamente usados em aplicações
como chatbots, geração textual e análise de sentimentos. Eles são capazes de
entender a linguagem natural em um nível mais profundo do que os sistemas
anteriores, baseados em redes recorrentes, e produzem saídas de texto que
parecem ter sido escritas por um ser humano.

Embora sejam considerados o estado da arte atualmente, os LLMs
também apresentam desafios. Por exemplo, eles são extremamente sensíveis
e dependentes dos dados com os quais são treinados. Esses dados podem
reproduzir viéses, suscitando inclusive questões éticas e morais [20]. Além disso,
treinados com dados genéricos, os LLMs comumente encontram dificuldades
em entender termos técnicos, jargões ou gírias [23]. Isso pode levar a respostas
imprecisas caso o modelo seja usado em contextos específicos ou especializados.

Para contornar esses problemas, uma abordagem promissora é treinar
modelos em conjuntos de dados mais amplos e diversos e, em seguida, aplicar
uma técnica conhecida como fine-tuning, que permite que os modelos aprendam
padrões mais gerais antes de serem ajustados para padrões mais específicos
[10, 11]. Isso pode levar a modelos mais robustos, capazes de lidar com
diferentes situações e de entender as nuances do contexto específico abordado
no fine-tuning (figura 2.4).

Figura 2.4: Ilustração do fine-tuning para tarefas específicas. Na esquerda
é apresentado o modelo pré-treinado com um dataset genérico; na direita
é representado o seu fine-tuning para três diferentes tarefas (MNLI, NER,
SquAD). Reprodução: BERT [3]

Com a crescente popularização dos LLMs, começaram a surgir diversos
modelos que foram submetidos a um fine-tuning para o português do Brasil,
permitindo que essa tecnologia de PLN seja aplicada de forma mais eficiente e
precisa para os usuários brasileiros, reduzindo os efeitos dos efeitos dos viéses
de treinamento (training biases).

Capítulo 2. Contextualização e trabalhos relacionados 19

Um deles é o BERTimbau [12], um modelo que a partir do BERT recebeu
o fine-tuning para o português. Seu objetivo é melhorar o desempenho de
tarefas específicas de PLN em português, como classificação de texto, análise
de sentimentos e reconhecimento de entidades nomeadas (por exemplo, nomes
de pessoas, objetos, lugares, datas, etc).

Por sua vez, o PetroBERT [13] é uma adaptação do BERTimbau feita
para o contexto da Indústria de Óleo e Gás. Treinado a partir de dados
específicos desse setor, como relatórios técnicos, especificações de equipamentos
e documentos regulatórios, esse modelo se mostra mais preciso e eficaz na
realização de tarefas relacionadas ao segmento.

O BERT e seus derivados se diferem substancialmente dos modelos
geradores, como o GPT, em sua principal função e abordagem. Enquanto os
modelos geradores são projetados para criar texto novo e fluente, o BERT
tem como foco principal a compreensão contextual bidirecional das palavras
em um texto. Em vez de gerar texto, o BERT codifica o texto de entrada
em representações contextualizadas, tornando-se particularmente valioso para
tarefas de processamento de linguagem natural como classificação de texto,
preenchimento de lacunas e extração de informações.

O contexto de assistentes virtuais não é algo novo. A idéia de ter um
software que consiga receber e interpretar comandos, sejam eles textuais ou
por voz, existe há um tempo, muito antes da introdução da arquitetura dos
Transformers. Destacam-se grandes exemplos de tecnologia como a Siri da
Apple3 e a Alexa da Amazon4. Esses assistentes virtuais revolucionaram a
forma como interagimos com nossos dispositivos e ambientes domésticos.

Embora essa tecnologia já exista, ela ainda apresenta a limitação de se
comunicar exclusivamente com o sistema para a qual ela foi projetada, o que
dificulta o seu reúso em outros sistemas e aplicações. Por exemplo, ao tentar
acoplar uma assistente dessas em um sistema muito específico, como o da
Indústria de Óleo e Gás, e tentar solicitar a execução de um comando, é muito
provável que a assistente não saiba responder pois ela não foi apresentada a esse
contexto de forma suficientemente representativa para realizar interpretação e
execução corretamente.

A lacuna endereçada pela presente pesquisa corresponde à criação de uma
assistente virtual inteligente, em português do Brasil, construída a partir de
modelos generativos, que trate algumas limitações inerentes a tecnologia dos
Trasformers, principalmente quando aplicada a um contexto específico, como
a Engenharia e Gerenciamento de Reservatórios [27]. Tal assistente também

3https://www.apple.com/br/siri/
4https://www.amazon.com.br/b?ie=UTF8&node=19949683011

Capítulo 2. Contextualização e trabalhos relacionados 20

deve ser confiável para incorporação em um sistema corporativo especializado.
A pesquisa bibliográfica aqui realizada sugere que referências para o

propósito aqui apresentado são escassas. Não foram encontrados trabalhos
semelhantes que abordassem tal tema de pesquisa.

3
Metodologia

Neste capítulo serão descritos o modelo proposto e o dataset utilizado
para treinamento e validação.

3.1
Estrutura do sistema alvo

O sistema alvo corresponde a uma ferramenta avançada voltada a uma
disciplina específica da engenharia de petróleo, a saber, gerenciamento de
reservatórios. A figura 3.1 ilustra em linhas gerais a estrutura desse sistema.
Os elementos da interface de usuário refletem em grande parte as regras de
negócio e as técnicas de processamento e integração de dados que o sistema
realiza. Assim, é necessário que o usuário conheça essas regras e técnicas para
poder explorar toda a potencialidade do sistema.

Figura 3.1: Estrutura do sistema

A assistente virtual é projetada para se integrar à interface do sistema,
oferecendo uma camada adicional de interação e assistência. Através da sua
capacidade de compreender comandos em linguagem natural, a assistente

Capítulo 3. Metodologia 22

interage com o sistema realizando as tarefas requeridas pelo usuário. Deste
modo, ela livra o usuário dos detalhes de interface e da lógica de negócio,
permitindo que ele se concentre somente na visualização e análise dos dados,
abstraindo do passo a passo convencional necessário para chegar até eles.

3.2
Modelo pré-treinado

Como mencionado, os LLMs são extremamente sensíveis ao conjunto de
dados com que são treinados. Por isso, para se ter um modelo que seja capaz
de entender o português brasileiro, primeiro seria necessário expor tal modelo
a um corpus bem construído em português. Essa tarefa, se realizada do zero
demandaria enorme esforço, requerendo a criação de um dataset representativo
com o maior número de palavras possível. Além disso, o tempo necessário para
treinamento integral desse modelo seria impraticável no contexto do presente
trabalho.

Portanto, com objetivo de evitar esses problemas, é utilizado aqui um
modelo pré-treinado. O modelo BLOOM [8] é um LLM treinado em diversas
linguagens naturais, incluindo o português do Brasil. Já foi validado e sua
eficiência é comprovada [8, 9]. A distribuição desse modelo segue as Responsible
AI Licenses (RAIL) [14], que garante o uso gratuito e consciente do modelo
para fins comerciais e acadêmicos.

Esse modelo foi treinado nos moldes do GPT-3 [6] e possui 176 bilhões
de parâmetros, o que assegura uma gigantesca capacidade de entendimento
das palavras, seus respectivos contextos e significados. Um parâmetro consiste
basicamente em um peso que será responsável por aprender alguma caracte-
ristica importante do problema que a rede tem como objectivo. No caso de
LLMs, um parâmetro pode codificar o significado de uma palavra ou a relação
de uma palavra com outra.

O modelo BLOOM possui algumas versões menores, como é o exemplo
do BLOOM 1b1, que é o modelo mais leve, com 1,1 bilhão de parâmetros.
Por motivos de limitação de poder computacional, a assistente aqui proposta
utiliza essa versão, que apresenta uma significativa redução da quantidade dos
parâmetros, mas em testes realizados, ainda consegue manter a capacidade de
entender um grande número de sentenças.

3.3
Fine-tuning e training data

Sobre o modelo BLOOM 1b1, é aplicado um fine-tuning. O objetivo
é adaptar e estender o modelo para uma tarefa específica e melhorar sua

Capítulo 3. Metodologia 23

capacidade de generalização para dados novos e desconhecidos. Além disso, o
fine-tuning ajuda a reduzir o tempo e os recursos computacionais necessários,
em comparação ao treinamento completo de um novo modelo a partir do zero.

Portanto, essa opção se revela rápida, prática e adequada para a prova de
conceito que se busca nesta pesquisa. O fine-tuning, especificamente para este
trabalho, é feito a partir dos termos e conceitos adotados pelo sistema alvo, ao
qual a assistente virutal está acoplada. O processo de ajuste capacita o modelo
a criar um mapeamento entre instruções expressas em linguagem natural e
os comandos internos estruturados no sistema. Esses comandos representam
instruções que existem em uma API (Application Programming Interface)
dentro do sistema alvo, que a assistente utiliza para executar as instruções
internamente.

Em PLN, problemas especificos podem esbarrar na indisponibilidade
datasets prontos que atendam seus requisitos. Além disso, a própria natureza
desses problemas demanda que sejam utilizados dados em formatos específicos,
diferentes dos utilizados em datasets públicos. Portanto, para realizar o fine-
tuning do modelo, é necessário criar um dataset contendo as características
de uso e das regras de negócio do sistema alvo. A partir do dataset utlizado
no fine-tuning, o treinamento habilita a assistente a efetuar a tradução de
uma instrução em linguagem natural para um comando equivalente interno ao
sistema.

Esse dataset é construído a partir de um conjunto de sentenças, compos-
tas cada uma por:

1. Uma instrução textual indicando alguma tarefa desejada pelo usuário. Por
exemplo,

Abrir relatório
Criar relatório
Criar um gráfico
Plotar gráfico

Capítulo 3. Metodologia 24

2. Um comando do sistema alvo associado a instrução previamente descrita
em 1. Os comandos internos do sistema são modelados usando o formato JSON
(JavaScript Object Notation). O objetivo disso é voltar o mecanismo de atenção
para as combinações de palavras e assim ensinar o modelo a construir o JSON
se baseando na instrução em linguagem natural fornecida como entrada.

{action: "open", target: "relatorio"}
{action: "open", target: "relatorio"}
{action: "open", target: "grafico"}
{action: "open", target: "grafico"}

3. Um token delimitador indicando o fim da sentença de instrução 1 e
início do comando do sistema 2. A assistente foi treinada para reconhecer o
símbolo ‘:’ como delimitador, entre o texto fornecido pelo usuário e o comando
correspondente.

<Texto (1)>: <Comando (2)>

A combinação dessas três regras, resulta em exemplos para treinamento
com o seguinte formato.

Abrir relatório: {action: "open", target: "relatorio"}
Criar relatório: {action: "open", target: "relatorio"}
Criar um gráfico: {action: "open", target: "grafico"}
Plotar gráfico: {action: "open", target: "grafico"}

Para a geração do dataset de treinamento, é utilizado script em Python
para construir exemplos, seguindo essas regras de forma automatizada. Esse
script se baseia nas regras de négocio do sistema alvo, combinando-as de forma
a criar exemplos representativos para o escopo definido para a assistente.

Ao todo foram gerados 212 mil exemplos distintos para treinamento e
a metade disso, 106 mil, para teste. Não há interseção entre os datasets para
treinamento e para teste, ou seja, todos os exemplos do dataset de teste são
distintos de todos os exemplos de treinamento.

Capítulo 3. Metodologia 25

3.4
Restrição das respostas

Uma vez que são muito sensíveis ao dataset com que são treinados, os
LLMs podem gerar artefatos quando submetidos a contextos muito específicos
ou não previstos no treinamento.

Essa feição dos LLMs pode resultar em comportamentos até mesmo
polêmicos [20]. Por exemplo, se para o treinamento do modelo foi usado um
conjunto de dados que contém mais exemplos de homens ocupando cargos
de liderança do que mulheres, isso pode levar a resultados indesejados e
enviesados quando o modelo é usado para gerar texto ou responder a perguntas
sobre liderança. O modelo treinado tenderá a associar mais frequentemente a
liderança com os homens do que com as mulheres.

Para contornar esse problema e aumentar a precisão nas respostas, o
mapeamento entre as instruções em linguagem natural e comandos do sistema
carregará dois delimitadores distintos, um marcando o início (‘#’) e outro o
final (‘$’) da instrução:

<sentença> $

Pelo próprio funcionamento interno dos modelos, a geração dos tokens
— símbolos ou palavras que compõem o texto gerado — de saída é um
processo contínuo que ocorre indefinidamente. Na sequência de saída a geração
do token corrente depende apenas dos tokens previamente gerados. Para
estabelecer um critério de parada para o processo, a saída é limitada a um
tamanho predefinido, ou seja, um número máximo de tokens. Durante a geração
sequencial de saída, caso seja insuficiente para conter um comando completo,
este tamanho é dobrado. A presença de um comando completo na saída é
indicada através dos delimitadores de início e final de sentença previamente
descritos.

Ao delimitar um comando válido, esses tokens previnem que algum ruído
seja inserido, além de evitar que perguntas fora do repertório de ações no
sistema sejam produzidas, isto é, se algo fora do contexto do sistema for
perguntado, os delimitadores não estarão presentes e portanto o texto gerado
será invalidado.

3.5
Tokenização

Para que um LLM seja capaz de processar palavras de forma eficaz, é
fundamental que ele esteja equipado com um tokenizador. O tokenizador é uma
peça essencial do pré-processamento de texto, responsável por dividir o texto

Capítulo 3. Metodologia 26

em unidades menores chamadas tokens. Em um contexto de processamento de
linguagem natural, um token pode representar uma palavra, um caractere, ou
até mesmo uma parte significativa de uma palavra, como um sufixo ou um
prefixo. Ao quebrar o texto em tokens, o tokenizador ajuda o LLM a entender
a estrutura e a gramática da linguagem, tornando mais fácil para o modelo
processar, analisar e gerar texto coerente.

Além de dividir o texto em tokens, o tokenizador tem a função de
realizar a codificação desses tokens em uma representação matricial. Essa
transformação é essencial para que os modelos de linguagem possam processar
e manipular as informações de texto de maneira computacional. O texto precisa
ser codificado em uma representação numérica pois a maioria dos modelos de
aprendizado de máquina, incluindo os modelos de linguagem, trabalham com
números, vetores e matrizes em vez de texto.

Cada token é associado a um vetor numérico, muitas vezes chamado de
embedding, que reflete seu significado e contexto. Essa representação matricial
permite que o modelo realize cálculos matemáticos, como operações de multi-
plicação de matrizes, que são fundamentais para o processamento de linguagem
natural. Dessa forma, o tokenizador não apenas organiza o texto em unidades
compreensíveis, mas também habilita o LLM a trabalhar com essas unidades
em um formato numérico, possibilitando a análise, a geração e a compreensão
de texto de maneira eficaz e precisa.

O tokenizador escolhido foi o tokenizador pré-treinado disponibilizado
pelos desenvolvedores do BLOOM. Esse tokenizador já contém embeddings
relacionados ao português do Brasil.

Capítulo 3. Metodologia 27

3.6
Escopo e treinamento

Como descrito anteriormente, o sistema alvo para a assistente apresenta
grande porte e complexidade. Trata-se de uma plataforma que acessa múltiplas
bases de dados provendo recursos avançados para a análise integrada. Portano,
disponibiliza diversas funcionalidades. No entanto, o escopo da assistente
limita-se apenas à criação e configuração de gráficos e relatórios, que se
caracterizam como os recursos mais usados no sistema. Esse escopo se mostra
adequado para a prova de conceito proposta no trabalho.

A tabela 3.1 lista os hiperparâmetros, que são configurações ajustáveis
que não são aprendidas diretamente durante o treinamento do modelo, e
influenciam e estão altamente ligados a facilidade de aprendizado do modelo,
usados para fine-tuning do modelo.

Tabela 3.1: Hiperparâmetros de treinamento

Parâmetro Valor
Número de exemplos distintos para treinamento 212 mil
Número de exemplos distintos para teste 106 mil
Número de tokens 6 milhões
Número de batches por step 8
Número de batches por avaliação 32
Número de exemplos por batch 256
Número total de steps de treinamento 50 mil
Número de steps entre avaliações 500
Otimizador AdamW [18]

O treinamento é realizado através de steps. Em cada step, oito batches de
dados são submetidos ao modelo. Cada batch contém 256 exemplos, amostrados
randomicamente dos 212 mil exemplos disponíveis para treinamento.

Ao final de 500 steps, a taxa de erro (loss) do modelo é avaliada a partir
de 32 batches extraídos do conjunto de teste. Para ajuste do modelo é adotado
o otimizador AdamW [18]. Os parâmetros internos desse otimizador são
escolhidos conforme o padrão documentado no framework utilizado, Hugging
Face Transformers [26].

4
Resultados

Para uma avaliação mais precisa, os resultados obtidos são comparados
com os dados gerados por humanos especialistas no sistema, que são conside-
rados como referência para determinar o que seria correto em cada caso de
teste. Essa comparação permite identificar possíveis desvios ou limitações do
modelo, buscando garantir que as respostas fornecidas sejam consistentes com
o esperado. Cada dado gerado por humanos é necessariamente diferente em
algum grau de todos os exemplos usados no treinamento, para poder garantir
maior precisão na hora de avaliar o modelo.

Para realizar a avaliação, é utilizada a métrica de similaridades entre sen-
tenças, que basicamente consiste em se verificar quão próximas duas sentenças
estão entre si.

Na seção a seguir, por questões de confidencialidade, alguns termos
podem ser omitidos ou alterados com o objetivo de preservar a parte da lógica
de negócio do sistema.

4.1
Treinamento

O treinamento foi realizando utilizando as configurações na tabela 4.1.
Ao todo, até a conclusão dessa pesquisa, foram utilizadas 1500 horas de
processamento para treinamento e ajustes finos.

Tabela 4.1: Recursos computacionais e tempo para treinamento.

Processador gráfico NVIDIA V100™
Memória de vídeo 32 GB
RAM 125 GB
Processadores (CPU) 12
Tempo total de treinamento 17 horas

Ao concluir o processo de treinamento, conduzido com os parâmetros
especificados na tabela 3.1, é possível avaliar de maneira rápida e objetiva se
o modelo realmente aprendeu a partir dos dados a partir da curva de perda
(loss), representada na figura 4.1. Esse processo de avaliação é essencial para
determinar a eficácia do modelo e sua capacidade de generalização. A função
de loss é uma medida da diferença entre as previsões do modelo e os valores
reais dos dados de treinamento.

Capítulo 4. Resultados 29

A análise gráfica da figura revela um padrão notável: a loss diminui
progressivamente, aproximando-se de zero à medida que as épocas avançam.
Esse comportamento evidencia a habilidade do modelo em aprimorar sua
capacidade de generalização ao longo das épocas de treinamento.

Figura 4.1: Loss do treinamento

4.2
Caso 1

No primeiro caso de teste, o usuário deseja construir um gráfico simples
com a variável de vazão de óleo (qo). O comando em linguagem natural mais
simples para executar essa tarefa é dado abaixo:

Comando: gerar um grafico com qo

Para esse caso a resposta esperada (ground truth) é data no formato
JSON abaixo:

Ground truth:
[
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",

Capítulo 4. Resultados 30

"configuracao": { "variaveis": [{ "nome": "qo" }] }
}

}
]

Para esse caso, a resposta fornecida pelo modelo é idêntica ao esperado,
como mostrado abaixo, também no formato JSON:
Saída do modelo:
[
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": { "variaveis": [{ "nome": "qo" }] }

}
}

]

4.3
Caso 2

No segundo caso de teste, o usuário deseja construir um relatório com a
variável de vazão de óleo (qo), utilizando os dados de Marlim. O comando em
linguagem natural mais simples para executar essa tarefa é dado abaixo:
Comando: abrir um relatorio com qo para o campo de marlim

Para esse caso a resposta esperada é data no formato JSON abaixo:
Ground truth:
[
{
"alvo": "2",
"metadados": {
"categorias": [{ "nome": "marlim", "tipoCategoria": "Campo" }]

}
},
{
"alvo": 1,
"metadados": {
"funcionalidade": "relatorio",
"configuracao": { "variaveis": [{ "nome": "qo" }] }

}
}

]

Para esse caso, a resposta fornecida pelo modelo também é idêntica ao
esperado, como mostrado abaixo, também no formato JSON:

Capítulo 4. Resultados 31

Saída do modelo:
[
{
"alvo": "2",
"metadados": {
"categorias": [{ "nome": "marlim", "tipoCategoria": "Campo" }]

}
},
{
"alvo": 1,
"metadados": {
"funcionalidade": "relatorio",
"configuracao": { "variaveis": [{ "nome": "qo" }] }

}
}

]

4.4
Caso 3

No terceiro caso de teste, o usuário deseja gerar um gráfico que apresente
duas variáveis, (qo) e (qg), e associá-los a dois eixos separados, alocando (qo)
ao primeiro eixo e (qg) ao segundo. O comando em linguagem natural mais
simples para executar essa tarefa é dado abaixo:

Comando: gerar um grafico com qo, no eixo 1 e qg no eixo 2

Para esse caso a resposta esperada é data no formato JSON abaixo:

Ground truth:
[
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": {
"variaveis": [
{ "nome": "qo", "eixo": 1 },
{ "nome": "qgi", "eixo": 2 }

]
}

}
}

]

A resposta fornecida pelo modelo é idêntica ao esperado, como mostrado
abaixo, também no formato JSON:

Capítulo 4. Resultados 32

Saída do modelo:
[
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": {
"variaveis": [

{ "nome": "qo", "eixo":1 },
{ "nome": "qgi", "eixo": 2 }

]
}

}
}

]

4.5
Caso 4

No quarto caso de teste, o usuário deseja construir um gráfico simples
com a variável de vazão de óleo (qo), porém a variável está descrita por extenso
e sem acentos. O comando em linguagem natural para executar essa tarefa é
dado abaixo:

Comando: gerar um grafico com vazao de óleo

A resposta esperada é data no formato JSON abaixo:

Ground truth:
[
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": { "variaveis": [{ "nome": "qo" }] }

}
}

]

A resposta fornecida pelo modelo é idêntica ao esperado, como mostrado
abaixo, também no formato JSON:

Capítulo 4. Resultados 33

Saída do modelo:
[
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": { "variaveis": [{ "nome": "qo" }] }

}
}

]

4.6
Caso 5

No último caso de teste, o usuário deseja construir um gráfico mais com-
plexo, utilizando duas variáveis (qo) e (qg), configuradas em eixos separados,
sendo a segunda especificada por extenso “vazão de gás”. A cada variável deve
ser atribuida uma cor única. Além disso, o gráfico deve exibir os dados de
todos os poços do campo Marlim agrupados (somados) em uma curva única.
O comando em linguagem natural para executar essa tarefa é dado abaixo:

Comando: fazer um grafico multicolorido de qo no eixo 1 e vazao de gas no eixo 2,
para todos os pocos do campo de marlim, com dados
agrupados

A resposta esperada é data no formato JSON abaixo:

Ground truth:
[
{
"alvo": "2",
"metadados": {
"tipoCategoriaFilha": "Poco",
"categoriasPai": [
{ "nome": "marlim", "tipoCategoria": "Campo" }

]
}

},
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": {
"variaveis": [
{ "nome": "qo", "eixo": 1 },
{ "nome": "qg", "eixo": 2 }

],

Capítulo 4. Resultados 34

"dadosAgrupados": true,
"multiplasCores": true

}
}

}
]

A resposta fornecida pelo modelo é idêntica ao esperado, como mostrado
abaixo, também no formato JSON:

Saída do modelo:
[
{
"alvo": "2",
"metadados": {
"tipoCategoriaFilha":"Poco",
"categoriasPai": [
{ "nome": "marlim", "tipoCategoria":"Campo" }

]
}

},
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": {
"variaveis": [
{ "nome":"qo", "eixo": 1 },
{ "nome":"qg", "eixo": 2 }

],
"dadosAgrupados": true,
"multiplasCores":true

}
}

}
]

4.7
Resumo de resultados

Os exemplos acima ilustram o desempenho do modelo com fine-tuning
para geração de comandos executáveis no sistema alvo. O grau de similaridade
entre as respostas fornecidas pelo modelo e o ground truth é calculado pela
semelhança caractere por caractere.

É possível observar que o modelo apresentou desempenho muito próximo
de 100%, em todos os casos, inclusive para comandos complexos como o

Capítulo 4. Resultados 35

apresentado na seção 4.6. Mesmo quando a similaridade caractere a caractere
não é total, o modelo gera o comando exato do ground truth. As diferenças
observadas se referem à presença ou não de espaços entre o nome e o valor
das propriedades do JSON gerado. O exemplo abaixo mostra o detalhe da
comparação entre uma diferença obeservada para o caso 4.6. No modelo gerado,
não há o espaço separando a propriedade nome das variáveis qo e qg.

Ground truth:

...
{␣"nome":␣"qo",␣"eixo":␣1␣},
{␣"nome":␣"qg",␣"eixo":␣2␣}
...

Saída do modelo:

...
{␣"nome":"qo",␣"eixo":␣1␣},
{␣"nome":"qg",␣"eixo":␣2␣}
...

A tabela 4.2 sumariza o grau de similaridade observado para cada um dos
casos acima. Os anexos ao final do presente documento trazem os resultados
visuais (telas) dos comandos, em cada caso, executados no sistema alvo.

Tabela 4.2: Similaridade entre as respostas observadas e o ground truth.

Caso Similaridade (%)
1 100,00
2 100,00
3 98,97
4 100,00
5 99,04

4.8
Fuga do contexto

Os modelos generativos podem resultar em textos indesejados a partir de
determinadas entradas. Para impedir que isso aconteça, isto é, que o modelo
fuja do contexto planejado, respondendo quaisquer perguntas não apenas
relacionadas às funcionalidades escolhidas do sistema alvo, algumas mudanças
foram propostas no treinamento:

Capítulo 4. Resultados 36

1. Foram inseridas algumas instruções textuais para orientar o comporta-
mento do modelo em algumas situações [28]. Como por exemplo:

– Sempre que receber um comando que não contenha algo relativo a
gráfico e relatório sempre retornar "comando invalido".

– Não deve responder perguntas que envolvam outros módulos.

2. Os exemplos fornecidos foram definidos de tal forma que o mecanismo
de atenção ajude na distinção entre perguntas válidas e inválidas. Por
exemplo, o modelo consegue inferir que, se um comando não envolve
gráfico ou relatório, muito provavelmente é inválido e não deve ser
respondido.

Essa manipulação do mecanismo de atenção ajuda o modelo a identificar
as palavras da entrada, e determinar onde e como elas devem ser encaixadas
no comando resultante. Qualquer coisa que fuja desse contexto, por exemplo
uma entrada não relacionada a criação ou manipulação de gráfico ou relatório,
resulta em uma sequência de comando invalido, conforme apresentado na
tabela 4.3. Essa sequência é passada para o sistema indicando que a assistente
não consegue processar aquela entrada.

Comando Resposta do modelo
qual o melhor programa de tv comando invalido

qual o melhor time de futebol comando invalido

abrir funcionalidade_x com qo comando invalido

qual o poço que mais produz no campo X comando invalido

qual variavel que apresenta maior vazao para o poco X comando invalido

quanto é 1 + 1? comando invalido

Tabela 4.3: Ilustração de alguns comandos inválidos

Pela ausência das marcações de início e final de sentença na resposta
comando invalido, a assistente conseguirá precisamente notificar o sistema
de que há algo errado com o comando que foi inserido e fazer com que o
mesmo notifique o usuário que aquele determinado tipo de comando não é
executável pela assistente.

Capítulo 4. Resultados 37

4.9
Comandos incompletos

Para criar um gráfico e relatório, o sistema alvo requer a especificação
das variáveis com as quais essas funcionalidades são preenchidas. Por exemplo,
ao criar um gráfico, o usuário deve escolher quais curvas ele quer visualizar.

Os comandos em linguagem natural tendem a refletir esse comporta-
mento, ou seja, eles especificam tanto as funcionalidades quanto o seus com-
plementos. Portanto, a assistente aprende a associar as funcionalidades sempre
ao seu complemento. Assim, ela tambem é capaz de identificar quando um co-
mando está incompleto, com o seu complemento faltante.

Um comando incompleto não configura erro. Para esses casos, o treina-
mento inclui uma ação adicional para requisitar um possível complemento da
funcionalidade escolhida. O caso abaixo ilustra tal comportamento.

Comando: abrir grafico

Saída do modelo:
[
{
"alvo": 1,
"metadados": {
"funcionalidade": "grafico",
"configuracao": { "sugerirVariaveis": true }

}
}

]

Na saída fornecida pelo modelo, uma configuração adicional é inserida
nos metadados, a saber, a propriedade sugerirVariaveis. Recendo o valor
true, essa propriedade ativa uma caixa de seleção na interface do sistema
alvo para o usuário poder realizar a complementação do comando, conforme
ilustrado na figura 4.2.

Capítulo 4. Resultados 38

Figura 4.2: Caixa de seleção para complementação de comando requisitada
pela assistente no sistema alvo.

4.10
Limites de compreensão do modelo

Foram testadas algumas sentenças em linguagem natural fornecidas por
um usuário que conhece o sistema alvo e sabe das limitações do modelo de
linguagem. O objetivo aqui é testar os limites de compreensão do modelo
exposto agora a um ambiente de menor controle, removendo assim um possível
enviesamento presente nos testes demostrados anteriormentes.

4.10.1
Comandos inválidos

Alguns comandos livres fornecidos pelo usuário geram a sequência de
comando invalido, conforme descrito na seção 4.8. Nessas situações, as sen-
tenças se enquadram em três categorias:

1. Não apresentam sentido claro ou se mostram absurdas.

2. Não contêm explicitamente a referência a gráfico ou relatório.

3. Apresentam um texto significativamente mais elaborado do que os exem-
plos contidos no dataset de treinamento.

Isso dificulta o entendimento e geração do comando para o sistema alvo.
Para essas sentenças, a acurácia pode ser considerada 100%, pois fogem do
contexto estabelecido, ou se revelam demasiadamente ambíguas. As sentenças
que geram comando inválido são:

Capítulo 4. Resultados 39

– Exibir Razão Gás-Óleo de Marlim

– Crie, por favor, algo tipo um relatório e preencha as colunas com o
BSW e com a RGO das plataformas

– Quero ver as vazões de água de Marlim

– Criar tabela com nome dos poços e plataforma

– Bom dia, Sistema!

– Preciso saber o quanto cada poço produziu ontem

– Selecione plataforma

– Escolha categoria poço

– Portar trafico com protecão de aguia

– Criei um granito que olha pra agua

– Acai guardia zum de bes óleo

– Criar um gráfico com renda per capita países américa latina

4.10.2
Sentenças resolvidas corretamente

A assistente consegue interpretar parcial ou completamente sentenças
com maior grau de complexidade. Isso demostra que o modelo indentifica
corretamente a intenção por trás do comando, o seu significado, e mapeia
para a instrução adequada da API. Alguns exemplos podem ser observados
abaixo.

– Comando: graf np
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "grafico",
"configuracao": {"variaveis": [{"nome": "np"}] }}}]

– Comando: relat qo, qg, qw
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "relatorio",
"configuracao": {"variaveis": [{"nome": "qo"}, {"nome": "qg"},
{"nome": "qw"}] }}}]

– Comando: Qo, BSW, Qw, Qg, relatório, poço
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "relatorio",
"configuracao": {"variaveis": [{"nome": "Qo"}, {"nome": "BSW"},
{"nome": "Qw"}, {"nome": "poço"}] }}}]

– Comando: Relatório, poço, Qo, BSW
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "relatorio",
"configuracao": {"variaveis": [{"nome": "BSW"}, {"nome": "poço"},
{"nome": "Qo"}] }}}]

Capítulo 4. Resultados 40

– Comando: criar grafico com Razão Gás-Óleo de papa-terra
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "grafico",
"configuracao": {"variaveis": [{"nome": "RGO"}] }}}]

– Comando: Mostrar curva de óleo
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "relatorio",
"configuracao": {"variaveis": [{"nome": "7we"}, {"nome": "Wip"},
{"nome": "weo"}, {"nome": "wev"}] }}}]

– Comando: Fechar gráfico com Qo
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "grafico",
"configuracao": {"variaveis": [{"nome": "Qo"}] }}}]

– Comando: Desenhar curva de Qw
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "relatorio",
"configuracao": {"variaveis": [{"nome": "Qw"}] }}}]

– Comando: criar grafico com Razão Gás-Óleo de Mrl
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "grafico",
"configuracao": {"variaveis": [{"nome": "RGO"}, {"nome": " SECr"}]
}}}]

Em alguns comandos é possível notar que o modelo produz alguns
artefatos no nome das variáveis, gerando sequências alfanuméricas sem sentido,
como 7we, Wip, weo, wev e SECr. Embora não representem variáveis reais do
sistema alvo, essas sequências são coerentes com o dataset de treinamento.

Nesse dataset são inseridos sequências similares, que não representam
variáveis reais, mas que tem o propósito de dar flexibilidade ao modelo. Essa
estratégia permite que a assistente consiga identificar com mais precisão as
variáveis e ao mesmo tempo não fique presa (“decore” ou “memorize”) somente
as possibilidades das variáveis utilizadas no treinamento, visto que novas
variáveis podem ser criadas a qualquer momento. Esse comportamento não
afeta o resultado final executado no sistema, pois a API é capaz de descartar
variáveis desconhecidas.

Alguns exemplos evidenciam que o modelo é capaz de compreender o
contexto e não apenas palavras isoladas. Embora tenha sido treinado com
instruções especificas (abrir, gerar, fazer, criar, plotar e desenhar), ele
se mostra flexível para compreender o contexto completo do comando e fornecer
a saída correta.

Capítulo 4. Resultados 41

– Comando: fornecer um grafico de qo
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "grafico",
"configuracao": {"variaveis": [{"nome": "qo"}] }}}]

– Comando: apresentar relatorio de np
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "relatorio",
"configuracao": {"variaveis": [{"nome": "np"}] }}}]

4.10.3
Comando não resolvidos corretamente

Em algumas situações, se observa não consegue captar a intenção do
comando fornecido pelo usuário. Isso geralmente ocorre em comandos em
linguagem natural que se desdobram mais de uma ação ou funcionalidade.
O exemplo abaixo ilustra essa limitação:

Comando: Plotar gráfico e abrir relatório com qo
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "grafico",
"configuracao": {"variaveis": [{"nome": "zoipi"}, {"nome": "acesrq"}]}}}]

O usuário expressa através de um único comando sua intenção tanto de
abrir um gráfico quanto de construir um relatório, ambos preenchidos com a
variável Qo. Ainda que consiga interpretar parcialmente o comando fornecido,
o modelo ignora a criação do relatório e não se mostra capaz de resolver o
complemento para o gráfico.

Caso o complemento para o comando seja especificado de uma maneira
mais explícita, como mostrado abaixo, o modelo consegue gerar uma instrução
completa, porém ainda ignorando a parte do relatório.

Comando: Plotar gráfico com qo e abrir relatório com qw
Saída do modelo:
[{"alvo": 1, "metadados": { "funcionalidade": "grafico", "configuracao":
{"variaveis": [{"nome": "qo"}, {"nome": "507"}], "dadosAgrupados": true
}}}]

Essa limitação ocorre pois o modelo não foi exposto a exemplos que
mostrem como se comportar quando duas funcionalidades são solicitadas ao
mesmo tempo. Embora ele não consiga resolver esses comandos, isso não
significa que ele não consegue extrair múltiplas instruções a partir de um
mesmo comando, como observado abaixo:

Capítulo 4. Resultados 42

Comando: abrir grafico de qo para o campo de marlim
Saída do modelo:
[{"alvo": "2", "metadados": {"categorias": [{"nome":"marlim",
"tipoCategoria": "Campo"}]}},{"alvo": 1, "metadados":
{ "funcionalidade": "grafico", "configuracao":{"variaveis":
[{"nome": "qo"}] }}}]

Nesse exemplo, duas instruções são geradas (alvos 1 e 2), orientando a
API a executar a seleção das categorias escolhidas e a criação do gráfico.

Em algumas situações em que o comando fornecido pelo usuário apre-
senta incoerência, o modelo é capaz de propor uma solução próxima aquilo que
ele conhece. O caso abaixo exemplifica uma situação em que, ao relatório, o
usuário tenta associar eixos, que são configurações exclusivas da funcionalidade
gráfico.

Comando: relatório qo qw dois eixos
Saída do modelo:
[{"alvo": 3, "metadados": { "funcionalidade": "relatorio",
"nomeManipulacao": "converter", "metadados": {"funcionalidadeDestino":
"grafico", "nomeAbaAberta": "qoqwhas2"} }}]

No sistema alvo é possível se criar um gráfico a partir do conteúdo de um
relatório e vice-versa. Esse recurso é chamado de conversão e está descrito na
API. O modelo entende esse recurso como a melhor solução para o comando
fornecido pelo usuário. Essa situação é interessante porque ilustra a capacidade
do modelo de “pensar sobre a pergunta” e propor a resposta mais coerente
possível dentro do escopo em que foi treinado. Isso demostra que o modelo não
está preso a regras inflexíveis!

5
Conclusões e trabalhos futuros

Os resultados gerados pelo modelo proposto não podem ser comparados
diretamente com outros modelos, uma vez que muitos modelos convencionais
são projetados com uma abordagem mais genérica e não possuem o conheci-
mento específico do sistema. Sendo assim, a comparação direta entre os re-
sultados desses diferentes modelos pode levar a conclusões enganosas sobre o
desempenho de cada um deles, a menos que sejam treinados com o mesmo
dataset.

Compreender linguagem natural e fornecer respostas coerentes são de-
safios significativos enfrentados pelos modelos geradores atuais. Esta pesquisa
procura explorar essas questões, fornecendo alguns detalhes sobre as limitações
desses modelos e apresentando uma abordagem metodológica para superar es-
sas dificuldades. Ao aprimorar o entendimento e a capacidade de resposta da
assistente virtual, espera-se oferecer uma interação mais natural e eficiente,
tornando-a uma ferramenta poderosa para auxiliar os usuários em suas neces-
sidades diárias.

Endereçando as questões de pesquisa levantadas no capítulo 1:

1. É possível incorporar uma assistente virtual à interface complexa de um
sistema corporativo pré-existente?

Sim, através do treinamento de um modelo de linguagem para o contexto
específico do sistema alvo e o mapeamento de ações implementadas em
uma API de comunicação é possível incorporar uma assistente virtual à
interface complexa de um sistema corporativo pré-existente.

2. Caso afirmativo, como fazer isso e quais tecnologias usar?

Para implementar uma assistente para o sistema alvo, o primeiro passo
é a escolha de um modelo adequado para o problema em questão. Para
o modelo de linguagem foi escolhida a tecnologia dos Transformers, por
se mostrar o estado da arte para dados textuais. A metodologia aqui
proposta busca explorar os modelos geradores para interpretar um dado
em linguagem natural e gerar uma resposta em formato estruturado,
fornecida como entrada para API que executa os comandos solicitados.
O segundo passo consiste na criação de um dataset para treinamento
que seja representativo o suficente em relação ao sistema alvo. Por
fim, é necessário realizar o treinamento, com recursos computacionais
compatíveis com a demanda de processamento exigida por tais modelos.

Capítulo 5. Conclusões e trabalhos futuros 44

3. Como contornar limitações das estratégias escolhidas?

Tanto para acelerar o treinamento, quanto para reduzir seu custo compu-
tacional, foi escolhido um modelo pré-treinado para ser usado como base
para o modelo final. Para prevenir os problemas de um modelo treinado
em um contexto genérico e possibilitar que o modelo escolhido seja capaz
de identificar um contexto específico, foi aplicado um fine-tuning com os
termos e jargões do sistema. Por fim, foi aplicada sobre os dados de trei-
namento, uma manipulação que permite ao mecanismo de atenção ser
capaz de filtrar o contexto possível de resposta, limitando-se a entradas
ligadas ao contexto proposto na pesquisa. Isso elimina a possibilidade de
respostas incoerentes, sensíveis ou enviesadas.

O modelo treinado, baseado na tecnologia dos Transformers, mostrou-se
efetivo para a concepção de uma assistente virtual inteligente para o sistema
alvo. Deste modo o modelo proposto oferece a possibilidade de tornar a
interface do sistema mais natural, possibilitando que os usuários se concentrem
na tarefa fim ao invés de se preocuparem com detalhes de interface ou de
usabilidade do sistema.

5.1
Principais contribuições

A principal contribuição desse estudo é a prova de conceito de uma
assistente virtual inteligente baseada em modelos geradores, capaz de entender
o português do Brasil e especializada no contexto de um sistema alvo pré-
existente voltado para o Gerenciamento de Reservatórios. Ainda são escassos
na literatura trabalhos que apresentem tais contribuições.

5.2
Limitações

É importante ressaltar que a assistente atualmente está limitada a
responder apenas a comandos relacionados ao sistema e às duas funcionalidades
específicas — geração de gráficos e relatórios — para as quais foi treinada. Essa
restrição é intencional e adequada, uma vez que visa evitar respostas inválidas
ou potencialmente problemáticas, permitindo assim uma prova de conceito.

Embora essa limitação possa parecer restritiva em termos de variedade
de interações possíveis, ela desempenha um papel crucial na segurança e na
precisão das respostas fornecidas pela assistente, evitando mal-entendidos e
fornecendo informações relevantes aos usuários.

Capítulo 5. Conclusões e trabalhos futuros 45

5.3
Trabalhos futuros

Há um vasto leque de oportunidades para aprimorar ainda mais a assis-
tente virtual e expandir suas capacidades. Com base nas conquistas alcançadas
nessa pesquisa, existe um espaço promissor para testes e desenvolvimentos adi-
cionais, visando fortalecer a inteligência, o alcance e a usabilidade da assistente
em diversos aspectos, assim como melhorar o seu processo de treinamento com
outros modelos base e conjuntos de hiperparâmetros.

5.3.1
Treinamento contínuo

A assistente foi treinada para responder somente duas funcionalidades
do sistema alvo. O próximo passo é disponibilizá-la em uma versão do sistema
para os usuários reais, de modo a aprimorar continuamente a sua capacidade
de resposta. Ao permitir que os usuários interajam com a assistente e solicitem
novas ações que atualmente ela não consegue responder, torna-se possível
treiná-la para responder a essas demandas específicas, por exemplo, manipular
outras funcionalidades.

Essa abordagem interativa permitirá que a assistente expanda gradual-
mente sua cobertura e se torne cada vez mais completa, à medida que novos
dados de treinamento são construídos a partir das interações dos usuários.

Assim, os próprios comandos e solicitações dos usuários desempenham
um papel fundamental na melhoria da assistente. Cada interação fornece in-
formações valiosas para aprimorar sua compreensão e resposta aos usuários,
contribuindo para a criação de um conjunto de treinamento mais robusto. Ao
aproveitar essa colaboração entre a assistente e os usuários, é possível impul-
sionar seu aprendizado e permitir um constante aperfeiçoamento das habilida-
des da assistente, atendendo cada vez mais às necessidades e expectativas dos
usuários de forma abrangente, precisa e eficiente.

5.3.2
Adaptação personalizada

Outro aspecto relevante a ser explorado é a personalização da assistente
para se adaptar aos diferentes usuários. Isso pode envolver o desenvolvimento
de mecanismos de aprendizado contínuo, nos quais a assistente seja capaz de
se ajustar às preferências e necessidades individuais dos usuários, oferecendo
respostas mais personalizadas e relevantes.

Capítulo 5. Conclusões e trabalhos futuros 46

5.3.3
Expansão de linguagens e domínio

Além das perspectivas mencionadas anteriormente, uma área de pesquisa
altamente relevante e promissora para o aprimoramento da assistente virtual é
a sua expansão para além do português do Brasil, tornando-se verdadeiramente
multilíngue. Ao tornar-se capaz de a compreender e interagir em diversos idi-
omas, a assistente poderia atender a um público mais amplo e diversificado,
facilitando a comunicação e oferecendo suporte em diferentes contextos lin-
guísticos.

O mesmo princípio se aplica à expansão do escopo da assistente virtual,
abrangendo uma variedade de domínios adicionais. Ao ampliar sua compreen-
são e conhecimento em diferentes áreas, a assistente seria capaz de fornecer
informações e suporte especializados para além do setor de Óleo e Gás, abran-
gendo outros domínios relacionados à Indústria, para além da disciplina de
Reservatórios, como a automação de processos. Com essa expansão de co-
nhecimento e escopo, a assistente virtual se tornaria uma valiosa aliada na
Indústria, ajudando a impulsionar a eficiência, a segurança e o desempenho
geral dos processos automatizados.

5.3.4
Novos modelos e ajuste de hiperparâmetros

Com o avanço contínuo no campo de PLN, surgem constantemente
modelos e técnicas aprimoradas que podem ser aplicados na construção da
assistente. A investigação de novos modelos baseados em Transformers, ou
outra tecnologia, pode conduzir a um passo interessante para a melhoria da
assistente virtual. Um modelo promissor para a aplicação aqui apresentada é
o modelo Llama [19], baseado na arquitetura dos Transformers com tamanhos
que variam de 7 a 65 bilhões de parâmetros e que tem se mostrado um modelo
eficiente para geração textual.

Além disso, os hiperparâmetros, que são configurações que controlam
o comportamento dos modelos de aprendizado de máquina, também podem
ser otimizados para melhorar o desempenho da assistente. Isso envolve a
experimentação com diferentes valores para hiperparâmetros como taxa de
aprendizado, tamanho da rede, otimizadores, entre outros, a fim de encon-
trar as combinações ideais que levem a um desempenho otimizado da assis-
tente.

6
Referências bibliográficas

[1] VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES,
L.; GOMEZ, A. N.; KAISER, L. ; POLOSUKHIN, I.. Attention is all
you need, 2017. 2

[2] RADFORD, A.; NARASIMHAN, K.; SALIMANS, T. ; SUTSKEVER, I..
Improving language understanding by generative pre-training.
2018. 1.1, 2

[3] DEVLIN, J.; CHANG, M.-W.; LEE, K. ; TOUTANOVA, K.. Bert:
Pre-training of deep bidirectional transformers for language
understanding, 2019. (document), 2, 2.4

[5] RADFORD, A.; WU, J.; CHILD, R.; LUAN, D.; AMODEI, D. ; SUTSKE-
VER, I.. Language models are unsupervised multitask learners.
2019. 2

[6] BROWN, T. B.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN,
J.; DHARIWAL, P.; NEELAKANTAN, A.; SHYAM, P.; SASTRY, G.;
ASKELL, A.; AGARWAL, S.; HERBERT-VOSS, A.; KRUEGER, G.;
HENIGHAN, T.; CHILD, R.; RAMESH, A.; ZIEGLER, D. M.; WU,
J.; WINTER, C.; HESSE, C.; CHEN, M.; SIGLER, E.; LITWIN, M.;
GRAY, S.; CHESS, B.; CLARK, J.; BERNER, C.; MCCANDLISH, S.;
RADFORD, A.; SUTSKEVER, I. ; AMODEI, D.. Language models
are few-shot learners, 2020. 2, 3.2

[7] OPENAI. Gpt-4 technical report, 2023. 2

[8] SCAO, T. L.; FAN, A.; AKIKI, C.; PAVLICK, E.; ILI´C, S.; HESSLOW,
D.; CASTAGN´E, R.; LUCCIONI, A. S.; YVON, F.; GALL´E, M. ;
ET AL.. Bloom: A 176b-parameter open-access multilingual
language model, 2022. 3.2

[9] PIRES, R.; ABONIZIO, H.; ALMEIDA, T. S. ; NOGUEIRA, R.. Sabiá:
Portuguese large language models, 2023. 3.2

[10] LEWKOWYCZ, A.; ANDREASSEN, A.; DOHAN, D.; DYER, E.; MI-
CHALEWSKI, H.; RAMASESH, V.; SLONE, A.; ANIL, C.; SCHLAG,
I.; GUTMAN-SOLO, T.; WU, Y.; NEYSHABUR, B.; GUR-ARI, G. ;
MISRA, V.. Solving quantitative reasoning problems with lan-
guage models, 2022. 1, 2

Capítulo 6. Referências bibliográficas 48

[11] TAYLOR, R.; KARDAS, M.; CUCURULL, G.; SCIALOM, T.;
HARTSHORN, A.; SARAVIA, E.; POULTON, A.; KERKEZ, V. ; STOJ-
NIC, R.. Galactica: A large language model for science, 2022. 1,
2

[12] SOUZA, F.; NOGUEIRA, R. ; LOTUFO, R.. Bertimbau: Pretrained
bert models for brazilian portuguese, 10 2020. 2

[13] RODRIGUES, R.; PRIVATTO, P.; SOUSA, G.; MURARI, R.; AFONSO,
L.; PAPA, J.; PEDRONETTE, D.; GUILHERME, I.; PERROUT, S. ;
RIENTE, A.. Petrobert: A domain adaptation language model
for oil and gas applications in portuguese, 03 2022. 2

[14] Bigscience rail license v1.0. https://huggingface.co/spaces/
bigscience/license. Acessado em: 01/05/2023. 3.2

[15] LIU, Y.; OTT, M.; GOYAL, N.; DU, J.; JOSHI, M.; CHEN, D.; LEVY,
O.; LEWIS, M.; ZETTLEMOYER, L. ; STOYANOV, V.. Roberta: A
robustly optimized bert pretraining approach, 2019. 2

[16] LAN, Z.; CHEN, M.; GOODMAN, S.; GIMPEL, K.; SHARMA, P. ;
SORICUT, R.. Albert: A lite bert for self-supervised learning
of language representations, 2020. 2

[17] JOSHI, M.; CHEN, D.; LIU, Y.; WELD, D. S.; ZETTLEMOYER, L. ;
LEVY, O.. Spanbert: Improving pre-training by representing and
predicting spans, 2020. 2

[18] LOSHCHILOV, I.; HUTTER, F.. Decoupled weight decay regulari-
zation, 2019. 3.1, 3.6

[19] TOUVRON, H.; LAVRIL, T.; IZACARD, G.; MARTINET, X.; LA-
CHAUX, M.-A.; LACROIX, T.; ROZIÈRE, B.; GOYAL, N.; HAMBRO,
E.; AZHAR, F.; RODRIGUEZ, A.; JOULIN, A.; GRAVE, E. ; LAMPLE,
G.. Llama: Open and efficient foundation language models, 2023.
5.3.4

[20] WEIDINGER, L.; MELLOR, J.; RAUH, M.; GRIFFIN, C.; UESATO, J.;
HUANG, P.-S.; CHENG, M.; GLAESE, M.; BALLE, B.; KASIRZADEH,
A.; KENTON, Z.; BROWN, S.; HAWKINS, W.; STEPLETON, T.;
BILES, C.; BIRHANE, A.; HAAS, J.; RIMELL, L.; HENDRICKS, L. A.;
ISAAC, W.; LEGASSICK, S.; IRVING, G. ; GABRIEL, I.. Ethical and
social risks of harm from language models, 2021. 1, 2, 3.4

https://huggingface.co/spaces/bigscience/license
https://huggingface.co/spaces/bigscience/license

Capítulo 6. Referências bibliográficas 49

[22] ASHER, N.; BHAR, S.; CHATURVEDI, A.; HUNTER, J. ; PAUL, S..
Limits for learning with language models, 2023. 1

[23] KANDPAL, N.; DENG, H.; ROBERTS, A.; WALLACE, E. ; RAFFEL,
C.. Large language models struggle to learn long-tail knowledge,
2023. 1, 2

[24] Sequence-to-sequence models. https://huggingface.co/learn/
nlp-course/chapter1/7?fw=pt. Acessado em: 23/09/2023. (document),
2.1

[25] Modelo de transformador para compreensão da lingua-
gem. https://www.tensorflow.org/text/tutorials/transformer?
hl=pt-br. Acessado em: 23/09/2023. (document), 2.2

[25] Must-read papers on pre-trained language models (plms). https:
//github.com/thunlp/PLMpapers. Acessado em: 23/09/2023. (docu-
ment), 2.3

[26] Hugging face – the ai community building the future. https://
huggingface.co/docs/transformers/index. Acessado em: 23/09/2023.
3.6

[27] DAKE, L.. Fundamentals of Reservoir Engineering. ISSN. Elsevier
Science, 1983. 1.1, 2

[28] ZHANG, S.; DONG, L.; LI, X.; ZHANG, S.; SUN, X.; WANG, S.; LI,
J.; HU, R.; ZHANG, T.; WU, F. ; WANG, G.. Instruction tuning for
large language models: A survey, 2023. 1

[29] ROSA, A.; DE SOUZA CARVALHO, R. ; XAVIER, J.. Engenharia de
reservatórios de petróleo. Interciência, 2006. 1.1

https://huggingface.co/learn/nlp-course/chapter1/7?fw=pt
https://huggingface.co/learn/nlp-course/chapter1/7?fw=pt
https://www.tensorflow.org/text/tutorials/transformer?hl=pt-br
https://www.tensorflow.org/text/tutorials/transformer?hl=pt-br
https://github.com/thunlp/PLMpapers
https://github.com/thunlp/PLMpapers
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index

A
Anexos

Aqui estão reunidas figuras que ilustram dos resultados obtidos após a
execução dos comandos de teste no sistema alvo. Essas imagens correspondem
a respostas produzidas na interface do sistema alvo, permitindo a compreensão
abrangente do desempenho e funcionamento da assistente proposta nesse
trabalho.

É importante destacar que, para preservar a propriedade intelectual da
regra de negócio do sistema alguns termos e nomes de entidades foram des-
caracterizados ou ocultados. Todos os dados apresentados aqui, após a desca-
racterização e ocultação de nomes, refletem informações disponíveis publica-
mente no site da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis
(ANP), garantindo, assim, que os dados exibidos nesse trabalho são de domínio
público.

A.1
Resultados por Caso

A.1.1
Caso 1

A figura A.1 ilustra a execução do comando: gerar um grafico com qo.
É possível observar que a assistente consegue identificar as entidades relavantes
no comando e gerar a instrução correta para que o sistema alvo atenda a
solicitação do usuário como esperado, isto é, resultando na criação de um
gráfico como a variável qo.

Figura A.1: Resultado Caso 1

Apêndice A. Anexos 51

A.1.2
Caso 2

A figura A.2 ilustra a execução do comando: abrir um relatorio com
qo para o campo de marlim. É possível observar que a assistente identifica
as configurações necessárias para abrir o relatório com a variável solicitada
e em seguida seleciona a categoria correta, nesse caso, o campo de Marlim,
visível no painel chamado de ‘Categorias’, na lateral esquerda da tela.

Figura A.2: Resultado Caso 2

A.1.3
Caso 3

A figura A.3 ilustra a execução do comando: gerar um grafico com
qo, no eixo 1 e qg no eixo 2. A assistente identifica as configurações ne-
cessárias para abrir o gráfico com as variáveis solicitadas e em seguida as
configura em eixos separados, como observadas nas bordas esquerda e direita
do gráfico.

Figura A.3: Resultado Caso 3

Apêndice A. Anexos 52

A.1.4
Caso 4

A figura A.4 ilustra a execução do comando: gerar um grafico com
vazao de óleo. A assistente identifica a variável, descrita por extenso, corre-
tamente. Isso mostra que ela é capaz de identificar corretamente as entidades
do sistema e escrever os comandos coerentes através da interpretação da en-
trada.

Figura A.4: Resultado Caso 4

A.1.5
Caso 5

A figura A.5 ilustra a execução do comando: fazer um grafico
multicolorido de qo no eixo 1 e vazao de gas no eixo 2, para
todos os pocos do campo de marlim, com dados agrupados.

Esse comando é mais complexo que os demais, dado que é composto de
diversos detalhes e tarefas. Para processá-lo a assistente deve ser capaz de:

– Interpretar as variáveis descritas tanto na forma simbólica quanto na
escrita por extenso, qo e vazão de gás, respectivamente.

– Distribuir as variáveis interpretadas nos respectivos eixos solicitados.

– Identificar que a palavra ‘multicolorido’ remete a atribuição de cores
distintas para as variáveis.

– Identificar que os dados de entrada do gráfico são provenientes de todos
os poços do campo solicitado.

– Identificar que os dados devem ser agrupados, isto é, devem ser resgata-
dos para cada poço e então somados para gerar a curva final.

Apêndice A. Anexos 53

Através da análise da figura A.5 é possível observar que a assistente
consegue atingir a todos os objetivos mencionados anteriormente. É possível
notar que, no painel de Categorias, todos os poços que terminam com o sufixo
MRL estão selecionados. Isso mostra que a assistente entende que deve buscar
todos os poços relacionados ao campo de Marlim e selecioná-los para compor
as curvas finais exibidas no gráfico.

Figura A.5: Resultado Caso 5

	Assistente Virtual utilizando Transformers Generativos Pré-treinados no Contexto de Gerenciamento de Reservatórios
	Resumo
	Sumário
	Introdução
	Motivação
	Questões e objetivos de pesquisa
	Estrutura do trabalho

	Contextualização e trabalhos relacionados
	Metodologia
	Estrutura do sistema alvo
	Modelo pré-treinado
	 Fine-tuning e training data
	Restrição das respostas
	Tokenização
	Escopo e treinamento

	Resultados
	Treinamento
	Caso 1
	Caso 2
	Caso 3
	Caso 4
	Caso 5
	Resumo de resultados
	Fuga do contexto
	Comandos incompletos
	Limites de compreensão do modelo

	Conclusões e trabalhos futuros
	Principais contribuições
	Limitações
	Trabalhos futuros

	Referências bibliográficas
	Anexos
	Resultados por Caso

