
Matheus Telles Werner

Extracting Section Structure from Resumes in
Brazilian Portuguese

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática, do Departamento de Informática of PUC-Rio in partial
fulfillment of the requirements for the degree of Doutor em In-
formática.

Advisor: Prof. Eduardo Sany Laber

Rio de Janeiro
September 2023

Matheus Telles Werner

Extracting Section Structure from Resumes in
Brazilian Portuguese

Thesis presented to the Programa de Pós–graduação em Informá-
tica of PUC-Rio in partial fulfillment of the requirements for the
degree of Doutor em Informática. Approved by the Examination
Committee:

Prof. Eduardo Sany Laber
Advisor

Departamento de Informática – PUC-Rio

Prof. Sergio Colcher
Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Dr. Alexandre Roberto Renteria
Jobzi

Prof. Julio Cesar Duarte
IME

Rio de Janeiro, September 27th, 2023

All rights reserved.

Matheus Telles Werner

Bachelor’s in Computer Engineering (2016) at the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio). Master’s in
Informatics (2019) at the Pontifical Catholic University of Rio
de Janeiro (PUC-Rio).

Bibliographic data
Werner, Matheus Telles

Extracting Section Structure from Resumes in Brazilian
Portuguese / Matheus Telles Werner; advisor: Eduardo Sany
Laber. – 2023.

85 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2023.

Inclui bibliografia

1. Engenharia de Computação – Teses. 2. Analisador de
Currículo. 3. Processamento de Linguagem Natural. 4.
Extração de Informação. 5. Classificação de Imagem. 6.
Segmentação de Texto. 7. Recursos Humanos. I. Laber,
Eduardo Sany. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

Acknowledgments

To my advisor Eduardo Sany Laber, for all your guidance and support over
these four and a half years. Your professionalism, sincerity, and dedication have
been a constant source of inspiration.

To my parents Rudi and Roberta, and my brothers Lucas and Natan, for your
unconditional love and support during all this time and for understanding my
decision to pursue my Ph.D.

To Louise, your love and support throughout this entire journey, particularly
during this final stretch, mean a lot to me. Your presence, affection, and
encouragement helped me finally get here.

To my friends and colleagues, for all these years of friendship and all the
support and encouragement.

To my psychologist Cristiane Diniz, for all the invaluable assistance you have
provided from the COVID pandemic up to this very moment. You have my
eternal gratitude.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Abstract

Werner, Matheus Telles; Laber, Eduardo Sany (Advisor). Extrac-
ting Section Structure from Resumes in Brazilian Portu-
guese . Rio de Janeiro, 2023. 85p. Tese de Doutorado – Departa-
mento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

This thesis presents a novel resume parser designed to effectively reor-
ganize the textual content of any resume into its original section structure.
Our work addresses two practical challenges overlooked by the existing lite-
rature: (i) ensuring the correct reading order of text retrieved from resume
files and (ii) extracting individually all sections, as well as work experience
and education subsections. By taking into account the observation that most
resumes adhere to basic document templates, we reframe the reading order
problem as a template identification task. Our experiments suggest that even
a widely-used small model like EfficientNet-B0 can accurately identify com-
mon templates. Additionally, we propose a sequence tagging approach that
simultaneously identifies all resume sections and some subsections. We imple-
ment and compare two solutions based on the well-known CRF and BERT
models. Our evaluation provides strong evidence that the CRF can serve as a
practical alternative to BERT, depending on hardware and budget constraints.
They yield comparable results in terms of identifying resume sections, while
BERT displays a substantial advantage when identifying education and work
experience subsections.

Keywords
Resume Parser; Natural Language Processing; Information Extraction;

Image Classification; Text Segmentation; Human Resources.

Resumo

Werner, Matheus Telles; Laber, Eduardo Sany. Extraindo a
Estrutura de Seção de Currículos em Português . Rio
de Janeiro, 2023. 85p. Tese de Doutorado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese apresenta um novo analisador de currículos projetado para
reorganizar o conteúdo textual de qualquer currículo em sua estrutura de
seção original. Nosso trabalho aborda dois desafios práticos negligenciados
pela literatura existente: (i) garantir a ordem de leitura correta do texto
recuperado do arquivo de currículo e (ii) extrair individualmente todas as
seções, bem como as subseções de experiências de trabalho e educação.
Levando em consideração a observação de que a maioria dos currículos adere
a modelos básicos de documentos, reformulamos o problema da ordem de
leitura como uma tarefa de identificação de modelos de documento. Nossos
experimentos sugerem que mesmo um pequeno modelo amplamente utilizado
como o EfficientNet-B0 pode identificar com precisão modelos de documento
comuns. Além disso, propomos uma abordagem de rotulação de sequências que
identifica simultaneamente todas as seções do currículo e algumas subseções.
Implementamos e comparamos duas soluções baseados nos conhecidos modelos
CRF e BERT. Nossa avaliação fornece fortes evidências de que o CRF pode
servir como uma alternativa prática ao BERT, dependendo do hardware e das
restrições orçamentárias. Eles produzem resultados comparáveis em termos
de identificação de seções de currículo, enquanto o BERT demonstra uma
vantagem substancial ao identificar as subseções de educação e experiências
de trabalho.

Palavras-chave
Analisador de Currículo; Processamento de Linguagem Natural; Extra-

ção de Informação; Classificação de Imagem; Segmentação de Texto; Recursos
Humanos.

Table of contents

1 Introduction 16
1.1 Our Contributions 18
1.2 Thesis Structure 20
1.3 Disclaimer 20

2 Background 21
2.1 Portable Document Format 21
2.2 Annotation Tools 22
2.3 Document Image Classification 24
2.3.1 Convolutional Neural Network 25
2.3.2 EfficientNet 25
2.4 Sequence Tagging 26
2.4.1 Conditional Random Fields 27
2.4.2 Bidirecional Encoder Representations from Transformers 28

3 Related Work 31
3.1 Resume Parsing 31
3.1.1 Traditional Approaches 31
3.1.2 Modern Approaches 32
3.1.3 Enterprise Solutions 33
3.2 Reading Order Detection 33
3.3 Text Segmentation 34

4 Our Proposal 35
4.1 Pipeline 35
4.2 Reading Order 37
4.2.1 Layout Complexity 37
4.2.2 Template Types 40
4.2.3 Reconstruction Step 41
4.2.4 Impact of Templates in the Reading Order 41
4.3 Resume Segmentation 43
4.3.1 Section Types 43
4.3.2 Tagging Scheme 45
4.3.3 Segmentation Models 45

5 Experiments 51
5.1 Initial Considerations 51
5.2 Template Classification Task 51
5.2.1 Comparative Method 52
5.2.2 Dataset 53
5.2.3 Experimental Setup 55
5.2.4 Results 56
5.2.5 Error Analysis 57
5.3 Resume Segmentation Task 60

5.3.1 Dataset 61
5.3.2 Experimental Setup 63
5.3.3 Results 64
5.3.4 Error Analysis 66

6 Conclusion 70
6.1 Contributions 70
6.2 Limitations 71
6.3 Future Work 72

Bibliography 74

A Common Resume Headings 81

B Regarding the Use of the Item Suffix Strategy 82

C PDF Metadata Statistics 83
C.1 Template Classifier Dataset 83
C.2 Resume Segmentation Dataset 84

List of figures

Figure 1.1 Figure 1.1a displays the sections typically identified by
the resume parsers described in the literature. In contrast,
Figure 1.1b presents an enhanced identification that includes
additional sections and introduces subsections (dashed lines) for
Work Experiences and Education. 17

Figure 1.2 Figure 1.2a provides a visual representation of the read-
ing order derived from text extracted by a PDF parser, with
text boxes in the figure displaying numbers in its top left corner
to represent this order. Ideally, the parser should aim to gen-
erate a reading order similar to that illustrated in Figure 1.2b.

18

Figure 2.1 Toy example of the same PDF file represented from
different perspectives. Figure 2.1a illustrates a segment of the
PDF’s internal structure, delineating the instructions for ren-
dering textual objects on the screen. Figure 2.1b showcases how
these identical objects appear when rendered by PDF reader
software. Notably, these objects’ internal storage sequence does
not necessarily mirror the sequential manner in which a human
would read the displayed content. 22

Figure 2.2 Screenshoots of the annotation tool BRAT. 23
Figure 2.3 Screenshoots of the annotation tool Label Studio. 23
Figure 2.4 Examples of document images from different docu-

ment types. Image retrieved from https://adamharley.com/
rvl-cdip/ 24

Figure 2.5 A simple CNN architecture [1]. 25
Figure 2.6 EfficientNet operations [2]. 26
Figure 2.7 A simplified representation of the BERT architecture.

WordPiece tokenization effectively balances the segmentation
of words into subword units while preserving common words’
integrity; this maintains words like “University” as complete
units while breaking down words like “ACADEMIC”. Multi-
head attention employs several distinct attention mechanisms
to simultaneously address diverse aspects of input text. The
BERT architecture iteratively refines input embeddings through
twelve layers before transmitting them to the classification layer.
Empty entries in the output layer indicate that we ignored the
predicted tag. 29

Figure 3.1 Example of a basic pipeline for parsing resumes. The
primary objective of most of the proposed approaches is to
extract the relevant entities. Section identification serves as a
means to filter the text portions that the models should scan
for improving precision. 32

https://adamharley.com/rvl-cdip/
https://adamharley.com/rvl-cdip/

Figure 4.1 Our resume parser pipeline. The idea is to organize the
unstructured text extracted from a resume file into a semi-
structured object that reflects its original section structure. Our
parser does not identify entity-level information, such as degrees
and job titles. That said, we understand that our components
can be easily coupled with other well-established approaches,
given the modular design commonly adopted by most resume
parsers. 36

Figure 4.2 Examples of text elements organized in a L-shape format
[3]. 38

Figure 4.3 As illustrated in Figures 4.3a, 4.3b, and 4.3c, the reading
order complexity of a page can be associated with the minimum
number of cuts required by their respective layouts to allocate
each text block present in a distinct page region. Here the
complexity level of the layout is equivalent to number of cuts+1.
Level 1 is omitted, given it would be just the entire page as a
single text block. 39

Figure 4.4 Figure 4.4a depicts the reading order that defines a 1-
Column template. Figure 4.4b is an example that follows this
reading order. Figure 4.4c is an example that does not follow
it since the Name and Surname would be read separately given
the other contacts in the upper right corner. 40

Figure 4.5 Figure 4.5a depicts the reading order that defines the
2-Column template. Figure 4.5b is an example that follows this
ordering while Figure 4.5c is an example that does not, as the
page header makes it impossible to divide the text into two
columns. 41

Figure 4.6 How to compute the y and x axes gap between consecu-
tive lines. 48

Figure 4.7 The WordPiece tokenizer converts the input text contain-
ing 15 “words” into a sequence of 25 tokens. Suppose we employ
a toy BERT model with a token limit of 16 and consider a con-
text size of 7 tokens. In that case, we must partition the token
sequence into two minor subsequences and process them sepa-
rately. The first sequence processes the first 16 tokens, while the
second processes the remaining 9 tokens. However, we append
7 context tokens to the beginning of the later subsequence to
improve context awareness. 49

Figure 4.8 In addition to the token sequence, we add newline and
context index sequences as input to BERT. This additional
information allows us to control which outputs to consider
during the training and inference phases. 50

Figure 4.9 After processing each subsequence, we translate the
outputs generated back to the original format. First, we drop
the SEQ 2’s contextual window and then attach it to the end of
SEQ 1. The output of the second line present in SEQ 2 is also
ignored in this process because the line was already classified in
SEQ 1. Finally, once we have the original sequence, we apply
post-processing to ensure the tag sequence is consistent. 50

Figure 5.1 The original and anonymized versions of the same resume
page. 54

Figure 5.2 The Figures 5.2a and 5.2b display Complex pages that
the heuristic method classified as 1-Column and 2-Column
respectively. 58

Figure 5.3 An Education section where each piece of information
from an education is isolated from the others. Realistically,
we read these educations line-by-line. However, assuming the
reading should be column-by-column seems valid for the model.
Even more so with the discretized images. 59

Figure 5.4 The Figures 5.4a and 5.4b display Complex pages that
the EfficientNet-B0 model classified as 1-Column and 2-Column
respectively. 60

Figure 5.5 Matching (↕) between true and predicted segment se-
quences for classification evaluation with a Jaccard score thresh-
old of at least 60%. In this simplified example, only two segments
are considered correct. 60

List of tables

Table 4.1 Number of y-axis inversions for two commonly used
document parsers (in %). PDFBox returns the lines in the order
they were stored, while PDFMiner applies a heuristic to reorder
them based on their spatial locations. 42

Table 4.2 A comparison of the standard IOB2 scheme and our
modified implementation. 45

Table 4.3 The manually extracted features used by the CRF model.
The term default refers to each resume’s most frequently found
value for the given attribute. 47

Table 5.1 The number of resumes using different combinations of
template types. 54

Table 5.2 Accuracy (in %) for all models trained. The heuristic
method (baseline) obtained an accuracy of 74.93% ± 0.82%.

56
Table 5.3 Confusion matrix per template type for the heuristic

method. 57
Table 5.4 Classification metrics (in %) per template type for the

heuristic method. 58
Table 5.5 Confusion matrix per template type for the best model

trained. 59
Table 5.6 Classification metrics (in %) per template type for the

best model trained. 59
Table 5.7 An example of an annotated 2-Column resume. 62
Table 5.8 Basic statistics of the annotated sections. 63
Table 5.9 F1-Score (in %) for all CRF models trained with different

sets of features. The “+” symbol indicates adding new features
to those used in the column to its left. For example, “+ Visual”
implies employing vocabulary, text, and visual features. 64

Table 5.10 F1-Score (in %) for all BERT models trained with differ-
ent sets of feature and training settings. 65

Table 5.11 Confusion matrix for the best CRF model from one of
the dataset splits. For clarity, ∅: Not Matched; Edu: Educa-
tion; Obj: Objective; Oth: Other; Per: Personal Info; Sum:
Summary; Work: Work Experience. 67

Table 5.12 Example of a section misclassified by the CRF model.
Commonly used headings such as “Skills” are strongly correlated
to specific section types. 67

Table 5.13 Confusion matrix for the best BERT model from one of
the dataset splits. For clarity, ∅: Not Matched; Edu: Educa-
tion; Obj: Objective; Oth: Other; Per: Personal Info; Sum:
Summary; Work: Work Experience. 68

Table 5.14 Example of a segment misclassified by the BERT model.
The presence of a job title in a row is a strong indication that
this is the beginning of a new work experience. 69

Table A.1 Common resume headings by section type. 81

Table B.1 F1-Score (in %) for the CRF and BERT models with and
without the item suffix strategy. True: The model used the item
suffix. False: The model did not use the item suffix. 82

Table C.1 The number of PDF files composing the Template Classi-
fier dataset encoding a Logical Structure and Table of Contents
by the most used Software Tools. For clarity, we grouped all ver-
sions of the same software into one entry. The entry <Empty>
means the producer property is empty in the file metadata. 84

Table C.2 The number of PDF files composing the Resume Segmen-
tation dataset encoding a Logical Structure and Table of Con-
tents by the most used Software Tools. For clarity, we grouped
all versions of the same software into one entry. The entry
<Empty> means the producer property is empty in the file
metadata. 85

List of Abreviations

BERT – Bidirectional Encoder Representations from Transformers

Bi-LSTM – Bidirectional Long-Short-Term-Memory

CV – Curriculum Vitae

CNN – Convolutional Neural Network

CRF – Conditional Random Field

HMM – Hidden Markov Model

IOB – Inside-Outside-Beginning

IOBES – Inside-Outside-Beginning-End-Single

LSTM – Long Short Term Memory

NLP – Natural Language Processing

PDF – Portable Document Format

ResNets – Residual Networks

RNN – Recurrent Neural Networks

Seq2Seq – Sequence-to-Sequence

XML – Extensible Markup Language

I love deadlines. I love the whooshing noise
they make as they go by.

Douglas Adams, The Salmon of Doubt.

1
Introduction

A resume, or curriculum vitae (CV), accounts for an individual’s profes-
sional qualifications and educational background. It systematically organizes
this information into distinct sections and presents it through various formats,
including plain text, itemized lists, or further subdivisions. As an example,
the Summary section provides an overview of an individual’s noteworthy pro-
fessional accomplishments in a narrative format while the Work Experiences
section presents a compilation of previous positions held by the individual,
typically accompanied by details such as the company name, employment du-
ration, and a concise description of job responsibilities. Despite these well-
defined structural elements, the content and presentation of information within
a resume can exhibit significant variations influenced by personal preferences,
industry conventions, and the job role being pursued.

For Recruitment and Selection processes, developing a resume parser ca-
pable of accurately identifying all sections within any resume and extracting
the pertinent information holds tremendous value for recruiters and companies.
Such a tool would streamline various processes, including candidate selection
during recruitment and user registration on job portals through resume up-
loads. Additionally, it can potentially support related NLP tasks, such as Job
Matching [4, 5] and Skill Recommendation [6].

However, existing literature primarily focuses on entity extraction from
the main resume sections [7, 8, 9, 10]. This involves identifying text segments
corresponding to Personal Info, Work Experiences, and Education and, then,
extracting entities from them such as Contact Information, Job Titles, Com-
pany names, and Educational Institutions. While obtaining these entities is a
crucial aspect of resume parsing, it represents only part of the functionality
required in practical scenarios. Equally important is extracting the remain-
ing sections and establishing relationships between extracted entities, aspects
covered only by commercial resume parsers such as Affinda1 and Nanotecs2.

Obtaining the complete section structure could help to effectively accom-
plish this objective, as it would enable more coherent and meaningful associ-

1https://affinda.com/
2https://nanonets.com/

Chapter 1. Introduction 17

ations between the information contained within the resumes. For instance,
as demonstrated in Figure 1.1, extracting all resume sections and subsections
is essential to attain a more comprehensive and precise representation of the
resume’s content. This enhanced representation could simplify processes such
as grouping extracted entities related to the same work experiences, given that
they would already be inside the same subsections.

(a) Typical (b) Ideal

Figure 1.1: Figure 1.1a displays the sections typically identified by the re-
sume parsers described in the literature. In contrast, Figure 1.1b presents an
enhanced identification that includes additional sections and introduces sub-
sections (dashed lines) for Work Experiences and Education.

Another often overlooked aspect in the literature is the significant in-
fluence of the chosen file format to store resume information on the process
of information extraction. Arguably, PDF [11] stands out as the predominant
document format for resumes, necessitating the initial step of text extraction
through tools like PDFBox [12] to identify pertinent entities within the doc-
ument. However, a significant challenge arises due to the inherent design of
PDFs, which do not prioritize storing text in an order that is reasonable for
human readers. This lack of adherence to a coherent reading order can result
in extracted text being arranged in an unconventional manner, and this, in
turn, has a direct influence on the effectiveness of resume parsers.

Figure 1.2 provides a visual representation of this issue. As we can
observe, the resume text extracted by a PDF parser fragmented the sections
Objective and Work Experiences, scattering their content across different
portions of the text. It is worth emphasizing that the optimal reading order is

Chapter 1. Introduction 18

subjective and may vary among different readers. Nonetheless, in the context
of resume parsing, it is fundamental to ensure the cohesion of each section.

(a) Actual (b) Expected

Figure 1.2: Figure 1.2a provides a visual representation of the reading order
derived from text extracted by a PDF parser, with text boxes in the figure
displaying numbers in its top left corner to represent this order. Ideally, the
parser should aim to generate a reading order similar to that illustrated in
Figure 1.2b.

Lastly, to our knowledge, existing literature have primarily targeted
resumes in English [8, 9, 13], Chinese [7, 14], and European languages [10, 13].
This has resulted in a notable void in the availability of effective resume parsing
tools tailored specifically for the Brazilian market.

1.1
Our Contributions

Our main contribution lies in developing a novel resume parser for
Brazilian Portuguese that addresses two practical aspects that were overlooked
by the proposals available in the literature: (i) ensuring the accurate reading
order of text extracted from resume files and (ii) extracting the entire section
structure within a resume. In other words, we propose a resume parser
pipeline that given a pdf file systematically identifies and delineates all sections
within a resume. More precisely, in the case of the Education and Work
Experiences sections, we extend our approach to the individual identification
of each subsection within these sections. This emphasis on Education and
Work Experiences stems from their key role as arguably the main sections

Chapter 1. Introduction 19

of a resume, containing numerous entities that require association with other
entities (e.g., Job Titles and Company Names).

To restore the correct reading order of the text, we first devised a metric
to distinguish different levels of complexity in document layouts. We employ
this metric to classify the resumes according to their complexity and then we
identify the prevalent classes. The majority of resumes found in our study has
low layout complexity and, thus, we focus on them. In such cases, deducing
the correct reading order proves relatively straightforward. By exploiting this
convention, we reframe the text reading order problem into a template identi-
fication task, which can be effectively addressed through Image Classification
techniques. Our experiments suggest that even a widely-used small model like
EfficientNet-B0 [2] can accurately identify common templates with a satisfac-
tory accuracy above 85%. Additionally, we demonstrate that identifying page
templates using an anonymized version of the pages (highlighting character-
containing regions only) yields competitive results, ensuring data privacy while
allowing us to make our anonymized dataset publicly available.

To extract the sections and subsections, we design a sequence tagging
approach to simultaneously identify both types of information. Using our
proposed approach, we implement two solutions based on the well-known CRF
[15] and BERT [16] models. We aim to investigate the performance disparity
between these models and evaluate their practical implications, particularly
considering their significant computational cost differences. Our experiments
demonstrate good results with regard to the sequences of segments that are
generated. In terms of section identification, both CRF and BERT exhibited
comparable performance, with CRF achieving an F1-Score of 83.5% and BERT
achieving 84.9%. However, when identifying education and work experience
subsections, BERT demonstrated a significant advantage over CRF: the latter
achieved an F1-Score of 72.9%, while the former achieved 82.4%. Nonetheless,
these results suggest that the CRF can be a feasible alternative to BERT,
depending on hardware and budget limitations.

In summary, our contributions encompass the following:

1. Development of a resume parser for Brazilian Portuguese designed to
structure the entire resume;

2. A simple yet effective approach to ensure the correct text reading order
based on layout information;

3. Two segmentation models for extracting the sections and subsections
simultaneously;

Chapter 1. Introduction 20

4. An in-depth analysis of employing BERT- and CRF-based models for
resume segmentation;

5. An anonymized dataset for page template identification, promoting data
accessibility while upholding privacy considerations.

It is worth mentioning that our study primarily concentrates on resumes
in PDF format. Our choice is motivated by its widespread popularity and
extensive usage 3. Additionally, less common formats such as DOC and DOCX
can easily be converted to PDF for compatibility.

1.2
Thesis Structure

The thesis is organized as follows. In Section 2, we introduce the funda-
mental concepts and methods required to comprehend the remainder of this
work. Then, in Section 3, we provide a brief overview of existing academic and
commercial approaches to resume parsing and other related information ex-
traction tasks. Section 4 presents the pipeline of our resume parser, outlining
its key components and functionality. In Section 5, we describe the datasets de-
veloped to evaluate our approach’s performance and present our experimental
study’s results, focusing on page template identification using EfficientNet-B0
and resume segmentation using both CRF and BERT models. Finally, in Sec-
tion 6, we conclude our research and discuss future directions for enhancing
the capabilities and applications of our resume parser.

1.3
Disclaimer

Most of the resume information displayed throughout this paper was
generated by us or taken from Microsoft Create4. Information from a real
resume was only displayed when strictly needed. However, in those cases, we
did not present any personal information that would make it simple to identify
the author of the resume.

3https://pdfa.org/pdfs-popularity-online/
4https://create.microsoft.com/en-us/templates/resumes-and-cover-letters

https://create.microsoft.com/en-us/templates/resumes-and-cover-letters

2
Background

This chapter overviews the fundamental concepts and methods required
to comprehend the remainder of this work. We begin by properly introducing
the PDF format in Section 2.1, emphasizing its pertinent characteristics in our
specific context. Proceeding to Section 2.2, we delve into the labeling tools we
chose to assist in annotating the data collected for evaluating our proposed
methodology. Lastly, Sections 2.3 and 2.4 provide a formal presentation of the
machine learning tasks central to this work, accompanied by a comprehensive
exposition of the corresponding models that will be employed in subsequent
segments of this thesis.

2.1
Portable Document Format

A Portable Document Format (PDF) [11] is a format file developed by
Adobe to display a document in the same manner, regardless of the hardware
and software used. Its simplest arrangement consists of storing a sequence of
graphical objects describing where, how, and what will be displayed visually
on the page. Figure 2.1 illustrates a toy example.

Because the purpose of a PDF is to ensure visual consistency and
flexibility, there are no requirements regarding the objects’ storage order [17].
The availability of an internally well-structured file and a human-readable
order is optional and depends on the writing software used. On this subject,
the files including this additional information are named Tagged PDF.

The format also includes other accessibility options that facilitate the
navigation of the content. The most relevant for our work is the availability of
a Table of Contents, which could reflect the resume’s sections.

Despite this, many documents do not store this metadata. The reasons
are many. For example, the writing software used may simply not have
implemented these functionalities, or it may be impossible to generate them
automatically due to the flexibility of the document’s layout allowed by the
software. Furthermore, besides the writing software, there is also reading
software (e.g., PDF reader, Python package), which may ignore the metadata

Chapter 2. Background 22

(a) Internal Structure (b) Representation

Figure 2.1: Toy example of the same PDF file represented from different
perspectives. Figure 2.1a illustrates a segment of the PDF’s internal structure,
delineating the instructions for rendering textual objects on the screen. Figure
2.1b showcases how these identical objects appear when rendered by PDF
reader software. Notably, these objects’ internal storage sequence does not
necessarily mirror the sequential manner in which a human would read the
displayed content.

stored and display the document’s reading order in the wrong order, even
though it is available internally.

2.2
Annotation Tools

Annotation tools play a crucial role in the process of building datasets
for supervised machine learning and natural language processing (NLP) tasks.
They provide environments that offer tools to assist in all stages of the
annotation process of the collected data — making the whole process more
straightforward and faster. In the context of this thesis, two distinct annotation
tools were employed: BRAT [18] and Label Studio [19]. These tools were chosen
for text and image annotation, respectively.

BRAT A specialized open-source software designed for text annotation
tasks. It enables users to highlight and categorize entities and relationships
within textual data, facilitating tasks such as named entity recognition and
relationship extraction.

Chapter 2. Background 23

(a) Data Repository (b) Annotation Task

Figure 2.2: Screenshoots of the annotation tool BRAT.

Label Studio A versatile open-source annotation tool tailored for various
data types, including text, images, audio, and video. It offers customizable
annotation schemas, role-based collaboration, and active learning integration,
empowering annotators to create accurate and diverse labeled datasets for
machine learning and multi-modal analysis tasks.

(a) Data Repository (b) Annotation Task

Figure 2.3: Screenshoots of the annotation tool Label Studio.

While these tools were developed with different purposes in mind, it is
noteworthy that BRAT and Label Studio share many essential features that
make them reliable:

1. Open-Source Nature: Both BRAT and Label Studio are open-source
solutions with strong communities and easy-to-set-up tools.

2. User-Friendly Interfaces: Each tool features a user-friendly interface,
making them approachable and accessible to newcomers;

3. Account-Based Access Control: BRAT and Label Studio incorporate
account-based systems that block access to the data by third parties and
facilitate collaborative annotation;

Chapter 2. Background 24

4. Web-Server Compatibility: Both tools are designed to be deployed on
web servers, allowing one to annotate data through any internet browser.

2.3
Document Image Classification

Document Image Classification is a task within the field of computer
vision, focusing on categorizing images of documents into predefined classes
based on their visual content. The goal of this task is to automatically
assign labels to document images, enabling efficient organization, retrieval, and
management of large collections of digitized documents. Figure 2.4 displays
examples of different document images from the RVL-CDIP dataset [20].

Figure 2.4: Examples of document images from different document types.
Image retrieved from https://adamharley.com/rvl-cdip/

Formally, let tensor m ∈ RH×W ×C represent the input document image,
where H is the height in pixels, W is the width in pixels, and C is the
number of channels (e.g., grayscale or RGB channels). Additionally, assume
we have a predefined document type set d = {d1, d2, ..., dD}, signifying the
D different document types that can be associated with a document image.
The document image classification aims to predict a label l ∈ d to the input
image. Its objective is to find the label l∗ ∈ d that maximizes the conditional
probability p(l∗|m), as expressed by the equation: argmaxt p(l|m). In simpler
terms, the document image classification goal is to find the document type that
has the highest probability of being correct given the observed input image,
considering the visual patterns encountered within neighboring pixels.

In fact, image classification is one of the earliest tasks of computer vision,
and as such, numerous well-established computer vision techniques naturally
address it. In the context of this work, we employed EfficientNets [2], one of the
most employed models for this task. In the remainder of this section, we briefly

https://adamharley.com/rvl-cdip/

Chapter 2. Background 25

explain how it works, starting from its base architecture, the Convolutional
Neural Network.

2.3.1
Convolutional Neural Network

Convolutional Neural Network (CNN) is a deep learning architecture
specially designed for image analysis and processing. It excels in tasks such
as image classification due to its ability to automatically learn hierarchical
features directly from pixel values. The fundamental concept of CNNs is first
to detect local image patterns, such as edges, and then progressively combine
these basic features to form more complex ones, such as shapes. To achieve this,
CNNs incorporate the Convolutional and Pooling layers. Figure 2.5 illustrates
these concepts.

Figure 2.5: A simple CNN architecture [1].

The Convolutional Layer is responsible for detecting local patterns in
images by sliding learnable filters over the input, generating feature maps
representing specific features such as edges and textures. As layers deepen, the
network captures increasingly complex features.

The Pooling Layer downsamples the generated feature maps by aggregat-
ing values within small adjacent regions. This downsizing not only enhances
the model’s computational efficiency but also improves its robustness against
slight variations in the input.

After repeating this process multiple times, the model generates repre-
sentative image features. These features are then flattened and input into a
linear classifier to determine the image’s category.

2.3.2
EfficientNet

While neural network models find extensive applications, they still strug-
gle to determine optimal input size, the number of layers, and other hyperpa-

Chapter 2. Background 26

rameters. Assigning these values typically involves a trial-and-error approach or
reliance on heuristics, which can prove time-intensive. Within CNN-based ar-
chitectures, EfficientNet [2] addresses this issue by introducing a methodology
that systematically scales the architecture based on available computational
resources.

EfficientNet starts with a baseline model, EfficientNet-B0, and defines a
set of operations that can be applied to it (such as adding more layers). They
also establish a maximum limit on mathematical operations, representing the
computational resources. By progressively increasing computational resources,
they search for the most effective combinations of operations that fit within the
augmented resources while yielding optimal performance on the widely-used
ImageNet dataset [21] for image classification. This systematic methodology
results in a family of eight models, ranging from EfficientNet-B0 to B7,
each tailored to different resource constraints and demonstrating improved
performance in various tasks.

Figure 2.6: EfficientNet operations [2].

2.4
Sequence Tagging

Sequence tagging is a fundamental task widely used in NLP applications,
involving the assignment of tags to a sequence of elements (e.g., words, lines).
For example, Part-of-Speech (POS) tagging aids in grammatical analysis
by categorizing each word’s syntactic role, while Named Entity Recognition
(NER) identifies and classifies entities like names of people, locations, and
organizations. Additionally, the use of sequence tagging extends to more
complex tasks like document segmentation, where it helps in outlining the
section structures.

Chapter 2. Background 27

For these last applications, it is common practice to use a tagging scheme
to represent entities and sections spanning multiple words accurately. For
example, IOB2 (Inside-Outside-Beginning) scheme [22] adds a prefix B to
the first word of an entity while adding a prefix I to the remaining words. For
the location “São Paulo”, the word “São” would be tagged B-Location while
“Paulo” would be tagged I-Location. This scheme also includes the tag O to
be assigned to all words unrelated to any entity.

Formally, let x = {x1, x2, ..., xN} represent the input sequence consisting
of N elements. Additionally, assume we have a predefined tag set t =
{t1, t2, ..., tT }, denoting the T potential tags that can be assigned to these
elements. Sequence Tagging aims to predict a tag for each element in the
input sequence, creating a corresponding tag sequence y = {y1, y2, ..., yN},
where each yi ∈ t. The objective is to find the optimal tag sequence y∗ that
maximizes the conditional probability p(y∗|x), as expressed by the equation:
y∗ = argmaxy p(y|x). In simpler terms, the sequence tagging goal is to find
the tag sequence that has the highest probability of being correct given
the observed input sequence, considering the contextual dependencies and
relationships between neighboring elements.

Many popular NLP methods are used to address sequence tagging tasks.
In the context of this work, we employed CRF [15] and BERT [16], arguably
two of the most employed models for this task. In the remainder of this section,
we briefly explain how each of these models works.

2.4.1
Conditional Random Fields

Conditional Random Fields (CRF) [15] are a type of probabilistic graph-
ical model used for structured prediction tasks, where the goal is to make
predictions about structured outputs. CRFs are particularly effective in sce-
narios where there are dependencies between the output tags. In the context
of sequence tagging, Linear-chain CRF is a subtype of CRF specifically de-
signed for dealing with sequences, where the dependencies between tags are
constrained to their neighboring tags.

For modeling the p(y|x), the Liner-chain CRF defines a set of feature
functions f = (f1, f2, ..., fK) that capture the relationships between the
sequence’s elements and tags. Each feature function fk ∈ f computes a score
based on the strength of a certain feature in each element xi ∈ x, taking into
account the tags yi and yi−1 assigned to the current and previous elements.

Chapter 2. Background 28

Then, the scores of all feature functions are combined using:

score(y|x) =
N∑

i=1

K∑
j=1

λjfj(yi, yi−1, x, i).

Finally, the resulting score is transformed into a probability distribution over
all possible tag sequences using a normalization function like the softmax.

Selecting useful feature functions plays a critical role in the CRF’s
performance. Thus, it is crucial to take time and define as many functions as
possible that seem aligned with the task at hand. For example, considering the
document segmentation application, we could employ indicative functions that
verify whether a word is commonly used as a section heading or is uppercase.

2.4.2
Bidirecional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) [16]
is a transformer-based model [23] that learns contextualized word embeddings
[24] by simultaneously considering both the left and right neighboring contexts
of each word in a sentence. These embeddings encode comprehensive informa-
tion about word meanings in the context of a sequence, effectively extracting
high-quality features directly from raw text and removing the need for manual
feature engineering, as seen in the CRF model.

2.4.2.1
Model Architecture

It is out of the scope of this work to explain the intricacies behind a BERT
model and how it models the p(y|x) for the sequence tagging task. Yet, for a
basic understanding of its functionality, we provide a simplified explanation of
how BERT operates, emphasizing its two foundational components: subword
tokenization [25] and the attention mechanism [26]. We also include a visual
representation of the simplified BERT architecture in Figure 2.7 to enhance
comprehension.

At first, BERT receives a sequence of words and breaks them into a
sequence of subwords by employing the WordPiece tokenization [25]. The
justification is that subwords enable the model to handle words not present in
its initial vocabulary and effectively represent morphologically rich languages.
For example, the word “segmentation” could be split into “segment” and
“##ation”, where “##” denotes a subword continuation. In the context of
sequence tagging, to avoid introducing excessive complexity, the model could

Chapter 2. Background 29

Figure 2.7: A simplified representation of the BERT architecture. WordPiece
tokenization effectively balances the segmentation of words into subword units
while preserving common words’ integrity; this maintains words like “Univer-
sity” as complete units while breaking down words like “ACADEMIC”. Multi-
head attention employs several distinct attention mechanisms to simultane-
ously address diverse aspects of input text. The BERT architecture iteratively
refines input embeddings through twelve layers before transmitting them to
the classification layer. Empty entries in the output layer indicate that we ig-
nored the predicted tag.

ignore subword continuations and assign the first token’s output tag as the
word’s tag.

Once subword tokenization is complete, BERT assigns an embedding to
represent each subword in a continuous vector space. These embeddings are
then refined iteratively through the attention mechanism [26], which helps the
model analyze how subwords relate to one another. For instance, in the sen-
tence “John works as a developer at Google”, the attention mechanism could
enhance the representation of “developer” by incorporating its connections
to “John” and “Google”. By repeatedly refining these embeddings, BERT en-
codes contextual relationships between words within the sequence, culminating
in what is known as Contextual Word Embedding.

Finally, BERT feeds these high-quality representations to some linear
classifier in order to predict the outputs related to the NLP task at hand.

At first glance, this explanation of how BERT operates may resemble
that of the Recurrent Neural Network (RNN) architecture with the Atten-
tion Mechanism [26]. However, while there are similarities between them when
looking at these architectures from a simplified perspective, RNNs and Trans-
formers differ significantly in terms of parallelism, scalability, and input size

Chapter 2. Background 30

handling. RNNs process sequential data step by step, lacking true parallel
processing abilities. In contrast, Transformers like BERT process all data si-
multaneously, albeit constrained by a 512-token limit. This parallel processing
capability accelerates training, empowering Transformers to attain larger di-
mensions and undergo training on more extensive datasets compared to RNNs,
vastly improving its performance on the same NLP tasks.

2.4.2.2
Pre-trained Models

Furthermore, BERT offers the advantage of pre-trained models that en-
code intricate contextual relationships between words. This is achieved through
prior training, where these models learn to predict missing (masked-out) words
within sentences using vast amounts of unlabeled data. For example, in the
sentence “What are [masked] doing today?” the expected prediction might
include words like “you”, “they”, or “we”.

This pre-training ensures the model already possesses contextual under-
standing, requiring downstream tasks to just fine-tune it on specific datasets
to better focus on the task at hand. This accessibility to pre-trained models
significantly streamlines the creation of highly effective models, eliminating the
necessity of training from scratch.

3
Related Work

Within this chapter, our focus is directed toward a comprehensive survey
of the pre-existing approaches to resume parsing. These efforts are divided into
three distinct categories: (i) Traditional, encompassing literature predating the
emergence of Contextual Neural Networks; (ii) Modern, encapsulating recent
strides within the field, which primarily emphasize the integration of Trans-
former models into resume parsing; (iii) Enterprise Solutions, encapsulating
commercially available resume parsing tools that are shrouded in proprietary
details. Furthermore, the subsequent sections of this chapter provide succinct
reviews of pertinent works that have surfaced in the domains of Reading Order
Detection and Text Segmentation tasks.

3.1
Resume Parsing

Comparing the various resume parsers proposed in the literature poses
challenges due to the absence of a standardized benchmark dataset. Each tool
adopts its own perspective on the relevant information and guidelines for data
annotation, resulting in datasets with distinct characteristics. Furthermore,
we have not found any publicly available dataset or source code related to
the works in the literature, possibly due to privacy and intellectual property
concerns. As a result, rather than directly comparing metrics, it becomes more
relevant to understand how the available approaches handle document data,
and metadata and adapt existing models from related problems.

3.1.1
Traditional Approaches

As previously mentioned, most works [7, 8, 9, 27] focus on extracting key
sections and entities from resumes using a two-step pipeline as illustrated in
Figure 3.1. The first step involves identifying the sections of interest, while the
second step consists of extracting specific entities within them.

These two steps are typically formulated as sequence tagging tasks, and
because of that, they utilize similar algorithms and attributes. Algorithms
such as Hidden Markov models (HMM) [7], Conditional Random Fields

Chapter 3. Related Work 32

(CRF) [8, 9, 27], Convolutional Neural Networks (CNN) [9], and Bidirectional
Long-Short-Term-Memory - CNN (Bi-LSTM-CNN) [9] have been employed.
Regarding attributes, neural-based models [9] rely on Word Embeddings
exclusively. In contrast, other models [8, 27] utilize ontologies that encompass
the most frequent headings and terms across different sections, visual metadata
(e.g., font size, bold formatting), and textual elements (e.g., "Is it a number?",
"Is it all caps?") within the documents.

Figure 3.1: Example of a basic pipeline for parsing resumes. The primary
objective of most of the proposed approaches is to extract the relevant entities.
Section identification serves as a means to filter the text portions that the
models should scan for improving precision.

3.1.2
Modern Approaches

Recent works [10, 13, 28, 29] focus on expanding the extracted informa-
tion from resumes, primarily leveraging Transformers [23] like BERT [16].

Vukadin et al. [13] propose a single multi-objective and multilingual
BERT model capable of extracting main sections and entities in five languages
simultaneously. They also propose a second multilingual BERT model to
extract the competency level associated with skill entities.

The work that is closest to ours is by Pawar et al. [28], where the goal
is to group entities associated with the same work experience (or education).
They develop an ensemble model that combines rule-based, CRF-based, and
neural-based models to extract entities and determine lines associated with
the same item. However, this approach has limitations, including the lack of
detailed information on the manually extracted features employed. Addition-
ally, the study focuses primarily on assessing the number of related entities
identified, with no comprehensive evaluation of segmentation quality. Notably,

Chapter 3. Related Work 33

they remain the only study employing traditional Word Embeddings instead
of contextual Word Embeddings, citing the significant computational costs
associated with using models like BERT in practical scenarios.

On the other hand, the works of Gaur et al. [29] and Barducci et al.
[10] are complementary to ours. They use proprietary tools to obtain the
Education, Work Experiences, and Skills sections and concentrate on a more
comprehensive extraction of information within these sections.

It is noteworthy to mention that Barducci et al. [10] were the first to
highlight the challenges of extracting information from PDF resumes with
“complex” templates such as 2-Column. They specifically cite the issue of
non-sequential text in these resumes.

3.1.3
Enterprise Solutions

Despite these research efforts, several practical aspects still require
attention, such as handling documents with complex layouts and accurately
identifying individual education and work experience items. While academia
has yet to explore these areas extensively, commercial applications developed
by companies like Affinda and Nanotecs address these points. However, the
details of these solutions and their associated metrics remain proprietary.

Based on the brief descriptions of the technologies employed [30, 31], it
is evident that their architectures seem more complex than the one illustrated
in Figure 3.1. For example, they introduce an initial component for Docu-
ment Layout Analysis [32] to decompose the original document into blocks and
arrange them in the most appropriate reading order. They also enrich com-
ponents already explored in the literature, covering more information while
employing Contextual Word Embeddings [16].

3.2
Reading Order Detection

The challenge of determining the reading order in PDF documents is
not new. Meunier et al. [3] proposed one of its first solutions by segmenting
document pages into rectangular blocks and optimizing their grouping based
on geometric attributes to establish the reading order.

In recent years, Wang et al. [33] introduced ReadingBank, a dataset with
reading order, text, and layout information for 500, 000 DOCX documents in
English, facilitating the utilization of deep neural networks for reading order
detection. Their proposed model, LayoutReader, utilizes a seq2seq architecture
[34] with transformers for accurate reading order prediction. One limitation of

Chapter 3. Related Work 34

this approach is that it relies on DOCX documents which typically impose
layout constraints. Another limitation is that it does not guarantee that all
tokens will be ordered since it uses a seq2seq architecture.

Furthermore, to our knowledge, Gu et al. [35] stands as the only work that
evaluates the influence of reading order on subsequent tasks, specifically, the
extraction of entities and semantic relations from scanned forms. In contrast
to [33], they adopt a heuristic approach similar to [3], aiming to group close
textual elements to enhance contextual clarity while extracting entities and
relationships of interest.

3.3
Text Segmentation

The literature offers several approaches [36, 37, 38, 39] to address text
segmentation (and classification). These methodologies typically start with a
sentence encoder, which derives a vector representation of each line based
on word embeddings. To accomplish this, they employ techniques such as
weighted averaging [36], RNNs [37, 39], or transformers [38]. Subsequently,
the encoded sentences undergo further processing through other RNN [36, 37]
or Transformer [38, 39] models to obtain refined sentence representations that
take into account the surrounding context. Finally, with a list of enriched
sentences in hand, each approach presents a unique strategy on how to segment
the text (and classify the segments obtained).

One noteworthy approach by Arnold et al. [36] closely resembles the
strategy applied in resume parsing. It involves assigning tags to each line,
and text segments are identified by tracking tag changes between consecutive
lines. In contrast, Barrow et al. [37] segment the text first before performing
classification. Finally, both Lo et al. [38] and Bai et al. [39] propose a
simultaneous approach where the models assign a topic to each line and detect
whether the same is a segment boundary.

An interesting aspect to highlight is that, unlike resume parsing, there
exists a standardized dataset [36] based on the Wikipedia section structure,
which serves as a common benchmark for evaluating these approaches. Notably,
this dataset intentionally omits section headings to challenge the segmentation
of text. Moreover, in addition to employing classification metrics, these studies
utilize the pk segmentation metric [40] to assess the alignment between
predicted segment breaks and annotated segmentation.

4
Our Proposal

This chapter presents the proposed resume parser designed to organize
the unstructured text extracted from a resume file into a semi-structured object
that reflects its original section structure. We provide a brief overview of the
parser’s pipeline. Then, we detail the techniques it employs to ensure the
accurate reading order of the text and identify the sections and subsections
within a resume.

4.1
Pipeline

Figure 4.1 illustrates our resume parser pipeline, which consists of three
core components. For the PDF parser component, we simply use PDFBox [12],
a popular open-source library for manipulating PDF files under the Apache
Software Foundation. In contrast to other resume parsers, we add a pre-
processing component between the PDF parser and the section segmenter
to ensure the correct reading order of the text retrieved; this is detailed in
Section 4.2. In addition, we modify the segmenter component, already found
in other approaches, to simultaneously handle the segmentation of sections
and subsections; this is detailed in Section 4.3. To avoid overuse of some
terms and better distinguish between these two types of information, we
use first- and second-level information to refer to the sections (e.g., Personal
Information, Work Experience) and items (individual education and work
experience subsections).

Our parser does not identify entity-level information, such as degrees and
job titles. That said, we understand that our components can be easily coupled
with other well-established approaches, given the modular design commonly
adopted by most resume parsers. After segmenting a resume, we could use the
resulting sections as inputs to the models proposed in [10, 29] since they are
specialized in extracting entities from one section at a time. Alternatively, it is
also doable to create a single model that simultaneously extracts all levels of
information by combining our tagging schema, detailed in Section 4.3.2, with
the tagging schema proposed in [13]. However, this combination is limited to
Transform-based models, given their multi-objective optimization capabilities.

Chapter 4. Our Proposal 36

Fi
gu

re
4.

1:
O

ur
re

su
m

e
pa

rs
er

pi
pe

lin
e.

T
he

id
ea

is
to

or
ga

ni
ze

th
e

un
st

ru
ct

ur
ed

te
xt

ex
tr

ac
te

d
fro

m
a

re
su

m
e

fil
e

in
to

a
se

m
i-s

tr
uc

tu
re

d
ob

je
ct

th
at

re
fle

ct
s

its
or

ig
in

al
se

ct
io

n
st

ru
ct

ur
e.

O
ur

pa
rs

er
do

es
no

t
id

en
tif

y
en

tit
y-

le
ve

li
nf

or
m

at
io

n,
su

ch
as

de
gr

ee
s

an
d

jo
b

tit
le

s.
T

ha
t

sa
id

,w
e

un
de

rs
ta

nd
th

at
ou

r
co

m
po

ne
nt

s
ca

n
be

ea
sil

y
co

up
le

d
w

ith
ot

he
r

we
ll-

es
ta

bl
ish

ed
ap

pr
oa

ch
es

,g
iv

en
th

e
m

od
ul

ar
de

sig
n

co
m

m
on

ly
ad

op
te

d
by

m
os

t
re

su
m

e
pa

rs
er

s.

Chapter 4. Our Proposal 37

4.2
Reading Order

Correctly retrieving the text from PDF documents can be challenging
because the format was primarily designed to preserve the visual position of
the document’s elements (e.g., text and image), which means that documents
are not required to store their elements in a logical order [17]. As a result,
document parsers implement rules-based algorithms [41, 42] to infer the most
appropriate reading order of the text extracted based on its layout. However,
the failure rate of these heuristics seems to increase with the complexity of the
document’s layout.

As displayed at the beginning of this thesis, Figure 1.2a shows a document
where the parser failed to extract the text correctly. Although the change
in the reading order seems small, it can have significant consequences when
extracting information. The document in question, for example, may end up
not extracting the section Objective.

To mitigate this problem, we propose a template identifier for resume
pages. We model the problem of identifying a template as an document image
classification task [20] where each page template is considered a different
document type. We work with the assumption that most resume layouts
derive from a few well-defined templates with easy-to-extract reading orders.
Therefore, if we map the most used templates and identify which one a page
uses, we can employ a heuristic to reorder its elements to ensure they follow
the correct reading order.

4.2.1
Layout Complexity

The problem of determining the reading order of documents can be
comprehended as first identifying textual elements whose reading orders are
known (e.g., paragraphs) and then ordering them in a way that is reasonable
for human readers. Different layouts use different amounts of textual elements,
and it is plausible to assume that the more they are present on a page, the
more difficult it becomes to organize them. Hence, a layout’s number of textual
elements can indicate its complexity.

To quantify this concept, we just consider resumes that consist exclusively
of textual blocks – rectangular-shaped textual elements whose content is
structured to be read from left to right and top to bottom. By imposing this
constraint, we can distinguish each textual block’s location through a series of
vertical and horizontal cuts in the blank spaces across the page. For instance,
in a page with two columns, inserting a vertical line between them allows

Chapter 4. Our Proposal 38

us to differentiate between blocks in the left and right columns, resulting in
two sub-regions that can be further subdivided through additional cuts. The
application of a sequence of n such cuts generates a list of n+1 textual blocks.

It is important to note that our assumptions do not account for all resume
layouts. Specifically, it cannot assess pages that employ “L-shaped” content
organization, as shown in Figure Figure 4.2. However, we argue that such
elaborate visual arrangements are uncommon in resumes, and our approach is
designed to cover the majority of resume layouts effectively.

Figure 4.2: Examples of text elements organized in a L-shape format [3].

In this context, we define layout complexity as the minimum number
of cuts required to obtain the fewest number of text blocks on a page.
The complexity level of a page corresponds to the number of cuts required
+1. Figure 4.3 provides a visual representation of different levels of layout
complexity based on this definition.

Chapter 4. Our Proposal 39

(a
)

Le
ve

l2
(b

)
Le

ve
l3

(c
)

Le
ve

l9

Fi
gu

re
4.

3:
A

s
ill

us
tr

at
ed

in
Fi

gu
re

s
4.

3a
,4

.3
b,

an
d

4.
3c

,t
he

re
ad

in
g

or
de

r
co

m
pl

ex
ity

of
a

pa
ge

ca
n

be
as

so
ci

at
ed

w
ith

th
e

m
in

im
um

nu
m

be
ro

fc
ut

sr
eq

ui
re

d
by

th
ei

rr
es

pe
ct

iv
e

la
yo

ut
st

o
al

lo
ca

te
ea

ch
te

xt
bl

oc
k

pr
es

en
ti

n
a

di
st

in
ct

pa
ge

re
gi

on
.H

er
e

th
e

co
m

pl
ex

ity
le

ve
l

of
th

e
la

yo
ut

is
eq

ui
va

le
nt

to
nu

m
be

r
of

cu
ts

+
1.

Le
ve

l1
is

om
itt

ed
,g

iv
en

it
wo

ul
d

be
ju

st
th

e
en

tir
e

pa
ge

as
a

sin
gl

e
te

xt
bl

oc
k.

Chapter 4. Our Proposal 40

4.2.2
Template Types

Based on our previous discussion, in this thesis, we focus on identifying
the most common templates used on resumes: 1-Column and 2-Column, which
correspond to all page layouts of complexity levels 1 and 2. For clarity, we
define a given page as:

– 1-Column: If we can correctly read the entire content of the page
starting from the top left corner and, from there, following from left to
right and from top to bottom. Figure 4.4 illustrates this procedure;

(a) Reading order (b) Correct (c) Wrong

Figure 4.4: Figure 4.4a depicts the reading order that defines a 1-
Column template. Figure 4.4b is an example that follows this reading
order. Figure 4.4c is an example that does not follow it since the Name
and Surname would be read separately given the other contacts in
the upper right corner.

– 2-Column: If we can find an empty block vertically crossing the entire
page, splitting the existing text into two independent columns, in which
we can apply the procedure described for 1-Column. Figure 4.5 illustrates
this procedure;

Chapter 4. Our Proposal 41

(a) Reading order (b) Correct (c) Wrong

Figure 4.5: Figure 4.5a depicts the reading order that defines the 2-
Column template. Figure 4.5b is an example that follows this ordering
while Figure 4.5c is an example that does not, as the page header
makes it impossible to divide the text into two columns.

– Complex: If a page does not fit into the above categories.

As a quick note, it is worthwhile mentioning that we assume the text is
represented by a sequence of words. Hence, we are considering a word-by-word
reading to define these templates. However, the same approach can also be
used when representing the text as a sequence of any other textual block type,
such as sentences, paragraphs, or text segments obtained through a document
layout analysis task [32]. The only critical aspect is that the chosen type follows
the reading patterns defined.

4.2.3
Reconstruction Step

The “reconstruction” step replicates the visual reading order in the data
reading order. In the 1-Column case, this means reordering the words according
to their coordinates on the y and x axes, respectively. The 2-Column case is
analogous with an additional pre-processing step where the widest vertical
empty block is detected. The content is then split into two blocks: one on the
left of the empty block and the other on the right. During reordering, words
on the left precede those on the right. We did not develop a heuristic for pages
classified as Complex since this class represents all unmapped reading orders.

4.2.4
Impact of Templates in the Reading Order

Here we discuss how robust the text reading order retrieved by popular
parsers is. For that, we perform a simple experiment exploiting our defined

Chapter 4. Our Proposal 42

templates and the expected number of y-axis line inversions occurring on each
one of them.

Given a line sequence (l1, l2, . . . , ln), obtained as an output of some PDF
parser, we define a y-axis inversion as any instance where yi > yi+1 for two
consecutive lines li, li+1

1. Note that we are assuming the origin (0, 0) is at the
top-left corner of the page Thus, a 1-Column template is expected to have zero
inversions, while a 2-Column template is expected to have only one inversion
- the column break. Thus, the idea for our experiment is to analyze how well
a parser handles 1-Column and 2-Column pages by extracting the texts of
several pages with these templates and comparing the number of inversions
obtained with the ones expected. For this experiment, we employed one of the
datasets created in this work, detailed in Section 5.2.2, which consists of 3, 638
pages manually annotated according to the defined templates. Notably, we only
consider lines containing at least 5 characters to mitigate possible inversions
caused by noisy lines in the resumes.

Table 4.1: Number of y-axis inversions for two commonly used document
parsers (in %). PDFBox returns the lines in the order they were stored, while
PDFMiner applies a heuristic to reorder them based on their spatial locations.

Parser PDFBox PDFMiner

Inversions 1-Column 2-Column Complex 1-Column 2-Column Complex

0 70.60 0.17 7.88 54.77 1.56 9.24
1 20.94 39.24 29.57 24.98 40.45 32.20
2 4.72 16.67 20.14 9.73 25.52 20.91
3+ 3.74 43.92 42.41 10.52 32.47 37.65

Table 4.1 shows the results for two well-established parsers, namely
PDFBox [12] and PDFMiner [43]. As an example, PDFBox reconstructed
70.6% of the resumes annotated as 1-Column without inverting any line while
only 39.2% of the resumes annotated as 2-Column presented one inversion. We
observed that many pages had more inversions than they should have for both
tools. By manually inspecting some of them, we noticed that many inversions
seem negligible from a practical point of view. These are cases like the page’s
footer going to the middle of the text or semantically independent chunks
changing order, such as Name and Telephone lines. Nonetheless, there are also
critical cases where the parsers positioned all section headings at the end of
the page or moved one work experience into another section.

1With a slight abuse of notation, we reuse the symbols l and y from Chapter 2 to denote
a line and its y-coordinate, respectively.

Chapter 4. Our Proposal 43

Of course, with this approach, it is impossible to accurately measure
the proportion of resumes whose texts have been altered so significantly as to
jeopardize the understanding of their content. Our main intention is to convey
that potential mistakes during the section segmentation and information
extraction steps could be due to problems in the input text rather than the
respective models and that assuring the correct reading order of the text
retrieved is desirable.

4.3
Resume Segmentation

Once the proper reading order of the text has been ensured, the next
step is segmenting the text regarding both the first and second levels of
information. Our proposed methodology treats each individual work experience
and education item as an independent section, allowing us to formulate the
problem as a conventional sequence tagging task.

We deviate a little from a standard implementation by introducing a
minor modification in the tagging scheme to enable the model to distinguish
the initial item in each section from the subsequent ones; this adjustment is
necessary as the initial item is encountered in a distinct context and aids in a
clear differentiation between the first and second levels. Using this strategy, we
can retrieve the entire Work Experiences section by concatenating the adjacent
work experience items. For the Education section, the process is analogous.

We implemented CRF- and BERT-based approaches using this method-
ology to analyze the performance differences between them. Our motivation
is to verify whether BERT is justifiable for our task, despite its significantly
higher computational requirements compared to CRF; or if the CRF can be a
practical and viable alternative when computational constraints are a concern.

4.3.1
Section Types

Our resume parser extracts all sections written in the resume. However,
because it is laborious and arguably infeasible to have the names of all possible
sections, our models explicitly tag only Personal Information, Objective, Sum-
mary, Education, and Work Experiences sections in this study. This choice has
to do with the high frequency of these sections in resumes. Any other identi-
fied section is named as Other. For the sake of clarity, we explain the expected
content of our chosen sections:

– Personal Info: Basic information about the candidate, such as their
full name, contact details (email, phone, and web page), and address.

Chapter 4. Our Proposal 44

Matheus Silva
Brazilian, Single, 30 years old
Rio de Janeiro, RJ
Phone: +55 (21) 98888-7777
E-mail: matheus@example.com

– Objective: Outlines the candidate’s aspirations, career goals, and the
job position they seek.

Intended Position: Work on Digital Marketing activities: content
marketing, inbound marketing, and metrics analysis.

– Summary: Highlights the candidate’s relevant skills, experience, and
accomplishments;

About Me
I have an IT Support Professional Certificate. Experience as a Com-
puter Technician working with software and hardware installation,
computer assembly, and hardware recommendation.

– Work Experience: Refers to a candidate’s past employment. A job
typically includes the job title, company name, employment dates, and
a description of the candidate’s responsibilities and accomplishments;

Professional Experiences:

Financial Analyst, Company XX
Sep/2017 - Jan/2018
* Analyze current and past financial data and performance.
* Prepare reports and projections based on analysis.

– Education: Refers to a candidate’s academic background. An education
typically includes the degree earned, the institution name, and the
graduation date;

ACADEMIC EDUCATION
University XX | March 2019 - December 2022
Bachelor’s degree in Business Administration

– Other: Any additional information the candidate wants to include in
their resume that did not fit into the previous sections. That might
include volunteer experience, certifications, awards, or references.

Complementary Courses and Knowledge
* English – Intermediary
* Spanish – Intermediary
* Excel / VBA and MACRO – Advanced

Chapter 4. Our Proposal 45

4.3.2
Tagging Scheme

Using a naive approach, we need at least two models to obtain a resume’s
first and second levels of information. The first model extracts all the resume
sections; the second model receives a single section and splits it into individual
items. The first model requires classifying each line as part of a specific section,
so we can later extract each section. In contrast, the second model only requires
determining where each item begins through a binary classification. A True
tag indicates the beginning of an item, while a False indicates the continuation
of the last item.

To avoid implementing these models, we can apply a minor tweak to our
tag encoding to have a single model that simulates the same core behavior.
As already stated, the first step to do that is to classify each item of a section
and the other sections simultaneously by considering each item as a section
in itself. After that, when we encode our annotations, we have to differentiate
the first item of the section from the remaining ones.

We initially encode all annotations using the standard IOB2 scheme [22],
meaning the annotation’s first line adds a prefix B to the section type while
the remaining lines add a prefix I. We do not use the tag O because our
annotation cover all resume. Then, we append an Item suffix (inspired by the
BILOU scheme [44]) to all items other than the first to differentiate them,
which should be equivalent to the True tag of the binary classification. Table
4.2 illustrates and differentiates our tagging scheme from the standard scheme.

Table 4.2: A comparison of the standard IOB2 scheme and our modified
implementation.

Line Standard Ours

skills to drive innovation. I-Summary I-Summary
Education B-Education B-Education
2020 - 2022 XXX University I-Education I-Education
M.Sc.in Computer Science I-Education I-Education
2016 - 2020 YYY University B-Education B-Education-Item
B.S. in Computer Science I-Education I-Education
Skills B-Other B-Other

4.3.3
Segmentation Models

To segment resumes, the CRF and BERT models take a sequence of words
as input and assign tags to them as output, thus generating the segmentation.

Chapter 4. Our Proposal 46

However, we enforce that both models assign a single tag type per line to ensure
that no section changes occur inside a line since it is reasonable to assume that
these shifts only occur when moving from one line to the next.

In the remainder of this chapter, we describe the specific adaptation
required by each model to handle the resume segmentation task.

CRF Architecture

For the CRF-based approach, we convert the sequence of words into a
sequence of lines and use them as input to the model. Working with lines is
more practical since we must manually extract attributes from the input to
feed the model. It allows us to select higher-level attributes that better align
with our segmentation task. When merging the words into a line, we must
also “merge” their metadata. For simplicity, we use the majority rule for all
properties.

Table 4.3 describes the attributes selected, which can be divided into four
categories: Ontology, Text, Visual, and Spatial. Each category covers a type of
information encoded in the resumes that can be exploited to help us detect and
differentiate the sections within them. It is noteworthy to highlight that most of
our attributes are geared toward identifying section breaks. The identification
of the section type is given solely by the attributes of the Ontology category.

Ontology category As the name suggests, represents the attributes based
on an ontology, examining whether any token in the line matches some
typical section heading or tokens commonly presented in specific sections. Most
sections contain particular terms that are only present in them. For example,
the Work Experience section typically has “Professional Experience” (or simply
“Experiences”) as the heading of the section, while “position”, “company”, and
“job activities” often precede prominent information in it.

We implemented a normalization step to improve token matching be-
tween our ontology and the text. These included lowercasing all text to ensure
case-insensitive matching, stemming to reduce words to their root forms for
better recognition of word variations, replacing all numerical values with “0” to
standardize numerical representations, and removing stopwords and punctua-
tion marks. As a result, a sentence like “WORK EXPERIENCES: Developer
from 2018 to 2020” would be transformed into “work experi develop 0000 0000”.

To obtain the Resume Headings vocabulary, we examined 100 resumes2

2It is necessary to note that none of the resumes used in this examination are present in
the dataset described in section 5.3.1 to evaluate the model’s performance.

Chapter 4. Our Proposal 47

Table 4.3: The manually extracted features used by the CRF model. The
term default refers to each resume’s most frequently found value for the given
attribute.

Ontology (*for each section type)

1 Percentage of section header tokens
2 List of common tokens in section segment

Text

3 Percentage of uppercase tokens
4 Percentage of lowercase tokens
5 Percentage of titlecase tokens
6 Has year
7 Has number
8 Has punctuation
9 Has punctuation at end
10 Has colon
11 Has colon at end
12 |Tokens| ≤ 2

Visual

13 Is Bold
14 Is Italic
15 color = default
16 fontsize > default
17 fontsize < default
18 fontsize = default
19 Is same style as previous line
20 Is same style as next line

Spatial (*w.r.t previous / next line)

21 Has indentation level changed
22 ygap − µygap > σygap

23 ygap − µygap < −σygap

24 |ygap − µygap | < σygap

25 ygap > default
26 ygap < default
27 ygap = default

Chapter 4. Our Proposal 48

and carefully selected the most prevalent headings for each section type. The
selected headings are listed in Appendix A.

On the other hand, we opted to employ an automated approach to obtain
the section body vocabulary due to its extensive and diverse nature compared
to the prior vocabulary. To achieve this, we leveraged the χ2 test [45], a widely
used method in machine learning for feature selection. In simple terms, the χ2

test helps identify the terms (unigrams and bigrams only) that better represent
a specific section by considering their occurrence patterns; they should appear
prominently only in that particular section.

Text category Textual attributes consisting of common text patterns.
Lines containing section headings tend to be uppercase and short if we ignore
stopwords. On the opposite side, lines containing inner section content are
mostly lowercase and long. Detecting date periods and punctuation is also
relevant to identifying second-level information since each education and work
experience usually specifies a date period representing its start and end.

Visual category Visual attributes embedded into the words, identifying
elements such as bold, italic, and font size. It is common for section headings
and other remarkable information on resumes to have distinct visual attributes
to make them stand out. However, for cases such as font size, it is essential
that we first identify the size being used as default to determine which lines
deviate from it.

Spatial category Spatial attributes that measure the distance between the
current and previous/following lines regarding the y and x axes, as illustrated
in Figure 4.6. It is reasonably common for resumes to have a large gap between
the end of a section and the start of a new one. The same reasoning can be
applied when starting a new education or work experience. Like the strategy
employed for the font sizes, we must first identify the most common gap size
between one line and another to determine which gaps deviate from it.

Figure 4.6: How to compute the y and x axes gap between consecutive lines.

Chapter 4. Our Proposal 49

BERT Architecture

The BERT-based approach does not require manual attribute selection.
However, it requires pre-processing and post-processing steps to allow BERT
to deal with lengthy texts, given its 512 input token limitation. On top of that,
it also requires a second post-processing step to deal with the lack of cohesion
between adjacent predictions. In the CRF-based approach, the prediction of
line i depends on the prediction of line i − 1. Therefore, the model naturally
restricts a line to be classified as I-Education only if the previous line was
classified as either I-Education or B-Education. This does not occur for BERT
because the lines are all processed in parallel.

Pre-processing We first tokenize the input word sequence using the Word-
Piece tokenizer [25]. If the number of generated tokens exceeds 512, we parti-
tion the token sequence into independent subsequences. We apply a 128-token
overlay between the previous subsequence’s end and the next subsequence’s
beginning to improve context awareness between adjacent subsequences. This
overlay does not undergo classification to avoid bias during training. As a re-
sult, the first subsequence can classify up to 512 tokens, whereas the subsequent
ones can classify up to 384 tokens.

Figure 4.7: The WordPiece tokenizer converts the input text containing 15
“words” into a sequence of 25 tokens. Suppose we employ a toy BERT model
with a token limit of 16 and consider a context size of 7 tokens. In that case, we
must partition the token sequence into two minor subsequences and process
them separately. The first sequence processes the first 16 tokens, while the
second processes the remaining 9 tokens. However, we append 7 context tokens
to the beginning of the later subsequence to improve context awareness.

Classification BERT processes those input subsequences separately and
outputs tags for each one of them. To ensure that the model only outputs
one tag type per line, inspired by Vukadin et al. [13], we introduce a New
Line index that sets to true only the first token of each line, excluding those
in the contextual area. This index ensures that the model only takes into
account those tokens’ outputs during classification and only backpropagates
them to update the model weights during the training phase. All remaining

Chapter 4. Our Proposal 50

tokens output the same tag as the first in the line and are ignored during
backpropagation.

Figure 4.8: In addition to the token sequence, we add newline and context
index sequences as input to BERT. This additional information allows us to
control which outputs to consider during the training and inference phases.

Post-processing If there is more than one subsequence, we drop all
subsequences’ contextual windows and concatenate them to obtain a unique
sequence once again. Finally, the last step is to ensure the output segmentation
is valid. Since BERT outputs are independent, it can output a tag B-Education
followed by a tag I-Other, which is undesirable. To circumvent that, we
employed the following heuristic: (i) For each token tag, recover its prefix
(B or I) and section type (Other, Work Experience, ...); (ii) Split the output
sequence into a list of segments based on the prefix B; (iii) For each segment,
assign its section type as the most frequent one in number of lines.

Figure 4.9: After processing each subsequence, we translate the outputs
generated back to the original format. First, we drop the SEQ 2’s contextual
window and then attach it to the end of SEQ 1. The output of the second line
present in SEQ 2 is also ignored in this process because the line was already
classified in SEQ 1. Finally, once we have the original sequence, we apply
post-processing to ensure the tag sequence is consistent.

5
Experiments

In this section, we present the results of the experiments conducted for the
template classification and resume segmentation tasks related to our proposed
resume parser. For both of these tasks, we provide details about the dataset
used, the experimental setup, and a comprehensive analysis of the performance
observed in our developed models.

5.1
Initial Considerations

Likely due to privacy concerns, we have not found publicly available
datasets for resume parsing. All resumes used in our study were provided by
an HR Tech company based in Brazil and, subsequently, manually annotated
by us to construct datasets tailored to each task. Because of this, the section
related to each task includes a brief description of the creation process of the
dataset used.

We performed the experiments for both tasks five times, randomly
dividing the datasets into training, validation, and testing sets with a ratio
of 60/20/20 for each iteration. The tables in this section report the average
results of the test sets accompanied by their corresponding standard deviations.

All models were implemented in PyTorch [46] and executed on a single
core of an Intel(R) Core(TM) i5-12400 CPU @ 4.40GHz, equipped with 32 GB
of RAM and a GeForce RTX 4070 Ti with 12GB of VRAM. Our source code
is available at https://github.com/matwerner/resume_parser/.

5.2
Template Classification Task

To evaluate our approach, we employed EfficientNets [2], a family of Con-
volutional Networks designed to efficiently grow in size as more computational
resources are made available. The great advantage of this architecture is that
it achieves results that are competitive with those obtained by much larger
networks (e.g., ResNets [47]) in image classification tasks. Specifically, we em-
ployed only the EfficientNet-B0, the smallest model of the family. Preliminary

https://github.com/matwerner/resume_parser/

Chapter 5. Experiments 52

results showed no significant gain in using larger EfficientNet versions. The
same happened with our tests with ResNets.

The EfficientNet-B0 is tested under three different training configurations
described in Section 5.2.3. Since we are dealing with image classification, we
compared these configurations in terms of standard classification metrics such
as Accuracy, Precision, Recall, and F1-Score. We also point out that we take
into account the resumes themselves when partitioning the dataset. We do this
to prevent the same PDF document from having pages in different partitions.

5.2.1
Comparative Method

We also evaluate a heuristic (as a baseline) inspired by the concepts
introduced in Section 4.2.1 regarding the complexity level of page layouts and
their correlation with the templates under consideration in this thesis.

The core assumption is that the set of cuts representing each template
is performed in the largest empty spaces of the page. Thus, the heuristic’s
objective is to identify these spaces, obtain the set of cuts ζ characterizing the
page, and then classify its template as:

Template(ζ) =

1-Column if ζ is empty;

2-Column if ζ contains a vertical cut only;

Complex otherwise.

(5-1)

For that purpose, the method applies a top-to-bottom page segmentation
strategy for extracting the cuts, inspired by other approaches available in the
literature [3, 48]. At each step, it performs horizontal or vertical cuts in all
rectangular empty spaces traversing the entire page. Then, for each region
created, it repeats the same procedure recursively until it cannot find any
gap larger than a threshold. When the recursion ends, the method discards
all horizontal cuts not followed by vertical cuts. A horizontal cut alone is
redundant since the two regions created can still be read in top-to-bottom and
left-to-right order. Finally, the resulting set of cuts is used to classify the page
template based on Equation 5-1.

When horizontal and vertical cuts are feasible, the heuristic prioritizes
the former over the latter because our primary objective is distinguishing 1-
Column and 2-Column templates. All gaps dividing two regions must have a
width ≥ θx and a height ≥ θy. Furthermore, we require all regions to have
at least θt tokens to avoid introducing tiny regions due to a few strangely
positioned tokens.

Chapter 5. Experiments 53

In more detail, considering a page as a list of tokens, the described
procedure for performing vertical cuts is as follows:

1. Sort the tokens in the x-axis;

2. Enumerate all empty spaces between two consecutive sorted tokens with
width ≥ θx. Their height is the same as the page;

3. Perform a cut in each empty space, dividing the page into regions. Each
token is transferred to its assigned region;

4. For each region created, check whether it has at least θt tokens. If false,
merge the region with the following one;

5. Append all valid cuts to ζ;

The procedure is analogous to performing horizontal cuts.
A crucial implementation detail we must address is that the thresholds

θx, θy, and θt vary with each page. The method associates statistics extracted
from the resume to each threshold and multiplies them by the global factors
αx, αy, and αt. In the case of θt, this is just the total number of tokens on
the page. Thus, for example, considering αt = 0.01 and a resume containing
1, 000 tokens, each region in it must have at least θt = 10 tokens. On the other
hand, θx and θy are multiplied by the median x-axis gap between consecutive
tokens in the same line and the median y-axis gap between consecutive lines.
For that to work, the method sorts all tokens with respect to the y and x axes
beforehand. A line is formed by all tokens with the same y-coordinate.

5.2.2
Dataset

This task requires a dataset consisting of resume page images and their
annotated template types. To prepare the data for annotation, all resumes
were split into individual pages and then converted into images in their default
display resolutions (usually A4 paper size, 72 dpi). The resulting collection is
then uploaded to Label Studio [19] and annotated following the guidelines
presented further in this section.

An alternative dataset with anonymized images is also created. In this
version, images only highlight parts of the resume containing characters and
conceal any other graphic element present, as illustrated in Figure 5.1. Our
motivation is to have a new dataset with the following properties: (i) It does
not contain sensitive information, so that we can make it available along with
our code and (ii) it retains the characteristics of the original dataset that are

Chapter 5. Experiments 54

relevant for the template identification task. As hinted by the results in [49],
a template classifier should rely mainly on the positional distribution of the
tokens on the page, not on its meaning.

(a) Original (b) Anonymized

Figure 5.1: The original and anonymized versions of the same resume page.

Annotation Guideline The annotation process is straightforward; basically,
each page is labeled according to the categories described in Section 4.2.2.
Nonetheless, we shall mention that we prioritize the top-to-bottom left-to-right
reading pattern when more than one reading order is possible. And also, this
work focuses solely on text, meaning that figures, photos, and other graphic
elements are ignored for the purpose of labeling a page.

Statistics The annotated dataset comprises 1, 953 resumes spanning 3, 638
pages. After completing the annotation process, we categorized 2, 034 pages
as 1-Column, 576 pages as 2-Column, and 1, 028 pages as Complex. Table 5.1
shows the resume distribution over the template types used.

Table 5.1: The number of resumes using different combinations of template
types.

Template Types Count

1-Column only 629
2-Column only 355
Complex only 524
1-Column + 2-Column 114
1-Column + Complex 297
2-Column + Complex 30
1-Column + 2-Column + Complex 4

Chapter 5. Experiments 55

We examined the presence of a Logical Structure embedded in the PDFs
of annotated resumes, indicating that the software tool established a reading
order. Among the 1, 953 selected resumes, 1, 005 contained this information,
accounting for approximately 51.5% of the files. Perhaps not surprisingly, most
of them were created by Microsoft Word. It is important to note that the
presence of such a structure does not necessarily guarantee that the reading
order is correct [50]. For detailed distributions of this and other metadata
attributes based on the software tool used, please refer to Appendix C.1.

5.2.3
Experimental Setup

Our experimental setting follows Kornblith et al. [51], where it is pre-
sented an in-depth analysis of the impacts of employing ImageNet [21] pre-
trained models on many image classification tasks. Similarly to them, we an-
alyze the impact of using the EfficientNet-B0 model over our original and
anonymized datasets in three different training settings: as fixed feature ex-
tractors, fine-tuned from ImageNet initialization, and trained from random
initialization. We used the pre-trained EffiecientNet-B0 model available at the
Pytorch website1.

When using the model as a feature extractor, we converted all images
into feature vectors and trained a logistic regression with regularization L2
and penalty λ ∈ [10−6, 105]. For the fine-tuning setting, we trained only
the classifier layer for 30 epochs using the SGD optimizer with Nesterov
moment m = 0.9 and learning rate α = 0.01; next, we unfroze the remaining
layers (except for the batch normalization layers) and trained for another
20 epochs with α ∈ [10−2, 10−4] and λ ∈ {10−4, 10−5, 0}. Finally, for the
randomly initialized weights setting, we trained the model for 50 epochs with
α ∈ [10−1, 10−3] and λ ∈ {10−3, 10−4, 0}. In all these settings, we used Adam
optimizer [52] with a cosine decay and batch size of 64.

We obtained the optimal parameters through a grid search on top of the
accuracy score on a validation set for all these training settings. All models
were trained up to their fixed number of epochs or until the accuracy on a
validation set decreased through five consecutive epochs.

In the case of the heuristic method, we also employed a grid search
over the parameters σx, σy, and σt to obtain their optimal values. We
tested σx ∈ {1.0, 2.0, 3.0, 4.0, 5.0}, σy ∈ {1.0, 2.0, 3.0, 4.0, 5.0} and σt ∈
{0.01, 0.03, 0.05, 0.07, 0.1}.

1https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html

Chapter 5. Experiments 56

Pre-processing Since we only employed EfficientNet-B0, all images were
reduced to 224 × 224 pixels and normalized by subtracting the average pixel
and dividing by the standard deviation of each channel. If we were training
from scratch, we used the statistics from the training images. Otherwise, we
used the same statistics applied in the pre-trained model.

We also applied data augmentation to increase the number of training
instances by applying small shifts and flips on the vertical and horizontal axes,
inverting the colors, and randomly resizing the original images.

5.2.4
Results

Table 5.2 shows the accuracies obtained by all models and configurations
tested on top of the datasets with the original and anonymized resume pages.

Table 5.2: Accuracy (in %) for all models trained. The heuristic method
(baseline) obtained an accuracy of 74.93% ± 0.82%.

Dataset Feature-Extraction Fine-Tuning Scratch

Original 75.92 ± 2.02 84.87 ± 1.45 80.83 ± 2.18
Anonymized 77.34 ± 1.66 85.45 ± 1.56 85.50 ± 1.47

The heuristic method already yields an accuracy of 74.9%, well above the
majority class predictor, which would have an accuracy of about 55.9%. When
examining metrics related to each template type, we observed it obtained a
reasonable F1-Score for both 1-Column and 2-Column, both around 80%. On
the other hand, it only obtained an F1-Score of 48.1% for Complex due to low
recall. This outcome can be attributed to the method’s tendency to minimize
the number of cuts, favoring the classification as 1-Column or 2-Column. In
a real-world scenario, however, the opposite would be preferable. Recall that
pages classified as anything other than Complex undergo a “reconstruction”
phase, emphasizing the importance of high precision in those cases.

Moving to the EfficientNet-B0 models trained under different settings,
we observe that the behavior of the results is in line with those seen in other
studies [51, 53]. The feature extraction setting has the lowest accuracy among
the tested settings, only 75.9%. Even so, this is 1.0% above that obtained
by the heuristic, driven mainly by the improvement of Complex. Meanwhile,
as expected, the fine-tuning setting yields the best model with an accuracy
of 84.9%. However, perhaps surprisingly, given the size of the dataset, even
a model trained from scratch achieves a reasonable accuracy of 80.8%. By

Chapter 5. Experiments 57

examining once again the metrics related to each template type, we noticed
that these differences in accuracy are primarily derived from the ability of the
models to correctly identify complex pages, as all of them seem capable of
distinguishing 1-Column and 2-Column from each other.

Replacing the original dataset with the anonymized one improved around
1% the accuracies of the models trained under the feature extraction and fine-
tuning settings and around 4% the model trained from scratch, matching its
performance to the fine-tuning one. The accuracy should not change for the
heuristic because both versions use the tokens’ bounding boxes only.

These results support the initial hypothesis that simplifying the images
maintains the relevant properties of the image for this task. On the other hand,
the difference in the improvement rates indicates that this transformation
facilitated detecting patterns already embedded in the pre-trained model
without enabling the capture of more complex or less frequent patterns of
template types with fewer examples.

5.2.5
Error Analysis

To better understand each model’s strengths and weaknesses, we an-
alyzed the errors made in the test set of one of the dataset splits by the
heuristic method and the fine-tuned EfficientNet-B0 model. To this end, we
looked at other classification metrics and visually inspected misclassified pages
to identify possible common error patterns.

Tables 5.3 and 5.4 show the confusion matrix and the classification
metrics for each template type for the heuristic method. As we can see, the
largest number of errors is due to classifying Complex as 1-Column and 2-
Column, which significantly impairs both types’ precision.

Table 5.3: Confusion matrix per template type for the heuristic method.

Predicted
1-Column 2-Column Complex

T
ru

e 1-Column 401 15 30
2-Column 3 95 5
Complex 107 26 61

We found that most of those errors were caused by the heuristic not
performing cuts between distinct text blocks separated by a narrow gap. As
we suspected earlier, the method appears to cut the page only when there is
a clear division between the pieces of information. The justification is that

Chapter 5. Experiments 58

Table 5.4: Classification metrics (in %) per template type for the heuristic
method.

Template Precision Recall F1-Score

1-Column 78.47 89.91 83.80
2-Column 69.85 92.23 79.49
Complex 63.54 31.44 42.06

Average 70.62 71.19 68.45

there are endless possibilities of how to cut a page if it does not take into
consideration the gap size, especially in the horizontal direction. Nevertheless,
allowing cuts in narrower gaps in a practical scenario may be more helpful
since the method would classify as 1-Column or 2-Column only those pages
in which it could find no empty spaces or only one vertical space. As already
discussed, the precision of these templates must be high as they will undergo
a “reconstruction” phase afterward.

Figures 5.2a and 5.2b illustrate the error discussed. The first is an
example of a Complex page classified as 1-Column. To be correctly classified,
the method would require first to perform a horizontal cut between the section
headings (white lines centered in the middle of the page) and their content.
Then, perform a vertical cut separating the left and right text blocks. The
issue is that the gap between the heading and its content is too narrow. The
second is an example of a Complex page classified as 2-Column. The method
correctly performed the vertical cut dividing the text into two columns, and
even performed horizontal cuts afterward — however, not in the gaps that
would have enabled the method to perform even more vertical lines.

(a) 1-Column (b) 2-Column

Figure 5.2: The Figures 5.2a and 5.2b display Complex pages that the heuristic
method classified as 1-Column and 2-Column respectively.

Chapter 5. Experiments 59

Tables 5.5 and 5.6 show the confusion matrix and the respective clas-
sification metrics for each template type for the fined-tuned EfficientNet-B0
model. The model does much better at identifying Complex, which improves
1-Column and 2-Column precisions.

Table 5.5: Confusion matrix per template type for the best model trained.

Predicted
1-Column 2-Column Complex

T
ru

e 1-Column 405 2 39
2-Column 0 98 5
Complex 30 22 142

Table 5.6: Classification metrics (in %) per template type for the best model
trained.

Template Precision Recall F1-Score

1-Column 93.10 90.80 91.94
2-Column 80.32 95.14 87.11
Complex 76.34 73.19 74.73

Average 83.25 86.38 84.59

It is more challenging to interpret which image patterns misled the model
because EfficientNet is a neural network model. However, we noticed that a
reasonable number of the misclassified images were due to annotation errors
during the dataset creation. The only consistent pattern we found through
many images was the existence of two seemingly “aligned” text blocks – the
top and bottom of the their bounding boxes start and end at approximately
the same y-axis coordinates. This could suggest the model had difficulties
understanding whether those blocks were distinct pieces of information or an
aesthetic choice where part of the information is isolated (see Figure 5.3).
Figures 5.4a and 5.4b illustrate the error discussed.

Figure 5.3: An Education section where each piece of information from an
education is isolated from the others. Realistically, we read these educations
line-by-line. However, assuming the reading should be column-by-column
seems valid for the model. Even more so with the discretized images.

Chapter 5. Experiments 60

(a) 1-Column (b) 2-Column

Figure 5.4: The Figures 5.4a and 5.4b display Complex pages that the
EfficientNet-B0 model classified as 1-Column and 2-Column respectively.

5.3
Resume Segmentation Task

To evaluate the First- and Second-level segmentation, we examined the
quality of the segment sequences generated by CRF and BERT models under
different training configurations with respect to both levels of information.
When evaluating the first level, we concatenate the work experience and
education items to retrieve their respective sections.

The true and predicted segment sequences are compared using the Micro
F1-Score. Similar to Yu et al. [7] and Singh et al. [8], a predicted segment is only
considered correct (True Positive) when it matches an annotated segment in
terms of section type and the similarity between the predicted and annotated
segments, measured by the Jaccard score, is at least 90% as illustrated in Figure
5.5. When testing alternative thresholds, the results observed were similar to
those presented in section 5.3.3.

Figure 5.5: Matching (↕) between true and predicted segment sequences for
classification evaluation with a Jaccard score threshold of at least 60%. In this
simplified example, only two segments are considered correct.

Chapter 5. Experiments 61

We provide an additional experiment that specifically explores the impact
of employing the item suffix strategy, as opposed to the conventional approach,
in Appendix B.

5.3.1
Dataset

This task requires a dataset consisting of resumes with all their existing
sections and some subsections annotated. To assess the quality of our segmen-
tation component, we just add resumes with the correct reading order to this
dataset. Recall that resumes with a wrong reading order should be handled by
the first component of our proposed pipeline.

However, obtaining resumes with the correct reading order is challenging
as it is not readily available. Therefore, as an approximation, we only use
texts in which we have high confidence regarding the correctness of their
reading orders. More precisely, we selected resumes in which each of its pages
was labeled as 1-Column or 2-Column by the template identifier model and
where the reading order remained the same as initially extracted after the
reconstruction step. The resumes that met these criteria were uploaded to Brat
[18] and annotated, following the guidelines presented further in this section.

We did not resort to any automated procedures to annotate resumes
because it is unusual for them to contain an embedded structure within
the PDF document, as commonly found in scientific papers in PubMed and
arXiv repositories; There is also the fact that these repositories make the
same file available both in PDF format and in standardized XML. The latter
associate tags (e.g., Figure, Table, Text, Footnote) to all visual elements in
the document. In this regard, studies [32, 54] building datasets on top of these
repositories develop strategies to map the tags to the PDF layout.

Annotation Guideline We can break down the annotation process into two
steps: segment identification and segment labeling. For illustration, Table 5.7
exemplifies an annotated resume.

Segment identification corresponds to identifying shifts in the resume
section being referred to while reading the text, generating a list of segments.
In the IOB2 scheme, the B prefix represents a section shift while the I prefix
represents that we continue in the same section. For this step, we must annotate
all resume section shifts, as our Resume Parser should be capable of identifying
all sections described in a resume2.

2Headers and Footers are not considered sections but part of the surrounding resume
section, except when they contain personal information.

Chapter 5. Experiments 62

Segment labeling corresponds to mapping each found segment into one of
the resume sections described in Section 4.3.1. For this step, we do not detail
how it is decided which section a segment refers to, though the descriptions
given in Section 4.3.1 should provide a good direction. We just note that when
a segment can be placed in more than one section, we use a “majority” rule,
which means we map it to the section most represented in that segment. For
example, a segment describing formal education and information regarding
language skills and certifications will be considered an Education section.

Table 5.7: An example of an annotated 2-Column resume.

Line Annotation

210 Stars Ave Berkeley, CA 78910 B-Personal Info
808.555.0118 I-Personal Info
dian@example.com I-Personal Info
www.greatsiteaddress.com I-Personal Info
Objective B-Objective
Office Manager with 5 years of I-Objective
experience in managing I-Objective
administrative tasks, seeking a I-Objective
challenging position to leverage I-Objective
organizational, communication, and I-Objective
leadership skills to streamline office I-Objective
operations and support business I-Objective
growth. I-Objective
DIAN NUGRAHA B-Personal Info
Experience B-Work Experience
Dec 20XX–Jan 20XX I-Work Experience
Office Manager • Northwind Traders I-Work Experience
Feb 20XX–Dec 20XX B-Work Experience
Administrative Assistant • Wide World Importers I-Work Experience
Mar 20XX–Feb 20XX B-Work Experience
Office Intern • Olson Harris, Ltd. I-Work Experience
Developed and implemented office policies and procedures to I-Work Experience
improve office efficiency and reduce costs. I-Work Experience
Education B-Education
Bellows College, Berkeley, CA I-Education
• Bachelor of Science in Business Administration, 20XX I-Education
Communication B-Other
As an office manager, I have honed my communication skills I-Other
through years of experience in verbal and written I-Other
communication with clients, vendors, and team members. I I-Other
have extensive experience in creating and delivering I-Other
presentations, preparing and responding to business I-Other
correspondence, and ensuring effective communication I-Other
throughout the office. I-Other
Leadership B-Other
I have demonstrated strong leadership skills in managing a I-Other
team of administrative staff and supervising daily office I-Other
operations. I have experience in providing guidance and I-Other
support to staff, setting performance expectations and I-Other
providing feedback, and addressing issues as they arise. I-Other
References B-Other
Available upon request. I-Other

Statistics To train and evaluate our segmenter, we annotated 1, 081 resumes
whose original reading orders matched the reading orders of our approach. Of
the selected resumes, 940 exclusively include 1-Column pages, 54 have only 2-

Chapter 5. Experiments 63

Column pages, and 87 contain at least one page of each template type. We do
not select resumes with Complex template, as we cannot verify their reading
order. Table 5.8 shows some characteristics of the annotated sections.

Table 5.8: Basic statistics of the annotated sections.

Section Type #Annotations #Lines #Words

Education 2,385 6,067 45,245
Objective 669 1,826 13,644
Other 2,386 15,223 124,246
Personal Info 1,210 6,888 56,766
Summary 528 5,170 56,601
Work Experience 4,772 36,171 370,264

All 11,950 71,345 666,766

We examined the presence of the Table of Contents embedded in the
PDFs of annotated resumes, as it could potentially accelerate the segment
identification step. Among the 1, 081 selected resumes, only 75 contained
this information, accounting for approximately 7% of the files. For detailed
distributions of this and other metadata attributes based on the software tool
used, please refer to Appendix C.2.

It is worth noting that each entry in this Table references the page and
coordinates of a heading, but the specific region it encompasses is not defined.
This means that an automated heuristic for segment extraction would only be
feasible if the text content is correctly ordered.

5.3.2
Experimental Setup

For CRF, we inspected how the ontology, textual, visual, and spatial
features detailed in Table 4.3 influence the overall results. To build each
one of these models, we employed the L-BFGS algorithm [55] with l1 and
l2 regularization, where l1, l2 ∈ [10−3, 102].

For BERT, similarly to the experiments done in Section 5.2, we analyzed
the impact of using a pre-trained model as a feature extractor and fine-tuning
it to our data following the experimental setups laid in [16, 56]. We used the
pre-trained BERT Base model for Brazilian Portuguese named BERTimbau
[56] available at the HuggingFace website3.

When using the model as a feature extractor, we tested training the
classifier layer for 10 epochs with a learning rate α set to 10−3 using as

3https://huggingface.co/neuralmind/bert-base-portuguese-cased

https://huggingface.co/neuralmind/bert-base-portuguese-cased

Chapter 5. Experiments 64

inputs only the last layer and the concatenation of the last four layers. For
the fine-tuning setting, we trained only the classifier layer following the same
setup used for the feature extractor approach; afterward, we unfroze the
remaining layers and trained the model for another 10 epochs with learning
rate α ∈ {2 · 10−5, 1 · 10−5, 5 · 10−6}. In all these settings, we used a batch size
of 8 and Adam optimizer [52] with a learning rate warm-up over the first 10%
steps followed by linear decay of the learning rate over the remaining steps.

We obtained the optimal parameters in all these settings through a grid
search on top of the Micro F1-Score on a validation set. All models were trained
up to their fixed number of epochs or until the F1-Score on a validation set
decreased through three consecutive epochs.

5.3.3
Results

Table 5.9 examines the performance of the CRF using different sets of
features to understand how each one impacts the overall results.

Table 5.9: F1-Score (in %) for all CRF models trained with different sets of
features. The “+” symbol indicates adding new features to those used in the
column to its left. For example, “+ Visual” implies employing vocabulary, text,
and visual features.

Level Ontology + Text + Visual + Spatial

Se
ct

io
n

Education 87.48 ± 1.21 89.30 ± 1.56 89.83 ± 1.05 90.53 ± 0.43
Objective 85.28 ± 1.42 87.33 ± 1.26 87.21 ± 1.93 86.79 ± 1.30
Other 66.77 ± 2.46 70.97 ± 2.21 75.82 ± 2.41 78.02 ± 1.90
Personal Info 83.41 ± 2.50 86.81 ± 1.86 88.26 ± 1.93 88.86 ± 2.49
Summary 68.87 ± 1.81 70.96 ± 2.11 69.98 ± 1.72 71.40 ± 0.90
Work Experience 82.58 ± 2.97 84.38 ± 1.69 84.69 ± 1.75 85.13 ± 2.12
Average 79.07 ± 1.12 81.63 ± 0.79 82.63 ± 0.89 83.46 ± 1.16

It
em

Education 47.22 ± 4.57 66.60 ± 1.83 69.59 ± 1.88 71.69 ± 2.74
Work Experience 24.89 ± 2.92 55.79 ± 2.44 66.31 ± 3.12 74.20 ± 2.91
Average 36.05 ± 1.67 61.19 ± 1.52 67.95 ± 1.91 72.95 ± 2.64

Regarding extracting first-level information, the use of vocabulary and
text features already yields satisfactory results for most sections, with an
average F1-Score of 81.2%. The Personal Info, Objective, Education, and Work
Experience sections achieve the highest scores, all above 84.0%. These results
can be explained by the large number of examples in the dataset corresponding
to these sections, combined with the fact that each of them usually contains
specific keywords with high discriminatory power. For example, the Education
section should have a high concentration of words like “university”, “school”,

Chapter 5. Experiments 65

and “degree”, which are unlikely to appear elsewhere in the text. On the
other hand, the Summary and Other sections have lower scores, which can
be linked to their more diverse content and intersection with the content of
other sections. For the first level, the impact of introducing visual and spatial
features is small for most of the sections. The exception is the Other section,
which gets a 7.4% increase, presumably because these features help identify
section boundaries between two consecutive Other sections.

However, the most significant impact of including the visual and spatial
features can be observed in extracting second-level information. They improve
the F1-Score of the education and work experience items by 5.9% and 18.0%
compared to using only the textual and ontology attributes, respectively. The
explanation is the same as the one suggested for the Other section’s improve-
ment previously. While these features do not directly provide noteworthy gains
in identifying the section to which a line belongs, they play a crucial role in
distinguishing section boundaries.

Table 5.10 illustrates the same evaluation for the BERT models. Here we
examine the performance of employing BERT as a feature extractor and fine-
tuning it to our data. In addition, we examine whether attaching the manually
extracted features employed in the CRF to the classifier layer improves the
overall performance over the default models.

Table 5.10: F1-Score (in %) for all BERT models trained with different sets of
feature and training settings.

Level Feature Extraction Fine-Tuning
Default + CRF Feat. Default + CRF Feat.

Se
ct

io
n

Education 75.65 ± 2.73 79.87 ± 1.15 91.26 ± 0.85 90.49 ± 1.30
Objective 80.63 ± 3.08 83.59 ± 1.21 88.09 ± 2.15 87.75 ± 1.30
Other 62.86 ± 2.21 69.83 ± 2.53 76.52 ± 2.17 77.57 ± 1.50
Personal Info 87.36 ± 2.27 90.05 ± 1.41 91.63 ± 1.80 91.01 ± 0.69
Summary 58.64 ± 3.63 62.05 ± 3.84 73.60 ± 3.08 73.73 ± 3.86
Work Experience 64.98 ± 2.87 68.20 ± 3.24 88.53 ± 1.67 88.36 ± 2.28

Average 71.69 ± 2.06 75.60 ± 1.44 84.94 ± 1.52 84.82 ± 0.75

It
em

Education 65.26 ± 1.49 71.75 ± 1.78 81.22 ± 2.61 79.98 ± 3.08
Work Experience 64.29 ± 2.51 73.07 ± 2.85 83.45 ± 1.86 84.04 ± 2.15
Average 64.77 ± 1.52 72.41 ± 2.28 82.33 ± 2.06 82.01 ± 2.60

When utilizing BERT as a feature extractor, the results obtained for both
the first and second levels were comparable, at best, to the CRF model with
ontology and text features. However, considering the substantial difference in
computational costs, these results are unsatisfactory. Nonetheless, we observed
a notable improvement in the results by fine-tuning BERT with our specific

Chapter 5. Experiments 66

data. For first-level information, the average F1-Score was 1.5% higher than
that of the best CRF model. The strong correlation between section extraction
and the detection of section headings can explain this modest gain. Ontologies
typically cover most headings since resumes tend to follow similar naming
conventions, leaving little room for significant improvements at this level.

On the other hand, the second level exhibited a considerable performance
gain. Both work experience and education items improved by approximately
9%. This indicates that BERT is better suited for identifying these items than
the CRF model, potentially due to the greater variety of patterns employed to
describe such items within resume sections.

Regarding the inclusion of the manually extracted features used in the
CRF, we observed that the results remained stable when fine-tuning this
extended version. This indifference in the results suggests that it is possible to
detect most of the section boundaries by exploiting the resume layout’s visual
and spatial features or better understanding the textual content, rendering the
CRF features unnecessary when using models with many learning parameters.
However, incorporating these features improved the results when employed
alongside BERT as a feature extractor. In conclusion, incorporating manually
extracted features is beneficial only under constrained scenarios where the
model’s understanding of the resume content is limited.

5.3.4
Error Analysis

To better understand each model’s strengths and weaknesses, we ana-
lyzed the errors made in the test set of one of the dataset splits by the best
CRF and BERT models. To this end, we looked at their confusion matrices and
visually inspected misclassified segments to identify possible error patterns. In
these matrices, we added the tag ∅ to represent all segments that did not
match any other segments with a Jaccard score of at least 90%.

Table 5.11 shows the confusion matrix of the CRF model. Evidently, most
segments invalidated by our classification criteria fall under ∅. Thus, the most
significant shortcoming of the model is incorrectly segmenting the text. This
point can be clearly inferred when comparing the F1-Score of the Education
and Work Experiences at the section and item levels displayed in Table 5.9.
There is visible deterioration when moving from identifying sections to items,
which indicates that the model is classifying lines in the right sections, but
having difficulty identifying item breaks. The same logic can be applied to the
case of the section Other.

Manually inspecting the segmentations obtained, we found the limited

Chapter 5. Experiments 67

Table 5.11: Confusion matrix for the best CRF model from one of the dataset
splits. For clarity, ∅: Not Matched; Edu: Education; Obj: Objective; Oth:
Other; Per: Personal Info; Sum: Summary; Work: Work Experience.

Predicted
∅ Edu Obj Oth Per Sum Work

T
ru

e

∅ 0 84 11 54 23 10 150
Edu 132 322 0 5 0 1 1
Obj 17 0 116 3 0 0 0
Oth 72 3 0 345 0 9 10
Per 27 0 0 2 207 0 0
Sum 16 0 1 12 2 72 2
Work 204 7 0 3 0 2 667

vocabulary to be the main responsible for the errors committed by the model.
For example, most mistakes for the Work Experience were made on items
starting with the company name. Correctly identifying company names is a
complex task in itself. To give an idea, Brazil alone has around 20 million
companies currently in operation 4. Another number of mistakes seems to be
caused by not recognizing unusual job titles such as “agricultor” (“Farmer”)
and “motorista categoria D” (“D-category driver”). This problem is analogous
to Education. In this case, it is only necessary to replace the names of companies
with universities and job titles with course names.

For the remaining sections, the problem is more related to the difference
between the name of the section heading and its actual content, as illustrated
in Table 5.12. Each heading is strongly associated with a section type, so
it is difficult for the model to disentangle these correlations. The model
also struggles to identify unusual headings, such as “Domínio de Softwares”
(“Software Domain”), which is expected since it heavily depends on the quality
of the ontology used.

Table 5.12: Example of a section misclassified by the CRF model. Commonly
used headings such as “Skills” are strongly correlated to specific section types.

Line Annotated Predicted

Skills and Competencies B-Objective B-Other
I’m looking for a job to put into practice what I’ve learned ... I-Objective I-Other
companies. Such as Sales, Inventory, Cash, Repositor... I-Objective I-Other
assigned to me, always seeking knowledge to contribute ... I-Objective I-Other
...

4https://www.gov.br/economia/pt-br/assuntos/noticias/2022/julho/
mais-de-1-3-milhao-de-empresas-sao-criadas-no-pais-em-quatro-meses

https://www.gov.br/economia/pt-br/assuntos/noticias/2022/julho/mais-de-1-3-milhao-de-empresas-sao-criadas-no-pais-em-quatro-meses
https://www.gov.br/economia/pt-br/assuntos/noticias/2022/julho/mais-de-1-3-milhao-de-empresas-sao-criadas-no-pais-em-quatro-meses

Chapter 5. Experiments 68

Table 5.13 shows the confusion matrix of the BERT model. The initial
observations are the same as those already made during the CRF error analysis.
Even the pre-trained model had difficulties finding the correct segmentation.
Comparing the two confusion matrices, we observe that the most meaningful
difference between them is in the number of correct education and work
experience segments, which was already expected given the results displayed in
Table 5.10. It is also noticeable that BERT considerably reduced the number
of errors related to the names of companies and educational institutions.

Table 5.13: Confusion matrix for the best BERT model from one of the dataset
splits. For clarity, ∅: Not Matched; Edu: Education; Obj: Objective; Oth:
Other; Per: Personal Info; Sum: Summary; Work: Work Experience.

Predicted
∅ Edu Obj Oth Per Sum Work

T
ru

e

∅ 0 55 13 83 13 17 142
Edu 72 382 0 6 0 1 0
Obj 13 0 121 1 0 1 0
Oth 68 1 3 351 0 13 3
Per 13 0 0 1 222 0 0
Sum 14 0 0 10 1 79 1
Work 117 0 0 5 0 2 759

For Work Experiences, finding simple and frequent error patterns was
difficult. The most apparent was single work experiences summarizing the
entire professional trajectory within the company or the different projects to
which the person was allocated, as illustrated in Table 5.14. We also noticed
that this section is the one that contains the most considerable amount of data
annotation errors. The explanation is simple, work experience items tend to
be extensive. The amount of text combined with the lack of visual indications
signaling the beginning/end of an item makes it difficult to annotate it within
the annotation tool correctly.

For Education, some of the main reasons for the segmentation errors
were: (i) education degrees using terms that are frequent in other contexts.
For example, “Técnico em Turismo” (“Technician in Tourism”) and “Gestão
de Saúde” (“Health Management”); (ii) a single education spanning many lines
- an unusual pattern for an education item; and (iii) the presence of additional
information on an education item (e.g., main courses taken during undergrad).

Chapter 5. Experiments 69

Table 5.14: Example of a segment misclassified by the BERT model. The
presence of a job title in a row is a strong indication that this is the beginning
of a new work experience.

Line Annotated Predicted

Google Inc. B-Work Experience B-Work Experience
Occupation: Lead Data Scientist - Feb/2019 - Current I-Work Experience I-Work Experience
Occupation: Data Scientist - Mar/2014 - Feb/2019 I-Work Experience B-Work Experience
Occupation: Intern - Oct/2013 - Mar/2014 I-Work Experience B-Work Experience
Managed a team of data scientists, machine learning... I-Work Experience I-Work Experience
...

6
Conclusion

In this final chapter, we summarize our contributions to the domain
of resume parsing, including a short discussion of the inherent limitations
associated with our proposed methodology, and conclude by outlining potential
future research directions.

6.1
Contributions

This thesis proposes a new resume parser whose main goal is to extract
all sections from a given resume and also all items from its Education and Work
Experience sections. The proposed parser consists of a pipeline with two core
components: the first focuses on fixing the reading order of the text extracted
from the PDF document, while the second extracts sections and items from
the reordered text.

The first component employs EfficientNet-B0 to identify the most com-
mon page templates based on a layout complexity measure introduced in Sec-
tion 4.2.1 and reorder the resume text according to the identified template on
each page. This approach yields good results, achieving an average accuracy of
85.5% and an average F1-Score of 90.5% for 1-Column, 86.8% for 2-Columns,
and 74.5% for Complex templates. The model successfully distinguishes 1-
Column and 2-Column templates but struggles to differentiate them from the
Complex template due to visual similarities.

Still related to the first component, we found out that identifying
page templates using either the original or anonymized versions (highlighting
character-containing regions only) produces very similar results. This finding
allows us to provide an anonymized dataset while upholding privacy concerns.

The second component employs CRF- and BERT-based models to ex-
tract all resume sections and individual items from the Education and Work
Experience sections. To this end, we considered each item as a separate sec-
tion and slightly adjusted our tag encoding to distinguish the first item from
the subsequent ones. As expected, BERT yields the best results for both the
first and second levels of segmentation with an average F1-Score of 84.9% and
82.4%, respectively, demonstrating that the model is very good at segmenting

Chapter 6. Conclusion 71

the text into sections. However, CRF also yields satisfactory results with an
average F1-Score of 83.5% and 72.9%, respectively, which may be surprising
given that it has significantly fewer parameters than BERT. The most signif-
icant difference between them lies in getting individual work experiences and
education items, where we observe an average gap of about 9% in the F1-Score.

Nonetheless, the CRF can be a feasible alternative to BERT, depending
on hardware and budget limitations. Indeed, its GPU-free requirement and
potential for parallelization across multiple CPU cores make it an attractive
option for resource-constrained scenarios.

6.2
Limitations

For the first component, the most obvious limitation is that it can
only correctly order the text from documents using 1-Column and 2-Column
templates. Other less frequent but still relevant templates are not mapped. An
example is the 2-Column with Header displayed in Figures 4.3b and 4.5c.

Despite that, we recommend our approach for fixing the reading order
of resumes with simple templates only. The reason is that each mapped
template is associated with a tailored heuristic. Hence, complex templates may
require equally complex heuristics, which may be too cumbersome to develop
accurately.

Finally, it is essential to remember that our proposal is based on the
examination of resumes in the Brazilian job market. Our methodology may re-
quire adaptations for other markets, as each country has its own conventions.
An example is regarding the implementation of a sub-component for identi-
fying Tables. We encountered very few resumes that use tables to organize
information. However, other countries may use them more frequently, requir-
ing identifying them before reordering the text since they typically have their
unique reading orders.

For the second component, a shortcoming of our approach is that we do
not process the header and footnote of each page separately. That implies that
these elements are present in the middle of the sections extracted, which is
inappropriate from a pragmatic point of view. In addition, they may harm the
capability of the models to segment the sections correctly.

Before employing our CRF approach as a segmenter, seeking a more
robust method to enrich the vocabularies associated with the defined section
types is advised since we currently use a naive approach. As mentioned in
Section 4.3.3, the CRF relies exclusively on these vocabularies to associate
each segmented section with its correct type.

Chapter 6. Conclusion 72

For both components, the methodology used to build the datasets allowed
us to annotate a reasonable number of resumes. On the other hand, it has
limited the conclusions we can draw around the impact of reordering the
text. We managed to demonstrate the shortcomings of some document parsers
in handling 1-Column and 2-Column templates. However, we do not have a
quantitative metric directly comparing the parsers’ reading orders to those of
our approach. It is also pending to verify how the reading order impacts the
subsequent tasks of extracting entities and semantic relationships.

6.3
Future Work

As mentioned, one natural future work is ensuring that more templates
are correctly ordered. For this purpose, we can employ the measure of com-
plexity proposed in Section 4.2.1 to prioritize them. The idea is to start with
simple templates, which are the easiest to develop heuristics and should ar-
guably cover most resumes yet to be mapped.

In parallel, developing a more sophisticated methodology to extract the
reading order of more complex layouts would be essential. One possibility is to
work with larger textual elements to avoid creating excessive rules to ensure
correct reading order. To obtain these elements, we could employ the Document
Layout Analysis task [32]. Another alternative is to employ a LayoutReader-
based model directly since it can handle any layout [33]. However, this approach
would require training the model from scratch because the available pre-trained
model 1 was trained using DOCX documents in English. It would also require
developing post-processing steps to circumvent limitations imposed by the
architecture, similar to what happened with BERT in Section 4.3.3.

Regarding resume segmentation, an evident future work is appropriately
identifying more section types, such as Skills and Complementary Courses. It is
reasonable to assume that they should perform well since we already indirectly
identify them through the generic “Other” section.

Improving the ontology’s quality and size is an urgent priority for the
CRF-based segmentation model. One possibility would be to use a more robust
approach, such as TaxoCon [57], to build the vocabularies associated with the
various sections. The sections can be seen as part of a topic hierarchy, and the
method’s primary goal is to generate new topics on that hierarchy and assign
them semantically related terms. This approach also opens the possibility of
further organizing our ontology— for example, by generating sub-topics Job
Title and Company Name under the Work Experience topic.

1https://github.com/microsoft/unilm/tree/master/layoutreader

https://github.com/microsoft/unilm/tree/master/layoutreader

Chapter 6. Conclusion 73

Moving on to the transformers-based segmentation model, we can replace
the BERT model with a more state-of-the-art model like LayoutLMs [49],
an extension of BERT that considers the Layout information associated with
tokens. Our primary concern is improving the identification of the Other and
Summary sections since they have the worst results in our experiments.

Another relevant research direction would be investigating whether the
core ideas discussed in this thesis could be helpful when extracting information
from PDF documents in other domains. Some promising candidates are Legal,
Medical, and Financial documents. A concrete example would be invoices,
which contain a structure similar to a resume. They are electronic documents
issued by numerous companies containing sections describing information
about the seller, buyer, and goods transferred between the parties.

Finally, distancing ourselves from the scope of our work, we consider
three other interesting research directions.

The first is to unite the ideas proposed in this thesis with those proposed
in Vukadin et al. [13]. The union of both approaches would produce a model
capable of simultaneously extracting any resume’s sections, subsections, and
entities.

The second work is to develop a Job Posting Parser, focusing on extract-
ing the job responsibilities and skills described in the job posting. Ideally, the
parser would also be capable of determining whether a given skill is optional
or required. If the latter, the number of years of experience demanded. Build-
ing a high-quality dataset for this task should be trivial since millions of job
postings are available daily on job portals.

The third work is adapting the LayoutReader [33] to work with larger
textual elements. The original work suggests that this model does well even
when only taking into account the layout information of the tokens. Therefore,
it is natural to presume that the same must be valid when considering the
layout information of paragraphs, for example. The most significant impact
of this change is that the model would be language-agnostic and capable of
handling any arbitrary visual element embedded in the files, such as photos,
graphics, and tables.

Bibliography

[1] TABIAN, I.; FU, H. ; SHARIF KHODAEI, Z.. A convolutional neural
network for impact detection and characterization of complex
composite structures. Sensors, 19(22):4933, 2019.

[2] TAN, M.; LE, Q.. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In: INTERNATIONAL CONFERENCE ON
MACHINE LEARNING, p. 6105–6114. PMLR, 2019.

[3] MEUNIER, J.-L.. Optimized xy-cut for determining a page reading
order. In: EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT
ANALYSIS AND RECOGNITION (ICDAR’05), p. 347–351. IEEE, 2005.

[4] GUO, S.; ALAMUDUN, F. ; HAMMOND, T.. Résumatcher: A personal-
ized résumé-job matching system. Expert Systems with Applications,
60:169–182, 2016.

[5] LI, C.; FISHER, E.; THOMAS, R.; PITTARD, S.; HERTZBERG, V. ; CHOI,
J. D.. Competence-level prediction and resume & job descrip-
tion matching using context-aware transformer models. In: PRO-
CEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN
NATURAL LANGUAGE PROCESSING (EMNLP), p. 8456–8466, 2020.

[6] DAVE, V. S.; ZHANG, B.; AL HASAN, M.; ALJADDA, K. ; KORAYEM,
M.. A combined representation learning approach for better job
and skill recommendation. In: PROCEEDINGS OF THE 27TH ACM
INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE
MANAGEMENT, p. 1997–2005, 2018.

[7] YU, K.; GUAN, G. ; ZHOU, M.. Resume information extraction with
cascaded hybrid model. In: PROCEEDINGS OF THE 43RD ANNUAL
MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
(ACL’05), p. 499–506, 2005.

[8] SINGH, A.; ROSE, C.; VISWESWARIAH, K.; CHENTHAMARAKSHAN, V. ;
KAMBHATLA, N.. Prospect: a system for screening candidates for
recruitment. In: PROCEEDINGS OF THE 19TH ACM INTERNATIONAL

Bibliography 75

CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT,
p. 659–668, 2010.

[9] AYISHATHAHIRA, C.; SREEJITH, C. ; RASEEK, C.. Combination of
neural networks and conditional random fields for efficient re-
sume parsing. In: 2018 INTERNATIONAL CET CONFERENCE ON CON-
TROL, COMMUNICATION, AND COMPUTING (IC4), p. 388–393. IEEE,
2018.

[10] BARDUCCI, A.; IANNACCONE, S.; LA GATTA, V.; MOSCATO, V.; SPERLÌ,
G. ; ZAVOTA, S.. An end-to-end framework for information
extraction from italian resumes. Expert Systems With Applications,
210:118487, 2022.

[11] ADOBE SYSTEMS. Document management — Portable document
format — Part 1: PDF 1.7. URL: https://opensource.adobe.com/
dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf, 2023. Last
accessed on 30/08/23.

[12] APACHE SOFTWARE FOUNDATION. Apache PDFBox, 2020.

[13] VUKADIN, D.; KURDIJA, A. S.; DELAČ, G. ; ŠILIĆ, M.. Information
extraction from free-form cv documents in multiple languages.
IEEE Access, 9:84559–84575, 2021.

[14] CHUANG, Z.; MING, W.; GUANG, L. C.; BO, X. ; ZHI-QING, L.. Resume
parser: Semi-structured chinese document analysis. In: 2009 WRI
WORLD CONGRESS ON COMPUTER SCIENCE AND INFORMATION
ENGINEERING, volumen 5, p. 12–16. IEEE, 2009.

[15] LAFFERTY, J. D.; MCCALLUM, A. ; PEREIRA, F. C. N.. Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data. In: PROCEEDINGS OF THE EIGHTEENTH INTERNA-
TIONAL CONFERENCE ON MACHINE LEARNING, p. 282–289, 2001.

[16] DEVLIN, J.; CHANG, M.; LEE, K. ; TOUTANOVA, K.. BERT: pre-
training of deep bidirectional transformers for language under-
standing. In: PROCEEDINGS OF THE 2019 CONFERENCE OF THE
NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTA-
TIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, NAACL-
HLT 2019, MINNEAPOLIS, MN, USA, JUNE 2-7, 2019, VOLUME 1 (LONG
AND SHORT PAPERS), p. 4171–4186. Association for Computational Lin-
guistics, 2019.

https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf

Bibliography 76

[17] ADOBE ACROBAT. About tags, accessibility, reading or-
der, and reflow. URL: https://helpx.adobe.com/acrobat/using/
accessibility-features-pdfs.html, 2023. Last accessed on 13/02/22.

[18] STENETORP, P.; PYYSALO, S.; TOPIĆ, G.; OHTA, T.; ANANIADOU,
S. ; TSUJII, J.. brat: a web-based tool for NLP-assisted text
annotation. In: PROCEEDINGS OF THE DEMONSTRATIONS SESSION
AT EACL 2012, p. 102–107, Avignon, France, April 2012. Association for
Computational Linguistics.

[19] TKACHENKO, M.; MALYUK, M.; HOLMANYUK, A. ; LIUBIMOV, N..
Label Studio: Data labeling software, 2020-2022. Open source
software available from https://github.com/heartexlabs/label-studio.

[20] HARLEY, A. W.; UFKES, A. ; DERPANIS, K. G.. Evaluation of deep con-
volutional nets for document image classification and retrieval.
In: 2015 13TH INTERNATIONAL CONFERENCE ON DOCUMENT ANAL-
YSIS AND RECOGNITION (ICDAR), p. 991–995. IEEE, 2015.

[21] DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K. ; FEI-FEI, L.. Im-
agenet: A large-scale hierarchical image database. In: 2009 IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
p. 248–255. IEEE, 2009.

[22] RAMSHAW, L.; MARCUS, M.. Text chunking using transformation-
based learning. In: THIRD WORKSHOP ON VERY LARGE CORPORA,
p. 82–94, 1995.

[23] VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.;
GOMEZ, A. N.; KAISER, Ł. ; POLOSUKHIN, I.. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[24] MIKOLOV, T.; SUTSKEVER, I.; CHEN, K.; CORRADO, G. S. ; DEAN,
J.. Distributed representations of words and phrases and their
compositionality. Advances in neural information processing systems, 26,
2013.

[25] WU, Y.; SCHUSTER, M.; CHEN, Z.; LE, Q. V.; NOROUZI, M.; MACHEREY,
W.; KRIKUN, M.; CAO, Y.; GAO, Q.; MACHEREY, K. ; OTHERS. Google’s
neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

https://helpx.adobe.com/acrobat/using/accessibility-features-pdfs.html
https://helpx.adobe.com/acrobat/using/accessibility-features-pdfs.html

Bibliography 77

[26] BAHDANAU, D.; CHO, K. ; BENGIO, Y.. Neural machine translation
by jointly learning to align and translate. In: 3RD INTERNATIONAL
CONFERENCE ON LEARNING REPRESENTATIONS, 2015.

[27] CHEN, J.; GAO, L. ; TANG, Z.. Information extraction from resume
documents in pdf format. Electronic Imaging, 2016(17):1–8, 2016.

[28] PAWAR, S.; THOSAR, D.; RAMRAKHIYANI, N.; PALSHIKAR, G. K.;
SINHA, A. ; SRIVASTAVA, R.. Extraction of complex semantic rela-
tions from resumes. In: IJCAI-21 WORKSHOP ON APPLIED SEMAN-
TICS EXTRACTION AND ANALYTICS (ASEA), 2021.

[29] GAUR, B.; SALUJA, G. S.; SIVAKUMAR, H. B. ; SINGH, S.. Semi-
supervised deep learning based named entity recognition model
to parse education section of resumes. Neural Computing and
Applications, 33(11):5705–5718, 2021.

[30] AFFINDA. What artificial intelligence technologies does Affinda
use? URL: https://affinda.com/resume-parser, 2023. Last accessed
on 09/02/22.

[31] NANOTECS. How to OCR Resumes using Intelli-
gent Automation. URL: https://nanonets.com/blog/
ocr-for-resume-parsing-deep-learning/, 2023. Last accessed
on 09/02/22.

[32] ZHONG, X.; TANG, J. ; YEPES, A. J.. Publaynet: largest dataset
ever for document layout analysis. In: 2019 INTERNATIONAL CON-
FERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), p.
1015–1022. IEEE, 2019.

[33] WANG, Z.; XU, Y.; CUI, L.; SHANG, J. ; WEI, F.. Layoutreader: Pre-
training of text and layout for reading order detection. In:
PROCEEDINGS OF THE 2021 CONFERENCE ON EMPIRICAL METHODS
IN NATURAL LANGUAGE PROCESSING, p. 4735–4744, 2021.

[34] SUTSKEVER, I.; VINYALS, O. ; LE, Q. V.. Sequence to sequence learn-
ing with neural networks. Advances in neural information processing
systems, 27, 2014.

[35] GU, Z.; MENG, C.; WANG, K.; LAN, J.; WANG, W.; GU, M. ; ZHANG,
L.. Xylayoutlm: Towards layout-aware multimodal networks
for visually-rich document understanding. In: PROCEEDINGS OF

https://affinda.com/resume-parser
https://nanonets.com/blog/ocr-for-resume-parsing-deep-learning/
https://nanonets.com/blog/ocr-for-resume-parsing-deep-learning/

Bibliography 78

THE IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION, p. 4583–4592, 2022.

[36] ARNOLD, S.; SCHNEIDER, R.; CUDRÉ-MAUROUX, P.; GERS, F. A. ;
LÖSER, A.. Sector: A neural model for coherent topic segmenta-
tion and classification. Transactions of the Association for Computational
Linguistics, 7:169–184, 2019.

[37] BARROW, J.; JAIN, R.; MORARIU, V.; MANJUNATHA, V.; OARD, D. W.
; RESNIK, P.. A joint model for document segmentation and seg-
ment labeling. In: PROCEEDINGS OF THE 58TH ANNUAL MEETING
OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, p. 313–
322, 2020.

[38] LO, K.; JIN, Y.; TAN, W.; LIU, M.; DU, L. ; BUNTINE, W.. Transformer
over pre-trained transformer for neural text segmentation with
enhanced topic coherence. In: FINDINGS OF THE ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS: EMNLP 2021, p. 3334–3340, 2021.

[39] BAI, H.; WANG, P.; ZHANG, R. ; SU, Z.. Segformer: A topic segmen-
tation model with controllable range of attention. In: PROCEED-
INGS OF THE AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol-
umen 37, p. 12545–12552, 2023.

[40] BEEFERMAN, D.; BERGER, A. ; LAFFERTY, J.. Statistical models for
text segmentation. Machine learning, 34:177–210, 1999.

[41] APACHE SOFTWARE FOUNDATION. PDFBox FAQ. URL: https:
//pdfbox.apache.org/2.0/faq.html, 2022. Last accessed on 08/08/22.

[42] SHINYAMA, Y.; GUGLIELMETTI, P. ; MARSMAN, P.. PDFMiner Text
Converter. URL: https://pdfminersix.readthedocs.io/en/latest/
topic/converting_pdf_to_text.html, 2022. Last accessed on 08/08/22.

[43] SHINYAMA, Y.; GUGLIELMETTI, P. ; MARSMAN, P.. PDFMiner, 2022.

[44] RATINOV, L.; ROTH, D.. Design challenges and misconceptions in
named entity recognition. In: PROCEEDINGS OF THE THIRTEENTH
CONFERENCE ON COMPUTATIONAL NATURAL LANGUAGE LEARNING
(CONLL-2009), p. 147–155, 2009.

[45] LIU, H.; SETIONO, R.. Chi2: Feature selection and discretization of
numeric attributes. In: PROCEEDINGS OF 7TH IEEE INTERNATIONAL

https://pdfbox.apache.org/2.0/faq.html
https://pdfbox.apache.org/2.0/faq.html
https://pdfminersix.readthedocs.io/en/latest/topic/converting_pdf_to_text.html
https://pdfminersix.readthedocs.io/en/latest/topic/converting_pdf_to_text.html

Bibliography 79

CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, p. 388–
391. IEEE, 1995.

[46] PASZKE, A.; GROSS, S.; MASSA, F.; LERER, A.; BRADBURY, J.;
CHANAN, G.; KILLEEN, T.; LIN, Z.; GIMELSHEIN, N.; ANTIGA, L. ; OTH-
ERS. Pytorch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing systems, 32, 2019.

[47] HE, K.; ZHANG, X.; REN, S. ; SUN, J.. Deep residual learning for
image recognition. In: PROCEEDINGS OF THE IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGNITION, p. 770–778, 2016.

[48] HU, J.; KASHI, R. ; WILFONG, G.. Document image layout com-
parison and classification. In: PROCEEDINGS OF THE FIFTH INTER-
NATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNI-
TION. ICDAR’99 (CAT. NO. PR00318), p. 285–288. IEEE, 1999.

[49] XU, Y.; LI, M.; CUI, L.; HUANG, S.; WEI, F. ; ZHOU, M.. Layoutlm: Pre-
training of text and layout for document image understanding.
In: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CON-
FERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, p. 1192–1200,
2020.

[50] OVERLEAF. Got a PDF but is it accessible? URL: https:
//www.overleaf.com/learn/latex/An_introduction_to_tagged_
PDF_files%3A_internals_and_the_challenges_of_accessibility,
2023. Last accessed on 17/08/23.

[51] KORNBLITH, S.; SHLENS, J. ; LE, Q. V.. Do better imagenet models
transfer better? In: PROCEEDINGS OF THE IEEE/CVF CONFERENCE
ON COMPUTER VISION AND PATTERN RECOGNITION, p. 2661–2671,
2019.

[52] KINGMA, D. P.; BA, J.. Adam: A method for stochastic optimiza-
tion. 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[53] AFZAL, M. Z.; KÖLSCH, A.; AHMED, S. ; LIWICKI, M.. Cutting the
error by half: Investigation of very deep cnn and advanced
training strategies for document image classification. In: 2017
14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS
AND RECOGNITION (ICDAR), volumen 1, p. 883–888. IEEE, 2017.

https://www.overleaf.com/learn/latex/An_introduction_to_tagged_PDF_files%3A_internals_and_the_challenges_of_accessibility
https://www.overleaf.com/learn/latex/An_introduction_to_tagged_PDF_files%3A_internals_and_the_challenges_of_accessibility
https://www.overleaf.com/learn/latex/An_introduction_to_tagged_PDF_files%3A_internals_and_the_challenges_of_accessibility

Bibliography 80

[54] LI, M.; XU, Y.; CUI, L.; HUANG, S.; WEI, F.; LI, Z. ; ZHOU, M.. Docbank:
A benchmark dataset for document layout analysis. In: PROCEED-
INGS OF THE 28TH INTERNATIONAL CONFERENCE ON COMPUTA-
TIONAL LINGUISTICS, p. 949–960, 2020.

[55] LIU, D. C.; NOCEDAL, J.. On the limited memory bfgs method for
large scale optimization. Mathematical programming, 45(1-3):503–528,
1989.

[56] SOUZA, F.; NOGUEIRA, R. ; LOTUFO, R.. Bertimbau: pretrained
bert models for brazilian portuguese. In: INTELLIGENT SYSTEMS:
9TH BRAZILIAN CONFERENCE, BRACIS 2020, RIO GRANDE, BRAZIL,
OCTOBER 20–23, 2020, PROCEEDINGS, PART I 9, p. 403–417. Springer,
2020.

[57] LEE, D.; SHEN, J.; KANG, S.; YOON, S.; HAN, J. ; YU, H.. Taxocom:
Topic taxonomy completion with hierarchical discovery of novel
topic clusters. In: PROCEEDINGS OF THE ACM WEB CONFERENCE
2022, p. 2819–2829, 2022.

A
Common Resume Headings

Table A.1 displays the Resume Headings vocabulary. We examined
approximately 100 resumes and carefully selected the most prevalent headings
for each section type. In addition to Brazilian Portuguese, we included headings
in English to account for cases where some resumes incorporate both languages.

Table A.1: Common resume headings by section type.

Section Type Headings

Education “Academic Background”, “Dados Academicos”, “Educacao”, “Educacao Formacao”, “Education”, “Ed-
ucational Background”, “Escolaridade”, “Formacao”, “Formacao Academica”, “Formacao E Cursos”,
“Formacao Educacional”, “Formacao Escolar”, “Formacoes Academicas”, “Informacao Academica“

Objective “Goal”, “Interesses”, “Objective”, “Objetivo”, “Objetivo Profissional”, “Professional Goal”

Other “Additional Information”, “Adicionais”, “Aptidoes Competencias”, “Area De Interesse”, “Artigos”,
“Atividade Adicional”, “Atividade Complementar”, “Atividades Adicionais”, “Atividades Adicionais”,
“Atividades Complementares”, “Atividades Extra Curriculares”, “Atividades Extracurriculares”,
“Atividades Extras”, “Awards”, “Capacitacoes Certificacoes”, “Cargo de Interesse”, “Cargo Pre-
tendido”, “Certificacao”, “Certificacoes”, “Certificado”, “Certificados”, “Certifications”, “Certifica-
tions And Licenses”, “Competences”, “Competencias”, “Competencias Adicionais”, “Competencias Com-
portamentais”, “Competencias Habilidades”, “Competencias Pessoais”, “Competencias Profissionais”,
“Competencias Tecnicas”, “Computer Skills”, “Conhecimentos”, “Conhecimentos Adicionais”, “Conhec-
imentos Complementares”, “Conhecimentos Em Informatica”, “Conhecimentos Especificos”, “Conheci-
mentos Extracurriculares”, “Conhecimentos Gerais”, “Conhecimentos Habilidades”, “Conhecimentos
Idiomas”, “Conhecimentos Profissionais”, “Conhecimentos Tecnicos”, “Conquistas”, “Cursos”, “Cur-
sos Adicionais”, “Cursos Aperfeicoamento Profissional”, “Cursos Certificacoes”, “Cursos Comple-
mentares”, “Cursos De Extensao”, “Cursos Extracurriculares”, “Cursos Extras”, “Cursos Extras Cur-
riculares”, “Cursos Formacao Complementar”, “Cursos Seminarios”, “Dados Complementares”, “Defi-
ciencias”, “Diploma”, “Distincoes”, “Experiencia Complementar”, “Experiencias Internacionais”, “Expe-
riencias Profissionais Complementares”, “Extracurricular Activities”, “Ferramentas”, “Formacao Aca-
demica Complementar”, “Formacao Complementar”, “Habilidade”, “Habilidade Competencias”, “Habili-
dades”, “Habilidades Adicionais”, “Habilidades Competencias”, “Habilidades Conhecimentos”, “Habili-
dades Especificas”, “Habilidades Ferramentas”, “Habilidades Idioma”, “Habilidades Informatica”, “Ha-
bilidades Pessoais”, “Habilidades Profissionais”, “Habilidades Qualificacoes”, “Habilidades Softwares”,
“Habilidades Tecnicas”, “Honors”, “Honras”, “Idiomas”, “Idiomas Estrangeiros”, “Idiomas Habilidades”,
“Idiomas Informatica”, “Informacao Extra”, “Informacoes Adicionais”, “Informacoes Complementares”,
“Informacoes Extras”, “Informatica”, “Informatica Conhecimentos Habilidades”, “International Trips”,
“Key Skills”, “Languages”, “Lingua Estrangeira”, “Linguagens Programacao”, “Linguas”, “Linguas Es-
trangeiras”, “Lista Competencias”, “Outras Atividades”, “Outras Certificacoes”, “Outras Competen-
cias”, “Outras Ferramentas”, “Outras Habilidades”, “Outras Informacoes”, “Outras Informacoes Rel-
evantes”, “Outras Linguas”, “Outras Qualificacoes”, “Outros Conhecimentos”, “Outros Cursos”, “Out-
ros Idiomas”, “Outros Objetivos”, “Palestras”, “Participacao Eventos”, “Patentes”, “Premios”, “Premios
Reconhecimentos”, “Pretensao Salarial”, “Principais Competencias”, “Principais Habilidades”, “Prin-
cipais Habilidades Competencias”, “Producao Bibliografica”, “Publicacoes”, “Publications”, “Quali-
ficacao Atividades Complementares”, “Qualificacoes Adicionais”, “Qualificacoes Atividades Comple-
mentares”, “Qualificacoes Atividades Profissionais”, “Qualificacoes Competencias”, “Qualificacoes
Complementares”, “Qualificacoes Conhecimentos”, “Qualificacoes Cursos Complementares”, “Qualifi-
cacoes Extras”, “Qualificacoes Habilidades”, “Qualificacoes Informacoes Adicionais”, “Reconhecimen-
tos”, “Referencias”, “Referencias Pessoais”, “Referencias Profissionais”, “Resumo Competencias”, “Re-
sumo Habilidades”, “Resumo Habilidades Competencias”, “Scholarships”, “Sintese Qualificacoes Compe-
tencias”, “Skills”, “Tecnologias”, “Treinamentos”, “Vivencia Internacional”, “Volunteer Work“

Personal Info “Dados Pessoais”, “Informacoes Pessoais”, “Personal Data”, “Personal Details”, “Personal Informa-
tion”, “Personal Profile“

Summary “About”, “About Me”, “Caracteristicas Pessoais”, “Perfil”, “Perfil Pessoal”, “Perfil Profissional”,
“Principais Qualificacoes”, “Profile”, “Qualificacao”, “Qualificacao Profissional”, “Qualificacoes Pes-
soais”, “Qualifications”, “Qualifications Summary”, “Resumo”, “Resumo Curriculo Profissional”, “Re-
sumo Profissional”, “Resumo Qualificacoes”, “Sintese”, “Sintese Qualificacoes”, “Sintese Profissional”,
“Sobre”, “Sobre Mim”, “Sumario”, “Sumario Qualificacoes”, “Summary”, “Summary Of Qualifications“

Work Experience “Atuacao Profissional”, “Dados Profissionais”, “Employment”, “Employment History”, “Experience”,
“Experiencia”, “Experiencia Profissional”, “Historico Profissional”, “Informacao Profissional”, “Posi-
tions Held”, “Principais Experiencias Profissionais”, “Professional Background”, “Professional Expe-
rience”, “Trajetoria Profissional”, “Work Experience“

B
Regarding the Use of the Item Suffix Strategy

To complement the experiments conducted in 5.3, we devised an addi-
tional experiment comparing the model’s performance when employing the
item suffix strategy proposed in Section 4.3.2 and not. For that, we trained
the CRF model with all manually selected attributes and fine-tuned the BERT
model under these two settings. Table B.1 displays the results obtained.

Our strategy improved the metrics of both models by a modest amount.
In most cases, the models handle the Education and Work Experience sections
and items well, whether or not they employed the suffix. Its addition occa-
sionally helped, given that it increased the F1-Score of these sections for both
levels of information. Moreover, it did not harm any result related to other
sections. Hence, it makes sense to use our proposed approach even though it
is a marginal gain.

Table B.1: F1-Score (in %) for the CRF and BERT models with and without
the item suffix strategy. True: The model used the item suffix. False: The
model did not use the item suffix.

Level CRF BERT
False True False True

Se
ct

io
n

Education 88.74 ± 0.61 90.53 ± 0.43 90.75 ± 1.29 91.26 ± 0.85
Objective 86.34 ± 2.10 86.79 ± 1.30 87.06 ± 2.73 88.09 ± 2.15
Other 77.02 ± 1.21 78.02 ± 1.90 76.30 ± 1.10 76.52 ± 2.17
Personal Info 89.24 ± 2.12 88.86 ± 2.49 89.64 ± 1.95 91.63 ± 1.80
Summary 69.35 ± 2.09 71.40 ± 0.90 73.31 ± 4.55 73.60 ± 3.08
Work Experience 82.24 ± 1.59 85.13 ± 2.12 87.58 ± 1.48 88.53 ± 1.67
Average 82.16 ± 0.82 83.46 ± 1.16 84.11 ± 1.08 84.94 ± 1.52

It
em

Education 70.53 ± 3.17 71.69 ± 2.74 80.52 ± 2.67 81.22 ± 2.61
Work Experience 74.14 ± 2.43 74.20 ± 2.91 81.61 ± 2.73 83.45 ± 1.86
Average 72.33 ± 2.71 72.95 ± 2.64 81.07 ± 2.39 82.33 ± 2.06

C
PDF Metadata Statistics

When we introduced the PDF format in Chapter 2.1, we commented
on the format’s support for optionally storing the Table of Contents and the
Logical Structure of the rendered content. As filling in this metadata may
facilitate the tasks worked on in this thesis, we counted their appearances in
the created datasets to understand whether it would be worth exploiting them.
We segment this information by the name of the writing software used. This
distinction is relevant since storing (or not) this information should arguably
be a software decision predominantly. It is reasonable to think that most users
are unaware of these metadata and their impact on the automatic extraction
of information.

We display the resultant distributions in Section C.1 for the Template
Classifier dataset and Section C.2 for the Resume Segmentation dataset.
According to the PDF documentation [11], the Table of Contents is located
in the field Outlines, while the Logical Structure is located in the field
StructTreeRoot. Furthermore, the name of the software used can be found
in the field Producer.

C.1
Template Classifier Dataset

Table C.1 shows the presence of a Logical Structure and Table of Contents
for the PDF files composing the Template Classifier dataset (see Section 5.2.2
for details). We segmented this information by the software tool used because,
as is clarified in the table, each tool has a different policy regarding the
existence of a logical structure and table of contents.

The software most frequently utilized comprises offerings from Microsoft
and Google (SkiaPDF). The dominance of these companies was not surprising,
given their provision of these tools free of charge, coupled with their standing
as market leaders in the technology sector, serving hundreds of millions of
users. Canva, another extensively employed software, owes its popularity to
its no-cost nature. Unlike the aforementioned options, Canva permits more
versatile document layouts, adding to its appeal.

Regarding the Logical Structure, it was only logical for Microsoft Word to

Appendix C. PDF Metadata Statistics 84

Table C.1: The number of PDF files composing the Template Classifier dataset
encoding a Logical Structure and Table of Contents by the most used Software
Tools. For clarity, we grouped all versions of the same software into one
entry. The entry <Empty> means the producer property is empty in the file
metadata.

Software Tool Logical Structure Table of Contents total
False True False True

Microsoft Word 33 485 518 0 518
Microsoft Word 9 270 279 0 279
for Office 365
Canva 204 0 204 0 204
SkiaPDF 144 0 144 0 144
<Empty> 84 34 107 11 118
Microsoft Print To PDF 98 0 98 0 98
Apache FOP 1 82 83 0 83
Adobe PDF Library 44 19 58 5 63
Microsoft PowerPoint 0 44 44 0 44
Qt 44 0 28 16 44
... 287 71 299 59 358

total 948 1,005 1,862 91 1,953

incorporate this data, as the PDFs were generated from the standardized XML
format, DOCX. An intriguing observation is that SkiaPDF does not retain
this data despite its potential origin in a Microsoft Word-like application from
Google. Meanwhile, Canva lacks this data due to its emphasis on providing
flexible document layouts. Consequently, establishing an automatic logical
structure among its elements becomes an intricate task.

Regarding the Table of Contents, only a minority of documents include
such information. This scarcity can likely be justified by the requirement for
users to define section headers (via header styles) to trigger the generation of
this information. This demand for manual input seems somewhat unconven-
tional, which might explain its limited prevalence.

C.2
Resume Segmentation Dataset

Table C.2 shows the presence of a Logical Structure and Table of Contents
for the PDF files composing the Resume Segmentation dataset (see Section
5.3.1 for details). We segmented this information by the software tool used
because, as is clarified in the table, each tool has a different policy regarding
the existence of a logical structure and table of contents.

All the observations pertaining to the existence of the Table of Contents
and the Logical Structure, as discussed for the Template Classification dataset

Appendix C. PDF Metadata Statistics 85

Table C.2: The number of PDF files composing the Resume Segmentation
dataset encoding a Logical Structure and Table of Contents by the most used
Software Tools. For clarity, we grouped all versions of the same software into
one entry. The entry <Empty> means the producer property is empty in the
file metadata.

Software Tool Logical Structure Table of Contents total
False True False True

Microsoft Word 14 296 310 0 310
Microsoft Word 6 159 165 0 165
for Office 365
SkiaPDF 116 0 116 0 116
Apache FOP 11 94 105 0 105
<Empty> 42 57 85 14 99
Microsoft Print To PDF 56 0 56 0 56
Qt 55 0 10 45 55
LibreOffice 25 0 21 4 25
GPL Ghostscript 19 0 19 0 19
www.ilovepdf.com 0 17 13 4 17
... 90 24 106 8 114

total 434 647 1,006 75 1,081

in section C.1, hold true for the present dataset as well.
The sole additional matter that requires clarification pertains to the

absence of the Canva software when comparing the data presented in Tables
C.1 and C.2. The explanation behind this phenomenon is straightforward.
This particular dataset exclusively consists of files categorized under the 1-
Column and 2-Columns templates, both of which are characterized by their
simplicity. Canva, on the other hand, is particularly renowned for enabling
the creation of more intricate layouts, falling under our defined category of
Complex. As a result, it is natural for Canva to be absent from this dataset,
given its focus on designs that are beyond the scope of the current dataset’s
designated classifications.

	 Extracting Section Structure from Resumes in Brazilian Portuguese
	Resumo
	Table of contents
	Introduction
	Our Contributions
	Thesis Structure
	Disclaimer

	Background
	Portable Document Format
	Annotation Tools
	Document Image Classification
	Convolutional Neural Network
	EfficientNet

	Sequence Tagging
	Conditional Random Fields
	Bidirecional Encoder Representations from Transformers

	Related Work
	Resume Parsing
	Traditional Approaches
	Modern Approaches
	Enterprise Solutions

	Reading Order Detection
	Text Segmentation

	Our Proposal
	Pipeline
	Reading Order
	Layout Complexity
	Template Types
	Reconstruction Step
	Impact of Templates in the Reading Order

	Resume Segmentation
	Section Types
	Tagging Scheme
	Segmentation Models

	Experiments
	Initial Considerations
	Template Classification Task
	Comparative Method
	Dataset
	Experimental Setup
	Results
	Error Analysis

	Resume Segmentation Task
	Dataset
	Experimental Setup
	Results
	Error Analysis

	Conclusion
	Contributions
	Limitations
	Future Work

	Bibliography
	Common Resume Headings
	Regarding the Use of the Item Suffix Strategy
	PDF Metadata Statistics
	Template Classifier Dataset
	Resume Segmentation Dataset

