
Lucas Saadi Murtinho

Clustering under constraints: explainability via
decision trees and separability with minimum

size

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Ciên-
cias – Informática of PUC-Rio in partial fulfillment of the requi-
rements for the degree of Doutor em Ciências – Informática.

Advisor: Prof. Eduardo Sany Laber

Rio de Janeiro
August 2024

Lucas Saadi Murtinho

Clustering under constraints: explainability via
decision trees and separability with minimum

size

Thesis presented to the Programa de Pós–graduação em Ciên-
cias – Informática of PUC-Rio in partial fulfillment of the requi-
rements for the degree of Doutor em Ciências – Informática. Ap-
proved by the Examination Committee.

Prof. Eduardo Sany Laber
Advisor

Departamento de Informática – PUC-Rio

Prof. Marco Serpa Molinaro
Departamento de Informática – PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática – PUC-Rio

Prof. Diego Parente Paiva Mesquita
Escola de Matemática Aplicada – FGV

Prof. Daniel Ratton Figueiredo
Programa de Engenharia de Sistemas e Computação – UFRJ

Rio de Janeiro, August 23rd, 2024

All rights reserved.

Lucas Saadi Murtinho

Lucas Saadi Murtinho is a Master in Computer Science from
PUC-Rio.

Bibliographic data
Saadi Murtinho, Lucas

Clustering under constraints: explainability via decision
trees and separability with minimum size / Lucas Saadi
Murtinho; advisor: Eduardo Sany Laber. – Rio de janeiro:
PUC-Rio , Departamento de Informática, 2024.

v., 112 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Otimização e raciocínio automá-
tico – Teses. 3. Clusterização;. 4. Explicabilidade;. 5. Árvores
de decisão;. 6. Separabilidade;. 7. Tamanho mínimo.. I. La-
ber, Eduardo Sany. II. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. III. Título.

CDD: 004

To Martin and Laila, for sharing their dad
with study and research.

Acknowledgments

I started my graduate studies with a keen interest in computer science in
general and machine learning in particular, but without a clear plan of how to
approach these subjects in a structured manner. I wish to thank my advisor,
Eduardo Laber, not only for guiding me in this work, but also for starting to
show me how I can build this structure myself. It should go without saying
that any mistakes in this thesis are my full responsibility.

All the other professors under which I had the chance of studying during these
two years were kind and generous, and I also had the great luck of finding
many bright and fun minds among my fellow students. You are too many to
mention here, but I hope you know who you are. Thanks.

This study was financed in part by the Conselho Nacional de Desenvolvimento
Científico e Tecnológico – CNPq – grant 141806/2020-6.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Abstract

Saadi Murtinho, Lucas; Laber, Eduardo Sany (Advisor). Cluste-
ring under constraints: explainability via decision trees and
separability with minimum size. Rio de Janeiro, 2024. 112p.
Tese de doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

We investigate two methods of clustering with constraints on the partitions
being generated: explainable clustering, in which the partition must be
induced by a binary decision tree (i.e., by cuts that are parallel to the
axes); and minimum-size clustering, in which all clusters must have at least
a predetermined number of elements.
For explainable clustering, we present theoretical algorithms and bounds for
the k-centers, k-medians, k-means, and minimum-spacing cost functions.
We also introduce three practical algorithms for the popular k-means cost
function: ExGreedy, which presents results generally better than comparable
algorithms in the literature; ExShallow, with a penalty term related to the
depth of the tree that induces the partition, allowing for a trade-off between
performance (reducing the cost function) and explainability (generating
shallower trees); and ExBisection, to our knowledge the first explainable
clustering algorithm based on decision trees for the k-means cost function
that builds an explainable partition from scratch (i.e., without starting from
an unrestricted partition).
For minimum-size clustering, our focus is on inter-clustering measures. We
show that Single-Linkage, the algorithm that maximizes the minimum
spacing, also maximizes the minimum-spanning-tree cost of a graph induced
by the partition it generates; however, it is also prone to generating small
clusters, which motivates the search for algorithms that perform well for
these cost functions without suffering from this tendency. We introduce one
approximation algorithm for each cost function, and present the results of
experiments showing that they produce partitions that perform better than
the popular k-means algorithm for these instances of the clustering task.

Keywords
Clustering; Explainability; Decision trees; Separability; Minimum

size.

Resumo

Saadi Murtinho, Lucas; Laber, Eduardo Sany. Clusterização sob
restrições: explicabilidade via árvores de decisão e sepa-
rabilidade com tamanho mínimo. Rio de Janeiro, 2024. 112p.
Tese de Doutorado – Departamento de Informática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Investigamos dois métodos de clusterização com restrições nas partições
geradas: a clusterização explicável, em que a partição deve ser induzida por
uma árvore de decisão binária (ou seja, por cortes paralelos aos eixos); e a
clusterização de tamanho mínimo, na qual todos os clusters devem ter pelo
menos um número predeterminado de elementos.
Para a clusterização explicável, apresentamos algoritmos e garantias teóricas
para as funções de custo k-centers, k-medians, k-means e espaçamento
mínimo. Introduzimos também três algoritmos práticos para a popular
função de custo k-means: ExGreedy, com resultados geralmente melhores do
que os de algoritmos comparáveis na literatura; ExShallow, com um termo
de penalidade relacionado à profundidade da árvore que induz a partição,
permitindo um equilíbrio entre desempenho (redução da função de custo)
e explicabilidade (geração de árvores mais rasas); e ExBisection, que, até
onde sabemos, é o primeiro algoritmo de clusterização explicável baseado
em árvores de decisão para a função de custo k-means que constrói uma
partição explicável do zero (ou seja, sem usar uma partição irrestrita como
ponto de partida).
Para a clusterização de tamanho mínimo, focamos em medidas inter-
clusterização. Mostramos que Single-Linkage, o algoritmo que maximiza
o espaçamento mínimo, também maximiza o custo da árvore de geração
mínima de um grafo induzido pela partição gerada por ele; no entanto, este
algoritmo tende a gerar muitos clusters pequenos, o que motiva a busca por
algoritmos com bons resultados para essas funções de custo que garantam
um número mínimo de elementos por cluster. Introduzimos um algoritmo
de aproximação para cada função de custo e apresentamos os resultados
de experimentos que mostram que eles produzem partições com melhores
resultados do que o popular algoritmo k-means para essas instâncias do
problema de clusterização.

Palavras-chave
Clusterização; Explicabilidade; Árvores de decisão; Separabili-

dade; Tamanho mínimo.

Table of contents

1 Introduction 14
1.1 The clustering task and some of its versions 15
1.2 Explainability 16
1.2.1 Our contributions 18
1.3 Separability with minimum size constraints 20
1.3.1 Our contributions 22
1.4 Published research 23
1.5 Thesis organization 23

2 Related work 24
2.1 Explainability 24
2.1.1 Explainable clustering via decision trees 25
2.1.1.1 Theoretical results for explainable k-medians and k-means 26
2.1.1.2 Practical algorithms for explainable k-means 28
2.2 Separability with minimum size constraints 30
2.2.1 Separability: inter-clustering criteria 30
2.2.2 Hierarchical Agglomerative Clustering 31
2.2.3 Clustering with minimum-size guarantees 32

3 Theoretical results 33
3.1 Explainable k-centers 33
3.1.1 Lower bound 33
3.1.2 Upper bound 36
3.2 Explainable k-medians 38
3.2.1 Algorithm 39
3.2.2 Analysis 41
3.3 Explainable k-means 44
3.3.1 Bounds for low dimensions 45
3.4 Explainable minimum spacing 46
3.4.1 Lower bound 46
3.4.2 Upper bound 47

4 Practical algorithms for explainable k-means clustering 50
4.1 ExGreedy: Greedily towards an explainable k-partition 50
4.1.1 An efficient implementation 51
4.2 ExShallow: Depth matters 53
4.2.1 Measures of explainability for decision tree-induced partitions 53
4.2.2 The algorithm 54
4.2.2.1 Evaluation of cut γ in terms of partition quality 56
4.2.2.2 Evaluation of cut γ in terms of partition explainability 57
4.2.3 Implementation details and time-complexity analysis 59
4.2.4 Setting the trade-off parameter 60
4.2.5 Illustration of ExShallow and the importance of DExp 61
4.3 ExBisection: Explainable clustering from scratch 63

4.3.1 Complexity analysis 64
4.4 Other algorithms for explainable k-means clustering 64
4.4.1 IMM: Minimizing mistakes 65
4.4.2 ExKMC: Maintaining explainability 65
4.4.3 RandomThresholds: near-optimal explainable k-means clustering 66
4.5 Experiments 67
4.5.1 Results 68
4.5.2 ExShallow: Sensitivity of cost and explainability to variations in λ 73
4.5.3 ExShallow: Calibrating the trade-off between quality and explainability 74
4.5.4 Running times 75

5 Separability with minimum size constraints 77
5.1 The Single-Linkage algorithm and the Min-Spacing criterium 77
5.2 Relating Min-Spacing and MST-Cost criteria 78
5.3 AlgoMinSp: maximizing the minimum spacing with minimum-size

approximation guarantees 81
5.3.1 Implementation details 83
5.3.2 Approximation limits for minimum-spacing clustering with minimum

size 83
5.4 ConstrainedMaxMST: maximizing MST-Cost with minimum-

size approximation guarantees 84
5.4.1 Approximation limits for MST-Cost clustering with minimum size 87
5.5 Experiments 88
5.5.1 MST-Cost: comparison between empirical results and upper bound

of Algorithm 13 90
5.5.2 Average size of smallest clusters 90
5.5.3 Fast version of Algorithm 13 91
5.5.4 Distribution of results for Min-Spacing and MST-Cost 91
5.5.5 Trade-off between size of smallest cluster and inter-group separability

criteria 93
5.5.6 Effect of randomness on Algorithm 13’s results 95
5.5.7 Relative k-means cost for Algorithms 12 and 13 95

6 Conclusions 100
6.1 Explainable clustering via decision trees 100
6.2 Inter-clustering problems with a minimum size per cluster 101

Bibliography 103

List of figures

Figure 1.1 Comparison of partitions generated by different
clustering algorithms on toy datasets (reproduced from
(Scikit-Learn (2024)). 15

Figure 1.2 Example of unrestricted (left) and explainable (mid-
dle) 5-partitions, reproduced from (Moshkovitz et al. (2020)).
The unrestricted partition to the left is optimal for the k-
means cost function (1-1). The partition in the middle approx-
imates the one from the left using the IMM algorithm from
(Moshkovitz et al. (2020)), and it is explained by the decision
tree to the right. 18

Figure 1.3 Proportion of singletons generated by Single-Linkage. 20
Figure 1.4 The effect of noise in the partition returned by

Single-Linkage (reproduced from (Ros & Guillaume (2019)). 21
Figure 1.5 A toy example showing how Min-Spacing and MST-Cost

are defined. The partition P of the dataset induces a complete
graph GP , in which each node represents a cluster from the
partition. The spacing between any two clusters C1, C2 ∈ P is
the smallest distance between a pair of points x, y |x ∈ C1, y ∈
C2; an edge e ∈ GP that connects the nodes representing C1
and C2 has weight equivalent to the spacing between C1 and C2.
Min-Spacing is given by the weight of the red edge (the smallest
distance between two points from different clusters); MST-Cost
is the sum of the weights of the solid edges (including the red
one), which combine to make the minimum spanning tree of the
graph. 22

Figure 4.1 Tree from the ExGreedy algorithm for the Avila dataset,
with WAES ≈ 5.4 and WAD ≈ 6.2. 55

Figure 4.2 Tree from the ExShallow algorithm for the Avila
dataset, with WAES ≈ 3.7 and WAD ≈ 3.8. 55

Figure 4.3 Tree generated by Algorithm 6 with rc = rp = 0.5, WAD = 2. 58
Figure 4.4 Tree generated by Algorithm 6 with rc = rp = 0.25,

WAD = 2.31. 58
Figure 4.5 Price of explainability (normalized by the maximum

value per dataset) per dataset and algorithm. 70
Figure 4.6 WAES (normalized by the maximum value per dataset)

per dataset and algorithm. 71
Figure 4.7 WAD (normalized by the maximum value per dataset) per

dataset and algorithm. 71
Figure 4.8 Mean WAES per depth factor (for all datasets), normalized

by the results for λ = 0 for each dataset. Error bars (with a
confidence interval of 95%) are calculated using Python’s scipy
package (Virtanen et al. (2020)). 73

Figure 4.9 Mean normalized partition cost per depth factor (for all
datasets), normalized by the cost of the unrestricted partition
used to build the explainable partition. Error bars (with a
confidence interval of 95%) are calculated using scipy. 74

Figure 5.1 Two partitions with 3 groups (defined by col-
ors) that maximize Min-Spacing. The clustering built by
Single-Linkage is to the left; a different clustering, that does
not maximize MST-Cost, is to the right. 78

Figure 5.2 Boxplots of Min-Spacing per algorithm for the anuran,
avila, letter, and sensorless datasets. 93

Figure 5.3 Boxplots of Min-Spacing per algorithm for the collins,
mice, newsgroups, and vowel datasets. 93

Figure 5.4 Boxplots of Min-Spacing per algorithm for the digits
and pendigits datasets. 94

Figure 5.5 Boxplots of MST-Cost per algorithm for the anuran,
avila, letter, and sensorless datasets. 94

Figure 5.6 Boxplots of MST-Cost per algorithm for the collins,
mice, newsgroups, and vowel datasets. 94

Figure 5.7 Boxplots of MST-Cost per algorithm for the digits and
pendigits datasets. 95

Figure 5.8 Algorithm 12: trade-off between the size of the smallest
cluster and Min-Spacing. 96

Figure 5.9 Algorithm 13: trade-off between the size of the smallest
cluster and MST-Cost. 97

List of tables

Table 1.1 Lower and upper bounds for the price of explainability of
different clustering problems. 19

Table 4.1 Dataset summary: n is the number of data points, d is the
number of dimensions, and k is the number of classes/desired
clusters. 68

Table 4.2 Full results of experiments for all datasets and algorithms.
ExShallow (SHA) is run with λ = 0.03. Best results are in bold.
Partition costs are normalized by the cost of the unrestricted
partition used as a starting point for the explainable clustering
algorithms. 69

Table 4.3 Mean normalized information score for all datasets and
algorithms. ExShallow (SHA) is run with λ = 0.03. Best results
for each dataset are in bold. The clusters returned by the
unexplained partition (via Lloyd’s algorithm) are treated as the
ground truth. 72

Table 4.4 Comparison between results for ExKMC and ExShallow∗.
Best results for each dataset are in bold. Statistically better
values at a 95% confidence level are in blue; statistically worse
values at the same confidence level are in red. 75

Table 4.5 Average running times (in seconds) for each algorithm
and dataset. Experiments were performed on 8 484 Intel Core
i7-4790 processors @3.60GHz with 32 GB of RAM. 76

Table 5.1 Min-Spacing and MST-Cost for the different methods
and datasets. 89

Table 5.2 Running time (in seconds) of Single-Linkage and our
methods. Experiments were run in an Ubuntu 20.04.5 LTS with
40 cores and 115 GB RAM. 90

Table 5.3 Comparison between the MST-Cost of Algorithm 13 and
the upper bound given by Lemma 12, given by the sum of
Min-Spacing for all partitions found by an execution of the
algorithm. 1/Hk−1, where Hk−1 is the (k − 1)-th harmonic
number, is the theoretical lower bound from Lemma 13. 91

Table 5.4 Average size of the smallest cluster in a k-clustering, per
algorithm and dataset. 92

Table 5.5 Min-Spacing, MST-Cost and execution time for Algo-
rithm 13. 92

Table 5.6 Standard deviation of MST-Cost for Algorithm 13. 98
Table 5.7 k-means cost (1-1) for Algorithms 12 and 13. 99

Cluster together like stars!

Henry Miller, Stand Still Like the Hummingbird.

1
Introduction

Clustering, or cluster analysis, is a very important task in computer
science, with applications in a myriad of other disciplines. (Jain (2010)) dates
the first appearance of “data clustering” in the title of an academic paper (on
anthropology) back to 1954, and notes that “taxonomists, social scientists,
psychologists, biologists, statisticians, mathematicians, engineers, computer
scientists, medical researchers, and others who collect and process real data
have all contributed to clustering methodology.”

(Jain (2010)) also notes that “clustering is a more difficult and challeng-
ing problem than classification,” and it’s easy to make the case for this as-
sertion: when dealing with labeled data, one can compare the model’s results
with the ground truth, whereas no such guidance exists when dealing with
unlabeled data. The mere task of defining the number of clusters in which to
partition a dataset can be hard in some cases. (For a contrarian view on the
difficulty of clustering, see (Daniely et al. (2012)).)

Taking an even further step back, defining what a cluster is may be
complicated. In hierarchical clustering, for instance, elements are sequentially
connected one to the other in order of their similarity according to some
measure. This may lead to very different results than clustering using a
representative-based method such as Lloyd’s algorithm (Lloyd (1982)), in
which each cluster has a reference center, or representative point, and elements
are associated to the cluster whose representative is closest to them. Figure
1.1, reproduced from (Scikit-Learn (2024)), shows how different clustering
algorithms may partition the same dataset in different ways.

Selecting the best clustering algorithm is also, therefore, a matter of
knowing how one wants the data to be clustered – that is, what is being
optimized when the data is being partitioned. In the next section, we define
the clustering task in general, and present a couple of examples before moving
on to discuss the constraints that will guide our work in this thesis.

Chapter 1. Introduction 15

Figure 1.1: Comparison of partitions generated by different clustering algo-
rithms on toy datasets (reproduced from (Scikit-Learn (2024)).

1.1
The clustering task and some of its versions

When partitioning a dataset, it is typically desired that data grouped in
the same cluster be similar to each other (intra-cluster objectives) or that
data grouped in different clusters be sufficiently distinct from each other
(inter-cluster objectives). The definitions below briefly describe the clustering
problems analyzed in this thesis.

Problem definition 1 (Clustering problem.) Given a dataset X of n

points, an integer k ≥ 2, and a function f(·) mapping a partition P of the ele-
ments in X onto R, the k-clustering problem consists in finding the k-partition
P∗ that optimizes f .

Different functions lead to different versions of clustering problems. For
the famous k-means clustering problem, for instance, the goal is to minimize

k-means(P) =
k∑

i=1

∑
x∈Pi

||x− µi|22, (1-1)

where P = {Pi|1 ≤ i ≤ k} is a partition of X with k groups and µi is the
representative of Pi, assuming x ∈ X ⊆ Rd. The optimal representative µi for
a partition Pi is known to be the centroid, or arithmetic mean, of all points in
Pi.

For some tasks, it is desirable to maximize the distance between clusters.
In the minimum spacing problem, for instance, our goal is to maximize

Chapter 1. Introduction 16

Min-Spacing(P) = min{spacing(Ci, Cj) |Ci, Cj ∈ P , i ̸= j}, (1-2)

where
spacing(Ci, Cj) = min{dist(x, y) | x ∈ Ci, y ∈ Cj} (1-3)

and dist measures the distance between 2 points in X ; that is, we want to
maximize the minimum distance between two points from different clusters.

However, the evaluation of a partition can go beyond these criteria, with
additional constraints or preferences. In this thesis, we develop and evaluate
clustering algorithms with two additional objectives:

Explainability. The selected partition should be easy to explain, according to
some explainability criterion. For this thesis, a k-partition will be considered
explainable if it can be induced by a binary decision with k leaves. (This
somewhat crude definition will be expanded when discussing the ExShallow
algorithm; see Sections 1.2 and 4.2.)

Avoiding small clusters. It may be desirable to prevent partitions from hav-
ing a large number of very small clusters. In particular, the Single-Linkage
algorithm, that is guaranteed to find the optimal partition for (1-2), has a
strong tendency to produce a large number of small clusters, including single-
tons. So it may be useful to have algorithms for these problems that try to
find partitions in which all clusters have a minimum number of elements.

The following sections delve deeper into these two clustering constraints.

1.2
Explainability

As machine learning models have become used in a wide range of
fields, the topic of explainability has grown in importance. Understanding the
reasoning behind a model’s decision may be crucial to increase user confidence;
satisfying legal requirements; conforming to moral and ethical expectations;
and verifying the model’s work. Since more complex models tend to be harder
to interpret but are also more capable of returning good results, there is
a trade-off between model performance and explainability. The challenge of
navigating this trade-off is increasingly being explored in the machine learning
and pattern recognition literature, with explainable models for specific tasks
such as Covid-19 diagnostics using chest X-ray images (Malhotra et al. (2022))
and more general tasks such as anomaly detection (Mokoena et al. (2022)) and
hyperspectral image classification (Shi et al. (2022)).

Chapter 1. Introduction 17

Although initial efforts towards explainability focused on supervised
learning models (Burkart & Huber (2021)), a number of studies on explainable
unsupervised models, and clustering models in particular, have appeared more
recently. One idea that has earned considerable attention in the literature is
to partition the data based on axis-aligned cuts, which can be induced by
binary decision trees: at each node u of the tree, a value θ and a dimension i

are selected, so that all data points that have reached u go to one of its two
children according to whether their values for dimension i are smaller than θ

or not. In this kind of approach, usually, each cluster is associated with a leaf.

Problem definition 2 (Explainable clustering problem.) Given a
dataset X of n points in Rd, an integer k ≥ 2, and a function f(·) map-
ping a partition P of the elements in X onto R, the explainable k-clustering
problem consists in finding the partition P∗ that optimizes f , provided that P∗

can be induced by a binary decision tree with k leaves.

Restricting the universe of possible partitions to explained ones can
lead to a loss in performance – i.e., the cost of the partition may increase.
(Moshkovitz et al. (2020)) quantifies this with the price of explainability, or
the maximum additional loss (in proportional terms) incurred by using the
optimal explainable partition rather than the optimal unrestricted one.

Definition 1 (Price of explainability.) Given a problem of the type de-
scribed in Problem definition 2, its price of explainability is

ρ(P) = max
I

{
OPTexp(I)
OPTunr(I)

}
(1-4)

if the goal is to minimize a cost function and

ρ(P) = max
I

{
OPTunr(I)
OPTexp(I)

}
(1-5)

if the goal is to maximize a value function. In both equations, I runs over all
instances of the problem; OPTexp(I) is the value of an optimal explainable clus-
tering (via binary decision trees with k leaves) for instance I; and OPTunr(I)
is the value of an optimal unrestricted clustering for I.

The best possible value for ρ(P), when OPTunr(I) = OPTexp(I) for all
instances of the problem, is 1; the closer ρ(P) is to 1, the better. We can
naturally extend the definition above to consider the price of explainability for
a specific instance of a problem.

Figure 1.2, reproduced from (Moshkovitz et al. (2020)), shows a toy
dataset partitioned in two different ways. The unrestricted partition to the left

Chapter 1. Introduction 18

Figure 1.2: Example of unrestricted (left) and explainable (middle) 5-
partitions, reproduced from (Moshkovitz et al. (2020)). The unrestricted par-
tition to the left is optimal for the k-means cost function (1-1). The partition
in the middle approximates the one from the left using the IMM algorithm from
(Moshkovitz et al. (2020)), and it is explained by the decision tree to the right.

is optimal for the k-means cost function (1-1). The explainable partition in the
middle, explained by the decision tree to the right, approximates the optimal
one, but some points end up being reassigned to different representatives; as
we’ll see in Chapter 4, different ways of evaluating these reassignments lead to
different algorithms for building explainable partitions based on unrestricted
ones.

1.2.1
Our contributions

We proved some theoretical results of interest in regards to the price of
explainability using different cost functions:

– For the minimum-spacing problem, we show that the price of explain-
ability is Θ(n− k).

– For the k-centers problem, we present a lower bound of Ω
(

k
√

d

√
log log k

log1.5 k

)
and an upper bound of O

(√
dk

d−1
d

)
, which is tight for constant d.

– For the explainable k-medians problem, we present an algorithm with a
price of explainability of O(d log k), an improvement on the upper bound
of O(k) from (Moshkovitz et al. (2020)) when d < k/ log k. This upper
bound was later improved to O(log k log log k) (Esfandiari et al. (2021),
Gamlath et al. (2021), Makarychev & Shan (2021a)) and, later still, to
O(log k) (Makarychev & Shan (2023), Gupta et al. (2023)), matching
the lower bound from (Moshkovitz et al. (2020)).

– For the k-means problem, our upper bound of O(dk log k) im-
proves on the bound of O(k2) from (Moshkovitz et al. (2020)) when

Chapter 1. Introduction 19

d < k/ log k. This upper bound was later improved to O(k log k)
(Esfandiari et al. (2021), Gamlath et al. (2021)) and, later still,
O(k ln ln k) (Gupta et al. (2023)), close to the lower bound of Ω(k)
from (Moshkovitz et al. (2020)).

Table 1.1 shows the lower and upper bounds we provide for the four
problems, as well as the best bounds currently found in other papers. Our
theoretical results are presented in detail in Chapter 3.

Criterion Lower bound Our upper bound Best upper bound
k-medians Ω(log k) [2] O(d log k) [1] O(log k) [3,4]
k-means Ω(k) [2] O(dk log k) [1] O(k ln ln k) [4]
k-centers Ω

(√
dk1−1/d

log1.5 k

)
[1] O

(√
dk1−1/d

)
[1]

minimum spacing Θ(n− k) [1]
Results from:
[1]: (Laber & Murtinho (2021)).
[2]: (Moshkovitz et al. (2020)).
[3]: (Makarychev & Shan (2023)).
[4]: (Gupta et al. (2023)).

Table 1.1: Lower and upper bounds for the price of explainability of different
clustering problems.

On the practical side, we present three algorithms for explainable clus-
tering with the popular k-means cost function (1-1):

1. ExGreedy (Section 4.1) iteratively selects axis-aligned cuts to mini-
mize a cost function related to the k-means cost function. In this
sense, it is similar to other algorithms in the literature, such as
IMM (Moshkovitz et al. (2020)) and ExKMC (Frost et al. (2020)).

2. ExShallow (Section 4.2) introduces a penalty cost related to the depth
of the generated tree, allowing for a trade-off between performance
(minimizing (1-4)) and explainability (minimizing the tree’s depth).

3. ExBisection (Section 4.3) is (to our knowledge) the first decision-tree
algorithm explicitly designed for explainable k-means clustering that
does not use as starting point a group of k representatives retrieved
from an unrestrained (and therefore possibly not explainable) partition
of the data.

For the development and presentation of ExShallow, we also expand on
the discussion related to explainability by arguing that shallower trees are
more explainable and should therefore be preferred. To that end, we use two

Chapter 1. Introduction 20

explainability metrics, the weighted average depth (WAD) of the tree and the
weighted average explanation size (WAES) of each cluster. The latter metric,
to the best of our knowledge, is presented in our work. Both are discusses in
Section 4.2.1.

Three additional explainable clustering algorithms from the litera-
ture are presented in Section 4.4. In Section 4.5 we present the results
of experiments comparing all six algorithms over 16 different datasets.
ExShallow induces the best price of explainability in 10 of these datasets,
while ExBisection presents the best results for explainability metrics in
7 of them. Furthermore, the algorithm with the best theoretical guar-
antees, RandomThresholds (Esfandiari et al. (2021), Gamlath et al. (2021),
Makarychev & Shan (2021a)), performs poorly in these experiments, validat-
ing the search for heuristics that work well in practice.

1.3
Separability with minimum size constraints

Single-Linkage is a well-known hierarchical clustering algorithm that
is guaranteed to obtain the k-partition that optimizes (1-2) – i.e., it
maximizes the minimum distance between points from different clusters
(Kleinberg & Tardos (2006)). However, it also tends to generate a large num-
ber of clusters with few elements, including singletons. Figure 1.3 shows the
proportion of singletons in partitions generated by Single-Linkage for 10
different datasets as the number of clusters increases. Even when the number
of clusters is small, the amount of singletons generated by the algorithm tends
to be high.

Figure 1.3: Proportion of singletons generated by Single-Linkage.

Chapter 1. Introduction 21

Figure 1.4: The effect of noise in the partition returned by Single-Linkage
(reproduced from (Ros & Guillaume (2019)).

Figure 1.4, reproduced from (Ros & Guillaume (2019)), shows the po-
tential downside of this behavior of Single-Linkage. The subfigure to the
left shows the 3-partition returned by Single-Linkage for a “well-behaved”
dataset, with three very well-defined clusters. The subfigure to the right shows
how adding some noise to the dataset leads to Single-Linkage returning a
completely different partition, with two singletons and the remaining points of
the dataset all in a single cluster.

In some applications, it may be important to ensure both that clusters
are well-separated and have a minimum size. When training a machine learning
model, for instance, ensuring data diversity may be crucial for achieving good
results (Gong et al. (2019)). In situations in which all available data cannot
be used for training (e.g. training in the cloud with budget constraints), it is
important to have a method for selecting a diverse subset of the data. It is
therefore natural to define a new problem, in which the goal is to produce a
partition with a restriction on the minimum size of the clusters.

Problem definition 3 (Minimum-size clustering problem.) Given a
dataset X of n points, an integer k, an integer L, and a function f(·) mapping
a partition P of the elements in X onto R, the minimum-size (k, L)-clustering
problem consists in finding the k-partition P∗ that optimizes f(P∗), provided
that all k clusters in P have at least L points.

Since intra-clustering problems tend not to have the issue of producing
small clusters, our focus on Problem 3 will be on inter-clustering measures.

Chapter 1. Introduction 22

Figure 1.5: A toy example showing how Min-Spacing and MST-Cost are
defined. The partition P of the dataset induces a complete graph GP , in which
each node represents a cluster from the partition. The spacing between any
two clusters C1, C2 ∈ P is the smallest distance between a pair of points
x, y |x ∈ C1, y ∈ C2; an edge e ∈ GP that connects the nodes representing C1
and C2 has weight equivalent to the spacing between C1 and C2. Min-Spacing
is given by the weight of the red edge (the smallest distance between two points
from different clusters); MST-Cost is the sum of the weights of the solid edges
(including the red one), which combine to make the minimum spanning tree
of the graph.

1.3.1
Our contributions

On the theoretical side, we show in Section 5.2 that Single-Linkage
generates a partition P that maximizes not only Min-Spacing (1-2), as is well
established in the literature (Kleinberg & Tardos (2006)), but also MST-Cost,
whose introduction itself is a contribution of this thesis (see Section 5.2).
MST-Cost is the cost of the minimum spanning tree of a complete weighted
graph GP induced by the partition P , in which each node represents a cluster
and each edge is weighted by the spacing between the clusters associated to the
nodes it connects. We use a toy example to illustrate both metrics in Figure
1.5.

We then present two algorithms with approximation guarantees for
Problem 3 with these two cost functions:

– The first, presented in Section 5.3, returns a (k, (1 − ϵ)L)-clustering
whose value for (1-2) satisfies Min-Spacing(At) ≥ Min-Spacing(C∗),
where C∗ is the (k, L)-clustering with maximum Min-Spacing (1-2). The
approximation we reach is essentially tight, as proven in Section 5.3.2.

– The second, presented in Section 5.4, is a
(

(1−ϵ)ρ
2 , 1

Hk−1

)
-approximation

for maximizing function MST-Cost (5-1), where ρ := min
{

n/k
L

, 2
}

and

Chapter 1. Introduction 23

Hk−1 is the (k− 1)-th harmonic number. We prove in Section 5.4.1 that,
unless P = NP , this problem is APX-HARD for a fixed k (with a hard
constraint on the number of points per cluster).

In Section 5.5 we present the results of our experiments over 10 different real-
world datasets, showing that our algorithms tend to produce partitions with
much better separability results than the popular k-means algorithm (which
we use as a baseline because it is much less likely to produce very small clusters
than Single-Linkage), while allowing for a trade-off between separability and
minimum size.

1.4
Published research

The research that makes up this thesis has been previously published in
three academic papers:

1. (Laber & Murtinho (2021)) includes theoretical results (lower and upper
bounds) for the price of explainability of four different explainable
clustering problems, as well as a practical algorithm for explainable k-
means. This work was accepted as a long paper (3% acceptace rate) in
one of the most prestigious machine learning conferences in the world.

2. (Laber et al. (2023)) includes two new practical algorithms for explain-
able k-means clustering, as well as experiments comparing them to other
algorithms from the literature.

3. (Laber & Murtinho (2023)) includes our results for separability with a
minimum size of elements per cluster.

1.5
Thesis organization

We detail the relationship between our contributions and the literature
in Chapter 2. Problem 2 (explainable clustering) is the subject of Chapters
3 and 4: in Chapter 3, we present theoretical results for four cost functions,
while in Chapter 4 we present and discuss practical algorithms when using the
popular k-means cost function (1-1). We discuss Problem 3 (separability with
minimum size), focusing on the minimum spacing and MST inter-clustering
criteria ((1-2) and (5-1)), in Chapter 5. Chapter 6 concludes the thesis.

2
Related work

We present in this chapter some important related work to contextualize
the contributions presented in this thesis. Section 2.1 discusses the topic of
explainability, first in general and then focusing on the explainable clustering
framework established by (Moshkovitz et al. (2020)). In Section 2.1.1.1 we
present a chronology of theoretical results for explainable clustering problems
via decision trees, including our contributions, while in Section 2.1.1.2 we focus
on practical algorithms for the explainable k-means problem. In Section 2.2 we
discuss the topic of clustering with a guaranteed minimum size per clustering.

2.1
Explainability

Although the need for explainable machine learning models
has been long advocated by some (see, for instance, (Bratko (1997),
Caruana et al. (1999), Rani et al. (2006))), the topic has increased in im-
portance in recent years, as these models have been more widely used
for a large variety of topics and reasons. This has lead both to the
development of new tools and methods to explain, interpret, or ap-
proximate complex models (Ribeiro et al. (2016), Lundberg et al. (2017),
Bertsimas et al. (2018), Chen et al. (2019), Moshkovitz et al. (2020),
Hüyük et al. (2021), Yin & Neubig (2022), Slack et al. (2023)) and to at-
tempts to formally define explainability and intepretability. We summarize
some of these below.

(Lipton (2018)) presents several desiderata of model interpretability, in-
cluding: trust in the model (both in the sense that it’s performing accurate
predictions and that it’s using the right set of variables to reach them); causal-
ity; transferability; informativeness; fair and ethical decision making. It also
establishes different levels of interpretability: simulatability (when “a person
can contemplate the entire model at once”), decomposability (when, for in-
stance, we are able to easily understand each node in a decision tree, or each
parameter in a linear regression – provided the input variables themselves are
easy to understand), and algorithmic transparency (when we can understand
how the model learned its parameters, for instance). It also mentions tools

Chapter 2. Related work 25

for post-hoc interpretability, such as text explanations, visualization, local ex-
planations (for instance, (Ribeiro et al. (2016), Lundberg et al. (2017))), and
explanation by example (Caruana et al. (1999)).

(Doshi-Velez & Kim (2018)) presents a taxonomy of use cases for inter-
pretable machine learning, including: scientific understanding, safety, ethics,
mismatched objectives (when the model’s objective is a proxy for the true goal
of the task, and we want outside evaluation to verify whether this true goal
is being achieved), and multi-objective trade-offs. It also proposes three eval-
uation approaches for model interpretability, from the more costly (and spe-
cific) to the less: application-grounded (asking humans with extensive domain
knowledge to evaluate the model’s explainability value in real-world tasks),
human-grounded (performing experiments on simplified tasks to verify general
human understanding of the model), and functionally-grounded (using some
formal definition of interpretability to evaluate if the model meets it). We note
that, by assuming decision trees are inherently explainable, we rely on the
latter approach in this work.

(Rudin (2019)) argues that instead of relying on post-hoc, lo-
cal explanations such as the ones introduced by (Caruana et al. (1999),
Ribeiro et al. (2016), Lundberg et al. (2017)), we should focus on prioritizing
the use of interpretable models. Our models ExGreedy (Section 4.1) and
ExShallow (Section 4.2) can be seen as a middle-of-the-road approach: their
starting point is the output of a potentially black-box model (an unrestricted
partition of the data), which is approximated by a decision tree that can then
be used as an independent, and fully explainable, model. Our third practical
model for k-means explainable clustering, ExBisection (Section 4.3), does not
rely on an initial partition of the data and is therefore a more straightforward
fully explainable model in the vein proposed by (Rudin (2019)).

2.1.1
Explainable clustering via decision trees

In (Moshkovitz et al. (2020)), a polynomial-time algorithm is presented
that receives a (non-explainable) partition Pu to the k-means (or k-medians)
clustering problems and builds a decision tree, in a top-down fashion, by
selecting at each node the cut that, among those that separate at least two
representatives in Pu, minimizes the number of data points separated from
their representatives in Pu. The same paper includes a proof that the price of
explainability (1-4) for this algorithm is O(k2) for the k-means problem.

After (Moshkovitz et al. (2020)), new algorithms with improved bounds
on the price of explainability for different clustering problems were proposed:

Chapter 2. Related work 26

Explainable k-centers. We present in (Laber & Murtinho (2021)) a lower
bound of Ω(k1−1/d) for small values of d with respect to k and Ω

(
k
√

d

√
log log k

log1.5 k

)
otherwise, and an upper bound of O

(√
dk

d−1
d

)
which is tight for constant

values of d. These results are reproduced in Section 3.1 below. For the
cases when d = Ω(log k), the lower bound was tightened to Ω(k

√
d) by

(Esfandiari et al. (2021)).

Explainable k-medians with ℓ2 norm. (Makarychev & Shan (2021b))
presents the first, and to our knowledge only, analysis of this problem,
showing a lower bound of Ω(log k) and an upper bound of O(log3/2 k) for its
price of explainability.

Apart from these results, the research following (Moshkovitz et al. (2020))
focused on explainable k-medians and k-means clustering. We summarize its
main results below.

2.1.1.1
Theoretical results for explainable k-medians and k-means

(Moshkovitz et al. (2020)) is the first article in the literature to formally
define the problem of explainable clustering via decision trees (Problem 2).
As well as introducing the concept of price of explainability (1-4), it presents
the first theoretical guarantees for the explainable k-means and k-medians
cost functions: it proves that the price of explainability (when using a tree
with k leaves) is Ω(log k) for k-medians and Ω(k) for k-means, and shows an
algorithm that yields an upper bound of O(k) for k-medians and O(k2) for k-
means. The algorithm, IMM, starts from an unrestricted partition of the data,
Pu and iteratively finds the axis-aligned cuts that minimize the number of
points separated from their representatives in Pu; we describe it in more detail
in Section 4.4.1. The same paper shows that adapting traditional decision-tree
algorithms, which split the data based on information-theoretic criteria such as
entropy or information gain, to the explainable-clustering problem may yield
arbitrarily bad results, motivating the search for algorithms specifically built
for this problem.

Our contributions. (Laber & Murtinho (2021)) presents an algorithm with a
price of explainability of O(d log k) for k-medians and O(dk log k) for k-means,
improving the bounds from (Moshkovitz et al. (2020)) when d < k/ log k. The
algorithm also uses an unrestricted partition as a starting point, and iteratively

Chapter 2. Related work 27

selects cuts that will split the data along the dimension of maximum diameter.
We present these contributions in Sections 3.2 and 3.3.

Improvements over our contributions. The algorithm that achieves the
best price of explainability guarantees for the explainable k-medians and
k-means problems, RandomThresholds, also starts from an unrestricted
partition Pu, similar to the algorithms from (Moshkovitz et al. (2020),
Laber & Murtinho (2021)). However, instead of deterministically finding the
axis-aligned cuts that optimize some characteristic of the partition (such as
the number of mistakes or the diameter of the dimension), it separates the
representatives from Pu by randomly selecting axis-aligned cuts.

Three independent papers presented closely related versions of this
algorithm, highlighting different properties of it:

– (Esfandiari et al. (2021)) shows that the price of explainability for
RandomThresholds is O(log k log log k) for k-medians, or O(d log2 k)
when d is small with relation to k; for k-means, the prices of explainabil-
ity is O(k log k). For both problems, this improves on the results from
(Moshkovitz et al. (2020), Laber & Murtinho (2021)).

– (Gamlath et al. (2021)) extends the analysis of RandomThresholds to
the ℓp-norm, achieving a lower bound of Ω(kp−1) and an upper bound
of O(kp−1 log2 k) for the price of explainability. It also highlights that
the algorithm’s running time does not depend on the size of the dataset,
n, as it is only preoccupied with separating representatives. The paper
also includes a conjecture that the k-medians algorithm is asymptotically
optimal, with an actual price of explainability of 1 + Hk−1, where Hn is
the n-th harmonic number (which is bounded by ln n ≤ Hn ≤ 1 + ln n).

– (Makarychev & Shan (2021a)) reaches the same price of explainability
for explainable k-medians as (Esfandiari et al. (2021)), and a slightly
worse one (by an O(log k log log k) factor) for explainable k-means.

Two papers focus on the explainable k-means problem. By improving
our idea, presented in (Laber & Murtinho (2021)), of selecting cuts on
dimensions with large diameters, (Charikar & Hu (2021)) finds an upper
bound of O(k1−2/dpoly(d log k)) for the price of explainability of k-means,
an improvement on previous algorithms when d = O(log k/ log log k).
(Makarychev & Shan (2021b)) expands the ideas of the random cut algorithm
from (Makarychev & Shan (2021a)) to allow for additional leaves in the tree;
its algorithm returns a tree with (1+δ)k leaves and has a price of explainability
of O(1/δ log2 k log log k).

Chapter 2. Related work 28

Both (Makarychev & Shan (2023)) and (Gupta et al. (2023)) tighten
the analysis of RandomThresholds for explainable k-medians, proving that
its price of explainability matches the lower bound of Ω(log k) from
(Moshkovitz et al. (2020)). (Gupta et al. (2023)) also tightens the k-means
price of explainability to O(k ln ln k), conjecturing that the lower bound
of Ω(k) from (Moshkovitz et al. (2020)) is tight and can be achieved using
RandomThresholds. It also proves the conjecture from (Gamlath et al. (2021))
bounding the k-medians price of explainability to the (k−1)-th harmonic num-
ber.

(Laber (2024)) and (Gupta et al. (2023)) independently prove hardness
results for the explainable k-means and k-medians problems, thus consolidating
the motivation for exploring practical algorithms for this problem. The former
shows that the k-means explainable clustering problem is hard to approximate,
while the latter shows that explainable k-medians and k-means cannot be
approximated better than O(ln k).

(Bandyapadhyay et al. (2023)) presents exact algorithms, based on dy-
namic programming, to solve explainable k-medians in n2d(nd)O(1) time. It
also presents an algorithm that approximates the optimal k-medians cluster-
ing from the perspective of outlier removal: if we can remove εn points from
the original dataset (0 ≤ ε < 1), the problem is solvable in

(
4d(k+ε)

ε

)k
nO(1)

time.

2.1.1.2
Practical algorithms for explainable k-means

To our knowledge, the first algorithm to partition a numerical dataset
using decision trees is CLTree (Liu et al. (2005)), which finds clusters by adding
synthetic points to a dataset and then building a binary classification tree to
determine if a region is predominantly populated by real or synthetic points.
Regions predominantly populated by real points are considered clusters, and
real points in sparsely populated regions may be treated as small clusters
or outliers. The algorithm includes a pruning step that is implicitly used to
make the induced partition on the data more explainable. A similar approach,
with a more direct appeal to the interpretability of decision, is used in CUBT
(Fraiman et al. (2013)), in which a large tree is built and then pruned, and
more than one leaf may have the same label (i.e., the tree may have more than
k leaves).

Additional algorithms were developed after the price of explainability
framework established in (Moshkovitz et al. (2020)). (Frost et al. (2020)) ex-
pands on IMM (see above) by allowing for trees with more than k leaves. The

Chapter 2. Related work 29

new algorithm, ExKMC, uses the concept of a surrogate cost, which calculates
the cost of a new split without recalculating the centroids of the clusters it
generates. With these fixed centers, the computational cost of the algorithm
is reduced, but the surrogate cost is still an upper bound on the k-means cost
(as the cost can only decrease by using the mean of the points in a cluster as
their representative). ExKMC works by finding the i-th cut that will lead to the
explainable (i + 1)-partition of minimum cost, considering the fixed centers.
(Frost et al. (2020)) also includes empirical evaluations with real-world data,
showing that ExKMC and IMM perform better for explainable-clustering tasks
than traditional decision-tree algorithms, and confirming in practice the theo-
retical need for specialized algorithms shown in (Moshkovitz et al. (2020)).

Our contributions. In (Laber & Murtinho (2021)) we present ExGreedy, a
practical algorithm for explainable k-means. In the same vein as IMM and
ExKMC, ExGreedy starts from an unexplained partition Pu, and at each itera-
tion selects a cut that separates at least two of its representatives from each
other. While IMM selects the cut that minimizes the number of elements sepa-
rated from their original representatives, and ExKMC minimizes the surrogate
cost, ExGreedy selects the i-th cut that minimizes the k-means cost of the
partition generated by it, using the same representatives as those from Pu.
The algorithm is presented in detail in Section 4.1. The same paper includes
experiments showing that ExGreedy tends to produce partitions with lower
prices of explainability than both IMM and ExKMC.

We present in (Laber et al. (2023)) an additional consideration: ide-
ally, the decision tree that induces an explainable partition should be shal-
low rather than deep, as shallow trees are considered easier to interpret
(Piltaver et al. (2016)). We then introduce ExShallow, an adaptation of
ExGreedy that selects the next cut according not only to the objective func-
tion described above, but also to a penalty term associated to the imbalance
generated by the cut (as more balanced cuts tend to lead to shallower trees).
This allows for a trade-off between performance (lower price of explainability)
and explainability (shallower trees). We present ExShallow in more detail in
Section 4.2.

In (Laber et al. (2023)) we also present ExBisection, which to our
knowledge is the first explainable k-means algorithm that builds an explainable
partition from scratch – that is, without relying on an initial, unexplained
partition. We present it in Section 4.3.

The experiments from (Laber et al. (2023)) compare the performance of
IMM, ExKMC, ExGreedy, ExShallow, ExBisectionand RandomThresholds on

Chapter 2. Related work 30

16 real-world datasets, and are reproduced in Section 4.5.

Other related work. A number of papers (Fraiman et al. (2013),
Bertsimas et al. (2018), Saisubramanian et al. (2020), Ghattas et al. (2017))
propose decision-tree algorithms to build partitions that optimize other cost
functions beyond (1-1). The importance of building shallow trees for achieving
interpretability has been previously discussed in (Blanco et al. (2020)), in
which clustering and decision trees (constructed with the CART algorithm
(Breiman (2017))) are used to locally interpret the results of a black-box
model.

Although ExShallow presents good results in practice, using k − 1
features (and therefore having a tree with k leaves of maximal depth) may be
necessary. (Moshkovitz et al. (2020)) presents a simple dataset that can only
be explained by a tree of depth k− 1. (Deng et al. (2023)) defines the price of
depth reduction as “the ratio of the clustering objective cost of the clustering
given by the best decision tree of [limited depth] to the cost of the clustering
given by the optimal decision tree”, and shows instances, both in the plane
and in high dimensions, for which the price of depth reduction is unbounded
for k-means, k-medians, and (in the high-dimension case) k-centers.

The idea that decision trees are intrinsically explainable has recently been
challenged by (Izza et al. (2022)), which argues that decision trees frequently
exhibit path explanation redundancy, with unnecessary tests to explain a given
classification. We note that, in ExShallow, path redundancy is seen as a feature
rather than a bug – the reasoning being that, if the same variable is used for
different cuts, this can mean a more compact explanation for a specific cluster,
if not for the tree as a whole.

2.2
Separability with minimum size constraints

2.2.1
Separability: inter-clustering criteria

The maximum k-cut problem is a widely studied problem in the com-
binatorial optimization community and its solution can be naturally viewed
as a clustering that optimizes a separability criterion. Given an edge-weighted
graph G and an integer k ≥ 2, the maximum k-cut problem consists of finding
a k-cut (or a partition of the vertices of the graph into k groups) with maxi-
mum weight, where the weight of a cut is given by the sum of the weights of the
edges that have vertices in different groups of the cut. The weight of the k-cut

Chapter 2. Related work 31

can be seen as a separability criterion, where the distance between two groups
is given by the sum of the pairwise distances of its points. It is well-known that
a random assignment of the vertices (points) yields an (1−1/k)-approximation
algorithm. This bound can be slightly improved using semi-definitive program-
ming (Frieze & Jerrum (1997)).

As already mentioned, the cost function of the minimum spacing (1-2)
can be maximized in polynomial time via the Single-Linkage algorithm
(Kleinberg & Tardos (2006))[Chap 4.7], which has been the subject of a num-
ber of researches (Zahn (1971), Kleinberg (2002), Carlsson & Facundo (2010),
Hofmeyr (2020)). (Kleinberg (2002)) presents an axiomatic study of cluster-
ing, the main result of which is a proof that it is not possible to define clus-
tering functions that simultaneously satisfy three desirable properties intro-
duced in the paper. However, it was shown that by choosing a proper stop-
ping rule for the Single-Linkage it satisfies any two of the three properties.
(Carlsson & Facundo (2010)) replaces the property of (Kleinberg (2002)) that
the clustering function must output a partition with the property that it must
generate a tree (dendogram), and then establishes that Single-Linkage sat-
isfies the new set of properties. More recently, (Hofmeyr (2020)) establishes
a connection between minimum spacing and spectral clustering. While the
aforementioned works prove that Single-Linkage has important properties,
in practice, it is reported that sometimes it presents poor performance due to
the so-called chaining effect ((Jain et al. (1999))[Chap 3.2]).

2.2.2
Hierarchical Agglomerative Clustering

Single-Linkage belongs to the family of algorithms that are
used to build Hierarchical Agglomerative Clustering (HAC), surveyed in
(Murtagh (1983), Murtagh & Contreras (2012), Murtagh & Contreras (2017)).
(Dasgupta (2016)) frames the problem of building a hierarchical clustering
as a combinatorial optimization problem, where the goal is to output a hi-
erarchy/tree that minimizes a given cost function, and proposes both a cost
function that has desirable properties and an algorithm to optimize it. This re-
sult was improved and extended by a series of papers (Roy & Pokutta (2016),
Charikar & Chatziafratis (2017), Cohen-Addad et al. (2019)).

The algorithms discussed in the papers do not seem to be em-
ployed in practice; recently, there has been some effort to analyse more
popular HAC algorithms such as Average-Linkage, in which the dis-
tance between two clusters is the average distance between the ele-
ments in each cluster (Moseley & Wang (2017), Cohen-Addad et al. (2019),

Chapter 2. Related work 32

Dasgupta & Laber (2024)). (Dasgupta & Long (2005)) shows a lower bound
on the maximum diameter of Single-Linkage; (Arutyunova et al. (2024))
proves that this bound is tight. Our investigation of Single-Linkage can
be naturally connected with this line of research.

2.2.3
Clustering with minimum-size guarantees

We are aware of only a few studies on guaranteeing a minimum size for
each cluster. (Bradley et al. (2000)) notices that Lloyd’s algorithm for the k-
means problem tends to return clusters that are empty or have very few points
when clustering data with many dimensions (d ≥ 10) in a large number of
clusters (k ≥ 20), and proposes an adaptation of the algorithm (transforming
its assignment phase to an equivalent of the minimum-cost-flow problem) that
guarantees a minimum number of elements per cluster. Some experimental
results from the paper suggest that, depending on the number of clusters and
the minimum size required, this constraint may help find better local minima
than the unconstrained version of Lloyd’s algorithm.

(Ganganath et al. (2014)) presents a modified k-means algorithm so that
clusters have a maximum size. In the assignment step, a point is assigned to
a representative only if it’s one of the c closest points to that representative,
where c is the maximum size allowed. It also introduces an initialization process
to improve the results, although this requires some previous knowledge about
the data set.

(Ros & Guillaume (2019)) presents two algorithms for dealing with the
chaining effect on Single-Linkage. The first one includes a density estimation
to label some data points as noise, while the second one takes as input the
number of desired clusters and guarantees they all have a minimum size
proportional to the size of the dataset. The second one keeps track of the
number of elements that are in a representative cluster (i.e., a cluster above
the minimum established size) and keeps merging clusters until the minimum
desired proportion of points are in representative clusters; these clusters are
then returned. In both algorithms, some points will not belong to any clusters
returned, ending up being labeled as noise.

3
Theoretical results

This chapter presents the theoretical results of our research on Problem 2,
with lower and upper bounds for the price of explainability (Definion 1) of four
different clustering problems: k-centers (using cost function (3-1)), k-medians
(cost function (3-2)), k-means (1-1), and minimum spacing (1-2).

3.1
Explainable k-centers

Explainable k-centers is the problem of finding a k-partition induced by
a binary decision tree that minimizes

k-centers(P) = max
P ∈P

max
x∈P
||x− µP ||2, (3-1)

where µP is the representative point associated to cluster P ∈ P ; i.e., the cost
of a partition is the maximum distance between a point and the representative
to which it is associated. Below we present lower and upper bounds for the
price of explainability (1-4) of this problem.

3.1.1
Lower bound

Let p ≤ min{d, log3 k} be a positive integer and b the largest integer for
which bp ≤ k. Note that b ≥ 3. Moreover, let k′ = bp.

Our instance Ikc has k + k′ · 2d points. We first discuss how to construct
the k points, referred as centers, that will be set as representatives in an
unrestricted k-clustering for Ikc that has a low cost. The first k′ centers will be
obtained from the representation of the numbers 0, . . . , k′ − 1 in base b while
the remaining k − k′ centers will be located sufficiently far from the others so
that they will be isolated in the low-cost k-clustering for Ikc. Let c0, . . . , ck′−1

be the first k′ centers.
For a number i ∈ [k′−1] let (ip−1, . . . , i0)b be its representation in base b.

For j ∈ [d], the value of the j-th component of center ci is obtained by applying
(j−1) times a circular shift on (ip−1, . . . , i0)b. The values of the remaining d−p

components of ci are obtained by copying the p first values d/p times so that
ci

j = ci
j′ if (j − j′) mod p = 0.

Chapter 3. Theoretical results 34

As an example, if b = 3, p = 3 and d = 9 then c14 =
(14, 22, 16, 14, 22, 16, 14, 22, 16). In fact, since 14 = (1, 1, 2)3 we have that
c14

1 = (1, 1, 2)3 = 14; c14
2 = (2, 1, 1)3 = 22 and c14

3 = (1, 2, 1)3 = 16. The
values of c14

4 , . . . , c14
9 are obtained by repeating the first 3 values.

The following observation is useful for our analysis.

Fact 1 For every ℓ ∈ [p], the values of the ℓ-th coordinate of the k′ first centers
are a permutation of the integers 0, . . . , k′ − 1.

The remaining k − k′ centers, as mentioned above, should be far from
each other and also far away from the k′ first centers. We can achieve that by
setting ci = ki1 for all i > k′ − 1, where 1 is the unit vector in Rd.

The next lemma gives a lower bound on the distance between any two
centers.

Lemma 1 For any two centers ci and cj,

||ci − cj||2 ≥
√
⌊d/p⌋ · (bp−1/2).

Proof. If one of the two centers is not among the k′ first centers the result
clearly holds. Thus, we assume that i, j ≤ k′ − 1.

It is enough to show that there is ℓ ∈ [p] for which |ci
ℓ − cj

ℓ| ≥ bp−1/2.
In fact, if this inequality holds for some ℓ then |ci

ℓ′ − cj
ℓ′| ≥ bp−1/2 for each ℓ′

that is congruent to ℓ modulo p. Since there are ⌊d/p⌋ of them, due to our
construction, we get the desired bound.

Let i = (ip−1, . . . , i0)b and j = (jp−1, . . . , j0)b be the representations of i

and j in base b, respectively. Let f be such that |if − jf | is maximum.
Thus, the difference between ci and cj in the coordinate [(f + 1)

mod p] + 1 is at least

|if − jf | ·

bp−1 −
p−2∑
g=0

bg

 ≥ bp−1/2,

where the last inequality holds because |if − jf | ≥ 1 and b ≥ 3. ■

Now, we define the remaining points of instance Ikc.
For each of the first k′ centers we create 2d associated points:

xi,1, . . . , xi,2d. For j = 1, . . . , d, the point xi,2j−1 is identical to ci in all co-
ordinates but on the j-th one, in which its value is ci

j − 3/4. Similarly, the
point xi,2j is identical to ci in all coordinates but in the j-th one, in which its
value is ci

j + 3/4. By considering the k-clustering for I where the k representa-
tives are the k centers c0, . . . , ck−1 and each point xi,j lies in the group of ci,
we obtain the following proposition.

Chapter 3. Theoretical results 35

Proposition 1 There exists an unrestricted k-clustering for instance Ikc with
cost 3/4.

Now we analyse the cost of an optimal explainable clustering for Ikc. The
following proposition is a simple consequence of Fact 1.

Proposition 2 Let (j, θ) be a cut (across dimension j at value θ) that
separates at least two points from the set A that includes the k′ first centers and
its associated k′ · 2d points. Then, (j, θ) separates one point from its associated
center.

Proof. Since (j, θ) separates at least two points from A, then θ ∈ (−3/4, k′ −
1 + 3/4). If θ < 0, then (j, θ) separates the center that has the j-th coordinate
equal to 0 from its associated point that has coordinate j equal to −3/4. If
θ > k′ − 1, then (j, θ) separates the center that has the j-th coordinate equal
to 0 from its associated point that has coordinate j equal to k′ − 1 + 3/4.

Let z be an integer that satisfies both 0 ≤ z ≤ k′ − 2 and θ ∈ (z, z + 1).
If θ − z < 1/2 (resp. θ − z > 1/2), (j, θ) separates the center that has the
j-th coordinate equal to z (resp. z + 1) from its associated point with j-th
coordinate equal to z + 3/4 (resp. z + 1− 3/4). The existence of centers with
the aforementioned values for coordinate j is guaranteed by Fact 1. ■

Lemma 2 Any explainable k-clustering for instance Ikc has cost at least√
⌊d/p⌋ · (bp−1/4)− 3/8.

Proof. Let C be an explainable k-clustering for instance Ikc. It is enough to
show that there is a cluster C ∈ C that contains two points, say x and y, for
which

||x− y||2 ≥
√
⌊d/p⌋ · (bp−1/2)− 3/4.

In fact, in this case, due to the triangle inequality, for any choice of the
representative for C, either x or y will be at distance at least

√
⌊d/p⌋·(bp−1/4)−

3/8 from it.
If two centers lie in the same cluster of C then it follows from Lemma 1

that their distance is at least
√
⌊d/p⌋ · (bp−1/2).

On the other hand, if every center lies on a different cluster in C then
let x be the point that was separated from its center, say ci, by a cut that
satisfies the condition of Proposition 2. Then, x lies in the same cluster of cj,
for some j ̸= i. From the triangle inequality we have that

||ci − cj||2 ≤ ||ci − x||2 + ||cj − x||2.

Chapter 3. Theoretical results 36

Hence, ||cj − x||2 ≥
√
⌊d/p⌋ · (bp−1/2)− 3/4. ■

By putting together Proposition 1 and Lemma 2 and optimizing the value
of p, we obtain the following theorem.

Theorem 3.1 The price of explainability for the k-centers problem satisfies

ρ(k-center) ∈

 Ω(k1−1/d), if d ≤ ln k
ln ln k

Ω
(√

d · k·
√

ln ln k
ln1.5 k

)
, otherwise.

Proof. Proposition 1 assures the existence of a k-clustering of cost 3/4 for
instance Ikc. Let C be an explainable clustering for Ikc and recall that bp = k′.
It follows from the previous lemma that

cost(C) ≥
√

d

p
· bp−1

4 − 3/8 =
√

d

p
· (k

′)
p−1

p

4 − 3/8.

Since (b + 1)p > k we have

k′ >
k

(1 + 1/b)p
>

k

exp(p/b) .

Thus,

cost(C) ≥
√

d

p
· k

p−1
p

4 exp((p− 1)/b) − 3/8.

Now we set p = d if d ≤ ln k
ln ln k

and p = ln k
ln ln k

, otherwise. Since b > k1/p − 1 we
have that b > ln k − 1 > p− 1 for both cases and, hence,

cost(C) ≥
√

d

p
· k

p−1
p

4 − 3/8.

We obtain the desired result by replacing p in the previous equation according
to each case. ■

3.1.2
Upper bound

In this section we show that the price of explainability (1-4) for the k-
center problem is O

(√
dk

d−1
d

)
. Note that, for constant d, the upper bound

matches the lower bound given by Theorem 3.1.
To obtain the upper bound we analyze the cost of the explainable

clustering induced by the decision tree built by the algorithm presented in
Algorithm 1. The algorithm has access to the set of representatives of an
optimal k-clustering C∗ for X .

Chapter 3. Theoretical results 37

Let X ′ and S be, respectively, the subset of points in X and the set
of representatives that reach a given node u. As long as it is possible, the
algorithm applies an axis-aligned cut that does not separate any point x ∈ X ′

from its representative. This type of cut is referred as a clean cut with respect
to (X ′, S). When there is no such cut available for u, the algorithm partitions
the bounding box of the points in X ′∪S into ⌊|S|1/d⌋d axis-aligned boxes of the
same dimensions by using a decision tree that emulates a grid. By the bounding
box of X ′ ∪ S we mean the smallest box (hyper-rectangle) with axis-aligned
sides that includes the points in X ′ ∪ S.

Algorithm 1 Ex-kCenter(X ′: set of points)
1: S ← representatives of the points in X ′

2: if |S| = 1 then
3: Return X ′ and the single representative in S

4: else
5: if there exists a clean cut w.r.t. (X ′, S) then
6: (X ′

L,X ′
R) ← partition induced by the clean cut

7: Create a node u

8: u.LeftChild ←Ex-kCenter(X ′
L)

9: u.RightChild ←Ex-kCenter(X ′
R)

10: Return the tree rooted at u

11: else
12: H ← bounding box for X ′ ∪ S

13: Du ← decision tree that partitions H into ⌊|S|1/d⌋d identical axis-aligned
boxes

14: Return Du as well as an arbitrarily chosen representative for each of its
leaves

Theorem 3.2 The price of explainability for k-centers is O
(√

dk1−1/d
)
.

Proof. We want to prove that, for each leaf ℓ of the tree D built by
Ex-kCenter(X), the maximum distance between a point in ℓ and its repre-
sentative is OPT

√
dk1−1/d, where OPT is the cost of the optimal unrestricted

clustering.
If only clean cuts are used in the path from the root of D to the leaf

ℓ, all points that reach ℓ lie in the same cluster of the optimal unrestricted
k-clustering C∗, and the maximum distance from a point in ℓ to the single
representative in S is upper bounded by OPT . Below we prove the bound for
the remaining scenarios.

Let u be the first node in the path from the root to ℓ for which a clean
cut is not available. Moreover, let X u be the set of points that reach u and let

Chapter 3. Theoretical results 38

s = |S|, that is, the number of representatives that reach u. In this case the
algorithm splits the bounding box for X u ∪ S into boxes of dimensions

L1

⌊s1/d⌋
× · · · × Ld

⌊s1/d⌋
,

where Li is the difference between the maximum and minimum values of the
i-th coordinate among points in X u ∪ S.

The maximum distance between a point in ℓ and its representative can
be upper bounded by the length of the diagonal of the axis-aligned box
corresponding to ℓ. Let m ∈ [d] be such that Lm = max{L1, . . . , Ld}. Then,
the length of the diagonal is upper bounded by Lm

√
d/⌊s1/d⌋ ≤ 2Lm

√
d/s1/d.

Thus, it suffices to show that OPT ≥ Lm/(2s). Let c1, . . . , cs be the s

representatives that reach node u. In addition, let xj be a point in X u with
representative cj and such that |xj

m − cj
m| is maximum, among the points in

X u with representative cj. Then, we must have

s∑
j=1

2|xj
m − cj

m| ≥ Lm,

for otherwise there would be a clean cut (m, θ), with θ ∈ [a, b], where
a = min{ym|y ∈ X u∪S} and b = max{ym|y ∈ X u∪S}. Hence, for some point
xj, |xj

m−cj
m| ≥ Lm/(2s). Since OPT ≥ |xj

m−cj
m|, we get that OPT ≥ Lm/(2s).

■

3.2
Explainable k-medians

In this problem, the goal is to minimize

k-medians(P) =
k∑

i=1

∑
x∈Pi

||x− µi||1, (3-2)

or the sum of Manhattan distances (L1 norms) between each point x ∈ X and
its representative. We achieve an upper bound of O(d log k) for the price of
explainability (1-4) of this problem, with an algorithm that selects cuts along
the dimension of maximum variation for the points they are separating.

Using an optimal unrestricted k-clustering C∗ for X as a guide for building
an explainable clustering, we show that the price of explainability for k-
medians is O(d log k).

For a decision tree D and a node u ∈ D, let diam(u) be the d-dimensional
vector whose i-th coordinate diam(u)i is given by the difference between the
maximum and the minimum values of coordinate i among the representatives

Chapter 3. Theoretical results 39

that reach u. Let tu be the number of points that reach u and are separated
from their representatives by the cut employed in u. Note that a point x ∈ X
can only contribute to tu if both x and its representative reach u. Finally, let
OPT denote the cost of the optimal unrestricted clustering C∗.

The following lemma from (Moshkovitz et al. (2020)), expressed in our
notation, will be useful.

Lemma 3 (Moshkovitz et al. (2020)) Let C∗ be an optimal unrestricted k-
clustering for X and let D be a decision tree for X in which each representative
of C∗ lies in a distinct leaf. Then, the clustering C induced by D satisfies

cost(C) ≤ OPT +
∑
u∈D

tu||diam(u)||1. (3-3)

3.2.1
Algorithm

In order to obtain a low-cost explainable clustering, we focus on finding
a decision tree D for which the rightmost term of (3-3) is small. This is the
approach taken by IMM (Moshkovitz et al. (2020)), a greedy strategy that at
each node u selects the cut that yields the minimum possible value for tu, and
which we will discuss in Section 4.4.1.

Although we follow the same approach, our strategy for building the tree
is significantly different. In order to explain it, we first rewrite the rightmost
term of (3-3): ∑

u∈D
tu||diam(u)||1 =

d∑
i=1

∑
u∈D

tudiam(u)i.

Motivated by Lemma 3 and the above identity, our strategy constructs
d decision trees D1, . . . ,Dd, where Di is built with the aim of minimizing∑

u∈D
tudiam(u)i, (3-4)

ignoring the impact on the coordinates j ̸= i.
Next, we build a decision tree D for X by picking nodes from these

d trees. More precisely, to split a node u of D the strategy first selects a
coordinate i ∈ [d] for which diam(u)i is maximum. Next, it applies the cut
that is associated with the node in Di which is the least common ancestor
(LCA) of the set of representatives that reach u.

In Algorithm 2, S ′ is a subset of the set S of representatives of C∗.
Moreover, X ′ is a subset of the points in X . The procedure is initially called
with X ′ = X and S ′ = S.

Chapter 3. Theoretical results 40

Algorithm 2 BuildTree(X ′ ∪ S ′)
1: Create a node u and associate it with X ′ ∪ S′

2: if |S′| = 1 then
3: Return the leaf u

4: else
5: Select i ∈ [d] for which diam(u)i is maximum.
6: v ← node in Di which is the LCA of the centers in S′

7: Split X ′ ∪ S′ into X ′
L ∪ S′

L and X ′
R ∪ S′

R using the cut associated with v.
8: u.LeftChild → BuildTree(X ′

L ∪ S′
L)

9: u.RightChild → BuildTree(X ′
R ∪ S′

R)
10: Return the decision tree rooted at u

To fully specify the algorithm we need to explain how the decision trees
Di are built. Let c1, . . . , ck be the reference centers sorted by coordinate i,
that is, cj

i < c
j+1
i for j = 1, . . . , k − 1. Moreover, let (i, θj) be the cut that

separates the points in X with the i-th coordinate smaller than or equal to
θj = (cj

i + cj+1
i)/2 from the remaining ones.

For 1 ≤ a ≤ b ≤ k, let Fa,b be the family of binary decision trees with
(b− a) internal nodes and b− a + 1 leaves defined as follows:

(i) if a = b, then Fa,b has a single tree and this tree contains only one node.

(ii) if a < b, then Fa,b consists of all the decision trees D′ with the following
structure: the root of D′ is identified by a number j ∈ {a, . . . , b− 1} and
associated with the cut (i, θj); one child of the root of D′ is a tree in the
family Fa,j while the other is a tree in Fj+1,b.

Let Fa,b be the family of binary search trees for the numbers in the set
{a, . . . , b−1}, and let Tj be the number of points in X that are separated from
their centers by cut (i, θj). For every tree D′ ∈ Fa,b we define UBi(D′) as

UBi(D′) =
b−1∑
j=a

Tj · diam(j)i,

where diam(j) is the diameter of the node identified by j in D′.
The tree Di is, then, defined as

Di = argmin{UBi(D′) | D′ ∈ F1,k}.

The motivation for minimizing UBi() is that, for every tree D′ ∈ F1,k,

Chapter 3. Theoretical results 41

UBi() is an upper bound on (3-4), that is,

∑
u∈D′

tudiam(u)i ≤
k−1∑
j=1

Tj · diam(j)i = UBi(D′).

To see that, let j be the integer identified with the node u ∈ D′. By definition
diam(u)i = diam(j)i. Moreover, we have tu ≤ Tj because tu only accounts the
points that are separated from their representatives among those that reach
u, while Tj accounts all the points in X regardless of whether they reach u or
not.

To see how to construct Di efficiently, let

OPTa,b =

 min{UBi(D′) | D′ ∈ Fa,b} if a < b

0 if a = b.

Hence, UBi(Di) = OPT1,k. The following relation holds for all a < b:

OPTa,b = min
a≤j≤b−1

{
Tj(cb

i − ca
i) + OPTa,j + OPTj+1,b

}
. (3-5)

Thus, given a set of k representatives and the values Tj’s, Di can be computed
in O(k3) time by solving equation (3-5), for a = 1 and b = k, via standard
dynamic programming techniques.

3.2.2
Analysis

We prove that the cost of the clustering induced by D is O(d log k)·OPT .
To reach this goal, we first show the following bound for the diameter loss of
Di, relying on the fact that Di can be seen as a binary search tree with non-
uniform probing costs.

Lemma 4 The tree Di satisfies

UBi(Di) ≤ 2 log k

k−1∑
j=1

(cj+1
i − cj

i)Tj

 . (3-6)

Proof.
Let D′ be a tree in F1,k. By construction, the set of centers that reach

the node in D′ identified by j is a contiguous subsequence of c1, . . . , ck. Let
r(j) and s(j) be, respectively, the first and the last indexes of the centers of
this subsequence. Thus,

UBi(D′) =
k−1∑
j=1

Tj · diam(j)i =
k−1∑
j=1

Tj

s(j)−1∑
ℓ=r(j)

(cℓ+1
i − cℓ

i). (3-7)

We can show that the right-hand side of the above equation satisfies

Chapter 3. Theoretical results 42

k−1∑
j=1

Tj

s(j)−1∑
ℓ=r(j)

(cℓ+1
i − cℓ

i) =
k−1∑
ℓ=1

(cℓ+1
i − cℓ

i) ·
∑

j∈An(ℓ,D′)
Tj, (3-8)

where An(ℓ,D′) is the set of nodes that are ancestors (including ℓ) of the node
identified by ℓ in D′.

To see that, fix j, ℓ ∈ [k − 1]. The term Tj(cℓ+1
i − cℓ

i) contributes the
left-hand side of (3-8) if the centers cℓ and cℓ+1 reach the node j in D′. This
happens if and only if j is an ancestor of the node identified by ℓ in D′.

Now, we use Theorem 4.5 from (Charikar et al. (2002)). It states that
for any vector (p1, . . . , pk) of k non-negative real numbers there exists a binary
search tree B having k nodes, with each of them associated with a number in
[k], that satisfies

∑
j∈An(ℓ,B)

pj ≤ (log k + o(log k))pℓ ≤ 2 log k · pℓ

for every node ℓ of B.
Let Dc be a tree obtained via the result of (Charikar et al. (2002)) for

the vector (T1, . . . , Tk−1). It satisfies

∑
j∈An(ℓ,Dc)

Tj ≤ 2 log(k − 1) · Tℓ.

By using this inequality, (3-7), and (3-8), we get that

UBi(Dc) =
k−1∑
ℓ=1

(cℓ+1
i − cℓ

i)
∑

j∈An(ℓ,Dc)
Tj ≤ 2 log k

k−1∑
ℓ=1

(cℓ+1
i − cℓ

i)Tℓ.

The result follows because the minimality of Di guarantees that UBi(Di) ≤
UBi(Dc). ■

Lemma 5 Let OPTi = ∑
x∈X |xi− c(x)i| be the contribution of the coordinate

i for the cost of an optimal unrestricted clustering C∗, where c(x) is the
representative of x. Then,

OPTi =
∑
x∈X
|xi − c(x)i| ≥

k−1∑
j=1

(cj+1
i − cj

i)Tj

2 , (3-9)

where c(x) is the representative of x.

Proof. The proof consists of projecting the points of X and the representatives
onto the axis i and then counting the number of times the interval [cj

i , cj+1
i]

appears in the segments that connect points in X to their representatives.
This is exactly the same line of reasoning employed to prove Lemma 6 from
the supplementary version of (Moshkovitz et al. (2020)).

Chapter 3. Theoretical results 43

Let c1, . . . , ck be the representatives sorted by increasing order of co-
ordinate i. Recall that θj = (cj

i + cj+1
i)/2. For every x ∈ X , let Cut(x) =

{j|(i, θj) separates x from c(x)}.
Fix x ∈ X . If j ∈ Cut(x) then either [cj

i , θj] or [θj, cj+1
i] is included in

the real interval with endpoints xi and c(x)i. Thus, we have that

|xi − c(x)i| ≥
∑

j∈Cut(x)

cj+1
i − cj

i

2 .

By adding the above inequality for all x ∈ X we conclude that the number of
times that (cj+1

i −cj
i)/2 contributes to the right-hand side, for every j ∈ [k−1],

is exactly the number of times that (i, θj) separates a point x′ ∈ X from its
representative c(x′). This number is exactly Tj. ■

From (3-7) and (3-9), we obtain

UBi(Di) ≤ 4 log k ·OPTi. (3-10)
Finally, we prove that a factor of d is incurred when we build the tree D from
the nodes of the trees D1, . . . ,Dd:

Lemma 6 Let D be the decision tree built by Algorithm 2. Then,

∑
v∈D

tv||diam(v)||1 ≤ d
d∑

i=1
UBi(Di). (3-11)

Proof. For a node j ∈ Di, let Si,j be the (possibly empty) set of nodes in the
tree D that correspond to j, that is, the nodes that use the cut associated with
the node j from Di. We have

∑
v∈D

tv||diam(v)||1 =
d∑

i=1

∑
j∈Di

∑
u∈Si,j

tu||diam(u)||1. (3-12)

Moreover, we have that

∑
u∈Si,j

tu||diam(u)||1 ≤
∑

u∈Si,j

tu · d · diam(u)i ≤ (3-13)
∑

u∈Si,j

d · tu · max
u∈Si,j

{diam(u)i} ≤
∑

u∈Si,j

d · tu · diam(j)i, (3-14)

where the first inequality in (3-13) holds because i is the coordinate for which
the diameter of u is maximum and the inequality (3-14) holds because the set
of centers in u is a subset of the set of centers that reach the node identified
by j in Di.

Chapter 3. Theoretical results 44

Claim 1 For a node u ∈ Si,j, let Xu ⊆ X be the set of points that reach u in
D. Then, Xu ∩ Xu′ = ∅ for every u, u′ ∈ Si,j, with u ̸= u′.

Proof. Let w be the least common ancestor of u′ and u in D. If w /∈ {u, u′}
then the cut associated with w splits Xw into two disjoint regions, one of them
containing Xu and the other containing Xu′ so that Xu and Xu′ are disjoint.

If w ∈ {u, u′} let us assume without loss of generality that w = u. In this
case, the cut (i, θj), associated with u, splits Xu into two regions, one of them
containing all the representatives that reach u′. These centers are contained
in the set of representatives of one of the children of j in Di and, hence, the
LCA in Di of the set of centers that reach u′ is not j, that is, u′ /∈ Si,j. This
contradiction shows that this case cannot occur. ■

From the previous claim we get that

∑
u∈Si,j

tu ≤ Tj.

It follows from (3-13)-(3-14) and the above inequality that

∑
u∈Si,j

tu||diam(u)||1 ≤ d · Tj · diam(j)i.

Hence, it follows from (3-12) that

∑
v∈D

tv||diam(v)||1 ≤
d∑

i=1

∑
j∈Di

d · Tj · diam(j)i =

d
d∑

i=1
UBi(Di).

■

From (3-10), (3-11), and the identity OPT = ∑d
i=1 OPTi, we obtain

∑
v∈D

tv||diam(v)||1 ≤ 4d log k ·OPT.

This, together with Lemma 3, allows us to establish the main theorem of this
section.
Theorem 3.3 The price of explainability (1-4) for k-medians (3-2) is
O(d log k).

3.3
Explainable k-means

In this problem, the goal is to minimize (1-1), or the sum of the
squared Euclidean distances (L2 norms) between each point x ∈ X and its

Chapter 3. Theoretical results 45

representatives. Using an algorithm similar to the one used for k-medians cost,
we reach an upper limit of O(dk log k) for the price of explainability (1-4).

3.3.1
Bounds for low dimensions

The result we obtained for the k-medians problem can be extended to
the k-means problem:

Theorem 3.4 The price of explainability for k-means is O(dk log k).

Proof. From an algorithmic perspective, in order to establish the theorem, we
only need to replace the definition of UBi(D′) for a tree D′ in Fa,b with

UB′
i(D′) =

b−1∑
j=a

Tj · (diam(j)i)2.

Note that the only difference is the replacement of diam(j)i with
(diam(j)i)2. As a consequence, for the k-means problem, the tree Di is de-
fined as the tree D′ in F1,k for which UB′

i(D′) is minimum. It can also be
constructed via dynamic programming.

Theorem 3.4 can be proved by using arguments similar to those employed
to bound the price of explainability for k-medians. The following inequalities
are, respectively, counterparts of the inequalities (3-3), (3-6), (3-9) and (3-11):

cost(C) ≤ OPT +
∑
v∈D

tv||diam(v)||22, (3-15)

UB′
i(Di) ≤ 2k log k

k−1∑
j=1

(cj+1
i − cj

i)2 · Tj

 , (3-16)k−1∑
j=1

(cj+1
i − cj

i)2 · Tj

 /2 ≤ OPTi, (3-17)

∑
v∈D

tv||diam(v)||22 ≤ d
d∑

i=1
UB′

i(Di). (3-18)

From the three last inequalities and the identity OPT = ∑d
i=1 OPTi, we

obtain ∑
v∈D

tv||diam(v)||22 ≤ 4dk log k ·OPT.

This together with the inequality (3-15) allows us to establish Theorem 3.4.
Inequality (3-15) is proved in (Moshkovitz et al. (2020)). The validity of

inequalities (3-17) and (3-18) can be established by using exactly the same
arguments employed to prove their counterparts. More specifically, the proof
of Lemma 5 can be used for the former while the proof of Lemma 6 can be
used for the latter.

Chapter 3. Theoretical results 46

Inequality (3-16) incurs an extra factor of k with respect to its counter-
part. In order to prove this inequality, we apply the arguments of the proof of
Lemma 4. The only required adaptation consists of replacing Equation (3-7)
with the inequality

UB′
i(Di) ≤ k

k−1∑
j=1

Tj ·
s(j)−1∑
ℓ=r(j)

(cℓ+1
i − cℓ

i)2. (3-19)

Inequality (3-19) holds because

UB′
i(Di) =

k−1∑
j=1

Tj · (cs(j)
i − c

r(j)
i)2,

and Jensen’s inequality assures that

(cs(j)
i − c

r(j)
i)2 ≤ k

s(j)−1∑
ℓ=r(j)

(cℓ+1
i − cℓ

i)2.

■

3.4
Explainable minimum spacing

In this problem, the goal is to maximize (1-2), i.e., the minimum distance
between two points belonging to different clusters. Using a simple instance and
algorithm, we prove that the price of explainability for this problem (1-5) is
Θ(n− k).

3.4.1
Lower bound

The following simple construction shows that the price of explainability
is Ω(n− k).

Lemma 7 The price of explainability for the minimum spacing clustering
problem (1-5) is Ω(n− k).

Proof. Let C1 = {(0, i)|0 ≤ i ≤ p} ∪ {(i, 0)|0 ≤ i ≤ p}. Moreover, for
i = 2, . . . , k, let Ci = {(i− 1)(p− 1), (p− 1)}. The dataset X for our instance
is given by C1 ∪ . . . ∪ Ck.

The unrestricted k-clustering (C1, . . . , Ck) has spacing p − 1 = (n −
k)/2− 1. On the other hand, every explainable k-clustering has spacing 1. To
see that, note that we cannot have all the points of C1∪C2 in the same cluster,
for otherwise we would have at most k− 1 clusters. Thus, we need to separate

Chapter 3. Theoretical results 47

at least 2 points from C1 ∪ C2 and the only way to accomplish that, via axis-
aligned cuts, forces the separation of 2 points in C1 that are at distance 1 from
each other. Thus, the spacing will be 1. ■

3.4.2
Upper bound

We present an algorithm that always obtains an explainable clustering
with spacing O(n − k) · OPT , where OPT is the spacing of the optimal
unrestricted clustering. That, together with the previous lemma, proves that
the price of explainability for the minimum spacing problem is Θ(n− k).

Algorithm 3 receives an optimal k-clustering C∗ as input and uses it as a
guide to transform an initial single cluster containing all points of X into an
explainable k-clustering. The existence of cluster C at line (*) follows from a
simple pigeonhole argument. The motivation for this choice is that C has two
points at distance at least OPT , which is used to show the existence of a cut
with a large enough margin.

Algorithm 3 Ex-SingleLink(X)
1: C∗ ← optimal unrestricted k-clustering for points in X .
2: C ← single cluster containing all points of X
3: for i = 1, . . . , k − 1 do
4: Select a cluster C ∈ C that contains two points that lie in different clusters

in C∗. (*)
5: Split C using an axis-aligned cut that yields a 2-clustering (C ′, C ′′) with

maximum possible spacing.
6: Remove C from C and update C to C ∪ {C ′, C ′′}

Lemma 8 Given a set of points X , Ex-SingleLink(X) obtains a k-clustering
C with spacing at least OPT/(n− k), where OPT is the spacing of an optimal
unrestricted clustering.

Proof. First, we observe that it is always possible to properly execute line (*)
of Ex-SingleLink: if we pick k points covering all the k clusters of C∗, by the
pigeonhole principle, two of them will lie in the same group in C since C has
less than k groups when line (*) is executed.

To establish the result it suffices to prove that there is always an axis-
aligned cut that splits the selected cluster C into two clusters with spacing at
least OPT/(n− k).

Let p and q be two points in C that lie in distinct clusters in C∗ and let
G = (V, E) be a graph, where V is the set of points in C and E connects points

Chapter 3. Theoretical results 48

in V with distance smaller than OPT/(n− k). Moreover, let F = (T1, . . . , Tℓ)
be a forest that is obtained by running Kruskal’s MST algorithm on G.

Claim 2 Points in C that belong to distinct clusters of C∗ must also belong to
different trees in forest F .

Proof. For the sake of contradiction, assume that the claim does not hold. In
this case, there would be a path from p to q in F and this path would have an
edge joining two points that belong to different clusters in C∗, which cannot
occur since their distance is at least OPT > OPT/(n− k). ■

The previous claim implies that ℓ ≥ 2 since p and q belong to different
clusters. We say that an axis-aligned cut is good with respect to a cluster C

if it satisfies the following properties: (i) it separates the points in C into two
non-empty clusters and (ii) it does not separate points that lie in the same
tree of F . If a good cut exists, then we can use it to split C into two clusters
with spacing at least OPT/(n − k) since, by construction, points in different
trees have distance at least OPT/(n− k).

For the sake of contradiction, assume that such a cut does not exist. For
each j ∈ [d] let Ipq

j be the real interval that starts in min{pj, qj} and ends in
max{pj, qj}, that is, Ipq

j = [min{pj, qj}, max{pj, qj}].
Moreover, for each tree T in F , let IT

j be the interval that starts at
min{xj|x is a node in T} and ends at max{xj|x is a node in T}. Finally, for
each edge e = uv in F and each j ∈ [d], let Ie

j be the real interval that starts
at min{uj, vj} and ends at max{uj, vj}. For a real interval I, let len(I) be its
length.

Since there are no good cuts, for j = 1, . . . , d, we have

∑
T ∈F

len(IT
j) ≥ len(Ipq

j).

From the triangle inequality we obtain

∑
T ∈F

∑
e∈T

len(Ie
j) ≥

∑
T ∈F

len(IT
j).

From the two previous inequalities we get

∑
e∈F

len(Ie
j) =

∑
T ∈F

∑
e∈T

len(Ie
j) ≥ len(Ipq

j).

From Jensen’s inequality we obtain

∑
e∈F

len(Ie
j)2 ≥

(len(Ipq
j))2

f
,

Chapter 3. Theoretical results 49

where f is the number of edges in F . By adding the above inequality for all
j ∈ [d] we get ∑

e∈F

||e||22 ≥
1
f
||p− q||22 ≥

OPT 2

f
,

where ||e||2 is the distance between the two endpoints of edge e.
The last inequality implies ||e||2 ≥ OPT/f for some edge e. Thus, to

obtain a contradiction, it suffices to show that f ≤ n−k, since we cannot have
edges in F with distance ≥ OPT/(n− k).

To see that f ≤ n − k, let k′ be the number of clusters in C that are
singletons and let S ′ be the set of points in these clusters. Moreover, let
S ⊆ X −S ′ be a set of k− k′ points with each of them belonging to a different
cluster in C∗. Note that cluster C is not a singleton since p, q ∈ C. Since both
C and S are subsets of X − S ′ we have |C ∪ S| = |C|+ |S| − |C ∩ S| ≤ n− k′

so that |C| − |C ∩ S| ≤ n − k. It follows from Claim 2 that the number of
trees in F is at least |C ∩ S| and, as a result, its number of edges f satisfies
f ≤ |C| − |C ∩ S| − 1 < n− k edges. ■

From Lemmas 7 and 8 we can establish the main result of this section.

Theorem 3.5 The price of explainability for the minimum-spacing problem is
Θ(n− k).

4
Practical algorithms for explainable k-means clustering

This chapter presents three practical algorithms for Problem 2 with the
popular k-means cost function (1-1).

In Section 4.1 we present ExGreedy (Laber & Murtinho (2021)), a simple
greedy algorithm that builds explainable partitions from unrestricted ones by
greedily selecting the cut that minimizes the k-means cost function (1-1) and
separates at least one representative and one data point from the rest of the
remaining data set.

In Section 4.2 we add some nuance to the discussion on explainabil-
ity, considering how some decision trees are more easily understandable
than others, and introduce ExShallow (Laber et al. (2023)), an adaptation
of ExGreedy with a penalty term that allows a trade-off between the mini-
mization of the cost function and the explainability of the partition.

In Section 4.3 we present ExBisection (Laber et al. (2023)), an algo-
rithm that builds an explainable partition without using an unrestricted one
as a starting point.

In Section 4.4 we briefly discuss other algorithms for the explainable
k-means clustering problem, and in Section 4.5 we present the results of
experiments performed between on these and our algorithms over 16 datasets.

4.1
ExGreedy: Greedily towards an explainable k-partition

ExGreedy is a simple greedy algorithm for building explainable partitions
for the k-means problem. It starts with the set S of representatives of an
unrestricted k-clustering Cini for the dataset X and then builds a decision tree
D with k leaves, where each of them includes exactly one representative from
S.

Let u be a node of the decision tree and let X u and Su be, respectively,
the set of points and the set of representatives of Cini that reach u. We define
the cost of a partition (L, R) of the points in X u ∪ Su as

Cost(γ,X ′,S ′) :=
 ∑

x∈X ′
L

min
c∈S′

L

||x− c||22 +
∑

x∈X ′
R

min
c∈S′

R

||x− c||22

 . (4-1)

Chapter 4. Practical algorithms for explainable k-means clustering 51

To split a node u that is reached by more than one representative,
ExGreedy selects the axis-aligned cut that induces a k-partition with minimum
cost. Algorithm 4 describes the procedure in pseudocode.

Algorithm 4 ExGreedy(X ′, S ′)
X ′: set of points; S ′: set of representatives

1: if |S′| = 1 then
2: Return X ′ and the single representative in S’
3: else
4: C ← set of non-equivalent cuts w.r.t. X ′ ∪ S ′ that separate at least two

centers in S ′

5: γ∗ ← arg minγ∈C{Cost(γ,X ′,S ′)}
6: (X ∗

L,X ∗
R)← partition of X ′ induced by γ∗

7: (S∗
L,S∗

R)← partition of S ′ induced by γ∗

8: Create a node u
9: u.LeftChild← ExGreedy(X ∗

L,S∗
L)

10: u.RightChild← ExGreedy(X ∗
R,S∗

R)
11: Return the tree rooted at u

Note that ExGreedy will find k− 1 cuts, and that after each cut (except
for the last one) the k-partition used when calculating (4-1) is not necessarily
explainable. At any point during the procedure, the only clusters guaranteed to
be explainable are those associated to a leaf of the tree – i.e., those generated
when line 1 is true. Once k − 1 cuts are selected, each cluster is associated to
a leaf, and partition explainability is guaranteed. Contrast this with ExKMC, in
which the i-th cut is chosen by evaluating the cost of an explainable (i + 1)-
partition (see Secion 4.4.2 for more details). Also note that the representatives
remain the same after a cut is performed.

4.1.1
An efficient implementation

ExGreedy can be implemented in O(ndkH + nd log n) time, where H is
the depth of the resulting decision tree. Note that H ≤ k and in many relevant
applications k is small. The time complexity corresponds to H iterations of
Lloyd’s k-means algorithm.

To achieve this time complexity, in the preprocessing phase, ExGreedy
builds the following data structures:

– a list SLi, for each i ∈ [d], containing the points in X ∪ S sorted by
coordinate i;

– a list Mx of size k, for each x ∈ X , that stores the k centers sorted by
increasing order of their distances to x.

Chapter 4. Practical algorithms for explainable k-means clustering 52

The lists SLi can be built in O(dn log n) time and the lists Mx in
O(nk log k) time.

To decide how to split the root, ExGreedy finds the partition with
minimum cost for each coordinate i ∈ [d] and then selects the one with
minimum cost among them.

Fix i ∈ [d]. The algorithm scans the list SLi from left to the right and
evaluates the cost of n− k + 1 partitions where the j-th one, namely (Lj, Rj),
separates the first j points in SLi from the remaining ones. During the scan
the algorithm makes use of two vectors of size n, VL and VR. Right after
evaluating (Lj, Rj), VL (resp. VR) stores, for each x that lies at Lj (resp. Rj),
the center that is closest to x among those that also lie in Lj (resp. Rj). The
only difference is that VL[x] stores the center directly while VR[x] stores the
position of the center in Mx.

Let us consider the moment in which the algorithm has just calculated
the cost Costj of the jth partition (Lj, Rj). To obtain Costj+1 and update VL

and VR, the algorithm first set Costj+1 = Costj and then proceeds according
to the following cases:

Case 1. The (j + 1)-th point in SLi corresponds to a point x in X . Then,
the algorithm evaluates Costj+1 in O(k) time as follows:

i it obtains the center cR in Rj that is closest to x. This is done in O(1)
time since VR[x] points to this center;

ii By scanning Mx it obtains the center cL in Lj+1 that is closest to x and
then updates VL[x] to cL. This requires O(k) time

iii it updates Costj+1 to Costj + ||x− cL||22 − ||x− cR||22.

Case 2. The (j + 1)-th point in SLi corresponds to a reference center c in
S. Then, the algorithm evaluates Costj+1 in O(n) amortized time as follows:

i for each point x in Lj, ExGreedy compares ||c− x||22 with ||VL[x]− x||22.
If the former is smaller, Costj+1 is updated to Costj+1 + ||x−c||22−||x−
VL[x]||22 and VL[x] is updated to c. This requires O(n) time.

ii for each point x in Rj it verifies whether VR[x] points to c. In the negative
case, nothing is done. In the positive case, it scans Mx, starting from VR[x]
towards its end, until it finds a center c′ that lies in Rj. Then it updates
Costj+1 to Costj − ||x − c||22 + ||x − c′||22. This operation requires O(n)
amortized time since the total cost spent on these scans, when we take
into account moving the k centers, is O(nk).

Chapter 4. Practical algorithms for explainable k-means clustering 53

The algorithm applies the cut with minimum cost and then recurses on
each child of the root. To process a child u of the root, the implementation
updates the data structures SLi and Mx to only comprise the points and
reference centers that reach u. Each list SLi can be updated in O(n) time by
removing the points and the reference centers that do not reach u. Similarly,
each list Mx can be updated in O(k) time by removing the points and the
reference centers that do not reach u.

4.2
ExShallow: Depth matters

When we treat partitions induced by decision trees as explainable, we rely
on the fact that decision trees are widely considered to be explainable models
by machine learning standards. However, the explainability of a decision tree
greatly depends on the depths of its leaves, as empirically demonstrated by
(Piltaver et al. (2016)) in a study on how tree structure parameters (number
of leaves, branching factor, tree depth) influence tree interpretability. The
conclusion, based on empirical data from a survey with 98 questions answered
by 69 respondents, is that question depth (the depth of the deepest leaf that
is required when answering a question about a classification tree) turns out to
be the most important parameter; explaining leaves that are far from the root
involves many tests, which makes it harder to grasp the model’s logic.

ExShallow incorporates this fact to the construction of explainable
partitions based on decision trees by adapting the cost function used by
ExGreedy, incorporating a penalty term to discourage the selection of cuts
that lead to unbalanced (and therefore deeper) trees. To quantify this cost, two
measures are introduced: the Weighted Average Depth (WAD) and the Weighted
Average Explanation Size (WAES).

4.2.1
Measures of explainability for decision tree-induced partitions

Let P = (C1, . . . , Ck) be a k-partition induced by a binary decision tree
D with k leaves, where the cluster Ci is associated with the leaf i. Furthermore,
associate a condition to each edge of the tree: the left edge leaving a node v

is associated with the condition xiv ≤ θv and the right one with the condition
xiv > θv.

The explanation of a cluster C in a decision tree D is given by the logical
AND of the conditions associated with the edges in the path from the root of
D to the leaf associated with C. We say that a condition is redundant with
respect to cluster C if its removal does not change the explanation for C. As an

Chapter 4. Practical algorithms for explainable k-means clustering 54

example, if the explanation of cluster C is x1 > 30 AND x2 ≤ 20 AND x1 >

70, then the condition x1 > 30 is redundant.
Then, we can define the weighted average depth (WAD) of a decision tree

D as
WAD(D) =

∑k
i=1 |Ci|ℓi

n
(4-2)

and its weighted average explanation size (WAES) as

WAES(D) =
∑k

i=1 |Ci|ℓnr
i

n
, (4-3)

where li and ℓnr
i are, respectively, the number of conditions and non-redundant

conditions (w.r.t. Ci) in the path from the root to leaf i.
WAD is a very natural metric; its relevance is advocated in

(Piltaver et al. (2016)), and it is used in (McSherry (2002)) to evaluate
decision-tree algorithms for classification. To the best of our knowledge, WAES
was introduced by our work in (Laber et al. (2023)); it is related to the re-
search from (Feitosa et al. (2022)), in which bounds for both the average and
the maximum explanation size (defined as the maximum number of different
attributes used in a path from the root to a leaf of the tree) are presented and
discussed.

In terms of explainability, a decision tree is a single structure that allows
us to visualize explanations for all clusters (some of them potentially having
redundant conditions), and WAD gives the average length (weighted by the
cluster’s sizes) of these explanations. For each specific cluster, however, we
may derive more compact explanations by removing redundant conditions,
and WAES measures the average size of these explanations, again weighted by
the cluster’s sizes.

To illustrate the impact of considering these metrics when building
explainable partitions, we present in Figures 4.1 and 4.2 two decision trees that
partition the Avila dataset (De Stefano et al. (2018)) into 12 clusters. Both
trees induce the same partition; however, the tree from Figure 4.1, produced
by ExGreedy, has WAES ≈ 5.4, while the one from Figure 4.2, produced by
ExShallow, has WAES ≈ 3.7 – i.e., a “gain” of almost 2 conditions on average.
For WAD, the gain is even larger, of over 2 conditions (≈ 6.2 vs. ≈ 3.8). (Note
that both algorithms do not, as a rule, return the same partition; ExShallow
may select partitions that have a higher cost, but are more explainable, than
those of ExGreedy.)

4.2.2
The algorithm

ExShallow builds a decision tree in a top-down fashion as shown in

Chapter 4. Practical algorithms for explainable k-means clustering 55

Figure 4.1: Tree from the ExGreedy algorithm for the Avila dataset, with
WAES ≈ 5.4 and WAD ≈ 6.2.

Figure 4.2: Tree from the ExShallow algorithm for the Avila dataset, with
WAES ≈ 3.7 and WAD ≈ 3.8.

Algorithm 5. The strategy receives as input a set of points X ′ and a set S ′ of k

representatives. We say that two cuts are equivalent with respect to set X ′∪S ′

if they are associated with the same component (both are i-cuts for some i)
and induce the same binary partition on X ′ ∪ S ′. Note that there are at most
|X ′ ∪ S ′|d pairwise non-equivalent cuts. At each node the strategy evaluates

Price(γ,X ′,S ′) + λ · DExp(γ,X ′,S ′) (4-4)

Chapter 4. Practical algorithms for explainable k-means clustering 56

for each cut γ in the set of non-equivalent cuts that separate at least two
reference centers from S ′. Then, it selects the cut γ∗ for which (4-4) is
minimum.

In Equation (4-4), Price(γ,X ′,S ′) is associated to the quality of the
partition: it is smaller if γ leads to a larger reduction in the k-means loss
of the partition. Meanwhile, DExp (which stands for Depth Explainability) is a
penalty term associated to the partition’s explainability: it is larger if γ leads
to a decision tree with high values for WAD/WAES. The parameter λ is used to
govern the trade-off between cost and explainability.

After selecting γ∗, the strategy is recursively performed for each of the
groups of the binary partition induced by γ∗. The recursion stops when S ′

contains only one reference center.

Algorithm 5 ExShallow(X ′, S ′, λ)
X ′: set of points; S ′: set of reference centers; λ ∈ R≥0: trade-off parameter

1: if |S′| = 1 then
2: Return X ′ and the single reference center in S’
3: else
4: C ← set of non-equivalent cuts w.r.t. X ′ ∪ S ′ that separate at least two

centers in S ′

5: γ∗ ← arg minγ∈C{Price(γ,X ′,S ′) + λ · DExp(γ,X ′,S ′)}
6: (X ∗

L,X ∗
R)← partition of X ′ induced by γ∗

7: (S∗
L,S∗

R)← partition of S ′ induced by γ∗

8: Create a node u
9: u.LeftChild← ExShallow(X ∗

L,S∗
L)

10: u.RightChild← ExShallow(X ∗
R,S∗

R)
11: Return the tree rooted at u

4.2.2.1
Evaluation of cut γ in terms of partition quality

Let X ′ and S ′ be, respectively, the sets of points and centers that reach
some given node in the decision tree. In addition, let γ be a cut that splits
X ′ into groups X ′

L and X ′
R and splits S ′ into groups S ′

L and S ′
R, each of them

containing at least one reference center. Price(γ,X ′,S ′) is defined as

Price(γ,X ′,S ′) := Cost(γ,X ′,S ′)
CurrentCost(X ′,S ′) , (4-5)

where
CurrentCost(X ′,S ′) :=

∑
x∈X ′

min
c∈S′
||x− c||22 (4-6)

and Cost is the cost function of ExGreedy (Equation (4-1)); that is,
CurrentCost and Cost give, respectively, the cost of the partition before and
after applying cut γ. In both cases, each point is associated with the closest
valid reference center.

Chapter 4. Practical algorithms for explainable k-means clustering 57

4.2.2.2
Evaluation of cut γ in terms of partition explainability

To obtain DExp(γ,X ′,S ′), we first calculate ŴAD(γ,X ′,S ′), an estimation
of the quality of γ for finding a good tree in terms of WAD, and then we adjust
ŴAD(γ,X ′,S ′) to take WAES into account.

Estimating whether a cut is good or not in terms of WAD is a non-obvious
task. For other metrics, such as the maximum depth of a tree, this is much
simpler: the more balanced the cut, the better. To estimate the quality of the
cut γ for our task, we efficiently compute (4-2) for an auxiliary tree that is
built specifically for this purpose.

More precisely, ŴAD(γ,X ′,S ′) is given by the return of the procedure
presented in Algorithm 6. EvalWAD(N, K, rp, rc) returns the WAD of a tree with
K leaves (corresponding to centers) for a set of N points, where each node in
the tree splits the points and the centers in the same proportion as γ does,
that is, proportionally to rp = |X ′

L|/|X ′| and rc = |S ′
L|/|S ′|, respectively. We

note that these ratios do not change along the algorithm execution and that
the resulting decision tree is just a theoretical tree (which may not even be
feasible for the instance under consideration), built to estimate how good γ is
for minimizing (4-2).

Algorithm 6 EvalWAD(N , K, rp, rc)
N : Current number of points; K: Current number of reference centers; rp:
Point-split ratio; rc: Center-split ratio

1: if K = 1 then
2: Return 0
3: else
4: KL ← K · rc

5: KR ← K −KL

6: NL ← N · rp

7: NR ← N −NL

8: Return 1 + (NL · EvalWAD(NL, KL, rp, rc) + NR · EvalWAD(NR, KR, rp, rc))/N

As an example, Figures 4.3 and 4.4 present two theoretical trees gen-
erated by Algorithm 6 for the same number of centers (K = 4) and points
(N = 128), but different values of rc and rp. In Figure 4.3, rc = rp = 0.5; as a
result, the tree generated by Algorithm 6 has 4 leaves at level 2 with 25 points
in each. In Figure 4.4, rc = rp = 0.25; as a result, the tree has 3 levels instead
of 2, and most points are in one of the deepest leaves.

The value of DExp(γ,X ′,S ′) is given by the return of procedure
EvalDExp(γ, X ′,S ′), presented in Algorithm 7. To explain the procedure, let v

be the current node of the decision tree under construction. Recall that a cut
γ = (i, θ) applied on v induces two edges leaving v, one associated with condi-

Chapter 4. Practical algorithms for explainable k-means clustering 58

Figure 4.3: Tree generated by Algorithm 6 with rc = rp = 0.5, WAD = 2.

Figure 4.4: Tree generated by Algorithm 6 with rc = rp = 0.25, WAD = 2.31.

tion xi ≤ θ and the other with condition xi > θ. We say that an edge leaving v

is killer if its associated condition turns some non-redundant condition in the
path from the root to v into a redundant one. The procedure first determines
which edges induced by γ on v are killer and, based on that, it adjusts the
value of ŴAD(γ,X ′,S ′) to take into account the WAES. As an example, if only
the left edge leaving v is killer then we discount |X ′

L|/|X ′| from ŴAD(γ,X ′,S ′),
because one condition in the path from the root to v becomes redundant to
explain the clusters of the left subtree of v.

By design, EvalDExp prioritizes the choice of cuts at node v that are
associated with coordinates that have already been used by some cut in the
path from the root to v. This way the strategy tends to produce redundant
conditions and, therefore, to find good trees in terms of WAES.

To summarize, ExShallow follows the steps of Algorithm 5. At line 5, it
calls EvalDexp, presented in Algorithm 7, to calculate DExp(γ,X ′,S ′), while

Chapter 4. Practical algorithms for explainable k-means clustering 59

Algorithm 7 EvalDExp(γ, X ′, S ′)
γ: cut; X ′: set of points; S ′: set of centers

1: v ← current node in the decision tree
2: (X ′

L,X ′
R)← partition of X ′ induced by γ

3: (S ′
L,S ′

R)← partition of S ′ induced by γ
4: rp = X ′

L/X ′

5: rc = S ′
L/S ′

6: ŴAD = EvalWAD(|X ′|, |S ′|, rp, rc)
7: if no edge induced by γ on v is killer then
8: Return ŴAD
9: else

10: if only the left edge induced by γ on v is killer then
11: Return ŴAD− |X ′

L|/|X ′|
12: else
13: if only the right edge induced by γ on v is killer then
14: Return ŴAD− |X ′

R|/|X ′|
15: else
16: Return ŴAD− 1

Price(γ,X ′,S ′) is calculated via Equations (4-5), (4-6) and (4-1).

4.2.3
Implementation details and time-complexity analysis

ExShallow can be implemented in O(nkd · WAD(D)) time, where WAD(D)
is the WAD of the decision tree D built by the algorithm. Given the set of points
X and the reference centers S, the algorithm first obtains d sorted lists, where
the i-th list corresponds to the set of points in X ∪ S sorted by component i.
This initial sorting step takes O(d(n+k) log(n+k)) time and is only performed
at the root of the tree.

Having the d sorted lists at node v, we use the implementation from
Section 4.1.1 to compute (4-1) for all valid cuts in O(dnvkv) time, where nv

and kv are, respectively, the number of points and centers that reach v. The
computation of ŴAD, via Algorithm 6, takes O(kv) time per cut, or O(dnvkv)
time for all cuts.

To find out which of the edges are killer in Algorithm 7, we maintain
a data structure A with 2d entries. For each i ∈ [d], A[i].left (resp. A[i].right)
stores the number of left (resp. right) edges that leave i-nodes that lie in the
path from the root to the current node. A left (resp. right) edge leaving an
i-node is killer if and only if A[i].left > 0 (resp. A[i].right > 0).

The data structure A can be updated in O(1) time: if the chosen cut at
node v is an i-cut, then right before the recursive call at line 9 (resp. line 10) of
ExShallow (Algorithm 5) we increment by one unit A[i].left (resp. A[i].right),
and when we return from the recursion we decrease the respective counter by

Chapter 4. Practical algorithms for explainable k-means clustering 60

1.
After selecting the cut at node v, the d sorted lists for the children of v

are obtained in O(nvd) time from the sorted lists for v.
Thus, the total cost of the algorithm to build a tree D is proportional to

∑
v∈D

nv · d · kv ≤
n∑

i=1
ℓi · d · k, (4-7)

where ℓi is the depth of data point i atD. The rightmost term of (4-7), however,
is equal to WAD(D) · ndk.

TheO(ndk·WAD(D)) time complexity suggests that trees with low WAD are
faster to build – which is good for our purposes, since by design our algorithm
tries to build trees with this property.

4.2.4
Setting the trade-off parameter

In a typical case, users are interested in obtaining an explainable cluster-
ing with low cost. To achieve this goal they have to properly set the value of
λ. One possibility is performing a brute-force search over some set of values to
find the one that yields the most suitable tree. However, this could be compu-
tationally expensive and also impractical from the users’ perspective, as they
would have to analyze many trees. Fortunately, we can avoid that.

First we note that a reasonable interpretation for λ is how much we
are willing to locally spend on cost, in percentage, to reduce by one unit the
average size of the explanations. As an example, setting λ = 0.1 means that
we accept an additive loss of up to 10% in terms of the partition cost to have
explanations one unit shorter on average.

Under this perspective, we shall avoid large values for λ, since partitions
with high costs are not likely to produce coherent clusters. As we show in our
experiments (Section 4.5), we can obtain significant improvements over the
existing methods by setting λ = 0.03.

A good property of Price (4-5) is that its value for cuts of low Cost
(4-1), the most relevant ones, lies in the interval [1, 4k + 1], the same one in
which, except for a constant factor, both WAD (4-2) and WAES (4-3) lie. Hence,
we are trading off quantities with similar magnitudes, which is beneficial. This
is formalized below.

Lemma 9 Let X ′ and S ′ be the set of data points and reference centers
that reach a given node v. Then, there is a cut γ′ that satisfies 1 ≤
Price(γ′,X ′,S ′) ≤ 4|S ′|+ 1.

Chapter 4. Practical algorithms for explainable k-means clustering 61

Proof. The left-hand side follows because any assignment between points and
reference centers that is valid after applying a cut is also valid before the cut,
so that CurrentCost(X ′,S ′) ≤ Cost(γ,X ′,S ′) for every cut γ.

For the right-hand side, let maxi and mini be the maximum and
minimum values of the i-th component among the centers in S ′, respectively.
Moreover, let bi = maxi − mini and let p(γ) be the number of points in X ′

that are separated from their closest centers in S ′ when a cut γ is employed.
We have that

Cost(γ,X ′,S ′) ≤ Cost(X ′,S ′) + p(γ)
d∑

i=1
b2

i .

The reason is that ∑d
i=1 b2

i is an upper bound on the contribution for the k-
means cost of a point that is separated from its closest center.

On the other hand, it follows from Lemma 5.7 of (Moshkovitz et al. (2020))
that

CurrentCost(X ′,S ′) ≥ p∗

4|S ′|

d∑
i=1

b2
i ,

where p∗ is the number of points separated from their closest centers by the
valid cut that separates the minimum number of points.

Thus, if γ is a cut that separates p∗ points from its closest centers, we
get that

Cost(γ,X ′,S ′) ≤ (4|S ′|+ 1)CurrentCost(X ′,S ′),

establishing the result. ■

4.2.5
Illustration of ExShallow and the importance of DExp

In this section we present an example on a toy dataset to demonstrate
how ExShallow may construct better trees in terms of explainability, and the
importance of the
tt DExp parameter in doing so. Let 0 and 1 be points in Rk with all components
equal to 0 and 1, respectively. The set of points in our instance, X , is given by
X0 ∪ . . . ∪Xk−1, where X0 = {0} and Xi, with i ≥ 1, is a group that satisfies
the following conditions:

1. Xi has k3i points, so that |Xi| = k3|Xi−1|, for i ≥ 1;

2. The centroid (mean of its points) of Xi is the point with all components
equal to i · n;

3. The distance of every point in Xi to the centroid of Xi is at most 1;

Chapter 4. Practical algorithms for explainable k-means clustering 62

4. Each point in Xi is a multiple of direction 1.

Properties 2 and 3 mean each subset X0, X1, . . . , Xk−1 may be isolated
from the others by an axis-aligned cut. A k-partition that isolates all the
subsets will be the best one in terms of Price (4-5): any clean cut (one that
does not separate points from their reference centers) has a Cost (4-1) of at
most n, while any cut that is not clean has a Cost of at least kn2, so all chosen
cuts must be clean. The question is which set of clean cuts will be chosen, and
in what order.

If λ = 0, all clean cuts are equally good, irrespective of the depths of
each cluster in the final decision tree that induces the partition. So it may well
be the case that the points in Xk−1 end up in the deepest possible leaf, at level
k− 1, and that each cut is performed along a different dimension. Because the
vast majority of the points in the dataset are concentrated in Xk−1, such a
decision tree would have WAD = WAES ≈ k − 1.

Now consider λ ∈ (0, 1]. Clean cuts would still be preferred; they would
have a cost (4-4) no higher than 1+k, while cuts that are not clean would have
a cost of at least nk. But, due to the DExp term, the first clean cut, performed
at the root of the tree, would necessarily be one that separates Xk−1 from the
other groups.

To see that more clearly, note that when EvalDExp (Algorithm 7) is
evaluated for a clean cut that separates Xk−1 from the other groups, it calls
EvalWAD (Algorithm 6) with rc = 1 − 1/k and rp = 1 − k3k−3/n. EvalWAD
would then calculate the WAD of an auxiliary tree that has exactly one leaf
at depth 1 containing k3(k−1) points. Since in this tree the other points lie at
depth at most k − 1 and the number of such points can be upper-bounded by
(k − 1)k3(k−2), its WAD, for k > 3, is at most

k3(k−1) + (k − 1)2k3(k−2)

n
≤ 1 + 1

k
≤ 4

3 , (4-8)

where we use the fact that n > k3(k−1) to obtain the first inequality.
On the other hand, the auxiliary tree for a clean cut at the root that

isolates X0 would have WAD ≥ 2 − 1/n > 4/3 because only one point lies at
depth 1 in the auxiliary tree. Moreover, any other clean cut induces a tree with
no leaf at depth 1, so the WAD of their auxiliary trees would be at least 2.

Therefore, the cut applied to the root separates Xk−1 from the rest of X .
Since no cuts have yet been applied, this cut is not killer; so EvalDExp returns
the same value as EvalWAD, and ExShallow selects any cut that isolates Xk−1.

Then the algorithm recurses on the partitions XL = X0 ∪ . . .∪Xk−2 and
XR = Xk−1. The latter is an isolated cluster, so no cut is applied to it; for the

Chapter 4. Practical algorithms for explainable k-means clustering 63

former, the same argument as above leads to the conclusion that a cut that
isolates Xk−2 will be chosen. This time, however, cuts from the same dimension
as the one chosen at the root will be killer, and therefore will have DExp < ŴAD.
We can generalize this to the rest of the tree and conclude that, at any level
i, a cut that isolates Xk−i from X0 ∪ · · · ∪Xk−i−1 will be chosen, and that all
cuts in the tree will be along the same axis.

The final tree constructed by ExShallow with λ ∈ (0, 1] will have the
same characteristics as the one EvalWAD generated to evaluate the cuts at the
root that isolated Xk−1, with WAD, WAES ≈ 1 – a great improvement over the
worst-case scenario of WAD = WAES ≈ k − 1 for using ExShallow with λ = 0.

4.3
ExBisection: Explainable clustering from scratch

Both ExGreedy (Section 4.1) and ExShallow (Section 4.2), as well
as other explainable k-means clustering algorithms found in the literature
((Moshkovitz et al. (2020), Frost et al. (2020), Makarychev & Shan (2021b),
Esfandiari et al. (2021)); see Section 4.4), rely on a (hopefully optimal) un-
explained partition Pu as a starting point, and establish a rule for finding
axis-aligned cuts of the data according to the clusters and/or representatives
of Pu. The initial set of reference centers can be built by any algorithm for
the (non-explainable) k-means clustering problem, such as Lloyd’s algorithm
(Lloyd (1982), Leskovec et al. (2020)). ExBisection, presented below, is an
explainable clustering algorithm that is built “from scratch,” that is, without
the need of a previous partition. As far as I can tell, this is the first such
algorithm presented in the literature.

Algorithm 8 builds a decision tree that induces a k-partition of the data
by hierarchically choosing the axis-aligned cut that most reduces the sum of
intra-cluster variances. It can be seen as a restricted case of the clustering algo-
rithm through bisection minimizing the k-means cost (Steinbach at al. (2000)).

Algorithm 8 ExBisection(P , k, k∗)
P : set of clusters; k: number of clusters in P ; k∗: number of desired clusters

1: if k = k∗ then
2: Return P
3: else
4: γ∗ ← axis-aligned cut that creates a new cluster in P that minimizes

the sum of intra-cluster variances
5: P ′ ← the k + 1-partition generated by applying γ to P
6: Return ExBisection(P ′, k + 1, k∗)

Chapter 4. Practical algorithms for explainable k-means clustering 64

4.3.1
Complexity analysis

Step 4 in Algorithm 8 involves finding the axis-aligned cut that will split
in two one of the clusters in the current partition while minimizing the k-means
cost function. To do this efficiently, we can sort the data across all dimensions,
storing the sorting indices in an n×d matrix. To track which point is in which
cluster, we use an additional vector with n dimensions.

At the outset, P has a single cluster, comprising all elements in the
dataset. We build the sorting matrix in O(dn log n) time, and calculate the k-
means cost of this single cluster in O(dn). To find the first cut, we run through
all possible cuts in all d dimensions, keeping track of the k-means cost of both
clusters each cut would generate. As the cuts are being considered in sorted
order, updating the cost of each cluster takes O(d) time. Since we have nd cuts
to evaluate, finding the best cut takes O(nd2) time. We therefore have a time
complexity of O(dn(log n + kd)) for the algorithm as a whole.

Other than keeping track of the sorted elements across all dimensions and
clusters, we can also store the best cut, and the gain cost reduction it would
provide if implemented, for each cluster. For instance, if |P| = 2, we will find
the best cut for the two clusters C1, C2 ∈ P , but only one of these cuts will
be implemented. Without loss of generality, assume C1’s cut leads to a larger
reduction in the k-means cost function of P , and that after implementing it
P ′ = {C2, C3, C4}, where C3, C4 are created by splitting C1 with the best
possible cut. When evaluating P ′, we don’t need to find the best cut for C2

again; we just need to worry about C3 and C4. More generally, if a cut is
implemented in C∗, in the next iteration of the algorithm we only need to find
the best cuts for the two clusters generated by splitting C∗ into two. While
this does not affect the theoretical complexity of Algorithm 8, it can improve
its running time in practice.

4.4
Other algorithms for explainable k-means clustering

We briefly present below other algorithms for explainable k-means clus-
tering found in the literature. IMM (Moshkovitz et al. (2020)) and ExKMC
(Frost et al. (2020)) are similar to ExGreedy and ExShallow in that they start
from an unrestrained partition Pu and build an explainable partition by select-
ing axis-aligned cuts that minimize some cost associated to it: the number of
points in the dataset separated from their representatives from Pu (IMM) or the
cost of an explainable partition that must select its representatives among those
in Pu (ExKMC). By contrast, RandomThresholds (Makarychev & Shan (2021b),

Chapter 4. Practical algorithms for explainable k-means clustering 65

Esfandiari et al. (2021), Gamlath et al. (2021)) is simply concerned with find-
ing axis-aligned cuts that separate the representatives from Pu well, without
using the dataset being clustered to evaluate the cost associated to these cuts.
These three algorithms, along with ExGreedy, ExShallow, and ExBisection,
will be empirically evaluated in Section 4.5 below.

4.4.1
IMM: Minimizing mistakes

Iterative Mistake Minimization (Moshkovitz et al. (2020)), summarized
in Algorithm 9, starts from an unconstrained partition Pu and builds an
explainable partition by iteratively finding cuts that minimize the number
of mistakes, or points that are separated from their representatives in Pu. Its
running time is O(kdn log n), not considering the time to find Pu. It is proven
in Theorem 3 of (Moshkovitz et al. (2020)) that the partition generated by IMM
is an O(k2) approximation to the cost of the optimal unrestricted partition.

Algorithm 9 IMM(X , M)
X : set of points; M : set of k representatives

1: Associate each point x ∈ X to its closest representative in M

2: Γ = {}
3: i = 1
4: while i < k do
5: γ∗ ← axis-aligned cut that separates at least one representative from

another, and that minimizes the number of points in X that are separated
from their closest representatives.

6: Γ← Γ ∪ {γ∗}
7: i← i + 1
8: Return the partition induced by the cuts in Γ

4.4.2
ExKMC: Maintaining explainability

Similarly to ExBisection, Explainable k-Means Clustering, or ExKMC
(Frost et al. (2020)), iteratively selects the axis-aligned cut that leads to the
best explainable k-partition at each step. The main difference between both
algorithm is that ExKMC uses an existing, unrestricted partition Pu to evaluate
the cuts: the surrogate cost of a cluster C ∈ P is given by

SurrogateCost(C, M) = min
{∑

x∈C

||x− µ||22

}
∀µ ∈ {C ∩M}, (4-9)

Chapter 4. Practical algorithms for explainable k-means clustering 66

where M is the set of representatives from Pu. In other words, the cost of a
cluster during the execution of ExKMC is the smallest possible k-means cost of
the cluster if its representative is one of the representatives from Pu.

Algorithm 10 ExKMC(X , M)
X : set of points; M : set of k representatives

1: Associate each point x ∈ X to its closest representative in M

2: Γ = {}
3: i = 1
4: while i < k do
5: γ∗ ← axis-aligned cut that separates at least one representative from

another, and that minimizes the sum of the surrogate cost (4-9) over all
clusters in the partition induced by Γ ∪ {γ∗}.

6: Γ← Γ ∪ {γ∗}
7: i← i + 1
8: Return the partition induced by the cuts in Γ

The advantage of this approach over ExBisection is the time complex-
ity: as shown in (Frost et al. (2020)), ExKMC runs in O(dn(log n + k)), a factor
of d faster in ExBisection when kd > log n. However, when running ExKMC
from scratch one must incur the additional cost of finding an unrestricted
partition in the first place.

4.4.3
RandomThresholds: near-optimal explainable k-means clustering

Presented in different papers independently (Makarychev & Shan (2021a),
Esfandiari et al. (2021), Gamlath et al. (2021)), RandomThresholds builds an
explainable partition based on an unconstrained partition Pu by randomly
selecting axis-aligned cuts that create a good separation of the representatives
from Pu. Notably, the algorithm never looks at the dataset being partitioned;
only the representatives are considered. We summarize it in Algorithm 11,
based on the implementation from (Makarychev & Shan (2021a)).

RandomThresholds is not presented as a practical algorithm; instead, as
mentioned in Section 2.1.1.1, it has been extensively used to improve the upper
bound of the price of explainability of both the k-means and the k-medians
explainable clustering problems. As the best known theoretical algorithm
for the explainable k-means problem, however, it is natural to wonder how
it fares in practice. To our knowledge, Section 4.5 below, adapted from
(Laber et al. (2023)), presents the first empirical evaluation of the algorithm.

Chapter 4. Practical algorithms for explainable k-means clustering 67

Algorithm 11 RandomThresholds(S, ε)
S: set of k representatives; ε: threshold parameter

1: T ← tree with a single node containing all representatives in S
2: while T contains a leaf with two representatives do
3: Sample i ∈ {1, 2, ..., d}, θ ∈ (0, 1), σ ∈ {−1, 1} uniformly at random
4: for leaf u ∈ T with more than 1 representative do
5: mu ← median of all representatives in u
6: Ru ← max{||s−mu||2 | s ∈ Su}
7: Sl

u ← {s ∈ Su | si ≤ mu
i + (σ + ε)

√
θRu}

8: Sr
u ← {s ∈ Su | si ≥ mu

i + (σ − ε)
√

θRu}
9: if Sl

u and Sr
u are not empty then

10: Split u using cut (i, mu + σ
√

θRu)
11: Assign Sl

u and Sr
u to u’s children

12: Return T

4.5
Experiments

In this section we present and analyze the results of experiments
that compare the performances of the practical algorithms described in the
previous sections. We used 16 datasets of different sizes and characteris-
tics, running 30 seeded iterations in each of them. For each iteration, we
find an unrestricted partition of the data by running Lloyd’s algorithm
(Lloyd (1982)) with the ++ initialization (Arthur & Vassilvitskii (2006)), as
implemented in Python’s scikit-learn package (Pedregosa et al. (2011)).
This unrestricted partition is provided to IMM and to ExKMC, as implemented in
the ExKMC package (Frost et al. (2020)), and to ExGreedy, RandomThreshold,
and ExShallow, implemented by us and available at https://github.com/
lmurtinho/ShallowTree. ExBisection, which is deterministic, is run once
for each dataset.

We also performed statistical tests with Python’s scipy package
(Virtanen et al. (2020)) to verify the statistical significance of our results. For
the algorithms that depend on an initial unexplained partition, and therefore
partition the data in different ways depending on the starting point, we per-
formed one-sided t-tests, assuming the same variance for both distributions,
with a confidence level of 95%. We also calculated confidence intervals for the
results of ExShallow for each dataset and checked whether the (deterministic)
results for ExBisection are within those intervals.

Table 4.1 presents the size, dimension, and number of classes (which
we use as the number of clusters) of the datasets in which we perform
the experiments. All datasets are available online, and our code includes a
script for retrieving and running tests on them. The numbers of instances,

https://github.com/lmurtinho/ShallowTree
https://github.com/lmurtinho/ShallowTree

Chapter 4. Practical algorithms for explainable k-means clustering 68

Table 4.1: Dataset summary: n is the number of data points, d is the number
of dimensions, and k is the number of classes/desired clusters.

Dataset n d k Source
Anuran 7,195 22 10 UCI
Avila 20,867 10 12 UCI (De Stefano et al. (2018))
Beer 1,514,999 5 104 OpenML
BNG (audiology) 1,000,000 85 24 OpenML
Cifar10 60,000 3,072 10 (Krizhevsky, 2009)
Collins 1,000 19 30 OpenML
Covtype 581,012 54 7 OpenML (Collobert et al., 2002)
Digits 1797 64 10 UCI (Alpadyin & Kaynak, 1998)
Iris 150 4 3 UCI (Fisher, 1936)
Letter 20,000 16 26 (Hsu & Lin, 2002)
Mice 552 77 8 OpenML (Higuera et al., 2015)
20Newsgroups 18,846 1,069 20 http://qwone.com/~jason/20Newsgroups/
Pendigits 10,992 16 10 UCI
Poker 1,025,010 10 10 UCI
Sensorless 58,509 48 11 UCI
Vowel 990 10 11 UCI

dimensions, and features are those of the final dataset used in our experiments
(after removing missing values and one-hot encoding categorical variables, for
instance). All datasets are anonymized and present no offensive content.

4.5.1
Results

Table 4.2 shows the main results of our experiments for the 16 datasets
and for 6 different explainable clustering algorithms: ExShallow with λ = 0.03
(SHA), ExBisection (BIS), ExGreedy (GRD), IMM (IMM), ExKMC (KMC),
and RandomThreshold (RDM). Best results are shown in bold. The partition
costs are normalized by the cost of the unrestricted partition used as a starting
point for the explainable clustering algorithms.

ExShallow produces the best partitions, in terms of normalized cost, for
10 of the 16 datasets; ExBisection and ExGreedy do so for 6 datasets each.
The best results for the other algorithms from the literature is 3 (IMM). Notably,
RandomThresholds, the algorithm with the best theoretical guarantees, only
reaches the best normalized partition cost in the 20Newsgroups dataset – in
which all algorithms but ExShallow do the same.

For explainability measures, ExBisection induces partitions with the
lowest WAES for 7 datasets, and the lowest WAD for 6 of them. ExShallow
reaches the best result for 4 datasets in terms of WAES and 5 in terms of
WAD; however, as we’ll see in Sections 4.5.2 and 4.5.3 below, it is possible
to adjust its λ parameter to reach better results in these metrics. ExGreedy

http://qwone.com/~jason/20Newsgroups/

Chapter4.
Practicalalgorithm

s
forexplainable

k-m
eans

clustering
69

Table 4.2: Full results of experiments for all datasets and algorithms. ExShallow (SHA) is run with λ = 0.03. Best results are in bold.
Partition costs are normalized by the cost of the unrestricted partition used as a starting point for the explainable clustering algorithms.

Normalized Partition Cost WAES WAD
Dataset k SHA BIS GRD IMM KMC RDM SHA BIS GRD IMM KMC RDM SHA BIS GRD IMM KMC RDM
anuran 10 1.16 1.21 1.15 1.28 1.32 1.71 3.75 3.24 4.17 5.37 3.41 3.89 3.79 3.51 4.27 5.67 3.41 4.05
avila 12 1.05 1.13 1.05 1.07 1.18 1.35 3.87 3.20 5.58 5.25 3.26 4.87 4.60 4.18 6.64 6.61 4.47 6.47
beer 104 1.16 1.07 1.19 1.83 1.27 1.55 7.35 6.39 8.13 7.80 6.34 7.27 10.47 7.23 15.09 54.31 7.35 11.08ß
bng 24 1.05 1.01 1.02 1.04 1.03 1.05 3.50 4.66 5.41 8.82 4.60 4.31 3.50 4.66 5.41 11.82 4.60 4.43
cifar10 10 1.16 1.15 1.17 1.22 1.19 1.26 3.37 3.49 3.60 5.70 3.63 3.42 3.37 3.49 3.60 5.70 3.63 3.42
collins 30 1.18 1.16 1.17 1.23 1.23 1.42 5.56 5.04 13.12 12.81 5.61 7.65 5.86 5.24 15.29 17.00 5.83 8.35
covtype 7 1.03 1.10 1.03 1.03 1.13 1.34 2.61 2.38 2.62 2.61 2.45 2.54 3.15 2.90 3.56 3.55 2.82 3.31
digits 10 1.19 1.19 1.21 1.23 1.22 1.42 3.96 4.04 5.65 5.36 3.80 3.55 3.96 4.04 5.65 5.36 3.80 3.59
iris 3 1.04 1.10 1.04 1.04 1.04 1.45 1.67 1.33 1.67 1.44 1.44 1.52 1.67 2.00 1.67 1.67 1.67 1.68
letter 26 1.19 1.30 1.23 1.30 1.36 1.53 5.26 4.94 11.37 12.64 5.44 7.03 5.48 5.09 12.50 14.85 5.54 7.72
mice 8 1.07 1.09 1.09 1.12 1.15 1.37 3.17 2.75 3.32 3.53 3.12 3.08 3.24 3.00 3.58 3.76 3.13 3.40
newsgroups 20 1.05 1.01 1.01 1.01 1.01 1.01 1.12 11.29 15.61 15.53 13.80 14.99 1.22 11.39 15.63 15.53 13.80 15.02
pendigits 10 1.14 1.18 1.14 1.24 1.32 1.70 3.70 3.80 4.43 4.31 3.49 3.56 3.77 3.80 4.46 4.44 3.50 3.71
poker 10 1.10 1.11 1.10 1.10 1.12 1.14 3.35 3.47 3.37 3.37 3.23 3.24 3.35 3.47 3.37 3.37 3.23 3.26
sensorless 11 1.02 1.05 1.02 1.03 1.07 1.32 2.99 3.84 4.24 4.10 3.99 4.06 3.84 4.13 4.52 4.44 4.07 4.29
vowel 11 1.21 1.21 1.25 1.36 1.29 1.50 3.89 3.64 5.26 5.74 3.63 3.84 3.94 3.64 5.76 6.41 3.64 4.09

Chapter 4. Practical algorithms for explainable k-means clustering 70

Figure 4.5: Price of explainability (normalized by the maximum value per
dataset) per dataset and algorithm.

behaves relatively poorly in terms of explainability, as does, once again,
RandomThresholds.

Figures 4.5, 4.6, and 4.7 show, respectively, the PoE, WAES and WAD per
dataset and algorithm, normalized by the maximum value for each dataset. In
terms of PoE, we can see that, for the most part, the algorithms tend to present
similar results, but both RandomThresholds and (for the beer dataset) IMM
sometimes present significantly higher prices than the other four algorithms.
In terms of WAES, the negative outliers are IMM and ExGreedy, and ExShallow
performs much better than the five other algorithms in the newsgroups and
sensorless datasets. The observations regarding WAES also apply to WAD, with
the addition of the relatively bad results for RandomThresholds in the avila
dataset.

One noteworthy result is that ExBisection frequently outputs trees that
are more explainable, on average, than the ones from ExShallow, even though
the latter has an explicit penalty term designed to avoid the construction of less
explainable trees. We conjecture that this happens because, as an algorithm
that builds explainable partitions from scratch, ExBisection is not restricted
to cuts that separate representatives from an original unrestricted partition,
and can therefore find cuts that are better in terms of explainability even
though it is not explicitly looking for them.

In summary, our experiments suggest that ExShallow is almost always
at least close to the best result in terms of both cost and explainability, and
frequently has a significant advantage in at least one of these dimensions (and
frequently both of them) when compared to the other algorithms. ExBisection

Chapter 4. Practical algorithms for explainable k-means clustering 71

Figure 4.6: WAES (normalized by the maximum value per dataset) per dataset
and algorithm.

Figure 4.7: WAD (normalized by the maximum value per dataset) per dataset
and algorithm.

Chapter 4. Practical algorithms for explainable k-means clustering 72

Table 4.3: Mean normalized information score for all datasets and algorithms.
ExShallow (SHA) is run with λ = 0.03. Best results for each dataset are
in bold. The clusters returned by the unexplained partition (via Lloyd’s
algorithm) are treated as the ground truth.

Dataset k SHA GRD IMM KMC RDM
anuran 10 0.70 0.72 0.70 0.64 0.47
avila 12 0.73 0.72 0.73 0.68 0.58
beer 104 0.83 0.82 0.76 0.81 0.70
bng 24 0.29 0.41 0.25 0.38 0.24

cifar10 10 0.29 0.29 0.25 0.27 0.12
collins 30 0.55 0.54 0.54 0.53 0.39

covtype 7 0.83 0.83 0.83 0.72 0.62
digits 10 0.58 0.55 0.55 0.54 0.26
iris 3 0.91 0.91 0.91 0.91 0.73

letter 26 0.61 0.58 0.56 0.53 0.41
mice 8 0.72 0.71 0.71 0.65 0.48

newsgroups 20 0.10 0.55 0.56 0.53 0.51
pendigits 10 0.77 0.77 0.72 0.67 0.48

poker 10 0.41 0.41 0.41 0.40 0.49
sensorless 11 0.91 0.92 0.92 0.88 0.75

vowel 11 0.58 0.55 0.53 0.52 0.33

also tends to be close to the best observed results in terms of both cost
and explainability, but with markedly worse results than ExShallow in the
newsgroups and (for WAES) sensorless datasets. ExGreedy performs very
well in terms of PoE, but with high values for WAES and WAD in several datasets.

For algorithms presented elsewhere in the literature, IMM performs rela-
tively poorly in terms of explainability, and, for the beer dataset, in terms
of PoE as well; ExKMC has a better performance, comparable to that of
ExBisection in most datasets; and RandomThresholds has arguably the
worse results in terms of PoE, which may be somewhat surprising as it is the
algorithm with the best theoretical guarantees.

We also report in Table 4.3 the normalized mutual information score
(NMI) (Strehl & Ghosh (2002)) of the partitions generated by the explainable
algorithms, considering that the ground truth is the unrestrained partition
from which they are derived; a value of 1 corresponds to a perfect correspon-
dence between partitions. We remove ExBisection from this analysis because
its partition does not use centroids from an unrestricted partition as an input.

On average, ExShallow’s partitions are closest to the unrestrained ones
for 7 datasets, and as good as those generated by its competitors in another one.
ExShallow returns the worst partitions in terms of NMI for a single dataset,
20Newsgroups – for which, as can be seen in Table 4.2, its results in terms

Chapter 4. Practical algorithms for explainable k-means clustering 73

Figure 4.8: Mean WAES per depth factor (for all datasets), normalized by the
results for λ = 0 for each dataset. Error bars (with a confidence interval of
95%) are calculated using Python’s scipy package (Virtanen et al. (2020)).

of explainability are quite remarkable: while the other algorithms produce
partitions explained by over 11 cuts on average, the partitions generated by
ExShallow are explained by an average of fewer than 2 cuts.

4.5.2
ExShallow: Sensitivity of cost and explainability to variations in λ

Figure 4.8 shows how the average WAES of the partitions produced by
ExShallow changes as λ increases. To allow for a comparison between datasets,
the values are normalized by those of the tree when λ = 0 (i.e., when our cost
function does not penalize cuts that lead to less explainable partitions). For
each dataset, we ran 10 seeded iterations of Lloyd’s algorithm and used the
resulting partitions as a starting point for each instance of ExShallow with
different values of λ.

ExShallow behaves as expected, with larger values of λ associated with
trees having lower WAES, on average. (Results for WAD are omitted as they
are very similar in terms of correlation with λ.) We observe a sharp drop for
small increments of λ when starting from zero. The red value is 0.03, the one
employed in the previous experiments.

Figure 4.9 shows how the mean cost of the partitions produced by our
algorithm changes as λ increases. To allow for a comparison between datasets,
the costs are normalized by the cost of the unrestricted partition generated by
Lloyd’s algorithm. The behavior is, in general, the expected one, with larger
values of λ associated with higher costs.

Combining these figures leads to the important, and perhaps surprising,
empirical conclusion that working with a small λ is very beneficial, as it
significantly reduces the average weighted depth and explanation size without
increasing the average cost of the partition.

Chapter 4. Practical algorithms for explainable k-means clustering 74

Figure 4.9: Mean normalized partition cost per depth factor (for all datasets),
normalized by the cost of the unrestricted partition used to build the explain-
able partition. Error bars (with a confidence interval of 95%) are calculated
using scipy.

4.5.3
ExShallow: Calibrating the trade-off between quality and explainability

The results presented in Figures 4.8 and 4.9 suggest that calibrating λ

may lead to significant improvements when ExShallow does not initially return
partitions that are satisfactory in terms of either quality (cost) or explainability
(WAES and/or WAD). We believe the results presented in Table 4.2 indicate
that ExShallow “out of the box” is at least competitive with, and arguably
superior to, the most recent comparable algorithms in the literature, but there
is some room for improvement. For instance, although the partition induced
by ExShallow for the 20Newsgroups dataset is much more explainable than
those induced by the competition, the quality of the partition (both in terms
of cost and NMI) suffers from it; and in many cases ExKMC induces partitions
that are slightly more explainable, although their quality tends to be worse.

We can use the λ parameter to adjust the trade-off between partition
quality and explainability in ExShallow, something that is not possible in the
other algorithms presented here. To do so, we devised a simple binary search
strategy, that starts from our default value of λ = 0.03 and then, if necessary,
decreases it to try and find a partition with smaller cost, or increases it to
try and find a partition with smaller WAES. Given a goal cost c∗ and a goal
WAES w∗, the binary search aims to find a partition with cost c ≤ c∗ and WAES
w ≤ w∗; if it is unable to do so, it returns the partition with the smallest WAES
given that its cost does not exceed c∗.

We present the results of this binary search, over 30 seeded iterations
for each algorithm, in Table 4.4. Considering that ExKMC frequently beats
ExShallow in terms of WAES, we used its results as our goal, to verify if we
can “dominate” its results (i.e., induce partitions that have, on average, both
smaller costs and explanation sizes) in the datasets under analysis.

Chapter 4. Practical algorithms for explainable k-means clustering 75

Table 4.4: Comparison between results for ExKMC and ExShallow∗. Best results
for each dataset are in bold. Statistically better values at a 95% confidence level
are in blue; statistically worse values at the same confidence level are in red.

NPC WAES WAD NMI
Dataset k ExKMC ExShallow∗ ExKMC ExShallow∗ ExKMC ExShallow∗ ExKMC ExShallow∗

Anuran 10 1.32 1.20 3.41 3.19 3.41 3.33 0.64 0.68
Avila 12 1.18 1.15 3.26 3.24 4.47 3.76 0.68 0.64
Beer 104 1.27 1.22 6.34 7.25 7.35 10.53 0.81 0.82
BNG 24 1.03 1.02 4.60 4.50 4.60 4.50 0.38 0.38
Cifar10 10 1.19 1.16 3.63 3.37 3.63 3.37 0.27 0.29
Collins 30 1.23 1.20 5.61 4.97 5.83 5.42 0.53 0.53
Covtype 7 1.13 1.12 2.45 2.44 2.82 2.65 0.72 0.75
Digits 10 1.22 1.19 3.80 3.65 3.80 3.65 0.54 0.56
Iris 3 1.04 1.04 1.44 1.67 1.67 1.67 0.91 0.91
Letter 26 1.36 1.24 5.44 4.81 5.54 5.02 0.53 0.58
Mice 8 1.15 1.10 3.12 2.97 3.13 3.11 0.65 0.70
20Newsgroups 20 1.01 1.01 13.80 13.45 13.80 13.78 0.53 0.53
Pendigits 10 1.32 1.15 3.49 3.28 3.50 3.37 0.67 0.75
Poker 10 1.12 1.11 3.23 3.33 3.23 3.33 0.40 0.40
Sensorless 11 1.07 1.02 3.99 2.99 4.07 3.84 0.88 0.91
Vowel 11 1.29 1.24 3.63 3.41 3.64 3.50 0.52 0.56
Median 1.17 1.15 3.63 3.35 3.72 3.58 0.59 0.61

In terms of cost, ExShallow∗ (ExShallow with λ optimized by the
procedure described above) beats ExKMC in all but two datasets, where
both algorithms are tied; in terms of WAES, ExShallow∗ beats ExKMC in 13
datasets and is beaten by it in 3. Most notably, in the two datasets (BNG and
20Newsgroups) for which ExKMC induces less costly partitions than ExShallow,
ExShallow∗ induces partitions that beat the ones generated by ExKMC in both
dimensions.

4.5.4
Running times

Table 4.5 presents the average running times for each dataset and
algorithm. For all algorithms except ExBisection (BIS), running times are an
average over 30 iterations and include the time needed to run Lloyd’s algorithm
and generate the initial reference centers used as input. ExBisection ran once
for each dataset and does not use representatives from an unexplained partition
as input. We note that RandomThreshold (RDM) and ExBisection are both
implemented purely in Python, while their competitors’ most time-consuming
routines are implemented in either C or Cython, both much faster languages.

Even allowing for this discrepancy, ExBisection is frequently much
slower than the other algorithms. This is due to the fact that its running
time, as mentioned in Section 4.3, is O(nkd2). We can see in Table 4.5 that
ExBisection’s running time is particularly worse than the other algorithms’
when d is large – and, by contrast, it performs much faster than them in Beer,

Chapter 4. Practical algorithms for explainable k-means clustering 76

Table 4.5: Average running times (in seconds) for each algorithm and dataset.
Experiments were performed on 8 484 Intel Core i7-4790 processors @3.60GHz
with 32 GB of RAM.

Dataset k n d SHA SHA∗ BIS GRD IMM KMC RDM
anuran 10 7195 22 0.75 0.74 0.69 0.73 0.55 0.61 1.48
avila 12 20867 10 1.84 3.81 0.28 1.93 1.60 1.77 3.14
beer 104 1514999 5 730.90 938.72 42.59 731.74 752.97 760.48 735.14
bng 24 1000000 85 1033.53 1669.02 4891.01 1068.85 930.79 956.54 2361.65
cifar10 10 60000 3072 550.68 550.83 19100.18 562.80 416.71 437.85 1464.22
collins 30 1000 19 0.46 0.50 0.22 0.52 0.38 0.41 0.66
covtype 7 581012 54 59.29 58.01 65.42 61.62 42.50 48.76 189.44
digits 10 1797 64 0.44 0.44 0.41 0.47 0.31 0.35 0.99
iris 3 150 4 0.02 0.06 0.00 0.02 0.02 0.02 0.02
letter 26 20000 16 4.82 4.84 1.87 5.55 4.40 4.57 8.07
mice 8 552 77 0.24 0.41 0.46 0.23 0.16 0.17 0.40
newsgroups 20 18846 1069 57.51 311.83 2415.34 107.11 54.56 63.59 241.87
pendigits 10 10992 16 1.01 1.02 0.27 1.04 0.83 0.92 1.88
poker 10 1025010 10 97.32 328.40 17.11 97.30 87.32 95.68 157.18
sensorless 11 58509 48 7.21 7.22 16.95 7.69 4.04 5.00 21.38
vowel 11 990 10 0.20 0.24 0.07 0.20 0.19 0.19 0.25

a dataset with many elements (n > 106) but few dimensions (d = 5).
For the remaining algorithms, the running times for each dataset tend

to be comparable, as the bulk of the time is spent on Lloyd’s algorithm.
ExShallow∗ performs worse than its competitors in some datasets, as it runs
through several iterations of Algorithm 5 to find the best value for λ. And
RandomThresholds’s relatively poor performance is likely due to it being
implemented purely in Python, as mentioned above.

5
Separability with minimum size constraints

This chapter presents the results of our research on separability cluster-
ing with a minimum size per cluster. Section 5.1 briefly describes the well-
know Single-Linkage algorithm and shows that saying it maximizes the
minimum spacing between clusters, as presented in the literature, is insuffi-
cient to describe the partitions it generates. In Section 5.2, we expand the
theoretical understanding of Single-Linkage by proving that it also maxi-
mizes the minimum-spanning-tree cost of the partition, MST-Cost, which we
introduce in the same section. In Section 5.3, we adapt the Single-Linkage
algorithm, along with an algorithm for machine scheduling while maximizing
the minimum load, to approximate an optimal clustering for the problem of
maximizing Min-Spacing with a minimum-size guarantee per cluster. This
algorithm adaptation is then used in Section 5.4 as a building block for an
algorithm that approximates the optimal clustering for the problem of max-
imizing MST-Cost with a minimum-size guarantee per cluster. The results of
our experiments on 10 different datasets are presented in Section 5.5.

5.1
The Single-Linkage algorithm and the Min-Spacing criterium

The Single-Linkage algorithm starts with n groups, each of them
consisting of a point in X . Then, at each iteration, it merges the two groups
with minimum spacing (1-2) into a new group. Thus, by the end of the iteration
n − k it obtains a clustering with k groups. In (Kleinberg & Tardos (2006))
it is proved that the Single-Linkage obtains a k-clustering with maximum
Min-Spacing (1-2).

Theorem 5.1 ((Kleinberg & Tardos (2006)), chap 4.7) The
Single-Linkage algorithm obtains the k-clustering with maximum
Min-Spacing (1-2) for instance (X , dist).

Figure 5.1, however, shows that Theorem 5.1 does not fully explain
the behavior of Single-Linkage, as partitions very different than those it
generates may also maximize Min-Spacing. The subfigure to the right shows
a clustering built by Single-Linkage; the subfigure to the left shows a

Chapter 5. Separability with minimum size constraints 78

Figure 5.1: Two partitions with 3 groups (defined by colors) that maximize
Min-Spacing. The clustering built by Single-Linkage is to the left; a different
clustering, that does not maximize MST-Cost, is to the right.

very different clustering, but one that also maximizes the minimum spacing
– showing that this condition alone is insufficient to properly characterize
Single-Linkage’s behavior.

To analyze our algorithms we make use of well-known properties of
minimum spanning trees such as the cut property and the cycle property,
reproduced below.

Theorem 5.2 (Cut Property.) Let G = (V, E) be a graph with distinct
weights on its edges. Let S ⊂ V be a non-empty cut in G. If e is the edge
with minimum cost among those that have one endpoint in S and the other
one in V \ S, then e belongs to every minimum spanning tree for G.

Proof. See Property 4.17 in (Kleinberg & Tardos (2006)). ■

Theorem 5.3 (Cycle Property.) Let G = (V, E) be a graph with distinct
weights on its edges and let C be a cycle in G. Then, the edge with the largest
weight in C does not belong to any minimum spanning tree for G.

Proof. See Property 4.20 in (Kleinberg & Tardos (2006)). ■

For ease of presentation, we assume that all values of dist are distinct. We
note, however, that our results hold if this assumption is dropped.

5.2
Relating Min-Spacing and MST-Cost criteria

Let GP be the complete weighted graph induced by P where each node
represents a group and each edge between nodes P1, P2 ∈ P has weight
equivalent to Min-Spacing (1-2), where x ∈ P1 and y ∈ P2. In the minimum-
spanning-tree clustering problem, our goal is to maximize

MST-Cost(P) = MST(GP), (5-1)

where MST(G) is the cost of the minimum spanning tree of G.
Single-Linkage and minimum spanning trees are closely related: the

former can be seen as Kruskal’s algorithm for building minimum spanning

Chapter 5. Separability with minimum size constraints 79

trees with an early stopping rule. We prove in this section that, more than
maximizing Min-Spacing, Single-Linkage maximizes MST-Cost, which im-
plies the maximization of the former. These results, presented below, are a
consequence of Lemma 10, that generalizes the result of Theorem 5.1.

In what follows, CSL is a k-clustering obtained by Single-Linkage for
instance I = (X , dist, k) and TSL is a minimum spanning tree for GCSL

.
Moreover, wSL

i is the weight of the i-th smallest weight of TSL.

Lemma 10 Let C be a k-clustering for I and let wi be the weight of the i-
th smallest weight in a minimum spanning tree T for the graph GC. Then,
wSL

i ≥ wi.

To prove Lemma 10 we will use the following characterization of minimum
spanning trees, whose correctness follows directly from Theorem 5.3:

Theorem 5.4 (Minimum spanning tree conditions.) Let G = (V, E) be
a weighted graph. A spanning tree T for G is a minimum spanning tree if and
only if, for each edge e = uv ∈ E, the weight w(e) of e satisfies w(e) ≥ w(e′)
for every edge e′ in the path that connects u to v in T .

The following proposition will also be useful. Recall that spacing(Ci, Cj)
is defined (1-3) as the minimum distance between two points from clusters
Ci, Cj.

Proposition 5.5 Let C ′ be a k-clustering for instance I and let T ′ be a
minimum spanning tree for GC′. Moreover, let C ′

i and C ′
j be groups of C ′ such

that spacing(C ′
i, C ′

j) = Min-Spacing(C ′). Then, the tree T a that results from
the contraction of the nodes C ′

i and C ′
j in T ′ is a minimum spanning tree for

GCa, where Ca is the (k−1)-clustering obtained from C ′ by merging C ′
i and C ′

j.

Proof. We show that T a satisfies the conditions of Theorem 5.4 when G = GCa .
For that, we will use the fact that T ′ satisfies the conditions of Theorem 5.4
when G = GC′ .

Let x and y be nodes of T a. For the sake of contradiction, we assume
that edge xy does not satisfy the conditions of Theorem 5.4 when G = GCa

and T = T a. Let w∗ be the weight of edge xy and let e be an edge in the path
that connects x to y in T a such that w(e) > w∗.

We have two cases:

Case 1) x ̸= C ′
i ∪C ′

j and y ̸= C ′
i ∪C ′

j. Then, e is also an edge in the path
that connects x to y in T ′. This implies that xy does not satisfy the required
conditions when G = GC′ and T = T ′, which is a contradiction.

Chapter 5. Separability with minimum size constraints 80

Case 2) x = C ′
i ∪ C ′

j or y ̸= C ′
i ∪ C ′

j. Without loss of generality, assume
x = C ′

i ∪ C ′
j. Let w′

i and w′
j be, respectively, the weights of the edges (y, C ′

i)
and (y, C ′

j) in GC′ .
We have that w∗ = min{w′

i, w′
j}. Without loss of generality, assume

w∗ = w′
i. Then, e is also an edge in the path that connects y to C ′

i in T ′. Again,
this implies that xy does not satisfy the required conditions when G = GC′

and T = T ′, which is a contradiction. ■

Proof of Lemma 10. It follows from Proposition 5.5 that the tree T i−1 that
is obtained by contracting the i−1 cheapest edges of T is a minimum spanning
tree for GCi−1 , where Ci−1 is a clustering for instance I that contains (k−(i−1))
groups. The cheapest edge of T i−1 is exactly the i-th cheapest edge of T . Thus,
Min-Spacing(Ci−1) = wi.

Similarly, wSL
i is exactly the Min-Spacing of a clustering with (k−(i−1)

groups that is obtained by Single-Linkage for instance I. Thus, it follows
from Theorem 5.1 that wSL

i ≥ wi. ■

From Lemma 10 it is straightforward to prove that Single-Linkage maxi-
mizes MST-Cost, and that this is a stronger characterization than maximizing
Min-Spacing:

Theorem 5.6 The clustering CSL returned by Single-Linkage for instance
(X , dist, k) maximizes the MST-Cost criterion.

Proof. Let C be a k-clustering for (X , dist, k) and let wi be the weight of the
i-th cheapest edge of the minimum spanning tree for GC. Since wSL

i ≥ wi for
i = 1, . . . , k − 1, we have that

MST-Cost(CSL) =
k−1∑
i=1

wSL
i ≥

k−1∑
i=1

wi = MST-Cost(C).

■

Theorem 5.7 Let C∗ be a clustering that maximizes the MST-Cost criterion
for instance (X , dist, k). Then, it also maximizes Min-Spacing for this same
instance.

Proof. Let us assume that C∗ maximizes the MST-Cost criterion but it does
not maximize the Min-Spacing criterion. Thus, wSL

1 > w∗
1, where w∗

1 is the
minimum spacing of C∗. It follows from the previous lemma that

MST-Cost(CSL) =
k−1∑
i=1

wSL
i >

k−1∑
i=1

w∗
i = MST-Cost(C∗),

Chapter 5. Separability with minimum size constraints 81

which contradicts the assumption that C∗ maximizes the MST-Cost criterion.
■

The next example (in the spirit of Figure 5.1) shows that a partition that
maximizes Min-Spacing may have a poor result in terms of MST-Cost.

Example 1 Let D be a positive number much larger than k. Moreover, let [t]
be the set of the t first positive integers and S = {(D ·i, j)|i, j ∈ [k−1]}∪(D, k)
be a set of (k − 1)2 + 1 points in R2.

Single-Linkage builds a k-clustering with Min-Spacing = 1 and
MST-Cost = 1 + (k − 2)D for S.

However, the k-clustering (C1, . . . , Ck), where Cj = {(D · i, j)|i =
1, . . . , k − 1}, for j < k and Ck = {(D, k)} has Min-Spacing 1 and
MST-Cost= (k − 1).

5.3
AlgoMinSp: maximizing the minimum spacing with minimum-size ap-
proximation guarantees

We start with a polynomial-time approximation scheme for the
Min-Spacing criterion. Our algorithm, AlgoMinSp (Algorithm 12), combines
Single-Linkage with MaxMinSched (Csirik et al. (1992), Woeginger (1997)),
an algorithm for the max-min scheduling problem with identical machines,
described below. For k′ > k, AlgoMinSp allows merging clusters from a (k′)-
partition generated by Single-Linkage in a way to obtain a (k, (1 − ϵ)L)-
partition with a minimum distance equal to or greater than the maximum
minimum distance of a (k, L)-partition, where ϵ is the approximation factor of
MaxMinSched.

The max-min scheduling problem can be described as follows: given m

machines and a set of n jobs with processing times p1, . . . , pn, find an assign-
ment of jobs to the machines so that the load of the machine with minimum
load is maximized. This problem admits a polynomial-time approximation
scheme (Woeginger (1997)).

Let MaxMinSched(P, k, ϵ) be a routine that implements this scheme. It
receives as input a parameter ϵ > 0, an integer k and a list of numbers P

(corresponding to processing times), and returns a partition of P into k lists
(corresponding to machines) such that the sum of the numbers of the list with
minimum sum is at least (1 − ϵ)OPT , where OPT is the minimum load of a
machine in an optimal solution of for the max-min scheduling problem when
the list of processing times is P and the number of machines is k.

Algorithm 12, as proved in the next theorem, obtains a (k, L(1 − ϵ))-
clustering whose Min-Spacing is at least the Min-Spacing of an optimal

Chapter 5. Separability with minimum size constraints 82

(k, L)-clustering. For that, it looks for the largest integer t for which the
clustering At obtained by executing t steps of Single-Linkage and then
combining the resulting groups into k groups (via MaxMinSched) is a (k, L(1−
ϵ))-clustering. We assume that MaxMinSched, in addition of returning the
partition of the sizes, also returns the group associated to each size.

Algorithm 12 AlgoMinSp(X ; dist; k; ϵ > 0;L)
1: t← n− k

2: while t ≥ 0 do
3: Run t merging steps of the Single-Linkage for input X
4: Let C1, . . . , Cn−t the groups obtained by the end of the t steps
5: P ← (|C1|, . . . , |Cn−t|)
6: At ← MaxMinSched(P, k, ϵ)
7: if the smallest group in At has size greater than or equal to L(1 − ϵ)

then
8: Return At

9: else
10: t← t− 1

Theorem 5.8 Fix ϵ > 0. The clustering At returned by Algorithm 12 is
a (k, (1 − ϵ)L)-clustering that satisfies Min-Spacing(At) ≥ Min-Spacing(C∗),
where C∗ is the (k, L)-clustering with maximum Min-Spacing.

Proof. By design, At has k groups with at least L(1−ϵ) points in each of them.
For the sake of contradiction, assume that Min-Spacing(At) <

Min-Spacing(C∗).
Let C = (C1, . . . , Cn−t) be the list of n−t groups obtained after t merging

steps of Single-Linkage are performed. Without loss of generality, assume
that C1 and C2 are the two groups with a minimum spacing in this list, so that
Min-Spacing(C) = spacing(C1, C2). Since At is a k-clustering that is obtained
by merging groups in C we have Min-Spacing(At) ≥ Min-Spacing(C) =
spacing(C1, C2).

For i = 1, . . . , n − t we have that Ci ⊆ C for some C ∈ C∗, otherwise
we would have Min-Spacing(At) ≥ Min-Spacing(C∗). In addition, we must
have C1 ∪ C2 ⊆ C for some C ∈ C∗, otherwise, again, we would have
Min-Spacing(At) ≥ Min-Spacing(C∗).

We can conclude that there is a feasible solution with minimum load
not smaller than L for the max-min scheduling problem with processing times
P ′ = (|C1 ∪ C2|, |C3|, . . . , |Cn−t|) and k machines. Thus, by running t + 1
steps of Single-Linkage followed by MaxMinSched(P ′, k, ϵ), we would get a

Chapter 5. Separability with minimum size constraints 83

k-clustering whose smallest group has at least L(1 − ϵ) points. This implies
that the algorithm would have stopped after performing t + 1 merging steps,
which is a contradiction. ■

5.3.1
Implementation details

As presented, Algorithm 12 may run Single-Linkage n − k times,
which is potentially quite expensive. But rather than run t merging steps of
Single-Linkage for every t being tested, as we do in line 3 of Algorithm 12, we
can run Single-Linkage once from start to finish – i.e., from n singletons to 2
clusters – and then perform a binary search to find the smallest value of t such
that a t-partition of X can be agglomerated into k clusters with the desired
minimum size. By traversing the full dendrogram induced by Single-Linkage
and keeping track of the number of elements per cluster, we can find in O(n)
if a given t is feasible, so it takes O(n log n) to run the binary search and find
the first t that can be used. In the MaxMinSched step (line 6), At starts with
k empty clusters, and the clusters from the t-partition are iteratively merged
to the smallest cluster in At in ascending order of size.

5.3.2
Approximation limits for minimum-spacing clustering with minimum size

The next theorem shows that Algorithm 12 has essentially tight guaran-
tees under the hypothesis that P ̸= NP .

Theorem 5.9 Unless P = NP , for any α = poly(n), the problem of finding
the (k, L)-clustering that maximizes the Min-Spacing criterion does not admit
a (1, 1

α
)-approximation.

Proof. We make a reduction from the (T/4, T/2)-restricted 3-PARTITION
problem. Given a multiset S = {s1, . . . , s3m} of positive integers that satisfies∑

i si = mT , the 3-PARTITION problem consists of deciding whether or
not there exists a partition of S into m triples such that the sum of the
numbers in each one is equal to T . In the (T/4, T/2)-restricted 3-PARTITION
problem, there is an additional requirement that each number of S should
be in the interval (T/4, T/2). This problem is strongly NP-COMPLETE
(Garey & Johnson (2011)).

The instance I = (X, k, L, dist) for our clustering problem is built as
follows: we set L = T , k = m; for i = 1, . . . , 3m, let Xi be a set with si points so
that the distance between points in the same group Xi is 1 while the distance
between points in different groups is α + 1. We set X = X1 ∪ . . . ∪ X3m. Note

Chapter 5. Separability with minimum size constraints 84

that we are employing a pseudo-polynomial reduction, but this is fine as the
(T/4, T/2)-restricted 3-PARTITION problem is strongly NP-COMPLETE.

Assume that there is an (1, 1/α)-approximation for our problem and let C
be the clustering returned by this algorithm for instance I. We argue that the
answer to the 3-PARTITION problem is YES if and only if Min-Spacing(C) =
α + 1.

First, we show that, if the answer is YES, there is a k-clustering C∗ for
I with Min-Spacing(C∗) = α + 1. In fact, let S1, . . . , Sm be a solution of the
3-PARTITION problem and let {si1 , si2 , si3} be the numbers in Si. Let C∗ be a
k-clustering where the i-th group is comprised by all points in Xi1 ∪Xi2 ∪Xi3 .
Clearly, each group has L points and the Min-Spacing of this clustering is
α + 1. Since our algorithm is a (1, 1/α)-approximation it returns a clustering
C with Min-Spacing(C) ≥ (α+1)/α. Since the Min-Spacing of any clustering
for instance I is either 1 or α + 1 we have that Min-Spacing(C)=α + 1.

On the other hand, if the clustering has Min-Spacing α + 1 then all
points in Xi, for each i, must be in the same group. Moreover, due to the
restriction that every |Xi| = si ∈ (L/4, L/2), we should have exactly 3 Xi’s in
each of the m groups. Thus, the answer is YES. ■

5.4
ConstrainedMaxMST: maximizing MST-Cost with minimum-size ap-
proximation guarantees

Our next algorithm, ConstrainedMaxMST, runs AlgoMinSP for
2, . . . , k clusters, in each iteration separating the obtained clusters to achieve
a k-partition, and returns the best of these k − 1 possibilities in terms of
MST-Cost. The obtained approximation guarantee is(

ρ(1− ϵ)
2 ,

1
Hk−1

)
,

where ρ := min{n/k
L

, 2} and Hk−1 = ∑k−1
i=1

1
i

is the (k−1)-th harmonic number.
Note that Hk−1 is Θ(log k).

For each ℓ = 2, . . . , k, the algorithm calls AlgoMinSp (Algorithm 12) to
build a clustering A′

ℓ with ℓ groups and then it transforms A′
ℓ (lines 5-13) into

a clustering Aℓ with k groups. In the end, it returns the clustering, among the
k − 1 considered, with maximum MST-Cost.

Chapter 5. Separability with minimum size constraints 85

Algorithm 13 Constrained-MaxMST(X ; dist; k; L; ϵ)
1: for ℓ = 2, . . . , k do
2: A′

ℓ ← AlgoMinSp(X ,dist,ℓ,ϵ,L)
3: NonVisited ← A′

ℓ

4: Aℓ ← ∅
5: for each A′ in A′

ℓ, iterating from the largest group to the smallest do
6: NonVisited ← NonVisited - A′

7: SplitNumber ←
⌊

2|A′|
ρ(1−ϵ)L

⌋
8: if |Aℓ|+ |NonVisited| + SplitNumber < k then
9: Split A′ into SplitNumber as balanced as possible groups and

add them to Aℓ

10: else
11: Split A′ into k − |Aℓ|− |NonVisited| as balanced as possible

groups; add them to Aℓ

12: Add all groups in NonVisited to Aℓ

13: Break
14: Return the clustering Aℓ, among the k−1 obtained, that has the maximum

MST-Cost

Note that, while scanning the groups in A′
ℓ by non-increasing size order

is not necessary to establish the guarantees presented below, this tends to
prevent the formation of groups with sizes smaller than L.

Lemma 11 Fix ϵ > 0. Thus, for each ℓ, every group in Aℓ has at least⌊
ρ(1−ϵ)L

2

⌋
points.

Proof. The groups that are added to Aℓ in line 12 have at least (1− ϵ)L points
while the number of points of those that are added at either line 11 or 9 is at
least ⌊

|A′|
⌊2|A′|/ρ(1− ϵ)L⌋

⌋
≥
⌊

ρ(1− ϵ)L
2

⌋
.

Moreover, if the For is not interrupted by the Break command, the total
number of groups in Aℓ is

∑
A′∈A′

ℓ

⌊
2|A′|

ρ(1− ϵ)L

⌋
≥

∑
A′∈A′

ℓ

2|A′|
ρ(1− ϵ)L − ℓ ≥ 2n

ρ(1− ϵ)L − k ≥ 2k

(1− ϵ) − k ≥ k.

Since the For is interrupted as soon as k groups can be obtained, Aℓ has k

groups. ■

For the next results, we use C∗ to denote the (k, L)-clustering with
maximum MST-Cost and w∗

i to denote the cost of the i-th cheapest edge in the

Chapter 5. Separability with minimum size constraints 86

minimum spanning tree for GC∗ . Our first lemma can be seen as a generalization
of Theorem 5.8.

Lemma 12 For each ℓ, Min-Spacing(A′
ℓ) ≥ w∗

k−ℓ+1.

Proof. Let T ∗ be the minimum spanning tree for GC∗ . If we remove the
ℓ − 1 most expensive edges of T ∗ we obtain a forest F with ℓ connected
components. The clustering C∗

ℓ comprised by ℓ groups in which the i-th group
corresponds to the i-th connected component of F is an (ℓ, L)-clustering and
Min-Spacing(C∗

ℓ) = w∗
k−ℓ+1.

Let OPT be the Min-Spacing of the (ℓ, L)-clustering with maxi-
mum Min-Spacing. Thus, by Theorem 5.8 Min-Spacing(A′

ℓ) ≥ OPT ≥
Min-Spacing(C∗

ℓ) = w∗
k−ℓ+1. ■

A simple consequence of the previous lemma is that the MST-Cost of
clustering A′

ℓ is at least (ℓ − 1) · w∗
k−ℓ+1. The next lemma shows that this

bound also holds for the clustering Aℓ. The proof consists of showing that
each edge of a minimum spanning tree for A′

ℓ is also an edge of a minimum
spanning tree for Aℓ.

Lemma 13 For each ℓ = 2, . . . , k we have MST-Cost(Aℓ) ≥ (ℓ− 1) · w∗
k−ℓ+1.

Proof. Let Tℓ and T ′
ℓ be, respectively, the minimum spanning tree for GAℓ

and
GA′

ℓ
. By the previous lemma, each of the (ℓ− 1) edges of T ′

ℓ has cost at least
Min-Spacing(A′

ℓ) ≥ w∗
k−ℓ+1. Thus, to establish the result, it is enough to argue

that each edge of T ′
ℓ also belongs to Tℓ.

We say that a group A ∈ Aℓ is generated from a group A′ ∈ A′
ℓ if A = A′

or A is one of the balanced groups that is generated when A′ is split in the
internal For of Algorithm 13. We say that a vertex x in GAℓ

is generated
from a vertex x′ in GA′

ℓ
if the group corresponding to x is generated by the

corresponding to x′.
Let e′ = u′v′ be an edge in T ′

ℓ and let S ′ be a cut in graph GA′
ℓ

whose
vertices are those from the connected component of T ′

ℓ \e′ that includes u′. We
define the cut S of GAℓ

as follows: S = {x ∈ GAℓ
|x is generated from some x′ ∈

S ′}.
Let u and v be vertices generated from u′ and v′, respectively, that satisfy

w(uv) = w(u′v′). It is enough to show that uv is the cheapest edge that crosses
S, since it follows from Theorem 5.2 that this implies uv ∈ Tℓ.

We prove it by contradiction. Let us assume that there is another edge
f = yz that crosses S and has weight smaller than w(uv). Let y′ and z′ be
vertices in GA′

ℓ
that generate y and z, respectively, and let f ′ = y′z′. Thus,

w(f ′) ≤ w(f) < w(uv) = w(u′v′) = w(e′). However, this contradicts Theorem

Chapter 5. Separability with minimum size constraints 87

5.3, because it implies that the edge with the largest weight in the cycle of
GA′

ℓ
comprised by edge f ′ and the path in T ′

ℓ the connects y′ to z′ belongs to
the T ′

ℓ. ■

The next theorem is the main result of this section.

Theorem 5.10 Fix ϵ > 0. Algorithm 13 is a ((1−ϵ)ρ
2 , 1

Hk−1
)-approximation

for the problem of finding the (k, L)–clustering that maximizes the MST-Cost
criterion.

Proof. Let C be the clustering returned by Algorithm 13. Lemma 11 guarantees
that C is a (k, ⌊ (1−ϵ)ρL

2 ⌋)-clustering.
Thus, we just need to argue about MST-Cost(C). We have that

MST-Cost(C∗) =
k∑

i=2
w∗

k−i+1

and, due to Lemma 13, MST-Cost(C) ≥ max{(ℓ− 1) · w∗
k−ℓ+1|2 ≤ ℓ ≤ k}.

Let ℓ̃ be the value ℓ that maximizes (ℓ − 1) · w∗
k−ℓ+1. It follows that

w∗
k−i+1 ≤ ((ℓ̃− 1)/(i− 1))w∗

k−ℓ̃+1. for i = 2, . . . , k. Thus,

MST-Cost(C∗)
MST-Cost(C) ≤

∑k
i=2 w∗

k−i+1

(ℓ̃− 1) · w∗
k−ℓ̃+1

≤
(ℓ̃− 1) · w∗

k−ℓ̃+1 ·
∑k

i=2
1

i−1

(ℓ̃− 1) · w∗
k−ℓ̃+1

= Hk−1.

■

5.4.1
Approximation limits for MST-Cost clustering with minimum size

We show below that the optimization of MST-Cost is APX-HARD (for
fixed k) when a hard constraint on the number of points per group is imposed.
The proof is very similar to that of Theorem 5.9.

Theorem 5.11 Unless P = NP , for any α = poly(n), there is no (1,k−2
k−1 +

1
α(k−1))-approximation for the problem of finding the (k, L)-clustering that
maximizes the MST-Cost criterion.

Proof. As in the proof of Theorem 5.9, we make a reduction from
the (T/4, T/2)-restricted 3-PARTITION problem. The instance I =
(X, k, L, dist) for our clustering problem is built as follows: we set L = T ,
k = m; for i = 1, . . . , 3m let Xi be a set with si points so that the distance
between points in the same group Xi is 1/2 while the distance between points
in different groups is α. We set X = X1 ∪ . . . ∪ X3m.

Let us assume that there is an (1, k−2
k−1 + 1

α(k−1))-approximation for our
problem and let C be the clustering returned by this algorithm for instance I.

Chapter 5. Separability with minimum size constraints 88

We argue that the answer to the 3-PARTITION problem is YES if and only
if MST-Cost(C) = (k − 1)α.

First, we show that if the answer is YES, there is a k-clustering C∗

for I with MST-Cost(C∗) = (k − 1)α. Let S1, . . . , Sm be a solution of the
3-PARTITION problem and let {si1 , si2 , si3} the numbers in Si. Let C∗ be a
k-clustering where the ith group is comprised by all points in Xi1 ∪ Xi2 ∪ Xi3 .
Clearly, each group has L points and the MST-Cost of this clustering is (k−1)α.
Since our algorithm is a (1, k−2

k−1 + 1
α(k−1))-approximation, it returns a clustering

C with MST-Cost(C) > (k − 2)α + 1. Since the MST-Cost of any clustering
for instance I is either (k − 1)α or at most (k − 2)α + 1/2, we have that
MST-Cost(C)=(k − 1)α.

On the other hand, if the clustering has Min-Sp (k− 1)α then all points
in Xi, for each i, must be in the same group. Moreover, due to the restriction
that every |Xi| = si ∈ (L/4, L/2), we should have exactly 3 Xi’s in each of the
m groups. Thus, the answer is YES. ■

5.5
Experiments

To evaluate the performance of Algorithms 12 and 13, we ran experiments
with 10 different datasets, comparing the results with those of Single-Linkage
and of the traditional k-means algorithm from (Lloyd (1982)) with a ++
initialization (Arthur & Vassilvitskii (2006)). For the implementation of rou-
tine MaxMinSched, employed by Algorithm 12, we used the Longest Process-
ing Time rule (Csirik et al. (1992)), which has the advantage of being fast
while guaranteeing a 3/4 approximation for the max-min scheduling problem.
The code for running the algorithms can be found at https://github.com/
lmurtinho/SizeConstrainedSpacing.

Our first experiment investigates the size of the groups produced by
Single-Linkage for the 10 datasets, whose dimensions can be found in the
first two columns of Table 5.1. Figure 1.3 shows the proportion of singletons
for each dataset with the growth of k. For all datasets but Vowel and Mice the
majority of groups are singletons, even for small values of k. This undesirable
behavior motivates our constraint on the minimum size of a group.

In our second experiment, we compare the values of Min-Spacing and
MST-Cost achieved by our algorithms with those of k-means. While k-means
is not a particularly strong competitor in the sense that it was not designed to
optimize our criteria, it is a very popular choice among practitioners. Moreover,
for datasets with well-separated groups, the minimization of the squared sum
of errors (pursued by k-means) should also imply the maximization of inter-

https://github.com/lmurtinho/SizeConstrainedSpacing
https://github.com/lmurtinho/SizeConstrainedSpacing

Chapter 5. Separability with minimum size constraints 89

Table 5.1: Min-Spacing and MST-Cost for the different methods and datasets.

Dimensions Min-Spacing MST-Cost
n k Algo 12 Algo 13 k-means Algo 12 Algo 13 k-means

anuran 7,195 10 0.19 0.09 0.05 1.71 1.87 1.01
avila 20,867 12 0.07 0.04 0 0.77 0.81 0.66

collins 1,000 30 0.42 0.42 0.22 12.42 12.42 8.58
digits 1,797 10 19.74 19.74 13.79 178.22 178.22 145.13
letter 20,000 26 0.2 0.11 0.07 4.98 5.67 1.98
mice 552 8 0.79 0.79 0.24 5.66 5.66 2.37

newsgroups 18,846 20 1 1 0.17 19 19 8.4
pendigits 10,992 10 23.89 9.08 8.31 215.11 217.01 119.85
sensorless 58,509 11 0.13 0.08 0.03 1.31 1.36 1.29

vowel 990 11 0.49 0.49 0.11 4.94 4.94 1.84

group criteria.
Table 5.1 presents the results of this experiment. The values chosen for k

are the numbers of classes (dependent variables) in the datasets, while for the
dist function we employed the Euclidean distance. The values associated with
the criteria are averages of 10 executions, with each execution corresponding to
a different seed provided to k-means. To set the value of L for the i-th execution
of our algorithms, we take the size of the smallest group generated by k-means
for this execution and multiply it by 4/3. This way, we guarantee that the
size of the smallest group produced by our methods, for each execution, is
not smaller than that of k-means, which makes the comparison among the
optimization criteria fairer.

With respect to the Min-Spacing criterion, Algorithm 12 is at least
as good as Algorithm 13 for every dataset (being superior on 6) and both
Algorithm 12 and 13 outperform k-means on all datasets. On the other hand,
with respect to the MST-Cost criterion, Algorithm 13 is at least as good as
Algorithm 12 for every dataset (being better on 6) and, again, both algorithms
outperform k-means for all datasets.

Table 5.2 shows the running time of our algorithms for the datasets that
consumed more time. Experiments were run in an Ubuntu 20.04.5 LTS with
40 cores and 115 GB RAM.

We observe that the overhead introduced by Algorithm 12 with respect to
Single-Linkage is negligible while Algorithm 13, as expected, is more costly.
In Section 5.5.3, we show that a strategy that only considers values of ℓ that
can be written as ⌈k/2t⌉, for t = 0, . . . , ⌊log k⌋, in the first loop of Algorithm
13 provides a significant gain of running time while incurring a small loss in
the MST-Cost. We note that the log k bound of Theorem 5.10 is still valid for

Chapter 5. Separability with minimum size constraints 90

Table 5.2: Running time (in seconds) of Single-Linkage and our methods.
Experiments were run in an Ubuntu 20.04.5 LTS with 40 cores and 115 GB
RAM.

Dataset Single-Linkage Algo 1 Algo 2
sensorless 93.8 99.4 701.4

newsgroups 274.2 276.4 440.4
letter 4.6 5.9 116.4
avila 4.0 5.5 62.5

pendigits 1.4 2.1 16.0

this strategy.

5.5.1
MST-Cost: comparison between empirical results and upper bound of
Algorithm 13

Algorithm 13 can in practice obtain partitions that are much closer to
the optimal MST-Cost than the bound guaranteed by Theorem 5.10. In Table
5.3, we present, for each dataset: the average MST-Cost obtained by Algorithm
13; the upper bound on MST-Cost given by the sum of Min-Spacing for all
partitions found by an execution of the algorithm; the approximation ratio of
Algorithm 13, given by its MST-Cost divided by the upper bound; and the
theoretical approximation ratio 1/Hk−1 from Theorem 5.10.

For all 10 datasets, Algorithm 13 performs significantly better than its
theoretical approximation ratio. The smallest gap between theoretical and em-
pirical result occurs for avila dataset, in which the algorithm is 21 percentage
points closer to the optimal MST-Cost than Theorem 5.10 guarantees; on the
other extreme, for dataset newsgroups, it actually achieves the best possible
MST-Cost. These results increase our confidence that Algorithm 13 is a good
option for finding well-separated groups.

5.5.2
Average size of smallest clusters

Table 5.4 presents the average size of the smallest group generated by
Algorithms 12 and 13 as well as k-means. Values tend to be close across all
algorithms, and for all iterations of the experiments the smallest group returned
by Algorithms 12 and 13 is at least as large as the smallest group from the
corresponding k-means clustering (recall that L is set as 4s/3, where s is the
size of the smallest group produced by k-means). In particular, thanks to the

Chapter 5. Separability with minimum size constraints 91

Table 5.3: Comparison between the MST-Cost of Algorithm 13 and the upper
bound given by Lemma 12, given by the sum of Min-Spacing for all partitions
found by an execution of the algorithm. 1/Hk−1, where Hk−1 is the (k − 1)-th
harmonic number, is the theoretical lower bound from Lemma 13.

k MST-Cost
∑k

ℓ=2 Min-Spacing(A′
ℓ) Approximation Ratio 1/Hk−1

anuran 10 1.87 2.42 0.77 0.35
avila 12 0.81 1.48 0.55 0.34

collins 30 12.42 13.81 0.9 0.33
digits 10 178.22 201.47 0.88 0.32
letter 26 5.67 5.76 0.98 0.31
mice 8 5.66 7.12 0.79 0.31

newsgroups 20 19 19 1 0.3
pendigits 10 217.01 303.37 0.72 0.3
sensorless 11 1.36 2.23 0.61 0.29

vowel 11 4.94 5.57 0.89 0.29

rule of iterating from the largest cluster to the smallest when building our
k-clustering from an ℓ-clustering (line 5), the theoretical possibility that the
smallest group induced by Algorithm 13 is 1/2 of the desired size does not
appear to happen in practice.

5.5.3
Fast version of Algorithm 13

The log k bound of Theorem 5.10 is still valid for Algorithm 13 if, instead
of investigating all values of ℓ from 2 to k, it considers only the values that
can be written as ⌈k/2t⌉, for t = 0, . . . , ⌊log k⌋. In Table 5.5 we compare the
results of this fast version of the algorithm with those of the full version.

Even considering the overhead of running Single-Linkage, which cannot
be avoided for both versions of Algorithm 13, we see a reduction of at least
30% in the algorithm’s running time when using this fast version. The loss in
terms of MST-Cost, on the other hand, is less than 10% in the worst scenario,
and in 5 of the 10 datasets analyzed both versions return the same clustering.

5.5.4
Distribution of results for Min-Spacing and MST-Cost

Figures 5.2 to 5.7 show the boxplots for the Min-Spacing and the
MST-Cost, respectively, per dataset and algorithm. Algorithm 13 presents some
large variations, when compared to both k-means and Algorithm 12, in terms
of Min-Spacing (Figures 5.2, 5.3, 5.4) for some datasets; as it is designed to

Chapter 5. Separability with minimum size constraints 92

Table 5.4: Average size of the smallest cluster in a k-clustering, per algorithm
and dataset.

Dimensions Average size of smallest cluster
n k Algorithm 12 Algorithm 13 k-means

anuran 7,195 10 264.5 266.7 264.1
avila 20,867 12 85.3 85.4 83.2

collins 1,000 30 7.7 7.7 7.7
digits 1,797 10 96.2 96.2 92.7
letter 20,000 26 192 258.7 191.5
mice 552 8 47.6 47.6 47

newsgroups 18,846 20 188.1 188.2 188.1
pendigits 10,992 10 483.2 476.4 463.8
sensorless 58,509 11 1,842.5 1,725.5 1,655.6

vowel 990 11 57.9 57.9 57.9

Table 5.5: Min-Spacing, MST-Cost and execution time for Algorithm 13.

Dimensions MST-Cost Time (seconds)
n k Fast Full Fast Full

anuran 7,195 10 1.71 1.87 2.55 6.77
avila 20,867 12 0.77 0.81 20.47 62.51

collins 1,000 30 12.42 12.42 0.76 4.48
digits 1,797 10 178.22 178.22 0.55 1.78
letter 20,000 26 5.66 5.67 23.44 116.44
mice 552 8 5.66 5.66 0.27 0.44

newsgroups 18,846 20 19 19 307.58 440.38
pendigits 10,992 10 215.11 217.01 6.13 16.02
sensorless 58,509 11 1.34 1.36 274.00 701.42

vowel 990 11 4.94 4.94 0.18 0.59

Chapter 5. Separability with minimum size constraints 93

Figure 5.2: Boxplots of Min-Spacing per algorithm for the anuran, avila,
letter, and sensorless datasets.

Figure 5.3: Boxplots of Min-Spacing per algorithm for the collins, mice,
newsgroups, and vowel datasets.

maximize the MST-Cost, this behavior should not be too concerning. Also
in terms of Min-Spacing, both algorithms presented in the paper clearly
outperform k-means in almost all datasets, even considering the variation in
results. The same can be said for MST-Cost (Figures 5.5, 5.6, 5.7), in which,
additionally, the range of results returned by Algorithm 13 is much more in
line with those returned by the other two algorithms.

5.5.5
Trade-off between size of smallest cluster and inter-group separability
criteria

In Figures 5.8 and 5.9 we present scatterplots for our 5 smallest datasets
showing how the quality of the clusterings generated by Algorithms 12 and 13
(considering, respectively, Min-Spacing and MST-Cost as criteria) increases

Chapter 5. Separability with minimum size constraints 94

Figure 5.4: Boxplots of Min-Spacing per algorithm for the digits and
pendigits datasets.

Figure 5.5: Boxplots of MST-Cost per algorithm for the anuran, avila, letter,
and sensorless datasets.

Figure 5.6: Boxplots of MST-Cost per algorithm for the collins, mice,
newsgroups, and vowel datasets.

Chapter 5. Separability with minimum size constraints 95

Figure 5.7: Boxplots of MST-Cost per algorithm for the digits and pendigits
datasets.

as we allow for clusters of smaller sizes. For all datasets, as expected, allowing
for smallest clusters leads to higher Min-Spacing and MST-Cost. It is still
noteworthy that the algorithms presented in this paper can be used not only
to find a good partition with a hard limit on the size of the smallest cluster,
but also to find the best balance between minimum size and a good separation
of clusters.

5.5.6
Effect of randomness on Algorithm 13’s results

While Algorithm 12 is fully deterministic, in Algorithm 13 the split
of clusters from an ℓ-clustering to turn it into a k-clustering is performed
randomly. In practice, however, this does not affect the results of the algorithm.

For each dataset, we ran 10 seeded iterations of Algorithm 13 for each
value of L used in the experiments. We then calculate the standard deviation
of MST-Cost for each value of L. As shown in Table 5.6, for 8 of the datasets
analyzed the MST-Cost of the clustering returned by Algorithm 13 is always
the same for a given value of L; for letter and sensorless, there is some
variation, but it is very small compared to the average MST-Cost returned by
the algorithm.

5.5.7
Relative k-means cost for Algorithms 12 and 13

In Table 5.7 we present the k-means cost (1-1) for both Algorithm 12
and Algorithm 13 as a multiple of the cost incurred by the k-means algorithm.
As expected, since both algorithms were devised for maximizing inter-group
criteria, they perform poorly in light of this intra-group loss function — with

Chapter 5. Separability with minimum size constraints 96

Figure 5.8: Algorithm 12: trade-off between the size of the smallest cluster and
Min-Spacing.

Chapter 5. Separability with minimum size constraints 97

Figure 5.9: Algorithm 13: trade-off between the size of the smallest cluster and
MST-Cost.

Chapter 5. Separability with minimum size constraints 98

Table 5.6: Standard deviation of MST-Cost for Algorithm 13.

Dimensions MST-Cost
n k µ σ

anuran 7,195 10 1.87 -
avila 20,867 12 0.81 -

collins 1,000 30 12.42 -
digits 1,797 10 178.22 -
letter 20,000 26 5.67 0.34
mice 552 8 5.66 -

newsgroups 18,846 20 19 -
pendigits 10,992 10 217.01 -
sensorless 58,509 11 1.96 0.002

vowel 990 11 4.94 -

the sole exception of the 20Newsgroups dataset, for which both algorithms
incur a loss only 5% above that of k-means. Across datasets, the performance
of both algorithms is similar for this loss, with only small variations.

Chapter 5. Separability with minimum size constraints 99

Table 5.7: k-means cost (1-1) for Algorithms 12 and 13.

Dimensions Loss (relative to k-means)
n k Algorithm 12 Algorithm 13

anuran 7,195 10 2.50 2.07
avila 20,867 12 2.81 2.81

collins 1,000 30 2.33 2.33
digits 1,797 10 1.33 1.33
letter 20,000 26 2.30 2.52
mice 552 8 2.52 2.52

newsgroups 18,846 20 1.05 1.05
pendigits 10,992 10 2.18 2.10
sensorless 58,509 11 4.32 5.25

vowel 990 11 2.07 2.07

6
Conclusions

We analyzed in this thesis two tasks of clustering involving constraints.
In the first one, we want to build partitions that are explainable, in the sense
that they can be induced by binary decision trees. In the second, we want
to build partitions that maximize some form of interclustering distance while
maintaining a minimum number of elements per cluster. In the sections below,
we briefly present our main conclusions, and some possible avenues of further
research, for each of these two topics.

6.1
Explainable clustering via decision trees

We present both theoretical and practical contributions to the task of
explainable clustering via decision trees. On the theoretical side, we provide
guarantees for the price of explainability of four different clustering problems:
k-centers (3-1), k-medians (3-2), k-means (1-1), and minimum spacing (1-2).

We also present three practical algorithms for the explainable k-means
problem: ExGreedy, ExShallow, and ExBisection. To analyze their results
and compare them to other algorithms in the literature, we evaluate the
performance of the algorithm not only in terms of the k-means cost function
(1-1) but also in terms of how explainable the decision tree that induces the
partition actually is. To do so, we use two measures of explainability: the
weighted average depth (WAD) and the weighted average explanation size (WAES).
ExShallow, which explicitly considers these metrics when selecting cuts to
build the tree, is shown to have good results (compared to other algorithms in
the literature) both in terms of price and of explainability, while ExBisection
is the first algorithm for the explainable k-means problem that can build
an explainable partition “from scratch,” i.e., without using an unrestricted
partition as a starting point. Notably, we show that all three algorithms tend
to have better results in terms of price than RandomThresholds, the algorithm
that reaches the best theoretical guarantees for the k-medians and k-means
problems.

In terms of further theoretical research, (Gupta et al. (2023)) conjec-
tures that RandomThresholds may be an O(k) algorithm for the price of

Chapter 6. Conclusions 101

explainability of k-means, which would close the gap to the lower bound from
(Moshkovitz et al. (2020)). Proving this result would be a satisfying closure to
the theoretical analysis of RandomThresholds. It would be also valuable to try
and find theoretical guarantees for algorithms that use different strategies for
building explainable clusterings, which have better experimental results than
RandomThresholds.

Exploring other notions of explainability may also be fruitful.
(Izza et al. (2022)) challenges the notion that decision trees are inherently
explainable – and mention as a potential problem path redundancy, which
we used to build arguably more explainable clusters in ExShallow. Our idea,
building on the concept of explanation size from (Feitosa et al. (2022)), is
that paths with redundancy (i.e., including more than one cut aligned to the
same axis) would lead to shorter explanations, because the cluster in this path
would need only one of these redundant cuts to be explained. But it might be
the case that the presentation of this explanation as a tree may be suboptimal
– and that considering other ways to present explainable partitions may lead
to different algorithms, with different approximations in terms of price.

6.2
Inter-clustering problems with a minimum size per cluster

Our first contribution regarding inter-clustering problems is to introduce
the notion of the minimum-spanning-tree cost (MST-Cost), i.e., the cost of a
minimum spanning tree of the complete weighted graph induced by a partition
of the data in the following way:

– Each node in the graph corresponds to a cluster in the partition.

– Each edge has weight equivalent to the minimum spacing (Min-Spacing)
between the two clusters represented by the nodes it connects.

We show the importance of this metric for inter-clustering by proving
that the Single-Linkage algorithm finds a partition that optimizes not only
Min-Spacing, as is well established in the literature, but also MST-Cost, and
that the latter implies the former.

Then, focusing on the problem of creating a partition with well-separated
clusters with a size constraint, we introduce approximation algorithms for
both Min-Spacing and MST-Cost. For the first objective, our algorithm finds
a k-clustering whose smallest cluster has at least (1 − ϵ)L members and
whose Min-Spacing is no smaller than the optimal Min-Spacing for a k-
clustering whose smallest cluster has L elements. For the second one, we find an

Chapter 6. Conclusions 102

(
(1−ϵ)ρ

2 , 1
Hk−1

)
-approximation, where ρ := min

{
n/k
L

, 2
}

and Hk−1 is the (k−1)-
th harmonic number.

We also present results on approximation hardness for both tasks. For the
problem of maximizing Min-Spacing with a minimum size per cluster, we show
that, unless P = NP , the problem does not admit a (1, 1

α
)-approximation,

making our algorithm essentially tight. For MST-Cost, we show that, unless
P = NP , there is no

(
1, k−2

k−1 + 1
α(k−1)

)
-approximation for any α = poly(n). In

this case, our algorithm is not tight; however, our experiments on 10 different
datasets show that in practice the algorithm tends to achieve partitions with
much better approximation ratios than our guarantee would suggest.

The experiments also show that our algorithms can generate partitions
with much better separation than the k-means algorithm while avoiding small
clusters, while Single-Linkage would return partitions with a large number of
singletons; and that there is a trade-off (that can be “tuned” in our algorithms
via the ϵ parameter) between separability and the size of the smallest cluster.

One potential limitation of our proposed algorithms is their usage on mas-
sive datasets (in particular for MST-Cost), since they execute Single-Linkage
one or many times. If the distant function between points is explicitly given,
then the Ω(n2) time spent by Single-Linkage is unavoidable. However, if the
distances can be calculated from the original dataset, then faster algorithms
might be obtained.

The main theoretical question that remains open in our work is
whether there exist constant approximation algorithms for the maximization
of MST-Cost. In addition to addressing this question, interesting directions for
future research include handling different inter-cluster measures, as well as
other constraints on the structure of clustering.

Bibliography

[Alpadyin & Kaynak, 1998] ALPAYDIN, E.; KAYNAK, C.. Cascading classi-
fiers. Kybernetika, 34(4):369–374, 1998.

[Arthur & Vassilvitskii (2006)] ARTHUR, D.; VASSILVITSKII, S.. K-
means++: The advantages of careful seeding. In: PROCEEDINGS
OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DIS-
CRETE ALGORITHMS, SODA ’07, p. 1027–1035, USA, 2007. Society for
Industrial and Applied Mathematics.

[Arutyunova et al. (2024)] ARUTYUNOVA, A.; GROSSWENDT, A.; RÖGLIN,
H.; SCHMIDT, M. ; WARGALLA, J.. Upper and lower bounds for
complete linkage in general metric spaces. Machine Learning,
113(1):489–518, 2024.

[Bandyapadhyay et al. (2023)] BANDYAPADHYAY, S.; FOMIN, F. V.; GOLO-
VACH, P. A.; LOCHET, W.; PUROHIT, N. ; SIMONOV, K.. How to find
a good explanation for clustering? Artificial Intelligence, 322:103948,
2023.

[Bertsimas et al. (2018)] BERTSIMAS, D.; ORFANOUDAKI, A. ; WIBERG, H..
Interpretable clustering via optimal trees. arXiv, 2018.

[Blanco et al. (2020)] BLANCO-JUSTICIA, A.; DOMINGO-FERRER, J.;
MARTÍNEZ, S. ; SÁNCHEZ, D.. Machine learning explainability
via microaggregation and shallow decision trees. Knowledge-Based
Systems, 194:105532, 2020.

[Bradley et al. (2000)] BRADLEY, P. S.; BENNETT, K. P. ; DEMIRIZ, A.. Con-
strained k-means clustering. Microsoft Research, Redmond, 20(0):0,
2000.

[Bratko (1997)] BRATKO, I.. Machine learning: Between accuracy and
interpretability. In: Della Riccia, G.; Lenz, H.-J. ; Kruse, R., editors,
LEARNING, NETWORKS AND STATISTICS, p. 163–177, Vienna, 1997.
Springer Vienna.

Bibliography 104

[Breiman (2017)] BREIMAN, L.; FRIEDMAN, J. H.; OLSHEN, R. A. ; STONE,
C. J.. Classification and regression trees. Routledge, 2017.

[Burkart & Huber (2021)] BURKART, N.; HUBER, M. F.. A survey on the
explainability of supervised machine learning. J. Artif. Intell. Res.,
70:245–317, 2021.

[Carlsson & Facundo (2010)] CARLSSON, G. E.; MÉMOLI, F.. Characteriza-
tion, stability and convergence of hierarchical clustering meth-
ods. J. Mach. Learn. Res., 11:1425–1470, 2010.

[Caruana et al. (1999)] CARUANA, R.; KANGARLOO, H.; DIONISIO, J. D.;
SINHA, U. ; JOHNSON, D.. Case-based explanation of non-case-
based learning methods. Proc AMIA Symp, p. 212–215, 1999.

[Charikar & Chatziafratis (2017)] CHARIKAR, M.; CHATZIAFRATIS, V.. Ap-
proximate hierarchical clustering via sparsest cut and spreading
metrics. In: Klein, P. N., editor, PROCEEDINGS OF THE TWENTY-
EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGO-
RITHMS, SODA 2017, BARCELONA, SPAIN, HOTEL PORTA FIRA, JAN-
UARY 16-19, p. 841–854. SIAM, 2017.

[Charikar & Hu (2021)] CHARIKAR, M.; HU, L.. Near-optimal explainable
k-means for all dimensions. In: PROCEEDINGS OF THE 2022 ANNUAL
ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA), p. 2580–
2606, 2022.

[Charikar et al. (2002)] CHARIKAR, M.; FAGIN, R.; GURUSWAMI, V.; KLEIN-
BERG, J.; RAGHAVAN, P. ; SAHAI, A.. Query strategies for priced
information. Journal of Computer and System Sciences, 64(4):785–819,
2002.

[Chen et al. (2019)] CHEN, C.; LI, O.; TAO, D.; BARNETT, A.; RUDIN, C. ; SU,
J. K.. This looks like that: Deep learning for interpretable image
recognition. In: Wallach, H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc,
F.; Fox, E. ; Garnett, R., editors, ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS, volumen 32. Curran Associates, Inc., 2019.

[Cohen-Addad et al. (2019)] COHEN-ADDAD, V.; KANADE, V.; MALLMANN-
TRENN, F. ; MATHIEU, C.. Hierarchical clustering: Objective
functions and algorithms. J. ACM, 66(4):26:1–26:42, 2019.

[Collobert et al., 2002] COLLOBERT, R.; BENGIO, S. ; BENGIO, Y.. A paral-
lel mixture of SVMs for very large scale problems. In: Dietterich,

Bibliography 105

T.; Becker, S. ; Ghahramani, Z., editors, ADVANCES IN NEURAL INFOR-
MATION PROCESSING SYSTEMS, volumen 14, p. 633–640. MIT Press,
2001.

[Csirik et al. (1992)] CSIRIK, J.; KELLERER, H. ; WOEGINGER, G. J.. The
exact LPT-bound for maximizing the minimum completion time.
Oper. Res. Lett., 11(5):281–287, 1992.

[Daniely et al. (2012)] DANIELY, A.; LINIAL, N. ; SAKS, M.. Clustering is
difficult only when it does not matter. arXiv preprint arXiv:1205.4891,
2012.

[Dasgupta & Laber (2024)] DASGUPTA, S.; LABER, E.. New bounds on the
cohesion of complete-link and other linkage methods for agglom-
eration clustering. Proceedings of the 41st International Conference on
Machine Learning (forthcoming), 2024.

[Dasgupta & Long (2005)] DASGUPTA, S.; LONG, P. M.. Performance guar-
antees for hierarchical clustering. Journal of Computer and System
Sciences, 70(4):555–569, 2005.

[Dasgupta (2016)] DASGUPTA, S.. A cost function for similarity-based
hierarchical clustering. In: Wichs, D.; Mansour, Y., editors, PROCEED-
INGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY
OF COMPUTING, STOC 2016, CAMBRIDGE, MA, USA, JUNE 18-21, 2016,
p. 118–127. ACM, 2016.

[Deng et al. (2023)] DENG, C.; GAVVA, S. T.; S., K. C.; PATEL, P. ; SRINI-
VASAN, A.. Impossibility of depth reduction in explainable clus-
tering. arXiv preprint arXiv:2305.02850, 2023.

[De Stefano et al. (2018)] DE STEFANO, C.; MANIACI, M.; FONTANELLA, F.
; SCOTTO DI FRECA, A.. Reliable writer identification in medieval
manuscripts through page layout features: The “Avila” Bible
case. Engineering Applications of Artificial Intelligence, 72:99–110, 2018.

[Doshi-Velez & Kim (2018)] DOSHI-VELEZ, F.; KIM, B.. Considerations for
Evaluation and Generalization in Interpretable Machine Learn-
ing, p. 3–17. Springer International Publishing, Cham, 2018.

[Esfandiari et al. (2021)] ESFANDIARI, H.; MIRROKNI, V. ; NARAYANAN, S..
Almost tight approximation algorithms for explainable cluster-
ing. In: PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM
ON DISCRETE ALGORITHMS (SODA), p. 2641–2663, 2022.

Bibliography 106

[Feitosa et al. (2022)] SOUZA, V. F.; CICALESE, F.; LABER, E. ; MOLINARO,
M.. Decision trees with short explainable rules. In: Koyejo, S.; Mo-
hamed, S.; Agarwal, A.; Belgrave, D.; Cho, K. ; Oh, A., editors, ADVANCES
IN NEURAL INFORMATION PROCESSING SYSTEMS, volumen 35, p.
12365–12379. Curran Associates, Inc., 2022.

[Fisher, 1936] FISHER, R. A.. The use of multiple measurements in
taxonomic problems. Annals of Eugenics, 7(2):179–188, 1936.

[Fraiman et al. (2013)] FRAIMAN, R.; GHATTAS, B. ; SVARC, M.. Inter-
pretable clustering using unsupervised binary trees. Adv. Data
Anal. Classif., 7(2):125–145, 2013.

[Frieze & Jerrum (1997)] FRIEZE, A. M.; JERRUM, M.. Improved approxi-
mation algorithms for MAX k-cut and MAX BISECTION. Al-
gorithmica, 18(1):67–81, 1997.

[Frost et al. (2020)] FROST, N.; MOSHKOVITZ, M. ; RASHTCHIAN, C..
ExKMC: Expanding explainable k-means clustering. arXiv, 2020.

[Gamlath et al. (2021)] GAMLATH, B.; JIA, X.; POLAK, A. ; SVENSSON, O..
Nearly-tight and oblivious algorithms for explainable clustering.
In: Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P. ; Vaughan, J. W.,
editors, ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS,
volumen 34, p. 28929–28939. Curran Associates, Inc., 2021.

[Ganganath et al. (2014)] GANGANATH, N.; CHENG, C.-T. ; TSE, C. K.. Data
clustering with cluster size constraints using a modified k-means
algorithm. In: 2014 INTERNATIONAL CONFERENCE ON CYBER-
ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOV-
ERY, p. 158–161, 2014.

[Garey & Johnson (2011)] GAREY, M. R.; JOHNSON, D. S.. Computers
and Intractability: A Guide to the Theory of NP-Completeness
(Series of Books in the Mathematical Sciences). W. H. Freeman,
first edition edition, 1979.

[Ghattas et al. (2017)] GHATTAS, B.; MICHEL, P. ; BOYER, L.. Clustering
nominal data using unsupervised binary decision trees: Com-
parisons with the state of the art methods. Pattern Recognition,
67:177–185, 2017.

[Gong et al. (2019)] GONG, Z.; ZHONG, P. ; HU, W.. Diversity in machine
learning. Ieee Access, 7:64323–64350, 2019.

Bibliography 107

[Gupta et al. (2023)] GUPTA, A.; PITTU, M. R.; SVENSSON, O. ; YUAN, R..
The price of explainability for clustering. In: 2023 IEEE 64TH
ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
(FOCS), p. 1131–1148, 2023.

[Higuera et al., 2015] HIGUERA, C.; GARDINER, K. J. ; CIOS, K. J.. Self-
organizing feature maps identify proteins critical to learning in
a mouse model of down syndrome. PLOS ONE, 10(6):1–28, 06 2015.

[Hofmeyr (2020)] HOFMEYR, D. P.. Connecting spectral clustering to
maximum margins and level sets. The Journal of Machine Learning
Research, 21(1):630–664, 2020.

[Hsu & Lin, 2002] HSU, C.-W.; LIN, C.-J.. A comparison of methods for
multiclass support vector machines. IEEE Transactions on Neural
Networks, 13(2):415–425, 2002.

[Hüyük et al. (2021)] HÜYÜK, A.; JARRETT, D.; TEKIN, C. ; VAN DER
SCHAAR, M.. Explaining by imitating: Understanding decisions
by interpretable policy learning. In: INTERNATIONAL CONFERENCE
ON LEARNING REPRESENTATIONS, 2021.

[Izza et al. (2022)] IZZA, Y.; IGNATIEV, A. ; MARQUES-SILVA, J.. On tack-
ling explanation redundancy in decision trees. Journal of Artificial
Intelligence Research, 75:261–321, 2022.

[Jain (2010)] JAIN, A. K.. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters, 31(8):651–666, 2010. Award winning papers
from the 19th International Conference on Pattern Recognition (ICPR).

[Jain et al. (1999)] JAIN, A. K.; MURTY, M. N. ; FLYNN, P. J.. Data cluster-
ing: A review. ACM Comput. Surv., 31(3):264–323, Sept. 1999.

[Kleinberg & Tardos (2006)] KLEINBERG, J. M.; TARDOS, É.. Algorithm
design. Addison-Wesley, 2006.

[Kleinberg (2002)] KLEINBERG, J. M.. An impossibility theorem for
clustering. In: ADVANCES IN NEURAL INFORMATION PROCESSING
SYSTEMS, 2002.

[Krizhevsky, 2009] KRIZHEVSKY, A.. Learning multiple layers of features
from tiny images. Technical report, 2009.

Bibliography 108

[Laber & Murtinho (2021)] LABER, E.; MURTINHO, L.. On the price of
explainability for some clustering problems. In: Meila, M.; Zhang, T.,
editors, PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE
ON MACHINE LEARNING, volumen 139 de Proceedings of Machine
Learning Research, p. 5915–5925. PMLR, 18–24 Jul 2021.

[Laber & Murtinho (2023)] LABER, E.; MURTINHO, L.. Optimization of
inter-group criteria for clustering with minimum size con-
straints. In: THIRTY-SEVENTH CONFERENCE ON NEURAL INFOR-
MATION PROCESSING SYSTEMS, 2023.

[Laber (2024)] LABER, E. S.. The computational complexity of some
explainable clustering problems. Information Processing Letters,
184:106437, 2024.

[Laber et al. (2023)] LABER, E.; MURTINHO, L. ; OLIVEIRA, F.. Shallow de-
cision trees for explainable k-means clustering. Pattern Recognition,
137:109239, 2023.

[Leskovec et al. (2020)] LESKOVEC, J.; RAJARAMAN, A. ; ULLMAN, J. D..
Mining of massive data sets. Cambridge university press, 2020.

[Lipton (2018)] LIPTON, Z. C.. The mythos of model interpretability:
In machine learning, the concept of interpretability is both
important and slippery. Queue, 16(3):31–57, jun 2018.

[Liu et al. (2005)] LIU, B.; XIA, Y. ; YU, P.. Clustering via decision tree
construction. In: Chu, W.; Young Lin, T., editors, FOUNDATIONS AND
ADVANCES IN DATA MINING, p. 97–124. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[Lloyd (1982)] LLOYD, S.. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137, 1982.

[Lundberg et al. (2017)] LUNDBERG, S. M.; LEE, S.-I.. A unified approach
to interpreting model predictions. In: ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS, p. 4765–4774, 2017.

[Makarychev & Shan (2021a)] MAKARYCHEV, K.; SHAN, L.. Near-optimal
algorithms for explainable k-medians and k-means. In: Meila,
M.; Zhang, T., editors, PROCEEDINGS OF THE 38TH INTERNATIONAL
CONFERENCE ON MACHINE LEARNING, volumen 139 de Proceedings
of Machine Learning Research, p. 7358–7367. PMLR, 18–24 Jul 2021.

Bibliography 109

[Makarychev & Shan (2021b)] MAKARYCHEV, K.; SHAN, L.. Explainable k-
means: Don’t be greedy, plant bigger trees! In: PROCEEDINGS
OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF
COMPUTING, STOC 2022, p. 1629–1642, New York, NY, USA, 2022.
Association for Computing Machinery.

[Makarychev & Shan (2023)] MAKARYCHEV, K.; SHAN, L.. Random cuts
are optimal for explainable k-medians. In: Oh, A.; Naumann, T.;
Globerson, A.; Saenko, K.; Hardt, M. ; Levine, S., editors, ADVANCES IN
NEURAL INFORMATION PROCESSING SYSTEMS, volumen 36, p. 66890–
66901. Curran Associates, Inc., 2023.

[Malhotra et al. (2022)] MALHOTRA, A.; MITTAL, S.; MAJUMDAR, P.;
CHHABRA, S.; THAKRAL, K.; VATSA, M.; SINGH, R.; CHAUDHURY, S.;
PUDROD, A. ; AGRAWAL, A.. Multi-task driven explainable diag-
nosis of covid-19 using chest x-ray images. Pattern Recognition,
122:108243, 2022.

[McSherry (2002)] MCSHERRY, D.. Explanation of attribute relevance in
decision-tree induction. In: Bramer, M.; Coenen, F. ; Preece, A., editors,
RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XVIII, p.
39–52, London, 2002. Springer London.

[Mokoena et al. (2022)] MOKOENA, T.; CELIK, T. ; MARIVATE, V.. Why is
this an anomaly? explaining anomalies using sequential expla-
nations. Pattern Recognition, 121:108227, 2022.

[Moseley & Wang (2017)] MOSELEY, B.; WANG, J. R.. Approximation
bounds for hierarchical clustering: Average linkage, bisecting
k-means, and local search. In: Guyon, I.; von Luxburg, U.; Bengio,
S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N. ; Garnett, R., ed-
itors, ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
30: ANNUAL CONFERENCE ON NEURAL INFORMATION PROCESSING
SYSTEMS 2017, DECEMBER 4-9, 2017, LONG BEACH, CA, USA, p. 3094–
3103, 2017.

[Moshkovitz et al. (2020)] MOSHKOVITZ, M.; DASGUPTA, S.; RASHTCHIAN,
C. ; FROST, N.. Explainable k-means and k-medians clustering.
In: III, H. D.; Singh, A., editors, PROCEEDINGS OF THE 37TH INTERNA-
TIONAL CONFERENCE ON MACHINE LEARNING, volumen 119 de Pro-
ceedings of Machine Learning Research, p. 7055–7065. PMLR, 13–18
Jul 2020.

Bibliography 110

[Murtagh & Contreras (2012)] MURTAGH, F.; CONTRERAS, P.. Algorithms
for hierarchical clustering: an overview. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

[Murtagh & Contreras (2017)] MURTAGH, F.; CONTRERAS, P.. Algorithms
for hierarchical clustering: an overview, ii. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 7(6):e1219, 2017.

[Murtagh (1983)] MURTAGH, F.. A survey of recent advances in hier-
archical clustering algorithms. The computer journal, 26(4):354–359,
1983.

[Pedregosa et al. (2011)] PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.;
MICHEL, V.; THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER,
P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COURNA-
PEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[Piltaver et al. (2016)] PILTAVER, R.; LUSTREK, M.; GAMS, M. ; MARTINCIC-
IPSIC, S.. What makes classification trees comprehensible? Expert
Syst. Appl., 62:333–346, 2016.

[Rani et al. (2006)] RANI, P.; LIU, C.; SARKAR, N. ; VANMAN, E.. An empiri-
cal study of machine learning techniques for affect recognition in
human–robot interaction. Pattern Analysis and Applications, 9(1):58–
69, May 2006.

[Ribeiro et al. (2016)] RIBEIRO, M. T.; SINGH, S. ; GUESTRIN, C.. " why
should i trust you?" explaining the predictions of any classi-
fier. In: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL
CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, p.
1135–1144, 2016.

[Ros & Guillaume (2019)] ROS, F.; GUILLAUME, S.. A hierarchical cluster-
ing algorithm and an improvement of the single linkage criterion
to deal with noise. Expert Systems with Applications, 128:96–108, 2019.

[Roy & Pokutta (2016)] ROY, A.; POKUTTA, S.. Hierarchical clustering
via spreading metrics. In: Lee, D. D.; Sugiyama, M.; von Luxburg,
U.; Guyon, I. ; Garnett, R., editors, ADVANCES IN NEURAL INFORMA-
TION PROCESSING SYSTEMS 29: ANNUAL CONFERENCE ON NEURAL

Bibliography 111

INFORMATION PROCESSING SYSTEMS 2016, DECEMBER 5-10, 2016,
BARCELONA, SPAIN, p. 2316–2324, 2016.

[Rudin (2019)] RUDIN, C.. Stop explaining black box machine learning
models for high stakes decisions and use interpretable models
instead. Nature Machine Intelligence, 1(5):206–215, May 2019.

[Saisubramanian et al. (2020)] SAISUBRAMANIAN, S.; GALHOTRA, S. ; ZIL-
BERSTEIN, S.. Balancing the tradeoff between clustering value
and interpretability. In: PROCEEDINGS OF THE AAAI/ACM CON-
FERENCE ON AI, ETHICS, AND SOCIETY, p. 351–357, New York, NY,
USA, 2020. Association for Computing Machinery.

[Scikit-Learn (2024)] SCIKIT-LEARN. Comparing different clustering al-
gorithms on toy datasets, 2024. Accessed in 2024-05-29.

[Shi et al. (2022)] SHI, C.; FANG, L.; LV, Z. ; ZHAO, M.. Explainable scale
distillation for hyperspectral image classification. Pattern Recog-
nition, 122:108316, 2022.

[Slack et al. (2023)] SLACK, D.; KRISHNA, S.; LAKKARAJU, H. ; SINGH, S..
Explaining machine learning models with interactive natural
language conversations using TalkToModel. Nature Machine Intelli-
gence, 5(8):873–883, Aug. 2023.

[Steinbach at al. (2000)] STEINBACH, M.; KARYPIS, G. ; KUMAR, V.. A com-
parison of document clustering techniques. In: KDD WORKSHOP
ON TEXT MINING, 2000.

[Strehl & Ghosh (2002)] STREHL, A.; GHOSH, J.. Cluster ensembles — a
knowledge reuse framework for combining multiple partitions.
J. Mach. Learn. Res., 3:583–617, mar 2003.

[Virtanen et al. (2020)] VIRTANEN, P.; GOMMERS, R.; OLIPHANT, T. E.;
HABERLAND, M.; REDDY, T.; COURNAPEAU, D.; BUROVSKI, E.; PE-
TERSON, P.; WECKESSER, W.; BRIGHT, J.; VAN DER WALT, S. J.;
BRETT, M.; WILSON, J.; MILLMAN, K. J.; MAYOROV, N.; NELSON,
A. R. J.; JONES, E.; KERN, R.; LARSON, E.; CAREY, C. J.; POLAT, İ.;
FENG, Y.; MOORE, E. W.; VANDERPLAS, J.; LAXALDE, D.; PERKTOLD,
J.; CIMRMAN, R.; HENRIKSEN, I.; QUINTERO, E. A.; HARRIS, C. R.;
ARCHIBALD, A. M.; RIBEIRO, A. H.; PEDREGOSA, F.; VAN MULBREGT,
P.; VIJAYKUMAR, A.; BARDELLI, A. P.; ROTHBERG, A.; HILBOLL, A.;
KLOECKNER, A.; SCOPATZ, A.; LEE, A.; ROKEM, A.; WOODS, C. N.;

Bibliography 112

FULTON, C.; MASSON, C.; HÄGGSTRÖM, C.; FITZGERALD, C.; NICHOL-
SON, D. A.; HAGEN, D. R.; PASECHNIK, D. V.; OLIVETTI, E.; MAR-
TIN, E.; WIESER, E.; SILVA, F.; LENDERS, F.; WILHELM, F.; YOUNG, G.;
PRICE, G. A.; INGOLD, G.-L.; ALLEN, G. E.; LEE, G. R.; AUDREN, H.;
PROBST, I.; DIETRICH, J. P.; SILTERRA, J.; WEBBER, J. T.; SLAVIČ, J.;
NOTHMAN, J.; BUCHNER, J.; KULICK, J.; SCHÖNBERGER, J. L.; DE MI-
RANDA CARDOSO, J. V.; REIMER, J.; HARRINGTON, J.; RODRÍGUEZ,
J. L. C.; NUNEZ-IGLESIAS, J.; KUCZYNSKI, J.; TRITZ, K.; THOMA,
M.; NEWVILLE, M.; KÜMMERER, M.; BOLINGBROKE, M.; TARTRE, M.;
PAK, M.; SMITH, N. J.; NOWACZYK, N.; SHEBANOV, N.; PAVLYK, O.;
BRODTKORB, P. A.; LEE, P.; MCGIBBON, R. T.; FELDBAUER, R.; LEWIS,
S.; TYGIER, S.; SIEVERT, S.; VIGNA, S.; PETERSON, S.; MORE, S.; PUD-
LIK, T.; OSHIMA, T.; PINGEL, T. J.; ROBITAILLE, T. P.; SPURA, T.;
JONES, T. R.; CERA, T.; LESLIE, T.; ZITO, T.; KRAUSS, T.; UPADHYAY,
U.; HALCHENKO, Y. O.; VÁZQUEZ-BAEZA, Y. ; 1.0 CONTRIBUTORS,
S.. Scipy 1.0: fundamental algorithms for scientific computing in
Python. Nature Methods, 17(3):261–272, Mar 2020.

[Woeginger (1997)] WOEGINGER, G. J.. A polynomial-time approxima-
tion scheme for maximizing the minimum machine completion
time. Oper. Res. Lett., 20(4):149–154, 1997.

[Yin & Neubig (2022)] YIN, K.; NEUBIG, G.. Interpreting language models
with contrastive explanations. In: Goldberg, Y.; Kozareva, Z. ; Zhang,
Y., editors, PROCEEDINGS OF THE 2022 CONFERENCE ON EMPIRICAL
METHODS IN NATURAL LANGUAGE PROCESSING, p. 184–198, Abu
Dhabi, United Arab Emirates, Dec. 2022. Association for Computational
Linguistics.

[Zahn (1971)] ZAHN, C. T.. Graph-theoretical methods for detecting
and describing gestalt clusters. IEEE Transactions on computers,
100(1):68–86, 1971.

	Clustering under constraints: explainability via decision trees and separability with minimum size
	Resumo
	Table of contents
	Introduction
	The clustering task and some of its versions
	Explainability
	Our contributions

	Separability with minimum size constraints
	Our contributions

	Published research
	Thesis organization

	Related work
	Explainability
	Explainable clustering via decision trees
	Theoretical results for explainable k-medians and k-means
	Practical algorithms for explainable k-means

	Separability with minimum size constraints
	Separability: inter-clustering criteria
	Hierarchical Agglomerative Clustering
	Clustering with minimum-size guarantees

	Theoretical results
	Explainable k-centers
	Lower bound
	Upper bound

	Explainable k-medians
	Algorithm
	Analysis

	Explainable k-means
	Bounds for low dimensions

	Explainable minimum spacing
	Lower bound
	Upper bound

	Practical algorithms for explainable k-means clustering
	ExGreedy: Greedily towards an explainable k-partition
	An efficient implementation

	ExShallow: Depth matters
	Measures of explainability for decision tree-induced partitions
	The algorithm
	Evaluation of cut in terms of partition quality
	Evaluation of cut in terms of partition explainability

	Implementation details and time-complexity analysis
	Setting the trade-off parameter
	Illustration of ExShallow and the importance of DExp

	ExBisection: Explainable clustering from scratch
	Complexity analysis

	Other algorithms for explainable k-means clustering
	IMM: Minimizing mistakes
	ExKMC: Maintaining explainability
	RandomThresholds: near-optimal explainable k-means clustering

	Experiments
	Results
	ExShallow: Sensitivity of cost and explainability to variations in
	ExShallow: Calibrating the trade-off between quality and explainability
	Running times

	Separability with minimum size constraints
	The Single-Linkage algorithm and the Min-Spacing criterium
	Relating Min-Spacing and MST-Cost criteria
	AlgoMinSp: maximizing the minimum spacing with minimum-size approximation guarantees
	Implementation details
	Approximation limits for minimum-spacing clustering with minimum size

	ConstrainedMaxMST: maximizing MST-Cost with minimum-size approximation guarantees
	Approximation limits for MST-Cost clustering with minimum size

	Experiments
	MST-Cost: comparison between empirical results and upper bound of Algorithm 13
	Average size of smallest clusters
	Fast version of Algorithm 13
	Distribution of results for Min-Spacing and MST-Cost
	Trade-off between size of smallest cluster and inter-group separability criteria
	Effect of randomness on Algorithm 13's results
	Relative k-means cost for Algorithms 12 and 13

	Conclusions
	Explainable clustering via decision trees
	Inter-clustering problems with a minimum size per cluster

	Bibliography

