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Abstract

Lima Vaz Jannuzzi, Pedro; Bergmann, José Ricardo (Advisor);
Rosa, Guilherme Simon da (Co-Advisor). Study of Numerical
Methods for Modeling Electromagnetic Wave Propagation
in Curved Waveguides with Rectangular Cross-Section. Rio
de Janeiro, 2025. 49p. Dissertação de Mestrado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

This research presents case studies of engineering applications, such as
electromagnetic propagation in uniformly curved waveguides with rectangular
cross-sections, operating at typical frequencies of 5G and 6G mobile network
systems. In this work, we introduce the boundary value problem and address
numerical techniques for solving the Maxwell’s equations in curved waveguides,
aiming for solutions to the associated eigenvalue problem. First, the Point
Matching method is employed as an alternative to solve this type of problem
by tracking zeros of the determinant of a matrix. Next, we use the Method
of Moments to solve the same problem by computing surface integrals of
functions over the rectangular geometry. Additionally, this method is employed
because it deals with a linear eigenvalue problem, making it more practical
than Point Matching. Finally, using a computational algorithm developed in
Matlab, we present a series of results on the electromagnetic propagation of the
curved rectangular waveguide in the H-plane and E-plane for different values of
the curvature radius of the curved rectangular section. The numerical results
demonstrate the convergence of the presented solution with respect to the
exact solution using a small number of harmonics.

Keywords
Curved Rectangular Waveguides; Point Matching Method; Method of

Moments; Curved coordinate system; Radius of curvature; Electromagnetic
propagation.



Resumo

Lima Vaz Jannuzzi, Pedro; Bergmann, José Ricardo; Rosa,
Guilherme Simon da. Estudo de métodos numéricos para a
modelagem da propagação eletromagnética em guias de
ondas curvados de seção transversal retangular. Rio de
Janeiro, 2025. 49p. Dissertação de Mestrado – Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Esta pesquisa apresenta casos de estudo de aplicações de engenharia,
como a propagação eletromagnética em guias de onda uniformemente curvados
com seção transversal retangular, operando em frequências típicas dos sistemas
de rede móvel 5G e 6G. Neste trabalho, apresentamos o problema de valor de
contorno e abordamos técnicas numéricas para resolver as equações de Maxwell
em guias de onda curvados, visando soluções para o problema de autovalores
associado. Primeiro, o método de Point Matching é empregado como uma
alternativa para resolver esse tipo de problema por meio do rastreamento de
zeros do determinante de uma matriz. Em seguida, utilizamos o Método do
Momentos para resolver esse mesmo problema, por meio do cálculo de integrais
de superfície das funções sobre a geometria retangular. Além disso, este método
é utilizado por ser tratar de um problema de autovalor linear, tornando-o mais
prático que o Point Matching. Por fim, mediante um algoritmo computacional
desenvolvido em Matlab, apresentamos uma série de resultados da propagação
eletromagnética do guia retangular curvado no plano H e no plano E para
diferentes valores do raio de curvatura da seção retangular curvada. Os
resultados numéricos evidenciam a convergência da solução apresentada em
relação à solução exata com pequena quantidade de harmônicos.

Palavras-chave
Guias de onda retangulares curvados; Método de Point Matching; Método

dos Momentos; Sistema de coordenadas curvado; Raio de curvatura.
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1
Introduction

1.1
General Introduction

The study of electromagnetic propagation in guided media is a topic
of interest for engineering due to its applications for the analysis and design
of microwave devices for onboard, satellite, and ground-based applications.
In addition to the analysis of waveguides with straight longitudinal axis,
immediate demands for miniaturization make the use of curved devices
increasingly necessary for modeling coupled microwave filters for applications
in complex communication systems.

Through additive manufacturing technology, which allows for engineering
modifications in device design and fabrication, it is possible to produce
antennas and microwave devices with complex structures. This technology
enables the creation of precise complex structures, facilitating the optimization
of miniaturized designs for satellite communications operating in the Ka,
Q, and V bands [1], and enabling the mass production of IoT (Internet of
Things) devices for terrestrial applications. Therefore, this topic is of great
technological importance for modeling devices for operation at millimeter-wave
frequencies (30 GHz to 300 GHz), typical of 5G and 6G systems, as well as for
research and development of low computational cost semi-analytical methods
for electromagnetic propagation analysis.

In [2], equations for a rectangular waveguide with a straight longitudinal
axis are analyzed, and in [3], the approach of precise numerical calculations
was used on curves of rectangular-section waveguides. Lewin [4] derives
approximate modal solutions for curves of the H and E planes through a
perturbation analysis. In [5], a perturbation solution was obtained using a
similar method. Weisshaar [6] presented a precise method based on the Mode
Matching technique where the Helmholtz equation in the curved region is
transformed into an eigenvalue problem.

Differently the conventional methodology, which employs the decom-
position of fields in terms of decoupled TM and TE contributions, curved
waveguides require the use of hybrid fields. A numerically stable formulation for
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the analysis of electromagnetic fields in rectangular-section waveguides with a
curved longitudinal axis is examined in [7–10]. In [11], this analysis is performed
using Bessel functions to demonstrate that the formulation allows for more
accurate representation of fields in uniformly curved rectangular waveguides
compared to perturbation solutions.

The Method of Moments (MoM) and the Point Matching Method (PMM)
are used in numerous works to model electromagnetic propagation in curved
waveguides. In [12–14], PMM was employed to enforce boundary conditions
at an appropriate set of points along the domain boundaries. This method
applies when the contour of the waveguide’s cross-section is a closed curve, as
seen in [15]. Ranade and Rosenfeld [16] proposed a point matching algorithm
with consideration for the relative distance between points. In [6], a technique
combining Mode Matching and MoM was used for the study of parallel curved
waveguides.

The authors of [17] employed MoM through a linear approximation of
the waveguide boundaries, where these boundaries were divided into segments.
Additionally, MoM was also applied at the center of each segment, aiming to
solve systems of linear equations in terms of unknown coefficients.

Recently, in [18], the variational Rayleigh-Ritz method was used to
model electromagnetic fields in curved rectangular waveguides with uniform
cross-section. Thus, the author developed a variational formulation to solve
the Maxwell’s equations in a toroidal coordinate system. The Rayleigh-Ritz
method was employed for an eigenvalue and eigenvector problem, through an
expansion in rectangular harmonics of a straight waveguide as base functions
to model a curved rectangular waveguide.

1.2
Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, we
introduce the boundary value problem and, using the Point Matching method,
we demonstrate a solution to the problem by decomposing the y-component.
In this chapter, we analyze the results for this proposed solution and for
different values of the curvature radius, where we compare the normalized
kϕ values in [11] with the normalized kζ values found in this work using the
point matching method.

In Chapter 3, we solve the problem using the MoM approach, a more
practical method that allows for a linear eigenvalue problem. In this section,
we also analyze the normalized kζ values obtained from the MoM and compare
them with the exact solution values in [11].
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In Chapter 4, we perform a comparison of the relative errors and
simulation times between the two presented methods.

Finally, in Chapter 5, we present the conclusions and suggest future
research directions.



2
Point Matching Method

The PMM that will be used in this work as an alternative to solve bound-
ary value problems, makes it possible to find an approximate solution to the
Helmholtz equation subject to complex boundary conditions, such as curved
waveguides. Furthermore, PMM is an economically attractive technique that
can offer significant computational advantages, both in terms of computing
time and programming effort. In other words, this method does not require
time-consuming auxiliary calculations that consume a lot of memory [14].

Consider the geometry of curved rectangular waveguides with a constant
radius of curvature R, as illustrated in Fig. 2.1, where the longitudinal direction
refers to the ζ-axis. We use the Cartesian coordinate system (x, y, ζ) to
describe this problem. Additionally, it is assumed that the waveguide is filled
with a lossless medium (characterized by electric permittivity ϵ and magnetic
permeability µ) in the domain R − a/2 < x < R + a/2 and −b/2 < y < +b/2,
and is bounded by a perfect electric conductor (PEC).

2.1
Solution through Decomposition of the y Component

From Maxwell’s equations, we can obtain the Helmholtz vector equation

Figure 2.1: Geometry of a rectangular waveguide curved in the (a) E-plane
and (b) H-plane.
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(∇2 + k2)F⃗ = 0⃗, (2-1)

in which the fields (electric or magnetic) are represented by the vector F⃗ =
{E⃗, H⃗}. The time-harmonic dependence exp(+jωt) is assumed and omitted.
In the coordinate system (x, y, ζ), we have that [19–22]

x̂ · (∇2 + k2) F⃗

= (∇2 + k2) Fx + 2 R−1 1
h2

∂

∂ζ
Fζ − R−2 1

h2 Fx, (2-2)

ŷ · (∇2 + k2) F⃗ = (∇2 + k2) Fy, (2-3)

ζ̂ · (∇2 + k2) F⃗

= (∇2 + k2) Fζ − 2 R−1 1
h2

∂

∂x
Fx − R−2 1

h2 Fζ , (2-4)

where the scalar Laplacian is given by

∇2 = ∇2
s + 1

h2
∂2

∂ζ2 − R−1 1
h

∂

∂x
, (2-5)

with

∇2
s = ∂2

∂x2 + ∂2

∂y2 . (2-6)

The metric coefficient in the curved coordinate is given by [23,24]

h = 1 − R−1 x. (2-7)
Noting that the y-component is decoupled from the others in (2-2)–(2-4),

instead of decomposing the fields in terms of TM and TE contributions for the
longitudinal axis ζ, it is more convenient to represent the fields in terms of Ey

and Hy due to the decoupling evidenced in (2-3). Thus, after multiplying (2-3)
by h2, we obtain (

h2∇2
s + ∂2

∂ζ2 − R−1h
∂

∂x
+ h2k2

)
Fy = 0, (2-8)

which can be used to obtain TEy and TMy fields with Fy = Hy and Fy = Ey,
respectively.

Let’s expand the fields in terms of planar harmonics, such that

Ey =
∑
m

am sin
[
kxm

(
x − a

2

)]
× cos

[
kyn

(
y − b

2

)]
e−jkζζ , (2-9)
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Hy =
∑
m

am cos
[
kxm

(
x − a

2

)]
× sin

[
kyn

(
y − b

2

)]
e−jkζζ , (2-10)

for ζ > 0. The values of kxm and kyn above are the same as those obtained in [2]
for the conventional rectangular waveguide, i.e., with a straight longitudinal
axis, such that

kxm = mπ

a
, m ∈ Z, (2-11)

kyn = nπ

b
, n ∈ Z. (2-12)

The axial wavenumber is given by k2
ζ = k2h2 − k2

t , com k = ω (ϵ µ)1/2,
com ℑm(kζ) ≤ 0 [24, 25]. It is observed that kt (transverse wavenumber)
is not a constant due to the presence of the metric coefficient h. In the
scenario where R → ∞, the axial coordinate ζ → z, and the curved
rectangular structure recovers the conventional rectangular shape. Thus, we
have kζ → kz = ±(k2 − k2

xm − k2
yn)1/2. Furthermore, as h → 1, kt becomes the

radial propagation constant.
Compactly, in view of (2-9) and (2-10), we can write the field component

parallel to y to
Fy = f̄T (x) ā Y (y) e−jkζζ . (2-13)

For a point p along x and within the waveguide cross-section, we will use
the compact notation

f̄T
p (x) = f̄T (x = xp). (2-14)

Truncating the series in (2-13) with M harmonics, we can impose that (2-14)
is satisfied at P ≥ M points along the x domain of the curved waveguide. Due
to the presence of Y (y) e−jkζζ in (2-13), we have that the fields of a given mode
are invariant in y and ζ along the waveguide. Thus, using ∂2/∂y2 → −k2

yn and
∂2/∂ζ2 → −k2

ζ in (2-8), we obtain

∑
m

[
h2
(
−k2

xm − k2
yn

)
− k2

ζ + h2k2
]

fpm am

− R−1 h kxm
∂

∂(kxmx) fpm am = 0, (2-15)

which can be written compactly as

m̄T
p ā = 0 (2-16)

at a given position xp within the waveguide.
Imposing (2-16) for a set of p = 1, 2, 3, . . . , P points in the domain

−a/2 < x < a/2, we can write
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
m̄T

1

m̄T
2

...
m̄T

P

 ā = 0̄, (2-17)

or ¯̄M ā = 0̄. (2-18)
The above equation has a non-trivial solution only when

det( ¯̄M) = 0, (2-19)

which will provide the eigenvalues kζ that solve the problem at hand. For
each eigenvalue found by tracking the zeros of det( ¯̄M), the corresponding
eigenvector will be given by solving the homogeneous system of equations in
(2-18), that is, ā = null( ¯̄M).

In view of the above, the matrix ¯̄M is filled as follows:

¯̄M |p,m= [
h2
(
−k2

xm − k2
yn

)
− k2

ζ + h2k2
]

sin
[
kxm

(
xp − a

2

)]
− R−1h(kxm) cos

[
kxm

(
xp − a

2

)]
(2-20)

for TMy fields, and

¯̄M |p,m= [
h2
(
−k2

xm − k2
yn

)
− k2

ζ + h2k2
]

cos
[
kxm

(
xp − a

2

)]
+ R−1h(kxm) sin

[
kxm

(
xp − a

2

)]
(2-21)

for TEy fields. We have m = 1, 2, 3, ..., M and n = 0, 1, 2, ... for the TMy

configuration, while m = 0, 1, 2, ..., M − 1 and n = 1, 2, 3, ... for the TEy

configuration.

2.2
Numerical Results

2.2.1
H-Plane with R = 2a

Let’s consider the problem of a hollow waveguide with a cross-section of
a = 22.86 mm by b = 10.16 mm, operating at a frequency of f = 10 GHz,
in a scenario where the curvature radius is given by R = 2a. In the following
examples, we use P = M = 20 points on the cross-sectional surface of the
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Figure 2.2: Normalized fields |ey(x)| for the TMy
1,0, TMy

2,0 and TMy
3,0 modes,

for a > b, R = 2a and P = 20 points.

Table 2.1: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = 2a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,75297 0,75298 0,0013372
TM2,0 −j 0,82630 −j 0,82645 0,017906
TM3,0 −j 1,6541 −j 1,6543 0,013433
TM4,0 −j 2,3699 −j 2,3702 0,013651
TM5,0 −j 3,0532 −j 3,0537 0,014905
TM6,0 −j 3,7219 −j 3,7226 0,016947
TM7,0 −j 4,3826 −j 4,3835 0,019919
TM8,0 −j 5,0384 −j 5,0397 0,024146
TM9,0 −j 5,6911 −j 5,6928 0,030275
TM10,0 −j 6,3415 −j 6,3440 0,039387

curved rectangular waveguide in the numerical implementation of the proposed
PMM.

The normalized fields |ey(x)| for the TMy
1,0, TMy

2,0 and TMy
3,0 modes

obtained with the help of MATLAB in [26] are shown in the Fig. 2.2. The first
ten normalized longitudinal wave numbers for the TMm,0 modes resulting from
the presented PPM (kζ/k) are listed in Table 2.1 and compared with the exact
solution obtained in [11]. We find that the field distribution is nearly identical
to that of the straight waveguide, with slight deviations in the fundamental
mode field, whose maximum shifts subtly from the center to the periphery
of the waveguide. The relative error of the eigenvalue compared to the exact
solution is less than 0,5%.
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Figure 2.3: Normalized fields |hy(x)| for the TEy
0,1, TEy

1,1 and TEy
2,1 modes, for

a < b, R = 2a and P = 20 points.

2.2.2
E-Plane with R = 2a

Now, we consider a rectangular waveguide curved in the E plane with
a = 10,16 mm and b = 22,86 mm. The parameters f , R and P are the same
as in the previous example. The normalized fields |hy(x)| for the TEy

0,1, TEy
1,1,

and TEy
2,1 modes are shown in Fig. 2.3. It is noteworthy that the fundamental

mode of the curved waveguide does not have a constant field along x, as in
the version for R → ∞. The lack of symmetry along the x domain due to
the curvature becomes evident by observing the positions of the maximum
and null of the TEy

1,1 and TEy
2,1 fields. The first ten normalized longitudinal

wavenumbers for the TEm,1 modes obtained by the PMM (kζ/k) are shown in
Table 2.2, and we again observe good agreement with the exact solution.

2.2.3
H-Plane with R = a

For the H plane, the curves of |ey(x)| for the TMy
1,0, TMy

2,0 and TMy
3,0

modes are illustrated in Fig. 2.4, and the values for (kζ/k) are shown in
Table 2.3. The effects of the finite curvature radius become more pronounced,
and the loss of symmetry along the x domain becomes significant compared
to the well-known solution for R → ∞. Regarding the eigenvalues, good
agreement is observed with the exact solution.

2.2.4
E-Plane with R = a

For the E plane, the curves of |hy(x)| for the TEy
0,1, TEy

1,1, and TEy
2,1

modes obtained are shown in Fig. 2.5, and the values of (kζ/k) are displayed
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Table 2.2: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = 2a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75527 0,75544 0,021483
TE1,1 −j 1,2340 −j 1,2349 0,072729
TE2,1 −j 2,7895 −j 2,7914 0,069034
TE3,1 −j 4,2673 −j 4,2703 0,070585
TE4,1 −j 5,7278 −j 5,7323 0,078709
TE5,1 −j 7,1817 −j 7,1878 0,085480
TE6,1 −j 8,6323 −j 8,6411 0,10225
TE7,1 −j 10,081 −j 10,093 0,11575
TE8,1 −j 11,529 −j 11,546 0,15059
TE9,1 −j 12,975 −j 12,998 0,17574

Figure 2.4: Normalized fields |ey(x)| for the TMy
1,0, TMy

2,0 and TMy
3,0 modes,

for a > b, R = a and P = 20 points.

in Table 2.4. Again, relatively good agreement is observed with the reference
exact solution. In this case, the effects of the finite curvature radius intensify
and cause the fundamental mode field to concentrate on the outer periphery
(pointing in the opposite direction of the curvature center) of the waveguide.

2.2.5
H-Plane with R = 0.75a

In this scenario, for the H plane, the curves of |ey(x)| for the TMy
1,0,

TMy
2,0 and TMy

3,0 modes are illustrated in Fig. 2.6, and the values for (kζ/k)
are shown in Table 2.5. We again observe the effects of the finite curvature
radius and the good agreement of the obtained eigenvalues in relation to the
exact solution eigenvalues.
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Table 2.3: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,74677 0,74682 0,0060834
TM2,0 −j 0,75520 −j 0,75597 0,10114
TM3,0 −j 1,5250 −j 1,5262 0,080599
TM4,0 −j 2,1926 −j 2,1945 0,086194
TM5,0 −j 2,8298 −j 2,8326 0,10039
TM6,0 −j 3,4530 −j 3,4572 0,12392
TM7,0 −j 4,0684 −j 4,0750 0,16174
TM8,0 −j 4,6791 −j 4,6896 0,22368
TM9,0 −j 5,2867 −j 5,3041 0,33048
TM10,0 −j 5,8921 −j 5,9227 0,52018

Figure 2.5: Normalized fields |hy(x)| for the TEy
0,1, TEy

1,1, and TEy
2,1 modes,

for a < b, R = a and P = 20 points.

2.2.6
E-Plane with R = 0.75a

For the E plane, the curves of |hy(x)| for the TEy
0,1, TEy

1,1, and TEy
2,1

modes obtained are shown in Fig. 2.7, and the values of (kζ/k) are displayed
in Table 2.6. Once again, the obtained values are in agreement with the exact
solution.

2.2.7
H-Plane with R = 10a

In this scenario, for the H plane, the curves of |ey(x)| for the TMy
1,0,

TMy
2,0 and TMy

3,0 modes are illustrated in Fig. 2.8, and the values for (kζ/k)
are shown in Table 2.7. For this case, we note that the values we obtained are
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Table 2.4: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75607 0,75685 0,10267
TE1,1 −j 1,1262 −j 1,1310 0,42648
TE2,1 −j 2,5856 −j 2,5962 0,40852
TE3,1 −j 3,9633 −j 3,9801 0,42396
TE4,1 −j 5,3229 −j 5,3498 0,50453
TE5,1 −j 6,6757 −j 6,7133 0,56193
TE6,1 −j 8,0252 −j 8,0858 0,75467
TE7,1 −j 9,3728 −j 9,4530 0,85590
TE8,1 −j 10,719 −j 10,862 1,3359
TE9,1 −j 12,065 −j 12,236 1,4169

Figure 2.6: Normalized fields |ey(x)| for the TMy
1,0, TMy

2,0 and TMy
3,0 modes,

for a > b, R = 0.75a and P = 20 points.

much closer to the exact solution compared to the other cases. In other words,
the values of the relative error for R = 10a are much smaller.

2.2.8
E-Plane with R = 10a

For the E plane, the curves of |hy(x)| for the TEy
0,1, TEy

1,1, and TEy
2,1

modes obtained are shown in Fig. 2.9, and the values of (kζ/k) are displayed
in Table 2.8. Again, the obtained values are very close to the exact solution.
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Figure 2.7: Normalized fields |hy(x)| for the TEy
0,1, TEy

1,1 and TEy
2,1 modes, for

a < b, R = 0.75a and P = 20 points.

Figure 2.8: Normalized fields |ey(x)| for the TMy
1,0, TMy

2,0 and TMy
3,0 modes,

for a > b, R = 10a and P = 20 points.

Figure 2.9: Normalized fields |hy(x)| for the TEy
0,1, TEy

1,1 and TEy
2,1 modes, for

a < b, R = 10a and P = 20 points.
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Table 2.5: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = 0.75a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,74023 0,74032 0,012558
TM2,0 −j 0,67168 −j 0,67361 0,28627
TM3,0 −j 1,3716 −j 1,3750 0,25043
TM4,0 −j 1,9816 −j 1,9873 0,29150
TM5,0 −j 2,5635 −j 2,5732 0,37747
TM6,0 −j 3,1323 −j 3,1489 0,52912
TM7,0 −j 3,6937 −j 3,7230 0,79451
TM8,0 −j 4,2505 −j 4,3037 1,2498
TM9,0 −j 4,8043 −j 4,9005 2,0005
TM10,0 −j 5,3560 −j 5,5244 3,1445

Table 2.6: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = 0.75a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75707 0,75880 0,22753
TE1,1 −j 0,99887 −j 1,0113 1,2424
TE2,1 −j 2,3425 −j 2,3710 1,2146
TE3,1 −j 3,6006 −j 3,6466 1,2786
TE4,1 −j 4,8399 −j 4,9202 1,6587
TE5,1 −j 6,0722 −j 6,1839 1,8394
TE6,1 −j 7,3011 −j 7,5034 2,7714
TE7,1 −j 8,5280 −j 8,7743 2,8873
TE8,1 −j 9,7538 −j 10,249 5,0820
TE9,1 −j 10,979 −j 11,468 4,4578
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Table 2.7: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = 10a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,75493 0,75493 0,000051473
TM2,0 −j 0,84756 −j 0,84757 0,00065091
TM3,0 −j 1,6924 −j 1,6924 0,00048084
TM4,0 −j 2,4226 −j 2,4226 0,00048265
TM5,0 −j 3,1196 −j 3,1196 0,00051900
TM6,0 −j 3,8018 −j 3,8018 0,00057881
TM7,0 −j 4,4759 −j 4,4759 0,00066396
TM8,0 −j 5,1451 −j 5,1452 0,00078058
TM9,0 −j 5,8112 −j 5,8112 0,00094084
TM10,0 −j 6,4750 −j 6,4750 0,0011629

Table 2.8: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = 10a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by our
point matching method.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75502 0,75503 0,00081668
TE1,1 −j 1,2662 −j 1,2662 0,0026113
TE2,1 −j 2,8500 −j 2,8501 0,0024758
TE3,1 −j 4,3575 −j 4,3576 0,0025212
TE4,1 −j 5,8480 −j 5,8482 0,0027670
TE5,1 −j 7,3319 −j 7,3321 0,0029775
TE6,1 −j 8,8125 −j 8,8128 0,0034578
TE7,1 −j 10,291 −j 10,292 0,0038693
TE8,1 −j 11,769 −j 11,769 0,0047711
TE9,1 −j 13,246 −j 13,246 0,0055322



3
Method of Moments

The Method of Moments is a technique used to solve surface or volume
electromagnetic integral equations in the frequency domain. In other words,
in summary, it is a technique that converts integral equations into a linear
system, which can be easily solved numerically via computer. Additionally,
this method is widely used in solving radiation and scattering problems [27].

The non-homogeneous equation is considered [27–29]

L (f) = g (3-1)
where L is a linear operator, g is the source or excitation (known function),
and f is the field or response (unknown function that needs to be determined).

Expanding f into a sum of N weighted basis functions, we have

f =
N∑

n=1
anfn (3-2)

where an are unknown coefficients. Substituting (3-2) into (3-1) and using the
linearity of L, we obtain

N∑
n=1

anL(fn) = g (3-3)

Assuming an inner product <f, g>. Now, defining a set of weight
functions w1, w2, w3, . . . in the domain of L, and associating the inner product
of (3-3) with each wm, we have

N∑
n=1

an ⟨wm, Lfn⟩ = ⟨wm, g⟩ , m = 1, 2, 3, ... (3-4)

In matrix form, we can write (3-4) as

¯̄Mmn ān = ḡm (3-5)
where

¯̄Mmn =


⟨w1, Lf1⟩ ⟨w1, Lf2⟩ ...

⟨w2, Lf1⟩ ⟨w2, Lf2⟩ ...

... ... ...

 (3-6)
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ān =


a1

a2
...

 (3-7)

ḡm =


⟨w1, g⟩
⟨w2, g⟩

...

 (3-8)

If the matrix ¯̄M is nonsingular, its inverse ¯̄M−1 exists. Thus, the
coefficients ān are given by

ān =
( ¯̄Mmn

)−1
ḡm (3-9)

and the solution for f is given by (3-2). For a precise expression of this result,
the matrix of functions is defined as

¯̃f = [f1 f2 f3 ...] (3-10)
and we obtain

f = ¯̃f ān = ¯̃f
( ¯̄Mmn

)−1
ḡm (3-11)

3.1
Solution of the Linear Eigenvalue Problem

We can rewrite (2-8) as (
L − k2

ζ

)
Fy = 0, (3-12)

where L is the differential operator defined as

L = h2 ▽2
s −R−1 h

∂

∂x
+ h2k2 = h2

(
∂2

∂x2 + ∂2

∂y2

)
− R−1 h

∂

∂x
+ h2k2 (3-13)

and ∂2/∂ζ2 = −k2
ζ .

Rewriting (3-12), we have(
L − k2

ζ

)
f̄ T ā = 0. (3-14)

Therefore, we expand f as in (3-2) to solve for the unknowns ā by
calculating integrals of each differential equation over the transverse surface of
the curved waveguide. To do this, we test with the weighting function wp and
take the surface integral∫

S
wp

(
L − k2

ζ

)
f̄ T ā dS = 0, ∀ p = 1, 2, 3, ..., P. (3-15)

For the point matching method, it is assumed
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wp = δ(x − xp) δ(y − yp). (3-16)
Writing in matrix form, we have for p = 1[〈

w1, Lf̄ T
〉

S
− k2

ζ

〈
w1, f̄ T

〉
S

]
ā = 0. (3-17)

Stacking all the P equations, we can write

¯̄M ā = 0 (3-18)
where

¯̄M =



〈
w1, Lf̄ T

〉
S

− k2
ζ

〈
w1, f̄ T

〉
S

〈
w2, Lf̄ T

〉
S

− k2
ζ

〈
w2, f̄ T

〉
S...〈

wp, Lf̄ T
〉

S
− k2

ζ

〈
wp, f̄ T

〉
S


(3-19)

Compactly, (3-19) can be written as

¯̄M =
( ¯̄M1 − k2

ζ
¯̄M2
)

(3-20)
Thus, we rewrite (3-18) as follows:( ¯̄M1 − k2

ζ
¯̄M2
)

ā = 0 (3-21)
where

¯̄M1 |p,m=
〈
wp, Lf̄ |m

〉
S

(3-22)

¯̄M2 |p,m=
〈
wp, f̄ |m

〉
S

(3-23)
Using (3-16), we can rewrite (3-22) and (3-23) as

¯̄M1 |p,m= Lf̄ |m (xp, yp) (3-24)

¯̄M2 |p,m= f̄ |m (xp, yp) (3-25)
Instead of imposing boundary conditions at discrete points, as we did

in the point matching method, we will impose the boundary conditions over
the entire problem domain. One of the most common methods is the Galerkin
Method, where the basis functions are used as test functions, i.e., f = g.
Choosing this particular case, we have wp = fp. Thus, we assume

wp = fp = sin
(

kxp

(
x − a

2

))
(3-26)

for TMy fields, and

wp = fp = cos
(

kxp

(
x − a

2

))
(3-27)
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Table 3.1: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = 2a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,75297 0,75297 0,000087244
TM2,0 −j 0,82630 −j 0,82630 0,00042928
TM3,0 −j 1,6541 −j 1,6541 0,00024803
TM4,0 −j 2,3699 −j 2,3699 0,00028264
TM5,0 −j 3,0532 −j 3,0533 0,00028550
TM6,0 −j 3,7219 −j 3,7219 0,00039606
TM7,0 −j 4,3826 −j 4,3826 0,00046152
TM8,0 −j 5,0384 −j 5,0385 0,00073781
TM9,0 −j 5,6911 −j 5,6911 0,0010089
TM10,0 −j 6,3415 −j 6,3416 0,0019192

for TEy fields.
Using (3-26), we can rewrite (3-22) and (3-23) as

¯̄M1 |p,m=
∫

sin
(

kxp

(
x − a

2

))
Lf̄m (x, y) dS (3-28)

¯̄M2 |p,m=
∫

sin
(

kxp

(
x − a

2

))
f̄m (x, y) dS (3-29)

Using (3-27), we can rewrite (3-22) and (3-23) as

¯̄M1 |p,m=
∫

cos
(

kxp

(
x − a

2

))
Lf̄m (x, y) dS (3-30)

¯̄M2 |p,m=
∫

cos
(

kxp

(
x − a

2

))
f̄m (x, y) dS (3-31)

3.2
Numerical Results

3.2.1
H-Plane with R = 2a

Using the same parameters as in the H-plane scenario for the point
matching method, we have the first ten normalized longitudinal wavenumbers
for the TMm,0 modes resulting from the method of moments (kζ/k), as shown
in Table 3.1. The curves of |ey(x)| for the TMy

1,0, TMy
2,0 and TMy

3,0 modes are
modes are very similar to those shown in Fig. 2.2, meaning that the relative
errors between these curves for these two methods are quite small. It is observed
that the relative error of the eigenvalue compared to the exact solution is less
than 0,005%.
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Figure 3.1: Relative error (%) of the normalized field curves |ey(x)| between
PMM and MoM for TMy

1,0, TMy
2,0 and TMy

3,0 modes, for a > b, R = 2a and
P = 20 points.

We note that the normalized field curves are very similar for the two
methods presented. Thus, we plotted the relative error of these curves between
the methods and observed that the errors for the fundamental mode are
practically negligible. Furthermore, for the second mode, the errors are very
low, below 0, 1. For the third mode, the errors are below 0, 25. Therefore, the
PMM and MoM methods are in good agreement.

3.2.2
E-Plane with R = 2a

Using the same parameters as in the E-plane scenario for the point
matching method, we have the first ten normalized longitudinal wavenumbers
for the TEm,1 modes resulting from the method of moments (kζ/k), as shown
in Table 3.2. The curves of |hy(x)| for the TEy

0,1, TEy
1,1, and TEy

2,1 modes
are in accordance with the curves in Fig. 2.3. Again, the relative error of the
eigenvalue compared to the exact solution is less than 0,005%.

For the E-plane, the relative errors for the fundamental mode are also
practically zero. For the second mode, the errors are below 0, 6, and for the
third mode, they are less than 1, 2. Similar to the H-plane, the errors occur
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Table 3.2: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = 2a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75527 0,75527 0,000061226
TE1,1 −j 1,2340 −j 1,2340 0,00025089
TE2,1 −j 2,7895 −j 2,7895 0,00021538
TE3,1 −j 4,2673 −j 4,2673 0,00026579
TE4,1 −j 5,7278 −j 5,7278 0,00027317
TE5,1 −j 7,1817 −j 7,1817 0,00037843
TE6,1 −j 8,6323 −j 8,6323 0,00043367
TE7,1 −j 10,081 −j 10,081 0,00068292
TE8,1 −j 11,529 −j 11,529 0,00090683
TE9,1 −j 12,975 −j 12,976 0,0016904

Table 3.3: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,74677 0,74677 0,00041013
TM2,0 −j 0,75520 −j 0,75524 0,0044792
TM3,0 −j 1,5250 −j 1,5250 0,0033919
TM4,0 −j 2,1926 −j 2,1927 0,0044001
TM5,0 −j 2,8298 −j 2,8300 0,0060072
TM6,0 −j 3,4530 −j 3,4533 0,010240
TM7,0 −j 4,0684 −j 4,0691 0,018223
TM8,0 −j 4,6791 −j 4,6809 0,038765
TM9,0 −j 5,2867 −j 5,2912 0,085774
TM10,0 −j 5,8921 −j 5,9042 0,20585

when the normalized fields |hy(x)| and |ey(x)| are practically zero.

3.2.3
H-Plane with R = a

Table 3.3 shows the first ten normalized longitudinal wavenumbers for
the TMm,0 modes resulting from the method of moments, and we note good
agreement with the exact solution. The curves of |ey(x)| for the TMy

1,0, TMy
2,0

and TMy
3,0 modes are consistent with the curves in Fig. 2.4.

For this scenario, we observed that the relative error values for the first
mode were practically zero, as in the previous case. For the second and third
modes, the errors were higher compared to the case of R = 2a. Once again,
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Figure 3.2: Relative error (%) of the normalized field curves |hy(x)| between
PMM and MoM for TEy

0,1, TEy
1,1 and TEy

2,1 modes, for a > b, R = 2a and
P = 20 points.

the errors appear when the normalized fields are nearly zero, that is, when the
TMy

2,0 and TMy
3,0 fields are negligible.

3.2.4
E-Plane with R = a

For the E-plane, the first ten normalized longitudinal wavenumbers for
the TEm,1 modes resulting from the method of moments are shown in Table 3.4,
and again we observe good agreement with the exact solution. The curves of
|hy(x)| for the TEy

0,1, TEy
1,1, and TEy

2,1 modes are equivalent to the curves in
Fig. 2.5.

For the TEy modes, the errors for the TEy
1,1 and TEy

2,1 modes were slightly
smaller compared to the TMy modes. In this context, the relative error was
higher for the second mode. Furthermore, once again, the errors occur when
the fields are nearly zero, and both methods are also in good agreement.



Chapter 3. Method of Moments 34

Figure 3.3: Relative error (%) of the normalized field curves |ey(x)| between
PMM and MoM for TMy

1,0, TMy
2,0 and TMy

3,0 modes, for a > b, R = a and
P = 20 points.

Table 3.4: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75607 0,75608 0,00063301
TE1,1 −j 1,1262 −j 1,1262 0,0031066
TE2,1 −j 2,5856 −j 2,5857 0,0029801
TE3,1 −j 3,9633 −j 3,9634 0,0039009
TE4,1 −j 5,3229 −j 5,3232 0,0051642
TE5,1 −j 6,6757 −j 6,6763 0,0084491
TE6,1 −j 8,0252 −j 8,0264 0,014290
TE7,1 −j 9,3728 −j 9,3755 0,029297
TE8,1 −j 10,719 −j 10,726 1,062939
TE9,1 −j 12,065 −j 12,083 1,15138

3.2.5
H-Plane with R = 0.75a

For R = 0.75a, Table 3.5 indicates the values of kζ/k for the H-plane.
The curves of |ey(x)| for the TMy

1,0, TMy
2,0 and TMy

3,0 modes are in agreement
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Figure 3.4: Relative error (%) of the normalized field curves |hy(x)| between
PMM and MoM for TEy

0,1, TEy
1,1 and TEy

2,1 modes, for a > b, R = a and
P = 20 points.

Table 3.5: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = 0.75a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,74023 0,74022 0,00084983
TM2,0 −j 0,67168 −j 0,6767185 0,024851
TM3,0 −j 1,3716 −j 1,3719 0,024728
TM4,0 −j 1,9816 −j 1,9823 0,039431
TM5,0 −j 2,5635 −j 2,5654 0,071884
TM6,0 −j 3,1323 −j 3,1370 0,15176
TM7,0 −j 3,6937 −j 3,7058 0,32857
TM8,0 −j 4,2505 −j 4,2808 0,71104
TM9,0 −j 4,8043 −j 4,8724 1,4171
TM10,0 −j 5,3560 −j 5,4945 2,5851

with the curves in Fig. 2.6.
In Fig. 3.5, we notice that the relative error for the second mode in

0 < x/a < 0,25 was higher than in previous scenarios. Once again, the errors
for the second and third modes occur when the fields are nearly zero, and the
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Figure 3.5: Relative error (%) of the normalized field curves |ey(x)| between
PMM and MoM for TMy

1,0, TMy
2,0 and TMy

3,0 modes, for a > b, R = 0.75a and
P = 20 points.

PMM and MoM methods are also in good agreement, especially for the TMy
1,0

and TMy
3,0 modes.

3.2.6
E-Plane with R = 0.75a

For the E-plane and R = 0.75a, the first ten normalized longitudinal
wavenumbers for the TEm,1 modes resulting from the method of moments are
shown in Table 3.6. Similar to the H-plane, for this value of R, the relative
error of the eigenvalue compared to the exact solution is less than 3%. The
curves of |hy(x)| for the TEy

0,1, TEy
1,1, and TEy

2,1 modes are the same as in
Fig. 2.7.

In Fig. 3.6, for the E-plane, we observe that the relative errors for the
TEy

1,1 and TEy
2,1 modes were slightly higher compared to the H-plane. For the

fundamental mode, TEy
0,1, the relative errors are practically zero.
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Table 3.6: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = 0.75a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75707 0,75710 0,0028950
TE1,1 −j 0,99887 −j 0,99906 0,019235
TE2,1 −j 2,3425 −j 2,3430 0,020766
TE3,1 −j 3,6006 −j 3,6017 0,031463
TE4,1 −j 4,8399 −j 4,8425 0,053895
TE5,1 −j 6,0722 −j 6,0788 0,10897
TE6,1 −j 7,3011 −j 7,3180 0,23216
TE7,1 −j 8,5280 −j 8,5718 0,51313
TE8,1 −j 9,7538 −j 9,8579 1,0677
TE9,1 −j 10,979 −j 11,204 2,0555

Table 3.7: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TM modes
in a rectangular waveguide curved in the H-plane (with R = 10a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TM1,0 0,75493 0,75493 0,0000033179
TM2,0 −j 0,84756 −j 0,84756 0,000012749
TM3,0 −j 1,6924 −j 1,6924 0,0000065975
TM4,0 −j 2,4226 −j 2,4226 0,0000073101
TM5,0 −j 3,1196 −j 3,1196 0,0000065350
TM6,0 −j 3,8018 −j 3,8018 0,0000087165
TM7,0 −j 4,4759 −j 4,4759 0,0000083743
TM8,0 −j 5,1451 −j 5,1451 0,000012507
TM9,0 −j 5,8112 −j 5,8112 0,000012499
TM10,0 −j 6,4750 −j 6,4750 0,000021217

3.2.7
H-Plane with R = 10a

The first ten normalized longitudinal wavenumbers for the TMm,0 modes
resulting from the method of moments are shown in Table 3.7. The curves of
|ey(x)| for the TMy

1,0, TMy
2,0 and TMy

3,0 modes are the same as in Fig. 2.8.
For this case, where R = 10a, the relative errors of the normalized field

curves for the TMy modes showed significantly lower values compared to other
curvature radius values of the guide. For the TMy

1,0 mode, the result was the
same as in previous cases, as expected. For the TMy

2,0 mode, the error was
below 0,1. Finally, for the last mode, the errors were less than 0,05. This
demonstrates the strong agreement and consistency between the two methods
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Figure 3.6: Relative error (%) of the normalized field curves |hy(x)| between
PMM and MoM for TEy

0,1, TEy
1,1 and TEy

2,1 modes, for a > b, R = 0.75a and
P = 20 points.

proposed in this thesis.

3.2.8
E-Plane with R = 10a

The first ten normalized longitudinal wavenumbers for the TEm,1 modes
resulting from the method of moments are shown in Table 3.8. Similar to the
H-plane, for this value of R, the relative error of the eigenvalue compared to
the exact solution is less than 0,00005%. The curves of |hy(x)| for the TEy

0,1,
TEy

1,1, and TEy
2,1 modes are the same as in Fig. 2.9.

For the E-plane, the relative errors of the TEy
1,1 and TEy

2,1 modes are also
low, thus demonstrating good agreement between the methods. Furthermore,
as in the previous scenarios, it was expected that the errors would appear when
the fields are nearly zero.
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Figure 3.7: Relative error (%) of the normalized field curves |ey(x)| between
PMM and MoM for TMy

1,0, TMy
2,0 and TMy

3,0 modes, for a > b, R = 10a and
P = 20 points.

Table 3.8: Normalized longitudinal wavenumbers kϕ/k and kζ/k for TE modes
in a rectangular waveguide curved in the E-plane (with R = 10a) obtained
respectively by the exact solution (using Bessel functions) in [11] and by the
method of moments.

Mode kϕ/k [11] Our method (kζ/k) Relative error (%)
TE0,1 0,75502 0,75502 0,0000017277
TE1,1 −j 1,2662 −j 1,2662 0,0000068546
TE2,1 −j 2,8500 −j 2,8500 0,0000055931
TE3,1 −j 4,3575 −j 4,3575 0,0000069302
TE4,1 −j 5,8480 −j 5,8480 0,0000064212
TE5,1 −j 7,3319 −j 7,3319 0,0000086823
TE6,1 −j 8,8125 −j 8,8125 0,0000083674
TE7,1 −j 10,291 −j 10,291 0,000012461
TE8,1 −j 11,769 −j 11,769 0,000012415
TE9,1 −j 13,246 −j 13,246 0,000020926
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Figure 3.8: Relative error (%) of the normalized field curves |hy(x)| between
PMM and MoM for TEy

0,1, TEy
1,1 and TEy

2,1 modes, for a > b, R = 10a and
P = 20 points.



4
Comparison between the two methods presented

In this chapter, we compare the relative errors between the PMM and
MoM methods to observe the performance of these techniques against the
exact solution presented in [11]. Additionally, to analyze the simulation time
between the two methods, we present two tables in Section 4.2 that show this
comparison.

4.1
Relative Error

According to Tables 4.1– 4.8, we verify that the method of moments
presented smaller relative errors compared to the exact solution [11] in relation
to the point matching method. For the MoM, the relative errors were less than
2,6%, while for the PMM, the errors were below 5,1%.

Table 4.1: Relative errors of the PMM and MoM for the E-plane and R = 0.75a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,22753 0,0028950
TE1,1 1,2424 0,019235
TE2,1 1,2146 0,020766
TE3,1 1,2786 0,031463
TE4,1 1,6587 0,053895
TE5,1 1,8394 0,10897
TE6,1 2,7714 0,23216
TE7,1 2,8873 0,51313
TE8,1 5,0820 1,0677
TE9,1 4,4578 2,0555

4.2
Simulation Time

PMM simulation times are much shorter compared to MoM times, as
shown in Tables 4.9 and 4.10. MoM uses an integral approach over surface
functions, thus solving a dense system of linear equations. This results in a
longer computational time and higher memory requirements. On the other
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Table 4.2: Relative errors of the PMM and MoM for the E-plane and R = a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,10267 0,00063301
TE1,1 0,42648 0,0031066
TE2,1 0,40852 0,0029801
TE3,1 0,42396 0,0039009
TE4,1 0,50453 0,0051642
TE5,1 0,56193 0,0084491
TE6,1 0,75467 0,014290
TE7,1 0,85590 0,029297
TE8,1 1,3359 0,062939
TE9,1 1,4169 0,15138

Table 4.3: Relative errors of the PMM and MoM for the E-plane and R = 2a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,021483 0,000061226
TE1,1 0,072729 0,00025089
TE2,1 0,069034 0,00021538
TE3,1 0,070585 0,00026579
TE4,1 0,078709 0,00027317
TE5,1 0,085480 0,00037843
TE6,1 0,10225 0,00043367
TE7,1 0,11575 0,00068292
TE8,1 0,15059 0,00090683
TE9,1 0,17574 0,0016904

Table 4.4: Relative errors of the PMM and MoM for the E-plane and R = 10a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,00081668 0,0000017277
TE1,1 0,0026113 0,0000068546
TE2,1 0,0024758 0,0000055931
TE3,1 0,0025212 0,0000069302
TE4,1 0,0027670 0,0000064212
TE5,1 0,0029775 0,0000086823
TE6,1 0,0034578 0,0000083674
TE7,1 0,0038693 0,000012461
TE8,1 0,0047711 0,000012415
TE9,1 0,0055322 0,000020926

hand, PMM avoids the need for integration, simplifying the formation of the
system matrix and reducing computation time.
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Table 4.5: Relative errors of the PMM and MoM for the H-plane and R = 0.75a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,012558 0,00084983
TE1,1 0,28627 0,024851
TE2,1 0,25043 0,024728
TE3,1 0,29150 0,039431
TE4,1 0,37747 0,071884
TE5,1 0,52912 0,15176
TE6,1 0,79451 0,32857
TE7,1 1,2498 0,71104
TE8,1 2,0005 1,4171
TE9,1 3,1445 2,5851

Table 4.6: Relative errors of the PMM and MoM for the H-plane and R = a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,0060834 0,00041013
TE1,1 0,10114 0,0044792
TE2,1 0,080599 0,0033919
TE3,1 0,086194 0,0044001
TE4,1 0,10039 0,0060072
TE5,1 0,12392 0,010240
TE6,1 0,16174 0,018223
TE7,1 0,22368 0,038765
TE8,1 0,33048 0,085774
TE9,1 0,52018 0,20585

Table 4.7: Relative errors of the PMM and MoM for the H-plane and R = 2a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,0013372 0,000087244
TE1,1 0,017906 0,00042928
TE2,1 0,013433 0,00024803
TE3,1 0,013651 0,00028264
TE4,1 0,014905 0,00028550
TE5,1 0,016947 0,00039606
TE6,1 0,019919 0,00046152
TE7,1 0,024146 0,00073781
TE8,1 0,030275 0,0010089
TE9,1 0,039387 0,0019192
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Table 4.8: Relative errors of the PMM and MoM for the H-plane and R = 10a

Mode Relative error (%) of the PMM Relative error (%) of the MoM
TE0,1 0,000051473 0,0000033179
TE1,1 0,00065091 0,000012749
TE2,1 0,00048084 0,0000065975
TE3,1 0,00048265 0,0000073101
TE4,1 0,00051900 0,0000065350
TE5,1 0,00057881 0,0000087165
TE6,1 0,00066396 0,0000083743
TE7,1 0,00078058 0,000012507
TE8,1 0,00094084 0,000012499
TE9,1 0,0011629 0,000021217

Table 4.9: Comparison of simulation times between the PMM and MoM
methods in the E-plane
Radius of Curvature Simulation time (s) of PMM Simulation time (s) of MoM

R = 0, 75a 0,8105 85,6906
R = a 0,8299 79,4363
R = 2a 0,7639 148,4616
R = 10a 0,8536 152,9791

Table 4.10: Comparison of simulation times between the PMM and MoM
methods in the H-plane
Radius of Curvature Simulation time (s) of PMM Simulation time (s) of MoM

R = 0, 75a 1,5203 82,2622
R = a 0,8201 154,1584
R = 2a 0,8490 87,7802
R = 10a 0,8609 131,5030



5
Conclusions

In this thesis, we present a new PMM solution to solve the electromag-
netic fields in curved rectangular waveguides. For the analyzed large and small
curvature scenarios, we observed that with a reduced set of 20 harmonics, we
were able to find solutions for the fundamental mode propagation constant with
an error of less than 1% compared to the exact solution. The computational
cost of our approach is lower than the exact approaches [11] and Galerkin’s
approach in [28]. Additionally, our method is relatively simple to implement
numerically compared to these approaches.

Furthermore, we applied the Method of Moments to solve the fields in
these guides. Similar to the PMM, for the scenarios of large and small curvature
examined, it was also possible to find solutions for the propagation constant
of the fundamental mode with an error of less than 1% compared to the exact
solution.

With the approach of the two methods used in this work, it becomes clear
that the main difference between the methods lies in the nature of the matrices
involved in solving the problem and how this affects the computational time.
For the point matching method, we have a matrix that is a function of the
eigenvalue kζ , meaning it is not a constant matrix, and therefore, the problem
is nonlinear. Despite being a nonlinear problem, the formation of this matrix
is generally fast, as it only involves evaluating mathematical expressions at
discrete points, without requiring numerical integration. In each iteration,
the computational complexity is relatively low. Thus, the PMM requires less
simulation time.

On the other hand, for the method of moments, we have constant
matrices that do not depend on the eigenvalue and allow a linear eigenvalue
problem. However, the construction of this constant matrix is much more
complex than in PMM, as it involves integral calculations to determine
the matrix coefficients. These calculations are computationally intensive and
require more time and memory to perform. However, it is worth noting that
despite presenting longer simulation times, the relative errors are smaller when
compared to the relative errors obtained for PMM.

It is important to mention that the normalized field curves in curved
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rectangular guides for the PMM and MoM methods are very similar, making it
impossible to observe differences. By plotting the relative error graphs of these
curves between the two methods, we found that the errors for the fundamental
mode are practically negligible, and for the other two modes, the errors are
very low. Thus, we can conclude that the Point Matching Method and the
Method of Moments show good agreement.

Finally, as future work, we intend to investigate the convergence of
PMM and MoM for dissipative problems, considering dielectric and conductive
losses in the walls of the curved waveguide. Additionally, we may analyze
the modeling of electromagnetic propagation in curved waveguides with other
geometries, such as curved waveguides with circular, elliptical sections, among
others.
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