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Abstract

Hermont, Iam Kim de Souza; de Lamare, Rodrigo (Advisor); Manrique,
André (Co-Advisor). Robust Adaptive Algorithms Applied to
Active Noise Cancellation. Rio de Janeiro, 2024. 79p. Dissertação de
Mestrado – Departamento de Engenharia Elétrica, Pontifícia Universi-
dade Católica do Rio de Janeiro.

The well-known adaptive algorithm called least-mean square (LMS) is
a simple and efficient approach to active noise cancellation application prob-
lems. However, in the presence of non-Gaussian noises or non-linear environ-
ments, the standard LMS commonly cannot reach satisfactory performance.
Therefore, a wide range of robust adaptive processing techniques have been
investigated in the last few decades. This thesis proposes a robust adaptive
filtering approach for noise cancellation. In particular, the model uses the clas-
sical filtered-X framework with the developed method in this research, it is
based on hyperbolic tangent exponential generalized Kernel M-estimator func-
tion (HEKM), which achieves optimal performance in terms of Average Noise
Reduction (ANR). The results demonstrate the cost-effectiveness of the pro-
posed algorithm in suppressing spurious noises in different input systems.

Keywords
Adaptive filtering; Robust processing methods; Active noise cancella-

tion; Audio signal processing; Acoustics.



Resumo

Hermont, Iam Kim de Souza; de Lamare, Rodrigo; Manrique, André.
Algoritmos Adaptativos Robustos Aplicados ao Cancelamento
Ativo de Ruído. Rio de Janeiro, 2024. 79p. Dissertação de Mestrado –
Departamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

O conhecido algoritmo adaptativo denominado least-mean square (LMS)
é uma abordagem simples e eficiente para problemas de cancelamento ativo
de ruído (ANC). No entanto, na presença de sinais não Gaussianos ou sis-
temas não lineares, o clássico LMS comumente não alcança um desempenho
satisfatório. Por essa razão, um amplo número de técnicas de processamento
de sinais adaptativo robustas tem sido investigadas nas últimas décadas. Essa
dissertação propõe uma abordagem de filtragem adaptativa robusta para can-
celamento ativo de ruído. Em particular, o modelo utiliza a clássica estrutura
filtered-X junto ao método desenvolvido neste trabalho, baseado na deriva-
ção de uma função tangente hiperbólica exponencial kernel generalizado M-
estimador (HEKM), o qual alcançou um desempenho ótimo em termos da Re-
dução de Ruído Média (ANR). Os resultados demonstraram o custo-benefício
do algoritmo proposto para supressão de diferentes tipos de sinais espúrios na
entrada do sistema.

Palavras-chave
Filtragem adaptativa; Métodos de processamento robustos; Cancela-

mento ativo de ruído; Processamento de sinais de áudio; Acústica.
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1
Introduction

One important research application in the audio signal processing field is
related to control and/or canceling undesired acoustic signals in the environ-
ment, which are usually known as noise. In real applications, different noise
sources degrade heavily the general operation of a system. Therefore, noise
reduction (NR) approaches are fundamental to guarantee an appropriate per-
formance. To this end, electronic systems capable of canceling different sources
of interference, vibration, and reverberation have been designed and developed
in the last 80 years [1].

To improve the range of this noise suppression structures, the compu-
tational approaches using smart digital signal processing algorithms came to
enhance the capacity and efficiency of the system’s response [2, 3]. Based on
this engineering concept, Active Noise Cancellation (ANC) has emerged as a
powerful technology for attenuating the level of noise in a series of electrome-
chanical or electroacoustic networks [4]. Into the development of the electronic
systems that boosted the high-performance DSP devices and algorithms, at
least since the 80s and even with the development of the Artifitial Inteligente
(AI) and other areas, the whole subject of the ANC frameworks are the case
study and applicable technique in expansion [5].

According to Haykin [6], active noise control is an effective way to
reduce the noise level in electroacoustic or electromechanical systems. In other
words, it is a framework whose function is to control the noise that affects a
system. This task is achieved through an adaptive algorithm that calculates
the optimum solution, and through the electro-mechanical-acoustic hardware
that applies the solution in the secondary propagation path in order to cancel
out the noise of this environment.

This curious and interesting kind of “sound control methodology”, is
reached by introducing an antinoise wave through an appropriate segment
of secondary sources [7, 8]. Specifically, an adaptive algorithm obtains the
cancelling signal and an electro-mechanical-acoustic system propagates that
wave with the same amplitude and inverse phase through the secondary path,
thus achieving the cancellation of noise in the observed environment [7, 9].

One of the most well-known adaptive methods in history is the Least
Mean Square (LMS) algorithm, created by Ted Hoff and Bernard Widrow,
brings a new point of view at the time for the improvement of adaptive learning
approaches, e.g. the stochastic gradient descent applied in adaptive filtering
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(vide Widrow et all [10]) or the delta rule in neural networks.
With the LMS method, it was enabled to learn about the statistical

behaviour of the signal through adaptive processing. This adaptive process
involves the computation of the error between the desired and output signals.
Then, the error is used by the adaptive algorithm to update the parameters
of the filter. This acknowledged algorithm is so simple and stable for linear
systems and noises of Gaussian behavior [11], that it was studied and used for
decades in ANC arrangements beyond other many applications.

Unifying the classic adaptive algorithm named LMS with another
renowned framework approach, that uses an auxiliary path, called filtered-
X [11], the result is a powerful combination known as FXLMS1.

However, in some specific cases like nonlinear structures (e.g chaotic,
unpredictable) or noises with nature non-Gaussian (impulsive, cosine, complex
signals or with additive noise), the accuracy of the FXLMS usually degrades.
For this reason, some methodology that takes into account the stochastic
characteristics of the signal must be adopted, thus making the treatment of
the physical features of this signals and its systems involved feasible [12]. In
this study, the mathematical basis of the objective function, adaptive learning,
and statistical analysis of the algorithm will be addressed.

In general, to deal with this type of problem throughout history, a lot of
different concepts were created using engineering tools and generating a series
of signal processing frameworks, based on a range of problems and the complex
signals that are needed to apply noise reduction [13]. These facts compose a
huge scenario that proves that this area still has scientific potential to keep
on growing and to contribute technologically to real-world problems related to
ANC and other fields.

1.1
Motivation

Over the years, some techniques have been employed to deal with the
wide range of problems in ANC systems, such as the well-known variable
step-size [14], the regularized least-squares method [15], least mean p-power
[16]. Heuristic methods such as particle swarm optimization [17] or different
methods of the objective function optimization like stochastic gradient descent,
Newton [18] and q-gradient [19] (vide the survey at Lu Lu et al [12,13]), Kernel
Adaptive Filtering approaches [20] etc. They are some of the perspectives

1vide the history of the method in “History, applications, and subsequent development of
the FXLMS Algorithm, IEEE Signal Processing Magazine Vol. 30, May 2013.”
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researched in a universe of possibilities when the focus is to seek the best
solution for this classical problem.

Another set of key ideas were concerned with the consideration of
different types of objective functions used to develop robust algorithms using
methods like the correntopy criterion [21]; hyperbolic trigonometric functions
[22, 23] and an exponential conjugated version [24]; the M-estimator method
[25] and others.

Last but not least, on the contrary, one of the most important reasons for
this area of study is a wide range of related areas to ANC which benefit from
the development of adaptive filtering devices in signal processing, such as noise
reduction, system identification, echo cancellation, signal estimation, pattern
recognition, etc. [5] in many different areas, such as medicine, communications,
water treatment, among others [26].

The motivation of this work based on the research of a novel algorithmic
model, which count the state-of-the-art in adaptive filtering methods, reaching
a robust approach able to lead with some scenarios in the active noise
cancellation.

1.2
Contributions

The contributions of this thesis can be summarized into:

– An active noise cancellation framework, composed by a filtered-X ANC
structure and robust adaptive filtering algorithm, using a novel approach
called FXHEKM. This methodology can work as well with Gaussian
and non-Gaussian (e.g. pseudo impulsive α-Stable distribution) noises,
it reaching a high performance with stable results;

– A comprehensive statistical analysis of the FXHEKM adaptive process-
ing algorithm. This analysis comprehends the objective function deriva-
tion and other statistical aspects such as stability, convergence as well
as the important evaluation metrics like computational cost, MMSE and
ANR;

1.3
Dissertation Outline

This dissertation is structured as follows:

– In Chapter 2, we present a literature review of the active noise cancel-
lation problem and related topics, that is fundamental for the reader
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to conceptual understand about: adaptive filtering techniques; active
noise cancellation systems; stability and convergence analysis; and ro-
bust methods employed in this kind of problems, which obtain best per-
formance approach in terms of noise suppression results.

– Chapter 3 details the development of the proposed FXHEKM algorithm.
In particular, the proposed FXHEKM algorithm is described in detail
including: the system modeling; the mathematical derivation of the pro-
posed FXHEKM algorithm; the statistical analysis, including the stabil-
ity and MSE analysis along with numerical simulations, that are devised
to verify the algorithm performance and its implications. Moreover, the
analytically simulated results are presented to evaluate, prove and dis-
cuss about the performance among other interesting issue of the proposed
model.

– Chapter 4 brings the final considerations about the work with conclu-
sions, important notes and possible future works that would be exten-
sions of this research.

1.4
List of Publications

The results of the research work are published in the papers listed as
follows:

Conference Paper:

– I. K. de S. Hermont, A. R. Flores and R.C. de Lamare, “Robust Adap-
tive Filtering Based on the Hyperbolic Tangent Exponential Kernel
M-Estimator Function for Active Noise Cancellation”, IEEE Interna-
tional Symposium on Wireless Communication Systems (ISWCS), Rio
de Janeiro, Brazil, 2024.

1.5
Notation

x(n) vector (bold lower case letters)

x′(n), s′(n) filtered-X response/secondary path estimation

Ĵ(n) estimation of objective function

R matrix (bold upper case letters)

I identity matrix

E[ · ] expected value operator
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|| . ||2
2 l2 − norm operator

exp(·) exponential function

tanh(·), sech(·), cosh(·) hyperbolic trigonometric functions

µ, ξ, η constant value parameters



2
Active Noise Cancellation Review

Over the last 50 years, there has been a growing interest in active

techniques for sound control. Although many physical principles of sound

control were established during this time, the technology to implement active

noise control successfully has only become available recently. In fact, modern

approaches employ advanced signal processing methods to exploit the acoustic

aspects of the problem [27].

Active noise control, most known as active noise cancellation (ANC),

refers to the concept of obtaining suppression of noise by introducing a system

to recognize and apply an “anti-noise” wave through an appropriate array of

secondary sources [28]. As referred to by Nelson and Elliott [27], the ANC

topic emerged in the last century as a promising field of engineering, research

and development, and it continues improving through novel formulations and

new problems with their recent solutions.

Utilized in many applications where is necessary the control and attenu-

ation of noise in a wide range of modern dynamic systems, the models of ANC

were developed with several technical approaches and employ engineering and

other scientific and technological areas.

It is worth mentioning the fundamental contributions of Paul Lueg with

the Process of silencing sound oscillations in 1936 [29] where his pioneer patent

brings a preliminary understanding about the area in the engineering point-of-

view. In the article Electronic Control of Noise, Vibration, and Reverberation

in 1956 [30], Olson and May gives a first formal and preliminary mathematical

approach to the ANC field. Another important contribution came through Hoff

in his PhD work, which was advised by Bernard Widrow and developed the

well-known LMS algorithm in 1960 [31] among other important names who

contributed in the literature, research and practical aspects of the area.
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The secondary path can be interpreted as the environment by which

is transmitted the computed signal of the adaptive filter (vide Section 2.1).

This filtered response is passed on to the output, where the residual error is

calculated between the desired signal and filter output, in order to found the

value of the estimation difference to update the filter parameters to the next

iteration of the algorithm.

In general, there are two principal types of systems: the first one is

called feedforward system, as shown in Figure 2.1. The second one is known

as feedback system, where the term feedback refers to the idea of the existence

of an acoustic return path of propagation and consequently, a delay in the

environment. Due to the fact that there is only one sensor at the output to

calculate the error based on the measure of input and response, there is an

intrinsic feedback phenomenon in the system.

In Figure 2.1, we can see that from a Noise Source (known or not) the

Reference Microphone picks up the input signal x(n) (from Primary Noise),

while the second one picks up the residual error microphone signal e(n) (by

Error Micophone). Both values are fed into the ANC system, which after

computation applies a suppression signal by means of the filtered value y(n) to

the speaker output. The aim is to achieve an output response that cancels out

the signal in the primary noise path and to zero out the residual error value

via an iterative process.

ANC

Cancelling
Loudspeaker

Noise

Source

Primary Noise

Reference Microphone Error Microphone

x(n) e(n)y(n)

Figure 2.1: Diagram of a generic feedforward ANC system.
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As described in more detail in Section 2.1.4, in this work we chose the

feedforward structure due to its more general theoretical understanding and

broader field of application. In the subsequent sections of Chapter 2, we will

cover some fundamental knowledge for dealing with ANC systems.

2.1
Adaptive Filtering Fundamentals

The ANC field would not have developed in the same way without the

contribution of the mathematical approaches and the algorithms of adaptive

signal processing. Adaptive filters have received considerable attention in the

last five decades and is still developed by many researchers around the world,

which are responsible for innovations in algorithms and frameworks adopted in

ANC and other areas. Using an implementation architecture relatively simple

with fast convergence and steady-state performance, this adaptive filters are

seen even today as an attractive option for a wide range of projects.

Many adaptive processing applications involve the reduction of noise,

distortion, interference, echo, or any undesired signal [6, 32]. However, the

degradation of this signal can vary with time and even be known initially.

In this sense, the approach with an adaptive framework brings an interesting

methodology to lead with this type of problem in several cases.

Adaptive systems work by changing the characteristics of their internal

parameters. The current state is updated based on previous information which,

through iterative processing, is automatically modified (adapted) to achieve a

certain objective, depending on the case study and its engineering application.

Basically, a digital adaptive filter consists of two parts: a digital filter,

that is usually a finite impulse response (FIR) or less commonly infinite

impulse response (IIR) structures [33], which is responsible for the input signal

processing, and an adaptive algorithm that upgrades and enhance the weights

of this filter. We can define the input in time-discrete vector n as



Chapter 2. Active Noise Cancellation Review 22

x(n) ≡ [x(n) x(n − 1) ... x(n − L + 1)]T , (2-1)

in the same way, the vector of weights in time is given by

w(n) ≡ [w0(n) w1(n) ... wL−1(n)]T , (2-2)

where T denotes the transpose operator. The output signal y(n) can be

expressed by the following vectorial calculation

y(n) = wT (n)x(n)

= xT (n)w(n).
(2-3)

The value of error e(n), which measures the relationship between input

noisy signal x(n) and the response referred to desired signal d(n), whose

difference is calculated by

e(n) = d(n) − y(n)

= d(n) − wT (n)x(n).
(2-4)

Figure 2.2 shows in a simplified form the basic structure of the adaptive

filter utilized in ANC. In summary (vide Section 2.1.3 and 2.1.4), the objective

is to recognize and attenuate the noise in x(n) comparing the filtered signal

y(n) and the desired signal d(n) using the computation of the residual error

e(n) which then will be used to improve the performance in the next filter

iteration.

+

−

Digital Filter

Adaptive
Algorithm

.x(n)

d(n)

y(n)

e(n)

Figure 2.2: Block diagram of an Adaptive Filter.
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It is important to mention that in this work the aim is to develop an

adaptive algorithm applied in a transversal filter structure, or as it is more

well known, an FIR structure in the feedforward topology for ANC. In the

following sections, we present a conceptual review of the conventional ANC

approach, using an FIR filter structure and the LMS algorithm.

2.1.1
MSE performance surface

The arrangement demonstrated in Figure 2.2, is used for the update of the

digital filter coefficients, to optimize some performance parameters previously

determined. The widest criteria applied to the evaluation of the system income

is based on the Mean Squared Error (MSE) described by

J(n) = E[e2(n)], (2-5)

where E[ · ] denotes the expected value operator.

In case of an FIR filter the value of J(n) depends of L weights w0(n),

w1(n), ..., wL−1(n) of the Equation (2-2). If we consider the w(n) as a sequence

of deterministic values, then the value of the MSE function can be defined using

(2-4), resulting in

J(n) = E[d2(n)] − 2pT w(n) + wT (n)Rw(n), (2-6)

where p is the vector representing the cross-correlation between the desired

and the input signals given by

p ≡ E[d(n)x(n)]

= [rdx(0) rdx(1) ... rdx(L − 1)]T ,

(2-7)

where
rdx(k) ≡ E [d(n)x(n − k)] , (2-8)

and R is the autocorrelation matrix of the input signal x given by
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R ≡ E
[
x(n)x(n)T

]

=



rxx(0) rxx(1) · · · rxx(L − 1)

rxx(1) rxx(0) · · · rxx(L − 2)
... · · · . . . ...

rxx(L − 1) rxx(L − 2) · · · rxx(0)


,

(2-9)

where

rxx(k) ≡ E [x(n)x(n − k)] . (2-10)

Note that (2-6) is a general expression of the MSE function for an FIR

causal filter with its coefficients w(n). Notice that the expression brings a

quadratic function, in which each value of the filter coefficient returns an

associated scalar value of MSE.

w1,o

w2,o

w1

w2

J

Jmin

wo

Figure 2.3: 3D MSE performance surface (case L = 2).

For the case L = 2, we can observe in Figure 2.3 that the surface error

returns a three-dimensional space where wo = [w1,o w2,o,]T is the value of the

optimal coefficient vector and Jmin is the MMSE.

The autocorrelation matrix defined in (2-9) performs a key role in the

analysis and design of adaptive filters. Here, it is important to understand the
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following properties [28]:

1. The autocorrelation matrix of the stationary stochastic process is sym-

metric. That is, RT = R. Here we assume that real-valued for the func-

tion rxx(k) and autocorrelation matrix.

2. The matrix R of a stationary stochastic process is a Toeplitz matrix since

all elements of any diagonal parallel to the main diagonal are equal.

3. All the eigenvalues of the autocorrelation matrix should be real since all

its elements are symmetric and real. Therefore, R is positive semidefinite

(i.e. the eigenvalues are non-negative).

Finally, the optimal filter wo that minimizes the MSE of the objective

function J(n). Computing the derivative of the the MSE cost function in

relation to the vector w(n) of (2-6), we obtain

Rwo = p , (2-11)

which provides the solution to the adaptive filtering Wiener’s problem (vide

[6,34]). To get the MMSE, we use the optimum weight vector wo of Equation

(2-11) to w(n) in (2-6), obtaining

Jmin = E[d2(n)] − 2pT wo. (2-12)

Combining the expressions of (2-6) and (2-11), we can obtain the mean

square error as
J(n) = Jmin + [w − wo]T R[w − wo]

= Jmin + ε(n)T Rε(n) ,

(2-13)

where
ε(n) ≡ w(n) − wo (2-14)

is the weight misalignment vector, is nothing more than the difference between

the filter coefficients and the optimal solution.
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2.1.2
Steepest Descent method

As shown in Figure 2.3, the expression of the MSE Equation (2-13) is

a quadratic function of weights that can be depicted as a positive concave

hyperbolic surface. Newton Methods [10] has fast convergence, but the estimate

of R−1 involves a certain heavy computational requirement.

Due to the context previously described, the steepest descent method

is an iterative technique ideally appropriate to derive the adaptive algorithm,

since the surface error can guarantee the definition of the function as quadratic

concerning the filter values wl. For that reason, the method of steepest descent

is wi dely used in linear programming and optimization problems. The concept

of the steepest descent can be implemented in the form as follows:

w(n + 1) = w(n) − µ

2 ∇J(n), (2-15)

which µ is called convergence factor or, as more known, step size. This variable

controls the stability and the degree of decay in the minimized surface (or in

other words, the learning curve). The term ∇J(n) denotes the gradient of

the error related to w(n). In Equation (2-6), we can easily calculate the error

gradient

∇J(n) = −2p(n) + 2Rw(n). (2-16)

Substituting (2-16) in (2-15), we have the final expression of steepest

descent algorithm, given by

w(n + 1) = w(n) + µ[p − Rw(n)]. (2-17)

Note that, when w(n) converges to wo, the minimal point of the perfor-

mance surface is reached, i.e., ∇J(n) = 0.
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2.1.3
LMS algorithm

In Equation (2-17) we can see that the incremental value from the

previous stage of filter vector w(n) to w(n + 1) is in the negative direction of

the gradient. Then, the weight tracking will follow approximately in the way of

the steepest descent method in the performance surface evaluated. However,

in many practical applications, the values of the signals d(n) and x(n) are

unknown.

Widrow et al [10] proposed the fundamental idea to use of the instanta-

neous value of the error (Ĵ(n) = e2(n)) to estimate the MSE in (2-5). Thus, the

gradient estimate value using LMS algorithm is simplified to the instantaneous

gradient of an unique squared error sample

∇Ĵ(n) = 2e(n)[∇e(n)], (2-18)

where from the expression (2-4), we have that the gradient of the residual error

is

∇e(n) = −x(n). (2-19)

Then, the gradient of the estimated function returns

∇Ĵ(n) = −2x(n)e(n). (2-20)

Substituting the computed derivative result of (2-20) into the steepest

descent Equation (2-17), we obtain the formulation of the update Equation

that can be defined as:

w(n + 1) = w(n) + µx(n)e(n). (2-21)

Equation (2-21) describes the well-known LMS algorithm or stochastic

gradient algorithm. This method is relatively simple and does not require

squaring, averaging, or differentiating [28]. Beyond this, it is possible to observe

that the gradient estimate is unbiased and the expected value of the weight
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vector converges to the Wiener filter solution (Equation (2-11)).

Figure 2.4 shows a generic block diagram and the Widrow-Hopf algorithm

to FIR filters [10], which is summarized in Table 2.1 as follows.

Tapped
Delay Line

z−1 +

µ+

+

+

−

d(n)

x(n)

y(n)
e(n)

w(n)

Figure 2.4: Block diagram of an LMS adaptive filter framework.

Table 2.1: Steps to deploy the LMS algorithm.

Step Equation
1) Choose the parameters and initial conditions:

the filter order, the step size and L > 0 ∈ Z; 0 < µ < 1 and w(0)
the initial weight vector value (time n = 0).

2) Compute the adaptive filter output y(n) = ∑L−1
l=0 wl(n)x(n − l)

3) Compute the signal of residual error e(n) = d(n) − y(n)
4) Update the weight vector,

applying the gradient and using LMS wl(n + 1) = wl(n) + µx(n − l)e(n)

In terms of computational complexity, the Equation of step 2 requires L

multiplications and L − 1 additions. To coefficient update in step 4 are need

L + 1 multiplications and L additions. The following section presents another

fundamental concept to the research of this work.

However, as cited previously, to deal with the special noise cancelling

conditions, a complementary framework is added to the LMS algorithm to

enhance the performance of ANC systems. In Section 2.1.4 this approach is

described in detail and derived.
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2.1.4
Base Model: FXLMS

In this section, we present the general and main structure used to deploy

any algorithm applied to ANC. In particular, we consider as basic example the

framework for the well-known filtered-X Least Mean Square algorithm.

This approach unifies the network which brings the filtered secondary

path response with the adaptive algorithm described in 2.1.3. The first one

aims to minimize the influence of the transfer function of the primary path (i.e

the way that the noise is transmitted) in the final calculation of the residual

error associated with the suppression of the noise signal.

In the following steps, this approach is presented in detail. Briefly, the

basic structure of the filtered-X LMS (FXLMS) algorithm can be described by

e(n) = d(n) − [xT (n)w(n)] ∗ s(n) + v(n), (2-22)

where
v(n) = [v(0) v(n − 1) ... v(L − 1)] and

s(n) = [s0(n) s1(n) ... sL−1(n)]T .

(2-23)

To minimize the MSE, the algorithm updates w(n) towards the negative

value of the gradient of J(n) using the step size µ according to

w(n + 1) = w(n) − µ

2 ∇Ĵ(n) . (2-24)

We have from the Section 2.1.3 that ∇Ĵ(n) = 2[∇e(n)]e(n) is the

instantaneous estimate of the gradient of the MSE cost function given by

∇e(n) = −x(n) ∗ s(n)

= −x′(n),
(2-25)

where s(n) is the nth component of the estimation of s(n). This derivative

response is the filtered-X input. After mathematical arranging of the terms, it

is possible to obtain the general equation of the FXLMS given by

w(n + 1) = w(n) + µx′(n)e(n). (2-26)
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Therefore, summarizing the step described in about the fundamentals of

adaptive processing systems in Section 2.1 and the LMS algorithm in Section

2.1.3, we can define in Algorithm 1 the main steps of the FXLMS algorithm.

Algorithm 1 FXLMS Algorithm
Require: x(n) = [x(n) ... x(n − L + 1)]T , w(n) = [w0(n) ... wL−1(n)]T
Require: d(n), P (z), S(z)
Require: µ

while n ≤ L do
y(n) = x(n)T w(n)
e(n) = d(n) − s(n) ∗ (w(n)T x(n))
w(n + 1) = w(n) + µe(n)x′(n)

end while

As described before in the beginning of Chapter 2, Figure 2.5 illustrates

as well the two main approaches in the ANC field, namely, the feedforward

and feedback structures.

Basically, the active noise cancellation system originates from a dynamic

architecture that is designed to compute a determined signal considered “noise”

through the secondary path where the same amplitude and inverse-phased

signal will be transmitted. The expected result of this operation is the sound

destructive interaction that causes the cancellation or hard reduction of the

spurious signal in the system output.

For some problem of noise cancellation that the system and/or the signals

are nonlinear (i.e. Nonlinear Active Noise Cancellation, NLANC), Figure 2.6

depicts a different framework by adding a module of expansion seeking to reach

the nature of the input of this specific case is applied.

Starting from these classic models, a wide field of research in ANC and its

applications was growing developing a series of novel algorithms and networks

for solving a variety of problems using active cancellation systems in different

areas of science and engineering, which confirmed its efficiency, versatility,

adaptation capacity, and technological advance.

Although the FXLMS came to realize an adaptive ANC system able to

lead with the white noise cancelling, as cited in Section 1, in the dynamic
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Figure 2.5: Diagram of FXLMS frameworks: (a) feedforward; (b) feedback.

system with non-linearities or non-average statistical signals the performance

of the filtered-X LMS is completely wasted. For this reason, some methodology

that takes into account the stochastic characteristics of the signal must be

adopted, thus making the treatment of the physical features of this signals

and its systems involved feasible [12].

Some combinations and improvements, in the context of the most relevant

and recent innovations, are presented with more details in the Section 2.2.

2.2
Robust Filtering Methods

Throughout the years, and still more specifically in the recent context,

the importance and growing demand of related research beyond the success of
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Figure 2.6: Diagram of the feedforward FXLMS NLANC model.

some approaches widely studied turned the field of ANC into a high and broad

area of knowledge.

Some surveys around the most consolidated and promising ANC meth-

ods, frameworks, and algorithms have been carried out. The works realized by a

group of researchers and engineers in the area of signal processing [12] mapped

the brief history of this application and pointed out the state-of-the-art in the

last decade related to linear ANC and non-linear ANC (NLANC) [13].

Several ANC techniques have been discussed along the years with their

research impact [12, 13]. Here, we discuss in what follows some of the most

efficient applied approaches to ANR and their perspectives about the range

of different frameworks like: the filtered-X (vide Section 2.1.4) [35] and its

novel analogies such as filtered-S [36], and others more advanced as Lattice,

Subband [25,37], Affine Projection (AP) [21,38], and others.

Among the adaptive algorithms are the classical LMS and unfolding

methods such as Log, Least-Mean p-power (LMP) [16], fast RLS [15], and

Kalman filter and its variants [39]; the Heuristic methods: Genetic algorithm

or Particle swarm [17] between others. Another trend is exploiting the diverse

optimization techniques with a given objective function that include gradient
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(steepest descent, SG, q-version [40]), Newton (and other combinations like

Newton-Raphson or quasi-Newton) techniques.

We still have some approaches in the literature studying the different

uses in auxiliary techniques such as variable step-size (VSS) [14], noise model

α − stable [41], and other ANC models like psychoacoustics system, sparse

techniques, convex combination of algorithms, fractional order approaches, and

robust algorithms against non Gaussian noise [42].

Lastly, another approach has considered the study and development of

novel objective functions used to develop robust algorithms using methods like

the correntopy criterion [21], hyperbolic trigonometric functions [22] and an

exponential conjugated version [24], the M-estimator method [25] and many

others. This point of view is the main idea to be exploited in the development

of the proposed algorithm of this research.

In Section 2.3 we present some important analytical concepts related

to the convergence analysis that adaptive algorithms applied in ANC should

consider.

2.3
Statistical Analysis

This section summarizes the stochastic analysis of an adaptive algorithm

applied to noise cancellation. To expose that, we choose to explain using the

concepts using the LMS and filtered-X structure or in other words, the most

applicable framework in the ANC known as FXLMS.

The aim is to employ a statistical approach to study the behavior of the

FXLMS in terms of its learning performance. Here, this can be interpreted like

a more advanced extension from Section 2.1.

When evaluating the convergence of an adaptive algorithm, some as-

sumptions and observations should be inserted or tested in the mathematical

development of equations to guarantee that the filter does not take severe risks

in terms of its stability and causality [43].
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2.3.1
Steady-State Solutions

For the definition of minimal conditions of convergence in adaptive

algorithms, two assumptions are made:

1. x(n) e v(n) are (wide sense) stationary stochastic processes with zero

mean (i.e., E[x(n)] = 0 and E[v(n)] = 0);

2. w(n) is statistically independent of x(n). This condition is already met

simply when the step-size µ has a very low value.

Based on this previous hypothesis and the equation of the residual error

estimation to FXLMS, we can present a solution to the Wiener problem of

assumption 1 as

E
[
e2(n)

]
= σ2

d + σ2
v

+ 2
L−1∑
i=0

siE[xT (n − i)d(n)]w

+ wT
L−1∑
i=0

L−1∑
j=0

sisjE[xT (n − i)x(n − j)]w.

(2-27)

Minimizing the Equation (2-27) and adding the condition of steady state

in order to obtain a formulation that complies with the hypothesis that the

algorithm will reach a Wiener’s solution (see more details in Section 2.1.1):

w(∞) = −R−1
sŝ ps, (2-28)

where

R−1
sŝ = E

[
X̂(n)ŝsT XT (n)

]
=

L−1∑
i=0

L−1∑
j=0

siŝjRi−j, (2-29)

ps = E
[
d(n)X̂(n)ŝ

]
=

L−1∑
i=0

ŝiE [x(n − i)d(n)] . (2-30)

that ŝ represents the estimation of its secondary path in the referred FXLMS

model.
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In summary, the FXLMS algorithm converges to the Wiener solution

when the secondary path (Figure 2.5) is exactly estimated. Meanwhile, we

have as a consequence a deterioration in the algorithm performance in noise

cancellation. To treat this question, an imperfect secondary path is utilized in

the study.

2.3.2
Parametric Convergence Analysis

In what follows, the concept of the steady state described above is applied

to reach a convergence state of the fundamental parameters of the adaptive

filtering algorithm.

2.3.2.1
Mean Behavior of the Weight Vector

Analogously to Equation (2-14), to determine the difference between the

weight vector and required steady-state value, we have:

w̃(n) = w(n) − w(∞), (2-31)

Subtracting w(∞) in both sides of the FXLMS filter equation, we obtain

w̃(n + 1) = w̃(n) − µG(n)W̃(n) − µb(n), (2-32)

where
G(n) = X̂(n)ŝXT

s (n), (2-33)

and

b(n) = X̂(n)ŝ(d(n) + v(n) + XT
s (n)W(∞))

= X̂(n)ŝ(d(n) + v(n) + sT XT (n)w(∞)).
(2-34)

are the expression of the autocorrelation (2-29) and cross correlation (2-30) of

the input signal X(n) and the primary path response d(n).
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2.3.2.2
MSE Behavior

In this section, we deepen the mathematical development initiated in

2.1.1. Applying to the base model the concept of steady state, which the

concern is about the convergence of the evolution of the learning curve in

the MSE of the least squares error model (where the objective function

J(n) = E [e(n)2]).

Aiming to achieve this condition in the model, we first use a novel

formulation of the residual error signal proposed using the term of the weight

vector in a state of stationary condition.

e(n) = d(n) + v(n) + XT
s (n)(W(n) + W(∞)). (2-35)

where
XT

s (n) = s(n)XT (n)

=



s0(n)x(n)

s1(n)x(n − 1)
...

sL−1(n)x(n − L + 1)


,

(2-36)

is the input vector weighted by coefficients of the secondary path, and

W(n) =



w(n)

w(n − 1)
...

w(n − L + 1)


, (2-37)

is the augmented weight vector. With this, the expression of the MSE is

given by

J(n) = E
[
e(n)2

]
= E

[(
d(n) + v(n) + XT

s (n)(W(n) + W(∞))
)2
]

,
(2-38)

which can be expressed in terms of the variances σ2
d, σ2

v (as in Equation (2-27))
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and all the estimates related to the matrix XT
s (n), the augmented vector W(n),

and its steady-state version W(∞).

2.3.2.3
Steady-State Condition

The steady state of the FXLMS model can be expressed by

J(∞) = Jmin + Jex, (2-39)

where

Jmin = σ2
d + σ2

v

+ 2E
[
d(n)XT

s (n)
]

W(∞)

+ tr
(
E
[
Xs(n)XT

s (n)
]

E
[
W(∞)WT (∞)

])
,

(2-40)

is the minimum MSE that the FXLMS algorithm can achieve given the Wiener

solution, and

Jex = tr
(
E
[
Xs(n)XT

s (n)
]

vec−1(δ(∞))
)

, (2-41)

which vec−1(δ(∞)) is the inverse of impulse response of the weight vector in

steady-state. In resume, the Equation 2-41 is the excess MSE (EMSE) which

is introduced because of the fluctuations of the adaptive coefficients.

It is important to note that the computational complexity and ways of

simplifying the system should still be studied. Moreover, comparative tests

with respect to different methodologies, techniques, and models approached in

each study case should also be performed.

In Section 2.2 we presented some methods investigated from the different

recent literature, seen actually as a scientific reference in the literature of the

area focused on high robustness of adaptive filtering.
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2.4
Summary

This chapter discussed the theoretical fundamentals of active noise

cancellation techniques. To this end, we reviewed the concepts of adaptive

signal processing, the general ideas associated with the noise cancellation

methods, an example using the well-known LMS algorithm and the filtered-

X framework, with the statistical analysis that includes the stability and the

steady-state behaviour as referred to in the literature.



3
Hyperbolic Exponential Kernel M-estimate Algorithm

In this chapter, we derive the proposed FXHEKM ANC algorithm, and

carry out its stability, the steady state and the computational complexity

analyses. In the following sections, the model adopted in this work considers

a method for robust adaptive processing in an ANC system.

3.1
System modeling

Consider a classical noise cancellation problem, where we try to suppress

the noise contaminating the environment [8]. This task is performed by an

adaptive ANC system, as shown in Figure 3.1.

The discrete-time signal x(n) describes the input signal; y(n) represents

the output signal; e(n) is the residual error of the system in the procedure

for computing the value the error to update the adaptive algorithm, i.e. in

case of the purposed algorithm based on the Hyperbolic tangent Exponential

generalized Kernel M-estimate (HEKM) function, which will be demonstrated

in detail in Section 3.2.

The calculation of these variables is described in detail in the following

section. Note that in this system, the input signal is used directly in the error

estimation and the calculation of the filter response.

Basically, the model components crossed by a dashed line can be defined

as an adaptive filter, consisting of: i) a digital filter (here we consider an FIR

structure) to develop the signal processing and ii) the adaptive algorithm that

realizes the weight update of this filter.

The signal related to the estimation of input noise x(n) of the filtered

output can be expressed by the vector operation

y(n) = w(n)T x(n), (3-1)
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Figure 3.1: Block diagram of the proposed Adaptive Noise Cancellation system.

Then, the value of the residual error in the system to be computed is

defined as the difference between the desired signal and the filtered output,

expressed by

e(n) = d(n) − y′(n)

= p(n) ∗ x(n) + v(n) − s(n) ∗ (w(n)T x(n))

= d(n) − w(n)T x′(n),

(3-2)

where d(n) is the desired signal and y′(n) is the noisy input estimation com-

puted by the adaptive filter. The signal v(n) is the noise of the measurement

error, and the response of p(n) and s(n) is the respective impulse response of

primary P (z) and secondary path S(z) at time n and * denotes the operation

of linear convolution. The x′(n) is the well-known filtered-X signal, computed

from the input of the system by the S ′(n) (or the second path estimation),

employed to compute the model response.
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3.2
Derivation of the Proposed FXHEKM Algorithm

Initially, we define the objective function of the method HEKM, which is

robust against non-Gaussian noise. This work aims to find a robust function

that can obtain a satisfactory relation between fast convergence and the lowest

MSE level, both for Gaussian and impulsive signals. To obtain the formulation

of the method, two steps are needed:

1. Derivation of the objective function of the adaptive filter algorithm, and

2. Insert 1 inside the update equation of the ANC model (filtered-X

structure).

After some theoretical study and an experimental procedure for perfor-

mance evaluation, the proposed approach consists of adopting an objective

function based on the hyperbolic tangent of a kernel of the residual error com-

putation (Equation (3-2)), which can be defined by

J{w(n)} = −
N∑

k=1
ρN−k 1

α
tanh

(
α exp−η|e(n)|p

)
, (3-3)

where α > 0 is a mathematically convenient variable with constant value and

η, p > 0 are constants to set the exponential behavior of the kernel and ρ is an

exponential value variable known as forgetting factor with length N .

Therefore, we can observe the geometrical aspects explained in Section

2.1.1 for the LMS algorithm, which is now used for the FXHEKM algorithm.

Here, we have three different parameters which can set the behavior of the

proposed objective function. The fundamental mission here is to put better

parameters in the algorithm adaptive equation, aiming to find the value that

minimizes optimally the value of w(n).

In the sequence, the graphs below show this phenomenon and its trade-

of issues. Firstly, in Figure 3.2, we have an objective function curve plotted

related to the e(n) (because the J(n) is a function of the weight vector and
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the residual error) observe how this curve can be more deeply and sharp as

the value of α increases.
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Figure 3.2: Objective function of HEKM related to the parameter α.

In the other scenario, using the fixed values of α and η, when we change

the parameter p. Figure 3.3 represents a range of possible curves, from an

envelope with an extremely sharp peak to a plateau around the minimum

value.
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Figure 3.3: Objective function of HEKM related to the parameter p.

Finally, the value of the η is tested maintaining the other, seeking to
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evaluate the range of options to insert in the FXHEKM in the following

simulations of the study case.
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Figure 3.4: Objective function of HEKM related to the parameter η.

For the last parameter, the variation between the curves in the shape of

the inverted bell is a little less sensitive, but we observe a kind of narrowing

when you increase the value of η.

Afterward, the derivative of the objective function is computed by the

gradient descent (GD) method [44], we get the expression for the term of the

update,

∂J{w(n)}
∂w(n) = − 1

α

N∑
k=1

ρN−k
∂{tanh

(
α exp−η|e(n)|p

)
}

∂w(n)

= − 1
α

N∑
k=1

ρN−ksech2
(
α exp−η|e(n)|p

) ∂{α exp−η|e(n)|p}
∂w(n)

= − 1
α

N∑
k=1

ρN−ksech2
(
α exp−η|e(n)|p

)
α exp−η|e(n)|p ∂{−η|e(n)|p}

∂w(n)

= −
N∑

k=1
ρN−ksech2

(
α exp−η|e(n)|p

)
exp−η|e(n)|p

(−η)p|e(n)|p−1sign(e(n))∂{e(n)}
∂w(n) ,

and taking the derivative of Equation (3-2) we have ∂e(n)/∂w(n) = −x′(n)),
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then we can obtain the formalized expression of the gradient terms given by

∂J{w(n)}
∂w(n) =

− ηp
N∑

k=1
ρN−ksech2

(
α exp−η|e(n)|p

)
exp−η|e(n)|p |e(n)|p−1sign(e(n))x′(n),

(3-4)

where

x′(n) = s′(n) ∗ x(n), (3-5)

represent the filtered version of input vector x(n) convoluted by response

of the secondary path estimation of S ′(z) in the ANC system. Therefore,

the expression of this derivation generates the filtered-X Hyperbolic Tangent

Generalized Kernel M-estimate (FXHEKM) model.

Note that, analogously to the objective function of the proposed algo-

rithm. the derivative expression of Equation (3-4) is so sensitive to a certain

number of parameters. Figure 3.5 shows the curves related to the parameter

α of the objective function of the HEKM method.
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Figure 3.5: Derivative of objective function get the FXHEKM related to the
set of parameter α.

The change of this variable can generate some differentiations in the curve
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behavior. Note that here, in the derivative forms, we have an envelope with an

inflection point, and then a species of nonlinearity generated by the gradient.

For the case of α, a shift and reduction of the the peak value happen when

the value of the parameter increases. Next, Figure 3.7 shows the comparison

between the curves when we set different values of the p.
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Figure 3.6: Derivative of objective function get the FXHEKM related to the
set of parameter p.

This scenario can be the most sensitive trade-off in the whole analysis

realized in this study. The behavior of the curves changes the type, height,

width, and distance between the peaks around the inflection point of the curve.

Here, it is an important point to carry out to choose the value of the adaptive

equation. If we repair in the high value of p like 3.0, we get an impulsive peak

curve in the adaptive equation and it would be unstable for the algorithm.

Lastly, the Figure 3.6 brings the evaluation of the derivative curves of

∇J(w(n)). Here, we can conclude that the smallest value of this parameter

results in an almost linear curve while the highest value can return a huge peak

around the inflection point. The following analyses set the best range for the

parameter as η ≈ [1.0, 2.0]. For the simulations described in Section 3.4.2, the

values considered in the standard version of FXHEKM defined to simulations
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Figure 3.7: Derivative of objective function get the FXHEKM related to the
set of parameter η.

of this work are: α = 1.0, η = 1.0 and p = 2.0.

Therefore, let us consider the definition for the update state of the weight

vector w(n), defined in the adaptive filter theory Section 2.1 [6], realized by

the adaptive processing of the algorithm for the proposed model that can be

computed as

w(n + 1) = w(n) − ∆w(n)

= w(n) − ∂J{w(n)}
∂w(n)

= w(n) + µ
N∑

k=1
ρN−ksech2

(
α exp−η|e(n)|p

)
exp−η|e(n)|p |e(n)|p−1sign(e(n)) x′(n)

δ + ∥x′(n)∥2
2

= w(n) + µ
N∑

k=1
ρN−kϕ(e(n))|e(n)|p−1x′(n),

(3-6)

where µ = ηp represents the value of the step-size and the generalized

expression

ϕ(e(n)) = q(e(n))sech2
(
α exp−η|e(n)|p

)
exp−η|e(n)|p sign(e(n))

δ + ∥x′(n)∥2
2
, (3-7)
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which ∥x′(n)∥2
2 > 0 is a l2-norm of the input vector used for the final improved

normalized version. As a result, an extremely small positive value δ is increased

as a regularization factor to avoid a division by zero.

Lastly, to obtain a reliable response concerning the learning curve varia-

tions, we introduce a robust strategy against non-Gaussian noises (i.e. impul-

sive) as a combined tool in the full proposed model by employing the function

q(e(n)) based on the M -estimator method, see the work of Yu et al [42], given

by

q(e(n)) =


1, |e(n)| < ζ

0, |e(n)| ≥ ζ

, (3-8)

where ζ is the threshold coefficient of the M -estimate method that controls the

response of this function in the update term in (3-6), based on the comparison

with the modulus of the residual error.

This function applies a kind of “penalty” factor occurring in the mainte-

nance or null of the new value of ∆w(n) in the adaptive filter update equation.

With this, the algorithm decides to consider (or not) in the current stage, the

same previous value or the improved learned new one. Then, it turns the model

to be able to lead quickly with the fast non-linear variations related to the im-

pulsive signals.

As can be seen in what follows, in Algorithm 2 the proposed FXHEKM

algorithm is described and listed step-by-step in detail.

3.3
Statistical Analysis

This section describes a statistical analysis of the FXHEKM algorithm.

In particular, we consider the stability conditions for the proposed algorithm.

This part of the study aims to ensure the basis that provides mathematical

guarantees to the proposed approach as evidenced in the literature [43]. In

particular, we analyze the stability conditions and derive formulas to predict
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Algorithm 2 FXHEKM Algorithm
Require: x(n) = [x(n) ... x(n − L + 1)]T , w(n) = [w0(n) ... wL−1(n)]T
Require: d(n), P (z), S(z)
Require: µ, ζ, η, α, p, ρ(1) = µ and ϕ(e(n)) = 0

while n ≤ L do
y(n) = x(n)T w(n)
e(n) = d(n) − s(n) ∗ (w(n)T x(n))
if e(n) < ζ then

w(n + 1) = w(n) + µ
∑N

k=1 ρN−kϕ(e(n))|e(n)|p−1x′(n)
else

w(n + 1) = w(n)
end if

end while

the MSE of the proposed FXHEKM algorithm at steady state. To this end, we

use the method of convergence evaluation to obtain the stability, stationary,

and other critical aspects of the algorithm developed.

3.3.1
Stability Evaluation

Let us begin the analysis with the update Equation (3-6), where we

subtract the optimal weights wo from both sides of the equation. Then, we

obtain

ε(n + 1) = ε(n) + µ
N∑

k=1
ρN−kϕ(e(n))|e(n)|p−1x′(n)

= ε(n) + g(e(n)),
(3-9)

where ε(n) is the error of the filter weights at time n with respect to the optimal

weight vector, in a similar form to Equation (2-14), i.e. ε(n) = w(n) − wo .

As we can observe, the term related to the hyperbolic secant of an

exponential can be difficult to formulate in an analytical solution. Then, we

consider as a boundary approximation the case of p = 2 (standard form of

FXHEKM).

Taking in the last equation the term referred to as g(e(n)), which is a

function-related derivative, where we decouple the error to manipulate some

steps that permit the stability analysis, we get



Chapter 3. Hyperbolic Exponential Kernel M-estimate Algorithm 49

g(e(n)) = µ
N∑

k=1
ρN−kq(e(n))sech2

(
α exp−η|e(n)|2

)
exp−η|e(n)|2 sign(e(n))

∥x′(n)∥2
2

|d(n) − x′(n)Hw(n)|x′(n)

= µ
N∑

k=1
ρN−kϕ(e(n)) |e∗

0(n) + wH
o x′(n) − x′(n)Hw(n)|x′(n)

= µ
N∑

k=1
ρN−kϕ(e(n)) (x′(n)e∗

0(n) + x′(n)Hx′(n)(wH
o − w(n)))

= µ
N∑

k=1
ρN−kϕ(e(n)) (x′(n)e∗

0(n) + (x′(n)Hx′(n)ε(n))).

(3-10)
Note that we consider here δ = 0 for the sake of simplicity. Returning to

Equation 3-9, applying the expected value operator, and rearranging the terms,

we have

E [ε(n + 1)] =

E

[(
I −

(
µ

N∑
k=1

ρN−kϕ(e(n))
)

x′(n)Hx′(n)
)

ε(n)
]

−

E

[(
µ

k∑
n=1

ρk−nϕ(e(n))
)

x′(n)e0(n)
]

.

(3-11)

Now, we assume that x’(n) is independent from ε(n) and e0(n). Using

this notion, we can get

E [ε(n + 1)] =
(

I − µ
N∑

k=1
ρN−k E [ϕ(e(n))] Rx′

)
E [ε(n)] . (3-12)

Then, we can use the principle of the eigenvalue decomposition [45]

method denoted by
Rx′ = VΛVH, (3-13)

where V is a unitary matrix, i.e. VHV = VV−1 = I and Λ is a diagonal matrix

with the eigenvalues of Rx′ . Thus, using the above expression in the update

recursion of the weight error estimation, we obtain

E [ε(n + 1)] =
(

I − µ
N∑

k=1
ρN−k E [ϕ(e(n))] VΛVH

)
E [ε(n)] , (3-14)
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which is the nonlinear stochastic difference equation to the stability condition

of the HEKM function. Multiplying both sides by the unitary matrix V and

rearranging the terms, we get

E [ε′(n + 1)] =
(

I − µ
N∑

k=1
ρN−k E [ϕ(e(n))] Λ

)
E [ε′(n)] . (3-15)

For the evaluation of the convergence of the recursion of the FXHEKM

algorithm, we can rewrite the recursion step as

E [ε′(3)] =
(

I − µ
N∑

k=1
ρN−k E [ϕ(e(2))] Λ

)
E [ε′(2)]

=
(

I − µ
N∑

k=1
ρN−k E [ϕ(e(1))] Λ

)2

E [ε′(1)] .

(3-16)

Using this recursion to n = l elements, we obtain

E [ε′(l + 1)] =
(

I − µ
N∑

k=1
ρN−k E [ϕ(e(l))] Λ

)l

E [ε′(1)] , (3-17)

and taking into account the need to use only the diagonal elements, we can

apply the decoupling property in the error weight vector. Therefore, we can

obtain a simplified form for the k-th component of ε′(n) given by

E [ε′
k(n + 1)] =

(
1 − µ

N∑
k=1

ρN−k E [ϕ(e(n))] λk

)n+1

E [ε′
k(0)] , (3-18)

where the expression above is function of the singular value ε′
k(0), and the λk

is the k-th component of Λ. Then, analyzing the condition that guarantees

convergence of the FXHEKM algorithm, the coefficients in the mean, we need

to satisfy that

∣∣∣∣∣1 − µ
N∑

k=1
ρN−k E [ϕ(e(n))] λk

∣∣∣∣∣ < 1 , (3-19)

where the eigenvector λk is the set of eigenvalues related to the autocorrelation

matrix Rx that solves the Wiener filter problem. Expanding the expression and
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isolating the term of the step-size, we arrive at an expression for the stability

condition given by

− 1 < 1 − µ
N∑

k=1
ρN−kE [ϕ(e(n))] λk < 1 , (3-20)

0 < µ
N∑

k=1
ρN−kE [ϕ(e(n))] λk < 2 , (3-21)

and finally, we obtain that

0 < κ <
2

λmaxΦ(e(n)) , (3-22)

where

κ = µ
N∑

k=1
ρN−k, (3-23)

is the alternative expression for the constant which controls the step of the

learning curve and includes the value of the step-size and the forgetting factor,

and

Φ(e(n)) = E [ϕ(e(n))]

= E

[(
sech2

(
α exp−η|e(n)|p

)
exp−η|e(n)|p sign(e(n))

δ + ∥x′(n)∥2
2

)]

≈ 1
N

N−1∑
n=0

(
sech2

(
α exp−η|e(n)|p

)
exp−η|e(n)|p sign(e(n))

δ + ∥x′(n)∥2
2

)
,

(3-24)

is the analytical expression that represents a function of the residual error

defined by the expected value of a resulting component function of the

FXHEKM algorithm, which is calculated in the learning process.

Lastly, we still have another alternative expression for the stability

condition. In the case of p = 2 (a special case of FXHEKM), we have

0 < κ <
1

λmaxE
[(

sech2 (α exp−η|e(n)|2) exp−η|e(n)|2 sign(e(n))
∥x′(n)∥2

2

)] , (3-25)

or the generalized form

0 < µ <
1∑N

k=1 ρN−kλmaxΦ(e(n))
, (3-26)
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where the last is only related to the step-size value (as the classic literature

denotation) of the FXHEKM algorithm.

In general, all of the three last equations represent different formulations

to express the condition of the stability of the proposed algorithm. However, the

term of the expected value of the derived expression, function Φ(e(n)) in (3-24),

needs special attention to reach a satisfactory mathematical consistency.

3.3.2
Steady-state MSE

In this section, we analyze the update error function of the algorithm

behavior at the moment when the stationary stage is reached (vide Section

2.3.2.3). Firstly, we employ the MSE objective function (2-38) that can be

written as

J(n) = E
[
|e(n)|2

]
= E

[
(e0(n) + εH(n)x′(n))∗(e0(n) + εH(n)x′(n))

]
= E [e0(n)∗e0(n)] + E

[
e0(n)∗εH(n)x′(n)

]
+ E

[
e0(n)x′H(n)ε(n)

]
+ E

[
x′H(n)ε(n)εH(n)x′(n)

]
.

(3-27)

As we know, we use the concept of the statistical independence from e0(n) to

ε(n) and x′ [46]. Then, we obtain

J(∞) = Jmin + Jex

= Jmin + tr{K(n)R′
x}

= Jmin + tr{ΛU}

= Jmin +
M∑

i=1
λiui,i(n),

(3-28)

is the function-based calculation of the excess value of the MSE estimation.

Using Equations (2-39) for the function of the HEKM model term in (3-12),

we get
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J(∞) = Jmin +

tr
{(

I − µ
N∑

k=1
ρN−kE [ϕ(e(n))] R′

x

)
K(n − 1)

(
I − µ

N∑
k=1

ρN−kE [ϕ(e(n))] R′
x

)}
,

(3-29)
where the second term on the right side is the excess value of the MSE

estimation, which is analogously the Equation (2-41). An important step here

is the calculation of the covariance matrix of the weight error vector. From the

definition of K(n) and using (3-15), that expression is given by

K(n + 1) = E
[
ε(n + 1)εH(n + 1)

]
, (3-30)

where extending the expression of the weight error vector, we have

K(n + 1) =

E

[(
I −

(
µ

N∑
k=1

ρN−kϕ(e(n))
)

x′(n)Hx′(n)
)

ε(n)−
(

µ
k∑

n=1
ρk−nϕ(e(n))

)
x′(n)e0(n)

]
=

E

[(
I −

(
µ

N∑
k=1

ρN−kϕ(e(n))
)

x′(n)Hx′(n)
)

ε(n)−

(
µ

k∑
n=1

ρk−nϕ(e(n))
)

x′(n)e0(n)
]H

(3-31)

and

ϕ(e(n)) = sech2
(
α exp−η|e(n)|p

)
exp−η|e(n)|p sign(e(n))

∥x′(n)∥2
2

, (3-32)

is an alternative simplified expression to recall the notation of the FXHEKM

model in the mathematical analysis procedure. Organizing the terms, we get
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K(n + 1) =

E

[(
I −

(
µ

N∑
k=1

ρN−kϕ(e(n))
)

x′(n)Hx′(n)
)

ε(n)ε(n)H

I −
(

µ
N∑

k=1
ρN−kϕ(e(n))

)∗

x′(n)x′(n)H


− E

[(
I −

(
µ

N∑
k=1

ρN−kϕ(e(n))
)

x′(n)Hx′(n)
)

ε(n)
(

µ
k∑

n=1
ρk−nϕ(e(n))

)
x′(n)He0(n)

]

− E

I −
(

µ
N∑

k=1
ρN−kϕ(e(n))

)∗

x′(n)x′(n)H

 ε(n)H

(
µ

k∑
n=1

ρk−nϕ(e(n))
)

x′(n)He0(n)
]

+ E

(µ
N∑

k=1
ρN−k

)2

|ϕ(e(n))|2|e0(n)|2x′(n)x′(n)H

 .

(3-33)

Using the known condition of statistical independence for e0(n) and ε(n),

and assuming the orthogonality principle between e0(n) and x′(n), we arrive

at the last equation divided in Ti terms:

T1 = E

[(
ε(n)ε(n)H − κϕ(e(n))x′(n)x′(n)Hε(n)ε(n)H

)
(

I − κϕ(e(n))∗x′(n)x′(n)H
)]

= K(n) − κE

[
ϕ(e(n))

]
R′

xK(n) − κE

[
ϕ(e(n))

]
K(n)R′

x

+ κ2R′
xK(n)R′

x

= (I − κR′
xΦ(e(n))) K(n) (I − κR′

xΦ(e(n))∗) ;

(3-34)

T2 = T3 = 0 ; (3-35)

T4 = E

[
κ2|ϕ(e(n))|2|e0(n)|2x′(n)x′(n)H

]

= κ2|Φ(e(n))2|JminR′
x .

(3-36)

Finally, we obtain for the covariance matrix expression that follows
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K(n + 1) =
(

I − κΦ(e(n))R′
x

)
K(n)

(
I − κΦ(e(n))R′

x

)

+ κ2|Φ(e(n))2|JminR′
x .

(3-37)

Multiplying both sides by the unitary matrices V and VH (Eq. (3-13)), we get

VHK(n + 1)V = VH
(

I − κΦ(e(n))R′
x

)
K(n)

(
I − κΦ(e(n))R′

x

)
V

+ κ2|Φ(e(n))2|JminVHR′
xV .

(3-38)

Then, simplifying the terms, we reach

U(n + 1) =
(

VH − κΦ(e(n))ΛVH
)

K(n)
(

V − κΦ(e(n))ΛV
)

+ κ2|Φ(e(n))2|JminΛ .

(3-39)

Therefore, the matrix U(n + 1) can be computed recursively as

U(n + 1) =
(

I − κΦ(e(n))Λ
)

U(n)
(

I − κΦ(e(n))Λ
)

+ κ2|Φ(e(n))2|JminΛ .

(3-40)

To calculate the excess MSE we need to diagonal elements of its matrices,

which are described by

ui,i(n + 1) =
(

1 − κ2Φ(e(n))2λi

)2

ui,i(n) + κ2|Φ(e(n))2|Jminλi . (3-41)

Based on Equation (3-41) and finding the expression of (3-28) to the stationary

sense, now let us consider the performance of the HEKM algorithm at steady

state. The diagonal elements are given by

ui,i(∞) =
(

1 − κ2Φ(e(n))2λi

)2

ui,i(∞) + κ2|Φ(e(n))2|Jminλi

= ui,i(∞) − 2κ2Φ(e(n))2λiui,i(∞) + κ4Φ(e(n))4λ2
i ui,i(∞)

+ κ2|Φ(e(n))2|Jminλi .

(3-42)

Manipulating the equation products, arranging and simplifying the terms of

the previous expression, we have
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2κ2Φ(e(n))2λiui,i(∞) − κ4Φ(e(n))4λ2
i ui,i(∞) = κ2|Φ(e(n))2|Jminλi , (3-43)

2ui,i(∞) − κ2Φ(e(n))2λiui,i(∞) = Jmin , (3-44)

ui,i(∞)
(
2 − κ2Φ(e(n))2λi

)
= Jmin . (3-45)

Therefore, we obtain that

ui,i(∞) = Jmin

2 − κ2Φ(e(n))2λi

. (3-46)

Thus, the excess MSE of the HEKM algorithm at steady-state is given

by

Jex(∞) = Jmin

M∑
i=1

λi

2 − κ2Φ(e(n))2λi

. (3-47)

At last, it interesting to point out the relation of misalignment of the

adjustment factor, which can be formulated as

M =
M∑

i=1

λi

2 − κ2Φ(e(n))2λi

, (3-48)

and finally, returning to Equation (3-28), assuming that the algorithm will be

in the steady state and applying the expression obtained in Equations (3-45)-

(3-46), we have

J(∞) = Jmin (1 + M)

= Jmin

(
1 +

M∑
i=1

λi

2 − κ2Φ(e(n))2λi

)
,

(3-49)

where the formula of the steady-state MSE expression of the FXHEKM

algorithm can be used to predict its MSE performance. Initially, we consider

a standard simplification of
Jmin = σ2

v , (3-50)

as a reasonable value for the MMSE in the steady-state.
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3.4
Numerical Results

In the present section, the performance of the proposed algorithm is com-

pared with the classical and some robust methods via simulations. These meth-

ods, which employ the filtered-X framework, are: the FXLMS algorithm; the

generalized Maximum Correntropy Criteria (FXGMCC) and its Improved ver-

sion using the generalized Kernel (IFXGMCC) [21]; the generalized Hyperbolic

Tangent function, i.e. GHT (FXGHT) algorithm [22], and an Exponential hy-

perbolic Cosine conjugated version (FXECH) algorithm [24]; the M-estimator

algorithms (FXGR) [25] and the proposed FXHEKM algorithm.

Before the comparison of the proposed method against other approaches,

an analysis of the HEKM function using different hyperbolic trigonometric

formulations are realized in order to verify which is the most appropriate

equation to model the proposed robust FXHEKM algorithm.

To evaluate the statistical analysis of this section with the practical

values Figure 3.17 shows a comparison between the simulated curves of the

state-of-the-art algorithms and the proposed FXHEKM algorithm against the

analytical approach calculated in the last section.

3.4.1
Computational Complexity

Using the update equation that describes the learning curve of the weight

vector, we can compute the computational complexity in terms of arithmetic

operations to compute the algorithms [47]. Table 3.1 shows the computational

cost of several relevant algorithms [21,22,24,25], which are used as benchmarks

in this thesis.

The variable L denote the length of the vector of the number of iter-

ations, M is the filter tap length and p represent the power exponents used

in some algorithms. In particular, the computational complexity is given in

terms of arithmetic operations, i.e., multiplications/divisions; sums and non-
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linear operations such as log(·), exp(·), sech(·) etc. Figure 3.8 illustrates the

computational complexity against the filter length.

Table 3.1: Computation Complexity of some algorithms per iteration.

Algorithm Mult , Div + Nonlinear Op
FXLMS 2L+1 2L+2M -3 -

FXGMCC 2L+4 2L+2M -3 3
FXGHT (p+5)(L-1) + L 3L-2 1

IFXGMCC 2L+6 2L+2M -3 4
FXGR 2L, 1 2L -

FXECHF 2L+p+8, 1 2L+2 2
FXHEKM 3L+2p+7, 1 3L-2 4

Observing the number of mathematical operations in each method, the

proposed FXHEKM algorithm has a slightly higher complexity than the other

approaches, even in the number of multiplications and nonlinear operations

(e.g. tanh(·), exp(·)). However, this engineering trade-off is evaluated after the

simulation analysis as follows.
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Figure 3.8: Computational Complexity of the algorithms approached.

It is noteworthy that although the methods improve the derivation of

your math approach, its computational capacity needs to increase gradually (in
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certain cases, this increase is nonlinear). The results regarding this engineering

balance are shown in the next section.

3.4.2
Active Noise Cancellation of α-Stable Signals

To test the robustness of the algorithms the noise of the Gaussian and

impulsive nature has been chosen as input in the validation procedure. The

Gaussian noise is a standard test base, and the impulsive signal is an interesting

special case with low probability but high amplitude variation and broad

spectral content.

Based on the literature research, defined for this simulation focused in

ANC the noise can be created by α-Stable distribution [22] given by

ϖ(t) = exp{jδt − γ|t|α [1 + jβsign(t)S(t, α)]} , (3-51)

where

S(t, α) =


2
π

log |t|, if α = 1

tan(απ
2 ), othersize

. (3-52)

Here, the case study simulated the active noise cancellation in three

scenarios considered: α = 2.0 (Gaussian noise) and 1.5 (pseudo-impulsive

signal) in this study. The other three parameters are defined as standard α-

stable as β = 0, γ = 1 and δ = 0. The input noise x(n) that follows an α-stable

distribution with σ2
x = 0.1 − this value is chosen to standardize in both cases,

in order to avoid extrapolating the peak values in case 2 (vide Figure 3.10).

Finally, the variable v(n) is the independent measurement noise that follows a

Gaussian random variable with zero mean and variance σ2
v = 0.001, or in other

words, we set the measurement noise using a white noise with 1% of amplitude

(i.e. 0.01randn(L)).

For the simulation procedure of the current work we used N = 15000

iterations, filter length L = 16, and i = 250 Monte Carlo simulations. The
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impulsive responses used to primary path P(z) = 0.25z−2 + 0.5z−3 + 1.0z−4 +

0.5z−5 + 0.25z−6 and secondary path S(z) = 0.5P(z).

A crucial step in filtered-X ANC systems is an estimation of the secondary

path [48]. This is the main reason which justifies the use of the filtered-X

approach, and at the same time that need for this kind of preliminary system

identification task. In other words, an initial simulation is applied to define the

initial values for the secondary path [49]. In the first scenario, Figure 3.9 shows

the performance of the framework in the secondary path system identification.
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Figure 3.9: Analysis of the initial system identification realized to defined
estimation of the secondary path Ŝ(z) to α = 2.0 (case 1).

Similarly, Figure 3.10 shows an example with impulsive noise stability

evaluation in the secondary path, where it is possible to observe the results are

reaching a small error that indicates the effectiveness of the system in canceling

the noise.

It is possible to note in the first graph above, the estimation of error

(yellow line) decreasing and quickly reaching a value close to zero, which

represents an efficient noise reduction. In the second graph, it is outstanding

the precise filter estimation of the secondary path notes that the coincidental
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Figure 3.10: Analysis of the initial system identification realized to defined
estimation of the secondary path Ŝ(z) to α = 1.5 (case 2).

response value of the Ŝ(z) and W (z).

Moreover, the following analysis of the comparison between different

methods related to your ANR performances is divided into two cases. The

algorithm parameters are chosen after an exhaustive experimental procedure

based on and respecting the convergence and stability analysis demonstrated

previously in Section 2.3.

The values used in this case study for each method are FXLMS: µ = 0.1;

FXGMCC: µ = 0.0495, σ = 1.5, p = 1.7 and ν = 1.0; FXGHT: ρ(1) = 0.1, λ

= 0.4, p = 2 and σ = 14.5; IFXGMCC: µ = 0.0535, σ = 2.0, p = 1.5 and ν =

0.5; FXGR: µ = 0.1 and ζ = 0.2; FXECH: γ = exp(1), µ = 0.034 and λ = 3.4

and p = 2; FXHEKM: ρ(1) = 0.1, η = 1.0, α = 0.4, ζ = 0.2 and p = 2.0. In

Section 3.4.3 we bring all the results reached in the simulations as well as all

highlights of the analysis and other important observations taken out.

3.4.3
MSE

The analysis of the obtained results on the estimation of the MSE is

divided as: i) SNR comparison, where the statistical stability when the ratio
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decrease are evaluated and ii) step-size comparison, where the value of η

influences directly the behaviour of the learning curve of the HEKM function.

These results are simulated first to evaluate the proposed methods in some

different perspectives of its objective function, and later the best formulation

against the other methods in the literature.

3.4.3.1
SNR Comparison

Firstly, a comparison related to the best approach used in the FXHEKM

algorithm is performed. In Figure 3.11, it is possible to observe the evolution of

the MSE over the iterations using SNR = 20 dB. Some simulations are sliced

in a lower number of iterations when the stability condition are guaranteed, it

only for effect of visualization improvement.

The comparison below is between the three versions, which each one

using a different hyperbolic trigonometric expression in the objective function

of the FXHEKM algorithm defined in Equation (3-3).
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Figure 3.11: MSE comparison between HEKM method approaches for Gaus-
sian distribution noise (SNR = 20 dB).



Chapter 3. Hyperbolic Exponential Kernel M-estimate Algorithm 63

An important point to consider is that the method achieves the MMSE

value of the theoretical calculation of (3-50), described in Section 3.3.2.

Another interesting aspect for this simulation is that the algorithm using J(n)

defined as (3-3) has the best performance according to the convergence and

reaches the same value of MMSE.

Figure 3.12 shows an analogous simulation of the different HEKM

approaches to the reduced value of the SNR. The results of MSE are close in

performance among themselves, but the objective function using the tanh(·) in

the term of the trigonometric function has the largest value around the mean.

A simulation example with other SNR values was also conducted. The

main idea was to compare the influence of the relation between the input noise

x(n) and the measurement additive noise v(n) inserted in the primary path.

Finally, Figure 3.13 demonstrates the MSE evaluation in the last and worst

case.
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Figure 3.12: MSE comparison between HEKM method approaches for Gaus-
sian distribution noise (SNR = 10 dB).

In the last SNR setting, the MSE of the standard version of the HEKM

function around the mean and the MMSE increase dramatically as compared
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Figure 3.13: MSE comparison between HEKM method approaches for Gaus-
sian distribution noise (SNR = 3 dB).

to the other version. Figure 3.14 shows the final value obtained for each SNR

comparison for the FXHEKM using the standard version (e.g. Equation (3-3)).

Figure 3.14: MSE analysis between different SNR values of the standard HEKM
method for Gaussian distribution noise.

We can observe that the value between the beginning of the curve and

the MMSE correspond to the exactly SNR applied.
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3.4.3.2
η Comparison

Here, we analyze the influence of the constant that controls the learning

curve of the proposed model in terms of MSE estimation. To avoid the

unnecessary repetition, a unique value are described and shown in the analysis

above. Figure 3.15 illustrates the MSE comparison of the HEKM functions in

the different hyperbolic trigonometric approaches to using the parameters η =

0.8 (the fixed value of p = 2.0, then the step-size µ = 1.6, with the forgetting

factor ρ(N) ≈ 1.25, therefore the constant κ ≈ 2.0).

Figure 3.15: MSE comparison between HEKM method approaches for Gaus-
sian distribution noise (α − Stable = 2.0).

To assess the evolution of the learning curve of the adaptive algorithms,

the step-size is the most important parameter, and the performance trade-off.

Therefore, Figure 3.16 shows the analysis of the relation between the parameter

η and the MSE curves.

The results after some simulations get the notion of a optimal condition

between quick convergence and lowest Minimum MSE estimation regarding the

learning processing. For this reason the chosen value of η inside the step-size

parameter is represented in the first curve (= 1.0).
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Figure 3.16: MSE comparison between HEKM method approaches for Gaus-
sian distribution noise (α − Stable = 2.0).

3.4.3.3
Comparison of ANC Methods

For an SNR equal to 20 dB and the best settings of the step-size

and parameters of the HEKM objective function, the Figure 3.17 brings

the comparison between the FXHEKM algorithm and the other compared

methods.

It is possible to visualize how the proposed FXHEKM algorithm has a

faster convergence than other techniques, maintaining the stability than other

classical and novel robust approaches.

In Section 3.4.4, we show an analysis of other chosen metric and their

respective simulations realized to compare the methods studied in the work,

evaluating the algorithm’s performance and then concluding about the hypoth-

esis raised.
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Figure 3.17: MSE comparison between HEKM method approaches for Gaus-
sian distribution noise (SNR = 20 dB).

3.4.4
ANR

In this subsection the noise cancellation performance of the ANC system

is illustrated. For this purpose, the average noise reduction (ANR) is deployed

as a metric [21]− [22], given by

ANR(n) = 20 log Ae(n)

Ad(n)
, (3-53)

where Ae(n) = θAe(n−1) + (1 − θ)|e(n)|, with Ae(0) = 0 denote the estimate of

residual error; Ad(n) = θAd(n−1) + (1 − θ)|d(n)|, with Ad(0) = 0 describe the

estimate of the noise in primary path, and θ = 0.99 is the forgetting factor.

Here, we evaluated the ANC performance in two different scenarios: i)

Gaussian signals (α−Stable distribution = 2.0) and ii) Non-Gaussian or Im-

pulsive signals (α−Stable distribution = 1.5). In the first round of simulations,

Figures 3.18 to 3.20 the 3 different levels of SNR are tested to verify the con-

vergence speed and stability to the three analyzed versions of the FXHEKM

algorithm.
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Figure 3.18: ANR comparison between HEKM approaches for Gaussian distri-
bution noise (SNR = 20 dB).
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Figure 3.19: ANR comparison between HEKM method approaches for Gaus-
sian distribution noise (SNR = 10 dB).

Some important points to observe include the curve using the hyperbolic

tangent as part of its objective function reaches the fastest convergence speed
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Figure 3.20: ANR comparison between HEKM method approaches for Gaus-
sian distribution noise (SNR = 3 dB).

with comparable stability to other expressions. However, there is a trade-off

between convergence speed and stability or Minimum MSE level [50]. This is

a well-known relationship in adaptive algorithms [6], and here it is noteworthy

that in extreme cases (SNR = 3 dB), the steady-state stage of the standard

HEKM results in an increase in MSE of ≈ 0.5 dB.

A comparison of the ANR performance of the FXHEKM algorithm

against all other studied methods is shown in Figure 3.21.

The simulation performed to set the parameters of all methods confirm

the hypothesis presented about the performance of the proposed FXHEKM

algorithm. As shown in the plot, the FXHEKM algorithm reaches the best

performance, outperforming the other methods.

The analysis of ANR performance evaluates the proposed ANC frame-

work in the presence of non-Gaussian noise. The idea to evaluate the impulsive

noise is based on a range of practical problems [5]. For this numerical simula-

tion, we employ the α−Stable distribution noise = 1.5, which contains a signal

with impulsive peaks mixed with some Gaussian distortion, as shown in Figure



Chapter 3. Hyperbolic Exponential Kernel M-estimate Algorithm 70

Figure 3.21: ANR comparison between HEKM method against other classi-
cal/robust approaches for Gaussian distribution noise (SNR = 20 dB).

3.10 with the same parameters and conditions used in the first scenario. Figure

3.22 shows the comparison between the versions of the FXHEKM algorithm.
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Figure 3.22: ANR comparison between HEKM approaches for impulsive noise
(SNR ≈ 25dB).
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As observed in the simulations using Gaussian noise, the HEKM function

using the tanh(·) as a component term of the objective function obtained the

best performance in convergence speed with the same MSE at steady state,

overcoming the other approaches applied [22,23].

A important point of this research in the algorithm development is the

hypothesis to create a method able to deal with robustness against signals with

non-Gaussian behaviour (e.g. white noise). After a second extensive round of

simulations, adjusting the parameters and testing the algorithm’s execution,

we can observe a comparison of the methods in Figure 3.23.
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Figure 3.23: ANR comparison between HEKM method against other classi-
cal/robust approaches for Gaussian distribution noise (SNR ≈ 25dB).

The FXHEKM algorithm shows stability and fast convergence as well as

adaptability to different scenarios of ANC. Indeed, the proposed FXHEKM

algorithm outperforms the other algorithms in the scenarios studied.

3.4.5
Summary

This chapter brought the development of the mathematical approach, in

the analytical and statistical sense, of the proposed FXHEKM algorithm. The
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performance of the proposed FXHEKM algorithm using several metrics has

been evaluated and shown that the FXHEKM outperforms recent competing

techniques in the literature.



4
Conclusions and Future Work

In this chapter, we draw the conclusions of this work along with a brief

discussion of ideas for future work. This work investigated and developed

robust adaptive filtering techniques for active noise cancellation. In particular,

a new high performance approach using a robust objective function and an

adaptive filtered-X framework in an ANC system have been devised. In order

to study the performance of the proposed approach and obtain insights on

its behaviour, a statistical analysis has been carried out and simulations were

performed to understand the limitations of the proposed algorithm.

The performance of the proposed FXHEKM algorithm was evaluated

using simulations and analytical expressions derived to predict the performance

of the proposed algorithm. We have chosen to use the α − Stable distribution

signals for the broad used in the literature and the possibility to simulate

a nice range of the different signals with the same variable. In this sense,

we can conclude that the MSE analysis of the convergence and stability

reinforces the study of the statistical behavior of the proposed algorithm

against the classical and recent robust approaches in the literature. In all the

scenarios simulated, we have the proposed FXHEKM algorithm reaching the

MMSE value theoretically calculated in this work and overcoming all the other

compared methods, which evidence the robustness against impulsive noise and

effective performance.

In the case of signals in the presence of white noise (α = 2.0 that is

analogous to Gaussian random signal), the FXHEKM algorithm outperforms

all the methods, achieving the best value in the average noise reduction metric.

In the second scenario in the presence of impulsive noise (α = 1.5 that consists

of pseudo-impulsive noise), the results of the FXHEKM algorithm is held,

being closely followed by the M-estimator method FXGR, confirming the
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effectiveness to process signals with non-Gaussian nature. After exhaustive

simulations, the proposed approach maintains the stability against the other

robust models and surpasses the FXGR on average about 2-3dB until two

thousand iterations.

For the future works, we have observed the results and the behavior of

the proposed FXHEKM algorithm and would like to point out some possible

following researches. Firstly, it would be interesting analyze some condition

related to the proposed approach as the more deep analytical study about

the Equations (3-24) and (3-26), and the band of convergence and stability

in the threshold of (3-8); other simulation scenarios like other model (Auto

Regressive, chaotic, real case), different input signal (real signals) or with other

additive noise (types and SNR’s) etc. It would be interesting to compare the

proposed FXHEKM algorithm with other approaches that employ different

optimization methods, affine projection and subband frameworks, machine

learning and deep learning algorithms.

Further improvements in the way of this research might involve testing

other types of noises (i.e. chaotic signals, real case signals), different systems

and cases of applications (problems e.g. system identification, room equaliza-

tion, denoising etc, or real-world applications, e.g. DSP issues, communication

systems, acoustics and other specific fields like headphones and hearing aids,

automotive, aeronautics, railway infrastructure etc) and some methodological

improvements in kernel adaptive filtering approaches.
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