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Abstract

Landau, Lukas T. N (Advisor). Symbol-Level Transmit Proces-
sing for Multiuser MIMO Systems with PSK Modulation.
Rio de Janeiro, 2025. 144p. Tese de doutorado – Departamento de
Departamento de Engenharia Elétrica (DEE), Pontifícia Universi-
dade Católica do Rio de Janeiro.

This study proposes different symbol-level transmit processing methods
for diverse multiuser MIMO setups. First, two symbol-level precoders are
developed considering a strict per-antenna power constraint and PSK
modulation for perfect and imperfect channel state information.
Then, a large-scale MIMO setup is considered where the energy consump-
tion of the radio frequency front ends yields a bottleneck for realizing energy-
efficient MIMO systems. With this, power reduction features such as cons-
tant envelope signaling and low-resolution quantization are applied to enable
low-cost deployments, with low environmental impact, and better coverage.
In this context, the minimum symbol-error probability formulation is con-
sidered as the design criterion for the case of QPSK data symbols, and, for
arbitrary PSK modulation, the study proposes the novel minimum union-
bound symbol-error probability formulation. Based on these criteria the
study proposes different low-resolution symbol-level precoders based on the
partial greedy search method and the proposed quality-of-service branch
and bound algorithm.
Finally, a virtual multiuser MIMO system with PSK modulation realized
via the reconfigurable intelligent surface-based passive transmitter setup is
considered. Under this framework, this study considers both high-resolution
and discrete phase shift reconfigurable intelligent surface models. With these
frameworks, the study derives symbol-level power minimization problems
under quality of service constraints. Both the symbol-error probability
and union-bound symbol-error probability are considered for the quality of
service formulation. The problems are solved by utilizing a bisection method
and a branch-and-bound method for high and low-resolution reflecting
elements, respectively.

Keywords
Symbol-Level Precoding, Reconfigurable Intelligent Surfaces, Multiu-

ser MIMO Systems, Constant Envelope Signaling, Low-Resolition Quan-
tization



Resumo

Lopes, Erico de Souza Prado; Landau, Lukas T. N. Processa-
mento de Sinais a Nível de Símbolo para Transmissão em
Sistemas MIMO com modulação PSK. 2025. 144p. Tese de
Doutorado – Departamento de Departamento de Engenharia Elé-
trica (DEE), Pontifícia Universidade Católica do Rio de Janeiro.

Este estudo propõe diferentes métodos de processamento de transmissão a
nível de símbolo para diversas configurações MIMO multiusuário. Primeiro,
dois pré-codificadores a nível de símbolo são desenvolvidos considerando
uma estrita restrição de potência por antena e modulação PSK para infor-
mações de estado de canal perfeito e imperfeito. Então, uma configuração
MIMO em larga escala é considerada onde o consumo de energia dos front-
ends de radiofrequência produz um gargalo para a realização de sistemas
MIMO com eficiência energética. Com isso, recursos de redução de energia,
como sinalização de envelope constante e quantização de baixa resolução,
são aplicados para permitir implantações de baixo custo, com baixo impacto
ambiental e melhor cobertura. Neste contexto, a formulação da mínima pro-
babilidade de erro de símbolo é considerada como o critério de projeto para
o caso de símbolos de dados QPSK e, para modulação PSK arbitrária, o
estudo propõe a nova formulação de mínima probabilidade de erro de sím-
bolo vinculada ao limitante da união. Com base nestes critérios, o estudo
propõe diferentes pré-codificadores de baixa resolução a nível de símbolo,
baseados no método de busca parcial gananciosa e no algoritmo proposto
de branch-and-bound qualidade de serviço. Finalmente, é considerado um
sistema MIMO multiusuário virtual com modulação PSK realizado através
da utilização de um transmissor baseado em superfícies inteligentes recon-
figuráveis. Com esta estrutura, este estudo considera modelos de superfície
inteligentes reconfiguráveis de alta resolução e com mudança de fase dis-
creta. Com essas estruturas, o estudo deriva problemas de minimização de
potência a nível de símbolo sob restrições de qualidade de serviço. Tanto
a probabilidade de erro de símbolo quanto a probabilidade de erro de sím-
bolo vinculada ao limitante da união são consideradas para a formulação da
qualidade do serviço. Os problemas são resolvidos utilizando um método de
bissecção e um método branch-and-bound para elementos refletores de alta
e baixa resolução, respectivamente.
Palavras-chave

Pré-codificação a nível de símbolo Superfícies refletoras reconfiguráveis
Sistemas MIMO multiusuário Sinalização de envelope constante Quantiza-
ção de baixa resolução
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1
Introduction

One central demand to enable the new key applications of the next
generation of wireless communications is a higher data rate with high reliability
and increased energy efficiency (EE) [1]. According to [2], the future wireless
generation will require an improvement in the data rate of factor 100 for the
uplink and factor 50 for the downlink while achieving 10 thousand times higher
reliability when compared to 5G. Moreover, as stated in [3], 6G networks
will require 10 to 100 times higher EE compared to 5G, to enable scalable
low-cost deployments, with low environmental impact, and better coverage.
Multiuser multiple-input multiple-output (MU-MIMO) systems are considered
a promising physical-layer technique and are expected to be a key technology
for attaining these requirements [2]. Yet, the design of EE MIMO systems with
minimum error-rate compromise remains a challenge to overcome.

The conventional MU-MIMO implementation consists of equipping a
base station (BS) with large antenna arrays to allow for large diversity gains.
Yet, due to the high number of radio frequency front ends (RFFEs), the energy
consumption of the radio frequency (RF) chains imposes a challenge for this
kind of technology [4]. The EE requirement led to the development of different
studies that analyzed the circuit of RFFEs to dissect the most consuming
elements, e.g., [5, 6]. These works conclude that the power amplifiers (PAs)
and data converters are two of the most consuming elements in the RFFE.
With this, many recent studies consider adopting features to minimize the
power consumption of these elements. In most cases, to increase the PA’s
efficiency the adoption of constant envelope (CE) signaling is considered, and,
to decrease the power consumption of the data converters, low-resolution in
amplitude is utilized.

Another method to realize low-cost EE MU-MIMO systems is the uti-
lization of reconfigurable intelligent surfaces (RIS). RIS are two-dimensional
surfaces with many reconfigurable reflecting elements that can independently
adjust their reflection coefficient in a real-time programmable manner. As pro-
posed in [7, 8, 9, 10, 11], one can construct RIS-based transmitter by illuminat-
ing a RIS with a carrier signal generated by a nearby RF signal generator and
changing the parameters of the reflecting elements to modulate and transmit
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information symbols. With this, RIS-based passive transmitters realize virtual
MIMO systems with a small number of RF chains and cost-effective reflecting
elements, which benefits the implementation of massive MIMO with reduced
hardware complexity and increased EE.

1.1
Contributions

A fundamental problem for MU-MIMO systems is the design of low-
complexity transmit processing algorithms that attain the high-reliability
constraints of future wireless communications networks. This thesis proposes
symbol-level transmit processing algorithms for different MIMO setups. It is
divided into three parts where the contributions are delineated for the different
setups.

1.1.1
Contributions under the Conventional MIMO Transmitter and Strict Per
Antenna Power Constraint

The first part of the study considers a conventional MU-MIMO sce-
nario and proposes different optimal symbol-level precoding (SLP) algorithms
based on the minimum mean squared error (MMSE) and the robust MMSE
(RMMSE) criteria. For the algorithms’ design, a strict per antenna power con-
straint (SPAPC) is adopted as it is considered the most realistic model for this
scenario [12].

1.1.2
Contributions under the Conventional MIMO Transmitter with Constant
Envelope and Low Resolution Constraints

For large-scale MIMO where the energy consumption of the RFFE is sig-
nificant to the EE of the system, power reduction features such as CE signaling
and low-resolution quantization are necessary for low-cost deployments, with
low environmental impact, and better coverage. In this scenario, the contribu-
tions of this study are listed in the following:

– Development of a novel precoding design criterion based on the mini-
mization of the union-bound symbol error probability (MUBSEP).

– Development of practical partial greedy search (PGS) SLP algorithms
based on the relaxation of the feasible sets to its convex hull utilizing
the minimum symbol error probability (MSEP) and MUBSEP design
criteria.
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– Development of the quality of service (QoS) branch-and-bound (B&B)
precoding algorithm which improves standard full B&B approaches in
the sense of incorporating a symbol error probability (SEP) requirement
in the method.

– Development of optimal RMMSE SLPs based on a B&B algorithm for
imperfect channel state information (CSI) scenarios.

– Development of a suboptimal low complexity RMMSE SLP based on the
relaxation of the discrete feasible set to its convex hull and subsequent
Euclidean distance mapping, also for imperfect CSI scenarios.

1.1.3
Contributions under the RIS-Based Transmitter Framework

As mentioned RIS-based transmitters can be utilized to achieve low-cost
implementations of MIMO systems. In this context, the MIMO scenarios that
arise depend on the RIS’ hardware implementation. When the RIS allows for a
high number of phase shifts, the feasible set of the reflection coefficients can be
well approximated by a Riemannian manifold. On the other hand, the general
case yields a discrete feasible set.

For both scenarios, this study proposes power minimization problems
under QoS constraints. While for the case of BPSK or QPSK users’ data,
the SEP is considered QoS requisite, for other PSK scenarios the union-
bound SEP (UBSEP) functions are utilized as constraints. For the general
case of discrete phase-shift RIS, the problem is constructed as a mixed-integer
program (MIP) and solved via an improved version of the QoS B&B approach.
In the high-resolution case, it becomes a multivariate problem that is solved
via the combined utilization of a bisection method (BM) and the Riemannian
Conjugate Gradient (RCG) algorithm.

1.2
Thesis Outline

The remainder of this thesis consists of six chapters which are structured
as follows:

– Chapter 2 presents a brief review of the literature and dissects also some
important baselines;

– Chapter 3 presents the developed SPAPC precoding techniques with the
conventional MIMO transmitter;

– Chapter 4 proposes different SLPs under CE and low-resolution con-
straints with the conventional MIMO transmitter;
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– Chapter 5 proposes the different symbol-level power minimization prob-
lems under a virtual MIMO system realized with the RIS-based passive
transmitter setup;

– Chapter 6 presents the conclusion of the thesis;

– Chapter 7 discusses the possible extensions of the studies presented in
this thesis.

Finally, the appendix presents the convexity analysis, the development of the
minimum distance to the decisions threshold (MDDT) bound, and the signal-
to-noise ratio (SNR) definitions.

1.3
Notation

Regarding the notation, bold lowercase and uppercase letters indicate
vectors and matrices, respectively. Non-bold letters express scalars. The oper-
ators (·)∗, (·)T and (·)H denote complex conjugation, transposition and con-
jugate transposition, respectively. The i-th element of a given vector a is de-
noted by [a]i. Real and imaginary part operators, as well as the functions
erf(z) =

∫ z
0 e

−t2
dt, erfc(z) = 1 − erf(z), Φ (z) = (1/2) erfc (z/

√
2) and ln(·) are

also applied to vectors and matrices. The operator R(·) converts a complex-
valued vector into a specific equivalent real-valued notation. For a given matrix
A ∈ CK×M the equivalent real-valued matrix Ar = R(A) is given by

Ar =



Re {a11} −Im {a11} · · · Re {a1M} −Im {a1M}
Im {a11} Re {a11} · · · Im {a1M} Re {a1M}

... . . . ...
Re {aK1} −Im {aK1} · · · Re {aKM} −Im {aKM}
Im {aK1} Re {aK1} · · · Im {aKM} Re {aKM}


. (1-1)

For a given column vector a ∈ CM the equivalent real-valued vector ar = R(a)
is given by

ar =
[
Re {[a]1} Im {[a]1} · · · Re {[a]M} Im {[a]M}

]T
. (1-2)

The operator C(·) converts equivalent real-valued notation into complex-valued
notation, meaning C(Ar) = A. Finally, for the given vectors a and b, P(a = b)
denotes the probability of the event a = b.



2
Important Baselines

This chapter introduces some baselines considered in this study. The
concepts presented in the following sections are necessary not only for the
proper understanding of chapters 3 to 5 but also for localizing the contributions
of the work.

2.1
The Minimum Distance to the Decisions Threshold

In the context of downlink transmission for multiuser MIMO systems,
one of the most utilized concepts is the MDDT first introduced by [13]. It is
generally used either for constructing a design criterion - by maximizing the
MDDT leading to the maximum MDDT (MMDDT) concept [14, 15, 16, 17, 18]
- or as a QoS constraint [19]. This section mathematically models the MDDTs
of the k-th user as a function of the received signal considering a multiuser
MIMO downlink system with K single-antenna users that expect to receive
αs-PSK data symbols. The derivation starts by denoting the data symbol for
the k-th user as sk and its noiseless received signal as yk. With this, assuming
hard detection, one can visualize the signal space for the k-th user in the
left-hand side (LHS) of Fig. 2.1, where ϕ = π/αs.

2ϕ

sk

yk

Im

Re
ϕ

s′
k

ωk

Im

Re

Figure 2.1: Signal space for the k-th user (right). Rotated coordinate system
(left)

To compute the MDDT of the k-th user the first step is to consider a
rotation by arg{s∗

k} of the coordinate system such that the symbol of interest
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is placed on the real axis, as shown in the right-hand side (RHS) of Fig. 2.1.
This is done by multiplying both the symbol of interest sk and the noiseless
received signal yk by e−jarg{sk} = s∗

k which reads

s′
k = sks

∗
k = 1, ωk = yks

∗
k. (2-1)

Based on the rotated coordinate system two distances between the noiseless
received signal and the decision’s thresholds can be computed for each user,
as shown in Fig. 2.2.

ϕ s′
k

ωk

Im

Re

dk,1

ϕ

β

Im{ωk}

Re{ωk} ϕ s′
k

ωk

Im

Re

Im{ωk}

Re{ωk}
dk,2

γ
ϵ1

ϵ2

Figure 2.2: Distances to the Decisions’ Threshold

The first distance, d1,k, is computed based on the LHS of Fig. 2.2 as

d1,k = (Re {ωk} − β) sin(ϕ)

=
(

Re {ωk} − Im {ωk}
tan(ϕ)

)
sin(ϕ)

= Re {ωk} sin(ϕ) − Im {ωk}cos(ϕ).

The second distance of the d2,k is calculated based on the RHS of Fig. 2.2. It
is easy to spot that

d2,k = ϵ1 + ϵ2, (2-2)

where ϵ1 = Im{ωk}
cos(ϕ) and ϵ2 = γ sin(ϕ), with γ = Re {ωk} − Im {ωk}tan(ϕ).

Finally, the value of d2,k is given by

d2,k = Re {ωk} sin(ϕ) + Im {ωk}cos(ϕ).

The smallest distance of the rotated symbol ωk to the rotated decision
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threshold is expressed as dk = min
ξ∈{1,2}

dξ,k, which is summarized as

dk = Re {s∗
kyk} sinϕ− |Im {s∗

kyk}| cosϕ. (2-3)

Since the considered rotation also includes the decision thresholds, the distance
expression in (2-3) also holds for yk.

2.2
Full Branch-and-Bound Algorithm

The B&B, first created in 1960 by A. H. Land and A. G. Doig [20], is an
established technique in the wireless communications area. It has important
applications in this context, such as multiuser detection [21], discrete beam-
forming [22, 23] and, more recently, discrete precoding [17]. Although many
different B&B methods exist in the literature [17, 18, 24, 25, 26, 27], this sec-
tion presents the Full-B&B approach first proposed in [17] to optimally solve
discrete programming problems (DPPs) with polynomial computational com-
plexity. The Full-B&B method from [17] is a technique for solving problems in
the form of

xopt = min
x

g(x) (2-4)

s.t. x ∈ X M ,

where g : RM → R is a convex objective function, X is a discrete set with αx

elements and xopt is the optimal solution. The Full-B&B method consists of
two stages, namely the initialization and the tree search-based stage.

2.2.1
Initialization Stage

The initialization step aims to compute a finite upper bound such that,
in the tree search stage, many branches of the tree can be pruned early which
is beneficial in terms of computational complexity. The initialization starts
by constructing a lower bounding convex optimization problem on g(xopt) by
relaxing X M to its convex hull P which yields

xlb = min
x

g(x) (2-5)

s.t. x ∈ P .

By solving (2-5) one obtains xlb, if xlb ∈ X M then xopt = xlb and the
algorithm terminates with xlb. Otherwise, an associated upper bound on
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x1 x2 x3 x4

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

p = 1

p = 2

Figure 2.3: Tree representation of the set X M for M = 2 and αx = 4

g(xopt) is obtained by projecting the solution of (2-5) to X M and evaluating
g(·) accordingly. In [17] the projection step is done via uniform quantization
denoted by the operator Q(·). With this, the associated upper bound solution
is given by xub = Q(xlb) and smallest known upper bound, ǧ, is initialized as
ǧ = g(xub).

2.2.2
Tree Search-Based Stage

The Full-B&B method is a tree search-based algorithm. The tree rep-
resents the set of all possible solutions for the vector x, i.e., represents the
set X M . For structuring the tree M levels are considered and each node has
one ingoing branch and αx outgoing branches as shown in Fig. 2.3. The tree
search-based stage starts at layer p = 1 by fixing p entries of x. The vector x
is then rewritten as x = [fT

i ,v
T ]T , with f i ∈ X p. In the context of tree search

the subvector f i denotes the i-th branch of the layer p of the tree. Based on
the fixed branch f i, a subproblem can be formulated as

vopt|f i
= min

v
g(v,f i) (2-6)

s.t. v ∈ X M−p.

Relaxing the problem from (2-6) states

vlb|f i
= min

v
g(v,f i) (2-7)

s.t. v ∈ J ,

where J is the convex hull of X M−p. With vlb|f i
a lower bound solution

conditioned on f i is obtained as xlb|f i
= [f i,vlb|f i

]. An upper bound on
g(vopt|f i

,f i) can be computed by projecting the vector vlb|f i
to X M−p resulting

in vub|f i
= Q(vlb|f i

) and computing g(xub,i), with xub,i = [f i,vub|f i
] ∈ X M .

The B&B algorithm benefits from having a small upper bound that allows
for many branch exclusions. With this, for each f i the algorithm updates
ǧ = min (g(xub,i), ǧ). After the update, the algorithm proceeds by fixing the
next branch f i+1.
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Algorithm 1 Full B&B Algorithm [17]
initialization:
Solve problem (2-5) to get xlb
If xlb ∈ X M → terminate with xopt = xlb
Compute xub = Q(xlb) and initialize ǧ = g(xub)
Define the first level (p = 1) of the tree by Gp := X
for p = 1 : M − 1 do

Partition Gp in f 1, . . . ,f |Gp|
for i = 1 : |Gp| do

Conditioned on f i solve (2-7) to get xlb|f i
= [f i,vlb|f i

]
Compute vub|f i

= Q(vlb|f i
) and construct xub,i = [f i,vub|f i

]
Update the smallest known upper bound with: ǧ = min (ǧ, g(xub,i))

end for
Build the set G ′

p :=
{
f i| g(xlb|f i

) ≤ ǧ, i = 1, . . . , |Gp|
}

Define the set for the next level in the tree Gd+1 := G ′
p × X

end for
Partition GM in x1, . . . ,x|GM |
The global solution is xopt = min

xi∈GM

g(xi)

After all possible valid branches in a given layer are evaluated, i.e., all
valid f i were fixed and its conditioned upper and lower bounds computed the
algorithm proceeds to the pruning step where the set of approved branches, G ′

p,
in the current layer p is constructed. The pruning step proposed in [17] consists
of excluding from the search set all f i that cannot be a subvector from xopt.
This is done by exploring the property that if l is lower bound solution on xopt

and u is an upper bound solution on xopt, then by definition g(l) ≤ g(xopt) ≤
g(u). With this, if f i is a subvector of xopt then g(xlb|f i

) ≤ g(xopt) ≤ ǧ. If,
however, ǧ < g(xlb|f i

) then f i cannot be a subvector of xopt and it and all
its evolutions are excluded from the search. Based on this, during the pruning
step the approved set of branches in the p-th layer G ′

p is constructed based on
the following law G ′

p = {f i| g(xlb|f i
) ≤ ǧ,∀i}.

After pruning, the set of valid subvectors is updated and the algorithm
repeats the process in the next layer. In the last layer, the global solution
is computed as xopt = min

xi∈GM

g(xi). The Full-B&B algorithm is detailed in
Algorithm 1.

2.3
Linear MMSE Precoding

The Linear MMSE (LMMSE) precoder [28] is one of the most popular
precoding approaches present in the literature due to its high performance with
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low computational complexity. Although it is a relevant baseline of this work,
the LMMSE setup implies some major differences compared to the techniques
developed in this thesis. First, different from the SLP techniques proposed in
this thesis, is a channel-level approach, which implies that the precoding matrix
requires computation once per coherence time interval instead of a symbol-by-
symbol computation. Moreover, the LMMSE approach considers an average
total power constraint, which, according to [12], although mathematically
tractable does not fully model the RF chain’s hardware and the constraints
imposed by it. Finally, the LMMSE technique can also be utilized with QAM
signaling, when CSI is available at the receiver. In what follows the LMMSE
precoding matrix is derived.

A MIMO system is considered which consists of a linear precoder with
precoding matrix P at the transmitter and a linear equalizer represented by
the matrix G. The output signal of the detector is described by

x̃ = G (HPx + w) , (2-8)

where H is the MIMO channel, x is the input signal and w is the additive
noise. The input signal x has the covariance matrix E

{
xxH

}
= Cx. The noise

w has the covariance matrix E
{
wwH

}
= Cw. Because the transmit energy is

constrained, it is considered that the received signal is scaled with factor f at
the receiver, which is part of the optimization. The MMSE precoder problem
under an average total power constraint reads as in the following

PMMSE = arg min
P,f

E
{
∥x − fx̃∥2

2

}
(2-9)

s.t. tr
{
PCxPH

}
≤ Etx,

where Etx denotes the transmit energy. The Lagrangian function reads as

L (P, f, λ) =E
{
∥x − fx̃∥2

2

}
+ λ

(
tr
{
PCxPH

}
− Etx

)
(2-10)

=tr {Cx} − f E
{
xHGHPx

}
− f E

{
xHPHHHGHx

}
+ f2 E

{
xHPHHHGHGHPx

}
+ f2 E

{
wHGHGw

}
+ λ

(
tr
{
PCxPH

}
− Etx

)
,

where λ denotes the Lagrangian multiplier. By making use of the trace operator
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and its properties the Lagrangian function can be rewritten as follows

L (P, f, λ) =tr {Cx} − f tr {GHPCx} − f tr
{
HHGHCxPH

}
(2-11)

+ f2 tr
{
HHGHGHPCxPH

}
+ f2 tr

{
GCwGH

}
+ λ

(
tr
{
PCxPH

}
− Etx

)
.

Taking the derivative with respect to P∗ yields

∂L (P, f, λ)
∂P∗ = − f HHGHCx + f2 HHGHGHPCx + λ PCx. (2-12)

Equating (2-12) to zero yields

1
f HHGH =

(
HHGHGH + λ

f2 I
)

P, (2-13)

such that PMMSE has the structure

P = 1
f

(
HHGHGH + λ

f2 I
)−1

HHGH . (2-14)

Taking the derivative of (2-11) with respect to f yields

∂L (P, f, λ)
∂f = − tr {GHPCx} − tr

{
HHGHCxPH

}
(2-15)

+ 2 f tr
{
HHGHGHPCxPH

}
+ 2 f tr

{
GCwGH

}
= − 2 Re

{
tr
{
HHGHCxPH

}}
+ 2 f tr

{
HHGHGHPCxPH

}
+ 2 f tr

{
GCwGH

}
.

Equating (2-15) to zero gives

2 Re
{
tr
{
HHGHCxPH

}}
= 2f tr

{
HHGHGHPCxPH

}
+ 2f tr

{
GCwGH

}
.

(2-16)

Because of the structure of PMMSE in (2-14), (2-16) can be written without
the real part operator, denoted by

2 tr
{
HHGHCxPH

}
= 2 f tr

{
HHGHGHPCxPH

}
+ 2 f tr

{
GCwGH

}
.

(2-17)

Multiplying from the right 2 f CxPH in (2-13) and using the trace operator
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yields

2 tr
{
HHGHCxPH

}
=2 f tr

{(
HHGHGH + λ

f2 I
)

PCxPH

}
(2-18)

=2 f tr
{
HHGHGHPCxPH

}
+ 2 f λf2 tr

{
PCxPH

}
.

Putting together the RHS of (2-17) and the RHS of (2-18) yields

2 f tr
{
HHGHGHPCxPH

}
+ 2 f tr

{
GCwGH

}
(2-19)

=2 f tr
{
HHGHGHPCxPH

}
+ 2 f λf2 tr

{
PCxPH

}
,

which can be rearranged to

λ

f2 =
tr
{
GCwGH

}
tr {PCxPH}

=
tr
{
GCwGH

}
Etx

, (2-20)

where it is considered that the transmit energy constraint holds with equality
(in this problem it is obvious that more transmit energy helps to reduce the
MSE). Substituting the diagonal loading in λ

f2 in (2-14) yields

PMMSE = 1
f

HHGHGH +
tr
{
GCwGH

}
Etx

I

−1

HHGH . (2-21)

Substituting (2-21) in the transmit energy constraint in (2-9) yields

Etx = 1
f2 tr


HHGHGH +

tr
{
GCwGH

}
Etx

I

−2

HHGHCxGH

 , (2-22)

which gives the MMSE scaling factor

f =

√√√√√tr
{(

HHGHGH + tr{GCwGH}
Etx

I
)−2

HHGHCxGH
}

Etx
. (2-23)

Finally, the transmit signal is obtained by multiplying the input signal x by
the precoding matrix PMMSE.
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Symbol-Level Precoding under a Strict Per Antenna Power
Constraint with Conventional MIMO Transmitter

For MU-MIMO systems a fundamental problem is the design of low-
complexity precoding algorithms that attain the high reliability constraints
of future wireless communications networks. Linear techniques, such as zero-
forcing (ZF) and matched filtering [29, 30], have been proposed in the litera-
ture. However, when considering linear precoding, an established assumption
in the literature [28, 31] is that the transmit symbols are constrained by an
average total power constraint (TPC). This yields a system that is easier to
model, yet, according to [12], in a realistic scenario each BS antenna is con-
nected to its own PA and thus has to meet its specific power constraints.

With this, several precoding techniques arose considering per antenna
power constraints (PAPC). Linear channel-level precoding strategies consider-
ing an average PAPC are well studied in the literature [32, 33, 34, 35]. However,
according to [36], the consideration of a SPAPC yields a more realistic scenario
since the transmit power at each antenna is upper bounded by a threshold to
avoid severe distortion at the PA due to clipping. With this, different lin-
ear precoding techniques have been developed considering SPAPCs [36, 37].
More recently, the SLP strategy has been receiving increasing attention since it
allows for a higher degree of reliability. In what follows the system model con-
sidered for this chapter is exposed and a brief revision of the SLP contributions
considering SPAPCs is provided.

3.1
System Model

The system model consists of a single-cell MU-MIMO scenario where the
BS is equipped with M transmit antennas serving K single antenna users. A
symbol level transmission is considered where sk represents the data symbol
to be delivered for the k-th user. Each symbol sk is considered to belong to
the set S that represents all possible symbols of a αs-PSK modulation and is
given by

S =
{
s : s = e

jπ(2i+1)
αs , for i = 1, . . . , αs

}
. (3-1)
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The symbols of all users are described in a stacked vector notation as s =
[s1, . . . , sK ]T ∈ SK . Based on s the precoder computes the transmit vector
x = [x1, . . . , xM ]T . The entries of x are constrained by a SPAPC, meaning
|xm|2 ≤ PA for m ∈ {1, . . . ,M}, where PA represents the maximum per
antenna transmit power. A frequency flat fading channel described by the
matrix H ∈ CK×M is considered. The BS is considered to receive the CSI
coefficients from the users which correspond to the matrix H̃ ∈ CK×M ,
which implies spatial correlation E{H̃H

H̃} = KRs. It is considered that the
spatial correlation matrix Rs can be estimated and is known at the BS. It
is considered that the spatial correlation is modeled by the Kronecker model
[38], which implies that the entries of Rs are in the form of [rs]i,j = ρ(i−j)2 for
(i, j) ∈ {1, . . . ,M}2. The factor ρ ∈ [0, 1] is the correlation index of neighboring
antennas. In this chapter, the channel model is described by

H = NH̃ +
√
I −N 2ΨR

1
2s . (3-2)

The matrix N = diag (η), with η = [η1, . . . , ηK ] ∈ [0, 1]K describes the user-
specific quality of the CSI which can also be interpreted as the temporal
correlation factor. It is considered that N can be estimated and is known
at the BS. The matrix Ψ, with ψk ∼ CN (0, I) being the k-th row of Ψ for
k ∈ {1, . . . K}, describes the random part of the channel model. The received
signal for all users z can be described as

z = Hx+w, (3-3)

with its k-th entry zk being the received signal from the k-th user. The vector
w ∼ CN (0, σ2

wI) represents additive white Gaussian noise (AWGN). Each
received symbol zk is detected as ŝk = D(zk) where ŝk denotes the detected
symbol for the k-th user and D(·) the hard detection operation.

3.2
Literature Review

As mentioned the SLP strategy has become popular due to its high
degree of reliability. In this section, we revise the works from [39] and [40].
In [39] SLP is considered with a SPAPC and two novel strategies based on
the concept of strict and non-strict rotation for constructive interference (CI)
based precoding are proposed. Moreover, [39] also proposes a ZF design for
the considered system model. In [40] the MMDDT SLP under a SPAPC is
written as a second-order cone program (SOCP) and solved via the primal-dual
interior-points method (IPM). Both works considered in this literature review
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rely on perfect CSI meaning H = H̃ and consider no spatial correlation, i.e.,
Rs = I.

3.2.1
Zero-Forcing SPAPC Design

The ZF criterion is based on eliminating the interference considered
harmful for detection. As proposed in [39], the SLP ZF under a SPAPC can be
designed by imposing the ZF constraint and scaling it to satisfy the SPAPC.
With this, the closed-form solution for the ZF-SPAPC precoding matrix is
given as follows

P =
√

PAH
†

max
m∈{1,...,M}

∣∣∣[H†s
]∣∣∣

m

(3-4)

where H† is Moore Penrose pseudo-inverse of the matrix H . After computing
P the vector x is computed as x = Ps.

3.2.2
Constructive Interference Designs

This section presents the state-of-the-art formulations based on construc-
tive interference as well as the methods proposed for solving them. The section
starts by introducing the formulations and then proceeds to the exposure of
the techniques utilized for solving the related optimization problems.

3.2.2.1
Constructive Interference Strict Phase Rotation Formulation

The strict phase rotation design consists of exploiting the multiuser
interference to increase the amplitude of the desired signal at the detector’s
side. To this end, the phases of the interfering signals are controlled and rotated
such that they are strictly aligned to those of the data symbols of interest
[41]. The SLP optimization problem of strict phase rotation under a SPAPC,
proposed in [39], is cast as

max
x,ϵ

ϵ (3-5)

s.t. hkx = λksk, for k ∈ {1, . . . , K}

λk ≥ ϵ, for k ∈ {1, . . . , K}

|xm|2 ≤ PA, for m ∈ {1, . . . ,M} ,
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where hk denotes the k-th row of the channel matrix H , and ϵ is an
optimization variable related to (3-5) being written in the epigraph form [42,
Section 4.1.3]. Note that, the constraint hkx = λksk imposes the k-th user
noiseless received signal to be a scaled version of the desired signal with scaling
factor λk. Moreover, due to the constraints λk ≥ ϵ, for k ∈ {1, . . . , K}, when
maximizing ϵ one is maximizing the smallest λk which is then beneficial for
detection since it leads to a larger noiseless received signal.

3.2.2.2
MMDDT Formulation

The MMDDT formulation is one of the most prominent design criteria
in the SLP literature due to its asymptotically optimal SEP performance with
the SNR increase. The MMDDT criterion has several different designations in
the literature. The works from [39, 41] call it the Non-Strict Phase Rotation
criterion. In [12, 25, 43, 44] it is called the constructive interference (CI)
criterion. Finally, [14, 45], name it the maximum safety margin (MSM)
criterion. All the mentioned designations express the same idea of maximizing
the smallest MDDT of all users, denoted by ϵ in what follows.

To mathematically determine ϵ we start from the baseline from Section
2.1, where the MDDT from the k-th user was derived as

dk = Re {s∗
kyk} sinϕ− |Im {s∗

kyk}| cosϕ, (3-6)

with yk denoting the noiseless received signal of the k-th user and ϕ = π/αs. In
the system model from this section yk = hkx, which implies that the MDDT
for the k-th user is expressed as

dk = Re {s∗
khkx} sinϕ− |Im {s∗

khkx}| cosϕ, (3-7)

By definition, ϵ is the smallest MDDT between all users. With this, for the
considered system model it is defined as

ϵ = min
k∈{1,...,K}

dk

= min
k∈{1,...,K}

Re {s∗
khkx} sinϕ− |Im {s∗

khkx}| cosϕ. (3-8)

Using (3-8) as the objective function of a SLP problem under an SPAPC yields

[
xopt, ϵ opt

]
= max

x,ϵ
min

k∈{1,...,K}
Re {hkx} sinϕ− |Im {hkx}| cosϕ (3-9)

s.t. |xm|2 ≤ PA, m ∈ {1, . . . ,M} .
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3.2.3
Symbol-Level Precoding State-of-the-Art approaches under a SPAPC

This section presents the SLP contributions devised based on the con-
structive interference criteria (i.e., Strict Phase Rotation and MMDDT) under
a SPAPC. The main contributions for CI precoding under a SPAPC are pro-
posed in the studies from [39, 40], of which the results relevant to this thesis
are detailed in what follows.

3.2.3.1
Projected Gradient for CI Precoding

The work from [39] proposes a projected gradient method for solving the
Strict Phase Rotation and MMDDT problems with reduced time complexity
compare with standard optimization tools, e.g., CVX. Following the path
taken by the author, we start the exposure of the work from [39] by the
Strict Phase Rotation problem. Departing from (3-5) the author starts by
defining fk = hk/s∗

k, for k ∈ {1, . . . , K}, hence the equality constraints in (3-5)
can be expressed as fH

k x = λk, ∀k ∈ {1, . . . , K}. Since λk is real-valued,
Re

{
fH

k x
}

= λk and Im
{
fH

k x
}

= 0. The optimization problem in (3-5) is
rewritten in epigraph form as

max
x,ϵ

ϵ (3-10)

s.t. Re
{
fH

k x
}

≥ ϵ, for k ∈ {1, . . . , K}

Im
{
fH

k x
}

= 0, for k ∈ {1, . . . , K}

|xm|2 ≤ PA, for m ∈ {1, . . . ,M} .

Such that the problem is written with real-valued variables the author defines
fR,k = Re {fk}, f I,k = Im {fk}, x̃ = [Re {x}T , Im {x}T ]T , which yields the
following optimization problem

min
x̃

max
k∈1,...,K

− b̃T

k x̃ (3-11)

s.t. Ãx̃ = 0, x̃2
m + x̃2

M+m ≤ PA, for m ∈ {1, . . . ,M} ,

where b̃k = [fT
R,k,f

T
I,k]T and

Ã =
− [f I]1 · · · − [f I]K

[fR]1 · · · [fR]K

T

. (3-12)
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To achieve a smooth objective the author considers the log-sum-exp approxi-
mation which yields the following problem

min
x̃

γ ln
(

K∑
k=1

e(−b̃
T

k x̃/γ)
)

(3-13)

s.t. Ãx̃ = 0, x̃2
m + x̃2

M+m ≤ PA, for m ∈ {1, . . . ,M} .

From this point, the author utilizes a standard projected gradient algorithm,
which requires the gradient of the objective and the projection step. To
the scope of this thesis, it is not necessary to do the complete exposure
of the projected gradient method from [39] being sufficient to state that
the developed algorithm optimally solves (3-13) with complexity order of
O(M3 + IiterIPGIADMMM

2), where Iiter is the number of iterations of the
algorithm and IPGIADMM is the number of iterations required for projection.

For the MMDDT design, similar steps are done departing (3-9), which
yields

max
x,ϵ

ϵ (3-14)

s.t. Re
{
fH

k x
}

− ψIm
{
fH

k x
}

≥ ϵ, for k ∈ {1, . . . , K}

Re
{
fH

k x
}

+ ψIm
{
fH

k x
}

≥ ϵ, for k ∈ {1, . . . , K}

|xm|2 ≤ PA, for m ∈ {1, . . . ,M} ,

where ψ = tan(π/αs)−1. Introducing Θ̃ = [θ̃1, . . . , θ̃2K ], where θ̃k = [fT
R,k +

ψfT
I,k,f

T
I,k −ψfT

R,k]T for k ∈ {1, . . . , K} and θ̃k = [fT
R,k−K −ψfT

I,k−K ,f
T
I,k−K +

ψfT
R,k−K ]T for k ∈ {K + 1, . . . , 2K}, the problem can be rewritten as

min
x̃

γ ln
( 2K∑

k=1
e(−θ̃

T

k x̃/γ)
)

(3-15)

s.t. x̃2
m + x̃2

M+m ≤ PA, for m ∈ {1, . . . ,M} .

From this point, the author utilizes a standard projected gradient algorithm,
which optimally solves the problem with complexity order of O(IiterMK +
IiterIPGM). The lack of proper evaluation of the growth of the parameters
Iiter, IPG and IADMM with system size hinders a proper comparison of the
computational complexity of the method proposed in [39] with the other
approaches.
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3.2.3.2
MMDDT SPAPC problem in the SOCP Standard Form

The study from [40] formulates the optimization problem described in
(3-9) as a SOCP in standard form. Note that this is beneficial since, although
some tools (e.g., CVX) accept complex-valued functions, they generally apply
some preprocessing such that the optimization problem is in SOCP standard
form. Directly making the problem a SOCP in standard form reduces the
preprocessing required and thus the computational complexity of solving the
optimization problem. Introducing the matrixHs∗ = diag(s∗)H , one can write
the (3-9) as a minimization problem as

[
xopt, ϵ opt

]
= min

x,ϵ
−ϵ (3-16)

s.t. Re {Hs∗x} sinϕ− |Im {Hs∗x}| cosϕ ≥ ϵ1

|xm|2 ≤ PA, m ∈ {1, . . . ,M} .

Applying standard optimization problem algorithms in general requires all
involved functions to be convex and twice continuously differentiable. Unfor-
tunately, the MDDT constraint, Re {Hs∗x} sinϕ − |Im {Hs∗x}| cosϕ ≥ ϵ1,
does not meet the differentiability condition due to the absolute value. This,
however, is easily solved by including a new set of constraints which reads as

[
xopt, ϵ opt

]
= min

x,ϵ
−ϵ (3-17)

s.t. Re {Hs∗x} sinϕ− Im {Hs∗x} cosϕ ≥ ϵ1

Re {Hs∗x} sinϕ+ Im {Hs∗x} cosϕ ≥ ϵ1

|xm|2 ≤ PA, m ∈ {1, . . . ,M} .

The problem above can be reformulated with real-valued variables by intro-
ducing the new optimization variable u =

[
ϵ,xT

r

]T
, with xr = R(x), and

reformulating the problem accordingly. With this, the equivalent real-valued
optimization problem reads as

uopt = arg min
u

aTu (3-18)

s.t. Bu ≤ 0,

∥Cmu∥2 ≤
√

PA, for m ∈ {1, . . . ,M} ,
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where

a = [−1,0T ]T , B =
[
1,Θr

]
, (3-19)

Θr =
[
γT

1 ,λ1
T , · · · ,γT

K ,λ
T
K ,ψ

T
1 , δ

T
1 , · · · ,ψT

K , δ
T
K

]
, (3-20)

Cm =

 0 0

0T Dm

 , Dm = diag (dm) , (3-21)

where dm ∈ R2M×1 being a vector of zeros with ones at entries 2m − 1 and
2m, and γk, λk, ψk and δk are the k-th row of the matrices Γ, Λ, Ψ and ∆,
which are given by

Γ = Im {Hs∗} cos(ϕ) − Re {Hs∗} sin(ϕ)

Λ = Re {Hs∗} cos(ϕ) + Im {Hs∗} sin(ϕ)

Ψ = −Im {Hs∗} cos(ϕ) − Re {Hs∗} sin(ϕ)

∆ = Im {Hs∗} sin(ϕ) − Re {Hs∗} cos(ϕ).

(3-22)

The problem described in (3-18) is a SOCP cf.[42, Sec. 4.4.2] and can be
readily solved with IPM. The optimal solution can be converted back to
complex-valued notation by extracting xr of uopt and applying x = C(xr). The
study from [40] utilizes the primal-dual IPM for solving the (3-18) with upper
bound complexity order (UBCO) of O (M3.5 log (M/ϵtol)), where ϵtol denotes the
optimality tolerance.

3.3
Contributions of this chapter

Section 3.2 shows some of the most prominent design concepts present
in the literature and their related precoding algorithms. Besides the aforemen-
tioned concepts, one of the most prominent design criteria in the literature is
the MMSE [46, 47]. The MMSE utilization ranges from the established channel-
level linear precoding strategy presented in [28] to an SLP design considering
coarse quantization [27].

In this context, by considering a SPAPC this chapter proposes two SLP
techniques for PSK modulation. While the first method utilizes the MMSE
criterion considering perfect CSI at the transmitter, the second approach
allows for imperfect CSI scenarios by exploiting knowledge about second-order
statistics of the CSI mismatch. The proposed approaches are formulated in
the SOCPs form and are readily solved with polynomial complexity using
the IPM. Numerical results indicate that the proposed MMSE methods are
superior to the existing techniques in terms of bit-error-rate (BER) for the low
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and medium SNR regimes. Moreover, regarding CSI imperfection the proposed
RMMSE design outperforms the examined SPAPC state-of-the-art algorithms
for all values of CSI mismatch.

3.4
Proposed MMSE Precoding Designs under a Strict Per Antenna Power
Constraint

In this section, we propose SLP designs based on the MMSE objective
under an SPAPC for two different scenarios. In the first scenario, perfect CSI
is considered, meaning H̃ = H . In the second scenario, it is considered that
the BS has imperfect CSI and knowledge about the matrices H̃ , N and Rs.
The MMSE objective, similar to as proposed in [28], can be utilized under a
SPAPC with the following problem

min
x,β

E
{
∥βz − s∥2

2

}
(3-23)

s.t. |xm|2 ≤ PA, for m ∈ {1, . . . ,M} , β ≥ 0.

Note that the real-valued factor β represents a theoretical automatic gain
control which is part of the established MMSE objective as proposed in [28].
The factor β is computed by the precoder alongside the transmit vector x.
Yet, since in this study PSK modulation is considered, knowledge of β is not
required for hard detection.

3.4.1
Proposed MMSE SPAPC Design

The MMSE optimization problem from (3-23) can be rewritten by
substituting z in the objective which yields

min
x,β

E{∥βHx + βw − s∥2
2} (3-24)

s.t. |xm|2 ≤ PA, for m ∈ {1, . . . ,M} , β ≥ 0.

Note that x is a complex-valued vector and β is a real-valued scaling factor.
Since most established optimization algorithms consider real-valued variables,
the problem from (3-24) is in the following rewritten in a real-valued notation
which yields

min
xr,β

E{∥βHr xr + βwr − sr∥2
2} (3-25)

s.t.
{
[xr]22m−1 + [xr]22m

}
≤ PA, for m ∈ {1, . . . ,M} , β ≥ 0,
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where wr = R(w), sr = R(s) and Hr = R(H), with the operator R(·)
introduced in (1-1) and (1-2). Considering that perfect CSI is available at the
BS, i.e., H = H̃ , the problem from (3-25) can be expressed as an equivalent
problem with

min
xr,β

β2xT
r H

T
r Hr xr − 2βxT

r H
T
r sr + β2Kσ2

w (3-26)

s.t.
{
[xr]22m−1 + [xr]22m

}
≤ PA, for m ∈ {1, . . . ,M} , β ≥ 0.

If β ≥ 0 would be constant, the objective would be a convex quadratically
constrained quadratic program, since HT

r Hr ∈ S2M
+ , [42, Sec. 4.4]. Yet, the

objective is in general not jointly convex in β and xr [48, Appendix]. Never-
theless, it can be rewritten as an equivalent convex function by substituting
the optimization variable xr. In this context, we introduce a new optimization
variable xs = βxr, similar as done in [27, 49]. With this, the optimization
problem described in (3-26) can be rewritten as

min
xs,β

xT
s H

T
r Hrxs − 2xT

s H
T
r sr + β2Kσ2

w (3-27)

s.t. [xs]22m−1 + [xs]22m ≤ β2PA, for m ∈ {1, . . . ,M} , β ≥ 0.

The problem can be written in matrix form as

min
v
vTUv + pTv (3-28)

s.t. ∥Emv∥2 ≤ gTv, for m ∈ {1, . . . ,M} ,

aTv ≤ 0

where v =
[
β,xT

s

]T
, a =

[
−1,0T

]T
, g =

[√
PA,0T

]T
, p =

[
0,−2sT

r Hr
]T

,

U =
Kσ2

w 0
0T HT

r Hr

 , Em =
 0 0
0T diag (dm)

 , (3-29)

with dm ∈ R2M×1 being a vector of zeros with ones at entries 2m − 1 and
2m. Note that, the problem described in (3-28) is convex. In what follows
it transformed into a SOCP in standard form, which significantly facilitates
implementation. By introducing the additional variable t, cf. [42, Sec. 4.1.3],
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the problem can be written with quadratic constraints as

min
t,v

pTv + 2t+ 1 (3-30)

s.t. ∥Emv∥2 ≤ gTv, for m ∈ {1, . . . ,M} ,

vTUv ≤ 2t+ 1

aTv ≤ 0.

Note that, since U ∈ S2M+1
+ , it can be written as U = LTL, with L = U

1
2 . By

substituting U = LTL and adding t2 at both sides of the quadratic constraint
the problem is rewritten as

min
t,v

pTv + 2t (3-31)

s.t. ∥Emv∥2 ≤ gTv, for m ∈ {1, . . . ,M} ,

vTLTLv + t2 ≤ (t+ 1)2

aTv ≤ 0.

By using stacked vector notation in the form of the new optimization variable
u =

[
vT , t

]T
and taking the square root of the quadratic constraint the problem

can be rewritten as

min
u

rTu (3-32)

s.t. ∥Fmu∥2 ≤ lTu, for m ∈ {1, . . . ,M} ,

||Gu||2 ≤ qTu+ 1

oTu ≤ 0,

where r =
[
pT , 2

]T
, l =

[
gT , 0

]T
, q =

[
0T , 1

]T
, o =

[
aT , 0

]T
,

Fm =
Em 0

0T 0

 , G =
L 0
0T 1

 , (3-33)

The problem described in (3-32) is a SOCP, cf. [42, Sec. 4.4.2], and can be
readily solved with IPM. The solution can be converted back to complex-
valued notation by extracting xs and β from uopt and applying x = C

(
xs
β

)
.

3.4.2
Proposed Robust MMSE SPAPC Precoding Design

In this subsection, we propose an SLP design based on the MMSE
objective under a SPAPC considering knowledge of H̃ , N and Rs. Such that
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the MMSE objective under imperfect CSI is written in real-valued notation
the matrices H̃r = R(H̃), N r = R(N ), Ψr = R(Ψ) and Rs,r = R(Rs)
are defined. With this, the real-valued channel matrix can be written as
Hr = N rH̃r +

√
I −N 2

r ΨrR
1
2s,r. By substituting Hr in (3-23) and considering

E
{
H̃

T

r Ψr
}

= 0 the RMMSE problem reads as

min
xr,β

β2xT
r

(
H̃

T

r N
2
rH̃r + γRs,r

)
xr − 2βxT

r H̃
T

r N rsr + β2Kσ2
w

s.t.
{
[xr]22m−1 + [xr]22m

}
≤ PA, for m ∈ {1, . . . ,M} , β ≥ 0,

where γ = trace(I − N 2
r ). As before, this proposed objective is not jointly

convex in xr and β. Yet, an equivalent convex problem can be cast by
substituting xs = βxr, which yields

min
xs,β

xT
s

(
H̃

T

r N
2
rH̃r + γRs,r

)
xs − 2xT

s H̃
T

r N rsr + β2Kσ2
w

s.t. [xs]22m−1 + [xs]22m ≤ β2PA, for m ∈ {1, . . . ,M} , β ≥ 0.

The problem can be written in matrix form as

min
v
vT Ũv + p̃Tv (3-34)

s.t. ∥Emv∥2 ≤ gTv, for m ∈ {1, . . . ,M} ,

aTv ≤ 0

where

Ũ =
Kσ2

w 0
0T H̃

T

r N
2
rH̃r + γRs,r

 , p̃ =
 0
−2H̃T

r N rsr

 ,
and the other quantities are defined in (3-29). Note that, since Ũ ∈ S2M+1

+ the
problem is convex. By following the same steps utilized in the section 3.4.1 one
can write the problem described in (3-34) as the following SOCP

min
u

r̃Tu (3-35)

s.t. ∥Fmu∥2 ≤ lTu, for m ∈ {1, . . . ,M} ,∣∣∣∣∣∣G̃u∣∣∣∣∣∣
2

≤ qTu+ 1

oTu ≤ 0,
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where

r̃ =
p̃

2

 , G̃ =
 L̃ 0
0T 1

 , L̃ = Ũ
1
2 (3-36)

and the other quantities are defined in (3-33). As before the problem described
in (3-35) is a SOCP, cf. [42, Sec. 4.4.2], and can be readily solved with
IPM. The solution can be converted back to complex-valued notation by
extracting xs and β from uopt and applying x = C

(
xs
β

)
. Note that, the

MSE associated to the solution of (3-34) is lower bounded by ˘MSE (sr) =
K − sT

r N
T
r H̃r

(
H̃

T

r N
2
rH̃r + γRs,r

)−1
H̃

T

r N rsr. This MSE bound, which is
greater than zero due to the CSI imperfection, is computed by considering the
unconstrained version of (3-34).

3.4.3
About the Complexity of the Proposed Designs

As mentioned the MMSE and the RMMSE optimization problems are
SOCPs and thus can be solved via IPM. By solving them with the Barrier
Method one can achieve a UBCO of O (M3.5). Another IPM approach that can
be utilized is the primal-dual IPM. According to [50], the number of iterations
of the primal-dual IPM can be upper bounded by

√
n log (n/ϵtol) where n is

the number of variables and ϵtol is the predefined optimality tolerance. Note
that, the complexity of the iterations is dominated by solving a linear system
needed to compute the primal-dual search direction. With this, considering
that the linear systems can be solved with complexity O (n3) via Gauss-Jordan
elimination, the total complexity of the proposed approaches can be upper
bounded by O (M3.5 log (M/ϵtol)).

3.5
Numerical Results

In this section, the proposed precoders are evaluated in terms of BER and
computational complexity and compared with other state-of-the-art designs.
To this end, the SNR is defined as SNR = (M · PA)/σ2

w, as derived in section C.1
of the appendix. The proposed methods are evaluated against the following
state-of-the-art approaches:

1- The ZF SPAPC precoder [39];

2- The CVX-CIO precoder [12] designed for constant envelope;

3- The Strict CI SPAPC precoder [39];

4- The Non-Strict CI SPAPC precoder [39];
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Figure 3.1: BER × SNR, for αs = 4 PSK users’ data, CSI quality η = 1, spatial
correlation factor ρ = 0. K = 15 users, M = 15 antennas (left). K = 60 users,
M = 60 antennas (right).

5- The LMMSE precoder [28] (average TPC).

3.5.1
BER evaluation under perfect CSI

In this subsection, a BER × SNR evaluation is considered assuming
no spatial correlation, i.e., ρ = 0 and perfect CSI. In this context, the
first experiment, shown on the LHS of Fig. 3.1, considers a MIMO scenario
with a BS with M = 15 antennas serving K = 15 users with QPSK user
symbols, meaning that αs = 4. As seen in the LHS of Fig. 3.1, the proposed
methods outperform the existing approaches in terms of BER for the low
and intermediate SNR regimes. For high-SNR, the proposed MMSE precoders
outperform all investigated approaches except for the Non-Strict CI-based
precoder [39]. This is expected since it is known that CI is nearly optimal
for high SNR [51] and the MMSE criterion is favorable for low and medium
SNR [27]. The second experiment, shown in the RHS of Fig. 3.1, evaluates
the BER against the SNR in the larger MIMO context of a BS with M = 60
antennas serving K = 60 users also with QPSK user symbols. The RHS of
Fig. 3.1, reaffirms the conclusions present in the LHS, underlining that the
proposed MMSE-based SLPs are favorable for the low and intermediate SNR
regimes.
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Figure 3.2: BER × CSI imperfection factor λ2, for K = 5 users, M = 50
antennas, αs = 8 PSK users’ data, spatial correlation factor ρ = 0. SNR= 12
dB (left). SNR= 15 dB (right)

3.5.2
BER evaluation under imperfect CSI

In this subsection, the proposed approaches are evaluated in terms of
BER with CSI imperfection. The evaluated MIMO scenario consists of a BS
with M = 50 antennas which serve K = 5 users with αs = 8. To facilitate
the analysis during this subsection it is considered η = ξ1, meaning that all
channels have the same CSI quality. The CSI imperfection is then expressed
in terms of λ2 =

√
1 − ξ2.

The first experiment, shown in Fig. 3.2, consists of a BER performance
evaluation for different levels of CSI imperfection under SNR of 12 dB for
the LHS, and SNR of 15 dB for the RHS. For this experiment no spatial
correlation is considered, meaning ρ = 0. As can be seen in the LHS of
Fig. 3.2 the proposed RMMSE SPAPC design outperforms in terms of BER
all other examined SPAPC state-of-the-art approaches for λ2 > 0. Moreover,
the proposed RMMSE approach yields similar performance in terms of BER
as the LMMSE [28] (average TPC) design for very low CSI quality (λ2 > 0.8).
The RHS of Fig. 3.2 reaffirms the conclusions discussed. Yet, the comparison
of both plots reveals that the performance benefits of the proposed RMMSE
approach are more pronounced in the RHS. This outcome is expected, as the
RMMSE technique accounts for CSI imperfection, and as the SNR increases,
performance becomes increasingly dominated by CSI mismatch rather than
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Figure 3.3: BER × Spatial correlation factor ρ, for K = 5 users, M = 50
antennas, αs = 8 PSK users’ data, CSI imperfection factor λ2 = 0.2 and
SNR= 12 dB

noise.
The second experiment consists of a BER performance evaluation against

the spatial correlation factor ρ for SNR = 12 dB and λ2 = 0.2. As shown in
Fig. 3.3, the proposed RMMSE approach outperforms in terms of BER all
examined SPAPC designs for all examined ρ. Moreover, it also outperforms
the LMMSE design for ρ > 0.5.

Finally, the third experiment consists of a BER × SNR evaluation consid-
ering both imperfect CSI and spatial correlation with the parameters λ2 = 0.2
and ρ = 0.15. As can be seen in Fig. 3.4, the proposed RMMSE precoder
outperforms all other SPAPC approaches in terms of BER. Note that, both
proposed MMSE and RMMSE approaches yield similar performance for low
SNR. Starting from medium SNR, as the SNR grows, the proposed RMMSE
approach deviates in performance from the proposed MMSE counterpart. Fi-
nally, for very high SNR (SNR > 27.5 dB) the proposed RMMSE approach
shows a significant advantage and outperforms also the LMMSE method (av-
erage TPC).

3.5.3
Complexity Analysis

As discussed in section 3.4.3 the complexity of the proposed methods is
upper bounded by O (M3.5 log (M/ϵtol)). Table 3.1 summarizes the complexity
of the considered approaches.
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Table 3.1: Computational Complexity of the Precoding Algorithms

Algorithm Complexity
ZF SPAPC [39] O

(
K2M

)
CVX-CIO [12] O

(
M3.5 log (M/ϵtol)

)
Strict CI SPAPC [39] O

(
M3.5 log (M/ϵtol)

)
Non-Strict CI SPAPC [39] O

(
M3.5 log (M/ϵtol)

)
Linear MMSE TPC [28] O

(
K3
)

Proposed MMSE SPAPC O
(

M3.5 log (M/ϵtol)
)

Proposed RMMSE SPAPC O
(

M3.5 log (M/ϵtol)
)

Note that, the optimization-based state-of-the-art algorithms (namely
CVX-CIO [12], Strict CI SPAPC [39] and Non-Strict CI SPAPC [39]) can be
transformed in standard form SOCPs which can be solved via the primal-dual
IPM with complexity O (M3.5 log (M/ϵtol)). With this, it can be concluded that
these approaches yield similar complexity as the proposed methods.



4
Symbol-Level Precoding under Constant Envelope and Low-
Resolution Constraints with the Conventional MIMO Trans-
mitter

For large-scale MIMO systems where the energy consumption of the
RFFE is significant to the EE of the system, power reduction features such
as CE signaling and low-resolution quantization are necessary for low-cost
deployments, with low environmental impact, and better coverage. To mitigate
the error-rate performance degradation that these features yield CE low-
resolution precoding has become prominent in the literature [52, 53]. In what
follows the system model considered for this chapter is exposed and a brief
revision of the CE low-resolution SLP literature is provided.

4.1
System Model

The system model consists of a single-cell MU-MIMO scenario where
the BS is equipped with M transmit antennas that serve K single-antenna
users. A symbol-level transmission is considered where sk represents the data
symbol of the k-th user. Each symbol sk is considered to belong to the set
S that represents all possible symbols of a αs-PSK modulation and reads
as S =

{
s : s = e

jπ(2i+1)
αs , for i = 1, . . . , αs

}
. The symbols of all users are

described in a stacked vector notation as s = [s1, . . . , sK ]T ∈ SK . It is
considered that different users’ symbols are independent and that P (sk = si) =
1/αs,∀i ∈ {1, . . . , αs}. Based on s the precoder computes the transmit vector
x = [x1, . . . , xM ]T with entries constrained to the set X which is given
by X =

{
x : x =

√
PA e

jπ(2i+1)
αx , for i = 1, . . . , αx

}
with PA being the per

antenna transmit power. The vector x is transmitted over a frequency flat
fading channel described by the matrix H ∈ CK×M . The received signal
corresponding to the k-th user reads as zk = yk + wk = hk x + wk, where
yk is the noiseless received signal at the k-th user, hk is the k-th row of
the channel matrix H and the complex random variable wk ∼ CN (0, σ2

w)
represents additive white Gaussian noise. Each zk is detected based on the
decision region it belongs. The decision region of si, termed Si, is the set of
points closer to si than all other valid candidates for detection. This implies
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that zk is detected as si if zk ∈ Si. For PSK the decision regions are circle
sectors with infinite radius and angle of 2θ, where θ = π/αs. The detected
symbol vector is written as ŝ = [ŝ1, . . . , ŝK ].

4.2
Literature Review

This section revises some of the prominent discrete SLP methods in the
literature. The techniques that are exposed are

1- The MSM precoder [14];

2- The MMDDT B&B precoder [18];

3- The MMSE Mapped precoder [48];

4- The MMSE B&B precoder [48].

All approaches considered in this section consider perfect CSI at the transmit-
ter.

4.2.1
MMDDT-based Low-resolution Precoders

As mentioned in section 3.2.2.2 the MMDDT is one of the most prominent
criteria in the literature. Different works utilize it as the design objective
for low-resolution SLP. In this section, we expose the MMDDT problem
formulation under low-resolution constraints and expose the methods from
[12, 14, 18]. Considering the MMDDT objective, described in section 3.2.2.2,
with low-resolution constraints yields the following optimization problem

[
xopt, ϵ opt

]
= argmin

x∈X M ,ϵ
−ϵ (4-1)

s.t. Re {Hs∗x} sin θ − |Im {Hs∗x} | cos θ ≥ ϵ12K ,

where Hs∗ = diag(s∗)H . The set X M contains αM elements, since the
number of elements is finite, problem (4-1) is solvable by applying exhaustive
search, which implies exponential complexity with the number of BS antennas.
This yields prohibitive computational complexity even for small-scale MIMO
systems. With this, different methods were devised to achieve more reasonable
complexity performance trade-offs.
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4.2.1.1
The MSM precoder

To build a reduced complexity technique, [14] considers a relaxation of
the feasible set X M to its convex hull P . With this, problem (4-1) is relaxed
as

[
xopt, ϵ opt

]
= arg min

x∈P,ϵ
−ϵ (4-2)

s.t. Re {Hs∗x} sin θ − |Im {Hs∗x} | cos θ ≥ ϵ12K .

The problem is equivalently written with real-valued variables as

[
xlb, ϵ

]
= arg min

x,ϵ
−ϵ (4-3)

s.t. Re {Hs∗x} sin θ − |Im {Hs∗x} | cos θ ≥ ϵ12K

Re
{
xme

jϕi

}
≤

cos
(

π
αx

)
√
M

, for m = 1, . . . ,M

ϕi = 2πi
αx

, for i = 1, . . . αx.

With the relaxation of the feasible set xlb does not necessarily attain the low-
resolution constraints, i.e., xlb does not necessarily belong to X M . With this,
to achieve a feasible solution, uniform quantization is considered, which yields
x = Q(xlb). The vector x adheres to the low-resolution constraints and is
utilized for transmission.

4.2.1.2
MMDDT B&B Precoder

The MMDDT B&B Precoder, first considered in [17] for 1-bit quantizers,
is generalized in [18] for quantization with arbitrary resolution. The idea is to
utilize the MMDDT criterion (described in section 3.2.2.2) with the Full-B&B
method (described in section 2.2) to achieve optimal MMDDT performance.
As described in section 2.2 the Full-B&B method considers an initialization
step for complexity reduction reasons. In the MMDDT B&B Precoder case,
this initialization step consists of the computation of the MSM solution.
The subsequent tree-search-based part of the algorithm consists of applying
the MMDDT objective to the subproblems which yields convex optimization
problems solvable with IPM.

As stated in [48], the MMDDT criterion asymptotically approaches the
optimal SEP performance with the increase in SNR. With this, the MMDDT
B&B technique can be considered as near MSEP precoder for the high-SNR
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regime. This statement is confirmed through numerical simulations in section
4.6.

4.2.2
MMSE-based Low-resolution Precoders

Another established precoding design criterion is the MMSE [28]. In this
section, we revise some of the low-resolution SLP techniques. Considering the
MMSE objective with low-resolution constraints yields the following optimiza-
tion problem

min
xr,f

f 2xT
r H

T
r Hr xr − 2fxT

r H
T
r sr + f 2E{wT

r wr} (4-4)

subject to:
{
[xr]2m−1 + j [xr]2m

}
∈ X, for m ∈ {1, . . . ,M} ,

f ≥ 0,

where xr = R(x). Note that, similarly as in section 3.4.1 problem (4-4) is not
jointly convex in xr and f . Yet, the utilization of a similar variable substitution
leads to a joint convex objective in terms of xr,f = fxr and xr.

4.2.2.1
The MMSE Mapped Precoder

Similarly as in the MSM case, to build a reduced complexity technique,
[48] considers a relaxation of the feasible set X M to its convex hull P , which
yields the following optimization problem

min
xr,f

f 2xT
r H

T
r Hr xr − 2fxT

r H
T
r sr + f 2E{wT

r wr} (4-5)

subject to: Axr ≤ b, f ≥ 0,

where

A =
[
(IM ⊗ β1)T (IM ⊗ β2)T . . . (IM ⊗ βαx

)T
]T

,

βi =
[
cos

(
2πi
αx

)
− sin

(
2πi
αx

)]
, i ∈ {1, . . . , αx} , (4-6)

b =
cos( π

αx
)

√
M

1Mαx ,
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with 1Mαx being a column vector with length Mαx. Writing (4-5) in terms of
xr,f yields

min
xr,f,f

xT
r,fH

T
r Hrxr,f − 2xT

r,fH
T
r sr + f 2E{wT

r wr} (4-7)

subject to: R
xr,f

f

 ≤ 0, f ≥ 0,

where R =
[
A, −b

]
. Finally, the MMSE mapped problem consists of writing

(4-7) as a standard quadratic program (QP) with

min
v

1
2v

TUv + pTv (4-8)

subject to: Rextv ≤ 0,

where

v =
xr,f

f

 , U = 2
HT

r Hr 0
0T E{wT

r wr}

 ,
p =

−2HT
r sr

0

 , Rext =
R
ξT

 , ξ =
 0
−1

 . (4-9)

Note that, since U ∈ S2M+1
+ , the objective is convex and can be solved

utilizing standard optimization tools. After solving (4-8) the MMSE mapped
one extracts xr,f from the optimal solution v and computes xlb = (xr,f/f). Note
that the solution xlb does not necessarily belong to X M . To arrive at a feasible
solution [48] considers uniform quantization of xlb which yields x̂ub = Q (xlb).
Since the mapping step does not preserve the value of f , it is recomputed based
on the mapped precoding vector x̂ub, with

fub = sT
r Hrx̂r,ub

||Hrx̂r,ub||22 + E{wT
r wr}

, (4-10)

where x̂r,ub = R(x̂ub). The scaling factor fub associated with the mapped
solution can be negative corresponding to an unfeasible solution of (4-4). In this
scenario, a feasible solution with equivalent MSE is computed by flipping the
sign of x̂ub, leading to the transmit vector being computed as x = sign(fub)x̂ub.

4.2.2.2
The MMSE B&B Precoder

The MMSE B&B Precoder utilizes the MMSE criterion with the Full-
B&B method (described in section 2.2) to achieve optimal MMSE performance.
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For the initialization step, the MMSE-mapped solution is considered. The
subsequent tree-search-based part of the algorithm consists of directly applying
the MMSE objective to the subproblems which yields convex optimization
problems solvable with IPM.

As stated in [48], the MMSE criterion is favorable in terms of BER for
the low-SNR regime. As confirmed through numerical simulations in section
4.6, the MMSE B&B technique can be considered as near MSEP precoder for
the low-SNR regime.

4.3
Contributions of this chapter

In this chapter different CE low-resolution SLPs are proposed for
PSK modulation. Different criteria are considered, first, SEP-related criteria,
namely MSEP and MUBSEP, are used, and novel precoding algorithms are
proposed based on them. Then the RMMSE criterion is utilized considering
imperfect CSI, and various precoding methods are proposed.

4.4
Discrete Precoding with SEP-related Criteria

This section proposes the utilization of SEP-based precoding criteria as a
direct approach to optimize the QoS of the system. The probability of detecting
the data vector s conditioned on the transmit vector x can be computed based
on the probabilities of detection of the individual users as

P(ŝ = s|x) =
K∏

k=1
P(ŝk = sk|x) . (4-11)

To simplify the notation we denote P(ŝ = s|x) as P(ŝ|x) and P(ŝk = sk|x)
as P(ŝk|x). With this, (4-11) is rewritten as P(ŝ|x) = ∏K

k=1 P(ŝk|x). As stated
before, the detector decides for sk when the received symbol zk belongs to Sk.
Thus, the individual user probabilities are given by

P (ŝk|x) = P (zk ∈ Sk|x) = 1
πσ2

w

∫
Sk

e− |t−yk|2
σ2

w dt. (4-12)

The integral from (4-12) has tabled solutions for αs ∈ {2, 4}, allowing the BS
to compute it with relatively low computational effort. Yet, for αs /∈ {2, 4}, the
exact computation of (4-12) requires the utilization of Monte Carlo methods.
In this study, the exact computation of (4-12) is considered for αs ∈ {2, 4}.
For αs /∈ {2, 4}, we propose the union-bound probability as a lower bound
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on P (ŝk|x) allowing for a general formulation with a closed-form objective
function.

4.4.1
MSEP Criterion

For αs ∈ {2, 4}, the real and imaginary parts of the data symbols are
considered independent. This allows the decision region Sk to be written as
Rk ∩ Ik, where Rk and Ik are the decision regions the real and imaginary
parts of sk. The probability of the detector deciding for sk, can be written as
P (ŝk|x) = P (Re {zk} ∈ Rk|x) P (Im {zk} ∈ Ik|x) , where the probabilities of
correct detection of the real and imaginary parts of sk are given by

P (zk ∈ Rk|x) =
∫ ∞

0

1√
πσ2

w

e
− (t−sign(Re{sk})Re{hkx})2

σ2
w dt

= Φ
(√

2 sign (Re {sk}) Re {hkx}
σw

)
, (4-13)

P (zk ∈ Ik|x) =
∫ ∞

0

1√
πσ2

w

e
− (t−sign(Im{sk})Im{hkx})2

σ2
w dt

= Φ
(√

2 sign (Im {sk}) Im {hkx}
σw

)
. (4-14)

With this, the probability of correct detection is computed considering (4-11)
which reads as

P (ŝ|x) =
K∏

k=1
Φ
(√

2 sign (Re {sk}) Re {hkx}
σw

)
Φ
(√

2 sign (Im {sk}) Im {hkx}
σw

)
.

(4-15)

The minimum SEP (MSEP) problem, equivalent as defined in [54], is written
as the minimization of − ln (P (ŝ|x)), which reads as

min
x∈X M

−
K∑

k=1
(ln (Φ (ur,k (x))) + ln (Φ (ui,k (x)))) , (4-16)

where ur,k (x) = (√
2/σw) (sign (Re {sk}) Re {hkx}) and ui,k (x) =

(√
2/σw) (sign (Im {sk}) Im {hkx}). An alternative real-valued formulation
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can be cast as

min
xr

−
K∑

k=1

(
ln
(
Φ
(
hT

R,kxr
))

+ ln
(
Φ
(
hT

I,kxr
)))

(4-17)

s.t. [xr]2m−1 + j [xr]2m ∈ X for m = 1, . . . ,M .

where M denotes the number of BS antennas, xr = R(x) and hT
R,k and

hT
I,k are the k-th rows of matrices HR and H I, respectively. The matrices
HR and H I are defined as HR = (√

2/σw) diag(sign(Re {s}))HQ
R and H I =

(√
2/σw) diag(sign(Im {s}))HQ

I , with

HQ
R =


Re {h11} −Im {h11} · · · Re {h1M} −Im {h1M}

... ... . . . ... ...
Re {hK1} −Im {hK1} · · · Re {hKM} −Im {hKM}

 , (4-18)

HQ
I =


Im {h11} Re {h11} · · · Im {h1M} Re {h1M}

... ... . . . ... ...
Im {hK1} Re {hK1} · · · Re {hKM} Im {hKM}

 . (4-19)

The MSEP objective in real-valued notation can be cast as

f0(xr) = −
K∑

k=1

(
ln
(
Φ
(
hT

R,kxr
))

+ ln
(
Φ
(
hT

I,kxr
)))

. (4-20)

The gradient and Hessian of f0(xr) are given by

∇f0(xr) = −
K∑

k=1

mR,k (xr)
Φ
(
hT

R,kxr
) + mI,k (xr)

Φ
(
hT

I,kxr
) , (4-21)

∇2f0(xr) = (4-22)
K∑

k=1

mR,k (xr)mT
R,k (xr) + ΨR,k (xr)(

Φ
(
hT

R,kxr
))2 +

mI,k (xr)mT
I,k (xr) + ΨI,k (xr)(

Φ
(
hT

I,kxr
))2 ,

where

mR,k = 1√
2π

e−
(hT

R,k
xr)2

2 hR,k, (4-23)

mI,k = 1√
2π

e−
(hT

I,k
xr)2

2 hI,k, (4-24)

ΨR,k =
Φ
(
hT

R,kxr
)

√
2π

e−
(hT

R,k
xr)2

2 hR,kh
T
R,kxrh

T
R,k, (4-25)

ΨI,k =
Φ
(
hT

I,kxr
)

√
2π

e−
(hT

I,k
xr)2

2 hI,kh
T
I,kxrh

T
I,k. (4-26)
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Figure 4.1: Representation of the union bound

The MSEP objective is convex in xr with the convexity proof given in Appendix
A.1. As previously stated the MSEP formulation, first proposed in [54], is
limited to αs ∈ {2, 4}.

4.4.2
Proposed MUBSEP Criterion

The union bound states that for any finite set of events, P (⋃i Ai) ≤∑
i P(Ai) with Ai being an event. With this, the error probability of the k-

th user, Pe (ŝk|x) = P (zk ∈ Z1 ∪ Z2|x), is upper bounded by Pub(ŝk|x) =
P (zk ∈ Z1|x)+P (zk ∈ Z2|x) , where Z1 and Z2, depicted in Fig. 4.1, are given
by Z1 = {zk : ∥zk −si−∥2 ≤ ∥zk −si∥2} and Z2 = {s : ∥zk −si+∥2 ≤ ∥zk −si∥2},
with si being the i-th element of S, index i− = mod (i+ αs − 2, αs) + 1 and
index i+ = mod (i, αs) + 1. The individual probabilities are computed based
on the MDDTs, d1,k (x) and d2,k (x), as

P (zk ∈ Z1|x) =
∫ ∞

d1,k(x)

1√
πσ2

w

e
− t2

σ2
w dt = 1

2erfc
(
d1,k (x)
σw

)
, (4-27)

P (zk ∈ Z2|x) =
∫ ∞

d2,k(x)

1√
πσ2

w

e
− t2

σ2
w dt = 1

2erfc
(
d2,k (x)
σw

)
. (4-28)

The MDDTs are computed, similarly to in [14] and [18], by applying a rotation
of arg{s∗

k} = −ϕsk
to the coordinate system such that the symbol of interest

is placed on the real axis. This is done by multiplying both sk and yk by
e−jϕsk which results in e−jϕsksk = 1 and χk = e−jϕskyk. Based on the rotated
coordinate system the MDDTs are computed as

d1,k (x) = Re {s∗
khkx} sin θ − Im {s∗

khkx} cos θ, (4-29)

d2,k (x) = Re {s∗
khkx} sin θ + Im {s∗

khkx} cos θ. (4-30)
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With this, one can construct a bound on the probability of correct detection
of the k-th user as

P (ŝk|x) = 1 − Pe (ŝk|x)

≥ 1 − Pub(ŝk|x)

= 1
2erf

(
d1,k (x)
σw

)
+ 1

2erf
(
d2,k (x)
σw

)
, (4-31)

where Pub(ŝk|x) is called the union-bound SEP of the k-th user. By combining
the individual bounds, the probability of correct detection for all users, P(ŝ|x),
is lower bounded by

Pub(ŝ|x) =
K∏

k=1
Pub(ŝk|x) =

(1
2

)K K∏
k=1

(
erf
(
d1,k (x)
σw

)
+ erf

(
d2,k (x)
σw

))
.

The minimum union-bound SEP (MUBSEP) optimization problem is written
as the minimization of − ln (Pub(ŝ|x)) as

min
x∈X M

−
K∑

k=1
ln
(

erf
(
d1,k (x)
σw

)
+ erf

(
d2,k (x)
σw

))
. (4-32)

An equivalent real-valued formulation of (4-32) can be cast as

min
xr

−
K∑

k=1
ln
(
erf
(
uT

1,kxr
)

+ erf
(
uT

2,kxr
))

(4-33)

s.t. [xr]2m−1 + j [xr]2m ∈ X for m = 1, . . . ,M .

where xr = R(x), u1,k =
(
hs∗

R,θ,k − hs∗

I,θ,k

)T
and u2,k =

(
hs∗

R,θ,k + hs∗

I,θ,k

)T
with

hs∗

R,θ,k and hs∗

I,θ,k being the k-th rows of matrices Hs∗

R,θ and Hs∗

I,θ. The matrices
Hs∗

R,θ and Hs∗

I,θ are given by Hs∗

R,θ = sin (θ)/σwH
s∗

R , and Hs∗

I,θ = cos (θ)/σwH
s∗

I ,
with

Hs∗

R =


Re{hs∗

11} −Im{hs∗
11} · · · Re{hs∗

1M} −Im{hs∗
1M}

... ... ... ... ...
Re{hs∗

K1} −Im{hs∗
K1} · · · Re{hs∗

KM} −Im{hs∗
KM}



Hs∗

I =


Im{hs∗

11} Re{hs∗
11} · · · Im{hs∗

1M} Re{hs∗
1M}

... ... ... ... ...
Im{hs∗

K1} Re{hs∗
K1} · · · Re{hs∗

KM} Im{hs∗
KM}

 ,

where hs∗
ij is the element of the i-th row and j-th column of the matrix

Hs∗ = diag {s∗}H .
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Note that the equivalency between (4-32) and (4-33) implies d1,k (x)/σw =
uT

1,kxr and d2,k (x)/σw = uT
2,kxr. As discussed in section A.2 of the appendix,

the proposed MUBSEP objective is convex for d1,k (x) ≥ 0 and d2,k (x) ≥
0, ∀k ∈ {1, . . . , K}, which can be reformulated in the form Cxr ⪯ 0 with

C =
[(
Hs∗

R,θ −Hs∗

I,θ

)T
,
(
Hs∗

R,θ +Hs∗

I,θ

)T
]T

. With this, a convex MUBSEP
problem is formulated by including Cxr ⪯ 0 as an additional constraint which
reads as

min
xr

−
K∑

k=1
ln
(
erf
(
uT

1,kxr
)

+ erf
(
uT

2,kxr
))

(4-34)

s.t. Cxr ⪯ 0, [xr]2m−1 + j [xr]2m ∈ X for m = 1, . . . ,M .

Due to the additional constraint, the optimal solution from (4-34) is, in general,
a suboptimal solution of (4-33). However, different solutions mean that the
solution of (4-33) violates Cxr ⪯ 0. This in turn implies that for at least one
user i either d1,i(x) < 0 or d2,i(x) < 0. It is concluded by analyzing Fig. 4.1
that having d1,i(x) < 0 or d2,i(x) < 0 yields a noiseless received symbol yi in
the incorrect decision region leading to Pe(ŝi|x) > 0.5. With this, the optimal
solution from (4-34) is only different from the one from (4-33) in high SEP
settings. These are not relevant cases since future systems will be designed to
provide high reliability and avoid these scenarios.

4.4.3
Precoding Algorithm Design

In this section, the previously presented formulations are utilized for the
development of different low-resolution precoding algorithms. Since X is dis-
crete, the optimization problems proposed in the previous section consist of
the minimization of convex objectives over a discrete feasible set, which char-
acterizes DPPs. In the section, solving several convex optimization problems
is necessary. Although these problems are convex, using standard optimization
tools runs into compatibility issues for MUBSEP. This is the case since, most
standard optimization tools (e.g., CVX [42]) do not support the usage of the
MUBSEP objective since its convexity is only guaranteed in the feasible set.
Moreover, in practice, using standard optimization problem tools (e.g., fmin-
con) with the proposed objectives often runs into precision issues. With this,
at the beginning of this section, an introduction to the algorithm implemented
for solving the involved convex optimization problems is given.



Chapter 4. Symbol-Level Precoding under Constant Envelope and
Low-Resolution Constraints with the Conventional MIMO Transmitter 59

Algorithm 2 Barrier Method
Inputs: Strictly feasible initial point x0, t0 > 0, µ > 1 and ϵtol > 0 Output:
xopt
Define t = t0
Repeat

Compute x∗(t) by minimizing f(x) = tf0(x) + ϕ(x) starting at x0 using
Algorithm 3

Update x0 = x∗(t)
Stopping criterion: If φ/t ≤ ϵtol → Return xopt = x0
Update t = µt

4.4.3.1
The Barrier Method

In this section, a particular case of the barrier method [42, Section 11.3]
that solves convex optimization problems with only inequality constraints
is presented. The optimization problems considered in this study have the
following general form

min
x

f0(x) s.t. fi(x) ≤ 0 for i = 1, . . . , φ, (4-35)

where the functions fi(x) : Rq → R for i ∈ {1, . . . , φ} are convex and
twice continuously differentiable. The problem can be approximated as an
unconstrained problem as

min
x

tf0(x) + ϕ(x), (4-36)

where ϕ(x) = −∑φ
i=1 ln(−fi(x)) is called the log-barrier function which serves

as a penalty function to ensure attainability to the feasible set. As stated in [42,
Section 11.2.2] solving (4-36) for a given value of t yields a solution x∗(t) that
belongs to the φ/t-suboptimal set of the original problem (4-35). With this, the
barrier method consists of sequentially computing x∗(t) for increasing values
of t until t ≥ φ/ϵtol, where ϵtol is the given optimality tolerance. Regarding the
initial value of t, termed t0, the choice of any t0 > 0 guarantees convergence,
this study considers for implementation t0 = 1. The steps of the method are
summarized in Algorithm 2.

The utilization of Algorithm 2 implies a method for solving the uncon-
strained problem in (4-36). In this study, unconstrained problems are solved
via the Newton method [42, Section 10.2.2] which requires the gradient and
Hessian of the objective function. In the context of (4-36) the gradient and
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Algorithm 3 Newton Method
Inputs: Starting point x0 ∈ domf with Ax = b and ϵtol > 0 Output: xopt
Repeat

Compute ∆xnt = −∇2f(x0)−1∇f(x0) and λ2 = ∇f(x0)T ∇2f(x0)−1∇f(x0)
Stopping criterion: If λ2/2 ≤ ϵtol → Return xopt = x0
Choose a step size n via backtracking line search [42, Algorithm 9.2]
Update x0 = x0 + n∆xnt

Hessian of f(x) = tf0(x) + ϕ(x) are defined as

∇f(x) = t∇f0(x) −
φ∑

i=1

∇fi(x)
fi(x) ,

∇2f(x) = t∇2f0(x) +
φ∑

i=1

∇fi(x)∇fi(x)T

fi(x)2 −
φ∑

i=1

∇2fi(x)
fi(x) . (4-37)

The implementation details are shown in Algorithm 3. Regarding the com-
plexity of the barrier method, [42, Section 11.5.6] states that the best upper
bound on the number of Newton steps required grows with √

φ. Considering
that the computation of a Newton step requires a matrix inversion, done with
complexity O (q3) via Gauss-Jordan elimination, an UBCO of the algorithm is
given by O

(√
φq3

)
.

4.4.3.2
Partial Greedy Search Precoding

Greedy search is a widely applied approach for discrete problem in
wireless communications [55]. In this section, PGS precoding methods are
proposed based on the optimization problems (4-17) and (4-34). The first step
to assemble the proposed PGS algorithms is to relax the discrete feasible set
X M to its convex hull P . As in [48, 27, 14], P is described with Axr − b ⪯ 0,
where

A =
[
(IM ⊗ β1)T , (IM ⊗ β2)T , . . . , (IM ⊗ βαx

)T
]T

, (4-38)

βi =
[
cosϕi, − sinϕi

]
, ϕi = 2πi

αx

, i ∈ {1, . . . , αx} , (4-39)

b =
√

PA cos
(
π

αx

)
1Mαx . (4-40)

Replacing X M by P yields real-valued convex optimization problems solvable
utilizing the barrier method in the form of

xr,lb = min
xr

f0(xr) s.t. Cxr ⪯ 0, Axr − b ⪯ 0, (4-41)
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where f0 is given by (4-20) for the MSEP case and given by (A-13) for the
MUBSEP case, with the constraint Cxr ⪯ 0 only taken into account for
the MUBSEP case. Note that, xlb = C(xr,lb) ∈ P can also belong to X M

as P ∩ X M ̸= ∅. If this is the case, xlb is the optimal solution from the
original DPP and can be utilized for transmission without requiring further
processing. However, if xlb /∈ X M the solution xlb must be projected to
X M . The projection step considered consists of two stages. First, elementwise
smallest distance projection (ESDP) is performed such that the projected
vector reads as xub = Q(xlb), where Q(·) represents the ESDP operation.
By this method [xub]p is computed as [xub]p = arg min

i∈{1...αx}

∣∣∣[xlb]p − xi

∣∣∣2 , where
xi the i-th element of X . Note that, the projected vector xub attains the low-
resolution constraints, meaning xub ∈ X M , and could be used for transmission.
Having ESDP-based projection, although practical, causes a significant loss in
performance. To mitigate this performance degradation the second step of the
projection algorithm consists of utilizing PGS as a local optimization approach.
The PGS projection method starts by determining T =

{
p : [xlb]p /∈ X

}
and

computing xub = Q(xlb) as the initial vector. Then, for each p ∈ T and for all
i ∈ {1, . . . , αx}, the algorithm replaces [xub]p by xi ∈ X and computes some
objective g(·). By this, the algorithm aims to determine the value of xi ∈ X
that minimizes g(·) and update [xub]p = xi for each p ∈ T . The objective g(·)
depends on the chosen criterion and is discussed in the following subsections.
After all p ∈ T were considered the output vector xpgs = xub is utilized for
transmission. This second step of the projection algorithm is denoted by the
operator P (·), such that xpgs = P (Q(xlb)).

Proposed MSEP PGS algorithm The design of the proposed MSEP PGS
algorithm starts by considering the relaxation of the discrete feasible set in
(4-17) to its convex hull which yields

min
xr

−
K∑

k=1
ln
(
Φ
(
hT

R,kxr
))

+ ln
(
Φ
(
hT

I,kxr
))

s.t. Axr − b ⪯ 0. (4-42)

As stated in section 4.4.3.1, solving (4-42) with the barrier method requires the
gradient and Hessian of the objective and constraint functions. For the MSEP
objective, ∇f0(xr) and ∇2f0(xr) are given in (4-21) and (4-22), respectively.
The constraint functions of problem (4-42) are described by fi(xr) = aixr −bi,
for i = 1, . . . ,Mαx, with ai being the i-th row of A and bi being the i-th
element of b. With this, ∇fi(xr) and ∇2fi(xr) for the i-th constraint function
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read as

∇fi(xr) = ai, ∇2fi(xr) = 0. (4-43)

After solving (4-42) the algorithm determines T =
{
p : [xlb]p /∈ X

}
, computes

xub = Q (C (xr,lb)) and proceeds to sequentially update xub based on g(·). For
MSEP the objective g(·) reads as

g (x) = −1T
K (ln (Φ (SR Re {Hx})) + ln (Φ (SI Im {Hx}))) , (4-44)

where SR = √
2/σw diag (sign(Re {s})) and SI = √

2/σw diag (sign(Im {s})).
The steps of the MSEP PGS algorithm are summarized in Algorithm 4. The
algorithm’s complexity is dominated by the complexity of the barrier method
which, as stated in section 4.4.3.1, is upper bounded by O

(√
φq3

)
, with φ being

the number of inequality constraints and q being the number of optimization
variables. Substituting φ = Mαx and q = 2M yields UBCO of O (M3.5).

Proposed MUBSEP PGS algorithm The design of the proposed MUBSEP
PGS algorithm starts with the relaxation of the discrete feasible set in (4-34)
to its convex hull which yields

min
xr

−
K∑

k=1
ln
(
erf
(
uT

1,kxr
)

+ erf
(
uT

2,kxr
))

s.t. Cxr ⪯ 0, Axr − b ⪯ 0. (4-45)

Solving (4-45) with the barrier method requires the gradient and Hessian of
the objective and constraint functions. For MUBSEP, f0(xr) and ∇2f0(xr) are
given in (A-14) and (A-17), respectively. The constraint functions of (4-45),
read as fi(xr) = aixr − bi, for i = 1, . . . ,Mαx, and fi(xr) = cixr for
i = Mαx + 1, . . . ,Mαx + 2K. With this, the gradient and Hessian of the first
Mαx constraints are given in (4-43), and, for i = Mαx + 1, . . . ,Mαx + 2K,
∇fi(xr) = ci and ∇2fi(xr) = 0.

After solving (4-42) the algorithm determines T =
{
p : [xlb]p /∈ X

}
,

computes xub = Q (C (xr,lb)) and proceeds to sequentially update xub based
on g(·). For MUBSEP the objective g(·) reads as

g(x) = −1T
K ln (erf (ρ1) + erf (ρ2)) , (4-46)
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Algorithm 4 MSEP/MUBSEP PGS Algorithm
Inputs: H, s, X , θ, PA, Criterion and g(·) Output: xpgs, T
if Criterion = MSEP → Solve (4-42) to get xr,lb and compute xlb = C (xr,lb)
if Criterion = MUBSEP → Solve (4-45) to get xr,lb and compute xlb = C (xr,lb)
Construct the set T =

{
p : [xlb]p /∈ X

}
and compute xub = Q (xlb)

for p ∈ T do
for i = 1 : αx do

if Criterion = MSEP → Fix [xub]p as xi and compute the gi
p = g(xub)

using (4-44)
if Criterion = MUBSEP → Fix [xub]p as xi and compute the gi

p = g(xub)
using (4-46)

end for
Update the p-th entry of xub as [xub]p = xi with i = argmin

i=1,...,αx

gi
p

end for
The output vector is given by xpgs = xub

where

ρ1 = Re {Hsx} − Im {Hcx} , ρ2 = Re {Hsx} + Im {Hcx} , (4-47)

where Hs = sin(θ)/σw (diag(s∗)H) and Hc = cos(θ)/σw (diag(s∗)H). The steps
for PGS projection are detailed in Algorithm 4. The algorithm’s complexity is
dominated by the complexity of the barrier method, which, for the MUBSEP
case, is calculated using φ = Mαx +2K and q = 2M . With this, the algorithm
yields an UBCO of O

(
M3√M +K

)
.

4.4.3.3
Precoding via QoS Branch-and-Bound

This section proposes a B&B method that accepts as a solution any
vector x that attains the condition Pe (x) ⪯ λ, where λ is the QoS constraint
vector and Pe (x) relates to each user’s SEP. If attaining the condition is not
possible for x ∈ X M the algorithm computes the optimal solution xopt of the
corresponding DPP. In the MSEP case, Pe (x) is computed as

Pe (x) = 1K − Φ (SR Re {Hx}) ◦ Φ (SI Im {Hx}) , (4-48)

where ◦ denotes elementwise multiplication. For MSEP, Pe (x) denotes the
exact SEP vector, meaning that ∀k ∈ {1, . . . , K} , [Pe (x)]k = Pe (ŝk|x). For
MUBSEP, Pe (x) is given by

Pe (x) = 1/2 erfc (ρ1) + 1/2 erfc (ρ2) , (4-49)
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with ρ1 and ρ2 given in (4-47). In the MUBSEP case, Pe (x) represents
an upper bound on the SEP vector, meaning, that for all k ∈ {1, . . . , K},
Pe (ŝk|x) ≤ [Pe (x)]k. Note that, having a solution vector x that attains
Pe (x) ⪯ λ implies that Pe (ŝk|x) ≤ [λ]k for all k ∈ {1, . . . , K}.

The proposed QoS B&B algorithm consists of two phases, namely the
PGS stage and the Tree Search Based Precoding (TSBP) stage. For a given
formulation, the first stage consists of executing the corresponding PGS
method and evaluating the stopping criteria. If the stopping criteria are not
met, the algorithm proceeds to the TSBP part where the practical PGS
solution is continuously enhanced until either the SEP requirement is attained
or xopt is computed.

QoS B&B PGS Stage For a given objective function f0(xr) (given in (4-20)
for MSEP case or in (A-13) for MUBSEP) the DPPs proposed can be written
in the following form

xr,opt = arg min
xr

f0(xr)

s.t. Cxr ⪯ 0, [xr]2m−1 + j [xr]2m ∈ X , for m ∈ {1, . . . ,M} ,
(4-50)

where xr,opt = R(xopt) and Cxr ⪯ 0 is only taken into account for the
MUBSEP case. A practical solution to (4-50) can be computed via executing
Algorithm 4 with the criterion correspondent to the objective f0(xr), which
yields the output solution xpgs and the set T . During the QoS B&B PGS stage
two stopping conditions are considered. The first evaluates the optimality of
the PGS solution by checking if T = ∅. If this condition holds it means that
the solution of the relaxed problem xlb is already in the original feasible set
X M . For this case, xpgs = xlb = xopt and the algorithm terminates with the
transmit vector xpgs. The second condition evaluates if the SEP requirement
is attained, with this, the algorithm terminates if Pe (xpgs) ⪯ λ also returning
xpgs as the transmit vector. If neither condition is satisfied the algorithm
returns ǧ = g(xpgs) and x̌ = xpgs as the initial smallest known upper bound
and its corresponding vector, respectively, with g(·) given by (4-44) for MSEP
and (4-46) for MUBSEP. This is relevant for the pruning process of the QoS
B&B TSBP stage and is explained in later sections. The steps of the QoS B&B
PGS Stage are summarized in Algorithm 5.

QoS B&B Tree Search Based Precoding Stage If neither stopping criteria
are met at the PGS step, the proposed QoS B&B algorithm proceeds to the
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Algorithm 5 Proposed QoS B&B PGS Stage
Inputs: H, s, σw, Criterion, λ Output: xout, x̌, ǧ
if Criterion = MSEP

Execute Algorithm 4 with Criterion = MSEP to get xpgs and T and compute
Pe(xpgs) using (4-48)

if T = ∅ ∧ Pe(xpgs) ⪯ λ → terminate with xout = xpgs
Compute g (xpgs) with (4-44) and return x̌ = xpgs, ǧ = g (xpgs), xout = []

else if Criterion = MUBSEP
Execute Algorithm 4 with Criterion = MUBSEP to get xpgs and T and compute

Pe(xpgs) using (4-49)
if T = ∅ ∧ Pe(xpgs) ⪯ λ → terminate with xout = xpgs
Compute g (xpgs) with (4-46) and return x̌ = xpgs, ǧ = g (xpgs), xout = []

end if

x1 x2 x3 x4

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

p = 1

p = 2

Figure 4.2: Tree representation of the set X M for a system with M = 2 BS
antennas and QPSK precoding modulation (αx = 4)

TSBP stage where the tree represents the set X M . The tree is constructed
considering that the p-th BS antenna represents the p-th layer and each possible
subvector f ∈ X p represents one branch. An example of a tree for a system with
two transmit antennas and QPSK signaling is shown in Fig. 4.2. The QoS B&B
TSBP stage performs breadth-first search in the feasible set X M to minimize a
given objective f0(xr) which either represents MUBSEP or the MSEP criterion.
While minimizing f0(xr) if an intermediate solution xint attains the condition
Pe (xint) ⪯ λ the algorithm terminates with xint as the transmit vector. The
TSBP stage starts at the first layer p = 1 by fixing 2p entries of xr such that
the precoding vector becomes xr = [fT

r,i,v
T
r ]T , with C(f r,i) ∈ X p. With this,

a subproblem is constructed by rewriting (4-50) as

vr,opt = arg min
vr

f0(vr,f r,i) (4-51)

s.t. C[fT
r,i,v

T
r ]T ⪯ 0, [vr]2m−1 + j [vr]2m ∈ X , for m ∈ {1, . . . ,M − p} ,

where the constraint C[fT
r,i,v

T
r ]T ⪯ 0 is only taken into account for the

MUBSEP case. A lower bounding problem on f0(vr,opt) is obtained by relaxing
feasible set X M−p to its convex hull J , which yields

vr,lb = arg min
vr

f0(vr,f r,i)

s.t. C[fT
r,i,v

T
r ]T ⪯ 0, for C(vr) ∈ J . (4-52)
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Solving (4-52) and evaluating f0(xr,lb,i), with xr,lb,i =
[
fT

r,i,v
T
r,lb

]T
, yields a

lower bound on f0(vr,opt,f r,i), meaning that f0(xr,lb,i) ≤ f0(vr,opt,f r,i). Note
that, if f r,i is a subvector of xr,opt then f0(xr,lb,i) ≤ f0(vr,opt,f r,i) = f0(xr,opt).
On the other hand, if f0(xr,lb,i) > f0(xr,opt) then f r,i cannot be a subvector
of xr,opt and f0(vr,opt,f r,i) > f0(xr,opt). An upper bound on f0(vr,opt,f r,i)
is computed by projecting the vector vlb = C(vr,lb) to X (M−p) as vub =
P (Q(vlb)), with P (·) and Q(·) being the projection operators introduced
in section 4.4.3.2, and computing g(xub,i,f i) with xub,i =

[
fT

i ,v
T
ub

]T
. The

solution xub,i attains the low-resolution constraints and is evaluated against the
condition Pe (xub,i) ⪯ λ. If the condition holds the algorithm terminates with
xub,i as the transmit vector. Otherwise the algorithm proceeds by fixing the
next subvector f r,i+1 and solving the corresponding subproblem, i.e. evaluating
the next branch of the layer. After all branches in one layer were evaluated
they are subjected to the pruning process where the search set is reduced by
eliminating f i that cannot be part of the optimal solution and the algorithm
goes to the next layer, i.e., updates p = p+ 1. In the following, the MSEP and
MUBSEP lower bounding subproblems are derived and the pruning process is
presented.

MSEP Lower Bounding Subproblem Formulation The MSEP sub-
problems are written considering the minimization of the objective described
in (4-20) for xr = [fT

r,i,v
T
r ]T . To this end, we split HR =

[
GR , T R

]
and

H I =
[
GI , T I

]
where GR and GI consist of the first 2p columns of HR and

H I, respectively, and T R and T I consist of the subsequent 2(M − p) columns
of HR and H I, respectively. Considering that A′ is obtained by selecting the
last 2 (M − p) columns of A, the MSEP subproblem conditioned on f r,i reads
as

min
vr

−
K∑

k=1

(
ln
(
Φ
(
gT

R,kf r,i + tTR,kvr
))

+ ln
(
Φ
(
gT

I,kf r,i + tTI,kvr
)))

s.t. A′vr − b ⪯ 0, (4-53)

where gT
R,k, gT

I,k, tTR,k, and tTI,k are the k-th rows of the matrices GR, GI, T R,
and T I, respectively. The subproblems are solvable using the barrier method
presented in section 4.4.3.1, which requires the gradient and Hessian of the
objective and constraint functions. For the MSEP subproblems (4-53), ∇f0(x)
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and ∇2f0(x) are given by

∇f0(x) =
K∑

k=1

nR,k(xr)
Φ
(
gT

R,kf r,i + tTR,kvr
) + nI,k(xr)

Φ
(
gT

I,kf r,i + tTI,kvr
) , (4-54)

∇2f0(x) =
K∑

k=1

nR,k (xr)nT
R,k (xr) + ΥR,k (xr)(

Φ
(
gT

I,kf r,i + tTI,kvr
))2 +

nI,k (xr)nT
I,k (xr) + ΥI,k (xr)(

Φ
(
gT

I,kf r,i + tTI,kvr
))2 ,

(4-55)

where

nR,k = 1√
2π

e−
(gT

R,k
fr,i+tT

R,k
vr)2

2 tR,k, nI,k = 1√
2π

e−
(gT

I,k
fr,i+tT

I,k
vr)2

2 tI,k, (4-56)

ΥR,k =
Φ
(
gT

R,kf r,i + tTR,kvr
)

√
2π

e−
(gT

R,k
fr,i+tT

R,k
vr)2

2 tR,k

(
gT

R,kf r,i + tTR,kvr
)
tTR,k,

(4-57)

ΥI,k =
Φ
(
gT

I,kf r,i + tTI,kvr
)

√
2π

e−
(gT

I,k
fr,i+tT

I,k
vr)2

2 tI,k
(
gT

I,kf r,i + tTI,kvr
)
tTI,k. (4-58)

The constraint functions, in the case of problem (4-53), are described by
fi(vr) = a′

ivr − bi, for i = 1, . . . ,Mαx, with a′
i being the i-th row of A′.

With this, ∇fi(xr) and ∇2fi(xr) for the i-th constraint function read as

∇fi(vr) = a′
i, ∇2fi(vr) = 0. (4-59)

As mentioned in section 4.4.3.1 the UBCO of the barrier method is O(√φq3).
For the MSEP subproblems φ = Mαx and q = 2(M−p), which yields O (M3.5).

MUBSEP Lower Bounding Subproblem Formulation For the MUB-
SEP case, we split Hs∗

R,θ =
[
Gs∗

R,θ , T
s∗

R,θ

]
and Hs∗

I,θ =
[
Gs∗

I,θ , T
s∗

I,θ

]
where Gs∗

R,θ

and Gs∗

I,θ consist of the first 2p columns of Hs∗

R,θ and Hs∗

I,θ, respectively and
T s∗

R,θ and T s∗

I,θ consist of the subsequent 2(M − p) columns of Hs∗

R,θ and Hs∗

I,θ,
respectively. To write the subproblems, we first define the vectors gT

1,k, gT
2,k

and tTk as the k-th rows of the matrices G1 = Gs∗

R,θ −Gs∗

I,θ, G2 = Gs∗

R,θ +Gs∗

I,θ

and T 1 = T s∗

R,θ −T s∗

I,θ, T 2 = T s∗

R,θ +T s∗

I,θ, respectively. With this, the MUBSEP
subproblem is given by

min
vr

−
K∑

k=1
ln
(
erf
(
gT

1,kf r + tT1,kvr
)

+ erf
(
gT

2,kf r + tT2,kvr
))

s.t. Rvr − l ⪯ 0, A′vr − b ⪯ 0. (4-60)
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where R = −
[
T T

1 ,T
T
2

]T
and l =

[
GT

1 ,G
T
2

]T
f r,i. For MUBSEP subproblems

(4-60), ∇f0(x) and ∇2f0(x) are given by

∇f0(vr) = −
K∑

k=1

ϑk (vr)
ϱk (vr)

, (4-61)

∇2f0(vr) =
K∑

k=1

(∆1,k + ∆2,k) ϱk (vr) + ϑk (vr)ϑT
k (vr)

(ϱk (vr))2 . (4-62)

where

ϑk (vr) = 2√
π

(
e−(gT

1,kf r,i+tT1,kvr)2

t1,k + e−(gT
2,kf r,i+tT2,kvr)2

t2,k

)
, (4-63)

ϱk (vr) = erf
(
gT

1,kf r,i + tT1,kvr
)

+ erf
(
gT

2,kf r,i + tT2,kvr
)
, (4-64)

∆1,k = 4√
π

(
e−(gT

1,kf r,i+tT1,kvr)2

t1,k

(
gT

1,kf r,i + tT1,kvr
)
tT1,k

)
, (4-65)

∆2,k = 4√
π

(
e−(gT

2,kf r,i+tT2,kvr)2

t2,k

(
gT

2,kf r,i + tT2,kvr
)
tT2,k

)
. (4-66)

In (4-60) the constraint functions read as fi(vr) = a′
ivr−bi, for i = 1, . . . ,Mαx,

and fi(vr) = rivr − li for i = Mαx + 1, . . . ,Mαx + 2K, with ri being the
i-th row of R and li being the i-th element of l. With this, the gradient
and Hessian of the first Mαx constraints are given in (4-59), and, for i =
Mαx + 1, . . . ,Mαx + 2K, ∇fi(vr) = ri and ∇2fi(vr) = 0. For the MUBSEP
subproblems φ = Mαx + 2K and q = 2(M − p) which yields an UBCO of
O
(
M3√M +K

)
.

Pruning Process The pruning process aims to exclude from the search
subvectors that cannot be part of the optimal solution. Note that, f0(vr,ub, ξr)
is an upper bound on f0(xr,opt) for any fixed subvector ξr. This implies that
if f r,i is a subvector of xr,opt then the relation f0(vr,lb,f r,i) ≤ f0(xr,opt) ≤
f0(vr,ub, ξr) is guaranteed to hold. Yet, if f0(vr,lb,f r,i) > f0(vr,ub, ξr) then
f r,i cannot be a subvector of xr,opt and it and all its evolutions can be ex-
cluded from the search. In this context, having a small upper-bound solution
allows for a large number of exclusions which is beneficial for reducing the
computational complexity of the algorithm. With this, the pruning process
starts by updating the smallest known upper bound ǧ, for the given layer p,
as ǧ = min (ǧ, f0(xr,ub,i)). Then, the lower-bound solutions xlb,i are considered
for the pruning criterion. Similar to the one from [27], the pruning criterion
considered exploits the low-resolution constraints property that, for a suffi-
ciently small ϵ, the ϵ-suboptimal set only contains the optimal solution. This
implies that it is sufficient to find a solution in the ϵ-suboptimal set, which
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Algorithm 6 Proposed QoS B&B Tree Search Based Precoding Stage
Inputs: H, s, σw, λ, x̌, ǧ, Criterion Output: xout
Define the first level (p = 1) of the tree by Gp := X
for p = 1 : M − 1 do

Partition Gp in f1, . . . ,f |Gp|
for i = 1 : |Gp| do

if Criterion = MSEP
Solve (4-53) conditioned on f r,i = R(f i) to get vr,lb|fi

Construct xlb,i =
[
fT

i , C
(
vr,lb|fi

)T
]

and compute glb,i = g(xlb,i) using
(4-44)

Project xub,i = P (Q(xlb,i)) and compute gub,i = g(xub,i) using (4-44)
Compute Pe (xub,i) with (4-48), if Pe (xub,i) ⪯ λ → terminate with

xout = xub,i
else if Criterion = MUBSEP

Solve (4-60) conditioned on f r,i = R(f i) to get vr,lb|fi

Construct xlb,i =
[
fT

i , C
(
vr,lb|fi

)T
]

and compute glb,i = g(xlb,i) using
(4-46)

Project xub,i = P (Q(xlb,i)) and compute gub,i = g(xub,i) using (4-46)
Compute Pe (xub,i) with (4-49), if Pe (xub,i) ⪯ λ → terminate with

xout = xub,i
end if

end for
Update the best upper bound with ǧ = min (ǧ, gub,i) and update x̌ accordingly
Construct a reduced set as G′

p := {xlb,i | glb,i < (1 − γ) ǧ, i = 1, . . . , |Gp|}
Define the set for the next level in the tree: Gp+1 := G′

p × X
end for
Partition GM in x1, . . . ,x|GM |
if Criterion = MSEP

for i = 1 : |GM |
Compute Pe (xi) with (4-48), if Pe (xi) ⪯ λ → terminate with xout = xi

end for
The global solution is xout = arg min

x∈{GM ∪{x̌}}
g(x), with g(x) computed with (4-44)

else if Criterion = MUBSEP
for i = 1 : |GM |

Compute Pe (xi) with (4-49), if Pe (xi) ⪯ λ → terminate with xout = xi

end for
The global solution is xout = arg min

x∈{GM ∪{x̌}}
g(x), with g(x) computed with (4-46)

end if
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can be done by adopting the pruning condition f0(xr,lb,i) < (1 − δ)ǧ, with a
sufficiently small value for δ [27]. With this, a set is constructed only with
xr,lb,i that attain the pruning condition, and the algorithm goes to the next
layer, i.e. updates p = p+ 1. If the algorithm reaches the last layer p = M , it
is expected that the set of candidates GM is relatively small. With this, it is
evaluated if any xi ∈ GM attains Pe (xi) ⪯ λ, if true the algorithm terminates

with xi. Otherwise, the algorithm terminates with xout = C

(
argmin
x∈GM ∪{x̌}

g(x)
)

computed via brute force. The steps of the QoS B&B TSBP stage are further
described in Algorithm 6.

Finally, the QoS B&B algorithm is summarized as the execution of
Algorithm 5 representing the QoS B&B PGS stage, and if the process is not
terminated with the transmit vector the execution of Algorithm 6 representing
the QoS B&B TSBP stage.

4.5
Discrete Precoding with the RMMSE Criterion for Imperfect CSI Scenar-
ios

The methods proposed in the previous section consider perfect knowledge
about the CSI for their design. Although possible, the extension of the SEP-
related methods for imperfect CSI scenarios is not straightforward. Robustness
is a desired quality in transmit and receive processing schemes [56, 57, 58].
With this, this section presents the proposed precoding methods utilizing
RMMSE as the design objective. The methods proposed are extensions of
the approaches from [59] for imperfect CSI scenarios where the transmitter
has knowledge about the second-order statistics of the CSI mismatch. Note
that, when perfect CSI is available the proposed RMMSE technique becomes
equivalent to the MMSE approaches described in section 4.2.2. The RMMSE
problem considering quantization of the transmit signal can be cast

min
x,f

E{∥fz − s∥2
2} (4-67)

subject to: x ∈ X M , f ≥ 0,

which is similar to the MMSE problem under low-resolution constraints from
[59]. Yet, similarly as in chapter 3, considers that the CSI available at the
transmitter side is imperfect and that the transmitter has knowledge about
the second-order statistics of the CSI mismatch. With this, the channel is
modeled as H =

√
λHest +

√
1 − λΓ, where λ ∈ (0, 1] is a positive real-

valued scalar which is considered as known at the transmitter. The channel
matrix can be written in real-valued form asHr =

√
λHr,est +

√
1 − λΓr where
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Hr,est = R(Hest) and Γr = R(Γ). The optimization problem from (4-67) can
be written taking into consideration the CSI mismatch, which reads as

min
xr,f

E{∥f
(√

λHr,est +
√

1 − λΓr
)
xr + fwr − sr∥2

2} (4-68)

subject to:
{
[xr]2m−1 + j [xr]2m

}
∈ X, for m ∈ {1, . . . ,M} ,

f ≥ 0.

Considering E
{
ΓT

r Hr,est
}

= 0, an equivalent problem can be cast as

min
xr,f

f 2xT
r

(
λHT

r,estHr,est + (1 − λ)Rr,Γ
)
xr− (4-69)

2f
√
λ xT

r H
T
r,estsr + f 2E{wT

r wr}

subject to:
{
[xr]2m−1 + j [xr]2m

}
∈ X, for m ∈ {1, . . . ,M} ,

f ≥ 0,

where Rr,Γ = E
{
ΓT

r Γr
}

is considered as known by the transmitter. The
objective from (4-69) relates to the MSE as follows

˜MSE (xr, f) = MSE (xr, f) − E
{
sT

r sr
}

= f 2xT
r

(
λHT

r,estHr,est + (1 − λ)Rr,Γ
)
xr−

2f
√
λ xT

r H
T
r,estsr + f 2E{wT

r wr}. (4-70)

The objective described in (4-70) is not jointly convex in xr and f . Moreover,
the feasible set of (4-69) is discrete and, thus, not convex.

4.5.1
Proposed RMMSE Mapped Precoder

In this subsection, we propose a practical approach for the problem
described in (4-67). Since the feasible set of the optimization problem presented
by (4-67) is non-convex we replace X M by its convex hull P , which is a
polyhedron. With this, the problem reads as

min
x,f≥0

E{∥fz − s∥2
2} (4-71)

s.t Re
{
xme

j 2πi
αx

}
≤
√

PA cos
(
π

αx

)
, m ∈ {1, . . . ,M} , i ∈ {1, . . . , αx} .
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The equivalent problem in real-valued notation reads as

min
xr,f

E{∥fzr − sr∥2
2} (4-72)

subject to: Axr ≤ b, f ≥ 0,

where zr = R(z). The inequality Axr ≤ b restricts the elements of the
precoding vector to be inside or on the border of the polyhedron. The
polyhedron associated to uniformly phase quantized transmit symbols with αx

different phases can be expressed as proposed before in [18], which is similar
to the description in [14]. The corresponding matrix notation reads as

A =
[
(IM ⊗ β1)T (IM ⊗ β2)T . . . (IM ⊗ βαx

)T
]T

, (4-73)

βi =
[
cos

(
2πi
αx

)
− sin

(
2πi
αx

)]
, i ∈ {1, . . . , αx} , b =

√
PA cos

(
π

αx

)
1Mαx ,

with 1Mαx being a column vector with length Mαx. Expanding the objective
from (4-72) leads to the following problem

min
xr,f

f 2xT
r

(
λHT

r,estHr,est + (1 − λ)Rr,Γ
)
xr − 2f

√
λ xT

r H
T
r,estsr + f 2E{wT

r wr}

subject to: Axr ≤ b, f ≥ 0. (4-74)

An equivalent convex problem can be cast by substituting xr,f = fxr. With
this, the problem from (4-74) is rewritten as

min
xr,f,f

xT
r,f

(
λHT

r,estHr,est + (1 − λ)Rr,Γ
)
xr,f − 2

√
λ xT

r,fH
T
r,estsr + f 2E{wT

r wr}

subject to: R
xr,f

f

 ≤ 0, f ≥ 0,

where R =
[
A, −b

]
. Finally, the problem can be written in the standard QP

form as

min
v

1
2v

T Ũv + p̃Tv (4-75)

subject to: Rextv ≤ 0,
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where

v =
xr,f

f

 , Rext =
R
ξT

 , ξ =
 0
−1

 , p̃ =
−2

√
λHT

r sr

0

 (4-76)

Ũ = 2
λHT

r,estHr,est + (1 − λ)Rr,Γ 0
0T E{wT

r wr}

 . (4-77)

Note that, since Ũ ∈ S2M+1
+ , the problem is a convex QP and can be solved

by utilizing standard optimization tools.
By solving the relaxed problem (4-75) one obtains the solution v =[

xT
r,f, f

]T
and readily extracts xr,lb = xr,f

f
and xlb = C(xr,lb). Yet, since the

discrete feasible set is relaxed to its convex hull, the optimal solution of the
relaxed problem is not necessarily in the feasible set of (4-67). Therefore, to
find a feasible solution, mapping xlb to the closest Euclidean distance point
in X M is considered, which then yields x̂ub. Since the mapping step does not
preserve the value of f , it must be recomputed as follows

fub =
√
λ sT

r Hr,estx̂r,ub

x̂T
r,ub

(
λHT

r,estHr,est + (1 − λ)Rr,Γ
)
x̂r,ub + E{wT

r wr}
, (4-78)

where x̂r,ub = R(x̂ub). Note that, the scaling factor fub associated to the
mapped solution can be negative which then corresponds to an unfeasible
solution for (4-67). However, in this scenario, a feasible solution with equivalent
MSE can be computed by flipping the sign of x̂ub, which then leads to the
transmit vector being computed as xub = sign(fub)x̂ub. Flipping the sign of
x̂ub leads to a feasible solution due to the symmetry of X .

Note that, ˜MSE (xlb) is a lower bound on the optimal value of the original
problem, meaning that ˜MSE (xlb) ≤ ˜MSE (xopt), where xopt is the optimal
solution of (4-67). Yet, as mentioned before, xlb is not necessarily in X M

and thus, is not necessarily a feasible solution of (4-67). After mapping, xub

is obtained. Since the mapping step does not preserve optimality, xub is a
feasible upper bound solution to (4-67). In terms of the objective function this
means that ˜MSE (xlb) ≤ ˜MSE (xopt) ≤ ˜MSE (xub). In this sense, the proposed
mapped precoder provides a practical suboptimal solution to (4-67).

4.5.2
Proposed Optimal Approach via Branch-and-Bound

As previously discussed, solving the relaxed problem provides a lower
bound solution to (4-67), which, in general, does not attain the low-resolution
constraints. A feasible solution can be practically computed by utilizing the
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proposed mapped approach, yet, its MSE is an upper bound on MSE (xopt).
In this subsection, we propose a branch-and-bound strategy that reliably
computes the optimal solution for (4-67).

4.5.2.1
Introduction of the Branch-and-Bound Method

A branch-and-bound algorithm is a tree search based method. The
tree represents the set of all possible solutions for the vector x, i.e., it is a
representation of the set X M . The construction of the tree is done similarly as
in section 4.4.3.3 with an example of the tree shown in Fig. 4.2.

For constructing the precoding vector we consider the minimization of
an objective function g(x, s) subject to the discrete feasible set, described by

xopt = arg min
x
g(x, s) s.t. x ∈ X M . (4-79)

In the context of solving (4-67), the objective function g(x, s) represents the
MSE with imperfect CSI. A lower bound on g(xopt, s) can be obtained by
relaxing X M to its convex hull. The relaxed problem is expressed as

xlb = arg min
x
g(x, s) s.t. x ∈ P . (4-80)

An associated upper bound on g(xopt, s) can be obtained by mapping the
solution of (4-80) to the feasible set and evaluating g(·), as discussed previously
in subsection 4.5.1. The upper bound value of (4-79) is termed ǧ. Having an
upper bound solution implies that ǧ ≥ g(xopt) ≥ g(xlb), which means that the
objective of the mapped vector is always greater or equal to the objective of
the solution from the relaxed problem (4-80).

By fixing p entries of x, the vector can be rewritten as x = [xT
1 ,x

T
2 ]T ,

with x1 ∈ X p. With this, a subproblem can be formulated as

x2,opt|x1 = arg min
x2

g(x2,x1, s) s.t. x2 ∈ X M−p. (4-81)

Relaxing the problem from (4-81) we have

x2,lb = arg min
x2

g(x2,x1, s) s.t. x2 ∈ J , (4-82)

where J is the convex hull of X M−p. If the optimal value of (4-82) is larger
than a known upper bound ǧ on the solution of (4-79), then all members in
the discrete set which include the previously fixed vector x1 can be excluded
from the search process. By this strategy we intend to exclude most of the
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candidates from the possible solution set such that the number of residual
candidates is only a small fraction of its total number and, thus, they can be
evaluated via exhaustive search.

4.5.2.2
Branch-and-Bound Initialization

The branch-and-bound algorithm converges faster when one computes,
as early as possible, an upper bound that permits many exclusions. Therefore,
it is recommended to have an initialization step where an upper bound
ǧ < ∞ is found before beginning with the search process. In this regard,
for initialization, one solves the relaxed RMMSE problem (4-75). With this,
xlb and g(xlb) = ˜MSE (xlb) are obtained. After mapping xlb to X M , x̂ub

and ǧ = ˜MSE (x̂ub) are determined. Note that, if the solution of the relaxed
problem is already in the feasible set (meaning if xlb ∈ X M), upper and lower
bound are equal which corresponds to

xub = xlb = xopt −→ g(xlb) = ǧ. (4-83)

This would imply that the optimal solution is found already by the approach
from subsection 4.5.1 and the tree search process can be skipped.

4.5.2.3
Subproblems

When the condition from (4-83) is not met, the branch-and-bound
tree search method is applied, which involves solving subproblems, as first
mentioned on 4.5.2.1. To this end, the real-valued precoding vector xr is
divided in a fixed vector of length 2p and a variable vector according to
xr =

[
xT

r,fixed , x′
r
T
]T

. The corresponding real-valued channel matrix can be
written as

Hr =
[√
λHr,est,fixed +

√
1 − λΓr,fixed ,

√
λH ′

r,est +
√

1 − λΓ′
r

]
, (4-84)

which then leads to the following robust equivalent MSE formulation

˜MSE = f ′2(xT
r,fixed(λHT

r,est,fixedHr,est,fixed+

(1 − λ)E
{
ΓT

r,fixedΓr,fixed
}
)xr,fixed + E{wT

r wr})+

f ′xT
r,fixed(2λHT

r,est,fixedH
′
r,est + (1 − λ)E

{
ΓT

r,fixedΓ′
r

}
+ (4-85)

(1 − λ)E
{
Γ′T

r Γr,fixed
}
)x′

r,f + x′T
r,f(λH ′T

r,estH
′
r,est+

(1 − λ)E
{
Γ′T

r Γ′
r

}
)x′

r,f − 2
√
λ(f ′xT

r,fixedH
T
r,est,fixed + x′T

r,fH
′T
r,est)sr,
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where the values of E
{
Γ′T

r Γ′
r

}
∈ R2p×2p , E

{
ΓT

r,fixedΓ′
r

}
∈ R2p×2(M−p) ,

E
{
Γ′T

r Γr,fixed
}

∈ R2(M−p)×2p and E
{
ΓT

r,fixedΓr,fixed
}

∈ R2(M−p)×2(M−p) can be
taken from Rr,Γ with the following structure

Rr,Γ =
E

{
ΓT

r,fixedΓr,fixed
}

E
{
ΓT

r,fixedΓ′
r

}
E
{
Γ′T

r Γr,fixed
}

E
{
Γ′T

r Γ′
r

}  . (4-86)

With this, (4-85) can be rearranged with a stacked vector notation as

˜MSE = 1
2v

′T Q̃v′ + lTv′, (4-87)

where v′ =
[
x′T

r,f, f
′
]T

and

l = −2
 H ′T

r

xT
r, fixedH

T
r, fixed

 sr, Q̃ = 2
Q̃1 q̃2

q̃T
2 q̃3

 , (4-88)

with

Q̃1 =λH ′T
r,estH

′
r,est + (1 − λ)E

{
Γ′T

r Γ′
r

}
,

q̃2 =λH ′T
r,estHr,est,fixedxr,fixed + (1 − λ)E

{
Γ′T

r Γr,fixed
}
xr,fixed,

q̃3 =xT
r,fixed(λHT

r,est,fixedHr,est,fixed+

(1 − λ)E
{
ΓT

r,fixedΓr,fixed
}
)xr,fixed + E{wT

r wr}. (4-89)

Finally, with (4-87), the optimization problem that describes the RMMSE
subproblems reads as

min
v′

1
2v

′T Q̃v′ + lTv′ s.t. R′
extv

′ ≤ 0. (4-90)

where R′
ext is obtained by selecting the last 2 (M − p) columns of Rext.Since

Q̃ ∈ S
2(M−p)+1
+ the problem described in (4-90) is a convex QP.

4.5.2.4
Pruning Step

By solving the subproblems one can compute a lower bound, and, after
the mapping step, an upper bound on the optimal solution of (4-67). As
mentioned before in subsection 4.5.2.1, these bounds are utilized to reduce
the searching set such that the optimal solution can be found via exhaustive
search. This subsection details the process of excluding candidate solutions
from the searching set, which, in the context of tree search is named pruning
the tree.
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To formulate an efficient pruning criterion, in this subsection, we exploit
a property of the low resolution constraints. As mentioned before, having low
resolution data converters implies that the entries of the precoding vector to
belong to a discrete set. Due to the discrete nature of the feasible set, by
choosing a sufficiently small ϵ, for example ϵ = δ ˜MSEopt with 0 ≤ δ ≪ 1,
the ϵ-suboptimal set given by Xopt,ϵ =

{
x : ˜MSE(x) ≤ ˜MSEopt + ϵ

}
, cf. [42],

contains only the global optimal solution. This implies for the tree search
process that it is sufficient to find a solution in Xopt,ϵ. Implicitly the ϵ-
suboptimal set can be addressed by the pruning condition ˜MSE(xlb) < (1−δ)ǧ,
where ǧ is the best known upper bound. By setting a sufficiently small value
for δ, the optimal solution from (4-67) can be obtained with probability one,
as is confirmed in [27].

With this, the major steps for constructing the proposed branch-and-
bound algorithm are described and the branch-and-bound algorithm for solving
(4-67) can be assembled. The steps of the method are detailed in Algorithm 7.

4.6
Numerical Results

For the numerical evaluation, the channel coefficients are modeled by
independent Rayleigh fading [60], and for the B&B algorithms γ = δ = 10−7.
As derived in section C.1 of the appendix, the SNR is defined as SNR = (M ·PA)

σ2
w

.
The proposed methods are compared against the following state-of-the-art
approaches:

1- The MMDDT B&B precoder [18];

2- The MMSE B&B precoder [48];

3- The CI 1-bit Partial B&B precoder [25];

4- The MMSE Mapped precoder [48];

5- The MSM precoder [14];

6- The quantized CVX-CIO precoder [12];

7- The unquantized ZF-P precoder [61];

8- The unquantized LMMSE precoder [28]

In sections 4.6.1 and 4.6.2 perfect CSI is considered for numerical evaluations.
In this scenario, the proposed RMMSE approaches are equivalent to their
MMSE counterparts and thus the proposed RMMSE techniques are not
explicitly mentioned. In section 4.6.3, imperfect CSI is considered and the
RMMSE methods, which in this scenario are not equivalent to MMSE, are
compared with the mentioned state-of-the-art algorithms.
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Algorithm 7 Proposed RMMSE B&B Precoding Algorithm
Solve (4-75) and get xlb = C

(
xr,f
f

)
Map xlb to X M to get x̂ub and compute fub(x̂r,ub) using (4-78), where x̂r,ub =
R (x̂ub)
Compute xub = sign(fub)x̂ub and evaluate the optimality condition described in
(4-83). If it holds return xopt = xub
Otherwise, define x̌ = xub and ǧ = 1

2v
TUv + pTv, where U and p are given by

(4-77) and v =
[
fubx

T
r,ub, fub

]T
for d = 1 : M − 1 do

Partition Gd in xfixed,1, . . . ,xfixed,|Gd|
for i = 1 : |Gd| do

Based on xr,fixed,i = R(x,fixed,i) solve (4-90)
to get x′

r,f and f ′

Compute ˜MSElb
(
x′

r,f, f ′
)

using (4-87)

Extract x′
lb,i = C

(
x′

r,f
f ′

)
, map x′

lb,i to get x′
ub ∈ X M−d and

construct x̂r,ub =
[
xT

fixed,i, R(x′
ub)T

]T
Compute fub(x̂r,ub) using (4-78) and ˜MSEub(x̂r,ub, fub)
using (4-87)
Update the best upper bound with ǧ = min

(
ǧ, ˜MSEub

)
and

update x̌ accordingly
end for
Construct a reduced set by comparing conditioned lower bounds with the

global upper bound ǧ

G′
d :=

{
C(x′

lb,i)| ˜MSElb(x′
lb,i) < (1 − δ)ǧ, i = 1, . . . , |Gd|

}
Define the set for the next level in the tree: Gd+1 := G′

d × X
end for
Search method for the ultimate level d = M :
Define G̃M = GM ∪ {x̌} and partition G̃M in xfixed,1, . . . ,xfixed,|G̃M |
Compute fub,i(R(xfixed,i)) using (4-78) for all i ∈

{
1, . . . ,

∣∣∣G̃M

∣∣∣}
Based on all fub,i and xr,fixed,i, determine
[xr,opt, fub,opt] = argmin

i∈{1,...,|G̃M |}
˜MSE(xr,fixed,i, fub,i) using (4-87)

The global solution is xopt = sign(fub,opt)C(xr,opt)
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Figure 4.3: SEP or SER versus SNR (left) and Accuracy versus SNR (right),
for K = 30 users and M = 100 BS antennas

4.6.1
Bound Evaluation

This subsection compares the theoretical methods for computing the SEP
and union-bound SEP, discussed in sections 4.4.1 and 4.4.2, with the numer-
ically computed SEP. To this end, Monte Carlo simulations are considered,
and theoretical SEP (compatible with αs ∈ {2, 4}), union-bound SEP, and
numerically computed SER are calculated. The theoretical SEP is given by

SEPthe = (1/K) 1T
K (1K − Φ (SR Re {Hx}) ◦ Φ (SI Im {Hx})) , (4-91)

and union-bound SEP is computed as

SEPub = (1/2K) 1T
K (erfc (ρ1) + erfc (ρ2)) , (4-92)

where ρ1 and ρ2 are defined in (4-47). In this study, the accuracy of the SEP
prediction methods is defined using the SER as a baseline which reads as
Accuracy% =

(
1 − |SER−SEP|

SER

)
× 100. For the Monte Carlo simulations, the

considered scenarios consist of a BS with M = 100 antennas serving K = 30
single antenna users with αs = 4 and αs = 8. For this simulation, a total
of 3.2 · 107 transmit symbols were considered. Expressions (4-91) and (4-92)
can be applied to any precoding approach, and, in this subsection, the users’
symbols considered to be precoded with the full-resolution LMMSE method
[28].
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For the case of αs = 4, SER and theoretical SEP (4-91) are expected
to be equivalent (100% accuracy). When using (4-92) it is expected, for the
high-SNR limit, an accuracy of 100% and for the low-SNR limit, SEPub =
(αs/(αs − 1)) SER which results in an accuracy of ( (αs − 2)/(αs − 1)) × 100, which
corresponds to 66.6% and 85.7% accuracy, for αs = 4 and αs = 8, respectively.
The LHS of Fig. 4.3 shows that the union-bound SEP yields a tight upper
bound on the actual error probability and confirms the perfect prediction of
the theoretical SEP formulation. The RHS of Fig. 4.3 confirms the expected
accuracies of union-bound SEP and theoretical SEP predictions for the low
and high SNR limits.

4.6.2
Performance Analysis with Constant Envelope Signals and Low-Resolution
DACs

This section presents comparisons of the proposed precoding algorithms
against the state-of-the-art approaches, and, of the MSEP and MUBSEP
criteria against the MMSE and MMDDT formulations. These are made in
terms of symbol-error rate (SER) and computational complexity considering
a MIMO scenario of a BS with M = 12 antennas serving K = 3 single
antenna users with αs = αx = 4. To facilitate the performance analysis of
the proposed QoS B&B precoders the same SEP requirements are considered
for all users such that λ = 10−τ ·1K . The performance evaluation of the MSEP
and MUBSEP formulations is based on full B&B methods that yield optimal
precoding vectors in their corresponding design criterion, which can be realized
with τ = ∞. Since the works from [18] and [48] are also optimal in terms of the
MMDDT and MMSE, respectively, comparing their performance is equivalent
to comparing their design objectives.

4.6.2.1
Performance versus SNR evaluation

In this subsection, the SEP requirement parameter is set to τ = 3, which
corresponds to λ = 10−3 ·1K . The first experiment, shown in the upper LHS of
Fig. 4.4, consists of the evaluation of the SER. While the upper LHS of Fig. 4.4
shows similar SER for the MSEP and MUBSEP full B&B algorithms, it also
shows that the full B&B methods using the MSEP and MUBSEP criteria
outperform the MMSE and MMDDT B&B approaches for all examined SNR
values in terms of SER. Since the full B&B methods are optimal in terms of
their respective design criterion it can be concluded that utilizing the MSEP
and MUBSEP formulations yields smaller SER than utilizing the MMSE and
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Figure 4.4: Considered scenario: K = 3 users, αs = 4 PSK users’ data, αx = 4
PSK transmit symbols and SEP requirement parameter τ = 3. SER × SNR
for M = 12 antennas (Upper LHS). SER Increase % × SNR for M = 12
antennas (Upper RHS). Average number of convex optimization problems
solved B × SNR for M = 12 antennas (Lower LHS). Average number of
convex optimization problems solved B × M for SNR = 10 dB (Lower RHS).
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Table 4.1: Computational Complexity of the SLP Algorithms

Algorithm Complexity Problem Type
CVX-CIO [12] O

(
M3.5

)
Second Order Cone Program

MSM-Precoder [14] O
(

M3.5
)

Linear Program
MMSE Mapped [48] O

(
M3.5

)
Quadratic Program

CI-1 bit Partial B&B [25] O
(

M3.5 + B K3.5
)

Discrete Programming Problem
MMDDT B&B [18] O

(
B M3.5

)
Discrete Programming Problem

MMSE B&B [48] O
(

B M3.5
)

Discrete Programming Problem
Proposed MSEP PGS O

(
M3.5

)
Convex Optimization Problem

Proposed MSEP QoS B&B O
(

B M3.5
)

Discrete Programming Problem
Proposed MUBSEP PGS O

(
M3√

M + K
)

Convex Optimization Problem
Proposed MUBSEP QoS B&B O

(
B M3√

M + K
)

Discrete Programming Problem

MMDDT designs. Note that, the SER × SNR curve of the full MSEP B&B in
Fig. 4.4 represents the minimum uncoded SER that any precoder that attains
the system model can achieve. It is seen in the upper LHS of Fig. 4.4 that the
proposed MSEP and MUBSEP QoS B&B approaches yield similar SER for
SNR < 10 dB, yet for SNR ≥ 10 dB the proposed QoS B&B approaches start
deviating from full B&B methods. This is the case since, for this SNR region,
the proposed QoS B&B methods attain the SEP requirement without the need
for optimal vectors and return suboptimal solutions with reduced complexity.
Furthermore, the upper LHS of Fig. 4.4 shows that the proposed MSEP PGS
and MUBSEP PGS algorithms outperform all other suboptimal designs for all
examined SNR values, except for the CI 1-bit Partial B&B precoder.

As seen in the upper RHS of Fig. 4.4 the MUBSEP full B&B algorithm
yields approximately no increase in SER when compared with the MSEP full
B&B baseline. On the other hand, the proposed QoS B&B approaches yield a
significant increase in SER for SNR ≥ 10 dB. This happens since, in this SNR
region, the SEP requirement is attained with lower complexity suboptimal
vectors as will be discussed in the analysis of the lower plots of Fig. 4.4.

The computational complexity analysis is done by comparing the UBCO
of each algorithm, achieved by considering that the optimization-based ap-
proaches are solved with the barrier method. While the complexity of the con-
sidered channel-level ZF-P and LMMSE techniques are O(K2M) and O(K3),
respectively, the UBCO of the state-of-the-art SLPs is shown in Table 4.1,
where B denotes a given number of optimization problems solved in the cor-
responding B&B algorithm. As shown in Table 4.1, the proposed MSEP and
MUBSEP PGS algorithms have similar complexity as the other suboptimal
designs and have reduced complexity order as compared with the CI 1-bit
Partial B&B technique, which can yield unfavorable complexity for large K
[41]. For comparing the complexity of the considered B&B algorithms an eval-
uation of B is required. This is done in the experiments presented in the lower
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plots of Fig. 4.4 where the average value of B, termed B, is evaluated against
the SNR (on the LHS) and against the number of transmit antennas M (on
the RHS). Since the CI 1-bit Partial B&B method’s complexity scales with
O (M3.5 +BK3.5) instead of O (BM3.5) from other B&B approaches, it is not
considered for evaluation in the lower plots of Fig. 4.4.

The third experiment, present in the lower LHS of Fig. 4.4, shows that the
B of the full MSEP B&B algorithm is smaller than the ones from MMDDT
for SNR < 16 dB and than MMSE for SNR < 18 dB. Furthermore, the
full MUBSEP B&B algorithm yields smaller values of B than MMDDT for
SNR < 16 dB and than MMSE for 4 dB < SNR < 18 dB. The proposed MSEP
and MUBSEP QoS B&B designs yield similar B as the full B&B methods for
SNR ≤ 6 dB, yet, as the SNR increases, the values of B of the proposed QoS
B&B algorithms decrease until for SNR = 18 dB both QoS B&B methods
yield B ≈ 1. This happens since, due to the overall SER decreasing with the
SNR, the proposed QoS B&B precoding algorithm requires, on average, fewer
visited branches to find a vector that attains the SEP requirement. Note that,
having B = 1 means that the proposed QoS B&B methods have a similar
UBCO as low-complexity state-of-the-art approaches. The fourth experiment,
presented in the lower RHS of Fig. 4.4 for SNR = 10 dB, shows that B of
the full MSEP B&B method is smaller than all other state-of-the-art methods
considered for all evaluated values of M . The full MUBSEP B&B algorithm
yields smaller B than MMDDT for all evaluated values of M and than MMSE
for M ≤ 6 and M ≥ 9. The number of optimization problems solved by the
proposed full MUBSEP B&B algorithm approaches its MSEP counterpart as
the number of BS antennas increases. Moreover, it can be seen that the value
of B of the proposed QoS B&B algorithms initially grows with M , yet, for
M > 9, B starts to decrease such that for M = 20 the proposed MSEP and
MUBSEP QoS B&B methods yield B ≈ 1.3. This is explained as follows: since
the SEP decreases with M , for fixed τ and SNR, including more antennas
eventually makes the system attain the SEP requirement. After this, if M
continues increasing, the benefits in SEP allow for the usage of suboptimal
vectors, decreasing the number of optimization problems solved. To underline
this effect consider the UBCO of M = 10 with BM=10 = 75.68, which yields
O(2.39·105), and, M = 20 with BM=20 = 1.33, which yields O(4.78·104). With
this, different than full B&B approaches, large-scale MIMO can be beneficial
in terms of complexity for the proposed QoS B&B algorithms.

Fig. 4.4 also underlines that when operating at sufficiently high SNR
the QoS B&B approach yields similar complexity as PGS as seen in the lower
RHS. Yet, for an SNR decrease, the proposed QoS B&B algorithm adjusts by
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Figure 4.5: Considered scenario: K = 3 users, M = 12 BS antennas, αs = 4
PSK users’ data, αx = 4 PSK transmit symbols and QoS constraint vector
λ = 10−2 · 1K . SER × SNR (left). Average number of convex optimization
problems solved B × SNR (right).

increasing the complexity such that the system’s SEP is maintained smaller
than the SEP requisite as seen in lower LHS and the upper RHS. For extreme
scenarios where attaining the SEP requirements is not possible (or is possible
only with the optimal solution) the proposed QoS B&B approach yields the
optimal solution with full B&B complexity as seen in all plots of Fig. 4.4.

Performance Evaluation for a Reduced SNR Range Section 4.6.2 evaluates
the performance of the considered approaches for a broad SNR range to
illustrate the different aspects of the proposed methods that rise in the diverse
SNR regimes. This section evaluates the performance of the proposed methods
for a limited range allowing for a more adequate visualization of the benefits of
the proposed methods in this SNR regime. In this section, τ = 2 is considered,
meaning λ = 10−2 · 1K .

The LHS of Fig. 4.5 shows that the proposed MSEP and MUBSEP
Full B&B and QoS B&B approaches outperform, in terms of SER, all state-
of-the-art techniques for the considered SNR range. Moreover, as shown in
the RHS of Fig. 4.5, the proposed MSEP and MUBSEP B&B approaches
require less computational complexity when compared to the MMSE and
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MMDDT Full B&B methods for all examined SNR and for SNR > 5 dB,
respectively. With this, one can state that the proposed B&B techniques yield
higher SER performance with reduced computational complexity compared
with the state-of-the-art B&B techniques in many scenarios. Furthermore,
Fig. 4.5 also demonstrates that a significant reduction in computational
complexity with a minor increase in SER can be achieved when utilizing
the proposed MSEP and MUBSEP QoS B&B approaches instead of their full
B&B counterparts. Finally, the LHS of Fig. 4.5 shows that the proposed PGS
approaches outperform all other considered techniques with the same UBCO
for all SNR, and outperform the CI 1-bit Partial B&B approach for SNR ≤ 7
dB.

Complexity Evaluation with Array-Gain The general SNR definition derived
in section C.1 of the appendix, i.e., SNR = (M · PA)/σ2

w, considers a generic
array in which the transmit vector implies Cx = E

{
xxH

}
= PAI. This

consideration, in general, does not influence the analysis and information
obtained from the experiments. Yet, for the special case of the lower RHS
of Fig. 4.4, since the complexity of proposed QoS B&B decreases with the
SNR, one could argue that the complexity benefits from the proposed QoS
B&B methods come from the increase in receive power experienced by the
users, that arises due to the actual receive SNR increasing with M , which is
not taken into account in the SNR definition of section C.1 of the appendix.

To investigate this hypothesis, this section considers the alternative SNR
definition derived in section C.2 of the appendix, i.e., SNR = (M2 · PA)/σ2

w. This
definition considers an array that utilizes the maximum ratio transmission
(MRT) beamformer which is known to maximize the received SNR [62,
Section 7.3.1]. Since the considered precoders do not focus on received SNR
maximization, the SNR definition, SNR = (M2 · PA)/σ2

w, can be considered as
an upper bound on the average received SNR. With this, if an increase in
M still leads to a QoS B&B complexity decrease, one can affirm that the
complexity benefits of the QoS B&B design come from the increased number
of BS antennas and not due to the growth in received SNR.

The experiment of this section evaluates the average number of opti-
mization problems solved in the corresponding B&B algorithm, B, versus the
number of BS antennas, M , for a SEP requirement parameter of τ = 1, mean-
ing λ = 10−1 ·1K . Fig. 4.6, shows that different from the Full B&B approaches,
the value of B of the proposed MSEP and MUBSEP QoS B&B, after an initial
increase, decreases until B ≈ 1 for M = 20. This implies that the decrease in
computational complexity comes from the increase in M which corroborates
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αs = 4 PSK users’ data, αx = 4 PSK transmit symbols, SEP requirement
parameter τ = 1.

the idea that the large-scale MIMO can be beneficial in terms of computational
complexity for the proposed QoS B&B algorithm.

4.6.2.2
Performance versus QoS parameter evaluation

This subsection evaluates the performance against the SEP parameter τ
with SNR = 12 dB. The first experiment (shown in the upper plots of Fig. 4.7)
consists of the evaluation of the SER × τ and B× τ . As seen in the upper LHS
of Fig. 4.7, for small values of τ the proposed QoS B&B algorithms yield the
same SER performance as the proposed PGS algorithms. Yet, as τ increases,
meaning the system requires smaller SEP, the SER from proposed QoS B&B
algorithms decreases until it reaches the optimal performance limit. As shown
in the upper RHS of Fig. 4.7, B = 1 for the proposed QoS B&B algorithms for
small values of τ . This is expected since, for this τ region, the SER of PGS is
sufficient for attaining the system’s SEP requisite. As τ increases, the values
of B also increase approaching B of full B&B techniques.

The second experiment (shown in the lower plots of Fig. 4.7) consists of
the evaluation of the SER decrease and UBCO increase versus the value of
τ , where we use the MSEP PGS as a baseline. With this, SER decrease % =
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Figure 4.7: Considered scenario: K = 3 users, M = 12 antennas, αs = 4 PSK
users’ data, αx = 4 PSK transmit symbols, SNR = 12dB, QoS constraint
vector λ = 10−τ · 1K . SER × SEP requirement parameter τ (upper left).
Average number of convex optimization problems solved B × τ (upper right).
SER decrease % × τ (lower left). Increase in B % × τ (lower right).
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SERMSEP PGS−SER
SERMSEP PGS

× 100, and, Increase in UBCO% =
(
B − 1

)
× 100. As seen in

the lower plots of Fig. 4.7 for τ ≥ 4 the proposed QoS B&B algorithms saturate
approximately at 72% SER decrease outperforming the MMDDT and MMSE
B&B algorithms while presenting a smaller increase in UBCO as compared to
the full B&B algorithms.

Finally, a joint analysis of the plots of Fig. 4.7 shows that, even though
for τ ≥ 4 the SER loss of utilizing the proposed QoS B&B approaches is
negligible (approximately 2.7 · 10−6 for τ = 4), the complexity benefits can be
substantial (complexity decrease factor of approximately 4.4 for τ = 4). This
underscores the effectiveness of the proposed QoS B&B method in achieving
advantageous complexity-performance trade-offs, making it a robust choice for
scenarios requiring high efficiency without significant performance sacrifice.

4.6.3
Performance under Imperfect CSI

In this section, the SER performance is evaluated for an imperfect CSI
scenario. To this end, the channel is considered to be modeled as H =
√
ξĤ +

√
1 − ξΓ, where Γ is a random matrix with i.i.d. zero-mean and unit-

variance, ξ ∈ (0, 1] is a parameter that describes the level of the CSI mismatch
and Ĥ is considered as known at the transmitter. Note that, despite different
notations, the channel model considered is equivalent to the one proposed in
section 4.5. We highlight that, in the current scenario, the proposed RMMSE
methods are not equivalent to their MMSE counterparts. For the simulations,
a MIMO scenario with K = 3 users, M = 8 BS antennas, and αs = αx = 4 is
considered. Moreover, the SEP requisite for the QoS B&B algorithms is set to
τ = 3 which implies λ = 10−3 · 1K .

4.6.3.1
SER versus CSI Imperfection

This subsection evaluates the SER performance against the CSI imper-
fection with SNR = 12 dB, at the LHS of Fig. 4.8, and with SNR = 15 dB at
the RHS of Fig. 4.8. To facilitate the analysis we define γ = 1 − ξ. As shown
in the LHS Fig. 4.8, the MSEP and MUBSEP QoS B& B and full B&B ap-
proaches outperform all state-of-the-art quantized non-robust techniques for
all values of γ. The proposed PGS approaches outperform all non-robust sub-
optimal methods except for the CI 1-bit Partial B&B which yields similar
performance for γ > 0.1. The proposed PGS approaches also outperform the
MMSE Full B&B method for γ > 0.1. Regarding the proposed robust ap-
proaches it can be seen that the proposed RMMSE B&B method outperforms



Chapter 4. Symbol-Level Precoding under Constant Envelope and
Low-Resolution Constraints with the Conventional MIMO Transmitter 89

0 0.2 0.4 0.6 0.8

10−2

10−1

γ

SE
R

0 0.2 0.4 0.6 0.8

10−3

10−2

10−1

γ

SE
R

MMSE Mapped [48]
MMDDT Full B&B [18]
MMSE Full B&B [48]
ZF-P Unquantized [61]
MSM [14]
CVX-CIO [12]
Linear MMSE Unquantized [28]
Proposed MSEP QoS B&B
Proposed MSEP PGS
Proposed MUBSEP QoS B&B
Proposed MUBSEP PGS
Proposed MSEP Full B&B
Proposed MUBSEP Full B&B
CI 1-bit Partial B&B [25]
Proposed RMMSE Mapped
Proposed RMMSE B&B

0 0.2 0.4 0.6 0.8

10−2

10−1

γ

SE
R

0 0.2 0.4 0.6 0.8

10−3

10−2

10−1

γ

SE
R

MMSE Mapped [48]
MMDDT Full B&B [18]
MMSE Full B&B [48]
ZF-P Unquantized [61]
MSM [14]
CVX-CIO [12]
Linear MMSE Unquantized [28]
Proposed MSEP QoS B&B
Proposed MSEP PGS
Proposed MUBSEP QoS B&B
Proposed MUBSEP PGS
Proposed MSEP Full B&B
Proposed MUBSEP Full B&B
CI 1-bit Partial B&B [25]
Proposed RMMSE Mapped
Proposed RMMSE B&B

Figure 4.8: SER × CSI imperfection factor γ, for K = 3 users, M = 8 antennas,
αs = 4 PSK users’ data, αx = 4 PSK transmit symbols. SNR = 12 dB (left).
SNR = 15 dB (right)

all other quantized approaches for all values of γ which then justifies its suit-
ability for imperfect CSI scenarios. The proposed RMMSE Mapped approach
outperforms all quantized approaches, except for the RMMSE B&B technique,
for γ ≥ 0.5 which justifies its usage for scenarios of high CSI imperfection. The
RHS Fig. 4.8 shows similar results and reaffirms the conclusions discussed re-
garding the LHS Fig. 4.8. Yet, similarly as in section 3.5.2, comparing the plots
reveals that the performance benefits of the proposed RMMSE approach are
more pronounced in the RHS. This outcome is expected, as the RMMSE tech-
nique accounts for CSI imperfection, and as the SNR increases, performance
becomes increasingly dominated by CSI mismatch rather than noise.
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Figure 4.9: SER× SNR, for K = 3 users, M = 8 antennas, αs = 4 PSK users’
data, αx = 4 PSK transmit symbols, CSI quality parameter ξ = 0.4.

4.6.3.2
SER versus SNR for a given CSI Imperfection

This subsection evaluates the SER performance against SNR for ξ = 0.4.
As shown in Fig. 4.9, the MSEP and MUBSEP PGS approaches outperform
all state-of-the-art quantized non-robust techniques for SNR ≥ 4 dB. The
proposed QoS and Full B&B techniques yield a comparable performance as
PGS for SNR ≤ 6 dB. For SNR > 6 dB the QoS and full B&B approaches
yield a decrease in performance when compared with their PGS counterpart.
Regarding the proposed robust approaches it can be seen that the proposed
RMMSE B&B method outperforms all other quantized approaches for all
values of SNR. Finally, the proposed RMMSE Mapped approach outperforms
all quantized approaches except for the RMMSE B&B method which yields
similar performance for SNR ≤ 8 dB.



5
Power Minimization under Quality of Service Constraints for
RIS-based Passive Transmitter MIMO Systems

As mentioned in chapter 1, to enable the foreseen applications of future
generations of wireless communications, attainment of strict QoS requisites,
e.g., low latency, high reliability, and, high data rate [63, 64], are necessary.
While MU-MIMO systems are expected to be a key technology for attain-
ing these requirements [2], as previously discussed, equipping a BS with large
antenna arrays can lead to high hardware costs and increased energy consump-
tion which yields bottlenecks for the practical implementation. In this context,
RIS has emerged as a promising technology for beyond-5G/6G wireless com-
munications as it can improve the EE of wireless systems while offering the
benefits of low-cost and easy integration into the currently deployed wireless
systems [64, 65]. In essence, a RIS comprises an array of reconfigurable passive
reflective elements where the reflection coefficient of each element is real-time
electrically controllable. By adjusting the RIS elements’ reflection coefficients
one can perform passive signal shaping without necessitating a power amplifier
which yields an advantage in terms of EE when compared with conventional
MIMO BSs [66, 67]. With this, RIS has become popular in the literature of
mmWave and multi-antenna communications, most commonly for backscat-
ter communications [68, 69], wireless propagation environment control [70, 71]
and beamforming [72, 73]. Regarding beamforming for RIS, recent advances
showed that RIS is also able to perform simultaneous passive beamforming
and transmit physical information [74, 75], which led to the development of
different studies for this context. The work from [76] compares RIS-based mod-
ulation with spatial multiplexing and discusses the former’s benefits over the
latter. In [77] the authors introduce the concept of modulating intelligent sur-
faces as RIS capable of performing passive beamforming for users served by
a BS, embedding information through backscatter communication, or doing
both simultaneously. The work from [8] demonstrates the advantage of using
RIS for modulation over traditional beamforming, where RIS phase shifts are
independent of transmitted information.

Following the works form [7, 8, 9, 10, 11] this study utilizes the RIS
modulation capabilities with RIS-based passive transmitter setup which real-
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izes low-cost energy-efficient massive MIMO. As proposed in [7, 8, 9, 10, 11],
an efficient transmitter can be realized by illuminating a RIS with an unmod-
ulated carrier signal generated by a nearby RF signal generator and changing
the parameters of the reflecting elements to modulate and transmit informa-
tion symbols. With this, RIS-based passive transmitters realize virtual MIMO
systems with a single RF chain and cost-effective reflecting elements, which
benefits the implementation of massive MIMO with reduced hardware com-
plexity and increased EE. By employing the RIS-based passive transmission
setup the optimization of the transmit signal can be done utilizing a simi-
lar mechanism as in symbol-level precoding [18, 27, 78, 26, 41, 79, 80], which
achieves high-performance by varying the precoder for each symbol vector. In
what follows the system model considered for this chapter is exposed and a
brief revision of the optimization for RIS-based passive transmitters literature
is provided.

5.1
System Model

The system model consists of an RF generator illuminating an RIS with
N reflecting elements that serve K single antenna users as depicted in Fig. 5.1.

. . .

User 1 User 2
User K

hg

hu1 hu2
huK. . .RF

Generator

Controller

Source

P

Figure 5.1: Multiuser MIMO downlink via passive RIS reflection

A symbol-level transmission is considered with the symbols generated by
a memoryless source connected to the RIS controller. The data symbol of the
k-th user is denoted as sk, such that for all k ∈ K = {1, . . . , K}, sk ∈ S,
where S represents all possible symbols of a αs-PSK modulation. The symbols
of all users are described in a stacked vector notation as s = [s1, . . . , sK ]T .
Based on s the controller determines the phase shift vector θ = [θ1, . . . , θN ]T ,
where θn is considered to belong to the set T which is given by T = {θ :
θ = e

jπ(2i+1)
αθ , for i = 1, . . . , αθ}. Given the availability of channel estimation

approaches [81, 82, 83, 84], perfect channel state information at the RIS is
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considered. The received signal of the k-th user zk, for all k ∈ K, reads as

zk =
√
PhH

k θ + wk, (5-1)

with P being the transmit power of the RF generator, wk ∼ CN (0, σ2
w)

representing additive white Gaussian noise, and, hk = hH
uk

diag (hg), being
the effective channel, where hg is the channel between the RF generator and
the RIS and huk

is the channel between the RIS the k-th user.
Each zk is hard detected based on the decision region it belongs. The

decision region of si, termed Si, is the set of points closer to si than all other
valid candidates for detection. This implies that zk is detected as si if zk ∈ Si.
For PSK the decision regions are circle sectors with infinite radius and angle of
2ϕ, where ϕ = π/αs. The detected symbol vector is written as ŝ = [ŝ1, . . . , ŝK ].
It is considered that the RIS controller knows the SEP requirement of all users,
with the SEP requirement denoted as ρk.

5.2
Literature Review

Different works have arisen considering RIS-based passive transmission
schemes. In [85] the authors jointly optimize the total power reflected from
the RIS and the power allocation fraction assigned to each user. In [77] to
maximize each user’s spectral efficiency, the authors propose a joint non-convex
optimization problem using the sum minimum mean-square error criterion.

This section exposes the work from [19] as it is the study most related to
the methods proposed in the chapter. In [19] a power minimization problem is
proposed under the condition that the MDDT of each user is greater or equal
to a given requisite. Following the derivations presented in section 3.2.2.2, one
can construct the MDDTs for the considered system model as

dk =
√
P
(
Re{s∗

kh
H
k θ} sinϕ−

∣∣∣Im{s∗
kh

H
k θ}

∣∣∣ cosϕ
)
, for k ∈ K. (5-2)

Although not directly explicated, the authors consider a sufficiently high-
resolution RIS such that the feasible set of the reflection coefficients T can be
well approximated by T = {θ : |θ|2 = 1}. With this, the power minimization
problem for high-resolution RIS under MDDT constraints (PHMDDT) is
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constructed as

min
θ,P

P (5-3)

s.t. |[θ]n|2 = 1, for n ∈ N , P ≥ 0, rk =
√
PhH

k θe
−jarg(sk),

Re{rk} sinϕ− |Im{rk}| cosϕ ≥ αk, for k ∈ K,

where αk for k ∈ K is the given MDDT requisite. To facilitate solving (5-3)
the MDDT constraints are reformulated by diving both sides by αk

√
P , which

yields

1√
P

≤ 1
αk

(Re{r̂k} sinϕ− |Im{r̂k}| cosϕ) , (5-4)

where r̂k = hH
k θe

−jarg(sk). By introducing the variable t = 1√
P

the power
minimization problem described in (5-3) is reformulated as

max
θ,t

t (5-5)

s.t. |[θ]n|2 = 1, for n ∈ N , r̂k = hH
k θe

−jarg(sk),

t ≤ 1
αk

(Re{r̂k} sinϕ− |Im{r̂k}| cosϕ) , for k ∈ K,

which is equivalently written as

max
θ

min
k∈K

1
αk

(Re{r̂k} sinϕ− |Im{r̂k}| cosϕ) (5-6)

s.t. |[θ]n|2 = 1, for n ∈ N , r̂k = hH
k θe

−jarg(sk).

Defining aH
k = 1

αk
hH

k e
−jarg(sk) for k ∈ K (5-6) is cast as

min
θ

max
k∈K

∣∣∣Im{aH
k θ}

∣∣∣ cosϕ− Re{aH
k θ} sinϕ (5-7)

s.t. |[θ]n|2 = 1, for n ∈ N .

To avoid the absolute value and the max(·) and to get a twice differentiable
objective the objective is written in terms of the log-sum-exp function which
yields

min
θ

ϵ ln
K∑

k=1
e

(
Im{aH

k
θ} cos ϕ−Re{aH

k
θ} sin ϕ

ϵ

)
+ e

(
Im{aH

k
θ} cos ϕ+Re{aH

k
θ} sin ϕ

ϵ

)
(5-8)

s.t. |[θ]n|2 = 1, for n ∈ N .

Problem (5-8) is the minimization of a convex function under the N -
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dimensional complex circle manifold M =
{
θ ∈ CN | [θ]∗n [θ]n = 1, for n ∈ N

}
.

By defining

h(θ) = ϵ ln
K∑

k=1
e

(
Im{aH

k
θ} cos ϕ−Re{aH

k
θ} sin ϕ

ϵ

)
+ e

(
Im{aH

k
θ} cos ϕ+Re{aH

k
θ} sin ϕ

ϵ

)
, (5-9)

the problem is described as an unconstrained problem on M as

min
θ∈M

h(θ), (5-10)

where applying the Riemannian conjugate gradient (RCG) algorithm supports
finding a local optimal solution. The authors of [19] propose a channel-level
approach that involves solving (5-10) for each possibility s ∈ SK . Although the
methods proposed in the following sections of this thesis are also compatible
with this idea, they are designed for symbol-level computation since, even for
midsize systems, solving αK

s optimization problems for each channel coherence
time either leads to a high latency or requires a high number of parallel
optimization problem hardware.

5.3
Contributions of this chapter

Following the path of [19], this chapter proposes a power minimization
problem under QoS requisites. Yet, unlike in [19], it focuses on minimizing
the power radiated by the RF generator to the RIS under the condition that
the SEP of the users is below a given requisite. The discrete phase-shift RIS
model is considered such that the reflecting elements’ coefficients are restricted
to a discrete set. For QPSK users’ data, where the SEP can be expressed
with tabled functions [26], the study proposes the power minimization under
SEP constraints (PSEP) problem. For the general case of M -PSK users’ data,
utilizing the SEP would lead to constraint functions that require evaluation
via Monte Carlo methods. With this, the PSEP problem is reformulated
substituting the SEP by the UBSEP [26] in the constraint functions. Due to
the UBSEP functions being an upper-bound on the SEP [86], the resulting
problem of power minimization under UBSEP constraints (PUBSEP) is a
restricted version of the PSEP problem. Based on the PSEP and PUBSEP
problems we build on the QoS B&B algorithm by accepting not only solutions
that attain the given target power budget of the system but also solutions that
are sufficiently close to the optimal such that it is considered unnecessary to
continue the search process. Numerical results underline that by utilizing the
proposed B&B method significant complexity reduction can be achieved with
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a minor increase in transmit power.
For the case where the number of discrete phase-shift RIS is large,

i.e., for a high-resolution RIS, a reduced complexity method is proposed by
approximating the discrete feasible set to its continuous counterpart. This leads
to reformulating the proposed PSEP and PUBSEP problems as constrained
optimization problems on an oblique manifold, which are solved via BMs.
The proposed BM successively adjusts the transmit power while evaluating
the feasibility of the QoS constraints by solving, via the RCG algorithm, an
auxiliary problem dependent only on the coefficients of the RIS reflecting
elements. Numerical results show that the proposed techniques yield low
complexity with reduced transmit power compared to the state-of-the-art
approach from [19].

5.4
Problem formulation

Under the considered system model the problem of power minimization
under the condition that the SEP of each user k is below the given requisite,
ρk, is cast as

min
θ,P ∈R+

P (5-11)

s.t. P (ŝk ̸= sk|θ, P ) ≤ ρk, for k ∈ K,

[θ]n ∈ T , for n ∈ N .

As before, the detector decides for sk when the received symbol zk belongs to
Sk. With this, the SEP of the k-th user can be written as

P (ŝk ̸= sk|θ, P ) = 1 − P (zk ∈ Sk|θ, P ) = 1 − 1
πσ2

w

∫
Sk

e−
|r−

√
P hH

k
θ|2

σ2
w dr. (5-12)

The integral in (5-12) has tabled solutions for αs ∈ {2, 4} and for αs /∈ {2, 4}
requires solution via Monte-Carlo methods. With this, for the case of αs ∈
{2, 4} the exact computation of the SEP is considered. For other PSK cases,
this study considers substituting P (ŝk ̸= sk|θ, P ) in (5-11) by the union-bound
SEP [26].

5.4.1
Power Minimization under SEP constraints

For αs ∈ {2, 4} the real and imaginary parts of the data symbols can be
considered as independent. This allows the decision region Sk to be partitioned
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as Rk ∩Ik, where Rk and Ik are the decision regions of the real and imaginary
parts of sk. With this, P (ŝk ̸= sk|θ, P ) = 1−P (zk ∈ Rk|θ, P ) P (zk ∈ Ik|θ, P ),
where

P (zk ∈ Rk|θ, P ) =
∫ ∞

0

1√
πσ2

w

e
−

(t−sign(Re{sk})Re{hH
k

θ})2

σ2
w dt

= Φ
(√

2P
σ2

w

sign(Re {sk})Re{hH
k θ}

)
, (5-13)

P (zk ∈ Ik|θ, P ) =
∫ ∞

0

1√
πσ2

w

e
−

(t−sign(Im{sk})Im{hH
k

θ})2

σ2
w dt

= Φ
(√

2P
σ2

w

sign(Im {sk})Im{hH
k θ}

)
, (5-14)

where Φ(·) denotes the cumulative Gaussian distribution function. As a
consequence, the SEP of the k-th user can be cast as

P (ŝk ̸= sk|θ, P ) = 1 − Φ
(√

P

σ2
w

vr,k(θ)
)

Φ
(√

P

σ2
w

vi,k(θ)
)
, (5-15)

where vr,k (θ) =
√

2 sign (Re {sk}) Re{hH
k θ} and vi,k(θ) =

√
2 sign (Im {sk}) Im{hH

k θ}. Constraining the SEP to be smaller or equal
to ρk is equivalent to constraining the correct detection probability to be
greater or equal to 1 − ρk. With this, one can write (5-11) as

min
θ,P ∈R+

P (5-16)

s.t. [θ]n ∈ T , for n ∈ N ,

Φ
(√

P

σ2
w

vr,k(θ)
)

Φ
(√

P

σ2
w

vi,k(θ)
)

≥ 1 − ρk, for k ∈ K.

Problem (5-16) is rewritten with real-valued variables as

min
θr,P ∈R+

P (5-17)

s.t. [θr]2n−1 + j [θr]2n ∈ T , for n ∈ N ,

Φ
(√

P

σ2
w

hT
1,kθr

)
Φ
(√

P

σ2
w

hT
2,kθr

)
≥ 1 − ρk, for k ∈ K,
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where θr = R(θ) = [Re {[θ]1} , Im {[θ]1} , · · · , Re {[θ]N} , Im {[θ]N}]T ,

hT
1,k =

[
[γR,k]1,−[γI,k]1, . . . , [γR,k]N ,−[γI,k]N

]
, (5-18)

hT
2,k =

[
[γI,k]1}, [γR,k]1, . . . , [γI,k]N}, [γR,k]N}

]
, (5-19)

with γR,k =
√

2 sign (Re {sk}) Re{hH
k }, and, γI,k =

√
2 sign (Im {sk}) Im{hH

k }.
Finally, the PSEP problem is cast by taking the logarithm of the SEP
constraints which reads as

min
θr,P ∈R+

P (5-20)

s.t. [θr]2n−1 + j [θr]2n ∈ T , for n ∈ N ,

−
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

hT
ξ,kθr

))
− βk ≤ 0, for k ∈ K,

with βk = − ln(1−ρk). As mentioned before the PSEP formulation is restricted
to the cases where the users’ data is either BPSK or QPSK.

5.4.2
Power Minimization under Union-Bound SEP constraints

For the cases in which αs /∈ {2, 4} this study considers substitut-
ing P (ŝk ̸= sk|θ, P ) in (5-11) by the UBSEP. As the UBSEP, denoted by
Pub (ŝk|θ, P ), is an upper-bound on the SEP [86, 26], substituting the con-
straint P (ŝk ̸= sk|θ, P ) ≤ ρk by Pub (ŝk|θ, P ) ≤ ρk yields a restriction of the
feasible set of the original problem, implying that the restricted problem’s op-
timal transmit power is larger or equal to the original one. The union-bound
inequality states that for any finite set of events, P (⋃i Ai) ≤ ∑

i P(Ai), with
Ai representing an event. With this, P (ŝk ̸= sk|θ, P ) is bounded by

P (ŝk ̸= sk|θ, P ) = P (zk ∈ Z1 ∪ Z2|θ, P ) (5-21)

≤ P (zk ∈ Z1|θ, P ) + P (zk ∈ Z2|θ, P ) = Pub (ŝk|θ, P ) ,

with Z1 and Z2 depicted in Fig. 5.2. The individual probabilities are computed
based on the MDDTs, d1,k and d2,k, as

P (zk ∈ Z1|θ, P ) =
∫ ∞

d1,k

1√
πσ2

w

e
− t2

σ2
w dt = 1

2erfc
(
d1,k

σw

)

P (zk ∈ Z2|θ, P ) =
∫ ∞

d2,k

1√
πσ2

w

e
− t2

σ2
w dt = 1

2erfc
(
d2,k

σw

)
.
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si−1

si+1

d1

d2

Z1

Z2

Z1 ∩ Z2

Figure 5.2: Representation of the union-bound

The MDDTs are computed by rotating the coordinate system such that the
symbol of interest is placed on the real axis. This is done by multiplying both
sk and hH

k θ by s∗
k which results in s∗

ksk = 1 and ωk = s∗
kh

H
k θ. With the rotated

coordinate system the MDDTs are computed as

d1,k =
√
P
(
Re{s∗

kh
H
k θ} sinϕ− Im{s∗

kh
H
k θ} cosϕ

)
(5-22)

d2,k =
√
P
(
Re{s∗

kh
H
k θ} sinϕ+ Im{s∗

kh
H
k θ} cosϕ

)
. (5-23)

With this, the bound on P (ŝk ̸= sk|θ, P ) is given by

P (ŝk ̸= sk|θ, P ) ≤ Pub (ŝk|θ, P ) (5-24)

= 1
2erfc

(
d1,k (θ, P )

σw

)
+ 1

2erfc
(
d2,k (θ, P )

σw

)
.

Substituting (5-24) in (5-11) yields the following problem

min
θ,P ∈R+

P (5-25)

s.t. [θ]n ∈ T , for n ∈ N ,

2∑
ξ=1

1
2erfc

(
dξ,k (θ, P )

σw

)
≤ ρk, for k ∈ K.

Considering ρk ≤ 0.5, for k ∈ K, the UBSEP constraints are only achievable
with all users having nonnegative MDDTs. With this, dξ,k (θ, P ) ≥ 0 for
ξ ∈ {1, 2} and k ∈ K is an implicit constraint of problem (5-25). The PUBSEP
problem is finally cast writing (5-25) in real-valued formulation and explicitly
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including the MDDTs restriction, which yields

min
θr,P ∈R+

P (5-26)

s.t. [θr]2n−1 + j [θr]2n ∈ T , for n ∈ N , Uθr ⪯ 0,
2∑

ξ=1

1
2erfc

(√
P

σ2
w

uT
ξ,kθr

)
− ρk ≤ 0, for k ∈ K.

where u1,k =
(
γR,k sin (ϕ) − γI,k cos (ϕ)

)T
and u2,k =

(
γR,k sin (ϕ) + γI,k cos (ϕ)

)T
,

with

γR,k = [Re{[ζk]1},−Im{[ζk]1}, . . . ,Re{[ζk]N},−Im{[ζk]N}], (5-27)

γI,k = [Im{[ζk]1},Re{[ζk]1}, . . . , Im{[ζk]N},Re{[ζk]N}], (5-28)

ζk = s∗
kh

H
k and U = −[βT

1 ,β
T
2 ]T , with β1 = [u1,1, . . . ,u1,K ]T and β2 =

[u2,1, . . . ,u2,K ]T . Note that, dξ,k =
√
PuT

ξ,kθr, for ξ ∈ {1, 2} and k ∈ K.

5.5
Proposed Branch-and-Bound Algorithm

This section proposes a B&B method that accepts as a solution any pair
(Pout,θout) ∈ H, where

H =
{
(P,θ) : θ ∈ T N ∧ (P ≤ Pb ∨ 10 log10(P/Popt) ≤ γ)

}
, (5-29)

with Pb is the target power budget of the system, Popt is the optimal transmit
power and γ is the acceptable power increase factor. With this, the algorithm
reduces the number of branches explored by allowing for suboptimal solutions
that either attain the system’s target power budget or are sufficiently close to
the optimal solution such that further computation is considered unnecessary.

The first step of the proposed algorithm consists of the computation of
an upper-bound solution and the evaluation of the stopping criteria. To this
end, the original problems are relaxed substituting the discrete feasible set T N

by convex hull P , described as Aθr ⪯ b, where

A =
[
(IN ⊗ β1)T (IN ⊗ β2)T . . . (IN ⊗ βαθ

)T
]T

,

βi =
[
cos

(
2πi
αθ

)
− sin

(
2πi
αθ

)]
, i ∈ {1, . . . , αθ} , b = cos

(
π

αθ

)
1Nαθ

,

with 1Nαθ
being the column vector with Nαθ ones. By substituting T N by its

convex hull, the optimization problems described in (5-20) and (5-26) are cast
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in the form of

min
θr,P ∈R+

P (5-30)

s.t. fk(θr, P ) ≤ 0, for k ∈ K, Gθr ⪯ t,

where, for the PSEP case, G = A, t = b and

fk(θr, P ) = −
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

hT
ξ,kθr

))
− βk, (5-31)

and for the PUBSEP case, G = [AT ,UT ]T and t = [bT ,0T ]T , and

fk(θr, P ) =
2∑

ξ=1

1
2erfc

(√
P

σ2
w

uT
ξ,kθr

)
− ρk. (5-32)

By optimally solving (5-30) one gets θr,lb, which implies θlb = C(θr,lb) ∈ P ,
and its corresponding transmit power Plb. Note that, θlb ∈ P can also belong
to T N once P ∩T N ̸= ∅. If this is the case, Popt = Plb and θopt = θlb, with Popt

and θopt being the optimal solutions of the original problem. Yet, if θlb /∈ T N

an upper bound solution on θopt is achieved by projecting to θlb to T N . The
projection method considered is uniform quantization (UQ), denoted by the
operator Q(·). By this approach, the p-th entry of θub = Q(θlb), denoted as
θub,p, is computed as θub,p = arg min

i∈{1,...,αθ}
|θlb,p − θi|, where θlb,p denotes the p-

th entry of θlb and θi is the i-th element of T . Based on θr,ub = R(θub),
the corresponding transmit power is given by the solution of the following
univariate upper bounding problem

Pub = min
P ∈R+

P (5-33)

s.t. fk(θr,ub, P ) ≤ 0, for k ∈ K.

If Pub ≤ Pb, the upper bound solution pair (Pub, θub) attains the target power
budget of the system. On the other hand, if 10 log10 (Pub/Plb) ≤ γ the solution
pair is sufficiently close to the optimal solution such that further computation
is considered unnecessary. With this, for both cases, the algorithm terminates
with θout = θub and Pout = Pub. In what follows, the PSEP and PUBSEP
concepts are applied to (5-30) and (5-33). By substituting T N by its convex
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hull, the relaxed PSEP problem is cast as

min
θr,P

P (5-34)

s.t. Aθr ⪯ b, P ≥ 0,

−
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

hT
ξ,kθr

))
≤ βk, for k ∈ K.

An equivalent problem is formulated by defining the vector x = [
√
PθT

r ,
√
P ]T

and applying the square root to the objective, which reads as

min
x

cTx (5-35)

s.t. Rx ⪯ 0(Nαθ+1),

−
2∑

ξ=1
ln
(
Φ
(
qT

ξ,kx
))

≤ βk, for k ∈ K,

where q1,k = (1/σw)[hT
1,k, 0]T , q2,k = (1/σw)[hT

2,k, 0]T , c = [0T
2N , 1]T , M =

[A,0Nαθ
],R = [(M−bcT )T ,−c]T . As demonstrated in Appendix A.3 the SEP

constraint functions from (5-35) are convex in x. With this, (5-35) is a convex
problem solvable with the barrier method [42, Section 11.3]. From the solution
of (5-35), termed xlb, one can extract Plb and θlb = C(θr,lb). The upper
bound solution θub = Q(θlb) can then be converted to real-valued notation
as θr,ub = R(θub) and utilized for computing the upper bound transmit power
Pub with

Pub = min
P ∈R+

P (5-36)

s.t. −
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

hT
ξ,kθr,ub

))
≤ βk, for k ∈ K.

If either hT
1,kθr,ub ≤ 0 or hT

2,kθr,ub ≤ 0 for any k ∈ K, problem (5-36) is
infeasible for ρk < 0.5 and Pub = ∞. As in the PSEP case, the PUBSEP
relaxed problem is formulated with x = [

√
PθT

r ,
√
P ]T as

min
x

cTx (5-37)

s.t. Dx ⪯ 0(Nαθ+2K+1),

1
2

2∑
ξ=1

erfc
(
νT

ξ,kx
)

≤ ρk, for k ∈ K,

where ν1,k = (1/σw)[uT
1,k, 0]T , ν2,k = (1/σw)[uT

2,k, 0]T , D = [RT ,CT ,−c]T and
C = [U ,0]. As discussed in appendix A.4, the UBSEP constraints under the
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Figure 5.3: Tree representation of the set T N for a system with N = 2 reflecting
elements and QPSK precoding modulation (αθ = 4)

condition Cx ⪯ 0 are convex, which implies that (5-37) is a convex problem
solvable with the barrier method [42, Section 11.3]. From xlb one can extract
Plb and θlb = C(θr,lb). The upper bound solution θub = Q(θlb) can then be
converted to real-valued notation as θr,ub = R(θub) and utilized for computing
the upper bound transmit power Pub with

Pub = min
P ∈R+

P (5-38)

s.t. 1
2

2∑
ξ=1

erfc
(√

P

σ2
w

uT
ξ,kθr,ub

)
≤ ρk, for k ∈ K.

As before, if uT
ξ,kθr,ub ≤ 0, for any ξ ∈ {1, 2} and k ∈ K, problem (5-38) is

infeasible for ρk < 0.5 and Pub = ∞.

5.5.1
Branch-and-Bound Tree Search Stage

If neither stopping criteria are met at the initialization step, i.e., if
θlb /∈ T N , Pub > Pb and 10 log10 (Pub/Plb) > γ, the proposed B&B algorithm
proceeds to the tree search stage where the tree represents the set T N . To
this end, the smallest known upper bound is initialized as P̌ = Pub and its
corresponding reflection coefficient vector as θ̌ = θub. The tree is constructed
considering that the p-th reflection coefficient represents the p-th layer and each
possible subvector f ∈ X p represents one branch. An example of a tree for a
system with N = 2 reflecting elements and αθ = 4, is shown in Fig. 5.3. The
tree search process performs breadth-first search to find a vector θout ∈ T N

that attains the condition 10 log10(P (θout)/Popt) ≤ γ with Popt = P (θopt). During
the search process, if an intermediate solution pair (Pint,θint) with θint ∈ T N

and Pint ≤ Pb is found, the process terminates with θout = θint and Pout = Pint.
The process starts at layer value p = 1 by fixing p entries of θ such that
the reflection coefficient vector becomes θ = [fT

i ,v
T ]T with f i ∈ T p and
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θr = R(θ) = [fT
r,i,v

T
r ]T . With this, a subproblem is assembled as

{Popt|f i
,vr,opt|f i

} = min
vr,P ∈R+

P (5-39)

s.t. [vr]2n−1 + j [vr]2n ∈ T , for n ∈ {1, . . . , N − p},

U ′vr ⪯ Ufixedf r,i, fk(f r,i,vr, P ) ≤ 0, for k ∈ K,

where Popt|f i
is the optimal transmit power for the fixed vector f i, Ufixed and

U ′ correspond to the first 2p and subsequent 2(N − p) columns of U , and, the
constraint U ′vr ⪯ Ufixedf r,i is only taken into account for the PUBSEP case.
A lower bounding subproblem on Popt|f i

is obtained by relaxing T (N−p) to its
convex hull J , which yields

{Plb|f i
,vr,lb|f i

} = min
vr,P ∈R+

P (5-40)

s.t. C(vr) ∈ J , U ′vr ⪯ Ufixedf r,i, fk(f r,i,vr, P ) ≤ 0, for k ∈ K,

where the constraint U ′vr ⪯ Ufixedf r,i is only taken into account for the
PUBSEP case. An upper bound on Popt|f i

can be computed by projecting
the vector vlb|f i

= C(vr,lb|f i
) to T (N−p) resulting in vub|f i

= Q(vlb|f i
) and

computing the corresponding transmit power Pub|f i
, with θr,ub|f i

= R(θub|f i
) =

R([fT
i ,v

T
ub|f i

]T ) using (5-33). If the upper bound solution Pub|f i
≤ Pb, the

solution pair, (Pub|f i
,θub|f i

), attains the low-resolution constraints and the
target power budget of the system. With this, the algorithm terminates with
Pout = Pub|f i

and θout = θub|f i
. If, however, Pub|f i

> Pb, the algorithm
proceeds by selecting the next branch f i+1 of the layer. After all possible
valid branches in a given layer are evaluated, i.e., all valid f i were fixed
and its conditioned upper and lower bounds computed, the smallest known
upper bound and its corresponding upper bound solution are updated as
P̌ = min

i
(Pub|f i

, P̌ ) and θ̌ = θub|f i
. With P̌ the algorithm proceeds to the

pruning step where the set of approved branches, G ′
p, in the current layer p is

constructed. The proposed pruning step aims to exclude from the search set all
reflection coefficient vectors θ that belong to {θ : 10 log10 (P (θ)/Popt) > γ}. This
can implicitly be done by approving branches f i such that Plb,f i

< (1 − δ)P̌
with δ = 1 − 10− γ

10 . With this, the set of approved branches for the given layer
p is constructed as G ′

p = {f i|Plb,f i
< (1 − δ)P̌}. After pruning, the set of valid

subvectors is updated and the algorithm repeats this process in the next layer.
If the algorithm reaches the last layer, only a few valid candidate solutions
are expected to remain. With this, they are all evaluated against P̌ , and the
optimal value is determined by the vector that yields the minimum value of
P .
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5.5.1.1
Subproblem Formulation

A general formulation of the lower bounding subproblems of the proposed
B&B algorithm is given in (5-40). In what follows, the specific PSEP and
PUBSEP subproblems are devised. Based on the PSEP problem from (5-34)
one rewrites (5-40) as

{Plb|f i
,vr,lb|f i

} = min
vr,P ∈R+

P (5-41)

s.t. C(vr) ∈ J , −
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

(
κT

ξ,kf r,i + ϱT
ξ,kvr

)))
≤ βk, for k ∈ K,

where J is the convex hull of T (N−p), κξ,k and ϱξ,k correspond to the first
2p, and, of the subsequent 2(N − p) entries of hξ,k, respectively. The lower
bounding PSEP subproblem is cast by rewriting (5-41) using the auxiliary
variable x̃ = [

√
PvT

r ,
√
P ]T , which yields

x̃f i
= min

x̃
dT x̃ (5-42)

s.t.
(
R′ +Rfixedf r,id

T
)
x̃ ⪯ 0,

−
2∑

ξ=1
ln
(

Φ
(
κT

ξ,kf r,id
T x̃+ψT

ξ,kx̃

σw

))
≤ βk, for k ∈ K,

where d = [0T
2(N−p), 1]T , Rfixed is composed of the first 2p columns of R, R′

consists of the last 2(N − p) + 1 columns of R and ψξ,k = [ϱT
ξ,k, 0]T . Similar

steps can be applied with the PUBSEP formulation such that the PUBSEP
lower bounding subproblem is written as

x̃f i
= min

x̃
dT x̃ (5-43)

s.t.
(
D′ +Dfixedf r,id

T
)
x̃ ⪯ 0,

2∑
ξ=1

1
2erfc

(
ηT

ξ,kf r,id
T x̃+ ζT

ξ,kx̃

σw

)
≤ ρk, for k ∈ K, ξ ∈ {1, 2},

where ζξ,k = [λT
ξ,k, 0]T , ηξ,k and λξ,k correspond to the first 2p and of the

subsequent 2(N − p) entries of uξ,k, respectively, and, Dfixed and D′ are
composed of the first 2p and of the last 2(N−p)+1 columns ofD, respectively.
Solving (5-42) and (5-43) yields x̃f i

from which vr,lb|f i
and Plb|f i

are readily
extracted. The steps of the proposed B&B method are detailed in Algorithm
8.
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Algorithm 8 Proposed B&B Algorithm
Inputs: hk for k ∈ K, s, T , Pb, δ, Criterion Output: θout, Pout

If Criterion = PSEP → Solve (5-35) to get xlb = [
√

Plbθr,lb,
√

Plb]T
If Criterion = PUBSEP → Solve (5-37) to get xlb = [

√
Plbθr,lb,

√
Plb]T

If θlb = C(θr,lb) ∈ T N → terminate with θout = θlb and Pout = Plb
Compute θub = Q(θlb) and get θr,ub = R(θub)
If Criterion = PSEP ∧ hT

ξ,kθr,ub ≥ 0 ∀ ξ ∈ {1, 2} and k ∈ K → Solve (5-36) to get Pub
Else If Criterion = PUBSEP ∧ uT

ξ,kθr,ub ≥ 0 ∀ ξ ∈ {1, 2} and k ∈ K → Solve (5-38) to
get Pub
Else → Set θub = ∅ and Pub = ∞
If Pub ≤ Pb ∨ 10 log10 (Pub/Plb) ≤ γ → terminate with θout = θub and Pout = Pub

Define θ̌ = θub, P̌ = Pub and the first level (p = 1) of the tree by Gp := T
for p = 1 : N − 1 do

Partition Gp in f1, . . . ,f |Gp|
for i = 1 : |Gp| do

If Criterion = PSEP
Conditioned on f r,i = R(f i) solve (5-42) to get x̃f i

and extract Plb|f i
and

vlb|f i
= C(vr,lb|f i

)
Map vub|f i

= Q(vlb|f i
) and get θub|f i

= [fT
i ,vT

ub|f i
]T

If hT
ξ,kθub|f i

≥ 0, ∀ξ ∈ {1, 2} and k ∈ K
Based on θr,ub|f i

= R(θub|f i) solve (5-36) to get Pub|f i

If Pub|f i
≤ Pb → terminate with θout = θub|f i

and Pout = Pub|f i

Else If Criterion = PUBSEP
Conditioned on f r,i = R(f i) solve (5-43) to get x̃f i

and extract Plb|f i
and

vlb|f i
= C(vr,lb|f i

)
Map vub|f i

= Q(vlb|f i
) and get θub|f i

= [fT
i ,vT

ub|f i
]T

If uT
ξ,kθub|f i

≥ 0, ∀ξ ∈ {1, 2} and k ∈ K
Based on θr,ub|f i

= R(θub|f i) solve (5-38) to get Pub|f i

If Pub|f i
≤ Pb → terminate with θout = θub|f i

and Pout = Pub|f i

end If
end for
Update P̌ = min(P̌ , Pub|f i

) and update θ̌ accordingly
Based on P̌ and on the lower bounds build the set G′

p := {θlb|f i
| Plb|f i

< (1−δ)P̌ , i =
1, . . . , |Gp|}

Define the set for the next level in the tree: Gp+1 := G′
p × T

end for
for i = 1 : |GN | do

If Criterion = PSEP ∧ hT
ξ,kθi ≥ 0 → Solve (5-36) with θr,ub = R(θi) and get Pi

If Criterion = PUBSEP ∧ uT
ξ,kθi ≥ 0 → Solve (5-38) with θr,ub = R(θi) and get Pi

If Pi ≤ Pb → terminate with θout = θi and Pout = Pi

end for
The transmit power reads as Pout = mini∈{1,...,|GN |}(P̌ , Pi) and the reflection coefficients
are given by θout = θi

5.5.2
On the Computational Complexity of the Algorithm

The initialization problems, described in (5-35) and (5-37), the upper
bounding problems from (5-36) and (5-38) and lower bounding subproblems,
described in (5-42) and (5-43), are convex with twice continuously differentiable
real-valued functions. With this, according to [42, Chapter 11] they are solvable
with the barrier method. The UBCO of the barrier method can be summarized
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as O(√φq3), [26],[42, Section 11.5.6], with φ being the number of inequality
constraints and q being the number of optimization variables. By substituting
the values of φ and q for the different problems one reaches the conclusion
that solving (5-35) and (5-37) yields UBCOs of O(N3.5 + N3

√
K), (5-36)

and (5-38) yields UBCOs of O(
√
K), and (5-42) and (5-43) yields UBCOs

of O(N3.5 + N3
√
K). For executing Algorithm 8 it is necessary to solve

the initialization problem once and the upper bounding problems and lower
bounding subproblems, J and B times, respectively. Since by the design of the
algorithm J ≤ αθB the UBCO of the proposed B&B algorithms is given by
O(B(N3.5 +N3

√
K)).

5.6
Problem Formulation for High-Resolution RIS

To derive a low-complexity approach for the case of high-resolution
reflecting elements this section considers that, for a sufficiently large αθ, the
discrete set T can be well approximated by C = {θ : |θ|2 = 1}. With this, the
PSEP and PUBSEP problems are reformulated based on the approximation
of the original discrete set T by C. Substituting T by C for the PSEP problem
yields the following optimization problem

min
θ,P ∈R+

P (5-44)

s.t. |[θ]n|2 = 1, for n ∈ N ,

− ln
(

Φ
(√

P

σ2
w

vr,k(θ)
))

− ln
(

Φ
(√

P

σ2
w

vi,k(θ)
))

≤ βk, for k ∈ K.

The optimization problem of power minimization for high-resolution RIS under
SEP constraints (PHSEP) is cast by rewriting (5-44) with real-valued variables
which yield

min
Θ∈M,P ∈R+

P (5-45)

−
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

tr (ΘHξ,k)
))

≤ βk, for k ∈ K,

where bR,k =
√

2 sign(Re{sk})hH
k , bI,k =

√
2 sign(Im{sk})hH

k ,

M = {Θ ∈ R2×N : [ΘT Θ](n,n) = 1, for n ∈ N },

Θ =
(Re{θ})T

(Im{θ})T

 , H1,k =
 Re{bT

R,k}
−Im{bT

R,k}

T

, H2,k =
Im{bT

I,k}
Re{bT

I,k}

T

. (5-46)
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Similarly, substituting T by C with PUBSEP formulation yields the following
problem

min
θ,P

P (5-47)

s.t. |[θ]n|2 = 1, for n ∈ N , P ≥ 0,
2∑

ξ=1

1
2erfc

(
dξ,k (θ, P )

σw

)
≤ pk, for k ∈ K.

The problem for power minimization for high-resolution RIS under UBSEP
constraints (PHUBSEP) is cast by rewriting (5-47) with real-valued variables
which yields

min
Θ∈M,P ∈R+

P (5-48)
2∑

ξ=1

1
2erfc

(√
P

σ2
w

tr (ΘU ξ,k)
)

≤ ρk, for k ∈ K.

where ak = s∗
kh

H
k , and,

U 1,k =
 Re{aT

k } sin(ϕ) − Im{aT
k } cos(ϕ)

−Re{aT
k } cos(ϕ) − Im{aT

k } sin(ϕ)

T

, (5-49)

U 2,k =
Re{aT

k } sin(ϕ) + Im{aT
k } cos(ϕ)

Re{aT
k } cos(ϕ) − Im{aT

k } sin(ϕ)

T

.

As demonstrated in Appendix A.5, the SEP constraint functions are convex
and, although the UBSEP functions are not geodesically convex in M, one
can restrict the feasible set such that UBSEP functions are geodesically
convex. Yet, due to the set M not being geodesically convex [87, section
2.3], the optimization problems from (5-45) and (5-48) are not geodesically
convex, implying that the application of descent methods only guarantees local
optimality.

5.7
Local Optimum via the Proposed Bisection Method

A locally optimal solution for the proposed high-resolution problems is
computed via the proposed bisection method. The method is initialized with
P− as a lower bound on Plopt and P+ as an upper bound on Plopt. The variable P
is fixed as P0 = (P+ + P−)/2 and the remaining problem’s feasibility is evaluated.
If feasible, P+ is updated as P0, otherwise, P− is updated as P0. This is done
recursively until the power difference between two consecutive iterations is
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Algorithm 9 Proposed Bisection Method
Inputs: P+ ≥ Popt, P− ≤ Popt, fa < 0, imax > 0, ϵtol > 0 Output: Popt, θopt
Define i = 0, Pa = P0
While (Pa − P0 ≤ ϵtol ∨ i ≤ imax) ∧ fa < 0

Solve (5-56) with RCG [88] considering P = P0 and get Θopt
Compute fa = f(Θopt) with (5-54)
If fa ≤ 0 → Update P+ = P0
Else → Update P− = P0
Update Pa = P0, P0 = (P+ + P−)/2 and i = i + 1

Update Popt = P0 and θopt = [Θopt](1,:) + j [Θopt](2,:)

below an optimality tolerance ϵtol. For a given P , the general optimization
problem is written as

findΘ∈M Θ (5-50)

s.t. fk(Θ) ≤ 0, for k ∈ K,

where, for the PHSEP formulation

fk(Θ) = −
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

tr (ΘHξ,k)
))

− βk, (5-51)

and for the PHUBSEP formulation

fk(Θ) =
2∑

ξ=1

1
2erfc

(√
P

σ2
w

tr (ΘU ξ,k)
)

− ρk. (5-52)

The strategy for solving (5-50) consists of minimizing the maximum constraint
function and evaluating if the locally optimal solution attains it. This yields
the following optimization problem

Θlopt = min
Θ∈M

max
k∈K

fk(Θ). (5-53)

Based on Θlopt the feasibility of (5-53) is evaluated by checking f(Θlopt) ≤ 0,
where

f(Θ) = max
k∈K

fk(Θ). (5-54)

If the condition holds the problem is feasible and Θlopt is a solution of (5-50).
Otherwise, at least one constraint cannot be fulfilled with the given transmit
power P , implying that (5-50) is infeasible. The steps of the BM are further
detailed in algorithm 9.
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5.7.1
Evaluating Feasibility via Riemannian Conjugate Gradient

The utilization of algorithm 9 implies a method for locally solving the
unconstrained problem in (5-53). This is done with the RCG algorithm [89,
Section 3.1], designed for solving unconstrained minimization problems in
Riemannian manifolds. Since the RCG approach requires a twice continuously
differentiable objective, f(Θ) is substituted by its softmax approximation
computed with the log-sum-exp function LSE(x) = ln (∑i e

xi), which yields

f0(Θ) = ln
(

K∑
k=1

efk(Θ)
)
. (5-55)

The precision of the approximation obeys the following bound

max
{i=1,...,n}

xi ≤ LSE(x1, . . . , xn) ≤ max
{i=1,...,n}

xi + log(n).

Note that, LSE(x) is a non-decreasing function, which implies that for the
regions where f(Θ) is convex the convexity is preserved. With this, (5-53) is
rewritten as

min
Θ∈M

ln
(

K∑
k=1

efk(Θ)
)
. (5-56)

A locally optimal solution to the optimization problem described in (5-56) is
computed via the RCG algorithm. To this end, however, the Euclidean gradient
of f0(Θ) and a strictly feasible starting point Θ0 are required. In what follows
these values are computed for both design criteria.

5.7.1.1
PHSEP RCG

With the PHSEP formulation the Euclidean gradient ∇f0(Θ) is given by

∇f0(Θ) =
(

K∑
k=1

efk(Θ)∇fk

)(
K∑

k=1
efk(Θ)

)−1

, (5-57)

∇fk(Θ) = −
√

P

2πσ2
w

2∑
ξ=1

e
− P

2σ2
w

tr(ΘHξ,k)2

HT
ξ,k

Φ
(√

P
σ2

w
tr (ΘHξ,k)

) . (5-58)

As demonstrated in appendix A.5, the SEP functions fk(Θ) are matrix convex
in R2×N , which implies that f0(Θ) is also matrix convex. With this, initializing
the RCG algorithm with any Θ0 ∈ M guarantees convergence to a locally
optimal solution.
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5.7.1.2
PHUBSEP RCG

For PHUBSEP the values of the Euclidean gradient read as

∇f0(Θ) =
(

K∑
k=1

efk(Θ)∇fk

)(
K∑

k=1
efk(Θ)

)−1

, (5-59)

∇fk(Θ) = −
√

P

πσ2
w

2∑
ξ=1

e
− P

σ2
w

·tr(ΘUξ,k)2

UT
ξ,k. (5-60)

As demonstrated in appendix A.5, the functions fk(Θ) are matrix convex for
Θ ∈ Y with Y = {Θ : tr (ΘU ξ,k) ≥ 0, for k ∈ K, ξ ∈ {1, 2}}, which implies
convexity of f0(Θ) for Θ ∈ Y . Due to f0(Θ) being convex for Θ ∈ Y , if the
optimal solution of (5-56), termed Θlopt, belongs to Y , initializing the RCG
method with any value of Θ0 ∈ Y supports finding a locally optimal solution.
This is the case since f0(Θ) grows for a decrease in tr (ΘU ξ,k) and thus by
initializing the RCG algorithm with Θ0 ∈ Y it will takes steps to stay on Y .
On the other hand, if Θlopt /∈ Y , which corresponds to a noiseless received
signal outside the correct decision region, the value of at least one constraint
function fk(Θ) is given by fk(Θ) ≥ 0.5 − ρk. Since f(Θ) = maxk fk(Θ), this
implies that in this case (5-48) is infeasible for ρk < 0.5 ∀k ∈ K. For this
case, initializing the RCG algorithm for solving (5-56) with any starting point,
including Θ0 ∈ Y , will yield an output Θout such that f(Θout) > 0. With this,
the optimization problem for computing the initial point Θ0 ∈ Y can be cast
as

max
Θ∈M

min
k∈K,ξ∈{1,2}

tr (ΘU ξ,k) . (5-61)

To solve (5-61) via the RCG algorithm the log-sum-exp function is applied
which yields

Θ0 = min
Θ∈M

v0(Θ), (5-62)

with v0(Θ) = ln
(∑K

k=1 e
−tr(ΘU1,k) + e−tr(ΘU2,k)

)
, and, ∇v0(Θ) =

−
∑K

k=1 e
−tr(ΘU1,k)UT

1,k+e
−tr(ΘU2,k)UT

2,k∑K

k=1 e
−tr(ΘU1,k)+e

−tr(ΘU2,k) . Problem (5-62) is solved via the uti-

lization of the RCG algorithm with any starting point Θ ∈ M. The details of
the RCG implementation are given in [88].
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5.7.2
Final Considerations

The complexity of the RCG algorithm dominates the complexity of the
proposed PHSEP and PHUBSEP methods. Considering that the computa-
tional cost of computing the Euclidean gradient is O (N2) and that the num-
ber of iterations required for convergence scales with

√
N , one can summarize

the UBCO of the RCG algorithm as O (N2.5). Since the number of times that
RCG is required to run mainly depends on initialization of P+ and P− and
does not grow with the size of the system the overall UBCO of the proposed
algorithm is in the order of O (N2.5).

The approximation of T N by C implies that the RIS has sufficiently
high resolution such that formulating the problem with a continuous set is
beneficial for achieving a reasonable solution. Yet, in practice, the reflection
coefficients are constraints to a discrete set since although large the resolution
is always finite. By applying algorithm 9, one computes Plopt ∈ R+ and
θlopt ∈ CN . Note that, since θlopt does not necessarily belong to T N a projection
step is necessary. This is done, similarly as in section 5.5, via UQ such that
θ = Q(θlopt). Accordingly, the transmit power P is computed by solving (5-33)
with the corresponding formulation and θr,ub = R(θ). After the mentioned
steps θ ∈ T N and P ∈ R+ can be utilized for transmission.

5.8
Numerical Results

This section evaluates the proposed algorithms against the state-of-the-
art approach from [19] in terms of UBCO and average normalized transmit
power (ANTP) defined as Pn = 10 log10(P/σ2

w). For solving the optimization
problem from [19] the bisection method from section 5.7 is considered. For
the simulations, the channel coefficients are modeled by independent Rayleigh
fading, and the noise variance is considered to be σ2

w = 1. To simplify the
analysis all users are considered to have the same SEP requirement such that
ρk = 10−τ , for k ∈ K. A normalized target power budget PB = 10 log10(Pb/σ2

w)
[dB] is considered for the plots, with Pb being the target power budget in linear
scale utilized in the proposed B&B algorithms.

5.8.1
Performance Analysis versus SEP requirement

This section considers a scenario with K = 2 users, N = 15 reflecting
elements, and QPSK data and transmit symbols, i.e., αs = αθ = 4. For the
experiments of Fig. 5.4 the proposed B&B approaches utilize PB = 2 dB and
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Figure 5.4: Considered scenario: K = 2 users, N = 15 reflecting elements,
αs = 4 PSK users’ data, αθ = 4 available phase shifts, SEP requisites ρk = 10−τ

for k ∈ K, target power budget PB = 2 dB and acceptable power increase factor
γ = 4 dB. Average normalized transmit power Pn × τ (left). Average number
of optimization problems solved B × τ (right).

γ = 4 dB. The first experiment consists of the evaluation of the ANTP required
for attaining the SEP requisites versus the SEP requirement parameter τ . The
LHS of Fig. 5.4 shows that the unquantized PHSEP approach outperforms
the unquantized PHUBSEP method in terms of ANTP for all values of τ . It
also shows that the proposed unquantized PHSEP and PHUBSEP techniques
require smaller ANTP for attaining the SEP requisites than the PMMDDT
formulation from [19] for all values of τ . Note that, although not guaranteed
due to the suboptimality of the BM utilized for solving the problems, this
is expected since, as stated in section 5.4, the PUBSEP formulation is a
restriction of the PSEP optimization problem, and, as shown in appendix
B, the PHMMDDT formulation is a restriction of the PHUBSEP problem.
Regarding the finite resolution methods, the LHS of Fig. 5.4 shows that the
proposed PSEP and PUBSEP B&B methods and the PSEP and PUBSEP
Full-B&B approaches yield a significant decrease in required ANTP compared
to the high-resolution approaches after quantization. Moreover, it can be seen
that the proposed PSEP and PUBSEP B&B and Full-B&B methods yield
approximately 2 dB and 1.2 dB loss in relation to the infinite resolution
approaches, respectively.
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Table 5.1: UBCO of the Algorithms

Algorithm UBCO
Proposed PHSEP O(N2.5)
Proposed PHUBSEP O(N2.5)
PHMMDDT [19] O(N2.5)
Proposed PSEP B&B O

(
B(N3.5 + N3√

K)
)

Proposed PUBSEP B&B O
(

B(N3.5 + N3√
K)
)

PSEP Full-B&B O
(

B(N3.5 + N3√
K)
)

PUBSEP Full-B&B O
(

B(N3.5 + N3√
K)
)

The UBCO analysis is done considering that the convex optimization-
based approaches are solved with the barrier method. The UBCO of considered
approaches is shown in Table 5.1, where B denotes the given number of sub-
problems solved in the corresponding B&B algorithm. As shown in Table 5.1
the high-resolution approaches yield significantly smaller UBCO than the B&B
approaches which justifies its utilization for scenarios where the resolution of
the RIS elements is sufficiently high such that the decrease in ANTP perfor-
mance is relatively small. These scenarios are explored in section 5.8.3. Since
the UBCO of the B&B approaches depends on the value of B, for comparing
their complexity an evaluation of B is necessary. This evaluation is done in the
second experiment in terms of the average value of B, termed B, and is shown
in the RHS of Fig. 5.4. The RHS of Fig. 5.4 shows that the PSEP designs
yield reduced B when compared with PUBSEP, with this it is concluded that
PSEP is favorable in terms of UBCO when compared with PUBSEP. More-
over, the RHS of Fig. 5.4 shows a complexity reduction of at least factor 540
when utilizing the proposed B&B approaches when compared with its Full-
B&B counterparts. Finally, a joint analysis of the plots in Fig. 5.4 summarizes
the complexity-performance trade-off achieved when utilizing the PB = 2 dB
and γ = 4 dB. Fig. 5.4 shows that utilizing the proposed B&B yields a power
increase smaller than 1 dB and a UBCO decrease of at least factor 540 when
compared with Full-B&B counterparts.

5.8.2
Performance-Complexity Trade-off Evaluation of the Proposed Branch-
and-Bound Methods

The performance analysis of the proposed B&B approaches presented
in Fig. 5.4 is computed considering the PB = 2 dB and γ = 4 dB, which
corresponds to the specific complexity performance trade-off shown. Yet, by
varying the values of PB and γ different trade-offs are achievable. This section
evaluates the performance of the proposed B&B approaches for the different
values of the acceptable power increase γ and normalized target power budget
PB. For this section, the SEP requirements are set to ρk = 10−4 for k ∈ K.
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Figure 5.5: Considered scenario: K = 2 users, N = 15 reflecting elements,
αs = 4 PSK users’ data, αθ = 4 available phase shifts, SEP requisites ρk = 10−4

for k ∈ K. Average normalized transmit power versus target power budget, Pn

[dB] × PB (upper left). Average number of optimization problems solved B ×
PB (upper right), for acceptable power increase γ = 0 dB. Pn [dB] × γ (lower
left), B × γ (lower right), for PB = −∞ dB.
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The first experiment, shown in the upper plots of Fig. 5.5, evaluates
the impact of the target power budget PB in the performance of the different
approaches, for no acceptable power increase, meaning γ = 0 dB. As shown in
the upper LHS of Fig. 5.5, for the low-end values of PB the ANTP performance
of the proposed PSEP and PUBSEP B&B methods is similar to its Full-B&B
counterparts. This is the case since for extremely restrictive power budget
scenarios where attaining Pout ≤ PB is not possible (or is possible only with
the optimal solution) the proposed B&B approach, when operating with γ = 0
dB, yields the optimal solution with Full-B&B complexity. Yet, as PB increases,
the target power budget of the system starts to be achieved with suboptimal
reduced complexity reflection coefficients, and thus, the ANTP performance of
the proposed B&B approaches starts to deviate from the performance of the
Full-B&B methods. The upper RHS of Fig. 5.5 further highlights this behavior
where it can be seen that, as the target power budget of the system increases,
the average number of evaluated bounds explored by the proposed PSEP and
PUBSEP B&B approaches decrease until, for PB = 3 dB, B ≈ 1 which implies
an UBCO of O(N3.5 +N3

√
K).

In the second experiment, shown in the lower plots of Fig. 5.5, the
performance of the proposed B&B is evaluated for different values of γ

considering PB = −∞ dB. The lower plots of Fig. 5.5 show, as expected,
that for γ = 0 dB the proposed PSEP and PUBSEP B&B approaches yield
the same ANTP and average number of subproblems solved as its Full-B&B
counterparts. The lower LHS of Fig. 5.5 shows that as γ increases, i.e., as
the system accepts a larger power increase, the ANTP of the proposed B&B
approaches grows. Note, however, that the real increase in ANTP is always
significantly smaller than the acceptable power increase being on average
approximately 17% of the value of γ. The lower RHS of Fig. 5.5 on the other
hand shows a rapid decrease in B with an increase in γ. This underlines the
idea that, although computing the optimal solution requires exploration of a
large number of branches when allowing for small ANTP compromises one can
achieve significant reduction such that the resulting UBCO is O(N3.5+N3

√
K).

Finally, a joint analysis of the plots of Fig. 5.5 illustrates that a decrease in
UBCO by a factor greater than 100 can be achieved with an increase of ANTP
of less than 0.45 dB. With this, it can be stated that significant complexity
reduction can be achieved with negligible ANTP compromise.
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Figure 5.6: Considered scenario: K = 2 users, N = 15 reflecting elements,
αs = 4 PSK users’ data, SEP requites ρk = 10−4 for k ∈ K, target power
budget PB = 0 dB and acceptable power increase factor γ = 1 dB. Average
normalized transmit power versus number of bits Pn × b (left). Average number
of optimization problems solved B × b (right).

5.8.3
Performance Analysis versus Resolution

This section evaluates the effects of the resolution of the RIS elements,
measured in bits as b = log2(αθ), on the performance of the proposed methods.
The considered scenario consists of a system with K = 2 users, N = 15
reflecting elements, QPSK data symbols, ρk = 10−4 for k ∈ K, target power
budget PB = 0 dB and γ = 1 dB. The experiment consists of an evaluation
of Pn required for attaining the SEP constraints for different values of b. The
LHS of Fig. 5.6 shows that, for b = 3, all proposed methods outperform the
infinite resolution PHMMDDT baseline from [19]. Moreover, as expected, the
LHS of Fig. 5.6 shows that as the number of resolution bits increases the
proposed PHSEP and PHUBSEP quantized methods approach the ANTP
performance of their infinite resolution counterparts. Considering that the
proposed PHSEP and PHUBSEP quantized techniques yield UBCO of O(N2.5)
one can understand that the proposed PHSEP and PHUBSEP methods yield
reduced ANTP with low complexity which highlights the efficiency of the
proposed methods. Regarding the proposed PSEP and PUBSEP B&B methods
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the LHS of Fig. 5.6 shows that for b ≤ 4 the proposed B&B techniques yield
the smallest ANTP of the quantized approaches. Yet, for b > 4, they are
outperformed by the PHSEP approach. Although the PHSEP approach yields
a suboptimal solution even for αθ = ∞, this is expected since PB = 0 dB and
γ = 1 dB are considered, and, with this, complexity reduction is achieved at
the expense of ANTP performance. The RHS of Fig. 5.6 addresses the UBCO
of the proposed B&B approaches. As can be seen, when using PB = 0 dB
and γ = 1 dB the proposed B&B approaches yield no significant increase in
complexity with 1 < B < 2.5 for all values of b.

5.8.4
Transmit Power Analysis for Large-Scale Systems

This section evaluates the ANTP performance of the considered ap-
proaches for different values of the SEP requirement parameter τ , in a massive
MIMO system. Unlike Full-B&B approaches, which can yield prohibitive com-
plexity, the proposed B&B method is suitable for large-scale MIMO. For this
section, the RIS elements are considered to have 2-bit resolution, and the B&B
parameters are set to PB = −8 dB and γ = 1 dB. The first experiment, shown
in the LHS of Fig. 5.7, considers a MIMO scenario of K = 10 users, N = 100
reflecting elements, and QPSK users’ data. As shown in Fig. 5.7 the proposed
PSEP and PUBSEP B&B techniques outperform the methods PHSEP and
PHUBSEP methods after quantization, which highlights the suitability of the
proposed B&B technique for large-scale MIMO. Regarding the infinite reso-
lution approaches, the LHS of Fig. 5.7 shows that the proposed PHSEP and
PHUBSEP techniques yield smaller ANTP when compared with the PHM-
MDDT technique. The second experiment, present in the RHS of Fig. 5.7,
considers a MIMO scenario of K = 5 users, N = 120 reflecting elements, and
8-PSK users’ data. As shown in the RHS of Fig. 5.7, the proposed PUBSEP
B&B approach outperforms the quantized PHUBSEP method for all values
of τ . Yet, due to the small number of resolution bits of the RIS’ elements,
the PUBSEP-B&B approach yields approximately a 4 dB increase in ANTP
compared to the unquantized PHUBSEP method. Finally, regarding the com-
plexity of the proposed B&B approaches, the ANTP results from the LHS
and RHS of Fig. 5.7 are achieved with the maximum values of B = 3.37 and
B = 44 for τ = 6, respectively.
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Figure 5.7: Evaluation: Average normalized transmit power versus SEP requi-
site parameter, Pn × τ , with SEP requisites ρk = 10−τ for k ∈ K, target power
budget PB = −8 dB and acceptable power increase γ = 1 dB. First scenario:
K = 10 users, N = 100 reflecting elements, αs = 4 PSK users’ data, αθ = 4
available phase shifts (left). Second scenario: K = 5 users, N = 120 reflecting
elements, αs = 8 PSK users’ data, αθ = 4 available phase shifts (right).



6
Conclusions

This thesis proposes different symbol-level transmit processing methods
for diverse MU-MIMO setups. First, this study proposes two SLP approaches
considering a SPAPC and PSK modulation for perfect and imperfect CSI. The
proposed precoding designs are formulated as SOCPs and are solved using the
IPM in polynomial time. Numerical results confirm that for the perfect CSI
scenario, the proposed designs are superior to the existing techniques in terms
of BER for low and intermediate SNR. Moreover, when considering imperfect
CSI numerical evaluations underline the superiority of the proposed RMMSE
design.

For large-scale MIMO where the energy consumption of the RFFE is
significant to the EE of the system, power reduction features such as CE sig-
naling and low-resolution quantization are necessary for low-cost deployments,
with low environmental impact, and better coverage. To mitigate the error-rate
performance degradation that these features yield CE low-resolution precod-
ing has become prominent in the literature. In this context, this thesis focuses
on the development of SLP techniques for MU-MIMO downlink systems with
arbitrary PSK modulation. While the MSEP formulation is considered as the
design criterion for the case of QPSK data symbols, the study proposes the
novel MUBSEP formulation for arbitrary PSK modulation. Based on these
criteria the study proposes different low-resolution SLPs. First, PGS meth-
ods are devised as a low-complexity approach. Then the QoS B&B algorithm
is proposed which differs from standard full B&B methods by stopping the
tree search when a solution that attains the system’s QoS constraint is found.
Numerical results show that the proposed PGS approaches outperform the
examined state-of-the-art methods either in terms of SER or computational
complexity. Moreover, numerical results confirm that the proposed QoS B&B
algorithm yields, in many scenarios, lower SER with lower computational com-
plexity when compared with optimal state-of-the-art algorithms.

Finally, a virtual MU-MIMO system with PSK modulation realized via
the RIS-based passive transmitter setup is considered. Under this framework,
the work considers both high-resolution and discrete phase shift RIS models.
For both cases, this study proposes power minimization problems under QoS
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constraints. While for the case of BPSK or QPSK users’ data, the SEP
is considered QoS requisite, for the general M -PSK scenario the UBSEP
functions are utilized as constraints. For the discrete phase-shift RIS case,
the problems are formulated as MIPs and solved via an improved version of
the QoS B&B approach. On the other hand, for high-resolution, they become
multivariate problems that are solved via the combined utilization of the BM
and the RCG algorithms. Numerical results show that the proposed power
minimization approaches yield reduced transmit power compared to state-of-
the-art techniques.

6.1
A Balance of the Achieved Results Regarding Branch-and-Bound Methods

A common conception in the literature is that the utilization of Full-B&B
methods results in prohibitive computational complexity [90]. This perception
has motivated the research community to move away from B&B techniques
and, instead, develop a variety of projection-based algorithms for tackling
discrete problems to achieve compromise solutions. While some of these
solutions provide interesting trade-offs, they lack the performance guarantees
that Full-B&B approaches can offer, which are critical for designing reliable
communication networks.

In this thesis, we have revisited B&B methods to explore the balance
between performance and complexity while maintaining performance guaran-
tees. Our research demonstrates that although computing the optimal solution
via a Full-B&B method can indeed be computationally expensive, allowing for
small compromises can significantly reduce the computational effort required.
This insight has enabled us to design B&B algorithms that achieve complexity
levels comparable to state-of-the-art projection-based approaches while offer-
ing significantly improved performance and preserving the ability to guarantee
performance. Based on these findings in chapter 4, we introduced the QoS B&B
approach that ensures the satisfaction of SEP requirements for well-designed
communication systems. Moreover, in chapter 5, we proposed a B&B design
that either ensures the transmit power remains below or equal to the system’s
target power budget or provides a solution close to the optimal with a specified
optimality factor. These contributions highlight the potential of B&B methods
to deliver high-performance solutions with reduced complexity, challenging the
prevailing notion of their impracticality.

In conclusion, the findings of this thesis have shown that a renewed
focus on B&B algorithms within the research community can lead to fruitful
results. By addressing the computational challenges associated with Full-B&B
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methods, we understand that further advancements can make B&B techniques
more efficient and practical for developing high-performance algorithms with
manageable complexity.

6.2
A Balance of the Results with the Union-Bound SEP

Prior to the contributions presented in this thesis, most PSK modulation-
based studies in the literature relied on indirect criteria for either minimizing
the SEP or constraining it. Notably, methods based on MMSE and MMDDT
have shown insightful results. However, the lack of a direct and quantifiable
relationship between a user’s MMSE and its SEP, coupled with the limitations
of the MMDDT-based SEP bound from [14] — such as the absence of a
closed-form expression or tabled solutions — has rendered the development
of algorithms capable of real-time SEP control highly challenging.

To overcome these limitations, we proposed the union-bound SEP as an
upper bound on the SEP that can be computed individually for each user.
It was shown that the tightness of this bound increases with the modulation
order and the SNR, achieving high accuracy in the SNR regions anticipated
for future wireless communication networks. Since the proposed formulation
essentially predicts the SEP for the expected cases of future wireless networks,
it allows the design of algorithms that compute trade-offs while adhering to
the system’s QoS requirements. This enables adjustments in computational
complexity, reductions in transmit power, and other optimizations without
risking the delivery of the SEP necessary for the proper functioning of user
applications.

The findings of this thesis have shown the benefits of incorporating SEP-
related criteria into the design of transmit processing algorithms. This offers
clear advantages by enabling the management of QoS requirements and sup-
porting the real-time computation of favorable trade-offs for communication
systems. Finally, this motivates a new research path in the field of real-time
QoS management algorithms.



7
Future Work

In this final chapter, some possible extensions of the studies performed
in this thesis are discussed. The discussion about the considered extensions is
done in a chapter-by-chapter manner from chapters 3 to 5.

7.1
Future Work on Symbol-Level Precoding under Strict Per Antenna Power
Constraints

The methods proposed in chapter 3 consider a narrow-band channel
model such that, for the considered bandwidth, the channel H can be consid-
ered flat. An extension of the approaches from chapter 3 to broadband channels
can be done via the consideration of a frequency selective channel as with H l

denoting the l-th channel tap for l ∈ {0, . . . , L − 1}. Different methods can
be utilized for dealing with such channels. A formulation of the proposed ap-
proaches to deal with frequency-selectivity is possible. Moreover, an extension
to the OFDM context would also be an interesting topic for investigation.

Another possible extension is the proposal of SPAPC precoders with the
MSEP and MUBSEP concepts. With this, one could consider these either
in the objective or as constraint functions for QoS guarantee. This would
be especially useful for integrated sensing and communications where one
could construct a Cramér-Rao lower bound minimization problem under either
MSEP or MUBSEP constraints.

7.2
Future Work on Symbol-Level Precoding under Constant Envelope and
Low-Resolution Constraints

The SEP-related methods proposed in chapter 4 consider perfect CSI.
In practice, for the cases where the users are highly mobile, the proposed
methods would require either channel tracking approaches or estimating the
channel regularly to avoid the performance degradation that arises from the
ever-changing channel from mobile systems. To make the proposed approaches
more suitable for these imperfect CSI scenarios robust MSEP and MUBSEP
formulations would be important.
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7.3
Future Work on RIS-based Passive Transmitter MIMO Systems

The methods proposed in chapter 5 consider a single-antenna transmitter
that radiates an unmodulated carrier signal. A possible extension is to con-
sider the architecture from [11] which utilizes an active multi-antenna feeder
(AMAF) present in the near-field from the RIS. The approach from [11] allows
for a hybrid-beamforming scheme where the AMAF and the RIS perform the
digital beamforming and analog beamforming tasks, respectively.

With this setup, symbol-level hybrid beamforming and channel-level
hybrid beamforming are possible. When considering the symbol-level approach
both the AMAF and the RIS are optimized in a symbol-by-symbol manner. In
this scenario, the MSEP and MUBSEP concepts can be utilized to achieve
high-performance systems. The channel-level hybrid beamforming schemes
consider that both the AMAF and the RIS are optimized once per channel
coherence time. In this scenario, one can consider the MMSE or the RMMSE
as the objectives.
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A
Convexity Analysis

This section of the appendix provides proof of the convexity of the
SEP-related functions and derives the conditions of which the UBSEP-related
functions are convex.

A.1
Proof of Convexity of the MSEP objective

Convexity of the MSEP objective is established by proving that the
Hessian of the objective is positive semi-definite (PSD) for all values of xr.
As written in (4-22), ∇2f0(xr) is given by

∇2f0(xr) = (A-1)
K∑

k=1

mR,k (xr)mT
R,k (xr) + ΨR,k (xr)(

Φ
(
hT

R,kxr
))2 +

mI,k (xr)mT
I,k (xr) + ΨI,k (xr)(

Φ
(
hT

I,kxr
))2 ,

where

mR,k = 1√
2π

e−
(hT

R,k
xr)2

2 hR,k, (A-2)

mI,k = 1√
2π

e−
(hT

I,k
xr)2

2 hI,k, (A-3)

ΨR,k =
Φ
(
hT

R,kxr
)

√
2π

e−
(hT

R,k
xr)2

2 hR,kh
T
R,kxrh

T
R,k, (A-4)

ΨI,k =
Φ
(
hT

I,kxr
)

√
2π

e−
(hT

I,k
xr)2

2 hI,kh
T
I,kxrh

T
I,k. (A-5)

Note that, since for (Φ (α))2 ≥ 0 for α ∈ R, a sufficient condition for convexity
is proving that ΓR,k(xr) = mR,k (xr)mT

R,k (xr) + ΨR,k (xr) and ΓI,k(xr) =
mI,k (xr)mT

I,k (xr)+ΨI,k (xr) are PSD for k ∈ {1, . . . , K}. Expanding ΓR,k(xr)
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yields

ΓR,k(xr) =
(

1√
2π
e−

hT
R,k

xr
2

)2

hR,kh
T
R,k +

Φ
(
hT

R,kxr
)

√
2π

e−
(hT

R,k
xr)2

2 hR,kh
T
R,kxrh

T
R,k

= 1√
2π
e−

hT
R,k

xr
2

(
1√
2π
e−

hT
R,k

xr
2 hR,kh

T
R,k + Φ(hT

R,kxr)hR,kh
T
R,kxrh

T
R,k

)
.

Since 1√
2π
e−

hT
R,k

xr
2 ≥ 0, the matrix ΓR,k(xr) is PSD if and only if Υk(xr) =

1√
2π
e−

hT
R,k

xr
2 hR,kh

T
R,k + Φ

(
hT

R,kxr
)
hR,kh

T
R,kxrh

T
R,k is PSD for k ∈ {1, . . . , K}.

Calling a = hT
R,kxr yields

Υk(a) = 1√
2π
e− a2

2 hR,kh
T
R,k + hR,k (aΦ(a))hT

R,k (A-6)

= hR,k

(
1√
2π
e− a2

2 + aΦ(a)
)
hT

R,k. (A-7)

Note that, v α vT ⪰ 0 for v ∈ Rn and α ∈ R+. As a consequence, a sufficient
condition for PSD is having g(a) = 1√

2π
e− a2

2 + aΦ(a) ≥ 0 for a ∈ R. To prove
that g(a) is positive for a ∈ R, ∂g(a)

∂a
is computed in what follows,

∂g(a)
∂a

= ∂

∂a

(
1√
2π
e− a2

2 + aΦ(a)
)

(A-8)

= − a√
2π
e− a2

2 + Φ(a) + a√
2π
e− a2

2 (A-9)

= Φ(a). (A-10)

Note that, since ∂g(a)
∂a

= Φ(a) is always greater than zero, the function g(a)
is monotonically increasing. This implies that g(a) approaches its minimum
value as a tends to −∞. With this, to prove that g(a) ≥ 0 ∀ a ∈ R it is
sufficient to prove that lim

a→−∞
g(a) ≥ 0. Computing the limit,

lim
a→−∞

1√
2π
e− a2

2 + aΦ(a) = lim
a→−∞

aΦ(a), (A-11)

using the identity Φ(a) = 1
2

(
1 + erf

(
a√
2

))
yields

lim
a→−∞

a

2

(
1 + erf

(
a√
2

))
= 0. (A-12)

With this, the minimum value of g(a) is zero, which implies that for xr ∈ R2M ,
ΓR,k(xr) ⪰ 0 for k ∈ {1, . . . , K}. Similar steps can be taken to prove that for
xr ∈ R2M , ΓI,k(xr) ⪰ 0 for k ∈ {1, . . . , K}. Finally, having ΓR,k(xr) ⪰ 0 for
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k ∈ {1, . . . , K} and ΓI,k(xr) ⪰ 0 for k ∈ {1, . . . , K} yields that ∇2f0(xr) ⪰ 0
and, thus, f0(xr) is convex in xr.

A.2
Conditions for Convexity of the MUBSEP Objective

Considering the real-valued formulation described in (4-33) the MUBSEP
objective reads as

f0(xr) = −
K∑

k=1
ln
(
erf
(
uT

1,kxr
)

+ erf
(
uT

2,kxr
))
. (A-13)

Convexity can be proven by evaluating the conditions under which the Hessian
is PSD [42]. Taking the derivative of f0(xr) with respect to xr yields

∇f0(xr) = −
K∑

k=1

2√
π
e−(uT

1,kxr)2

u1,k + 2√
π
e−(uT

2,kxr)2

u2,k

erf
(
uT

1,kxr
)

+ erf
(
uT

2,kxr
) . (A-14)

The gradient can be written in the form ∇f0(xr) = −∑K
k=1

mk(xr)
qk(xr)

where qk(xr) = erf
(
uT

1,kxr
)

+ erf
(
uT

2,kxr
)
, and, mk(xr) =

2√
π

(
e−(uT

1,kxr)2

u1,k + e−(uT
2,kxr)2

u2,k

)
. The Hessian, then, reads as

∇2f0(xr) = ∂2f0(xr)
∂xr∂xT

r
= −

K∑
k=1

∂mk(xr)
∂xT

r
qk(xr) −mk(xr)∂qk(xr)

∂xT
r

(qk(xr))2 , (A-15)

with ∂mk(xr)
∂xT

r
= − (Ψ1,k + Ψ2,k) and ∂qk(xr)

∂xT
r

= mT
k (xr), and, Ψ1,k and Ψ2,k given

by

Ψ1,k = 4√
π
e−(uT

1,kxr)2

u1,ku
T
1,kxru

T
1,k, Ψ2,k = 4√

π
e−(uT

2,kxr)2

u2,ku
T
2,kxru

T
2,k.

(A-16)

The Hessian then reads as

∇2f0(xr) =
K∑

k=1

(Ψ1,k + Ψ2,k) qk(xr) +mk(xr)mT
k (xr)

(qk(xr))2 . (A-17)

A sufficient condition for PSD is (Ψ1,k + Ψ2,k) qk(xr) ⪰ 0 ∀ k ∈ {1, . . . , K}.
With this, positive semi-definiteness is achieved for uT

1,kxr ≥ 0, uT
2,kxr ≥

0, ∀k ∈ {1, . . . , K}. Note that, this implies d1,k (x) ≥ 0, d2,k (x) ≥ 0,∀k ∈
{1, . . . , K}. Finally, the condition for convexity of the MUBSEP objective
function can be cast in a stacked manner for all k as Cxr ⪯ 0, where
C =

[(
Hs∗

R,θ −Hs∗

I,θ

)T
,
(
Hs∗

R,θ +Hs∗

I,θ

)T
]T

.
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A.3
Proof of Convexity of the SEP Functions

For proving convexity we depart from a function with known
properties and apply a series of operations to arrive at fk(θr) =
−∑2

ξ=1 ln
(
Φ
(√

P
σ2

w
hT

ξ,kθr
))

− βk. To this end, consider the log-concave func-

tion [42, Example 3.39], Φ(θ) =
∫ θ

−∞ e− u2
2 du. A function f is log-concave

if log f is concave [42, Definition 3.5.1]. With this, g(θ) = ln(Φ(θ)) is a
concave function. Note that, h(θr) = g(Aθr + b) is concave if g(θ) is con-
cave [42, Section 3.2.2]. With this, it follows that h1(θr) = ln(Φ(h1,kθr))
and h2(θr) = ln(Φ(h2,kθr)) are concave functions. As stated in [42, Section
3.2.1], if wi ≥ 0 and fi(θr) is concave for all i, then u(θr) = ∑

i wifi(θr)
is concave. By setting wi = 1 for i ∈ {1, 2, 3} and f1(θr) = ln(Φ(h1,kθr)),
f2(θr) = ln(Φ(h2,kθr)) and f3(θr) = βk one can assemble the concave
function u(θr) = ∑2

ξ=1 ln(Φ(hξ,kθr)) + βk. Note that fk(θr) is convex since
fk(θr) = −u(θr) and u(θr) is concave.

A.4
Condition for convexity of the Union-Bound SEP functions

This section derives the conditions in which the UBSEP functions
fk(x) = 1

2
∑2

ξ=1 erfc(νT
ξ,kx) are convex. As stated in [42, Section 3.1.4] con-

vexity can be proven by evaluating the conditions under which the Hessian is
PSD. Taking the derivative of fk(x) with respect to x yields

∂fk(x)
∂x

= − 1√
π

2∑
ξ=1

e−(vT
ξ,kx)

2

vξ,k. (A-18)

The Hessian is then computed by taking the derivative with respect to xT ,
which yields

∂f 2
k (x)

∂x∂xT
= 2√

π

2∑
ξ=1

e−(vT
ξ,kx)

2

vξ,k

(
vT

ξ,kx
)
vT

ξ,k. (A-19)

Note that, a sufficient condition for ∇2fk(x) to be PSD is vT
1,kx ≥ 0 and

vT
2,kx ≥ 0.

A.5
Convexity Analysis for the High-Resolution Constraint Functions

This section examines the SEP and UBSEP constraint functions formu-
lated for high-resolution cases, proves that the SEP functions are matrix con-
vex, and demonstrates the conditions for matrix convexity UBSEP functions.
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First, consider the SEP constraint function

fk(Θ) = −
2∑

ξ=1
ln
(

Φ
(√

P

σ2
w

tr (ΘHξ,k)
))

− βk. (A-20)

As proven in appendix A.3, the function g(x) = − ln
(
Φ
(√

P
σ2

w
x
))

− βk is
convex. Note that, by definition tr (ΘHξ,k) = ∑2

i=1
∑N

j=1 θi,jh
ξ
i,j, where θi,j

and hξ
i,j denote the entry on the i-th row and j-th column of Θ and Hξ,k,

respectively. With this, fk(Θ) = g(∑2
i=1

∑N
j=1 θi,jh

ξ
i,j) − βk is a composition of

the convex nondecreasing function g with a linear function tr (ΘHξ,k), which
yields a convex function [42, Section 3.2.4].

A similar path can be taken to derive the conditions of matrix convexity
of the UBSEP functions

fk(Θ) =
2∑

ξ=1

1
2erfc

(√
P

σ2
w

tr (ΘU ξ,k)
)

− ρk. (A-21)

Note, however, that function g(x) = 1
2erfc

(√
P
σ2

w
x
)

− ρk is convex for only
x ≥ 0. With this, the composed function fk(Θ) = g(∑2

i=1
∑N

j=1 θi,ju
ξ
i,j) − ρk,

with uξ
i,j denoting the entry on the i-th row and j-th column of U ξ,k is convex

in the regions where ∑2
i=1

∑N
j=1 θi,ju

ξ
i,j ≥ 0. This implies that fk(Θ) is matrix

convex for tr (ΘU ξ,k) ≥ 0, for k ∈ K, ξ ∈ {1, 2}.



B
MDDT-Bound on the Symbol Error Probability

In this section, we construct an MDDT-based bound on the SEP and
prove that this bound is also an upper bound on the UBSEP. Based on the
MDDT bound the PHMMDDT problem is proven to be a restriction of the
PHSEP and PHUBSEP problems.

B.1
MDDT-based Bound as an Upper bound on the Union-Bound SEP

As mentioned in chapters 4 and 5, for a given k-th user’s noiseless received
signal yk, the UBSEP relates to the SEP as

P (ŝk ̸= sk|yk) = P (zk ∈ Z1 ∪ Z2|yk)

≤ P (zk ∈ Z1|yk) + P (zk ∈ Z2|yk) = Pub(ŝk|yk), (B-1)

where Z1 and Z2, depicted in Fig. 5.2. For computing the UBSEP of the k-th
user the MDDTs, d1,k (yk) and d2,k (yk), are considered, such that

P (zk ∈ Z1|yk) = 1
2erfc

(
d1,k (yk)
σw

)
, P (zk ∈ Z2|yk) = 1

2erfc
(
d2,k (yk)
σw

)
.

With this, the UBSEP of the k-th user reads as

P (ŝk ̸= sk|yk) ≤ Pub(ŝk|yk) = 1
2erfc

(
d1,k (yk)
σw

)
+ 1

2erfc
(
d2,k (yk)
σw

)
. (B-2)

An upper bound on the UBSEP of the k-th user can be constructed by
considering the minimum between both MDDTs as

Pub(ŝk|yk) = 1
2erfc

(
d1,k (yk)
σw

)
+ 1

2erfc
(
d2,k (yk)
σw

)

≤ erfc
(

min (d1,k (yk) , d2,k (yk))
σw

)
. (B-3)
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Note that, min (d1,k (yk) , d2,k (yk)) is the MDDT of the k-th user which, as
mentioned in section 2.1, can be written for PSK data as

dk (yk) = min (d1,k (yk) , d2,k (yk)) = Re{s∗
kyk} sinϕ− |Im{s∗

kyk}| cosϕ, (B-4)

where ϕ = ϕ/αs and αs denotes the PSK modulation order. With this, one can
construct a MDDT-based bound on the SEP as

Pmddt(ŝk|yk) = erfc
(
dk (yk)
σw

)
. (B-5)

The relation between SEP, UBSEP, and Pmddt(ŝk|yk) reads as

P (ŝk ̸= sk|yk) ≤ Pub(ŝk|yk) ≤ Pmddt(ŝk|yk). (B-6)

B.2
MMDDT Problem as a Restriction of and PHUBSEP Problem

Considering equation (B-6) and the system model exposed in section 5.1
one can construct the high-resolution RIS power minimization problem with
the MDDT bound as

min
θ,P

P (B-7)

s.t. |[θ]n|2 = 1, for n ∈ N , P ≥ 0,

erfc
(
dk (θ, P )
σw

)
≤ ρk, for k ∈ K.

Applying the inverse complementary error function to the inequality con-
straints, the previous problem is rewritten as

min
θ,P

P (B-8)

s.t. |[θ]n|2 = 1, for n ∈ N , P ≥ 0,

dk (θ, P ) ≥ σw

(
erfc−1 (ρk)

)
, for k ∈ K.

Finally, problem (B-8) is written as exposed in section 5.2 with

min
θ,P

P (B-9)

s.t. |[θ]n|2 = 1, for n ∈ N , P ≥ 0, rk =
√
PhH

k θe−jarg(sk),

Re{rk} sinϕ− |Im{rk}| cosϕ ≥ αk, for k ∈ K,
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where αk = σw

(
erfc−1 (ρk)

)
. Since the MDDT constraint functions are upper

bounds on the UBSEP constraints, one can understand the problem from
(B-9) as a restricted version of the proposed PHUBSEP formulation. This
implies that, for attaining the same SEP requisite the optimal transmit power
minimization under MDDT constraints is greater or equal to the optimal
transmit power of the proposed approach.



C
SNR Definition

In this section, we derive the SNR definitions for different beamforming
scenarios. By analyzing these approaches, we illustrate how each technique
impacts SNR focusing the signal toward the intended receivers. The derived
expressions serve as a foundation for the SNR definitions utilized in the
numerical results sections of the thesis. The average received SNR is defined
as

SNR = 1
K

K∑
k=1

E {PR,k}
E {PN,k}

, (C-1)

where PR,k is the received signal power of the k-th user and PN,k is the k-th
user’s noise power. For the system models considered in this thesis, the received
SNR can be rewritten as

SNR = 1
K

K∑
k=1

E {∥hkx∥2
2}

E {∥wk∥2
2}

= 1
K

K∑
k=1

E
{
xHhH

k hkx
}

σ2
w

. (C-2)

For given channels hk for k ∈ {1, . . . , K}, the SNR expression can be further
simplified as

SNR = 1
K

K∑
k=1

tr
(
hkE

{
xxH

}
hH

k

)
σ2

w

= 1
K

K∑
k=1

tr
(
hkCxh

H
k

)
σ2

w

, (C-3)

where Cx = E
{
xxH

}
. The definition of the average SNR in (C-3) considers

deterministic channels and should be extended for hk for k ∈ {1, . . . , K} as
random vectors. To this end, the average SNR is written as

SNR = 1
K

K∑
k=1

E
{
tr
(
hkCxh

H
k

)}
σ2

w

. (C-4)

As can be concluded from (C-4), different ways of defining the transmit vector
x lead to different received SNRs. In what follows we expose the methods that
imply the SNR definitions utilized in the numerical results of this study.
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C.1
Average Receive SNR with a Generic Transmitter

Applying the SNR definition in (C-4) for a generic transmitter with
Cx = PAI yields

SNR = 1
K

K∑
k=1

PA E
{
tr
(
hkIh

H
k

)}
σ2

w

.

Considering hk,m ∼ CN (0, 1), for k ∈ {1, . . . , K}, and, m ∈ {1, . . . ,M}, yields

SNR = 1
K

K∑
k=1

MPA

σ2
w

= MPA

σ2
w

. (C-5)

C.2
Maximum Average Receive SNR

The received SNR can be maximized with the application of the MRT
beamformer [62, Section 7.3.1]. With this, for a given channel H , the transmit
vector is read as x =

√
MPA

tr(HHH)H
Hs, which implies Cx = MPA

(
HHCsH

tr(HHH)

)
,

with Cs = E
{
ssH

}
= I. Applying MRT to the definition in (C-4) yields

SNR = 1
K

K∑
k=1

MPA E
{

tr(hkH
HHhH

k )
tr(HHH)

}
σ2

w

.

Considering hk,m ∼ CN (0, 1), for k ∈ {1, . . . , K} and m ∈ {1, . . . ,M} yields

SNR = 1
K

K∑
k=1

M2PA

σ2
w

= M2PA

σ2
w

. (C-6)
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