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Abstract

Oliveira, Daniel Tenorio Martins de; Garcia, Alessandro Fabri-
cio (Advisor); Assunção, Wesley Klewerton Guez (Co-Advisor). On
the Identification and Analysis of Refactoring-related Mo-
difications. Rio de Janeiro, 2024. 111p. Tese de Doutorado – De-
partamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Refactoring is a well-established software engineering technique aimed
at improving code structure without altering its behavior. Each refactoring
consists of a set of default modifications in a program. A thorough analysis
of what code modifications compose a refactoring is a prerequisite to reap
the benefits of this technique. However, there are at least two characteristics
of code refactoring in real-life software projects that complicates a thorough
code analysis. First, refactorings are often applied in a customized fashion, i.e.,
developers manually tailor a pre-defined set of code modifications (associated
with a refactoring type) by adding or removing modifications to suit specific
contexts. Second, refactorings are often intertwined with other tasks like
adding features or fixing bugs, known as floss refactoring. Since refactoring
modifications are often performed with other unrelated modifications in the
same commit, distinguishing them is time-consuming and error-prone. While
previous research has scrutinized these two challenging characteristics of code
refactoring, specialized tool support for its thorough analysis is still limited.
This thesis aimed at developing a comprehensive approach to assist code
refactoring analysis in the presence of these two challenging characteristics. To
this end, we first performed a study with developers to understand whether
they would require specialized tool support for customized refactorings. Then,
we developed two tools to assist developers in identifying refactoring-related
modifications and distinguishing them from other unrelated modifications. The
effectiveness of these tools was assessed through a user study with experienced
developers.

Keywords
Refactoring; Maintainability; Refactoring Customization.



Resumo

Oliveira, Daniel Tenorio Martins de; Garcia, Alessandro Fabricio;
Assunção, Wesley Klewerton Guez. Identificação e análise de
modificações relacionadas à refatoração. Rio de Janeiro, 2024.
111p. Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

A refatoração é uma técnica bem estabelecida na engenharia de software,
destinada a melhorar a estrutura do código sem alterar seu comportamento.
Cada refatoração consiste em um conjunto de modificações estruturais em um
programa. Uma análise minuciosa das modificações de código que compõem
uma refatoração é um pré-requisito para colher os benefícios dessa técnica.
No entanto, existem pelo menos duas características da refatoração de código
em projetos de software da vida real que complicam uma análise detalhada
do código. Primeiro, as refatorações são frequentemente aplicadas de maneira
personalizada, ou seja, os desenvolvedores ajustam manualmente um conjunto
pré-definido de modificações de código (associadas a um tipo de refatoração)
adicionando ou removendo modificações para se adequar a contextos especí-
ficos. Em segundo lugar, as refatorações estão frequentemente entrelaçadas
com outras tarefas, como adicionar funcionalidades ou corrigir bugs, conhe-
cidas como refatoração floss. Como as modificações de refatoração são fre-
quentemente realizadas com outras modificações não relacionadas no mesmo
commit, distingui-las é demorado e propenso a erros. Embora pesquisas anteri-
ores tenham examinado essas duas características desafiadoras da refatoração
de código, o suporte especializado de ferramentas para sua análise minuciosa
ainda é limitado. Esta tese teve como objetivo desenvolver uma abordagem
abrangente para auxiliar a análise de refatoração de código na presença des-
sas duas características desafiadoras. Para isso, primeiro realizamos um estudo
com desenvolvedores para entender se eles precisariam de suporte especializado
de ferramentas para refatorações personalizadas. Em seguida, desenvolvemos
duas ferramentas para ajudar os desenvolvedores a identificar modificações
relacionadas à refatoração e distingui-las de outras modificações não relacio-
nadas. A eficácia dessas ferramentas foi avaliada por meio de um estudo com
usuários experientes.

Palavras-chave
Refatoração; Manutenibilidade; Customização de refatoração.
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1
Introduction

Refactoring is a well-established software engineering practice aimed at
improving the code structure without altering its behavior [1]. The structural
improvements achieved with code refactoring are commonly intended to en-
hance program readability and maintainability [2]. Refactorings are organized
in terms of refactoring types in existing catalogs (e.g., [1–4]) and tooling sup-
port [5,6]. In these catalogs, each refactoring type is defined as a default set of
code modifications (or simply, default modifications) in the program. An exam-
ple of refactoring type is Extract Method [2]; its default modifications include
moving an existing code segment to a new method and adding a call to the
new method in the old source method. The definitions of refactoring types in
terms of default modifications provide guidance for developers applying them
in their programs.

Despite the known benefits of code refactoring [2,7,8], this is a nuanced
task that demands advanced code knowledge in order to prevent unintended
side effects [9–12]. A key concern in this task is that developers must be
able to identify which code modifications are part of the refactoring. In not
being able to do so, developers will not capable to understand whether all
required refactoring modifications (per type) were appropriately performed.
However, in practical settings, this a not trivial task. One of the key reasons is
that refactorings are often intertwined with other development tasks, such as
adding new features or fixing bugs, which known as floss refactoring [13]. Each
instance of floss refactoring (performed through a single commit) includes both
refactoring and non-refactoring modifications. The latter modifications serve
other purposes beyond code structure improvement and, thus, impact system’s
observable behavior [7, 13, 14]. A typical example of floss refactoring is one in
which the developer performs an Extract Method refactoring together with
modifications to include a new feature in a program.

Unfortunately, during each instance of floss refactoring, there are often
no clear boundaries between refactoring-related and other modifications which
can affect the refactoring review [18]. One of the key reasons is that some code
modifications in a floss refactoring are simultaneously related to both refactor-
ing and other development tasks in the same commit [13, 15]. For example, a
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new extracted method may also be considered to be part of a new feature being
added to the program when called by other methods different from the original
one. As a consequence of floss refactoring (and other compounding factors),
developers need to manually tailor a refactoring by adding or removing code
modifications to/from the default ones mentioned in catalogues related to each
refactoring type [1, 2]. By tailoring refactorings, developers create customized
versions of the refactoring to suit specific contexts, also known as refactoring
customization [15, 16].

Given the factors above, identifying and classifying different modifica-
tions as part of the refactoring can be challenging and requires thorough anal-
ysis of the code. Due to this challenge, distinguishing refactoring-related mod-
ifications manually is time-consuming and error-prone [15, 17, 18]. Indeed, a
previous study [18] indicated that 94% of developers agreed that floss refactor-
ing occurrences slow down the code review process. These developers reported
that it is necessary to manually identify which modifications are related to the
refactoring in order to properly review them. Therefore, it is crucial to pro-
vide automated support to developers not only for applying floss refactoring
operations but also for understanding their specific impacts on code review.
This would reduce the necessary manual effort allowing developers to focus
their review on the crucial parts of the modified code. [17–19]. However, de-
spite the challenges regarding floss refactorings and the need for automated
support, developers tend to be hesitant in utilizing existing automated solu-
tions due to their limitations. These limitations may arise from the need to
use specific development environments, the lack of flexibility in these tools, or
the absence of detailed information about the modifications during the review
process [15, 18,25].

To make matters worse, studies that explore how to automatically
distinguish refactoring-related modifications are scarce [15, 20]. Studies in the
literature are limited to investigate the frequency and the impact of floss
refactoring on overall software quality [7, 8, 17, 21]. Therefore, there remains
a significant gap in understanding which code modifications are related or not
related to a refactoring instance. Thus, a research question remains: How can
code modifications in a commit be automatically identified and classified as
refactoring-related or not?

Given this challenge, it is crucial a automated tool provide comprehensive
support for distinguishing refactoring-related modifications from others. For
example, during code review, an automated tool should identify and highlight
modifications that are part of the refactoring or not for each refactoring
instance. [18]. Also, an automated tool would allow reviewers to understand the
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impact of the refactoring modifications, reducing the effort and time required to
manually locate them [18]. Finally, when customizing refactorings, developers
should be assisted with means to create or remove statements or modifications
that affect the code structure, such as creating new method declarations and
invocations [15].

1.1
Problem Statement and Related Work Limitations

Although automated tools are needed to support floss refactoring [15,18,
19, 22], several issues still hinder their effective application and the review of
refactoring-related modifications. This leads us to the presentation of the three
core research problems that must be tackled to better support floss refactoring
practices. These problems are listed below:

1.1.1
Limited Understanding about Refactoring Customization

During floss refactoring, developers tend to customize refactoring in-
stances. A customized refactoring includes additional modifications that cohe-
sively contribute to the realization of a refactoring type. It occurs when devel-
opers adjust the refactoring instance to fit their specific needs, like adapting to
the code or improving design. Frequently, these additional modifications share
the same motivation as the refactoring itself. In some cases, they help con-
nect the refactoring to other related modifications within the floss refactoring
instance. [15, 16].

In our previous study [15], we investigated and listed frequent refactoring
customizations for four different types of refactorings in practice [15, 23].
For this, we proposed an initial approach to identify refactoring-related code
modifications during these four refactoring types. However, this study still
presents some limitations in its methodological choices. These limitations
should be addressed to properly support refactoring customization in practice.

First, the study considered only a limited range of code modifications.
Only modifications in certain code locations were considered. For example,
during Extract Method refactoring, the code modifications that occurred inside
the extracted and original methods were not included in the analysis. This
oversimplification may discard important modifications that directly impact
the behavior of the refactoring, leading to an incomplete understanding of
its effects. Additionally, there was no qualitative evaluation of motivations
behind customized refactorings. In other words, we did not investigate why
developers customize refactorings. Consequently, the study was limited in
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capturing developers’ concerns and thoughts regarding the need for refactoring
customization support.

Problem 1: The current literature lacks qualitative analysis, leaving
the motivations behind developers’ refactoring customizations unexplored.
This gap hinders understanding and support for their practical needs.

1.1.2
Proper Identification and Classification of Refactoring-related Modifica-
tions

As previously discussed, refactorings are often intertwined with other
modifications during software evolution, making their differentiation and eval-
uation complex [13, 18]. The primary issue lies in the difficulty of accurately
identifying and classifying refactoring-related modifications, particularly when
these modifications are mixed with other non-refactoring changes. In our previ-
ous study [15], the proposed approach used to identify code refactoring-related
modifications was restrictive. For instance, during the Extract Method refac-
toring, we only classified modifications that called either the original method
or the extracted one as refactoring-related. This restriction potentially over-
looked other types of relationships, such as the use of common variables or
method signature modifications. Failure to distinguish between refactoring-
related and non-refactoring-related modifications can lead to misunderstand-
ings about their purpose and structure. Without accurate distinction, unin-
tended side effects may go unnoticed and unaddressed [15,18].

Accurate classification is essential to assess the impact and correctness
of each modification. Misclassifying modifications can obscure their true inten-
tions, making it difficult to ensure that refactorings are applied effectively. As
part of the task of classifying modifications, it is important to identify whether
a code modification is close to a refactoring instance. The closer a modifica-
tion is to the refactoring, the more likely it is part of the refactoring process.
Modifications close to the refactoring are usually more directly aligned with
refactoring purposes, while those farther away are often influenced by other
motivations beyond refactoring.

Problem 2: Accurate identification and classification of refactoring-
related modifications is challenging when they are intertwined with other
non-refactoring modifications.
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1.1.3
Providing Tooling Support for Floss Refactoring Review is a Challenging
Task

As software development practices evolve, the need for more sophisticated
tools to support code review processes becomes increasingly apparent. Current
tools provide some support for refactoring, but they are limited to highlighting
only the default modifications (see Section 1) associated with refactorings [18,
26]. This limitation results in a significant gap when it comes to identifying
and managing all refactoring-related modifications. Given the complexity and
potential volume of changes, relying solely on these tools often leads to a labor-
intensive and error-prone review process.

To address these challenges, it is essential to develop a tool that offers
enhanced visualization of refactorings and related modifications. Without such
a tool, reviewers must manually identify which modifications are part of the
refactoring, a process that is both tedious and prone to errors [18]. An advanced
visualization tool would address these issues by clearly distinguishing between
refactorings and related modifications, thereby reducing the cognitive load on
reviewers and improving the accuracy and efficiency of their code assessments.

Problem 3: Reviewing floss refactoring commits is demanding and
requires significant cognitive effort, especially since current tool support
may overlook related modifications.

1.2
Research Contributions

This thesis aimed to expand the understanding of the application and
review support for floss refactorings. The expected contributions are listed as
follows:

Contribution 1: We conducted a qualitative study into developers’
motivations and concerns regarding refactoring customization. This study re-
vealed why developers choose to customize refactorings, what specific chal-
lenges they face, and what kind of support they need to improve the process.
By addressing these questions, the our research outcomes can lead to the devel-
opment of more robust tools and methodologies that better support developers
in their refactoring efforts.

This contribution sheds light on the underlying factors driving develop-
ers to adapt refactorings to their specific needs, which is often overlooked in
traditional refactoring studies. By understanding these motivations and chal-
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lenges, this study not only identifies gaps in existing tools but also suggests
improvements for refactoring practices.

Contribution 2: We developed of a tool to identify and classify
refactoring-related modifications by distinguishing them from non-refactoring
modifications. This tool provides automated support to identify how close the
modifications are to a refactoring instance. By accurately detecting the close-
ness of modifications, the tool helps developers to understand the relationship
between different code modifications. This understanding ensures that the im-
pact of each modification is properly assessed.

Additionally, our proposed code modification detection tool is descriptive
and extensible. It categorizes and classify the code modifications, providing an
explicit and detailed description of each modification. Its extensible design
allow developers to include new refactoring types and new code modification
types, making it adaptable to evolving development practices.

Contribution 3: We aimed at improving the practical applicability
of tool-based approaches for reviewing floss refactorings. To this end, we
developed another tool, called RefViewer, integrated into the code review
process. This tool reduces the review effort by automatically identifying
refactoring-related modifications. The tool allow reviewers to concentrate on
the most critical aspects of the code. Additionally, it provides detailed insights
into how each code modification relates to the refactoring, streamlining the
review process, reducing effort, and ultimately improving code maintainability.
Finally, we conducted a validation study to assess the tool’s effectiveness,
involving experienced developers, which demonstrated its positive impact on
review activity and effort reduction. This contribution offers both a practical
solution and empirical evidence supporting its benefits.

1.3
Thesis Propose Outline

The remainder of this thesis, which is a compilation of technical papers
(accepted or under submission), is organized as follows.

Chapter 2: Presents the study titled "The Untold Story of Code Refac-
toring Customizations in Practice" published at the International Conference
on Software Engineering (ICSE) 2023 [27]. In this study, we investigate: (i)
the current knowledge about refactoring customizations and their occurrences
in software projects, (ii) the need for adequate support for the application
of refactoring customizations, (iii) an assessment of the current limitations of
refactoring tools, and (iv) developers’ perspectives and expected requirements
from a customization support tool. This study represented a first empirical in-
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vestigation towards understanding the concerns of the developers with respect
to customized refactorings.

Chapter 3: In this chapter, we present the extended version of the study
titled "Digging Deeper: Automated Tooling Support to Identify and Analyze
Modifications in Floss Refactoring". The paper reporting this study was
recently submitted to a major international software engineering conference. In
this study, we investigated the relationships between refactoring modifications
and other code evolution modifications in the context of floss refactorings. In
particular, we investigated how these types of modifications are intertwined
and how they are spread in the source code.

Chapter 4: This chapter presents the extended version of the study
titled RefViewer: A tool to identify refactoring-related modifications. This
study introduces a visualization tool designed to help reviewers identify and
understand code modifications related to refactoring. The tool highlights
refactoring-related modifications and shows their connection to the refactoring,
giving reviewers a more complete view. The study evaluates the proposed
tool’s accuracy in classifying refactoring-related modifications and its ability
to reduce the effort involved in reviewing them. It also explores how effectively
the tool simplifies code reviews and enhances the overall workflow.

Chapter 5: The last chapter summarizes our current results as well as
implications and research publications.



2
The Untold Story of Code Refactoring Customizations in
Practice

In this chapter, we present our empirical study published at
ICSE’2023 [27], where we delve into several aspects related to refactoring
customizations in software. Firstly, we explore the current state of knowledge
regarding refactoring customizations as well as the nature of their occurrences
in software development. We also identify the pressing need for adequate
support in applying these customizations, considering their complexities and
varied implementations.

Furthermore, we conduct a comprehensive assessment of the current lim-
itations of available refactoring tools. We highlight areas where improvements
are needed to facilitate the adoption and effectiveness of refactoring customiza-
tions. Lastly, we investigate developers’ perspectives and their expectations
from tools specifically designed to support refactoring customizations. We aim
at understanding which functionalities and capabilities are most valued in the
practical context of software development.

To explore these questions, our study focused on analyzing 13 Java-
based open-source projects. We investigated common refactoring types, namely
Extract Method, Inline Method, Pull Up Method, and Move Method. Using
RefactoringMiner, we identified over 1,162 refactorings comprising more than
100,000 modifications. Insights from this study discuss the way for refining
refactoring guidelines for developers. Such insights can also be used as the basis
for designing recommender systems, which would assist developers in selecting
appropriate refactoring modifications tailored to their coding contexts.
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2.1
Introduction

Code refactoring is a widely used practice to promote program main-
tainability and other quality attributes [2, 31, 32]. Each code refactoring type
is composed of a set of one or more modifications that aim at improving the
program structure [2]. To support refactoring, the literature provides a set of
standard modifications for each refactoring type [2,33]. Despite the importance
of refactorings as a strategy to keep internal software quality, developers re-
main reluctant on using IDE tools [28–30] to support these refactorings [13,25].
In fact, developers believe these tools have limitations to practical use [19,25].
These factors indicate that existing automated refactoring support may not
be sufficient yet.

Previous studies observed that developers usually tailor the set of mod-
ifications associated with each refactoring type described in refactoring cat-
alogs [16, 19]. These tailored modifications are named non-standard modifi-
cations and are part of refactoring customizations. A customized refactoring
includes non-standard modifications that cohesively contribute to the realiza-
tion of a refactoring type. Refactoring customization may be required to satisfy
recurring developers’ needs such as an adjustment to a local code structure,
the removal of a certain poor structure, or even updating client methods [19].

We can observe some attempts to support developers in customizing
refactorings. For instance, popular IDEs, such as Eclipse [28], NetBeans [29],
and IntelliJ [30], allow developers to customize their refactorings through
basic settings. However, previous studies [16,19,25] suggest that these settings
are not aligned with the practice. Then, developers are induced to perform
refactorings without the use of an IDE [23].

To the best of our knowledge, no study has analyzed in depth the typical
customizations of refactoring types across multiple software projects. There
are various open questions, including: (i) do developers indeed often customize
their refactorings? (ii) what are the most common modifications related to
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each customized refactoring? (iii) how to improve IDEs to properly support
the application of customized refactorings? The answers to such questions are
necessary to guide tool builders in supporting the application of customized
refactorings. Also, adequate guidelines and tooling support aligned with the
practice may reduce developers’ efforts.

Based on these limitations, we conducted a study by mining 13 open-
source projects developed in Java. We focused our analysis on four common
refactoring types, namely Extract Method, Inline Method, Pull Up Method, and
Move Method [7, 34]. We identified, by using RefactoringMiner (RMiner) [33],
1,162 refactorings composed of more than 100k modifications. The analysis
showed that standard modifications were often accompanied by recurring ad-
ditional modifications, thereby showing that refactorings are indeed frequently
customized by developers. We noticed in commits’ comments that their au-
thors mentioned the need for additional modifications to ensure the program’s
correctness [35,36].

We found 42 patterns of customized refactoring that occurred in various
refactorings of the same type. For instance, various patterns include a similar
structure of exception handlers and related method calls, which go against cer-
tain IDE tooling mechanics. Developers would not be able to safely reuse these
frequent customizations if they are not correctly predefined and supported by
the IDE. Even worse, developers would have to: (i) find out by themselves the
IDE’s transformation is not adequate, (ii) ensure the program’s correctness by
avoiding unexpected behavior, and (iii) manually apply this non-trivial pat-
tern in their code. Thus, understanding customized patterns is the basis for
guiding in-depth investigations of customized refactorings and cataloging the
scenarios in which these customized refactorings are applied.

Based on our findings, we evaluated the existing tooling support for
applying frequent customized refactoring with widely used IDEs, namely
Eclipse, IntelliJ, and NetBeans [23, 37]. We then listed and discussed 12
limitations that hamper the application of found patterns using such IDEs.
For example, a key prevailing limitation is the lack of flexibility for developers
to choose which method should handle exceptions when performing a Extract
Method. IDEs make certain rigid choices on the behalf of developers, e.g.,
inducing an exception handling location, which may lead to bugs in the
refactored code. Therefore, our study findings shed light on how to improve
refactoring guidelines and tool support. Our findings also provide insights on
the design of recommenders for assisting developers in properly selecting code
modifications of a refactoring that best match the contextual needs.

Finally, to corroborate the results of our previous analysis, we performed



Chapter 2. The Untold Story of Code Refactoring Customizations in Practice22

a survey with 40 developers. This survey was applied to investigate the rele-
vance of the refactoring customization patterns and corresponding tool sup-
port. We found that 92.7% of the interviewed developers consider as important
the addition of tooling support for customized refactoring in IDEs. Also, the
interviewed developers provided additional arguments on the importance of
these patterns.

2.2
Background and State of the Art

2.2.1
Refactoring Research and Practice

Code refactoring consists of applying modifications to code structures
for enhancing program comprehensibility, maintainability, and other quality
attributes [2, 19, 38]. The literature cataloged (e.g., Fowlers’ catalog [2])
various refactoring types and their mechanics. The mechanics for a refactoring
type defines a set of standard code modifications, which guide developers in
enhancing their code structure.

For our study, we focused on four popular refactoring types, chosen for
two reasons. First, they have different scopes, i.e., they cover both class-level
modifications such as Pull Up Method and Move Method, and method-level
ones such as Extract Method and Inline Method. Second, we focused on fre-
quent, more complex, structural refactorings [38–40]. Simpler refactorings,
e.g., renaming, have less room for structural customization. Our selected
refactoring types have wide scopes and allow a high number of customiza-
tions. Also, these four types of refactorings share structural similarities with
other refactoring types, e.g., Move Method moves a method from one class to
another similarly to Push Downs and Pull ups.

Table 2.1 describes the refactorings with their corresponding source and
target elements. These elements represent the main method modified, i.e., the
source, and the method produced after the refactoring, i.e., the target. The
standard modification sets are shown in the last column of Table 2.1. These
modifications are aligned with Fowler’s and Opdyke’s refactoring mechanics [1,
2], being the basis for the design of refactoring tools [5, 13,33,41–43].

In several contexts, developers may need to customize the standard sets
of modifications [16], adding or removing modifications from this standard set
to tailor refactorings [16, 38]. These customizations make the application of
refactorings more complex [19,44]. To make it worse, existing refactoring tools
(e.g., [6,33,45–48]) are mostly focused on only providing support for either the
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Table 2.1: Refactoring Details and Standard Refactoring Mechanics
Type Description Source Target Standard modification set

Extract
Method

Create a method
based on statements
extracted from
an existing method

Method where
the extraction
was performed

Extracted
method

• Create the target method with code
extracted from the source method

• Update variables’ references
• Add in the source method’s body

a call to the target method

Inline
Method

Incorporate the
body of a method
into an existing
method

Method to be
inlined

Method that
inlined the
source

• Replace each call to the source
method with its method body

• (Optional) Remove the source‘s
method declaration

Pull Up
Method

Move a method
from a child class
to its parent clas

Method in the
subclass

Pulled up
method in
the superclass

• Create target method in the superclass
and copy the source‘s method body

• Remove from all subclasses
the source’s method declaration

• If possible, change source methods
calls, with call to the target method

Move
Method

Move a method
from one class
to another class

Method to
be moved

Method after
being moved

• Create target method with a
copy of the source‘s body method

• If removed source‘s method:
replace calls to target method

• If did not remove source‘s method:
add target call in source‘s body

detection or the application of standard mechanics. In this way, there is a lack
of tool support for these more complex refactorings, even though the interest
of developers has been demonstrated in the literature [19,25].

Previous studies investigated the motivations behind the refactoring
application [49, 50]. Although these studies observed different reasons for
performing refactorings, little is known about how refactorings are customized
based on developers’ needs or motivations. Some studies discuss the concept
of floss refactoring [17, 38]. Floss refactorings are refactorings applied with
other development activities, such as feature additions or bug fixes [38, 49].
The set of modifications in a floss refactoring may include some additional and
non-standard modifications as part of the refactoring customization. However,
these studies do not characterize which of these modifications are related to the
refactoring itself. This characterization is necessary to properly support the
application of customized refactoring through refactoring catalogs and tools.

A recent study investigated which modifications are combined with
Extract Method [20]. However, this study focuses on only one refactoring type,
besides investigating a limited scope of modifications. Also, the authors use a
different AST diff with a higher granularity level. Finally, this study does not
investigate the support of these additional refactoring-related modifications on
popular IDEs. Another study speculated the need for customized refactoring
according to the development context [16]. However, this study did not
empirically investigate the occurrences of refactoring customizations in those
projects as well as their characteristics and support required.

In summary, the knowledge about customized refactoring is quite limited.
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It remains challenging and necessary to investigate: (i) in what ways refactor-
ings are customized in practice, and (ii) whether and how to start improving
IDEs refactoring tools to properly support refactoring customizations.

2.2.2
Refactoring Customization

Customized refactoring is a variation of the standard set of modifications
defined for a type of refactoring [2]. This variation may occur due to the addi-
tion or even the removal of modifications from the standard set. Customization
is often needed to tailor the refactoring to a program context. A customized
refactoring includes only one or more non-standard modifications that have to
be applied together with the standard ones to fully realize a refactoring. In
other words, the non-standard modifications of a customized refactoring are
also structural modifications required to implement a refactoring type. Non-
standard and standard modifications of a customized refactoring interact and
cohesively contribute to the realization of a refactoring type.

The conventional definition of refactoring assumes code behavior preser-
vation [2]. This definition is in line with the notion of root-canal refactoring [38].
A root-canal refactoring occurs when the structural modifications of a refac-
toring are applied alone in a change and do not interact with co-occurring be-
havioral changes. However, certain recurring refactoring customizations may
also be needed in the context of floss refactorings [38]; that is, the customized
refactoring are applied in conjunction with other non-refactoring changes, such
as feature addition. The customization may be required due to the interface
of the refactored code with the new feature code.

The practical need for frequent floss refactorings does not make it
possible for developers to always stick to the behavior-preserving aspect of
the conventional definition of refactoring [19,38,51]. Recurring customizations
may also exist in floss refactorings, and, as such, developers also need support
to perform their frequent non-standard modifications for refactoring types in
the context of floss refactoring. Thus, we classify the customized refactorings
into two groups: (i) refactoring customizations that do not change the code
behavior, i.e, root-canal customizations, and (ii) the refactoring customizations
that change the code behavior, i.e, floss customizations.

Finally, we consider as customization pattern the recurring refactorings
that satisfy both conditions: (i) they all have at least one structural modifi-
cation that differs from the standard ones defined for a refactoring type; and
(ii) this set of modifications, including the non-standard one(s), consistently
occur together in multiple instances of that same refactoring type.
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Listing 2.1 presents a refactoring customization, e.g., a root-canal cus-
tomization, of a Move Method that was applied to the Apache Tomcat
project [52]. In this case, the developer moved a method called setAllowCa-
sualMP from the Connector class to the StandardContext class. This
example has the following modifications: (i) a method was moved from one
class to another class, and (ii) a method signature of this method was created
on the interface (Context) of the target class. The first modification is part
of the standard set of modifications for Move Method (see Table 2.1). On the
other hand, the second modification is an additional one that customizes the
Move Method. This additional modification moved the setAllowCasualMP
method to the target class and made it an abstract method of the interface
implemented by the target class. This additional modification is important to
pass the test in the class (TestStandardContext) that calls the setAl-
lowCasualMP method directly from the Context interface. This example is
an illustration of a customization pattern of the Move Method refactoring, in
which the moved methods become part of an inherited interface.

Listing 2.1: Real Example of Customized Move Method
public class Connector {

- public void setAllowCasualMP (){ ...} ...
}
public class StandardContext implements Context {

+ public void setAllowCasualMP (){ ...} ...
}
public interface Context {

+ public void setAllowCasualMP (){ ...} ...
}

2.3
Study Settings

We investigated how developers apply and customize refactorings on their
projects. We derived two research questions (RQs) that guided our study:

RQ1: In what ways are refactorings customized by developers?
RQ1 aims at investigating how refactorings are applied in practice. We observe
the most frequent root-canal and floss customizations by analyzing the modi-
fications that compose each commit that includes a refactoring instance. This
analysis enables us to identify and understand the most frequent customization
patterns. We also discuss divergences between the modifications that compose
the customized patterns and the standard mechanics of each refactoring type
presented in Table 2.1. As result, we present a catalog of customization patterns
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for each refactoring type. These patterns bring insights into how developers
apply and customize refactorings.

RQ2: How to improve IDEs’ automated refactoring tools to
properly support customized refactorings? Automated refactoring tools
available in IDEs aim to support standard refactoring mechanics. Thus, they
do not properly support customized refactorings both in the context of root-
canal and floss refactorings. However, it is important that refactoring tools
are in accordance with the practice; otherwise, developers may refuse to use
them [19,25]. In this way, RQ2 aims at investigating what are the current IDE
limitations and how their refactoring features should be improved to properly
support the application of customized refactorings. For that, we replicated,
using popular IDE refactoring tools, customized patterns from the catalog
obtained as a result of the RQ1. The result of RQ2 provides a list of identified
limitations. This list is the basis to recommend how IDE tools can improve
the support for developers to perform customized refactorings.

2.3.1
Study Steps

This section details the steps performed to build the dataset and perform
the data analysis in our study. All the dataset-building steps and analyses were
conducted by at least two authors and then discussed with other authors. In
the presence of conflicting views, further discussion was required to converge.
The dataset can be found on our website [53].

Step 1: Project Selection. We selected 13 active Java open-source
projects of different sizes and domains. These projects are often used in
previous studies of refactoring [31, 39, 40] given their frequency and diversity
of refactorings. We took into account the stars count to prioritize popular
projects [54]. We focused on open-source projects to facilitate the replication of
our study. Finally, choosing Java projects allow us to use RMiner, a refactoring
detection tool with high recall and precision, as discussed in Step 2. The
selected projects were Elasticsearch-hadoop [55], Hystrix [56], Fresco [57],
Achilles [58], Ikasan [59], ExoPlayer [60], Signal-Android [61], Netty [62],
MaterialDrawer [63], Derby [64], Tomcat [65], HikariCP [66] and Material-
dialogs [67]. The domains are: (i) data search and analysis; (ii) Android systems
such as messaging applications and visual design; (iii) application server;
and (iv) database construction. These projects have from 1,121 (doanduyhai
Achilles) to 17,787 (Tomcat) commits.

Step 2: Refactoring Detection. We used RMiner [33] to detect
refactorings performed in the selected projects. We chose RMiner because it
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is widely used in the literature [7, 39, 40, 68] and has high recall (87.2%) and
precision (98%). With a high recall, the tool captures almost all refactoring
instances performed in different contexts for each project. Thus, these instances
may represent a variety of modifications used to customize refactorings for
these diverse contexts.

We focused on four refactoring types (Table 2.1), which are frequent in
multiple projects [7, 39] and are present in popular IDEs. These refactorings
constantly occur in a unique commit, affecting the same code fragment, known
as composite refactorings [40]. Thus, to avoid modifications of composite refac-
toring instances to be erroneously considered as part of a unique refactoring
type, we selected only commits with one detected refactoring. Lastly, any cus-
tomization exclusively occurring with particular refactoring compositions (e.g.,
Extract Method with Move Method) would be an addition to the customiza-
tions already present in our study; in other words, they would complement but
not invalidate our results.

Step 3: Modification Detection. We used Eclipse’s JDT 3.10 to
collect the code modifications [69]. This library parses Java code into an
Abstract Syntax Tree (AST). ASTs are widely used in the literature to
detect refactorings [33, 70]. The Eclipse JDT is also used by the Gumtree
framework [71], a popular framework used in literature to compare ASTs in
Java [72, 73]. We used JDT directly because it provides Java language syntax
information, allowing us to distinguish the same node type in different contexts.
For example, using JDT we could observe whether the SIMPLE_NAME node
is associated with a class variable, interface, class name or other Java tokens.
These differences are relevant to detecting refactorings customizations and
their patterns.

For each refactoring detected in Step 2, we collected the information
before (v) and after (v+1) the refactoring occurrence. We collected information
related to the classes affected by the refactoring and their clients. We classified
a class as affected by a refactoring when the modifications occurred within
that class. For instance, an Extract Method has at least one affected class. On
the other hand, a refactoring of the type Pull Up Method or Move Method has
at least two affected classes, once a method is moved from one class to another
one. Finally, we classified as a client of a class or method every other class
or method that interacts with the client, e.g., importing it and/or calling a
method of the affected class. Once we have two subsequent versions of a class,
the AST nodes are defined as ASTv = {nodei, nodei+1, ..., noden} where ASTv

is the set of nodes belonging to the AST in version v. The set of added nodes
to the source code between two subsequent versions is given by the resulting
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set of the difference between ASTv+1 − ASTv. Similarly, the set of removed
nodes from the source code is given by the difference of ASTv − ASTv+1.

Listing 2.2: Modifications between Two Subsequent Versions
+ public void clear () {
+ if ( mAnimatedDrawableCachingBackend ! = null) {
+ mAnimatedDrawableCachingBackend . dropCaches ();
+ }
+ ClosebleReference . closeSafely ( mLastDrawnFrame );
+ mLastDrawnFrame = null;
+ }

public void onInactive () {
- if ( mAnimatedDrawableCachingBackend ! = null) {
- mAnimatedDrawableCachingBackend . dropCaches ();
- }
- ClosebleReference . closeSafely ( mLastDrawnFrame );
- mLastDrawnFrame = null;
+ clear ();

}

Listing 2.2 illustrates the difference between two subsequent versions
of a class from the Facebook Fresco project [74]. Table 2.2 presents a par-
tial list of nodes obtained when analyzing the code in Listing 2.2, indicat-
ing the node type, scope, and whether the node was added or removed. We
grouped the nodes based on semantic similarities of their modifications, cre-
ating coarse-grained categories, shown in Table 2.3. For instance, the nodes
related to conditional control, such as SWITCH_STATEMENT, CONDI-
TIONAL_EXPRESSION and IF_STATEMENT, were grouped into the group
Conditional. These categories enabled us to perform analysis and comparison
focusing on the semantics of the modifications.

Table 2.2: Nodes Detected in the Subsequent Versions
AST Node Statement Element Status
METHOD_DECLARATION Animated...Wrapper.clear() Class Added
IF_STATEMENT mAnimated...Backend != null clear() Added
IF_STATEMENT mAnimated...Backend != null onInactive() Removed

METHOD_INVOCATION CloseableR...closeSafely(m...Frame)
mAnimated...Backend.dropCaches() onInactive() Removed

METHOD_INVOCATION CloseableR...closeSafely(m...Frame)
mAnimated...Backend.dropCaches() clear() Added

METHOD_INVOCATION clear(); onInactive() Added

Step 4: Dataset Construction. The collected modifications of all
refactoring instances might include modifications related to different software
engineering activities, e.g., feature addition. Thus, in this step, we focused on
filtering out non-refactoring modifications, which are modifications not related
to the refactoring activity. Then, in order to facilitate the identification and
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Table 2.3: Grouped Modifications
Category AST Nodes

Annotation

ANNOTATION_TYPE_DECLARATION,
ANNOTATION_TYPE_MEMBER_DECLARATION,
MEMBER_VALUE_PAIR, QUALIFIED_TYPE,
NAME_QUALIFIED_TYPE, MARKER_ANNOTATION,
NORMAL_ANNOTATION,
SINGLE_MEMBER_ANNOTATION

Enum ENUM_DECLARATION,
ENUM_CONSTANT_DECLARATION

Method Declaration

FIELD_DECLARATION,
METHOD_DECLARATION,
INITIALIZER, LAMBDA_EXPRESSION,
MODIFIER

Exception Handler TRY_STATEMENT, CATCH_CLAUSE,
THROW_STATEMENT, UNION_TYPE

Comments

JAVADOC, BLOCK_COMMENT,
LINE_COMMENT, METHOD_REF,
METHOD_REF_PARAMETER,
MEMBER_REF,
TAG_ELEMENT, TEXT_ELEMENT

Array Modifier ARRAY_CREATION, ARRAY_INITIALIZER,
ARRAY_ACCESS, ARRAY_TYPE, DIMENSION

Literal Modifier
BOOLEAN_LITERAL, CHARACTER_LITERAL,
NULL_LITERAL, NUMBER_LITERAL,
STRING_LITERAL, TYPE_LITERAL

Class Creation

CLASS_INSTANCE_CREATION,
ANONYMOUS_CLASS_DECLARATION,
TYPE_PARAMETER, CREATION_REFERENCE,
TYPE_METHOD_REFERENCE

Conditional CONDITIONAL_EXPRESSION, IF_STATEMENT,
SWITCH_CASE, SWITCH_STATEMENT

Method Access

FIELD_ACCESS, METHOD_INVOCATION,
SUPER_METHOD_REFERENCE SUPER_FIELD_ACCESS,
SUPER_METHOD_INVOCATION,
THIS_EXPRESSION, CONSTRUCTOR_INVOCATION,
SUPER_CONSTRUCTOR_INVOCATION,
EXPRESSION_METHOD_REFERENCE

Operator Expression INFIX_EXPRESSION, POSTFIX_EXPRESSION,
PREFIX_EXPRESSION, ASSIGNMENT

Cast INSTANCEOF_EXPRESSION, CAST_EXPRESSION,
INTERSECTION_TYPE

Variable Declaration

VARIABLE_DECLARATION_EXPRESSION,
VARIABLE_DECLARATION_FRAGMENT,
VARIABLE_DECLARATION_STATEMENT,
SINGLE_VARIABLE_DECLARATION

Class Control IMPORT_DECLARATION, PACKAGE_DECLARATION

Loop Flow Control

DO_STATEMENT, FOR_STATEMENT,
BREAK_STATEMENT, WHILE_STATEMENT
CONTINUE_STATEMENT,
ENHANCED_FOR_STATEMENT

Type Modifier

SIMPLE_TYPE, TYPE_DECLARATION,
TYPE_DECLARATION_STATEMENT,
PRIMITIVE_TYPE, PARAMETERIZED_TYPE,
WILDCARD_TYPE

Return Modifier RETURN_STATEMENT

removal of non-refactoring modifications, we split the modifications into two
groups based on their code location: (i) the internal modifications that occurred
within the source and target methods, and (ii) external modifications that
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occurred somewhere else.
The internal modification group includes the modifications within the

source/target methods that are identified by the refactoring detection tool.
These modifications are cataloged and represented on the RMiner detection
rules [33]. For those modifications not detected by RMiner detection rules,
we manually observed that different (non-)refactoring modifications depend
on particular project aspects, such as design patterns and modularization. We
concluded that these situational modifications were not frequent and, thus, did
not follow any pattern. Therefore, we decided to discard these modifications
from the internal group in our results.

The external modification group includes modifications performed exter-
nally to the source/target methods and that satisfy one of the following condi-
tions: (i) the modifications are included in the standard mechanics of the ana-
lyzed refactoring type, e.g., the creation of the target method during a Extract
Method; or (ii) the modifications are related to additional software engineering
activities, e.g., feature addition, but interact with the source/target methods
of the refactoring instance. We consider as interaction with the source/target
any invocation of these methods in the source code of the refactoring modifi-
cations. For this later case, additional modifications are part of the refactoring
activity once they only exist due to the structural change aimed by the refac-
toring. Those modifications typically determine “the interface” between the
refactoring activity and the co-occurring software engineering activities. For
instance, existing IDEs support developers in customizing an Extract Method
refactoring by enabling them to qualify a method as public, protected or pri-
vate, which is not a standard modification in the Extract Method definition, to
bind the refactoring modifications with the non-refactoring modifications. This
binding is made only due to the refactoring activity (and, therefore, is part
of it) as a new method creation is an intrinsic goal of the refactoring. Making
the method accessible is a compulsory modification to introduce method calls
from client methods that compose the most frequent customizations.

For collecting external modifications, we applied a pattern matching
algorithm. This algorithm visits all modifications related to a refactoring
instance and collects the Java tokens, e.g., variable and methods names. Then,
tokens are filtered out based on whether there is a mention of the source/target
method name such as the own method declaration, in the case of external
modification (i); or method invocations, in the case of external modification
(ii). When there is a mention of the source/target method name, the algorithm
counts the number of parameters that were passed in the method invocation. In
this way, we avoid misidentifying method invocations on refactoring instances
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that have more than one method with the same name. For this to be true,
we also needed to remove from our dataset instances that have the source or
target methods with the same name and an equal number of parameters.

In summary, we considered as refactoring modifications the modifica-
tions that satisfy one of the following conditions: (i) are explicitly listed in
refactoring mechanics [1, 2, 33], or (ii) occurred externally to the source/tar-
get methods along with other (non-)modifications, but that also interacts with
the source/target methods through a method invocation. Altogether, we found
1,162 refactoring instances and more than 100K modifications related to those
refactorings. We found the following amount of instances and modifications
for each refactoring type: (i) 856 instances and 77,306 modifications related to
Extract Method, (ii) 174 instances and 14,126 modifications related to Inline
Method, (iii) 78 instances and 5,856 modifications related to Move Method, and
(iv) 54 instances and 3,734 modifications related to Pull Up Method. Addition-
ally, we collected the commits’ comments related to each refactoring instance.
In this way, we could observe if developers mentioned any reference to the
customizations.

Step 5: Survey with developers. To complement the results of our
study, we conducted a survey to evaluate the relevance of the most frequent
patterns (RQ1) and the need for tooling support for such patterns (RQ2)
based on the developers’ opinions. We invited participants for the survey using
convenience sampling, i.e., developers who are easily accessible [75]. We invited
developers using professional and academic mailing lists. The invitees were
free to accept or not to participate and we have not provided any reward for
participation. The participants answered questions regarding their experience
with refactoring applications. In order to level the knowledge of participants,
we introduced in detail the definition and mechanics of customized refactorings
and described the current refactoring tooling support. For the survey questions,
we selected the most frequent patterns that, together, include all modification
categories observed in our catalog. Each question included a refactoring
instance with the code fragments before and after the application of a selected
customization pattern. Then, the developers were asked to analyze those code
fragments and indicated whether the presented customization patterns are
relevant and whether it would be necessary to have tooling support for their
application. We made clear that the developers could ask for clarification
during any part of the survey. The survey was composed of true/false and open-
ended question types. The first question type allows us to precisely identify the
interviewee’s final decision regarding the customization support needed. The
second question type allows us to understand which factors motivate their
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answer. The complete survey including its questions and answers can be found
on our website [53].

2.4
Results and Discussion

The following subsections present RQs’ results and analysis.

2.4.1
Refactoring Customization in Practice

Figures 2.1 to 2.4 describe the most frequent customization patterns
found for each refactoring type. These patterns are presented as a tree
structure. Each node (box) in the figures represents a modification of a
specific category performed to apply the customization. The nodes with dark
background colors represent default modifications of Table 2.1. The nodes
with light background colors represent additional modifications. The green
and red colors indicate whether the modification is an addition modification
(+) or removal modification (-). The labels source (S) and target (T) indicate
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whether the modification interacts with the source or the target method. Each
path, starting from the root node, characterizes a pattern of the respective
refactoring type. The nodes belonging to the path are the modifications that
compose the respective pattern. For example, we have pattern 1.3, for the
Extract Method type, composed by Method Declaration (target) and Method
Access (target). This pattern is expressed in text as {Method Declaration.T+,
Method Access.T+}. Finally, we also present the percentage of occurrence of
the respective pattern. We consider an occurrence if the pattern is included
among all the modifications of a commit.

Developers constantly apply non-standard modifications. We
observed that Pull Up Method was the only refactoring type in which a
modification from the standard set (removal of the source method) occurred in
100% of their instances. On the other hand, modifications in the standard set
(the addition of the target method), only occurred in 79.63% of the instances.
This means that developers, in their customizations, might even occasionally
not perform some standard modifications. Not applying a default modification
does not necessarily imply a change in code behavior. In the case of the Pull
Up Method, the absence of the creation of the target method is due to the
existence of a method with the same signature. For Pull Up Method, the
existent method is found in one parent class of the hierarchy. A similar behavior
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is also observed for the method declarations of Pattern 3.2 for Move Method
and Pattern 1.1 for Extract Method. Thus, these patterns are supported in
root-canal customization classification.

Patterns that simply added a single additional modification to the
standard set occurred in 60.86% of Extract Method instances, 37.36% of Inline
Method instances, 80.77% of Move Method instances, and 40.74% of Pull
Up Method instances. More complex patterns, with at least two additional
modifications, are less frequent. However, these patterns still occurred in over
10% of cases for all refactoring types. This is especially true for Move Method,
which had patterns with five modifications that occurred in 21.79% of the
instances. Thus, although the standard modification set is frequent, developers
customize this set of modifications to include more possible modifications
during the application of each refactoring type.

The most frequent additional modification among refactorings is Method
Access. This modification indicates the addition or removal of a call to
the source or target methods in the client method. The application of this
modification unaccompanied by the replacement by the code of the source or
target that had the call changed indicates a change in behavior, therefore a floss
customization. Other additional modifications such as Operator Expression
and Variable Declaration are related to code readability and thus do not affect
the code behavior, being root-canal customizations. Finally, the modifications
Return Modifier and Exception Handler do not exclusively indicate a change
in behavior, since they tend to make the code more robust. Patterns with these
two latter modifications can be floss or root-canal customizations, depending
on the scenario.

Customization pattern modifications are similar for different
refactoring types. Figure 2.1 presents the most frequent patterns for Extract
Method. We observed that the addition of Method Declaration of the target
method occurred in 98.48% of the Extract Method instances. In the remaining
patterns, the refactoring mechanic differed from what is considered the default.
In these cases, the developers extracted code statements and added them to
an existing method. The addition of the extracted code elements to a method
containing only the signature would not change the code behavior.

For Pattern 1.3, we observed the occurrence of a Method Declaration
along with a Method Access in 60.86% of the cases. This means that client
methods usually add a call to the target method after the extraction. This
behavior reinforces the findings that developers extract fragments of code in
order to be reused by new clients [7]. Also, for Pattern 1.7, the developers added
a Method Declaration and Method Access to the target as well as removed
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Method Access to the source. This pattern suggests a swap between the source
and target call. However, only in 11.45% of the instances, the developers
switched the call from the source to a call to the target, indicating a possible
code change behavior.

Figure 2.2 presents the most frequent patterns for Inline Method. We
observed that, for 5.17% of the instances, developers preferred to keep the
source method when applying Inline Method contrasting what is considered
the standard. The results also indicate that in 37.36% of the Inline Method
instances the client methods removed a call to the source method (Pattern
2.5), but only in 14.94% there was also the addition of a call to the target
method (Pattern 2.9). Thus, similarly to Pattern 1.7 of Extract Method, the
client methods that removed the call to the source method and did not replace
that call to a call to the target method had their functionality reduced. This
reduction in functionality may be related to unexpected code behavior.

Finally, most of the modifications are of the removal type and interact
with the source method. This indicates that the clients of the source method
needed to be adjusted to remove the interactions that they have with the source
method. However, this adjustment is more complex than just removing calls
to the source method. We can observe that the client methods also needed to
adjust logical expressions (8.05%) and exception handling (6.9%).

Figure 2.3 presents the most frequent patterns for Move Method. We
observed that most of the patterns tend to add calls to the target method
(80.77%, Pattern 3.3) and remove calls to the source method (70.51%, Pattern
3.4). A manual validation indicated that in 57.69% of the instances of Move
Method, developers added a target method call in client methods that did
not call the source method before the refactoring (floss customization). We
also noticed that developers performed more complex patterns that include
exception handler and variable declaration, both occurred in 24.36% (Patterns
3.7 and 3.8) of the instances. Finally, we noticed that developers were often
aware of the need to move the source method in order to improve exception
handling. That is, by moving this method, new methods could take advantage
of this handling, avoiding unexpected behavior [35,36].

Figure 2.4 presents the most frequent patterns for Pull Up Method. We
observed that the removal of the source method together with the addition
of the target method occurred in 79.63% of the instances (Pattern 4.2). A
manual validation indicated that in the cases without the addition of the target
method, the superclass in the hierarchy already had a method with the same
signature or an abstraction of it. Based on the commit’s messages, developers
chose to perform this customization to simplify future implementations and
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avoid code duplication [76, 77]. For that, they pulled up only the method’s
content into a superclass in order to create a standard implementation of this
method. That way, each child class that implements this abstraction will no
longer be forced to implement this method anymore. That is, this scenario
required the customization of the Pull Up Method refactoring to fit in this
different structure. This scenario is described by the commit’s author [77], as
follows:

‘Move generic code to HttpOrSpdyChooser to simplify implementations. Moti-
vation: HttpOrSpdyChooser can be simplified so the user not need to implement
getProtocol(...) method.’

Similar to the other refactoring types, we also observed more complex
patterns that also involve recurring exception handling modifications. In those
cases, developers were concerned about ensuring the correct flow of the moved
functionality, avoiding duplicate executions and unexpected behavior [77, 78].
When moving the handling to the superclass, new implementations of this
superclass will have the appropriate standard treatment that already handles
possible exceptions, avoiding further problems for users, as mentioned by the
commit’s author [78].

In general, the standard set of modifications for each refactoring type
occurred frequently. However, most of the refactoring instances involved addi-
tional modifications, especially method calls for both the target and source
methods, and exception handling. These additional modifications turn the
refactoring application more complex. The comments of the commits indicated
that developers were constantly aware of the need for customization motivated
mainly by the addition of new features and the improvement of program cor-
rectness, avoiding unexpected behavior in the code. These customizations are
recurring and focus on adjusting the refactoring to specific scenarios, e.g., move
a method across hierarchies.

RQ1: In what ways are refactorings customized by developers?
Several recurring refactoring customizations are consistently present in
multiple projects. The standard refactoring modifications (Table 2.1) are
far from being enough to address developers’ needs. As such, developers
frequently perform additional modifications, as those involving Method
Access and Exception Handler, which extend or remove default refactoring
modifications discussed in the literature [2]. Based on that, customized
refactorings should be properly documented in order to better assist
developers in performing code refactoring.
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2.4.2
IDEs’ Support for Customized Refactorings

In the previous RQ, we identified the most frequent patterns applied by
developers when performing four refactoring types. In this RQ2, we investigated
how to improve the automated refactoring tools provided by the IDEs Eclipse,
IntelliJ, and NetBeans to properly support the application of these patterns.
We analyzed the source code of the instances of each pattern described in
Figures 2.1 to 2.4. We minimally adapted the code to be reproducible in the
IDEs’ environment. Then, we manually invoked the IDEs’ refactoring tools in
order to reproduce the refactoring applied by the developer. For each IDE,
we: (i) used the same code, (ii) selected the same statements, and (iii) applied
the corresponding refactorings. Table 2.4 lists the main limitations (identified
from 1 to 12) that hinder the application of custom refactoring patterns when
using existing IDEs’ refactoring tools. The limitations 1 to 8 occurred in more
than one refactoring type.

All IDEs share similar customization impediments. Tables 2.5
to 2.8 present the IDEs support for each pattern and associate them to the
limitations shown in Table 2.4. We classified the IDEs’ support into three
categories: (i) Full Support, the refactoring tool is able to reproduce the pattern
completely for all reproduced scenarios; (ii) Partial Support, the refactoring
tool is able to reproduce the pattern completely only if some preconditions
are met; and (iii) No Support, the refactoring tool is not able to reproduce
the complete pattern in any circumstance. Once the IDEs refactoring tools
follow the standard modifications, we observed that all IDEs had the same
limitations. Thus, we used only one column to indicate the support category
for all of them. The last column indicates the limitation id.

Table 2.5 presents the limitations for applying Extract Method. Except
for Method Declaration.T+, all the other patterns have No Support or Partial
Support. Limitation 2 is the most frequent among the Extract Method patterns,
since most of the patterns include the removal of a Method Access in a client
method. Limitations 2 to 5 refer to the addition, removal, or swap of methods
calls to the source or target method.

Limitation 5 is also related to Pattern 3.3, in which developers add more
calls to the target method in Move Methods. We observed this limitation,
mainly, when developers apply Move Methods to support a feature addition. In
the commit fc14ca31cb36 [79] of the Netty project, the developer moved the
safeExecute method from the SingleThreadEventExecutor class to
the AbstractEventExecutor class. The developer also called this moved
method in other classes, mainly in classes that were created to support the
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Table 2.4: List of the Limitations of IDEs’ Refactoring Tools
Id Limitation

1 Modification only supported if occurred in source/target methods
2 It is not possible to remove source method invocation in client methods
3 It is not possible to remove target method invocation in client methods
4 It is not possible to add source method invocation in client methods
5 It is not possible to add target method invocation in client methods
6 There is no exception support for methods different than source and target ones
7 No exception handler is added if there is an exception error before the refactoring application
8 It is not possible to manage who should handle the exception

9 It is necessary that the extracted code is duplicated and the duplication recognized
by the IDE -Exclusive for Extract Method

10 It is not possible to remove the modification without replacing it with the inlined
method body -Exclusive for Inline Method

11 The swap of the call from source to target must occur in the same client
-Exclusive for Pull Up Method and Move Method

12 It is mandatory to create the moved method, even if there is already a method with
the same name in the destination class -Exclusive for Pull Up Method and Move Method

Table 2.5: Limitations of Extract Method Refactoring Tools
Patterns IDEs’ Support Limitation Id

(1.1) Method Declaration.T+ Full support
(1.2) Method Declaration.T+, Method Access.S+ No support 4
(1.3) Method Declaration.T+, Method Access.T+ Partial support 9
(1.4) Method Declaration.T+, Exception Handler.T+ Partial support 6,7,8
(1.5) Method Declaration.T+, Method Access.S- No support 2
(1.6) Method Declaration.T+, Method Access.T+, Exception Handler.T+ Partial support 6,7,8,9
(1.7) Method Declaration.T+, Method Access.T+, Method Access.S- No support 2,9
(1.8) Method Declaration.T+, Method Access.T+, Operator expression.T+ Partial support 1 (Operator Exp.),9
(1.9) Method Declaration.T+, Method Access.T+, Variable Declaration.T+ No support 1 (Variable Decla.),9
(1.10) Method Declaration.T+, Method Access.T+, Method Access.S-,
Operator Expression.S-

No support 1 (Operator Exp.),2,9

Non Sticky Event Executor Group feature addition, as mentioned in
the commit message [79]. A refactoring tool could mitigate this limitation
by identifying when a Move Method is being applied in the feature addition
context. For example, if the developer creates new classes after the Move
Method application, then the tool can suggest the addition of a call to the
previously moved method.

Limitations 6 to 8 affect the modification Exception Handler. For in-
stance, if the selected statements for Extract Method throw an exception, the
target method will throw this exception, even if the exception thrower is com-
pletely extracted. Thus, the IDEs do not allow developers to define which
(source/target/client) method must handle that exception. This inflexibility
forces all the methods that invoke the target to handle the exception them-
selves. Due to the lack of automated support, developers may not apply this
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exception handling correctly, causing an unintended behavior change.
Tooling support for each refactoring type has particular lim-

itations. IDEs’ refactoring tools have the same limitations, as discussed for
Extract Method, for the remaining refactoring types. However, there are some
particularities for each refactoring type. For Extract Method, we observed the
exclusive Limitation 9. This limitation indicates that it is not possible to man-
ually choose two similar or equal fragments of code to be extracted in a new
method. In this way, developers depend on the tool to consider the codes as
duplicates, otherwise, developers will need to perform the extraction manually.

For Inline Method (Table 2.6), we have the exclusive Limitation 10. In
this refactoring, developers can choose to replace the call to the source method
with the body of the source method. However, the refactoring tool does not
let the developer only remove the call to the source method or replace the call
to the source method with a call to the target method, both modifications are
often applied. Therefore, developers are forced to: (i) make these not supported
modifications manually or (ii) apply the refactoring as suggested by the tool
and then remove manually some modifications applied. In both situations,
because of the manual step, more effort is needed. This limitation increases
the misalignment between refactoring tools and custom refactorings, increasing
tool misuse [19,25].

Limitation 11, exclusive for both Move Method (Table 2.7) and Pull
Up Method (Table 2.8), states that the refactoring tool allows developers to
exchange a call to the source method for a call to the target. However, it does
not allow only the addition of a call to the target method or only the removal
of a call to the source method. For instance, developers may choose to call
the target method on methods that did not call the source before refactoring
because these methods did not have access to the source method or are in
an inappropriate place. Inappropriate places are one of the main reasons why
developers apply the Move method [7].

Finally, Limitation 12 is also exclusive for Move Method and Pull Up
Method. This limitation indicates that it is not possible to move only the
method content to a method with the same signature in the destination class.
Thus, developers are forced to: (i) apply these refactoring manually, or (ii) force
the method to be moved, leaving the destination class with two methods with
the same signature.

We believe that the current tools are helpful for supporting refactoring
activities. However, as hypothesized, these tools are not able to properly
support the customizations performed by developers due to several limitations.
In this way, developers are forced to manually apply the modification set of
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Table 2.6: Limitations of Inline Method Refactoring Tools
Patterns IDEs’ Support Limitation Id

(2.1) Method Declaration.S- Full support
(2.2) Method Declaration.S-, Method Access.T- No support 3
(2.3) Method Declaration.S-, Method Access.T+ No support 5
(2.4) Method Declaration.S-, Exception Handler.S- Partial support 6,7,8
(2.5) Method Declaration.S-, Method Access.S- Partial support 10 (Method Access)
(2.6) Method Declaration.S-, Operator expression.S- Partial support 10 (Operator Exp.)
(2.7) Method Declaration.S-, Return modifier.S- Partial support 10 (Return modifier)
(2.8) Method Declaration.S-, Method Access.T+, Method Access.T- No support 3,5
(2.9) Method Declaration.S-, Method Access.T+, Method Access.S- No support 5,10
(2.10) Method Declaration.S-, Method Access.S-,
Operator expression.S-

Partial support 10 (Operator Exp.),
10 (Method Access)

Table 2.7: Limitations of Move Method Refactoring Tools
Patterns IDEs’ Support Limitation Id

(3.1) Method Declaration.S- No support 12
(3.2) Method Declaration.S-, Method Declaration.T+ Full support
(3.3) Method Declaration.S-, Method Declaration.T+, Method Access.T+ No support 5
(3.4) Method Declaration.S-, Method Declaration.T+, Method Access.S- No support 2
(3.5) Method Declaration.S-, Method Declaration.T+, Method Access.S-,
Method Access.T+

Partial support 11

(3.6) Method Declaration.S-, Method Declaration.T+, Method Access.T+,
Variable declaration.S-

No support 1 (Variable Decla.), 5

(3.7) Method Declaration.S-, Method Declaration.T+, Method Access.T+,
Exception Handler.T+

No support 5,6,7,8

(3.8) Method Declaration.S-, Method Declaration.T+, Method Access.T+,
Variable declaration.T+

No support 1 (Variable Decla.),5

(3.9) Method Declaration.S-, Method Declaration.T+, Method Access.S-,
Method Access.T+, Variable declaration.S-

No support 1 (Variable Decla.),11

(3.10) Method Declaration.S-,Method Declaration.T+, Method Access.S-,
Method Access.T+, Variable declaration.T+

No support 1 (Variable Decla.),11

Table 2.8: Limitations of Pull Up Method Refactoring Tools
Patterns IDEs’ Support Limitation Id

(4.1) Method Declaration.S- Full support
(4.2) Method Declaration.S-, Method Declaration.T+ Full support
(4.3) Method Declaration.S-, Method Access.T+ No support 5
(4.4) Method Declaration.S-, Method Access.S- No support 2
(4.5) Method Declaration.S-, Method Declaration.T+, Exception Handler.S- Partial support 6,7,8
(4.6) Method Declaration.S-, Method Declaration.T+, Exception Handler.T+ Partial support 6,7,8
(4.7) Method Declaration.S-, Method Declaration.T+, Method Access.T+ No support 5
(4.8) Method Declaration.S-, Method Declaration.T+, Method Access.S- No support 2
(4.9) Method Declaration.S-,Method Declaration.T+, Method Access.S-,
Method Access.T+

Partial support 11

a customized refactoring either partially or completely, which is cumbersome
and error-prone [19]. In general, the IDEs’ refactoring tools present similar
behavior. These tools do not allow users to change the modification set
of a refactoring; that is, adding modifications besides those predefined by
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the IDE for each refactoring type or even removing a predefined one. We
agree that IDEs should prioritize supporting code behavior preservation as
default. However, even modifications that are not supposed to change code
behavior, such as Variable Declaration and Operator Expression, are not
properly supported.

RQ2: How to improve IDEs’ automated refactoring tools to
properly support customized refactorings? Refactoring tools should
make the configuration of refactoring modifications more flexible, allowing
developers to adjust it based on their needs [13]. Existing tools would
better adhere to developers’ needs if they were designed to (i) support a
comprehensive catalog of a mutable set of code modifications; (ii) have
a configuration that allows developers to handle the clients that will
be affected by the refactoring; (iii) allow developers to choose which
element(s) should handle possible exceptions; and (iv) allow developers
to choose between creating new methods or using existing ones.

2.4.3
Developers’ Opinion About Customization Refactoring

In the last step of our study, we conducted a survey to enrich RQs’ results
taking into account developers’ opinions. All the survey details and results,
including those not covered here, are presented on our study website [53].
Altogether the survey was answered by 40 developers. We observed that most
of the respondents are familiar with the refactoring application. The majority
of respondents (70.8%) declared themselves quite experienced with refactoring,
performing refactoring constantly, whereas the remaining indicated applying
refactorings periodically. Among the respondents, Eclipse is the most used IDE
with 68.2% of them using it, followed by IntelliJ and Netbeans with 46.3% and
14.6%, respectively. Notably, 43% of them also indicated using multiple IDEs.

Respondents agree with the relevance of customization pat-
terns. Survey answers indicate that the majority of the respondents agree with
the relevance and support for customization patterns. Their answers were pos-
itive for all the types of non-standard refactoring modifications covered in the
survey. For instance, the survey revealed 92.7% of agreement concerning both
the relevance and the support needed for patterns that include addition and
removal of Method Access. Interestingly, this modification category is present
in the most frequent customization patterns. Also, this category is responsible
to allow developers to select which method should access the source and target
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methods after the refactoring; this issue is related to the IDE Limitations 1 to
5 (Section IV.B).

With an agreement of 87.8%, the respondents also mentioned the im-
portance of supporting customizations for Method Declaration. They agreed
that developers should be in charge of deciding whether the method should be
entirely (including its declaration) or partially moved. Regarding code excep-
tions, 75.6% of the respondents agreed that developers should be also given
the flexibility of selecting where Exception Handler is introduced; this issue is
associated with Limitations 6 to 8. Lastly, the respondents also pointed out
the importance of tool assistance for refactoring customizations involving Vari-
able Declaration, Return Modifier and Operator Expression with agreement of
70.7%, 65.9%, and 63.4%, respectively.

Customization assistance: spontaneously mentioned positive
and negative factors. Finally, we also asked the respondents to openly
justify their answers with free text by explaining which factors motivate
tooling support for customization patterns. We manually categorized and
grouped their answers into positive (i.e., motivating) factors and negative (i.e.,
demotivating) factors emerging from their answers. These factors are listed in
Table 2.9 with the their corresponding percentages of explicit mentions from
developers.

We observed that positive factors were much more frequently mentioned
than negative ones. Most importantly, the majority of the negative factors have
to do with personal preferences or uncertainties of the respondents, including:
(i) freely follow their specific programming styles (26%); (ii) preference to
apply customizations manually (11%); and (iii) not able to determine if one
of the customization patterns (addressed explicitly in the survey) was indeed
a refactoring (11%). There were a few cases of respondents that concerning
one particular case of customization pattern: (i) was too simple (11%) to be
supported by the IDE, or (ii) could not tell whether it was relevant to software
maintainability (22%).

Developers argue that explicit customization support would improve code
quality and correctness. They reported that IDE assistance for refactoring
customization would improve their awareness with respect to bug proneness
(41%), guarantees of behavior preservation (19%) and other possible side
effects (44%) as well as adherence to good coding practices (30%). Finally,
some respondents also found interesting the possibility of they becoming aware
of multiple refactoring configuration alternatives (26%).
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Table 2.9: Factors motivating refactoring customization support
Positive factors Negative factors

Awareness of side effects 44% Own refactoring style 26%
Less error prone 41% Low relevance 22%
Good coding practice 30% Simplicity of modification 11%
Awareness of refactoring alternatives 26% May not be a refactoring 11%
Behavior preservation 19% Manual preference 11%

2.4.4
Actionable Results

Until now, we discussed the practical occurrence of customized refactor-
ing, the IDE limitations, and the developers’ opinions regarding the need for
refactoring customization support. Here, we discuss how to incorporate our
findings into tooling support. A direct way is by integrating it into a semi-
automated strategy of stepwise refactoring [80]. In this strategy, each refac-
toring modification is a step selected (or approved) by the developer, through
which she/he can visualize, understand, and decide about each step. A graph-
ical interface can support these steps by displaying the known alternatives of
customizations, e.g., our results shown in Figures 2.1-2.4, which can either be
selected or adjusted based on developers’ preferences, e.g., following their code
styles or team quality standards. Developers can also save their own performed
customizations per refactoring type for later reuse.

The stepwise strategy is aligned with developers’ expectations observed
in our survey (Table 2.9), including (i) their “awareness of refactoring side
effects” by tracking each of the refactoring modifications and their code
effects; (ii) “reduced error-proneness”, allowing the developer to reason about
the impact of each modification individually on the behavior of the code;
and (iii) “awareness of refactoring alternatives”, as the modifications are
progressively shown to the developer depending on their previously-selected
options, e.g., following a path in the refactoring trees of Figures 2.1 to 2.4.
Stepwise customized refactoring favors those developers requiring full control
and predictability [25, 81] of customized refactorings ((i) and (ii) above) as
they decide on the refactoring application step by step, thereby making them
feel more confident using tooling support. This strategy is also aligned with
recent and emerging proposals for step-wise refactoring in a range of different
contexts, e.g., [16, 80].
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2.5
Threats to Validity

We describe here the threats to validity and their mitigation.
Internal and Construct Validity. RMiner [7, 68] may yield false

positives and false negatives. It has an effectiveness of 87.2% for recall and
98% for precision [33], which is the best effectiveness among detection tools.
To alleviate this threat, we manually inspected some instances of our database.
Although we are currently analyzing refactorings detected only by RMiner, it
is possible to observe that this tool has detection rules quite flexible, allowing
several customizations [33].

RMiner detects 15 types of refactorings in version 1.0 [33], but we
analyzed only four types of refactorings. Although these four refactorings
may not fully embrace all forms of refactoring customizations, they have been
frequently applied [7,34]. Also, these refactorings affect the program structure
differently at method-level and class-level. For instance, Extract Method is a
method-level refactoring, affecting directly one class. Different from Extract
Method, Move Methods, and Pull Up Methods affect at least two classes,
including changes affecting a class hierarchy. Yet, these refactorings have
similarities with other refactoring types, e.g. Move Method moves a method
from one class to another, similarly to Push Downs and Pull ups. We chose Pull
Up to understand this method movement in the context of a class hierarchy.
We avoid textual refactorings such as renames. Given their simpler and lexical
nature, they have less room for structural customization.

The collected modification types may not consider all possible modifica-
tion types. We used Eclipse JDT library because this library has a very fine
level of granularity. In this way, we could detect a large number of modifica-
tions. Besides, this library is commonly used to build automated refactoring
tools for Eclipse and RMiner.

Finally, the use of other tools and a larger refactoring interval (consid-
ering more than one commit) could present complementary results, such as
new customization patterns. However, these supplemental patterns do not in-
validate the ones currently reported in our paper nor the limitations of the
IDEs.

External Validity. We performed an in-depth analysis of refactoring
instances from 13 Java projects. However, our results might not necessarily
hold to other projects involving other primary programming languages and/or
from domains not covered by our dataset. Moreover, we focused our analysis
on open-source projects. The nature of refactoring in closed-source projects is
not necessarily the same as refactoring in open-source ones. However, popular
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open-source projects have a major concern with software modularity, tending
to continuously refactor the source code. We analyzed projects with differing
sizes/domains and all key findings were uniform. These projects have an active
community, according to Github metrics.

2.6
Conclusion

We presented a study to understand in what ways developers customize
refactoring in practice and how to improve refactoring tools to properly sup-
port these customizations. We investigated the most frequent customization
patterns for four refactorings types in 13 Java projects. The results revealed
that developers frequently added new modifications, or remove some, of the
standard set for each refactoring type. These changes to the standard set cus-
tomize the refactorings for the specific developer’s scenarios. We then listed
the current limitations of popular IDEs that should be improved to provide
adequate support for these customizations. We also observed that developers
agree with the relevance of customizations and show interest in having tool
support for recurring customizations.

Finally, it is important to highlight that the modification sets currently
considered standard ones are far from being enough to address practical needs.
It is also important to consider the fact that the lack of support for refactoring
customization might have serious side effects. Thus, as future work, we plan to
design and implement tool support for better assisting developers in performing
customized refactorings. We also intend to expand the number of refactoring
types and projects being considered in future studies, reducing the threats to
external validity.



3
Digging Deeper: Automated Tooling Support to Identify and
Analyze Modifications in Floss Refactoring

Although we identified some kind of modifications that occur alongside
specific types of refactorings in Chapter 2, the closeness and relationship
of these additional modifications to the refactoring itself remain unclear.
This understanding is crucial for improving developers’ awareness of the
potential impact of refactorings, helping to prevent unintended side effects
during refactoring application. However, determining whether modifications
are related to the refactoring is not straightforward [18]. It requires additional
effort from developers and complicates the code review process. As a result,
developers have expressed the need for tools that can automatically identify
and classify modifications related to refactoring instances [18].

In Chapter 3, we address this gap by investigating floss refactoring and its
relationship with code modifications. We developed a tool to detect and catego-
rize modifications related to refactorings, building on the insights from Chapter
2. This tool enhances our understanding of how code modifications relate with
refactorings, providing a more comprehensive view of their interactions. This
new understanding goes beyond the definition of refactoring customizations,
including all modifications related to the refactoring.

In this chapter, we investigate the occurrence of floss refactoring across
six different refactoring types. We consider both method-level refactorings
(e.g., Extract Method, Inline Method) and class-level refactorings (e.g., Move
Method, Inline Method, Push Down Method). We also examined simpler
refactorings, such as Rename Method. We propose the following: (i) automated
method to support and identify the closeness of modifications to refactoring
instances, (ii) a tool for categorizing refactoring-related modifications, and
(iii) an analysis of code modifications frequently associated with six popular
refactoring types. This chapter presents an extended version of the submitted
paper titled Digging Deeper: Automated Tooling Support to Identify and
Analyze Modifications in Floss Refactoring.



Chapter 3. Digging Deeper: Automated Tooling Support to Identify and
Analyze Modifications in Floss Refactoring 47

3.1
Introduction

Refactoring is a software engineering technique that aims to improve the
internal structure of software without altering its observable behavior [1,2]. The
primary focus of refactoring is to enhance the readability and maintainability
of the source code [1,2]. However, refactorings are often applied together with
other development tasks, such as adding new features or fixing bugs [7, 17].
This practice, known as floss refactoring, serves purposes beyond the sole act
of code improvement, consequently affecting code behavior [14, 17,82].

Identifying whether a refactoring is “floss” is challenging because the
refactoring and additional modifications occur in the same commit, requir-
ing a thorough analysis and understanding of the code. Analyzing the code
modifications manually can become a time-consuming, error-prone, and te-
dious task [17,27]. Therefore, it is essential to equip developers with sufficient
automated support to disentangle the modifications. This automated support
should identify additional modifications that interact with the refactoring ones,
called hereafter refactoring-related modifications [17, 19].

Addressing this gap is highly relevant to software engineering practice.
Developers often combine default code modifications associated with refactor-
ings, such as those described in refactoring catalogs [1, 2, 4, 90], with other
modifications tied to different purposes [13, 27, 83]. Those code modifications
can be so tangled with each other that they can make it harder, or even im-
possible, to provide proper support for carrying out complex floss refactoring
analyses. This entanglement also hinders the application of other activities
aimed at analyzing refactorings, such as code review, since the intertwined
modifications can overshadow undesired modifications [83].

Studies in the literature have investigated floss refactorings, exploring
their occurrence, frequency, and their effect on overall software quality met-
rics [7,8,17,21]. A few studies delve into identifying the additional modifications
that occurred together with the refactoring [16, 20, 27]. Nonetheless, there is
a prevailing gap in understanding how refactoring and non-refactoring modifi-
cations relate to each other during software maintenance and evolution. Thus,
the challenge to fill this gap is: For a given commit, how to automatically filter
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and classify modifications in refactoring and non-refactoring and identify their
relationship?

The current methods for filtering code modifications in the context of
refactoring have notable limitations. Refactoring detection tools like Refactor-
ingMiner [33] and RefDiff [6] focus solely on identifying refactorings, without
considering other concurrent modifications. Therefore, they do not provide in-
sights into the complexity and scope (i.e., the range of code elements affected
by a code modification) of those additional modifications. Conversely, AST
differentiation tools such as Gumtree [71] and ChangeDistiller [84], although
capable of evaluating detailed modifications, are limited to AST-based actions
(e.g., adding, removing, moving, and updating nodes) and do not specifically
highlight refactorings, making it difficult to relate additional modifications
to refactoring activities. Additionally, recent studies [20, 27] that examined
the modifications made during floss refactorings have some limitations. They
do not take into account how close the modifications are to the refactoring
instance. Modifications close to the refactoring are usually aligned with the
refactoring purpose, whereas those farther away are related to other develop-
ment tasks.

To effectively support the analysis of floss refactoring, it is thus neces-
sary to identify refactorings in commits and untangle refactoring-related code
modifications from non-refactoring ones. Therefore, in this work, we define
and implement a new automated method that provides a novel way to identify
and analyze fine-grained modifications that are ‘part of’ or ‘related to’ floss
refactorings. Our method leverages two state-of-the-art tools, namely Refac-
toringMiner [33] and Gumtree [71]. However, differently from previous work
that utilized those tools, our study aims to understand not only which code
modifications occur in instances of floss refactoring, but also the closeness that
the additional modifications have to the refactoring instance.

To evaluate our method, we conducted a large-scale study with a myriad
of refactoring instances from 213 projects. Altogether, we collected 98,496
instances of six popular refactoring types: Extract Method, Inline Method,
Rename Method, Move Method, Pull Up Method, and Push Down Method.
Then, for each refactoring instance, we investigated the closeness of each
code modification to the refactoring instance. The results of our method were
validated by 11 developers, allowing us to measure its accuracy and receive
feedback on potential opportunities for improvement.

Our study found several patterns in code modifications during refactoring
(e.g., the introduction or removal of method calls, return values, and variables).
Interestingly, we observed that refactoring-related modifications can cascade
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throughout the codebase, affecting different classes, method calls, access mod-
ifiers, and renaming of code elements. This effect is more pronounced in refac-
torings like Pull Up, Push Down, and Move Method. These refactoring types
may require additional attention during code reviews to prevent unintended
consequences and ensure that changes do not introduce side effects in other
parts of the code. For Extract and Inline Methods, developers usually focus
on modifications within the refactored class. We also reveal that refactoring-
related modifications tend to increase in complexity as they move away from
the original refactoring location.

Our contributions include: (i) an automated method to identify the
closeness to modifications pertaining to a refactoring instance; (ii) a code
modification detection tool for categorizing refactoring-related modifications;
(iii) an investigation of code modifications that frequently occur in conjunction
with code refactorings from six popular refactoring types; and (iv) a replication
package where all source code and collected data are available [89].

3.2
Motivating Example and Problem Statement

During software development, a developer may refactor code while imple-
menting a new feature or fixing a bug [7,17]. These modifications can become
so entangled with the refactoring modifications that it becomes difficult to
track or distinguish the refactoring-related ones.

As a motivating example, Listing 3.1 presents a code diff [85] between
two subsequent versions of the class JDBCStore from the Apache Tomcat
project [86]. The green background color indicates the coded added, and the
red background color the removed code. We can notice that the modifications
are mostly concentrated within the method keys(boolean). Among the mod-
ifications, we see the application of the Extract Method refactoring, involving
the creation of a new private method called String[] keys(boolean exp-
dOnly) from keys() method to encapsulate the logic previously present in
the keys() method. Also, it is possible to observe an instance of Inline field
refactoring targeting the prepKeysSql field, removing its declaration and
adding the field in the method keys(boolean).

In addition to the refactoring modifications, the developer introduced
modifications that alter the behavior of the method in conjunction with the
Extract Method. These modifications rely on the new parameter expdOnly
received in the extracted method to be applied. By passing a positive value to
this parameter, the method will present a different behavior from the pre-
refactoring version, creating additional filters in the SQL query (lines 468
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Listing 3.1: Code modifications from Project Apache Tomcat
1 public class JDBCStore extends StoreBase {

...
161 protected PreparedStatement prepKeysSql = null;

...
456 @Override
457 public String [] keys () throws IOException {
458 <Method extracted : keys( boolean )>
459 keys( false );
460 }
461
462 private String [] keys( boolean expOnly ) throws IOException {
463 try {
464 if ( prepKeysSql == null) {
465 String keysSql = "<ommited query >";
466 prepKeysSql = _conn . prepareStatement ( keysSql );
467 }
468 if ( expOnly ) {
469 keysSql += "< additional query >";
470 }
471 try ( PrepStmt prepKeysSql = _conn . prepStmt ( keysSql )) {
472 prepKeysSql . setString (1, getName ());
473 if ( expOnly ) {
474 prepKeysSql . setLong (2, System . currentTimeMillis ());
475 }
476 try ( ResultSet rst = prepKeysSql . executeQuery ()) {
477 // <code >
478 }
479 }
480 }
481 catch ( SQLException e) {// <code >}
482 finally { release ( _conn );}
483 return keys;
484 }

...
923 protected void close () {
924 try {
925 prepKeysSql . close ();
926 } catch ( Throwable f) {
927 ExceptionUtils . handleThrowable (f);
928 }
929 this. prepKeysSql = null;
930 }
931 }

to 470 and 473 to 475). Although these modifications are not part of the
refactoring technique, they are directly related to the statements extracted
from the keys() method, as they share common code elements. In this way,
these additional modifications are considered refactoring-related. According to
the developer’s comment in the commit, the refactoring-related modifications
make the method more efficient for specific scenarios and reduce the access
control of the JDBCStore class.

The developer’s comment indicates the intention to alter the code be-
havior in conjunction with refactoring. However, other changes implicitly
impacting the code behavior were not mentioned. Different from the previ-
ous version, the new method keys(boolean) always invokes the statement
_conn.prepStmt(keysSql) instead of only once. This statement sets a
new value to the prepKeysSql variable every time the keys(boolean) is
called, impacting the code efficiency in contrast to the first developer’s in-
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tention. Also, these additional modifications affect functionalities that rely on
keeping some state, since prepKeysSql has its value reassigned every time
keys(boolean) is called.

In the Inline Field refactoring, the developer moved the variable prep-
KeysSql from the class level to become a method-level variable within the
keys(boolean) method. This change leads to several side effects. For exam-
ple, it reduces the scope where this variable can be accessed, thus, other meth-
ods or classes within this hierarchy will no longer have access to it. As a con-
sequence of this access scope reduction a refactoring-related modification was
necessary to remove the use of this variable in the method close() (lines 923 to
929). This modification in the close() method alters the exception handling
when closing the use of this variable, being the try-with-resources (line 471)
the new one responsible for handling the closure of this variable. However, this
new closure does not invoke the ExceptionUtils.handleThrowable(...)
method (line 927) as used to do before the refactoring affecting the code ro-
bustness. The removal of the prepKeysSql declaration as part of the Inline
Field refactoring led to this behavioral change in the close() method.

This scenario highlights the importance of clearly understanding the
refactoring-related modifications along such refactorings to ensure that subtle
changes do not unintentionally alter the system’s behavior without being no-
ticed. In this example, the developer focused the commit comment on the keys
methods, not mentioning the code behavior change in the method close().
This oversight occurred because, although the refactoring was included in this
commit, the other modifications that constitute the floss refactoring received
the developer’s primary attention, ultimately obscuring the impact of these
code modifications on other parts of the code. This issue is further compounded
by the fact that the commits modifications are numerous and spread. For ex-
ample, the method close() is located at the end of the JDBCStore class,
approximately 500 lines away from the keys method, which was the main focus
of the developer. However, this method is semantically close to the refactor-
ing, since it uses the refactored field prepKeysSql. As a consequence, another
commit was made modifying the JDBCStore class, with one of its objectives
being to adjust the exception handling in the keys(boolean) method [91].

Identifying which code modifications occur in addition to refactoring code
and how semantically close they are related helps to understand the impact
of code refactoring on large systems [83]. Developers must be able to evaluate
this impact based on the number, spread, and complexity of the necessary
refactoring-related modifications. This evaluation reduces the introduction of
faults [10,11], unexpected behaviors, and allows the identification of increased
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code complexity [87]. Finally, understanding the relation between refactorings
and additional modifications provides insight for developing tools [88] and
studies to support floss refactoring [27].

3.3
Related Work and Limitations

There are two approaches to detecting code modification in the context
of code refactoring. The first type includes the refactoring detection tools,
such as RefactoringMiner [33] and RefDiff [6]. These tools focus on identifying
the occurrence of refactorings based on default refactoring modifications. As
a result, they do not distinguish between detecting pure refactoring and floss
refactoring. Consequently, they do not provide information on the relationships
among modifications, which hinders the detection of side effects. Listing 3.2
presents an example of the RefactoringMiner output for the Pull Up Method
refactoring. We can observe the list of modifications before (leftSideLocations)
and after (rightSideLocations) the refactoring. This example indicates that
methodA was moved up in the hierarchy, since the method location was
moved from Class to its parent, called ClassParent in the example.
However, there is no mention of any other modifications that may have
occurred during the refactoring process along the default ones.

Listing 3.2: RefactoringMiner Output Example
{

"type": "Pull Up Method ",
" description ": " Refactoring summary ",
" leftSideLocations ": [{

" filePath ": " Class .java",
" codeElementType ": " METHOD_DECLARATION ",
" description ": " original method declaration ",
" codeElement ": " private methodA ( param ParamType ) : void" // lines

}],
" rightSideLocations ": [{

" filePath ": " ClassParent .java",
" codeElementType ": " METHOD_DECLARATION ",
" description ": " pulled up method declaration ",
" codeElement ": " private methodA ( param ParamType ) : void" // lines

}]
}

The second type of code modification detection consists of tools focused
on Abstract Syntax Tree (AST) differentiation, such as Gumtree [71] and
ChangeDistiller [84]. Although these tools are not exclusively focused on
refactoring, they are capable of identifying modifications. Consequently, they
are used in refactoring detection studies, being compared to other proposed
refactoring detection tools [93]. The Gumtree’s output is purely AST-based
actions such as adding, removing, moving, and updating nodes to convert
from an AST to another AST, as shown in Listing 3.3 for a move operation.
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This output is complex, requiring specific knowledge of AST for complete
comprehension. Yet, Gumtree does not establish a relationship between the
modifications and do not indicate whether refactoring has occurred in the
analyzed code.

Listing 3.3: Gumtree Output Example
move -tree
ExpressionStatement [260,312]

MethodInvocation [260,311]
METHOD_INVOCATION_ARGUMENTS [279,310]

InfixExpression [279,310]
SimpleName : soma [306,310]

to Block [356,588] at 0

Finally, previous studies [20, 27] have investigated refactorings in con-
junction with additional modifications butdid not explore how these modi-
fications relate to each other. Moreira et al. [20] focused exclusively on the
Extract Method refactoring, while Oliveira et al. [27] examined frequent code
modifications across four refactoring types. However, Oliveira et al.’s study
has notable limitations regarding the detected code modifications, since they
excluded several modifications from the analysis based on preconditions and
location. Additionally, both studies failed to evaluate the closeness between
refactoring-related modifications. These limitations result in an incomplete un-
derstanding of how refactoring impacts surrounding code, potentially missing
significant side effects and overlooking the relationships among modifications.
Addressing these gaps can offer a more comprehensive view of how refactoring
influences code and improve the detection and management of refactoring-
related modifications.

3.4
Refactoring-Related Modification Detection Tool

To address existing limitations, we developed a tool to automatically
detect refactoring occurrences and filter modifications based on their relation
to the refactoring instance. Our tooling support builds on state-of-the-art tools
and adds an extra dimension of abstraction. This additional dimension offers
flexibility, allowing developers to choose which modifications to detect and
create new strategies for identifying modifications they consider important.
Additionally, it is descriptive by providing a detailed explanation for each code
modification based on its semantic context.

Unlike a purely AST-based comparison, such as Gumtree [71], our
tool evaluates a set of code modifications across several AST nodes. For
example, consider the SIMPLE_NAME node, also present in Gumtree’s
output (Listing 3.3). Analyzing this node alone, we do not have enough
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information to conclude what this change represents in the code, beyond the
fact that a name changed. Therefore, it is necessary to examine the higher
nodes in the tree, starting from the SIMPLE_NAME node. If the nearest
higher node is a class declaration, this could indicate a change in the name of
a class or even the addition or removal of a hierarchy. On the other hand, if
the SIMPLE_NAME node is closer to a variable declaration, we understand
that the change refers to that variable.

In the Gumtree output example 3.3, the SIMPLE_NAME is close to a
METHOD_INVOCATION node, which means that this name is part of this
invocation. Thus, simply knowing which AST node changed is not enough
to understand the nature of the code modification or its relation to the
refactoring. It is essential to combine this information with the code context,
such as the location of the modified node and nearby nodes, to accurately
determine what the modification represents to the code. Thus, instead of only
using pure AST nodes as modifications, we proposed an initial catalog [89] of
common code modifications based on previous studies [27], and AST tools and
libraries [69, 71]. We refer to these cataloged modifications as change models.
Each change model maps one or more AST node actions to a unique, self-
explanatory element. Also, every change model is associated with a specific
code element and has a logical rule. This rule specifies the set of code
modifications that must occur for the change model to be considered present
in a commit.

The rules imposed for the change models are not limited to oper-
ations in AST nodes (i.e., insertion, deletion, update, or movement) but
also include changes that arise from a set of modifications to one or more
nodes. For example, within the scope of a single AST node, we can eval-
uate the characteristics of the code that the node represents. Consider the
METHOD_DECLARATION node, which represents a method in Java. Taking
two consecutive versions of this node, we can understand if its access modifiers,
return type, parameters, or any other internal modifications to the method
or its signature were changed. For the case of multiple nodes, consider the
CATCH_CLAUSE node. This node represents a catch clause in Java code.
By examining an individual catch clause, we can also determine if there was a
change in the type of exception it catches. By looking at the set of catch clauses
within the same try block, we can understand whether the developer increased
or decreased the robustness based on the possible exceptions captured. In case
the developer reduced the number of clauses or made the clauses more generic,
it could indicate a potential problem with the code’s robustness.

Listing 3.4 illustrates the structure of a change model in JSON for-
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Listing 3.4: Change Model Example

{
"name": " CHANGED_VARIABLE ",
" value ": "{ before :int userAge =30;, after :int userAge =45;}",
"line": "45 - 45",
" column ": "13 - 29",
" parentElement ": "calc. InnerCalculator . wellcome ()",
" element ": "calc. InnerCalculator . wellcome (). varName ",
" description ": "A variable had its values changed ",
" elementType ": " VariableDeclaration ",
" variables ": "[< variable list >]"

}

mat. It has the name of the modified model, followed by its correspond-
ing value. The value is a summary describing the previous and after values
for the element. The modified element is denoted by its complete identifier
(e.g., “package.class.method.var”). The parent element specifies the near-
est method or class declaration where the model is contained. Our tool also
provides the change models as Java objects, allowing the developer to ma-
nipulate or access the element and the AST nodes related to them, or even
create a new customized change model using a provided code interface. This
approach provides a detailed and structured view of each code modification,
related or not, making it easier to detect and understand refactoring-related
modifications. The context and description of a modification with the relation-
ship to other elements in the code allow developers to analyze how the code
modifications interact with the refactoring process.

Figure 3.1 shows the steps for collecting and categorizing code modifi-
cations as refactoring-related. Each refactoring-related modification is repre-
sented by a tuple containing three elements: a change model, a relation type
that describes how the change model interacts with the refactoring, and a layer
number. A layer indicates the closeness, in terms of significance, of a change
model to the refactoring occurrence. The lower the layer number, the closer
and more significant the change model is to the refactoring occurrence. Each
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Figure 3.1: Modification Detection Steps
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layer interacts exclusively with the previous layers. In this way, the layer one
interacts with the layer zero. Similarly, the layer two interacts with the layer
one, that by transitivity, interacts with the layer zero.

In Step ➊, to identifies the refactoring-related modifications, our method
obtains the refactoring instances from a refactoring detection tool. This list
must contain the commit where the refactoring occurred and the respective
refactoring. We collect the default code modification used to detect the
refactoring instance and the source and target methods for each instance. The
source and target methods are the methods before and after the refactoring
occurrence. For example, for the Extract Method refactoring, the source
method is the other method that had its content extracted, and the target
method is the new method containing the extracted code. Table 3.1 presents
the complete list of evaluated refactoring, as well as the source and target
description.

In Step ➋, for every identified refactoring instance, we obtain the code
versions immediately before (vi−1) and after (vi) the refactoring. This step
ensures we have two consecutive versions to identify the modifications that
occurred during the refactoring. For this step, we considered the code of all
files that had their content changed during the version represented in vi. We
then use both refactoring file versions as input for the next step.

In Step ➌, our method constructed the Abstract Syntax Tree (AST) for
the versions vi−1 and vi of the modified files. ASTs are widely used to evaluate
changes and are a part of various static analyses [33, 70] in source code. To
build the ASTs, we used the Eclipse JDT library (Eclipse’s JDT 3.10) [69].
This library is used by other tools and frameworks for static analysis and
code change detection [71–73].However, we applied an additional abstraction
to the AST structure to keep it closer to the Java language’s structure. This
additional abstraction allows us to organize and describe non-intuitive or
ambiguous nodes, such as the SIMPLE_NAME previously exemplified. As

Table 3.1: Refactoring Details
Type Description Source Method Target Method

Rename Method Changes a method’s name Method before renam-
ing

Method after renaming

Extract Method Creates a new method from statements,
and to call the new method in the source
one

Method that suffered
the extraction

Extracted method

Inline Method Adds a method’s body to an already-
existing method

Method to be incorpo-
rated

Method that incorporated

Move Method Moves a method from a class to another Method before being
moved

Method after being moved

Pull Up Method Moves a method up the hierarchy Method before being
moved

Method after being moved

Push Down Method Moves a method down the hierarchy Method before being
moved

Method after being moved
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discussed, this type of node is used in various locations within the AST, with
each usage having a different meaning. A SIMPLE_NAME can indicate, but is
not limited to, a simple variable name change or the introduction of a hierarchy
to a class, depending on where it occurs in the AST.

With ASTs of the two subsequent versions, for Step ➍, our method uses
Gumtree (Version 3.0.0) [71] to map the nodes between ASTi−1 and ASTi.
Gumtree identifies which nodes were updated, inserted, removed, or moved
between the two ASTs. The AST mappings are input to Step ➎, the change
model detection algorithm. This algorithm interprets the mapped AST node
pairs and verifies whether the set of code modifications in each pair satisfies the
change models rules. If it does, the change model is associated to the closest
element associated with the highest modified AST node used to detect the
change model.

Finally, in Step ➏, we obtained the list of refactoring-related modifica-
tions by assigning each change model its corresponding layer and relation type.
Algorithm 1 presents the step-by-step procedure to determine the layer based
on four distinct relation types, as follows:

Default modification relation: The first relationship is included in the
layer zero, since the change models on this layer are the most important for the
refactoring application. The layer zero exclusively consists of all change models
that represent default modifications. These change models are derived from the
tool’s output when contains modifications used to identify the refactoring. For
example, in an Extract Method refactoring, the source and target elements,
with the set of lines representing the statements extracted from the source
method to the target method, are classified as default modification relation.
The change models in this category are part of the algorithm input, which
processes the source and target elements along a complete list of change models.

Method signature relation: This relation includes all change models
associated to the declarations of the source and target methods that do not
have a default modification relation. Since these change models relate with the
source and target method directly, i.e. change models from layer zero, they are
included in the layer one. For example, if an Inline Method refactoring results
in a private method becoming public after incorporating another method, we
consider the change from private to public in the method declaration as a
refactoring-related modification of layer one. To obtain the modifications with
this type of relation, we first obtained all modifications that do not have a
default modification relation (lines 2-3). Then, for each change metric (lines
4-13), we obtained the parent of this change in the AST and verified if the
parent is the source or target element. If it is not, we repeat the step until
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Algorithm 1 Identifying Related Changes and Layers
1: procedure getRelatedChanges(allChanges, sourceElements, targetElements)
2: notRelated ← filter NOT_RELATED changes
3: for all change in notRelated do
4: parent ← change.closestElement.getParent()
5: while parent is not (null or block) do
6: for all sourceElement in sourceElements do ▷ Repeat to targetElement
7: if parent equals sourceElement then
8: change.setRelation(SIGNATURE, 1) ▷ Relation type and layer
9: continue to next change

10: end if
11: end for
12: parent ← parent.getParent()
13: end while
14: for all sourceElement in sourceElements do ▷ Repeat to targetElement
15: checkIfCallMainMethod(sourceElement, closestElement, change, CALL_SOURCE)
16: end for
17: end for
18: repeat
19: hasNewRelated ← false
20: notRelated ← filter NOT_RELATED changes
21: newUserVars ← empty List
22: for all change in notRelated do
23: usedVars ← getUsedVarsPerChangeType(change)
24: relatedVar ← null, layer ← MAX_DISTANCE
25: for all var in usedVars do
26: if change.usedVariables contains var and usedVars.get(var).layer < layer then
27: relatedVar ← var
28: layer ← usedVars.get(var).layer
29: end if
30: end for
31: if relatedVar is not null then
32: hasNewRelated ← true
33: change.setRelation(VAR_RELATED, layer + 1)
34: newUsedVars.putAll(change.usedVariables)
35: end if
36: end for
37: usedVars.putAll(newUserVars)
38: until hasNewRelated is false
39: end procedure

the parent is null, or it is a block statement. The null value means that the
parent reached the root of the file, and the block statement means that the
parent is inside a declaration. Thus, it is not part of the declaration signature.

Method call relation: The third relation includes all change models
that contain a call to the source and target methods. Different from previous
relations, for this relation type, the change model can be included in layer one
or above. The layer associated with the change model depends on how far, in
terms of AST nodes, the evaluated model is from the call. For instance, if the
main element of the change model is a METHOD_CALL, the layer defined
will be one (i.e., the minimum possible to this relation). In case the main
element is a variable declaration (one node above) used to assign the method
call return, the layer defined would be two. This relation is assigned in lines
14-16 in Algorithm 1. For each source and target method, the evaluation checks
whether the primary element of the change model calls the target or source
method by analyzing the source code, method signature, location, as well as
the number and types of parameters.
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Common variable relation: Finally, the last relation, checked in lines
18-38 in Algorithm 1, includes change models based on the use of variables
in common to previous refactoring-related modifications. First, we obtain the
current list of used variables from previous refactoring-related modifications
(line 23), then we verify if a not-related modification uses some of these
variables (line 26). If so, we classify this previously not related modification as
refactoring-related (lines 31-35) and its layer will be one above the layer number
that it relates to. The algorithm continuously reapply this loop until no further
modifications are included in the set of refactoring-related modifications. For
example, in the Extract Method, after the extraction, the source method used
to call the extracted one. The return of this call might be assigned to a
variable. If a subsequent statement starts using this variable, this modification
is considered a refactoring-related one.

3.5
Study Design

This section presents the research questions (RQs) and data collection
for our study.

RQ1: What is the performance of the refactoring-related de-
tection tool? Understanding the accuracy of our proposed tool is critical for
ensuring its practical utility in real-world scenarios. However, determining a
single accuracy value for evaluating the proposed tool is challenging. This chal-
lenge comes from the fact that change models represent all code modifications
from token level (e.g., variable names, types, and parameter) to entire classes
and packages. Thus, in a typical commit, the number of detected change mod-
els can reach thousands, making it difficult or infeasible to manually determine
whether all relations are perfectly accurate. To address this challenge and an-
swer the RQ1, we implemented a two-step assessment evaluation. We invited
experienced developers in refactoring, including practitioners and academics.
The developers invited to participate in the experiment were selected based
on availability and experience. The developer’s expertise in refactoring is es-
sential for providing meaningful feedback and ensuring the reliability of the
results. Altogether, 11 developers performed the evaluation. The evaluation
details are present in Section 3.5.2. This evaluation provides insights into the
tool’s performance in accurately identifying refactoring-related modifications,
helping us understand how well it performs in various scenarios. Additionally,
it may highlight areas where the tool may require further refinement, ensuring
that it meets the developer’s needs.
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RQ2: To what extent are change models related to refactoring
instances? This question investigates the most frequent refactoring-related
modification and their relationship to refactorings in practice. Specifically, it
evaluates which change models are most common and how their frequency
and distribution vary with different layer numbers. By answering this research
question, we can compile a list of change models modifications that frequently
occur, related or not, to refactoring instances. This analysis is essential for
reducing unintended side effects during refactoring by helping developers
anticipate the impacts of their changes. Understanding which change models
commonly accompany refactorings allows developers to identify potential risks
and take preemptive measures, making the refactoring process more controlled.

RQ3: How widespread are refactoring-related modifications
throughout the code? This question investigates the extent to which
refactoring-related modifications affect different parts of the source code. Un-
like RQ2, which focuses on the relationship and frequency of change models,
RQ3 examines how these modifications are distributed across various source
code locations, such as different classes and methods. By answering this ques-
tion, we aim to gain insights into the complexity of floss refactorings and how
modifications in different classes and methods are interconnected. Understand-
ing this distribution not only helps identify which types of refactorings impact
a broader range of code elements but also assists developers in being aware
of the scope of changes during code reviews. This awareness allows for more
thorough and informed review processes, helping identify potential issues that
might arise from widespread modifications by focusing on areas prone to be
affected by the reviewed refactoring type.

The answers to these research questions can lead to a more systematic
and predictable application of floss refactorings, helping developers understand
the impact in terms of scope and the necessary efforts before deciding to apply
refactoring. The results can also serve as a foundation for developing tools and
methodologies to support automated floss refactoring.

3.5.1
Data Collection

The data collection of our study had two steps, as follows:
Project Selection. The first step involved selecting software projects

based on criteria commonly found in the literature [7, 39, 40]. We considered
projects meeting four criteria: (i) At least 3500 stars. This number is much
higher than what is typically used in earlier studies [27, 39]. We chose this
higher threshold because it is a determining characteristic of a project’s
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popularity [54]. (ii) At least 500 forks. Forks indicate that other developers are
interested in the project, whether they are contributing, suggesting changes, or
creating variations without affecting the original repository. (iii) A minimum
of 500 commits. We set this minimum to avoid including projects that are still
in their infancy or are just toy programs. (iv) Finally, Presence of commits in
the last 6 months. This indicates that the projects were active at the time of the
data collection. We collected data from 213 projects from different domains,
sizes, and characteristics.

Refactoring Detection. After selecting the projects, the next step
was identifying the occurrence of code refactorings. For this, we opted to use
RefactoringMiner [33] due to its extensive use in the literature [7, 39, 40, 68]
and its high recall (87.2%) and precision (98%) values. In our study, we used
version 2.4. We considered six types of refactorings, as listed in Table 3.1.
We prioritized these six types because most of them are among the ones
that occurs with higher frequency in many projects and are widely used in
literature [7, 16, 17, 21, 27] and involve different expected code scopes for the
default modifications. Among them, Rename Method has the smallest scope,
focusing into a single method. Next, the Extract Method and Inline Method, in
which default modifications are expected to pertain to a single class. Finally,
Move Method is expected to affect two classes, while Pull Up Method and
Push Down Method interact with multiple classes in a hierarchy. This set of
refactoring types allows us to understand how refactorings with different scopes
affect other elements of the code, whether within the same class or external
classes.

Altogether, we analyzed 98,496 instances of the six refactoring types
(Table 3.1) from a diverse set of 213 Java projects. The number of instances
per type is: Push Down: 3,836; Pull Up: 10,556; Inline Method: 4,126; Rename
Method: 35,690; Extract Method: 26,281; Move Method: 18,007.

3.5.2
Tool evaluation

For this evaluation, we randomly selected 48 refactoring instances from
the previously collected (8 instances per type). In total, 28 different projects
were included in this sample. Two different developers evaluated each instance,
ensuring thorough review and resulting in a total of 96 evaluations. This
approach balanced the need for statistical rigor with practical constraints,
such as the availability of the 11 developers and the manageable workload for
each developer.

Before the evaluation: All necessary concepts related to the definitions
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and relationships between modifications were provided to the developers. They
were encouraged to clarify any questions regarding the instances evaluated or
any misunderstandings that might arise during the experiment. Once prepared,
the developers were presented with the GitHub diff page corresponding to
a commit containing one or more refactorings. Refactoring data, including
the type and location, were also provided. Finally, the code modifications
were highlighted in different colors based on their classification as refactoring-
related, default, or non-refactoring modifications.

During the evaluation: In the first step of the evaluation, the devel-
opers were asked to provide their perspective on whether the detection tool
correctly classified the evaluated instances by indicating if the tool failed to
classify any refactoring-related modifications. Then, in the second step, de-
velopers evaluated the extent of misclassified tokens by rating their level of
agreement with the tool’s classification on a scale from 1 (completely disagree)
to 5 (totally agree).

3.6
Results and Discussion

3.6.1
Performance Evaluation of the Refactoring-related Detection Tool

Regarding the first question, we observed that in 77 out of 96 instances
(80.20%), developers indicated that the detection tool was able to identify
as related all the modifications that the developers considered to be related
to the evaluated refactoring. Then, when answering the second question, we
noticed that in 20 out of 96 instances (33.3%), developers listed at least one
code modification they disagreed was related to refactoring.

Based on the developers’ responses, we observed two reasons for the extra
modifications categorized as refactoring-related. First, some code modifications
interact with the refactoring but do not necessarily represent refactored code
functionality, such as annotations. Developers consider this set of modifica-
tions as false positives. Second, the detection tool provides to the developers
refactoring-related for all detected layers, which can result in very high dis-
tant code modifications far from the refactorings, either by lines of code or
by semantic context of the code. This increases the likelihood of developers
indicating some code changes as non-refactoring.

Figure 3.2 presents the results of agreement. We observed that developers
exhibit a high level of agreement with the classification. The median agreement
is four, suggesting that a substantial portion of developers strongly agree
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with the indicated relationships. The interquartile range spans from 3 to 5,
indicating that most evaluations were highly favorable. The overall results
reflect that the model aligns well with developer expectations, showcasing its
effectiveness in identifying and classifying these relationships. For some cases,
some evaluations strongly disagree with the classification proposed by the tool.
A manual validation revealed that some developers disagreed with the presence
of certain refactorings, which meant that no related modifications could exist.
In a few instances, the tool identified certain modifications, such as annotations
or method comments, as related, though developers did not consider them
part of the refactoring. This feedback highlights areas where the tool could be
improved to better align with developer expectations.

21% 62%17%
Agreement with

refactoring−related
modifications

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3.2: Relationship Agreement by Developers

Answering RQ1: The results show that the detection tool is highly ef-
fective, with developers agreeing that 80.20% of the refactoring-related
modifications were correctly identified. The tool earned a median agree-
ment rating of four out of five, indicating strong alignment with devel-
oper expectations. It’s important to note that the modifications identified
by RefMiner, which are considered default refactoring modifications, are
already included in our tool. However, what sets our approach apart is
its ability to detect additional modifications beyond these defaults, which
other tools like GumTree initially capture but do not filter as related. De-
velopers confirmed that these extra modifications are indeed relevant to
refactoring, demonstrating the tool’s added value in identifying a broader
range of modifications and offering a more comprehensive view of the refac-
toring process.

3.6.2
Refactoring-related Modifications in Refactoring Instances

Table 3.2 presents a list of modifications for different layers. The first
column lists the types of refactorings, and the remaining columns indicate
which refactoring-related modifications were found in a specific layer. The
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percentage next to each type of modification indicates the frequency with
which that modification appeared relative to the total number of refactorings
involving that layer. For instance, consider the Rename Method refactoring
in the column referring to layer two. In this case, we see the modification
add_method_call occurred in 56.57% of the Rename Method instances among
all instances of this refactoring type that reached layer two.

Layer Zero Analysis. In general, we can observe that, for layer zero, the
default modifications consistently appear in almost all refactoring instances,
indicating that the results are aligned with the modifications assigned to each
refactoring type in literature catalogs [1, 2, 4, 90]. For instance, in the case
of Extract Method, modifications such as add_method_call and add_method
occur in over 95% of instances. This aligns with the fundamental purpose of
Extract Method, which involves creating a new method and invoking it where
the original code block resided. Similarly, Move Method, Pull Up Method, and
Push Down Method show high frequencies of add_method and rmv_method
modifications, reflecting their core operations of relocating methods within the
class hierarchy. In the case of Inline Method, we observed, in addition to the
removal of the method, the removal of method calls, which coincides with the
purpose of this type of refactoring.

An interesting observation arises with the Rename Method refactoring,
where the rename_element modification appears in 84% of instances. The
slightly lower frequency compared to other refactoring default modifications
suggests complexities in accurately detecting renames, possibly due to vari-
ations in method implementations or detection tool limitations. Recognizing
these nuances is essential for tool developers to enhance refactoring detection
accuracy and for practitioners to be aware of potential inconsistencies during
code reviews.

For Extract Method and Inline Method refactorings, we see that the
addition and removal of method calls are the most frequent, respectively.
However, it is important to note, especially for Inline Method, that the addition
and removal of method modifications were not as frequent as method calls. This
result indicates that in many instances of these types of refactorings, only the
extracted or inlined content was moved between methods. Practically, this
means that during Inline Method refactoring, the addition of modifications to
variables and control structures are less common, indicating that developers
focus on simplifying the code.

Additionally, for frequent modifications, Inline Method tends to counter-
balance Extract Method regarding extracted and inlined content. Examples
include the addition of infix expressions and return values, which are removed
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Table 3.2: More Frequent Modifications per Layer
Layer 0 Layer 1 Layer 2 Layer 3 and beyond

Rename
Method

rename_element (84.18%)
add_method_call (39.57%)
rmv_method_call (38.38%)
add_return_value (23.60%)
rmv_return_value (22.86%)
add_variable (17.60%)
add_method (17.33%)
rmv_variable (17.03%)
rmv_method (15.35%)
add_javadoc (11.85%)

add_method_call (66.91%)
rmv_method_call (58.99%)
rename_element (33.07%)
add_method (24.86%)
add_return_value (23.48%)
rmv_return_value (20.58%)
add_expressionstatement (20.08%)
rmv_expressionstatement (19.07%)
changed_fielddeclaration (18.35%)
rmv_method (17.49%)

add_method_call (56.57%)
rmv_method_call (44.64%)
add_variable (42.63%)
rmv_variable (35.08%)
add_infixexpression (27.28%)
add_expressionstatement (27.15%)
add_return_value (25.92%)
rmv_infixexpression (21.87%)
add_if_statement (20.64%)
rmv_expressionstatement (20.24%)

add_method_call (17.29%)
rmv_method_call (12.01%)
add_variable (11.22%)
add_method (10.48%)
add_infixexpression (9.39%)
add_if_statement (8.74%)
rmv_variable (8.51%)
add_expressionstatement (7.62%)
add_return_value (7.40%)
rmv_infixexpression (6.84%)

Extract
Method

add_method_call (99.79%)
add_method (95.96%)
rmv_method_call (87.90%)
rmv_variable (49.41%)
add_return_value (48.98%)
add_variable (47.55%)
add_infixexpression (42.40%)
rmv_infixexpression (40.06%)
add_if_statement (37.24%)
add_class_instance (36.69%)

add_modifier (97.24%)
add_method_call (72.99%)
rmv_method_call (49.73%)
add_return_value (37.20%)
rmv_variable (30.25%)
add_variable (26.13%)
add_parameterizedtype (24.49%)
add_if_statement (20.84%)
rmv_if_statement (18.99%)
add_method (18.61%)

add_method_call (47.10%)
add_variable (46.77%)
rmv_method_call (42.70%)
rmv_variable (32.15%)
add_if_statement (25.73%)
rmv_infixexpression (25.40%)
add_infixexpression (25.10%)
add_expressionstatement (23.66%)
rmv_expressionstatement (18.93%)
add_return_value (18.33%)

add_method_call (20.80%)
add_variable (14.02%)
add_method (13.01%)
add_infixexpression (11.34%)
add_if_statement (10.42%)
add_expressionstatement (8.81%)
add_return_value (7.24%)
add_class_instance (6.85%)
add_classinstcreation (6.85%)
rmv_method_call (6.63%)

Inline
Method

rmv_method_call (99.37%)
rmv_method (87.62%)
add_method_call (82.79%)
rmv_return_value (62.70%)
rmv_infixexpression (44.13%)
rmv_variable (42.49%)
rmv_if_statement (38.78%)
add_variable (37.78%)
rmv_class_instance (34.66%)
rmv_classinstcreation (34.66%)

rmv_modifier (97.40%)
rmv_method_call (64.32%)
add_method_call (56.68%)
add_variable (31.36%)
rmv_parameterizedtype (24.23%)
rmv_return_value (24.16%)
add_if_statement (23.41%)
add_modifier (23.11%)
rmv_method (23.09%)
rmv_textelement (22.51%)

add_method_call (59.43%)
rmv_method_call (47.81%)
rmv_variable (47.77%)
add_variable (41.21%)
add_infixexpression (33.72%)
add_expressionstatement (30.07%)
rmv_if_statement (28.37%)
rmv_expressionstatement (27.79%)
rmv_infixexpression (27.19%)
add_if_statement (26.74%)

rmv_method_call (19.62%)
rmv_variable (14.18%)
add_method_call (13.99%)
rmv_method (12.32%)
rmv_infixexpression (12.18%)
add_variable (9.71%)
rmv_expressionstatement (9.64%)
rmv_if_statement (9.41%)
rmv_return_value (8.11%)
add_infixexpression (7.92%)

Move
Method

add_method (97.92%)
rmv_method (97.32%)
rmv_modifier (93.90%)
add_modifier (93.59%)
add_method_call (79.75%)
rmv_method_call (79.37%)
add_return_value (57.08%)
rmv_return_value (56.70%)
rmv_variable (45.79%)
add_variable (45.60%)

rmv_method_call (64.89%)
add_method_call (63.85%)
add_fielddeclaration (42.33%)
add_class (40.58%)
add_method (39.39%)
rmv_method (37.94%)
rmv_fielddeclaration (37.77%)
add_expressionstatement (26.93%)
rmv_expressionstatement (25.25%)
rmv_class (20.75%)

add_method_call (63.46%)
add_variable (58.77%)
rmv_method_call (55.11%)
add_method (50.58%)
rmv_variable (50.42%)
add_return_value (42.93%)
add_expressionstatement (41.99%)
add_infixexpression (39.51%)
add_fielddeclaration (38.77%)
rmv_expressionstatement (36.23%)

add_method (19.26%)
add_method_call (17.63%)
rmv_method_call (17.54%)
rmv_method (15.69%)
add_variable (14.24%)
rmv_variable (13.92%)
add_infixexpression (11.69%)
rmv_infixexpression (11.59%)
add_if_statement (11.31%)
add_return_value (10.91%)

Pull Up
Method

rmv_method (96.87%)
add_method (93.42%)
rmv_modifier (92.80%)
add_modifier (89.88%)
add_method_call (66.45%)
rmv_method_call (65.20%)
add_return_value (54.77%)
rmv_return_value (54.38%)
rmv_markerannot (51.96%)
add_markerannot (45.42%)

rmv_method_call (60.96%)
add_method_call (60.87%)
add_fielddeclaration (54.54%)
rmv_fielddeclaration (52.89%)
add_class (50.14%)
add_method (49.51%)
rmv_method (46.94%)
add_expressionstatement (37.89%)
rmv_expressionstatement (37.01%)
add_return_value (29.34%)

add_method_call (66.91%)
add_method (60.18%)
add_return_value (56.34%)
rmv_method_call (55.68%)
add_variable (53.71%)
add_fielddeclaration (51.24%)
add_expressionstatement (51.24%)
add_infixexpression (48.05%)
rmv_variable (44.58%)
rmv_expressionstatement (40.69%)

add_method (19.86%)
rmv_method_call (17.62%)
add_method_call (17.58%)
rmv_method (17.11%)
rmv_variable (13.38%)
add_variable (13.25%)
rmv_infixexpression (11.80%)
add_infixexpression (11.33%)
add_return_value (11.17%)
rmv_expressionstatement (11.14%)

Push
Down
Method

add_method (99.17%)
add_modifier (93.64%)
rmv_modifier (84.80%)
rmv_method_call (68.48%)
add_method_call (68.40%)
rmv_return_value (62.04%)
add_return_value (62.04%)
rmv_method (61.91%)
add_markerannot (51.38%)
rmv_variable (31.00%)

rmv_method_call (72.33%)
add_method_call (69.92%)
rmv_fielddeclaration (63.50%)
add_fielddeclaration (59.54%)
add_class (57.19%)
add_method (56.62%)
rmv_method (56.48%)
rmv_expressionstatement (49.32%)
add_expressionstatement (44.77%)
rmv_return_value (42.16%)

add_method_call (70.52%)
rmv_method_call (67.02%)
add_variable (60.94%)
add_method (59.43%)
add_return_value (58.95%)
add_expressionstatement (57.25%)
rmv_variable (56.37%)
add_infixexpression (53.50%)
add_fielddeclaration (52.36%)
rmv_expressionstatement (52.27%)

add_method (20.10%)
rmv_method_call (17.90%)
add_method_call (17.30%)
rmv_variable (14.18%)
rmv_method (14.11%)
add_variable (13.57%)
rmv_infixexpression (12.52%)
add_infixexpression (11.80%)
rmv_expressionstatement (11.75%)
add_expressionstatement (11.72%)
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during Inline Method and added during Extract Method. Recognizing these
patterns allows developers to adjust their refactoring practices to address spe-
cific modification patterns. For instance, knowing that method calls are the
most frequently modified element in Extract Method refactorings can help
developers anticipate the scope of modifications and manage them more effec-
tively. By understanding that Inline Method frequently results in the removal
of infix expressions and return values, developers can proactively review and
adjust these elements to avoid missing critical functionality. Finally, the addi-
tion and removal of variables are common for both refactorings due to signifi-
cant changes in method content and structure. Developers must monitor these
modifications to maintain consistency and prevent side effects.

For refactorings involving method movement, such as Move Method,
Pull Up Method, and Push Down Method, we observed a high incidence of
method additions and removals, as well as modifications to method modifiers,
such as public, final, and static. Specifically, for Push Down, the frequency of
method removal is notable at 61.91%, indicating that developers often retain
the method signature in the superclass and perform push-down operations
to override this signature. This is supported by the frequency of marker
annotation modifications, representing the addition of @override annotations
on methods whose hierarchy has been altered. In practice, understanding these
patterns helps in anticipating and managing changes to method signatures and
annotations, allowing developers to reapply common and effective Push Down
strategies.

Layer One Analysis. Layer one contains refactoring-related modifica-
tions that are indirectly triggered by the initial refactoring, such as adjust-
ments to dependent code elements and resolution of resulting inconsistencies.
For the Rename refactoring, we have the addition and removal of method calls.
This highlights the cascading effect a simple rename can have across the code,
especially in large or tightly coupled systems. Additionally, the existence of re-
name_element in 33.07% of instances suggests that renaming a method often
leads to renaming related entities for consistency, such as variables, methods,
and classes. This result indicates that even method-level refactorings, such as
Rename Method, can affect class-level structures.

In the context of Extract Method and Inline Method, the frequent
changes to modifiers and method calls. Unlike layer zero, these calls are not nec-
essarily within the main method itself (i.e., the extracted or inlined method)
but rather in other methods (client methods) that interact with the main
method. Thus, this result indicates adjustments to access levels and invoca-
tion patterns to maintain functionality and encapsulation after refactoring.
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Notably, the imbalance between additions and removals of method calls in
Extract Method (a 23.26% difference) raises concerns about potential side ef-
fects, as the introduction of new functionalities or reuse of extracted methods
in additional contexts could inadvertently alter the program’s behavior. This
highlights the importance of careful review to ensure that such modifications
do not introduce unintended consequences.

For method-moving refactorings (i.e., Move Method, Pull Up Method,
Push Down Method), similar to Extract and Inline Methods, the additions
and removals of method calls are among the most frequent changes. However,
the frequency of the opposite call modifications differs from them. For these
method-moving refactorings, the addition and removal of calls occur at similar
frequencies, in the worst case being only 2.41% for Push Down Method.
Regarding other frequent modifications, we observe that the three refactorings
share exactly the same modification types. The only exception is Move Method,
which includes the class removal as refactoring-related. Our hypothesis is
that the class became unnecessary once the methods contained within it
were moved. Finally, consistent modifications to field declarations and class
structures reflect the need to adapt surrounding code to the method’s new
location. This adaptation includes updating or relocating related fields and
ensuring that class hierarchies correctly represent the new design intentions.

Higher Layers (Two and Beyond) Analysis. Layers two and beyond
represent more complex and less direct modifications resulting from or related
to the initial refactoring. These layers often involve iterative adjustments and
refinements as developers integrate refactored code into the broader system
context. The persistent prominence of add_method_call across all refactorings
in layer two suggests ongoing integration efforts, where refactored methods
are increasingly utilized or their usage patterns evolve. For refactorings like
Inline Method and Pull Up Method, where these refactoring types intent
to simplify or consolidate code, the unexpected frequency of added method
calls may indicate scenarios where new abstractions or functionalities emerge,
necessitating additional method invocations. Moreover, the diverse range of
modifications in higher layers, even occurring less frequently, underscores the
varied and context-specific nature of how code evolves after refactoring. These
refactoring-related modifications often involve adding or removing complex
structures like infix expressions, if statements, and entire classes, which may
reflect ongoing design improvements and feature expansions.
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3.6.3
Distribution of Refactoring-related Modifications

In the discussion above, we presented the frequency in which different
refactoring-related modifications occur per layer for each type of refactoring.
Table 3.3 shows an average of how modifications are distributed between
related and not related modifications across commits. We observe that not
related modifications are much greater in terms of quantity, reaching 92.97% of
code changes containing the Rename Method refactoring type. The refactoring
with more average refactoring-related modification is Inline Method, where
16.72% are related modifications.

Table 3.3: Distribution (non-)Related Modifications
Move

Method
Extract
Method

Rename
Method

Inline
Method

Pull Up
Method

Push Down
Method

Non-Related 86.44% 85.6% 92.97% 83.28% 86.18% 84.05%
Related 13.56% 14.40% 7.03% 16.72% 13.82% 15.95%

Figure 3.3: Modification Distribution Throughout the Layers

Regarding the concentration of refactoring-related modifications
throughout the layers, we present Figure 3.3. The x-axis represents the
layer and the y-axis represents the percentage of the total of modifications for
the respective layer. In this figure, we can observe that, except for Extract
Method, refactoring-related modifications are concentrated in layers one and,
especially, layer two. This means that additional modifications interacting
with the resulting code from the refactoring are more prevalent. As for Ex-
tract Method, it exhibits a different distribution from the others, its highest
concentration is in layer zero. This result suggests that commits involving
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Extract Method tend to focus on the refactoring itself. Additionally, all types
of refactorings also have a higher concentration in layer five or six, following
a pattern of decay for higher layers.

Answering RQ2: The analysis reveals that refactoring often triggers var-
ious modifications across different code layers, highlighting the intercon-
nected nature of code modifications. Most of the refactoring-related mod-
ifications are concentrated in the first two layers. For example, the fre-
quent addition of method calls during Extract Method refactoring, show-
ing a 23.26% imbalance, underscores the importance of anticipating the
scope and impact of these modifications for more effective planning. Pat-
terns such as modifications of complex structures in higher layers, even in
method-level refactorings, can guide the development of smarter, context-
aware refactoring tools, helping manage intricate code modifications.

3.6.4
Spreading of Refactoring-related Modifications throughout the Source
Code

We also analyzed the location of modifications related to refactorings in
the source code to understand their impact in terms of scope. For each refac-
toring type, Table 3.4 presents three columns indicating different source code
locations. The column “Same Method” indicates the percentage of modifica-
tions that occurred in the source or target method in the respective layer of
the first column. Similarly, the column “Same Class” indicates modifications in
the class where the source and target methods reside. The column “Outside”
indicates if the modifications in classes other than those where the source and
target methods are located.

In general, the distribution of modifications related to refactoring reveals
distinct patterns based on the type of refactoring being applied. First, we
observed that for all refactoring types, modifications tend to spread and
affect a wider range of elements as the layer number increases. Second,
refactorings with a similar focus, such as Extract and Inline Methods, which
are concerned with adding or removing methods, tend to exhibit similar
distribution patterns for related modifications. Similarly, refactorings involving
method movement, such as Move Method, Pull Up Method, and Push Down
Method, show comparable distribution behaviors. Finally, Rename Method
also displays similarities with method-movement refactorings, displaying a
similar modification distribution.
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Table 3.4: Refactoring-related modifications Distribution in the Source Code
Extract Method Inline Method Rename Method

Layers Same
Method

Same
Class

Outside Same
Method

Same
Class

Outside Same
Method

Same
Class

Outside

L 0 95.46% 4.53% 0.01% 92.58% 7.41% 0.01% 85.83% 14.16% 0.01%
L 1 42.47% 53.74% 3.79% 26.36% 71.05% 2.60% 0.30% 84.65% 15.05%
L 2 18.63% 73.25% 8.12% 7.58% 86.97% 5.45% 0.05% 86.76% 13.19%
L 3 15.71% 69.91% 14.38% 12.57% 67.26% 20.18% 0.08% 59.90% 40.02%
L 4 10.90% 62.91% 26.19% 10.00% 58.87% 31.13% 0.06% 43.42% 56.53%
L 5 5.68% 62.43% 31.89% 6.56% 60.31% 33.13% 0.03% 44.27% 55.70%
L 6 5.90% 62.82% 31.27% 5.53% 56.17% 38.31% 0.02% 32.91% 67.07%
L 7 5.52% 56.29% 38.19% 2.40% 54.89% 42.71% 0.02% 36.88% 63.10%
L 8 7.81% 62.50% 29.69% 5.68% 49.14% 45.19% 0.03% 30.65% 69.32%
L 9 8.28% 57.20% 34.52% 4.19% 50.83% 44.98% 0.01% 32.61% 67.38%

Not Related 1.54% 14.84% 83.62% 0.95% 19.06% 79.99% 0.00% 12.24% 87.76%
Move Method Pull Up Method Push Down Method

Layers Same
Method

Same
Class

Outside Same
Method

Same
Class

Outside Same
Method

Same
Class

Outside

L 0 94.45% 5.55% 0.00% 92.61% 7.39% 0.00% 93.59% 6.41% 0.00%
L 1 0.12% 91.39% 8.49% 0.19% 93.12% 6.70% 0.35% 96.78% 2.87%
L 2 0.01% 90.59% 9.40% 0.00% 93.81% 6.19% 0.00% 92.20% 7.80%
L 3 0.02% 66.81% 33.17% 0.00% 60.49% 39.51% 0.00% 68.27% 31.73%
L 4 0.09% 63.28% 36.63% 0.00% 47.73% 52.27% 0.00% 55.36% 44.64%
L 5 0.00% 67.18% 32.81% 0.00% 63.37% 36.63% 0.00% 67.78% 32.22%
L 6 0.01% 67.16% 32.83% 0.00% 54.52% 45.48% 0.00% 63.98% 36.02%
L 7 0.00% 65.02% 34.97% 0.00% 60.29% 39.71% 0.00% 58.63% 41.37%
L 8 0.00% 70.55% 29.45% 0.00% 49.69% 50.30% 0.00% 67.24% 32.75%
L 9 0.00% 64.71% 35.29% 0.00% 45.85% 54.14% 0.00% 63.86% 36.14%

Not Related 0.00% 22.88% 77.12% 0.00% 26.83% 73.17% 0.00% 20.99% 79.01%

For Extract and Inline Methods, the modifications are predominantly
concentrated within the source and target methods in layer zero, where more
than 90% of modifications are observed. This high concentration indicates
that these refactorings predominantly affect the methods directly involved.
However, there are noticeable modifications in the same class, with occurrences
of 4.53% and 7.41% for Extract and Inline Methods, respectively. This pattern
arises due to the frequent association of method addition and removal with
class-level changes, as observed in Table 3.2. Even in higher layers, for these
two refactoring types, modifications within the source and target methods
persist, with 8.28% for Extract Method and 4.19% for Inline Method in layer
nine. Additionally, we can observe a considerable increase from layer three
onward in occurrences of modifications in the outside column. The occurrence
of modifications on outside classes remains above 30% of in higher layers,
reaching 44.98% in layer nine for Inline Method.

The occurrence of refactoring-related modifications on outside classes
from layer three onward is more intense in method-movement refactorings
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and Rename Method. Furthermore, for these refactorings, the concentration
of modifications in the source and target methods is solely in layer zero, with
values nearly zero from layer one onward. Lastly, we observe that layers one
and two show the highest incidence of modifications in the same class as the
source and target methods.

These results suggest that, for each type of refactoring, developers should
adopt a targeted approach to ensure comprehensive refactoring application and
review. For Extract and Inline Methods, developers should focus primarily on
modifications within the source and target methods. They should also pay par-
ticular attention to refactoring-related modifications in the same class, as these
refactorings often affect class-level elements. For method-movement refactor-
ings and Rename Method, developers should focus on class-level modifications.
These refactorings can introduce modifications across multiple classes. This
broad impact may lead to unintended side effects elsewhere in the code, re-
quiring careful review.

Answering RQ3: Refactoring-related modifications are primarily concen-
trated in the source and target methods at layer zero across all refactoring
types. Extract Method and Inline Method show a continued presence of
modifications in these methods even in higher layers. In contrast, modifi-
cations in outside classes become more prevalent from layer three onward,
indicating that even simpler refactorings, such as Rename Method, can
lead to dispersed changes in the codebase. This suggests that developers
should be vigilant during code reviews, particularly for refactorings with
broader impacts.

3.7
Threats to Validity

Internal and Construct Validity. Our method depends on two key
detection tools, namely GumTree [71] and RefactoringMiner [93]. While these
tools are reliable (achieving an 87.2% recall and 98% precision in the case
of RefactoringMiner), false positives pose challenges for both validation and
the correct identification of refactoring-related modifications. To mitigate these
issues, we manually inspected instances to ensure accuracy. In constructing the
tool, we established four distinct types of relationships between modifications
and refactorings. However, we acknowledge that more complex relationships
may exist that are not yet addressed by our approach.

External Validity. Our study evaluated the tool exclusively on Java
projects, which may limit its applicability to other programming languages.
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Nevertheless, we ensured a broad and diverse sample, analyzing 213 commits
across projects from various domains and sizes. While this large-scale evalua-
tion strengthens the generalizability of our findings within the Java ecosystem,
we acknowledge that results might vary if applied to projects using other pro-
gramming languages or in different development environments.

3.8
Conclusion and Implications

We explored the extent of refactoring-related modifications in floss refac-
toring occurrences. Altogether, we analyzed 98,496 instances of six popular
refactoring types across 213 projects. First, we proposed a tool for detecting
and categorizing refactoring-related modifications. Using this tool, we cata-
loged frequent modifications that occur alongside refactorings and developed
an approach to determine their closeness to refactoring instances.

Our results reveal distinct patterns in code modifications during refac-
toring, such as the introduction or removal of method calls, return values,
and variables. We found that refactoring-related modifications often cascade
through the codebase, particularly in refactorings like Pull Up, Push Down,
and Move Method, which may require closer scrutiny to prevent unintended
side effects. While most refactoring-related modifications are concentrated in
lower layers, especially within the source and target methods, we also observed
frequent modifications at higher layers, such as class field declarations, even in
method-level refactorings like Extract and Inline Methods.

Our findings emphasize the importance of distinguishing between
refactoring-related and unrelated modifications, which is significant for re-
searchers and practitioners. For practitioners, we contribute to the understand-
ing of how widespread refactoring-related modifications are and the complexity
of refactoring. For researchers, our study offers tools for examining refactoring-
related modifications in floss commits. Additionally, the catalog of frequent
modifications and their closeness to refactoring instances can help create tools
that better support developers in recognizing and managing the full scope of
modifications during the refactoring process.

Data Availability

All source code, collected data, instances, and project list are available
online [89].



4
RefViewer: Visualizating Refactoring-related Modifications

In Chapter 3, we examined the challenges developers face when dis-
tinguishing between refactoring-related modifications and other code modi-
fications within the same commit. In order to address these challenges, we
proposed a tool to automate the detection of these refactoring-related mod-
ifications. However, while the proposed tool offers significant advantages, its
practical integration and utilization during the code review process remain a
concern. Studies have highlighted that floss refactoring can considerably slow
down code reviews, as developers must manually identify which modifications
pertain to refactoring. This manual process not only increases effort but also
heightens the risk of errors, ultimately affecting productivity [18,19]. Chapter
3 focused on the tool’s detection capabilities but does not address how such
tools can be effectively applied in real-world code reviews. Therefore, explor-
ing the integration of automated tools into code review workflows is crucial
for simplifying the review process, reducing efforts, and avoiding overlooked
modifications.

To address this issue, Chapter 4 builds on the insights from previous
chapters by proposing a practical solution: an automated visualization tool
integrated into the code review process. This tool identifies and highlights
refactoring-related modifications, offering a streamlined approach for develop-
ers to distinguish between refactoring-related modifications during the review
process. By providing clear visual indicators, the tool aims to reduce the effort
involved in reviewing floss refactoring instances, minimize the risk of overlook-
ing important modifications, and ultimately enhance developer productivity.

In this chapter, we present an extended version of the paper entitled
RefViewer: Visualizing Refactoring-Related Modifications. Here, we introduce
RefViewer, our proposed GitHub diff tool that automatically highlights
refactorings and their related modifications. Building upon the tool proposed
in Chapter 3, RefViewer provides a comprehensive view of the closeness
and relationships between the code modifications. We assess the tool’s effec-
tiveness in reducing code review effort during floss refactoring and improving
developers’ understanding of refactoring impacts. The findings underscore Re-
fViewer as a valuable addition to the development workflow, complementing
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the automated detection methods introduced in Chapter 3. Finally, we provide
a more detailed discussion of the validation process for the refactoring-related
detector, as introduced in the previous chapter.



Chapter 4. RefViewer: Visualizating Refactoring-related Modifications 75

4.1
Introduction

Refactoring is a common practice in software engineering aimed at im-
proving the internal structure of code without altering its external behav-
ior [1, 2]. The goal is to enhance code readability and maintainability, facil-
itating future modifications [2]. Various types of refactorings are cataloged
in the literature [1, 2, 4], with each type associated with a set of refactoring-
related modifications considered default for its respective refactoring type. For
example, the default modifications for the Extract Method refactoring involve
moving a code segment into a new method and replacing the original segment
with a call to that new method [2].

Despite its benefits, the practical application of refactoring is fraught
with challenges [10–12]. A significant issue is that refactoring is often performed
concurrently with other software development tasks, such as feature additions
or bug fixes. This is a practice referred to as “floss refactoring” [14, 17]. In
a floss refactoring, developers intertwine both refactoring and non-refactoring
modifications in a single commit, with the latter aimed at altering the system’s
observable behavior [17]. Therefore, along with code reviews, developers need
to discern which modifications pertain to the refactoring to ensure that all
required refactoring-related modifications are adequately executed [18].

Distinguishing and classifying different modifications within each in-
stance of floss refactoring is complex and demands meticulous code analy-
sis [18, 27]. Manually identifying refactoring-related modifications is labor-
intensive and prone to errors [18]. Studies have shown that floss refactoring
can significantly slow down the code review process, as developers must manu-
ally determine which modifications are related to refactoring for proper review,
leading to increased effort and potential mistakes [18,19].

Despite these challenges, existing studies have focused only on identifying
the refactorings themselves, overlooking the intertwined nature of floss refac-
toring [18,26]. As a result, developers are only shown the default modifications
with no support or visual identification to other possible refactoring-related
modifications. For instance, a recent study [27] found that developers often
add or remove method calls or adjust exception handling as a direct result
of performing a refactoring. These refactoring-related modifications, closely
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tied to the refactoring process itself, lack proper tool support and can lead to
unobservable side effects if not carefully reviewed [27].

Given these challenges, automated support is essential to assist devel-
opers on understanding the specific impacts of refactoring on the code along
code reviews. To address this need, we propose RefViewer, a tool designed
to integrate into the code review process. The tool automatically identifies not
only refactoring-related modification considered as default but also related
modifications that occur as a result of the refactoring. By highlighting these
modifications, RefViewer allows reviewers to focus on the broader implica-
tions of the refactoring, reducing the need for manual effort and minimizing
the risk of overlooking important behavior changes. Our solution enhances the
current state of the art by providing a comprehensive view of all relevant code
modifications, which helps make code reviews faster and more thorough.

We conducted a comprehensive evaluation of RefViewer to understand
its impact for understanding code modifications in commits with refactorings.
The study involved assessing the tool’s performance in correctly classifying
refactoring-related modifications and understanding the effort reduction in
reviewing floss refactorings. Additionally, we analyzed the extra overhead
introduced by the tool and explored developers’ perceptions of refactoring-
related modifications. To achieve this, 11 developers, with solid experience
on refactoring, participated in the evaluation. They assessed 48 distinct floss
refactoring instances (classified as easy, medium, and difficult) from 28 Java
open-source projects. Each instance was reviewed by two developers, resulting
in a total of 96 evaluations. The study aimed to balance statistical rigor
with practical constraints, ensuring a thorough assessment of RefViewer’s
integration into the development workflow.

The evaluation results showed that developers confirmed the tool identi-
fied refactoring-related modifications correctly in 80.2% of the instances. Also,
RefViewer consistently reduced the effort required to identify modifications,
saving time across all difficulty levels, without adding overhead to the review
process (execution time was consistently under 9 seconds). Finally, our tool
positively aided developers on understanding the refactoring impacts in nearly
half of the cases, highlighting its potential to enhance code review efficiency.

4.2
RefViewer: Refactoring Tool Visualizer

Identifying and visualizing code modifications related to refactorings
in a commit can be challenging, particularly when dealing with many code
modifications [92]. To address this challenge, we present RefViewer, a
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browser extension that enables the visualization and highlighting of code
modifications related to refactorings directly within GitHub commits. All
source code is available at [96].

4.2.1
RefViewer Architecture

Figure 4.1 presents RefViewer’s architecture. The architecture is com-
posed of three parts, the Browser Extension, an intermediate HTTP Server,
and the RefViewer Classification. In a nutshell, once the developer opens a
commit, the browser extension automatically detects and makes a request to
RefViewer’s HTTP Server to obtain the refactoring-related modifications.
Then, the HTTP Server runs the RefViewer’s classifier. Finally, all the clas-
sification data is returned to the extension, which displays the classification to
the developer.

Git commit

Browser
Extension

RefViewer Architecture

HTTP Server RefViewer
classifier

Classification 
view

Figure 4.1: RefViewer Architecture

Browser Extension. The browser extension modifies the developer’s
browser view to include the RefViewer interface. It alters the HTML by
identifying code modifications indicated by GitHub and updating their ap-
pearance. Additionally, the extension provides an interactive interface that
allows developers to configure settings, such as selecting the refactoring in-
stance and enabling or disabling certain visualizations. Finally, the extension
communicates with the intermediate HTTP server, passing the commit hash
and the Git URL to retrieve the necessary data for visualization.

HTTP Server. The server facilitates communication between the ex-
tension and the classifier. This setup allows the classifier to be used in any
development environment, such as GitHub or even plugins for integrated de-
velopment environments (IDEs).
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RefViewer Classifier. Finally, the classifier is the core of the tool. It
relies on two primary tools, RefactoringMiner [93] and GumTree [71]. Refac-
toringMiner identifies refactoring instances within the code, while GumTree
detects code modifications in terms of the abstract syntax tree (AST). Once
the refactoring is located and all AST-level modifications are identified, the
classifier categorizes the code modifications into three groups: refactoring,
refactoring-related, and non-refactoring modifications.

1. Refactoring modifications are the modifications considered default for
each refactoring type. These modifications are part of refactoring cat-
alogs [1, 2]. For instance, the creation of a new method containing the
extracted code during an Extract Method.

2. Refactoring-related modifications are code modifications that interact
with a refactoring modification and can be affected if the refactoring
is not completely correct. These modifications are not necessarily listed
as part of the refactoring in popular catalogs, and can include any type
of modification. In this category, it is not mandatory to preserve the
behavior. For this study, we considered that the interaction between
refactoring-related and refactoring modifications can occur in three dif-
ferent ways: (i) The modification is part of the declaration of a refactored
method. For instance, in an extract method refactoring, when the orig-
inal method is changed from public to private. (ii) Sharing variables in
common with the refactoring modifications. For instance, when a new
modification responsible for providing a new functionality uses a vari-
able involved in the refactoring modifications. (iii) Calling one of the
refactored methods of the evaluated refactoring type.

3. Non-refactoring modifications are the modifications that do not inter-
act with any other modification from the previous groups. Most of these
modifications are purely related to other purpose, such as new function-
alities or bug fixing.

Finally, for each modification, the classifier determines a distance value.
This value range from 0 to 99. The distance value is not determined by number
of lines but depends on how many steps are necessary to a modification “touch”
any refactoring modification. Low distance values mean that the modification is
strongly related to the refactoring instance. For example, all the modifications
categorized as refactoring ones are distance 0. Then we have the refactoring-
related modifications that are in the distances from 1 and above. For instance, if
a modification invokes a refactored method, this modification will be classified



Chapter 4. RefViewer: Visualizating Refactoring-related Modifications 79

Figure 4.2: RefViewer Browser Extension Interface

as distance 1, since this call directly touches the refactoring modification. In
this way, if the return of this invocation is attached to a new variable, the
creation of this variable will be classified as refactoring-related with distance
2. This is because it will first touch the method invocation (distance 1) before
touching the refactored method (refactoring modification), requiring 2 steps.
Finally, we have the non-refactoring modifications that are in the distance 99.

4.2.2
Interface and Functionalities

The extension’s interface is designed to present the classification infor-
mation in a clear and intuitive manner. Users can view the modifications high-
lighted in the code, with refactorings, refactoring-related modifications, and
non-refactorings all color-coded for easy identification. Figure 4.2 presents the
interface provided by the extension when a refactoring is detected. The cir-
cles numbered from one to six indicates the possible interaction, described as
follows:

• ➊ Refactoring Instance Selection: The extension allows the selec-
tion of a specific refactoring instance to be analyzed. Even if multiple
instances are detected, only one will be analyzed per time.

• ➋ Source and Target Methods: The interface displays the main
methods related to the refactoring, with the source method representing
the code before the refactoring and the target method representing the
code after the refactoring. Users can click on the method names to
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navigate directly to them, even if they are collapsed by GitHub. In this
case, the navigation will be to the closest line to the respective method.

• ➌ Distance Selector: The distance between refactored and non-
refactored modifications can be adjusted. The interface initially presents
the modifications within a maximum distance of 1, but this distance
can be increased to include more related modifications as needed for the
experiment.

• ➍ Modifications Viewer: A legend is presented in the interface, indi-
cating the colors corresponding to each type of modification. Addition-
ally, it is possible to hide the highlights for each category by clicking on
their respective names in the legend.

• ➎ Modification Tooltip: When moving the mouse over a modification
it will display a tooltip indicating the distance, the relation type and the
metric name (type of modification) associated to that code modification.

• ➏ Not Visible Modification Indicator: When the visible screen does
not show all classified modifications, an indicator will be shown on the
top or bottom of the screen. There will be three possible indicators with
the respective colors. It is possible to click on the indicator to navigate
to the closest respective modification type in the top or bottom.

These functionalities allow developers to quickly analyze code modifi-
cations without the need for extensive reading or deep understanding of the
commit itself. Also, they enable the navigation directly to specific methods
and modifications, simplifying the code review process. Then, the distance se-
lector offers flexibility to adjust the depth of the analysis, allowing developers
to focus only on the most relevant modifications or expand the analysis as
needed. Finally, the visual indicators for non-visible modifications ensure that
no important modifications are overlooked, providing a comprehensive view of
the modifications introduced in the code.

4.3
Study Design

We conducted a comprehensive evaluation of RefViewer to understand
the impact of our proposed tool on the refactoring process. This evaluation
aimed to assess multiple facets of the tool’s integration and utility in the
development workflow. Thus, to observed how effectively the tool facilitates the
visualization of refactoring-related modifications without introducing overhead
on the code review practice, our study was guided by the following research
questions (RQs):
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RQ1: What is the performance of the RefViewer? Despite being
a key question for evaluating the proposed tool, determining a single accuracy
value to answer it is not straightforward. This complexity arises mainly due to
two factors. First, the classification process considers various code segments at
the token level (e.g., variable names, types, parameters, reserved words, among
others). For a typical commit, the number of tokens can reach thousands,
which makes it challenging, especially in terms of effort, to determine whether a
classification is perfectly accurate or if there are misclassified tokens. Moreover,
the concept of refactoring-related modifications is subjective to the developers’
perspectives. Each developer may have a different maximum distance they
consider as part of the refactoring, which might not align with the tool’s
initial visualization. To mitigate these factors and establish a method for
evaluating the tool’s performance, we adopted a two-step assessment. First,
developers provided their perspective on whether the tool correctly classified
the evaluated instances by indicating whether the tool failed to classify any
related-modification. Then, to evaluate the extent of misclassified tokens,
developers rated their level of agreement with the classification proposed by
the tool.

RQ2: How does RefViewer affect the effort to review floss refac-
torings? To address this question, we evaluated the challenges developers face
when identifying the occurrence of refactoring. We also measured the time de-
velopers would spend performing this task manually, which could be saved by
using the tool. This evaluation will highlight the tool’s potential to streamline
the review process and reduce the effort required from developers. By mini-
mizing the manual effort, the tool not only speeds up the development process
but also allows developers to focus more on high-level tasks.

RQ3: What is the additional overhead when using RefViewer?
In this question, we investigated what is the overhead that the RefViewer
introduces in terms of time. We investigate the time the tool needs to collect
data, execute its functions, and present the visualization to the developer.
Understanding this overhead is crucial for assessing the tool’s practicality and
how it integrates into the development process without causing significant
delays.

RQ4: What are developers’ perceptions about refactoring-
related modifications? The final research question focuses on understand-
ing the qualitative aspects through developers’ thoughts regarding reviewing
refactoring instances, as well as how the RefViewer affected them. We dis-
cussed the main challenges developers face when reviewing floss refactoring
instances. Additionally, we investigated the extent to which modifications are
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still considered part of the refactoring in terms of distance. This result pro-
vides important insights for improving tool support in code review, enabling
developers to more accurately determine the extent to which modifications are
still part of the refactoring, thereby streamlining and enhancing the review
process.

4.3.1
Data Collection

We evaluated 48 distinct refactoring instances from 28 Java open-source
projects. To ensure comprehensive coverage, we included eight instances for
six different refactoring types, encompassing method-level refactorings such as
Extract Method, Inline Method, and Rename Method, as well as structural
refactorings like Move Method, Pull Up Method, and Push Down Method.
This selection was made based on the broad scope and frequent use of these
refactorings in practice [7, 39, 40, 68]. Method-level refactorings are commonly
employed to enhance code readability and maintainability within individual
methods, while structural refactorings address the organization and hierarchy
of classes, reflecting their widespread application in codebase management.

Each refactoring instance was assessed by two different developers,
resulting in a total of 96 evaluations. Altogether, 11 developers, including
practitioners and academics, participated in the evaluation process, ensuring
that each instance was reviewed thoroughly. This approach was chosen to
balance the need for statistical rigor with practical constraints, including the
availability of the 11 developers and the manageable workload per developer.
The following sections describe each step of the experiment.

For each refactoring type, the eight chosen refactoring instances was
carefully divided based on difficulty into three easy, three medium, and two
hard instances. The difficulty classification was determined using the following
criteria:

Difficulty =


easy for rPercent > 80 and refInstances = 1

medium for rPercent ≥ 50 and refInstances ≤ 2

hard for rPercent < 50 and refInstances ≥ 2

In this context, rPercent represents the percentage of code modifications
that are not associated with the refactoring being analyzed. These modifica-
tions are either part of other refactorings than the evaluated one (in the case
of medium and hard difficulties) or other software activities. Also, refInstances
represents the number of refactorings that occurred in the same commit. By
structuring our evaluation in this manner, we ensured that our tool was val-
idated across a range of difficulty levels for each type of refactoring. This
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approach provides a thorough assessment of the tool’s performance, demon-
strating its applicability and robustness in identifying refactoring-related mod-
ifications under various conditions.

Project selection. We selected projects based on their relevance and
popularity using specific Git metrics [54, 95]. Our selection criteria covered a
range of projects, from new to old, while excluding non-software, personal,
or toy repositories. The criteria included: (i) Projects with a minimum of 500
commits, ensuring substantial development activity and avoiding toy projects;
(ii) Projects that had commits within the last six months, to ensure that the
projects are actively maintained and reflect current development practices;
(iii) Projects with at least 500 forks, indicating significant community engage-
ment and frequent refactoring efforts from the community, which enhance the
code’s structure and maintainability; and (iv) Projects with a minimum of
3500 stars, a threshold much higher than those in previous studies [7, 39, 40],
serving as an indicator of popularity.

Refactoring instances selection. Regarding the refactoring instances,
We opted to use RefactoringMiner [93] again to collect the instances used in
the evaluation phase. The motivation for using RefactoringMiner is its high
precision and recall [33, 93]. Also, for the evaluation phase, we initially gath-
ered over one thousand of refactoring instances. We then randomly selected
instances according to their difficulty level in order to have a similar amount
between each difficulty. Finally, a last manual verification step was conducted
to ensure that the instances encompassed varying commit sizes, with different
numbers of modifications and affected files for each difficulty level.

Table 4.1 presents the list of instances used in our experiment. The first
two columns indicate the refactoring type and the instance difficulty level. The
remaining columns present the instance Id, the project name and the commit
short hash, respectively.

4.3.2
Developer Characterization

Before the evaluation, each developer received a unique ID and fill out
a characterization form. They answered questions about their experience with
code development, as well as their expertise in both refactoring practice
and review. Regarding the expertise, the developers answered the questions
considering a scale from 1 (beginner) to 5 (very experienced).

We observed that 81.8% (nine) of the developers possess at least five years
of experience in software development, with 54.5% (six) of these developers
having more than ten years of practice in software development. The results
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also indicate a high level of expertise among the participants in refactoring
practices. The majority of responses were 4 or 5, with 36.4% (four developers)
for each of these ratings. Only 27.3% (three developers) rated their experience
as 3. Regarding their experience with code reviews, the responses similarly
reflect a strong background. Three developers (27.3%) rated their experience
as 5, while four developers (36.4%) rated it as 4 and another four (36.4%) rated
it as 3. This distribution demonstrates a robust familiarity with refactoring
practices among the developers, highlighting their confidence and capability in
this area. Also, the results suggest that the developers maintain a substantial
level of expertise for code review.

4.3.3
Evaluation Experiment

The experiment was divided into three stages. All questions and answers
are available at [96].

Preparation stage. In this step, we provided developers with support-
ing material that detailed each concept necessary for understanding the ques-
tions. Following this, we offered an explanation of the interface of the tool,
as well as the entire procedure required to set up and use the tool. Finally,
each developer was also provided with a list of commits in which at least
one refactoring had been detected and a step-by-step guide for each task they
needed to perform. The developers were free to make any question and have
any necessary information that they considered important before starting the
experiment. Once the developers were ready to initiate, they repeated the first
and second stage for each received commit.

Control stage. Upon opening a specified commit, the proposed tool
indicated on the developer’s screen only the type of refactoring they needed
to analyze, along with details of the instance, such as the classes and methods
involved in the refactoring. This information was provided similarly to the
output of RefactoringMiner, focusing only on the default code modifications
for each type of refactoring. As the first task, the developer indicated, on a
scale of 1 (Strongly Disagree) to 5 (Strongly Agree), the level of agreement with
the refactoring identified by the proposed tool. Next, the developer listed all
the code modifications they considered related to the refactoring. To measure
the effort required for this activity, developers were instructed to perform the
task without breaks and to record the start and end times. After listing the
modifications they deemed related to the refactoring, the developer answered
questions regarding the difficulty level of the task, the main factors that made
the task easy or difficult, and their confidence level in their response.
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Treatment stage. After answering the questions in the first stage, the
developers were instructed to unlock the full view of the proposed tool. This
highlighted the code modifications indicated as default to refactoring, related
to refactoring, and unrelated modifications, as shown in Figure 4.2. Before
answering the next set of questions, the developers took the necessary time
to evaluate and navigate through the proposed visualization to familiarize
themselves with the classifications provided by the tool. Once ready, the
developers answered questions regarding their level of agreement with the
proposed classification and which modifications they believed were incorrectly
classified. Additionally, developers were asked to adjust the visible distance
value to find a distance at which modifications are still exclusively related to
the refactoring instance. Finally, they were asked if they changed their opinions
about the previous classifications after viewing the proposed classification and
their opinion on the reduction of effort when using this visualization.

4.4
Results and Discussion

This section focus on answering and discussing the four research ques-
tions.

4.4.1
RQ1. RefViewer Performance

To evaluate the effectiveness and answer RQ1, developers answered two
distinct questions. The first question aimed to understand whether developers
believed that any modification related to refactoring was mistakenly classified
as non-refactoring. Furthermore, we asked to the developer whether any code
modifications were classified as related when they should not have been.
Regarding the first question, we observed that in 77 out of 96 instances
(80.20%), developers indicated that RefViewer was able to identify as
related all the modifications that the developers considered to be related
to refactoring. On the other hand, when answering the second question, we
noticed that in only 20 out of 96 instances (33.3%), developers were able to
list at least one code modification they disagreed was related to refactoring.

Based on the developers’ responses, we can define three reasons that ex-
plain the extra modifications categorized as refactoring-related. The first rea-
son is that some code modifications interact with the refactoring but do not
necessarily represent any refactored code functionality, such as annotations.
Thus, this set of modifications tends to be considered as false positives by de-
velopers. Second, the visualization allows developers to see all distances, which
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Table 4.1: Instances Evaluated During Experiment
Id Project Commit

T1-F1 Activiti-Activiti 1218270
T1-F2 Activiti-Activiti 14721cdEasy
T1-F3 airbnb-lottie-android f970d3a
T1-M1 abel533-Mapper 0bbdd89
T1-M2 alibaba-arthas 7442fbaMedium
T1-M3 alibaba-arthas ec6456c
T1-D1 azkaban-azkaban b0adb99

Extract
Method

Hard
T1-D2 azkaban-azkaban bd9e6e4

T2-F1 discord-jda-JDA 36ee5ab
T2-F2 dreamhead-moco 0e6a290Easy
T2-F3 dreamhead-moco 41fe372
T2-M1 dreamhead-moco 424f653
T2-M2 Genymobile-gnirehtet 660d6a8Medium
T2-M3 google-android-classyshark e436fc4
T2-D1 google-auto 3f69cd2

Inline
Method

Hard
T2-D2 google-google-java-format 33fc5ba

T3-F1 signalapp-Signal-Server 33c88ec
T3-F2 PhilJay-MPAndroidChart 8e193e2Easy
T3-F3 osmandapp-OsmAnd c861265
T3-M1 swagger-api-swagger-core 7416ff8
T3-M2 StarRocks-starrocks 9a26f19Medium
T3-M3 StarRocks-starrocks 7646554
T3-D1 Activiti-Activiti 00a1451

Move
Method

Hard
T3-D2 NanoHttpd-nanohttpd 6aa9777

T4-F1 apache-storm f594c20
T4-F2 apache-zookeeper 6664679Easy
T4-F3 facebook-fresco 9395f70
T4-M1 Tencent-APIJSON 8592367
T4-M2 alibaba-jetcache e22b1aeMedium
T4-M3 apache-shenyu 0cf7713
T4-D1 apache-shenyu 0f3a09d

Pull Up
Method

Hard
T4-D2 apache-shenyu 32a4229

T5-F1 Activiti-Activiti af10b56
T5-F2 discord-jda-JDA 2b0eff5Easy
T5-F3 discord-jda-JDA a77218c
T5-M1 discord-jda-JDA b579b3d
T5-M2 Doikki-DKVideoPlayer fbb79c0Medium
T5-M3 Activiti-Activiti a48199c
T5-D1 Activiti-Activiti 47cfe93

Push Down
Method

Hard
T5-D2 Activiti-Activiti 4c22d56

T6-F1 abel533-Mapper 32fd500
T6-F2 Konloch-bytecode-viewer b2f7fcbEasy
T6-F3 LMAX-Exchange-disruptor f0fa2f8
T6-M1 Activiti-Activiti 3756580
T6-M2 mybatis-mybatis-3 2188eb2Medium
T6-M3 mybatis-mybatis-3 2a68f4f
T6-D1 Tencent-QMUI_Android ab82080

Rename
Method

Hard
T6-D2 Tencent-QMUI_Android 8149f13
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can result in very high distant code modifications far from the refactorings,
either by lines of code or by semantic context of the code. This increases the
likelihood of developers indicating some code modifications as non-refactoring.
Finally, the third reason is caused by a current limitation of the tool in dis-
playing code modifications related to AST nodes that contains a block of code,
for example, the modifications ADD_CLASS. In this code modification, the tool
may understand that all the code created in the new class would be related to
refactoring if the creation of the class is also related. Similarly, smaller mod-
ifications that still have a block of code such as if and while statements can
have the same behavior when displayed.

After indicating which code modifications related to refactoring were
misaligned, developers were asked about their level of agreement, on a scale
of 1 (Strongly Disagree) to 5 (Strongly Agree), with the overall classification
made by the tool. To answer this question, we grouped the data by difficulty
level (Figure 4.3) and by type of refactoring (Figure 4.4).

Regarding agreement by difficulty level we observed that, in instances
classified as easy, developers exhibit a high level of agreement, with most
values concentrated in four and five. The median agreement is four, suggesting
that a substantial portion of developers strongly agree with the indicated
relationships. Regarding the medium level, The agreement is more evenly
distributed between two and four, but with the same median (four) then the
Easy difficulty level. This indicates a moderate consensus among developers,
with a broader range of opinions on the relationships indicated by the tool.
Finally, for the hard level, the agreement level is varied, ranging from 1 to
5, with a median of three, slightly lower than the other levels. This spread
suggests that developers have more diverse opinions on the relationships at
this difficulty level, with some strong disagreements and agreements.

Analyzing by refactoring type (Figure 4.4), we observed that the devel-
opers’ agreement with the relationships indicated by the tool varies depending
on the type of refactoring. For instance, when evaluation an Extract Method,
developers show a high level of agreement, with most ratings falling between 3
and 5 with the median of four, indicating strong consensus among developers
about the tool’s relationship suggestions. On the other hand, some refactoring
type such as Pull Up Method shows a wide distribution from one to five, with
a median of four. This indicates a broad range of opinions, but with a tendency
towards agreement. The same behavior is observed for the other refactoring
types.
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Figure 4.3: Relationship Agreement by Difficulty Level

Figure 4.4: Relationship Agreement by Refactoring Type

RQ1: The results indicate that in 80.20% of the instances, developers
believed the tool identified all modifications related to refactoring. The
relationship agreement analysis revealed that developers generally showed
a high level of agreement with the RefViewer classification at the Easy
difficulty level, with increasing difficulty levels correlating with a greater
dispersion of opinions at higher difficulty levels. For refactoring types,
Extract Methods had higher level of agreement among developers, while
Pull Up Method showed more dispersed opinions and Inline Methods
presented a lower median agreement, indicating a more mixed response
from developers regarding these refactoring classifications.
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4.4.2
RQ2. RefViewer Effort Reduction

In order to evaluate effort, we observed two aspects. First, we observed
the necessary time to analyze and identify the refactoring-related modifications
manually. Then, we asked the developer following the same scale, than the
previous RQ, from 1 to 5, their opinion about their perception regarding the
effort reduction.

Figure 4.5 indicates the amount of time developers spent manually
classifying code modifications as related or not to the refactoring, which
could be avoided by using the proposed tool. The median times for all three
difficulty levels are 3.5 for easy instance and 4 for medium and hard instances.
This result indicated that the median time savings are relatively consistent
irrespective of the complexity of the task. However, at hard level, we observed
that this activity can take up to 14 minutes at the upper limit. Finally, the
presence of numerous outliers, particularly in the Medium and Hard categories,
suggests that some developers experience significantly longer classification
times. This variance indicates that while the tool can generally reduce the
manual classification effort, the extent of this benefit can vary considerably
among developers and tasks. This variance is potentially due to individual
differences or the specific context of the code affected by the refactoring.
Finally, for some medium and hard instance levels, some developers mentioned
to be impossible or extremely hard to classify the modifications manually.

Figure 4.5: Manual Classification Required Time

Regarding the perceived reduction in effort by developers when using the
provided visualization, Figure 4.6 indicated that the interquartile range and
median is equal for all levels. This figure suggests that the variability in effort



Chapter 4. RefViewer: Visualizating Refactoring-related Modifications 90

reduction ratings is consistent. This result indicated that developers generally
agree the tool reduces effort effectively, regardless of difficulty. However, the
lower whisker extends to 1 in all categories, showing that some developers
perceive a minimal effort reduction for some instances. For some of these
instances, the developers mentioned that the refactoring was to simple, thus
the use of a tool was not necessary. On the other hand, in few instances,
developers did not agree with the classification proposed by RefViewer or
with refactoring existence. In these instances, therefore, the visualization did
not help the developer to identify the refactoring-related modification.

Figure 4.6: Effort Reduction by Difficulty Level

Finally, Figure 4.7 presents the reduction in effort brought by the Re-
fViewer visualization for the six different refactoring types. The data indi-
cates a consistent reduction in effort across the different types of refactorings,
with most medians being equal to 4. However, there are variations in the dis-
tribution of effort reduction for each refactoring type. For instance, Pull Up
Method, Push Down Method, and Rename Method, we observed a broader
range of perceived effort reduction, suggesting that the impact of the visu-
alization tool on these refactoring types can vary more significantly among
developers. This variability might be due to the different complexities inher-
ent in these types of refactoring or the specific circumstances of each task.
For instance, developers indicated that for Pull Up and Push Down methods,
the visualization only included one moved method in the hierarchy when it
was expected to include all moved method. Outliers in the Inline and Move
methods categories also indicate that, in some cases, developers experienced
extreme differences in effort reduction, pointing to occasional discrepancies in
how the visualization tool impacts different refactoring scenarios.
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RQ2: The proposed visualization reduces the effort needed to identify
refactoring-related modifications, enabling developers to save time and
providing a consistent perception of reduced effort. While the median time
savings are similar across all difficulty levels, the reduced effort can vary
depending on the type of refactoring and the specific circumstances of each
task.

Figure 4.7: Effort Reduction by Refactoring Type

4.4.3
RQ3. RefViewer Runtime Overhead

To answer RQ3, we ran the tool three times for all 48 instances. Our
testing was conducted on a computer with a Core i7-11800H processor and 24
GB of RAM. We chose to execute it three times to mitigate any potential
communication bottlenecks between the browser extension and the server.
After completing all executions, we collected the time required from the server
request to the construction of the visualization.

Figure 4.8 presents the results of the executions. In this figure, we divided
the required time by difficulty level and indicated the minimum time, maximum
time, and average of all times across the three executions for each difficulty
level. The analysis of execution times, measured in seconds, reveals only minor
differences. The Hard instances have the highest mean execution time (4,97
seconds), followed closely by Easy (4,63 seconds), with Medium instances
having the shortest times on average (4,57 seconds). Although Easy instances
have a slightly higher maximum execution time (8,91 seconds) compared to
Hard and Medium, the minimum times are quite similar across all levels.
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Figure 4.8: Execution Time in seconds by Difficulty Level

This suggests that the tool performs consistently, with only minor variations
regardless of difficulty. Such minimal differences indicate that the tool is robust
across different scenarios, highlighting its stability and efficiency.

Despite the rapid initial interface setup, some developers have reported
bottlenecks with the tool when redrawing the interface as they adjust the
maximum distance considered by the tool. In our tests, this delay was less
than one second; however, in larger instances, it may hinder developers from
accurately selecting the intended Distance value.

RQ3: In summary, the tool’s execution times are fairly uniform across
different difficulty levels, indicating that it can handle varying complexities
with reliable performance. Also, the necessary time is not over 9 seconds,
which is not a practical delay to the start of the code review step.

4.4.4
RQ4. Developers Thoughts About Refactoring Review

The final research question aimed to explore the concerns and challenges
that developers have when reviewing commits that include refactorings and
how the proposed visualization tool influenced their code review process.
Initially, developers were asked to share their thoughts on the importance of
evaluating refactorings in isolation during a code review. The majority of the
developers, 72.8% (8 developers), indicated that they consider very important
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to evaluate the occurrence of refactoring in isolation before reviewing other
code modifications.

We even asked the developers to provide what are their concerns when
reviewing refactoring instances. Figure 4.9 highlights the key concerns devel-
opers. Developers’ were concerns about Behavior and Affected Code, with 8
and 7 mentions, respectively. This suggests that developers prioritize ensur-
ing that refactorings do not alter the intended behavior of the code and that
they are particularly mindful of which parts of the code are impacted by the
modifications.

Figure 4.9: Developers’ Concerns About Refactoring

Other concerns include Complexity, mentioned 5 times, indicating that
developers are also aware of the complexity introduced or reduced by the
refactoring. Test Coverage and Refactoring Objective were mentioned less
frequently, with 2 and 1 mentions, respectively, suggesting these aspects are
of lower immediate concern but are still considered in the review process.
These results underscores the necessity of having a dedicated tool, like the
proposed visualization, to help developers clearly distinguish refactorings from
other modifications. Such a tool enables a more structured and focused review,
allowing developers to assess the refactoring’s impact isolated.

Once we understood the developers’ concerns when reviewing refactor-
ings, we aimed to explore the challenges faced by them. To investigate this, we
asked developers about the difficulties they encountered in manually identify-
ing refactoring-related modifications. Figure 4.10 lists the challenges as long
as the percentage of the total instances in which developers mentioned each
challenge. These insights are crucial for understanding how to better support
developers in identifying related modifications and reducing the manual effort
required in this process.

Developers pointed out that one of the main challenges when reviewing
refactorings is dealing with the number of altered files and lines of code. This
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Figure 4.10: Developers’ Concerns About Refactoring

challenge was faced in 26% of the instances. The following challenges were
the complexity of the refactored method (14%) and the need to thoroughly
understand the code (10%) to effectively review the refactoring application.
These challenges imply that without adequate tool support, code reviews
can become overwhelming and less effective. The tool mitigates the main
challenge by visually distinguishing the refactoring-related modifications. This
visualization helps developers to focus on the most relevant code modifications.
Additionally, it can streamline the review process for complex methods and
improve code comprehension, making it easier for developers to navigate and
assess the refactoring more efficiently.

Finally, we asked developers whether using RefViewer to visualize the
refactoring changed their thoughts. Specifically, we wanted to know if Re-
fViewer was able to expand or alter their understanding of the relationships
between modifications in the context of refactoring. Our results showed that
all developers mentioned that, in hard instances, the visualization changed
their initial opinion about the impact and affected code of the refactoring in
terms of refactoring-related modifications. This shift in perspective occurred in
46.9% of the total refactoring instances reviewed, demonstrating how the tool
can reveal overlooked modifications and help developers better assess the full
extent of refactoring, leading to more informed decisions during code review.

RQ4: The results of this research question underscore the importance of
evaluating refactorings in isolation and highlight the effectiveness of the
visualization tool in improving the refactoring code reviews. The tool
not only addressed developers’ main concerns and challenges but also
influenced their understanding of the impact of refactoring in nearly half
of the cases, showcasing its potential to enhance code review processes.
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4.5
Related Work

Refactoring is a critical topic that has been extensively studied in the lit-
erature concerning quality, complexity, and potential adverse effects [8–12,19],
as well as within the context of floss refactoring [14,17]. However, studies aimed
at understanding and identifying refactoring-related modifications remain lim-
ited. Oliveira et al. [27] introduced the concept of customized refactorings,
where code modifications serve as connectors linking refactorings within the
refactored code context. In addition to this study, Moreira et al. [20] evaluated
the Extract Method refactoring within the context of floss refactoring, seeking
to understand which code modifications accompany this refactoring. However,
these studies did not aim to understand the relationships between these mod-
ifications, nor did they offer a visualization of these additional modifications
in the context of code review.

Regarding the detection of refactorings in a project’s history, two tools
have been widely used in the literature: RefDiff [6] and RefactoringMiner [33,
93]. While RefactoringMiner supports more types of refactorings with better
efficiency and accuracy for most of them, RefDiff stands out for its support
for multiple programming languages. Although these tools are essential for
detecting refactorings, they have limitations when applied to code review since
their primary goal is historical detection. Consequently, these detection tools
have been used as the foundation for developing other tools that assist in code
review.

RefDiff was employed in the Brito et al. study [26], which proposed
the RAID tool to support refactoring reviews. Like RefViewer, RAID is a
browser extension aimed at reducing cognitive effort in detecting and reviewing
refactorings from textual diffs. Regarding the use of RefactoringMiner, the
literature presents two distinct tools. First, Tsantalis et al. proposed a tool
called Refactoring Aware Commit Review, also as a browser extension. In this
tool, Tsantalis identifies refactorings in open-source Java projects and lists the
refactoring activities in GitHub diffs, highlighting the identified refactoring-
related code modifications. Additionally, the IntelliJ IDEA plugin proposed by
Kurbatova et al., called RefactorInsight [94], also relies on RefactoringMiner.
Through RefactorInsight, developers can access a visualization that auto-folds
refactorings, allowing them to focus on behavior-altering code modifications.

Finally, Ge et al. [18] conducted a study with 35 developers to evaluate
and understand the motivations and challenges developers face when reviewing
code refactorings. In this study, developers highlighted the importance of
reviewing refactorings in isolation, as found in our study. Additionally, they
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indicated that the presence of code refactorings in commits could slow down
the code review process, increasing the effort required. Furthermore, in the
same study, Ge et al. also introduced the ReviewFactor plugin as part of the
Eclipse IDE. Through this plugin, developers could evaluate code modifications
by choosing to highlight refactoring code modifications or other types of code
modifications.

Although tools like ReviewFactor and RefactorInsight aid in visualizing
refactorings either in commits or specific IDEs, they exclusively focus on
default refactoring modifications. However, in the context of floss refactoring
or customized refactorings [27], these tools are limited and may not provide
the necessary information for an adequate refactoring analysis, as they do
not indicate the relationships among refactoring-related modifications. Thus,
unlike previous studies, RefViewer introduces new concepts such as a new
classification of refactoring-related modifications and the notion of distance
required for application in the context of floss refactoring. By classifying and
highlighting modifications as refactoring-related, developers become aware of
the impact that the refactoring under review has, which is crucial in the
analysis and decision-making process based on the different relationships these
modifications have. Moreover, the visualization with different distances allows
developers to assess the scope of the refactoring. Lastly, RefViewer also
presents markers at the top and bottom of the screen, indicating refactoring-
related code modifications that are outside the current code view, enabling
developers to navigate more practically and preventing any modifications from
being overlooked.

4.6
Threats to Validity

We describe here the threats to validity and their mitigation.
Internal and Construct Validity. RefViewer relies on state-of-

the-art tools to collect all the information it needs. Thus, the accuracy and
efficiency of these tools directly affect RefViewer’s performance. To minimize
this impact, we opted for RefactoringMiner [7, 68], which has an effectiveness
rate of 87.2% and 98% precision [33], proving to be superior in detecting
refactorings in Java projects. Furthermore, we evaluated the level of agreement
among developers who participated in the study regarding the existence of
the refactoring they were analyzing. Except for Inline Method, which had a
median of 4, all other refactorings had a median of 5, indicating a high level
of agreement among developers regarding the existence of the refactoring.

Additionally, in our experiment, developers focused on one refactoring
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at a time. This approach might not fully capture scenarios where multiple
modifications occur simultaneously [40]. In these cases, refactorings can affect
the same method or class. However, grouping the set of changes related to each
individual refactoring could provide a comprehensive view of modifications in a
multi-refactoring scenario. An improvement could involve enabling a complete
visualization of this set without needing to switch between refactorings.

Finally, there are scenarios where refactorings occur across several com-
mits. In such cases, the proposed visualization tool might not related code
modifications to the refactoring. This limitation mainly arises because Refac-
toringMiner might also struggle to detect the refactoring occurrence. However,
in these scenarios, developers would also not be necessary or requested to
evaluate the refactoring based on the split commits, making visualization un-
necessary.

External Validity. Despite RefactoringMiner version 2.2 being able
to detect more than 50 types of refactorings [93], the majority of these
refactorings are simple modifications with limited scope. Our hypothesis is that
such refactorings tend to have fewer relationships with other modifications.
Therefore, our study considers only six types of refactoring. These chosen
types of refactorings affect the program structure differently at the method
and class levels. Additionally, refactorings like Push Down Method and Pull
Up Method directly impact hierarchies in the object-oriented programming
(OOP) paradigm, which is one of the primary advantages of OOP languages.

In addition to the limited number of refactorings, our experiment in-
cluded 48 evaluated instances. This number of instances might not be sufficient
to ensure the external validity of our tool. To mitigate this issue, we considered
different levels of difficulty and 28 distinct projects. This design choice allows
the evaluated instances to cover various scopes and complexities, and distinct
quality pattern from the different projects.

4.7
Conclusion

In this study we propose RefViewer, a tool, integrated into a GitHub
environment, designed to assist developers in identifying and reviewing
refactoring-related modifications within code commits. We evaluated the per-
formance and impact of our proposed visualization tool through a experiment
involving 11 developers from industry and academy. During the experiment,
the developers reviewed code modifications without and with observing Re-
fViewer visualization. Each developer was tasked with evaluating up to nine
instances of code modifications, with each instance being reviewed by at least
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two different participants. The scenarios presented in the experiment were
carefully crafted to simulate realistic code review situations, including varying
levels of difficulty and complexity in the code modifications.

Throughout the experiment, we measured several key metrics, such
as the performance of identifying refactoring-related modifications, the time
spent on reviews, and the cognitive load experienced by the developers. The
results indicate that our tool significantly enhances the code review process
by enabling developers to more easily distinguish between refactoring and
non-refactoring modifications. The visualization provided by the tool not only
improved the accuracy of the reviews but also reduced the time required to
assess the impact of refactoring. Moreover, developers reported that the tool
changed their initial perception of certain code modifications, leading to more
informed and precise decision-making.

In summary, our study demonstrates that the integration of a visualiza-
tion tool for refactoring identification can greatly improve the quality and
efficiency of code reviews. The tool’s ability to highlight and differentiate
refactoring-related modifications ensures that developers can focus their atten-
tion on the most critical aspects of the code, thereby reducing the likelihood
of overlooking important modifications.



5
Final Conclusions

Refactoring is a fundamental software engineering practice aimed at en-
hancing the structure and quality of code without altering its behavior [1, 2].
However, applying refactorings is a complex task that requires advanced knowl-
edge of the code to prevent unintended side effects [9–12]. The practice known
as floss refactoring, where refactorings are intertwined with other development
tasks such as adding new features or fixing bugs, further complicates the iden-
tification of refactoring-related modifications [7, 14, 17].

Studies have investigated the frequency of floss refactoring occurrences
their influence on overall software quality [7, 8, 17,21]. However, there is a no-
table gap in understanding the code modifications beyond pure refactoring
purpose and how these modifications relate to the default refactoring modifi-
cations during software maintenance and evolution [16, 20, 27]. This gap un-
derscores the pressing need for automated tools that can accurately classify
code modifications within a commit as either part of a refactoring or not [18],
while also identifying their relationships.

In this thesis, we investigated the challenges developers face when per-
forming and reviewing refactorings. We focused on understanding refactoring
customizations and refactoring-related modifications. We also investigated the
role of automated tools in facilitating the identification and review of these
modifications. Each chapter contributes to a more comprehensive understand-
ing of the refactoring process in real-world software development, offering both
theoretical insights and practical tools to support developers.

First, we explored how developers customize refactorings, deviating from
the default sets of modifications associated with specific refactoring types.
Our study revealed that these customizations are not only common but also
crucial for addressing specific project needs. We identified several limitations in
existing IDEs, which currently do not provide adequate support for recurring
customizations, potentially increasing the risk of unintended side effects. This
result highlights the importance of enhancing refactoring tools to better
accommodate the diverse scenarios developers face. In fact, we found that
developers argue that explicit customization support would improve code
quality and correctness.
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Also, we examined and developed a tool to detect the occurrence of
refactoring-related modifications in floss refactoring instances. Through the
analysis of over 98,000 refactoring instances across 213 projects, we cataloged
frequent code modifications that occur alongside refactorings. We also de-
veloped a method to measure their closeness to refactoring instances. This
study showed that refactoring-related modifications are often concentrated
in the refactored methods. However, these modifications can also extend the
scope, affecting class-level modifications even during method-level refactorings.
This finding underscores the importance of distinguishing between refactoring-
related and unrelated modifications to better understand and manage the com-
plexity of refactoring tasks. This distinction is also necessary to reduce the code
review effort and complexity [18].

Finally, we developed a second tool called RefViewer. This tool is a
visualization tool integrated into GitHub that helps developers identify and
review refactoring-related modifications. Through an experiment involving 11
developers, we demonstrated that the tool significantly enhances the code
review process, enabling developers to better distinguish between refactoring
and non-refactoring modifications. The tool improved developers’ ability to
accurately identify refactoring-related modifications and reduced the time
required for reviews. This finding indicates the tool potential to make the
review process more efficient and enhance overall productivity. By providing
a clear visual representation of refactoring-related modifications, RefViewer
empowers developers to make more informed decisions during code reviews,
ultimately improving software quality.

In conclusion, this thesis advances the state of knowledge on refactoring
practices, particularly in the context of customized refactorings and floss
refactoring. The tools and insights presented here offer practical solutions for
developers, helping them to navigate the complexities of refactoring in real-
world scenarios. As software systems continue to evolve and grow in complexity,
the need for automated support in managing refactorings will only become
more critical. This work provides valuable insights for future research and
tool development focused on refining refactoring practices, with the goal of
supporting more maintainable and reliable software systems.

Research Publications. Finally, Table 5.1 provides an overview of both the
main studies that are directly linked to this thesis, as well as the secondary
publications that stem indirectly from the research. These secondary works
build upon the insights and findings gained throughout the course of the study.
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Table 5.1: Primary and Secondary Publications Derived from this Thesis
Title Status

Main

"The untold story of code refactoring customizations in practice."
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023.

Published

"Digging Deeper: Automated Tooling Support to Identify and Analyze Modifications
in Floss Refactoring"
Submitted to a Major Conference. 2024.

Submitted

"Floss visualizer: An extension to visualize refactoring-related modifications".
To be submitted to a Major Visualization Conference

To be
submitted

"The untold story of code refactoring customizations in practice: extended version".
Empirical Software Engineering. 2024.

To be
submitted

Secondary

"Developers’ perception matters: machine learning to detect developer-sensitive smells".
Oliveira, D., Assunção, W. K., Garcia, A., Fonseca, B., & Ribeiro, M. (2022).
Empirical Software Engineering, 27(7), 195.

Published

"Applying machine learning to customized smell detection: a multi-project study".
Oliveira, D., Assunção, W. K., Souza, L., Oizumi, W., Garcia, A., & Fonseca, B. (2020).
XXXIV Brazilian Symposium on Software Engineering (pp. 233-242).

Published

"Composite refactoring: Representations, characteristics and effects on software projects".
Bibiano, A. C., Uchôa, A., Assunção, W. K., Tenório, D.,..., & Garcia, A. (2023).
Information and Software Technology, 156, 107134.

Published

"Look ahead! revealing complete composite refactorings and their smelliness effects".
Bibiano, A. C., Assunção, W. K., ..., Soares, V., Gheyi, R., Oliveira, D & Oliveira, A. (2021).
IEEE International Conference on Software Maintenance and Evolution (ICSME) (pp. 298-308). IEEE.

Published

"On the relation between complexity, explicitness, effectiveness of refactorings
and non-functional concerns".
Soares, V., Oliveira, A., Pereira, J. A., ..., Farah, P. R., Oliveira, D. & Uchôa, A. (2020).
XXXIV Brazilian Symposium on Software Engineering (pp. 788-797).

Published

"Recommending composite refactorings for smell removal: Heuristics and evaluation".
Oizumi, W., Bibiano, A. C., Cedrim, D., Oliveira, A., Sousa, L., Garcia, A., & Oliveira, D. (2020).
XXXIV Brazilian Symposium on Software Engineering (pp. 72-81).

Published

"How does incomplete composite refactoring affect internal quality attributes?".
Bibiano, A. C., Soares, V., Coutinho, D., Fernandes, E., Correia, J. L., ... & Oliveira, D. (2020).
28th International Conference on Program Comprehension (pp. 149-159).

Published

"Characterizing and identifying composite refactorings: Concepts, heuristics and patterns".
Sousa, L., Cedrim, D., Garcia, A., Oizumi, W., Bibiano, A. C., Oliveira, D., ... & Oliveira, A. (2020).
17th International Conference on Mining Software Repositories (pp. 186-197).

Published

"Behind the intents: An in-depth empirical study on software refactoring in modern
code review".
Paixão, M., Uchôa, A., Bibiano, A. C., Oliveira, D., Garcia, A., Krinke, J., & Arvonio, E. (2020).
17th International Conference on Mining Software Repositories (pp. 125-136).

Published
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