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Abstract

Strunck, Francisco; Lemette, Amanda; Leite, Karla. Application of Siamesis
Neural Network for fault detection in industrial processes in the
production of polystyrene . Rio de Janeiro, 2023. 89p. Dissertação de
Mestrado – Departamento de Engenharia Química e de Materiais, Pontifícia
Universidade Católica do Rio de Janeiro.

Industrial processes face new challenges with the advancement of Industry 4.0
and the increasing demand for improvements in fault detection. Fault detection is
based on various techniques of statistical methods and machine learning. Although
effective, they have some disadvantages, such as process simplification, low capacity
to deal with noise, low capacity to deal with complex nonlinear systems, high
computational demand, and risk of overfitting. In response to these limitations, this
work introduces an innovative approach on the polymerization field that employs
siamese neural networks (SNNs) and long short-term memory (LSTM) cells for early
detection of faults in styrene polymerization. The modeling of styrene polymerization
in a CSTR reactor was carried out using the method of moments for mass and
energy balance, and in this system, proportional-integral-derivative (PID) control
was added to simulate a real process control situation in the context of an industrial
process. From the model, it was possible to obtain thirteen simulations, of which five
are non-fault processes and eight are processes with faults. These data were processed
and used to train the siamese networks. With the ability to classify whether these
input data are similar or dissimilar, it was possible to perform fault detection. The
results found demonstrate a fault detection rate with an accuracy of up to 100%,
demonstrating the capability of this model in detecting faults in complex, dynamic,
and nonlinear chemical processes. This study represents a substantial advance in
the field of fault detection and also offers valuable findings for future investigations
and improvements in intelligent fault detection systems in the chemical industry.
Keywords

Polymerization; Styrene; Fault Detection. Siamese Neural
Networks (SNNs); Industry 4.0.



Resumo

Strunck, Francisco; Lemette, Amanda; Leite, Karla. Aplicação da Rede
Neural Siamesa para detecção de falhas em processos industriais
na produção de poliestireno . Rio de Janeiro, 2023. 89p. Dissertação de
Mestrado – Departamento de Engenharia Química e de Materiais, Pontifícia
Universidade Católica do Rio de Janeiro.

Os processos industriais enfrentam novos desafios com o avanço da Indústria
4.0 e a crescente demanda por melhorias na detecção de falhas. A detecção de
falha fundamenta-se em diversas técnicas de métodos estatísticos e aprendizado
de máquina. Embora sejam eficazes, possuem algumas desvantagens, tais como
simplificação do processo, baixa capacidade em lidar com ruído, baixa capacidade
em lidar com sistemas complexos não lineares, alta demanda computacional e risco
de de overfitting. Em resposta a essas limitações, este trabalho apresenta uma
abordagem inovadora na área da polimerização empregando redes neurais siamesas
(SNNs) e células long short-term memory (LSTM) para a detecção precoce de
falhas na polimerização de estireno. Foi realizado a modelagem da polimerização do
estireno em reator CSTR utilizando o método dos momentos para o balanço de massa
e energia e, neste sistema, foi adicionado controle proporcional-integral-derivativo
(PID) para simular uma situação real de controle de processo no contexto de um
processo industrial. A partir do modelo foi possível obter treze simulações, das quais
cinco são processos sem falha e oito são processos com falhas. Esses dados foram
tratados e serviram para treinar as redes siamesas. Com a capacidade de classificar
se esses dados de entrada são semelhantes ou diferentes, foi possível realizar a
detecção de falha. Os resultados encontrados demonstram uma taxa de detecção de
falhas com uma acurácia de até 100%, demonstrando a capacidade desse modelo
em detectar falhas em processos químicos complexos, dinâmicos e não-lineares.
Este estudo representa um avanço significativo no campo da detecção de falhas,
oferecendo oportunidades valiosas para futuras investigações e aprimoramentos em
sistemas inteligentes de detecção de falhas na indústria química.
Palavras-chave

Polimerização; Estireno; Detecção de falhas; Redes Neurais
Siamesas (SNNs); Indústria 4.0.
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1
Introduction

Monitoring chemical processes plays a crucial role in decision-making
across various industries, such as pharmaceuticals, petrochemicals, and
food processing. The right tools and techniques ensure increased opera-
tional safety and efficiency. Industry 4.0, characterized by integrating cyber-
physical systems and the Internet of Things (IoT), has provided access to
enormous volumes of data. This has enabled the application of artificial intel-
ligence techniques, such as machine learning, for failure detection in chemical
processes [3].

Polystyrene is a synthetic polymer made from the monomer styrene,
a liquid hydrocarbon commercially manufactured from petroleum. The
production of styrene involves a series of complex processes that commence
with the distillation of crude oil to produce naphtha. This naphtha is
subjected to steam cracking to yield ethylene, propylene, and benzene. The
benzene is alkylated with ethylene in the presence of a catalyst to produce
ethylbenzene, which is then dehydrogenated to produce styrene. Over 90%
of global styrene production employs iron oxide-catalyzed dehydrogenation
of ethylbenzene [17].

Polystyrene is a significant contributor to the plastic industry. Its
significance in various industrial sectors underscores its prominence in the
global landscape, reflecting its essential role in modern manufacturing and
commercial practices. More than 450 million tonnes of plastics were produced
globally in 2022 and are set to double by 2045. Inert plastics such as
polyolefins (polyethylene (PE) and polypropylene (PP)) and polystyrene
(PS) comprise more than half [16] [55].

Polystyrene is extensively used in the food industry for contain-
ers and disposable cutlery. In the packaging industry, it is sought af-
ter for its cushioning properties, coupled with its durability and light
weight, which propels the demand for polystyrene. The construction in-
dustry also values polystyrene for its excellent insulation properties. The
variety of polystyrene forms - general-purpose polystyrene (GPPS), high-
impact polystyrene (HIPS), and expandable polystyrene (EPS) - caters to
a broad spectrum of industry needs [10] [17]. The growing variety of appli-
cations highlights the rising demand for polystyrene, which underscores the
need for efficient and reliable production processes.

The synthesis of polystyrene is a dynamic non-linear system governed
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by numerous operational conditions, including temperature, pressure, and
reaction time. Traditional fault detection methods may be ineffectively han-
dling this complexity, particularly due to the quasi-stationary state of the
involved species and the potential large-scale impacts of small variable de-
viations, which could lead to substandard or even hazardous outcomes [9].
Hence, the intricate nature of this procedure poses challenges in synthesis
control and fault detection, consequently emphasizing the demand for ad-
vanced monitoring and control techniques.

Utilizing Hotelling’s T2 and Squared Prediction Error (SPE) in con-
junction with PCA to identifies patterns for fault detection in industrial
processes by transforming the original variables into principal components.
Despite its advantages, such as reducing high operational costs and facilitat-
ing the modeling process, PCA has limitations, such as superficial modeling
and an inability to diagnose specific types of faults. Other commonly used
multivariate statistical analysis methods for fault detection include Partial
Least Squares (PLS), Independent Component Analysis (ICA), Gaussian
Mixture Model (GMM), Fisher Discriminant Analysis (FDA), and Qualita-
tive Trend Analysis (QTA). These methods offer different advantages and
disadvantages, characteristics, and restrictions in their application [2] [4]
[61].

Due to industrial chemical processes’ complex and non-linear nature,
more advanced machine learning models are now being explored for fault
detection. Among these are Neural Networks (NN) [62], Deep Neural Net-
works (DNN) [61], K-Nearest Neighbors (KNN) [62], Echo State Networks
(ESN) [63], Convolutional Neural Networks (CNN) [64], and Support Vec-
tor Machine (SVM) models [65]. Deep neural networks are gaining attention
due to their ability to handle complex, dynamic, and non-linear processes,
which allow them to identify intricate faults [1]. However, these models also
come with their challenges, including high computational demands, the risk
of overfitting, and a lack of consistently precise results.

As a response to these challenges, this work uses Siamese Neural
Networks (SNNs), often referred to as ’twin’ neural networks, as a solution.
SNNs consist of two identical networks; each one accepts an individual input
and is connected to a top layer that computes the similarity between the
inputs. SNNs offer a unique advantage by being designed to distinguish
between two inputs effectively. This renders them exceptionally proficient
in tasks aimed at discerning similarities or disparities. Their capability to
discriminate patterns, even within complex datasets, sets SNNs ahead of
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other models. Explicitly designed for tasks involving pattern recognition,
this quality is invaluable in various applications, such as image recognition,
signature verification, and, as shown in our research, identifying faults in
polymerization processes [5].

This research introduces a novel approach to early fault detection
in industrial processes, particularly in the polymer synthesis process. We
have employed SNNs, using their unique ability to recognize patterns,
with the aim of distinguishing between standard and abnormal operational
conditions. We have modeled the process of styrene polymerization utilizing
the method of moments for mass and energy balances. Normal and fault data
were identified and used to train the ’twin’ neural networks. This work is
notably the first to use SNNs for fault detection in a styrene polymerization
process. Integrating these new datasets will contribute to the study of
polymerization and pave the way for more advanced and accurate models in
chemical engineering and machine learning.



2
Objectives

This work aims to develop an advanced method for early fault
detection in styrene polymerization processes using SNNs. The work aims to
overcome the limitations of traditional statistical methods, such Hotelling’s
T2 and Squared Prediction Error (SPE) in conjunction with PCA and other
machine learning models, by implementing more advanced and adaptable
machine learning techniques.

Based on what was presented in Chapter 1, for a better understanding
of the work, Chapter 3 presents the theoretical background on production
process modeling of the polymerization of styrene, siamese neural networks,
as well as depicting related works. Chapter 5 introduces the proposal for
classifying faults using deep learning techniques. Chapter 6 presents the
experiments and results obtained from the model and the classification.
Finally, in Chapter 7, the main conclusions of the work are presented. The
objectives are presented below:

– Review existing methods for fault detection in industrial chemical
processes in the literature;

– Develop, implement and validate a polystyrene model using the
method of moments for mass and energy balances in a CSTR reac-
tor;

– Incorporate a PID control system to simulate realistic industrial con-
ditions;

– Build a comprehensive database by introducing different types of faults
in the styrene polymerization process;

– Implement and train Siamese Neural Networks with LSTM units using
the constructed database;

– Evaluate the performance of the SNNs-LSTM in fault detection and
compare its performance with SNNs-MLP;

– Interpret the experimental results to validate the efficacy of the SNNs
in fault detection;

– Assess performance indicators such as accuracy and detection rate of
the implemented SNNs;

– Examine the applicability and scalability of SNNs to other industrial
chemical processes.



3
Literature Review

3.1
Objectives

This chapter aims to present a brief review of the polymerization
mechanisms for the production of polystyrene, focusing on free-radical
polymerization. Subsequently, the chapter presents kinetic mechanisms and
models found in the literature to describe polymerization initiated by
thermal means and monofunctional initiators, as well as the gel effect.
Finally, polymerization processes are discussed, with a focus continuous
reactors used for the commercial production of polystyrene.

3.2
Polymerization

At 1933, Dostal and Marklo proposed a mechanistic model, which
comprises two fundamental steps: chain initiation and successive monomer
addition. The chain initiation is a relatively slow process involving the
’activation’ of a monomer, which then rapidly facilitates the addition of
further monomers. Initially, it was assumed that these activated molecules
could continuously grow by adding monomers indefinitely [35].

Separately, the concept of thermal initiation in vinyl polymerization
was initially articulated by Flory in 1937. Flory proposed that the process
commences with the combination of two styrene molecules, forming a
diradical. This laid the groundwork for understanding how polymerization
reactions can be triggered thermally [36].

The isolation of styrene monomer can be traced back to Newman in
1786, who conducted a distillation of liquidambar, a solid resin extracted
from a family of trees native to the Far East and California. Liquidambar,
historically utilized in medicine and perfumery, is characterized by a vanilla
odor and contains cinnamic acid, which can be readily decarboxylated
to produce styrene. In the intervening years between its discovery and
commercialization, styrene emerged as a by-product in various chemical
processes and was synthesized through multiple routes, albeit in limited
quantities [13].

It wasn’t until the advent of catalytic cracking of ethylbenzene and ef-
fective polymerization inhibitors that styrene, and consequently polystyrene,
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became commercially viable. Polystyrene has been commercially available in
the United States for 66 years, stemming from the straightforward polymer-
ization of the styrene monomer [13].

One of the most important characteristics of crystal polystyrene is its
appearance as a vitreous solid at temperatures below 100°C. Another notable
feature is its high tensile strength, which makes it suitable for mechanical
applications. It also exhibits good electrical insulating properties, which
makes it useful in electrical components. This polymer is highly resistant
to acids, alkalis, and most oils, broadening its applicability in chemical-
resistant coatings. This means that the polymer is sufficiently fluid to be
easily molded, making it applicable for thousands of uses. Above 100°C
temperature, occurs glass transition, the polymeric chains (at the molecular
level) gain rotational freedom, allowing segmental mobility of the chains.

Polymers can be classified based by polymerization mechanisms into
addition and step polymerization. Addition polymerization involves the
repetitive incorporation of monomers containing unsaturated double or triple
bonds into the growing polymer chain. This process is generally governed by
three fundamental stages initiation, propagation, and termination (Equa-
tions 4-1 - 4-8). Condensation polymerization, the chain growth occurs
through reactions between the functional groups of monomers, resulting in
non-uniform chain formation. This is because chains of any size can react
with one another via their functional groups [24].

Hui and Hamielec (1972) developed a thermal initiation kinetic model
that has become the foundational in the study of styrene polymerization, ap-
plicable over a temperature range of 100-200°C and a conversion spectrum of
0-100 %. Their research utilized both second and third-order reaction mod-
els to scrutinize experimental data concerning average molecular weights,
molecular weight distribution and conversion rates. The third-order model
was particularly effective in yielding accurate predictions for conversion and
average molar weights. The kinetic constants we determined were based on
the assumption that they remain constant regardless of the length of the
chain, but they exhibit variations depending on the levels of conversion.
Specifically, the constants related to the gel effect have proven to have a
huge influence on the kinetics of styrene polymerization. These concepts
are vital for understanding the rate equations used in the kinetic models of
polymerization [8].

Free-radical polymerization is of substantial commercial interest be-
cause of its capacity to manipulate molecular weight distribution through
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reaction. Styrene polymerization is an anionic polymerization that allows
to produce of polystyrene with predefined molecular weight distributions,
making it ideal for theoretical explorations of property changes as molecular
weight varies [14]. In commercial applications, the resins used generally had
average molecular weights ranging from 100,000 to 400,000 g/mol. These
materials frequently exhibited a dispersity (Ð), defined as the ratio of the
weight-average molecular weight to the number-average molecular weight,
which varied between 2 and 4 [13].

Russo and Bequette (1998) applied bifurcation theory to investigate
steady-state multiplicity in a jacketed Continuous Stirred Tank Reactor
(CSTR) for styrene polymerization. They employed the Damkohler number
to quantitatively express process, focusing on variables like the overall
heat transfer coefficient and the cooling feed temperature. The kinetic
model incorporated the following key reaction steps: initiator decomposition,
chain initiation, propagation, and termination both via combination and
disproportionation. Thermal initiation and gel effects were intentionally
excluded, assuming a high benzene solvent concentration. The study was
based on the assumption of constant physical properties for the reaction
mixture, with temperature control managed via the cooling fluid in the
reactor’s jacket [37].

In 2000, Chen developed a mathematical model to predict the steady-
state behavior in the continuous bulk polymerization of styrene, initiated by
peroxide. The model accounted for factors such as polymerization kinetics,
reactor dynamics, and pre-heating in the devolatilization stage. The model
evaluated the effects of feed composition, thermal conditions, initiator type,
and concentration on variables like monomer conversion rate, molecular
weight, and key physicochemical properties. Nonlinear algebraic equations
were solved using the Newton-Raphson method to determine the mass
fraction of styrene in the reactor [38].

Giuping et al. (1999), investigated the molecular weight distribution
in styrene polymerization within a batch reactor. Their empirical model
revealed that the termination rate constant is dependent on the polymer
molecular weight. The research also established that below 100°C, radical
termination solely occurs through combination, and thermal initiation is
inconsequential even at high reaction temperatures. However, the model was
inadequate in accurately forecasting high molecular weight polymer chains
[40].

Ultra-high molecular weight polystyrene, characterized by a molecular
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weight exceeding 400,000 g/mol, is exclusively produced through polymer-
ization processes that utilize rare earth metal-based catalysts. The kinetics
of these high-viscosity polymerization systems have been modeled through
Monte Carlo computational simulations, as evidenced by the research con-
ducted by Ling et al. in 2001. Despite its innovative methodology, this ap-
proach to polystyrene polymerization has not seen widespread commercial
adoption [39].

In 2022, Korkut conducted a study that delineated various methods
for attaining specific molecular weights in polymer synthesis. These methods
encompassed alterations to the initial monomer concentration, ultrasound
power, and initiator concentration. The study concentrated on ultrasound-
assisted emulsion polymerization of styrene, aiming to produce polystyrene
of different target molecular weights. The research underscored that the most
economically viable conditions for polymer synthesis are contingent upon the
desired molecular weight, thus requiring adaptability in process design for
manufacturers. According to Korkut, the dispersity (Ð) for the synthesized
polymers varied between 1.2 and 1.5, while the viscosity-average molecular
weights ranged from 100,000 to 1,500,000 g/mol [29].

The modeling of polystyrene is crucial for predicting polymer prop-
erties and ensuring industrial safety and quality. Its thermoplastic nature
allows it to be easily molded and recycled, making it a versatile material in
various applications. It is widely used in the production of disposable cut-
lery, food packaging, and insulation materials. Its high insulating properties
make it ideal for use in foam board and expanded polystyrene (EPS) prod-
ucts, which are critical in construction and packaging industries. Moreover,
polystyrene is employed in the electronics sector as an insulating material
for components [10] [17].

Modeling techniques for polymerization typically fall into two cate-
gories: statistical methods such as Monte Carlo and deterministic methods
like the method of Moments. Monte Carlo methods offer the ability to cap-
ture these complexities but come with disadvantages such as high computa-
tional cost, slow convergence, scalability and memory requirements. On the
other hand, deterministic approaches, like the method of Moments, provide
good solutions and lower computational costs. Deterministic models like the
method of moments are based on kinetic theory and account for a “memory”
of the reaction through mass balance equations [6] [7] [11].

The method of moments (MoM) has become a popular way to study
how polystyrene is synthesized. A lot of research papers have looked at
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different parts of this method, showing that it’s a flexible and reliable way
to predict what happens in the process of making polymers [12]. Mastan
and Zhu (2015) offers a comprehensive tutorial that provides the step-by-
step on how to apply the method of moments to different polymerization and
polymer modification systems. Serving as an invaluable resource, this paper
systematically demystifies the application of MoM, effectively lowering the
barrier to entry for practitioners in the field [11].

Other study done by Riazi et al. (2019) focus on moment rate equa-
tions for high-temperature free-radical polymerization reactions. His re-
search sets a significant foundation for understanding the kinetics involved
and demonstrates the adaptability of MoM in accommodating diverse re-
action conditions [26]. Bachmann (2017) extended the application of MoM
to nonlinear free-radical polymerization. Unlike traditional applications that
often assume steady-state conditions or statistical distributions of connec-
tions, Bachmann derives moment equations that allow for more complex
modeling scenarios [27].

In other study, Tikhomirov (2016) gives a comprehensive examination
of how method of moments can be utilized for simulating the synthesis of
polymers, with a specific focus on modeling variations in molecular weight.
Based on experimental studies of butadiene-styrene copolymer degradation,
the research develops a mathematical framework that accounts for both
technological properties like viscosity and structural characteristics such as
molecular weight distribution parameters. The work goes beyond mere sim-
ulation to suggest how method of moments develop polymers with specific
controlled properties and in the process control system. This research demon-
strates method of moments ability to model not just idealized scenarios but
also the intricate variables encountered in real-world polymer synthesis [].

The concept of monofunctional polymerization, involving monomers
with a single functional group, is significant in polystyrene synthesis due
to its potential for producing high purity and simplified reaction kinet-
ics.Studies have looked into how the monofunctional nature of styrene
monomers influences the final properties of polystyrene [8] [9].

Hayden and Melville (1960) studied the kinetics of methyl methacry-
late polymerization, and calculated the gel effect, or Trommsdorf effect, can
be described as a transition from a liquid state to a gelled solid. This tran-
sition is intimately linked with a phenomenon of auto-acceleration in the
conversion rate [18]. During polymerization, especially at high conversions,
this effect becomes significant. It is primarily caused by diffusion limita-



Chapter 3. Literature Review 22

tions from large molecules that slow down termination reactions between
the polymer radicals chains and relative increase of propagation due to the
facility of monomer to move. As a result, the rate of polymerization accel-
erates, leading to rapid polymer network formation [30]. After that, Choi et
al. (1988) acknowledges the impact of the gel effect in styrene polymeriza-
tion. In other words, translational diffusion declines faster than segmental
diffusion increases, triggering rapid self-acceleration. Higher conversion leads
to more interconnected polymer chains due to increased viscosity and chain
size [20].

3.3
Proportional-Integral-Derivative (PID)

Proportional-Integral-Derivative (PID) control is a closed-loop feed-
back system commonly applied in industrial control settings. In general,
PID controller operates with the objective of minimizing the error term by
modulating a control variable, such as inhibiting setting on a motor, and
temperature or pressure of a reactor [31].

PID control system has been a pillar in industrial processes, including
polymerization. PID control operates by adjusting process variables in real-
time to maintain optimal conditions for polymerization. Previous research
has demonstrated the efficacy of PID control in stabilizing the polymeriza-
tion of polystyrene by continuously monitoring variables such as monomer
concentration and temperature, PID control systems provide a dynamic ad-
justment mechanism [32].

PID controllers are predominant in control systems due to their
straightforward design, ease of implementation, and the longstanding focus
on enhancing PID tuning methodologies. In the context of control systems
and biomedical applications, this document offers a literature review that
chronicles the evolution from classic PID controllers to those augmented
with intelligent control. Recent advancements in PID control, as identified
in the literature, include the development of fractional-order PID controllers,
fuzzy logic integration, IMC-PID controller design, and the synergistic use
of PID with observer structures [58].

Hapoglu et al. (2003) applied of adaptive PID control combined with a
genetic algorithm was implemented for maintaining optimal temperatures in
a jacketed batch polymerization reactor. The optimal temperature path for
the polymerization reactor was established using the Hamiltonian maximum
principle method, with the reactor’s model equations being solved using
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Runge-Kutta-Felthberg methods. Genetic algorithms (GAs) provide a robust
solution for optimizing PID parameters, presenting fewer constraints and
simplicity compared to other techniques [56].

Altınten et al. (2008) worked on a self-tuning PID controller that was
applied to manage the temperature of a jacketed batch polymerization reac-
tor. The controller’s effectiveness in tracking optimal temperature profiles.
In the context of styrene production, the effectiveness of the self-tuning PID
controller combined with GA was demonstrated. This controller displayed
high proficiency in adhering to various optimal temperature trajectories, as
established by experimental results [57].

3.4
Artificial Neural Networks

Artificial neural networks (ANNs), originally originally presented
by McCulloch and Pitts (1943), are interconnected artificial neurons used
for various regression and classification tasks. Their effectiveness in these
domains is attributed to their universal function approximation properties,
allowing for multidimensional non-linear mappings between dependent and
independent variables [47].

ANNs are computational models designed to emulate aspects of
human brain function. They are composed of interconnected units, analogous
to neurons, and are capable of learning from data through adjustments to
these interconnections, also known as weights. ANNs have shown efficacy in a
wide range of applications, from forecasting, complex classification problems
and distinguishing similarities [34].

Rosenblatt and Frank (1962) and Haykin (1999) elucidate that ar-
tificial neural networks are predominantly constructed using a multilayer
architecture, known specifically as multilayer perceptrons (MLP). The MLP
architecture comprises three essential components: an input layer, one or
more hidden layers, and one output layer. This configuration defines the
depth of the artificial neural network as can been see n the Figure 4.1 [50]
[51].

In the field of fault detection, principal component analysis (PCA)
has conventionally served as a standard approach in data analytics. PCA
uses a non-parametric approach, and affords dimensionality reduction with
computational efficiency, thereby distilling complex data into actionable in-
sights. However, PCA has key limitations including its assumption of linear-
ity, sensitivity to outliers, and focus on variance, which may not align with
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fault characteristics. It also lacks temporal analysis and requires periodic
re-training, with impacts real-time applicability [42]. Ku et al. (1995) has
utilized PCA for monitoring chemical operations and anomaly detection.
They have further contributed by isolating the sources of anomalies using
static PCA models, T* and Q charts, and a catalog of probable disturbances.
By incorporating a ’time-lag shift’ approach they could introduce a temporal
dimension to the traditionally static PCA models [43].

Recent research has used artificial neural networks for fault detection.
The complexity of most chemical industry always tends to create a problem
in monitoring and supervision system. Fast fault detection and diagnosis is
a best way to handle and tackle this problem. There are different methods
tackling different angle already proposed in literature. Artificial neural
networks have demonstrated successful applications in fault detection within
chemical systems. Models has been employed for pattern recognition in
complex systems and for fault detection. These artificial neural networks
offer a non-linear mapping between input and output variables, which can be
particularly useful for capturing the complexities in polymerization kinetics
and thermodynamics [1] [2] [4].

The paper of Patton (1994) presented a novel methodology for fault
detection and isolation in nonlinear dynamic systems through the use
of artificial neural networks. His approach consists of two stages: state
prediction and fault classification. A multi-layer perceptron network is
employed in the first stage to generate residual signals. Artificial neural
networks offer advantages in addressing nonlinearities, primarily through
their capability to approximate any nonlinear function given appropriate
weights and architecture. This feature facilitates on-line learning, making
the approach suitable for real-time fault diagnosis [33].

Nashalji et al. (2009) proposes a hybrid method combining PCA
improved by fenetic algorithm and a ANN classifier for fault detection. This
study introduces a hybrid multivariate technique that combines PCA to
enhance the detection of faults in industrial processes. The developed model
was validated using simulated data from the Tennessee Eastman chemical
plant simulator [49].

Chadha et al. (2017) compared two deep artificial neural network
architectures and found that the sparse stacked autoencoders model has
superior fault detection capability. This article investigates the utility of deep
artificial neural networks for early fault detection in industrial processes. Two
architectures, deep stacking networks and sparse stacked autoencoders, are
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compared using the Tennessee Eastman benchmark [48].
Zheng and Zhao (2020) implemented an unsupervised fault diagno-

sis method in chemical engineering, countering the issue of limited labeled
data. The method involves three phases: feature extraction via a convolu-
tional stacked autoencoder with long short-term memory (LSTM) and con-
volutional layers; feature visualization using t-SNE; and clustering. Their
model was validated on the Tennessee Eastman Process and an industrial
hydrocracking instance, showing high labeling accuracy and Q metric value
but with limitations in identifying new fault types. Future work aims to re-
fine feature extraction and explore clustering algorithms as a loss function.
The authors evaluated the efficacy of this approach by conducting tests on
the Tennessee Eastman Process (TEP) and an industrial hydrocracking in-
stance, achieving a Q metric value of 0.986, a labeling accuracy of 97.8 %,
and an average testing False Discovery Rate (FDR) of 93.0 % [44].

Xiaoyang Lua et al. (2019) utilized convolutional neural network
for classifying fault types based on extracted features. In essence, the
convolutional layers serve as automatic feature extractor. The diagnostic
approach consists of two primary stages: feature extraction and classification.
The raw sequential data of current and voltage in the photovoltaic cell
are transformed into a two-dimensional electrical time series graph for
visualization. The proposed CNN-based diagnostic model demonstrates a
high efficacy, achieving over 99 % average accuracy in case studies [41].

Gravanis et al. (2022) addressed a critical concern in Industry 4.0
optimizing production costs by enhancing the fault detection and diagnosis
(FDD) systems specifically for non-linear processes. The author propose a
novel FDD framework that employs recurrent networks, including LSTM
and time delay neural networks (TDNN). These networks are utilized for
their capacity to manage sequential data, which is crucial for understanding,
time-dependent industrial processes [45].

3.5
Siamese Neural Networks

The siamese neural network algorithm was first introduced by Brom-
ley et al. (1994) for detection of falsified signatures comparing two handwrit-
ten signatures. During the training phase, these sub-networks extract feature
vectors from two different signatures. Verification is achieved by comparing
a newly extracted feature vector with a pre-stored vector representing the
genuine signature of a signer. Signatures with feature vectors closer to the
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stored representation—within a specified threshold are classified as authen-
tic, while others are classified as forgeries. The algorithm’s robustness is
demonstrated by its resistance to forgeries among individuals who maintain
consistent signing patterns and have a accuracy of 97.0 % [42].

SNNs offers unique functionalities by specializing in the identification
of similarities or anomalies in paired datasets. This proves to be advanta-
geous in identifying system deviations, which could signify potential failures
or inefficiencies in the polymerization process. SNNs compute the similar-
ity between two input vectors, which can be employed for tasks such as
anomaly detection and fault identification in polymerization systems. Un-
like traditional artificial neural networks, a SNN takes in two separate inputs
that go through identical subnetworks, meaning the weights and parameters
are the same for both paths. Given their capability to compare datasets,
SNNs can be employed to benchmark real-time data against historical data,
thus effectively identifying deviations that may warrant immediate solution
[34].

Despite the limited research on fault detection in polymers using SNN,
numerous references aim to develop models for distinguishing similarities
and dissimilarities. In most cases, siamese neural network performs a non-
linear encoding of the input data with the aim of reaching a semantically
meaningful space where related patterns are close to each other (such as
faces of people, signatures, and others) and unrelated patterns are distant
from each other [5].

Zhou et al. (2021) introduced a few-shot learning model with a
SNN for intelligent anomaly detection in industrial cyber-physical systems,
improving accuracy and false alarm rate [52]. Nagy et al. (2021) examines
deep artificial neural network models for the recognition of traffic sign
defects, focusing on both convolutional neural networks (CNNs) and siamese
convolutional neural networks for defect detection. The accuracy results
achieved were 99.50 % and 97.90 %, respectively [54]. Fernandez-Llaneza
et al. (2021) introduced a siamese recurrent artificial neural network model
for bioactivity prediction in drug discovery, highlighting its ability to learn
task-specific chemistry features [53].

In this work, SNNs are used as an extension of traditional artificial
neural networks designed to address problems that involve finding similar-
ities between pairs of data. The aim of this work is to train the SNN to
distinguish the normal data and the faulty data.



4
General Concepts

In this chapter, concepts related to the model, PID, artificial neural
networks and the Siamese topology are presented, as well as how this can be
applied to fault detection. Finally, a brief explanation is provided regarding
the metrics that were used for the evaluation of the proposed model.

4.1
Model and Kinetics Polymerization

Styrene, an aromatic hydrocarbon, possesses a vinyl group that facil-
itates its polymerization through a free radical mechanism, a process pivotal
to the formation of polystyrene. In conventional free-radical polymerization
driven by a monofunctional initiator, the kinetic mechanism encompasses
initiation, propagation, chain transfer and termination, as outlined in Equa-
tions 4-1 - 4-8 [8] [9]. Below, the reactions pertinent to each stage of free-
radical polymerization are meticulously outlined:

– Initiation:

The initiation process commences with the formation of free radi-
cals, typically arising from the decomposition of an initiator. This can be
represented in the context of styrene as follows:

I
kd−→ 2R (4-1)

R + M
ki−→ P1 (4-2)

I is the initiator, R is the free radicals, M is the monomer (styrene),
and P1 is the initial polymeric radical. The kinetic constant for initiator
dissociation is represented by kd, and ki denotes the kinetic constant for the
initiation phase.

– Thermal Initiation:

The thermal initiation, represented by equation 4-3, involves the
direct transformation of monomers into polymeric radicals without the
presence of a traditional initiator.
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3M
kdm−−→ 2P1 (4-3)

– Propagation:

The free radical ·R then interacts with a styrene monomer, initiating
a chain reaction with the live polymer ·P . This propagation phase is crucial
in determining the molecular weight and structure of the resulting polymer.

Pi + M
kp−→ Pi+1 (4-4)

In this stage, Pi represents an existing polymeric chain, and Pi+1 is the
extended chain after the addition of one monomer unit. The rate constant
for this reaction is kp.

– Chain Transfer:

Chain transfer reactions play a significant role in controlling the
molecular weight and distribution of the polymer.

Pi + M
ktm−−→ Li + P1 (4-5)

Pi + X
ktx−→ Li + P1 (4-6)

Pi + S
kts−→ Li + P1 (4-7)

Reactions 4-5, 4-6, and 4-7 describe the transfer of the polymeric chain
to another monomer M , impurity X or solvent S. The constants ktm, ktx, and
kts represent the respective rate constants for these transfers, respectively.

– Termination by Combination:

The polymerization reaction culminates when two free radicals com-
bine or react with an inhibitor, thus terminating the growth of the polymer
chain.

Pi + Pj
ktc−→ Li+j (4-8)

In termination reaction 4-8, two polymeric radicals Pi and Pj combine
to form a longer polymer chain Li+j. The rate constant for this reaction is
represented by ktc.
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4.2
Proportional-Integral-Derivative

The PID control system comprises three integral components: Pro-
portional, Integral, and Derivative. The proportional component scales the
error by a constant factor, referred to as Kp, the proportional gain constant
[31].

Pout = Kp · e(t)

The integral component is concerned with the cumulative sum of past
errors. This sum is then scaled by the integral gain constant, Ki. The integral
output can be mathematically described as

Iout = Ki

∫ t

0
e(τ)dτ

The derivative component predicts the future error by focusing on
its rate of change. This prediction is then multiplied by the derivative gain
constant, Kd. The derivative output is expressed as

Dout = Kd
d

dt
e(t)

Combining these three components, the PID control function u(t) is
articulated as

PID(t) = Kp · e(t) + Ki

∫ t

0
e(τ)dτ + Kd

d

dt
e(t) (4-9)

4.3
Method of Moments

The method of moments offers a significant advantage in reducing
the computational complexity while maintaining the essential characteristics
of the polymerization process. This method employs a set of ordinary
differential equations (ODEs) derived from fundamental rate equations for
initiation, propagation, and termination steps. In the case of polystyrene
synthesis, these equations can be solved numerically to obtain moment
values, which are subsequently used to calculate key polymer properties.

In radical polymerization, the ith moments for living polymers and
dead polymers are defined by Equations 4-10 and 4-11, as presented by µ

and λ. Typically, due to the high reactivity of the living polymer chains,
their moments are significantly smaller than those of dead chains and
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other polymer populations, aligning with the quasi-steady-state assumption
(QSSA). Consequently, in systems comprising only dead and radical chains,
it was reasonable to approximate the overall polymer moments as being
essentially equal to the moments of the dead chains.

µk =
∞∑

i=1
ik × Pi (4-10)

λk =
∞∑

i=1
ik × Li (4-11)

Where, µk is the kth moment of living polymers, λk is the kth moment
of dead polymers. The summation runs from i = 1 to ∞, assuming that the
distribution could, in principle, extend to infinitely long chains.

The zeroth-order moment (∑Ni, where Ni is the number of polymer
chains with i monomer units) is a physical representation of polymer chain
concentration within the system, while the first-order moment (∑ iNi)
symbolizes the weighted count of monomeric units in the polymer chains.
The second-order moment (∑ i2Ni) quantifies variance in the polymer’s
molecular weight distribution (MWD). These statistical moments facilitate
the computation of the number-average molecular weight (Mn), the weight-
average molecular weight (Mw), and the dispersity (Ð), properties that are
crucial for characterizing the polymerization process and its end-product
[11]. The equations are governed by the following set of equations:

Mn =
∑

niMi∑
ni

= (λ1 + µ1)
(λ0 + µ0)

(4-12)

Mw =
∑

niM
2
i∑

niMi

= (λ2 + µ2)
(λ1 + µ1)

(4-13)

PDI = Mw

Mn

(4-14)

4.4
Artificial Neural Networks

Artificial Neural Networks (ANNs) represent a cornerstone in the field
of machine learning and have been instrumental in advancing numerous ap-
plications in science and engineering. Mimicking the structure and function
of biological neural networks, ANNs have the remarkable capability to learn
from data and make intelligent decisions. This section delves into the archi-
tecture and functioning of ANNs, highlighting their key components and the
roles they play in data processing and pattern recognition.
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Figure 4.1: Architecture of NN.

The architecture of an ANN consists of neurons organized into layers:
input, hidden, and output—along with associated weights and biases. These
elements facilitate computations and are adjustable during the training
phase to optimize performance. Each neuron computes its output y by
applying a linear transformation followed by an activation function f to its
inputs:

y = f

(
n∑

i=1
wi · xi + b

)

Where:

– y is the output signal.

– f is the activation function.

– wi are the weights associated with the input signals.

– xi are the input signals.

– n is the number of input signals.

– b is the bias term.

The activation function in a artificial neural network governs the
last decision from the neuron and introduces non-linearity, thereby affecting
the output produced by the summation function. The activation functions
were essential for assembling multiple perceptrons into a unified network
while preserving its non-linear characteristics. Activation functions provide
the crucial non-linearity needed for artificial neural networks to compute
complex functions and perform tasks such as classification and regression.
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They do this by determining the output of a neuron (f(z)) and the combined
input signals (z).

– Linear:
f(z) = z (4-15)

Used primarily for simplicity, but often insufficient for complex data
patterns.

– Rectified Linear Units (ReLU):

f(z) = max(0, z) (4-16)

ReLU and its variants are pivotal in deep learning models due to their
efficiency in activating multiple layers of the network without falling
prey to the vanishing gradient problem.

– Hyperbolic Tangent (Tanh):

f(z) = tanh(z) (4-17)

Tanh and SELU functions provide scaled outputs, which are crucial in
models where normalization of activation is required.

– Sigmoid:
f(z) = 1

1 + e−z
(4-18)

Sigmoid and its extended forms like Softmax and Swish are particularly
useful in binary classification and probabilistic interpretations.

The efficacy of an ANN is highly dependent on the interplay of its
architecture, activation functions, and training algorithms. Deep learning,
a subset of machine learning involving ANNs with multiple hidden layers,
exploits this interplay to model high-level abstractions in data, providing
remarkable results in complex tasks like autonomous driving, precision
medicine, and real-time language translation.

ANNs also integrate concepts like dropout and batch normalization
to combat overfitting and ensure generalized performance across unseen
data. Dropout randomly disables neurons during training, preventing co-
adaptation and promoting robust feature learning. Batch normalization
standardizes the inputs to each layer, accelerating training and stabilizing
the learning process.

In summary, ANNs are a dynamic and potent tool in machine
learning, capable of modeling complex, non-linear relationships in large and
diverse datasets. Their versatility and adaptability make them suitable for
a wide range of applications, from intricate pattern recognition in vast data
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sets to real-time decision-making in dynamic environments. The continuous
evolution in ANN architectures and training methodologies promises further
groundbreaking advancements in artificial intelligence and computational
modeling.

4.5
Siamese Neural Networks

The architecture of a SNN is characterized by its symmetry, with
both input channels being structurally analogous and sharing the same
parameters. The primary goal of the model is to either minimize or maximize
a specified distance metric between dual outputs, typically the Euclidean
distance. This process is key in determining the level of similarity or
dissimilarity between the pair of inputs. Unlike conventional models, no
activation function is applied to the output layer in SNNs when using
Euclidean distance as the similarity measurement, as the raw output is used
to calculate the distance between feature vectors.

Figure 4.2: Architecture of SNN.

A siamese neural network processes pairs of input readings, aiming to
increase the similarity between pairs from the same class, while distancing
those from different classes. Input data undergoes sequential processing
through the network’s layers to produce the final output. The process of
learning is centered around the concept of distance metrics. While the
Euclidean distance (Equation 4-19) is commonly used, alternative distance
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metrics such as the Manhattan distance, Cosine similarity, or more complex
functions like learned distance metrics using a separate sub-network can also
be employed.

Euclidean distance(ypred) =
√√√√ n∑

i=1
(x1i − x2i)2 (4-19)

Based on the computed Euclidean distance and a label indicating
whether the pair is similar or dissimilar, the contrastive loss is calculated
according to Equation 4-20. This loss function aims to minimize the distance
between similar pairs while maximizing the distance between dissimilar pairs
[46]. The contrastive loss formula is expressed as:

Contrastive Loss = 1
N

N∑
i=1

(
(1 − ytrue,i) · y2

pred,i + ytrue,i · max(0, margin − ypred,i)2
)

(4-20)

In this equation:

– N is the total number of pairs in the dataset, with the loss averaged
over all these pairs.

– ytrue,i is the binary label for the i-th pair, where 0 signifies similar pairs,
and 1 denotes dissimilar pairs.

– ypred,i is the Euclidean distance between the feature vectors of the two
inputs in the i-th pair.

– The term (1 − ytrue,i) · ypred,i calculates the loss for similar pairs, where
the model is penalized if similar items are far apart.

– The term ytrue,i · max(0, margin − ypred,i)2 accounts for dissimilar
pairs, increasing the loss when the distance ypred,i is less than a
specified margin. The margin is a hyperparameter defining the desired
separation in the feature space for dissimilar pairs.

The objective of the contrastive loss function is to learn a feature
space where the distances between similar pairs are minimized, while the
distances between dissimilar pairs are large. This function effectively shapes
the feature space during the training of the SNN, enhancing the network’s
ability to differentiate between similarities and differences in the input data.

Among its advantages is the efficacy in sculpting a feature space con-
ducive to clustering similar entities closely, while ensuring a clear demarca-
tion from dissimilar ones, a trait indispensable in applications such as facial
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recognition. This loss function further enhances the model’s capacity to gen-
eralize effectively to novel data, attributing to its focus on relative, rather
than absolute, feature distances, thereby honing its ability to discern the
crux of similarities and dissimilarities. Additionally, its robustness against
noisy labels emerges from its reliance on relative pair positioning, presenting
an edge over other loss functions grounded in absolute classifications.

Contrastive loss is effective and scalable, especially for large datasets,
because it only considers distances between pairs of data points, rather than
the whole dataset. This loss function allows customization through the ’mar-
gin parameter’, which helps to set the appropriate level of difference between
similar and dissimilar pairs. This customization is important as it suits the
varying requirements of different applications. However, the effectiveness of
contrastive loss depends on the assumption that the Euclidean distance be-
tween data points is a relevant measure, which might not always be true.
The model’s success is highly sensitive to the chosen value of the margin
hyperparameter, requiring careful adjustment and possibly many trials to
find the best value. This loss function, focusing only on pairwise distances,
might miss more complex relationships that other loss functions, considering
wider interactions, could catch.

The stage of backpropagation involves updating the network’s weights
and biases by propagating the loss from the output layer back through
the hidden layers to the input layer. These values are then used to adjust
the parameters in a way that minimizes the contrastive loss. The iterative
process of forward and backward propagation continues over multiple epochs
until a satisfactory performance metric is achieved or a pre-defined stopping
criterion ceases the training.

Weights and biases within the SNN are iteratively updated to min-
imize the loss function, denoted as L. Gradients of the loss function with
respect to weights (W) and biases (b) are computed. Both equations in-
corporate a negative sign as the objective is to descend along the gradient
towards a minimum in the loss function. The SNN adjusts its weights and
biases by repeatedly applying these update rules, thereby improving its per-
formance.

Here, η is the learning rate, determining the step size in the opti-
mization progress. The term ∂L

∂W represents the gradient of the loss function
concerning the weights. This equation modifies the existing weights in a di-
rection that reduces the loss. Similar to the weight update, η is the learning
rate, and ∂L

∂b is the gradient of the loss function concerning the biases. This
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equation adjusts the biases to minimize the loss function further, as seen in
Equations 4-33 and 4-34.

– Weight Update:
∆W = −η

∂L
∂W (4-21)

– Bias Update:
∆b = −η

∂L
∂b (4-22)

This process iteratively adjusts the weights and biases to minimize
the contrastive loss, enhancing the network’s ability to learn discriminative
features from the input data. The cycle of forward propagation (to compute
the loss) and backpropagation (to update the parameters) is repeated over
multiple epochs until the network achieves the desired level of accuracy, or
a pre-defined stopping criterion is met.

Diverse sub-network integrations augment the versatility of SNNs. For
instance, the incorporation of Convolutional Neural Networks (CNNs) is in-
strumental in image-based applications like facial recognition and medical
imaging, due to their proficiency in extracting hierarchical spatial features.
Recurrent Neural Networks (RNNs), with their inherent ’memory’ of past
inputs, are integrated for sequential data analysis, enhancing performance in
text processing and time-series analysis. Long Short-Term Memory (LSTM)
units, a specialized RNN variant, further refine this capability, adeptly han-
dling long-term dependencies in sequences, crucial in language translation
or speech recognition.

Beyond conventional frameworks, SNNs also encompass Feedforward
Neural Networks for simpler, non-temporal tasks and advanced RNN vari-
ants like Gated Recurrent Units (GRUs) for managing computational com-
plexity in sequence data processing. Moreover, hybrid models in SNNs syn-
ergize the spatial pattern recognition of CNNs with the temporal data pro-
cessing prowess of RNNs/LSTMs, exemplifying their adaptability across a
spectrum of computational needs. This multifunctional integration not only
showcases the adaptability of SNNs but also marks them as a cornerstone
in the advancement of neural network architectures.

4.6
Long Short-Term Memory

LSTM networks are a specific type of recurrent neural network
(Figure 4.3) [60]. Designed to learn long-term dependencies and address the
vanishing gradient problem in traditional recurrent networks [59]. Individual
blocks within the LSTM contain memory cells connected to multiplying
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units, with forget gates that remove irrelevant information. This type of
neuron excels in capturing long-term dependencies, making them useful
in time series analysis and modeling time-dependent phenomena such as
reaction kinetics and delayed effects common in polymerization reactors.

Figure 4.3: LSTM cell.

The fundamental operations within an LSTM cell are described by
the following equations:

Forget Gate: ft = σ(Wf · [Ht−1, Xt] + bf )

Input Gate: it = σ(Wi · [Ht−1, Xt] + bi)

Cell State Update: ∆Ct = tanh(Wc · [Ht−1, Xt] + bc)

Cell State: Ct = ft ⊙ Mt−1 + it ⊙ ∆Mt

Output Gate: ot = σ(Wo · [Ht−1, Xt] + bo)

Hidden State: Ht = ot ⊙ tanh(Mt)

The LSTM cell’s architecture is intricately designed with several gates
and states to efficiently manage the flow of information through time. The
forget gate (ft), represented by σ(Wf · [Ht−1, Xt] + bf ) where σ denotes the
sigmoid activation function, determines the portion of the previous memory
state know as cell state (Mt−1) to retain or discard.

The input gate (it) evaluates the amount of new information to be
introduced in the memory, while the cell state update (∆Mt = tanh(Wc ·
[Ht−1, Xt]+bc)) computes the fresh information to be added to the cell state
(Mt). This updated state is a combination of the old state and new inputs,
modulated by both the forget and input gates.
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The output gate (ot) decides what portion of the cell state will
influence the output. Here, σ is the sigmoid function, which scales the input
between 0 and 1. This scaling is crucial as it determines the degree to which
information in the cell state affects the output.

The hidden state (Ht), which is the output of the LSTM cell at the
current time step. The cell state Mt is first normalized by the tanh function,
which scales its values between -1 and 1. The output gate’s activation ot then
performs an element-wise multiplication with this normalized cell state. The
resulting Ht is the output of the LSTM cell for that time step and is also
passed to the cell in the next time step as part of its input. This mechanism
ensures that the network selectively propagates relevant information, thereby
effectively modeling long-term dependencies.

4.7
Evaluation

In the realm of machine learning and statistical modeling, the eval-
uation of binary classification models holds a position of paramount im-
portance. Binary classification involves categorizing data into one of two
distinct classes. The efficacy of such a model is not just a matter of algo-
rithmic robustness but also hinges on the appropriateness and precision of
its evaluation metrics. Among the most widely used metrics are Accuracy,
Precision, Recall, and the F1 Score. Each of these metrics offers a unique
lens through which the performance of a binary classification model can be
scrutinized and understood. Below the terms used to calculate the metrics
are explained.

– True Positive (TP): The number of examples that belong to a
positive class and are predicted as positive.

– True Negative (TN): The number of examples that belong to a
negative class and are predicted as negative.

– False Positive (FP): The number of examples that belong to a
negative class but are predicted as positive by the model.

– False Negative (FN): The number of examples that belong to a
positive class but are predicted as negative by the model.

– Accuracy:

Accuracy is the most intuitive and initial measure often employed
to evaluate a binary classification model. It is defined as the proportion of
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true results (both true positives and true negatives) in the total dataset.
Mathematically, it is represented as:

Accuracy = TP + TN
TP + TN + FP + FN (4-23)

This metric offers a general overview of the model’s performance.
However, its reliance on a balanced dataset is its Achilles’ heel. In scenarios
where there is a significant class imbalance (one class is more prevalent than
the other), accuracy can become a misleading indicator.

– Precision:

Precision steps into the spotlight where the cost of a false positive is
high. It measures the quality of the positive predictions made by the model.
Precision is defined as the ratio of correctly predicted positive observations
to the total predicted positive observations:

Precision = TP
TP + FP (4-24)

It tells us how many of the items identified as positive are actually
positive. However, used alone, precision does not give a full picture, it does
not account for the positive cases the model failed to identify.

– Recall:

Recall steps into the spotlight where the cost of a false negative is high.
Also known as sensitivity or the true positive rate, addresses this limitation
of precision. It measures how many of the actual positive cases the model
successfully captures through its predictions:

Recall = TP
TP + FN (4-25)

In fault detection, for instance, recall becomes a crucial metric. A high
recall rate means that the model successfully identifies most faults with the
condition. However, like precision, recall too, if used in isolation, does not
provide a complete picture of the model’s performance. It does not penalize
the model for the number of incorrect positive predictions made.

– F1-Score:

The F1 Score harmonizes precision and recall, providing a single
metric that balances both. It is particularly useful in scenarios where an
equilibrium between precision and recall is necessary. The F1 Score is the
harmonic mean of precision and recall, giving:
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F1-Score = 2 · Precision · Recall
Precision + Recall (4-26)

This metric is especially useful when dealing with imbalanced
datasets. Unlike accuracy, the F1 Score takes into account both false posi-
tives and false negatives. It is a more robust measure of a model’s perfor-
mance, especially in scenarios where either precision or recall alone could be
misleading.

– Matthews Correlation Coefficient (MCC):

The Matthews Correlation Coefficient (MCC) is a robust statistical
rate that yields a high score only if the predictor successfully predicts the
positive class as positive and the negative class as negative. Unlike other
metrics, MCC takes into account true and false positives, true and false
negatives. It is defined as:

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4-27)

MCC returns a value between -1 and +1. A coefficient of +1 represents
a perfect prediction, 0 no better than random prediction, and -1 indicates
total disagreement between prediction and observation. This metric is par-
ticularly useful in binary classification problems, especially with imbalanced
datasets, as it provides a more informative and truthful evaluation of the
model’s performance than accuracy alone.

MCC is considered one of the best measures of the quality of binary
classifications, balancing the dataset’s imbalance and reflecting all four
confusion matrix categories. It is a reliable statistical rate even when the
two classes are of very different sizes.

In sum, the evaluation of binary classification models requires a nu-
anced understanding of various metrics. Understanding and applying these
metrics effectively can significantly enhance the evaluation and subsequent
application of binary classification models in practical scenarios, leading to
more reliable and contextually relevant outcomes.



5
Methodology

5.1
Objectives

The objectves of this metodology is we discuss the initial stages of
the process. It starts with data generation through a phenomenological
model, which captures the principles of thermodynamics of styrene poly-
merization reactions. The next step involves formulating a specific model
for polystyrene polymerization with MoM. With this model, a Proportional-
Integral-Derivative (PID) control system is integrated to maintain the de-
sired process conditions by adjusting the control variables based on the feed-
back received. Subsequently, a database is constructed encompassing both
normal operation and fault simulations to an SNN model. This database is
essential for training machine learning models, as it provides a variety of
scenarios for the algorithm to learn from.

Then to delve into the application of machine learning techniques.
The gathered data, characterized by both normal and anomalous process
behavior, is utilized to train SNN. Once trained, these networks enable
continuous fault detection by continuously analyzing process data and
comparing it to the learned profiles of normal and faulty conditions. The
decision-making process involves a threshold-based system where, if the
detected anomaly exceeds a set threshold, the process is evaluated for
potential faults. If a fault is identified, corrective feedback is provided for
continuous process monitoring, ensuring that the polymerization process
remains within the desired operating parameters. If no fault is detected,
the system continues its normal operation without intervention.
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Figure 5.1: Process flowchart.

The flowchart (Figure 5.1) presents the structured methodology from
this work for modeling and fault detection in styrene polymerization pro-
cesses using a combination of phenomenological modeling, PID control in-
tegration, Siamese Neural Networks (SNNs) training, and continuous fault
detection evaluation.

5.2
Polystyrene Model Simulation

The industrial process modeled involves the polymerization of styrene
in a continuous stirred-tank reactor (CSTR) presented in Figure 5.2. The sol-
vent was ethylbenzene and the initiator was tert-Butylperoxy 2-ethylhexyl
carbonate (Luperox® TBEC). Within the CSTR, perfect mixing is main-
tained, allowing for uniform distribution of the substances. A jacket sur-
rounding the reactor enables the temperature control by heating or cooling
the system. The output consists of an unreacted monomer, solvent, initiator
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and the polymer. Temperature and concentrations are controlled both in the
input and output of the reactor, and the temperature is controlled in the
jacket.

Figure 5.2: Illustration of the polymerization unit.

First, the initial moments are determined based on the known initial
conditions and the properties of the monofunctional initiator where the
particularly equations are present below:
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M0 : the initial concentration of component M.

S0 : the initial concentration of component S.

I0 : the initial concentration of component I.

X0 : the initial concentration of component X.

Qs : are the flow rate of components or the cooling jacket

ks : are the rate constant for a specific reaction

V : the volume of the reactor.

λ0, λ1, λ2 : are the moments.

Ts : are the temperatures.

δH : the enthalpy of reaction.

Cp : the heat capacity at constant pressure.

CpCool : the heat capacity of the coolant at constant pressure.

hArea : the heat transfer coefficient multiplied by the surface area.

Vc : the volume of the coolant.

Then, the numerical solution derived from the moment equations are
solved numerically to obtain the moments.
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The results are then used to reconstruct the Mw, Mn and Ð, providing
insights into the polymer microstructure. The calculated values are validated
against experimental data to ensure the accuracy and reliability of the model.

In the study done by Choi et al. (1987), the polymerization model
was simplified by assuming equal rate constants for the initiation ki and
propagation kp process. The modeling as an approximation is based on
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the notion that both initiation and propagation steps share similar barriers
and, consequently, similar rate constants. This simplification is particularly
applicable under conditions where radical initiation exhibits high efficiency
and the propagation phase proceeds with considerable rapidity. [20]. The
fraction (f) represents the percentage of the initiator that successfully
decomposes to generate initiator radicals during the polymerization process.
The parameter f is critical for understanding the efficiency of the initiator
in the polymerization mechanism and in this case the value f is 0.7 [23].
These and other parameters are shown in Table 5.1

Parameter Equation Reference
kdm 7.326 × 108 exp

(
−27440

R×T

)
L2/mol2.h Hui et al. (1972)

ktm 9.563 × 109 exp
(
−12670

R×T

)
L/mol.h Yoon et al. (1992)

ktx 5.635 × 1011 exp
(
− 7067

R×T

)
L/mol.h Moore et al. (1989)

kts 7.085 × 107 exp
(
−12523

R×T

)
L/mol.h Moore et al. (1989)

kp 3.816 × 1010 exp
(
− 7067

R×T

)
L/mol.h Villalobos et al. (1991)

kd 2.033 × 1017 exp
(
−31500

R×T

)
1/h Luperox TBEC (ATOFINA)

ki ki = kp Choi et al. (1988)
f 0.7 Scorah et al. (2007)

Table 5.1: Kinetics parameters [8] [19] [20] [21] [22] [23].

The gel effect, also known as auto-acceleration or the Trommsdorf
effect, becomes crucial in bulk polymerization at high conversions. This
effect arises from diffusion limitations that slow down termination reactions
between polymer radical chains. Due to increased viscosity, large polymer
chains move less, inhibiting termination and favoring propagation. This
leads to longer polymer chains and, eventually, the vitrification effect, where
propagation slows down as monomers become scarce.

In the case of styrene polymerization, the gel effect can be described
mathematically by considering the rate of chain transfer to polymer and the
rate of propagation. The corresponding Equation 4-28 takes into account
the concentration of active chains, monomer concentration, and specific rate
constants [8].

ktc0 = 60 · 7.53 × 1010 · exp
(

− 1680
R · T

)
L/mol · h (5-13)

ktc = ktc0 · exp
(
−2 ·

(
A1 · x + A2 · x2 + A3 · x3

))
L/mol · h (5-14)
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A1 = 2.57 − 5.05 × 10−3 · T (K) (5-15)

A2 = 9.56 − 1.76 × 10−2 · T (K) (5-16)

A3 = −3.03 + 7.85 × 10−3 · T (K) (5-17)

For this system, we admit perfect level control. The outlet volumetric
flow rates were calculated by the global mass balance, in order to maintain
a constant volume in the reactor.

In the proposed simulations, we do the normal process #1 with a
predefined set of initial conditions. Specifically, we establish the reactants’
concentrations and the reactor’s volume. Styrene, the monomer, along with
the solvent and initiator, are introduced into the reactor. Additionally, the
reactor and its cooling jacket are set to an initial temperature equal for the
reactants.

Data collection is a crucial component of our simulation. We record
the parameters at one-second intervals throughout the complete operation
cycle. This dataset encompasses a range of variables such as species concen-
trations and temperatures. By systematically varying the operational con-
ditions, we simulate different normal polymerization scenarios. Moreover,
to enhance the robustness of our model, we introduce fault conditions as
delineated in an accompanying table.

5.3
Validation

Mathematical models were developed and implemented to describe
the trajectories of monomer conversions, average molar masses, and molar
mass distributions in continuous systems. The simulation results were vali-
dated against experiments conducted by Juliana (2012) on a bench scale in
a batch reaction. This validation involved a bench-scale experimental setup
and the polystyrene computational simulations to confirm the accuracy of
chemical reaction models in polymerization processes under different reactor
conditions (R1, R2, and R3), as shown in Table 5.2 [67].

Table 5.2: Summary of Reaction Conditions

Reaction R1 R2 R3
Conc. iniciator (mmol/L) - 1.3 ± 0.1 2.5 ± 0.1
Temperature (°C) 393,15 393,15 393,15
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Validation was conducted through a quantitative comparison between
the experimental data and the simulation results. For conversion rates and
molecular weight distributions (Mn and Mw), the model’s predictions were
evaluated against the empirical data, focusing specifically on the model’s
ability to replicate trends across all operational scenarios (R1, R2, and R3).
The model’s adaptability was further assessed by introducing variations,
such as the addition of an initiator.

5.4
Failures

During the operation of polystyrene reactors, we frequently encoun-
tered different issues that impacted the process. Like reactor leakage, agita-
tor and heat exchangers malfunctions, reactant impurities, data transmition
etc. We can simply to several types of faulty: mechanical, software, mea-
surement, and operational. A comprehensive understanding of these faults
is imperative for enhancing process optimization and minimizing risks.

Analysis of past accident cases is critical for improving process safety,
offering insights into practical occurrences of accidents. Statistical analysis
of the accidents reveals that technical (mechanical, software, measurement)
failures are the predominant cause, followed by organizational/operational
cause. Technical Failures are the most significant contributors to accidents,
that includes piping system failures (poor layout, wrong specification, dead
ends, poor installation, inadequate hot bolting, and blockages), contami-
nation of process stream (impurities, by-products, and external contami-
nation), inappropriate selection of construction material (errors in design
leading to physical and mechanical problems), mass transfer issues and cor-
rosion/erosion (poor mixing, excessive charging, and operational scenarios),
heat transfer problems (loss of cooling, incorrect heating methods, and prob-
lems with thermal expansion). Organizational Causes are subdivided into:
management/procedural faults, knowledge-based errors and storage/han-
dling of chemicals. Managerial errors such as inadequate hazard recognition,
wrong policies, personal factors like incompetence, ignorance of technological
advancements and lack of knowledge sharing [66].

Mechanical failures in reactor processes, manifest in various forms,
each contributing to significant disruptions in operations. Problems with
valves, such as leaks or blockages, interfere with the flow of chemicals and
can be safety hazards. If agitators are not properly working, the mixing
becomes uneven, affecting the quality of the end product. Heat exchangers,
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Figure 5.3: Causes of accident [66].

responsible for maintaining the right reaction temperature, can fail due to
clogging or leaks, changing reaction speeds and altering the product. Sealing
problems in the reactor structure result in material loss and contamination.
Also, issues with pumps, which control the flow of reactants and products,
can upset the balance of the process. Fixing these mechanical problems is
crucial for maintaining reactor efficiency and ensuring the quality of the
product.[66]

Measurement inaccuracies are a common issue affecting the polymer-
ization process. Inaccurate monomer feed measurements led to variations in
the polymer’s properties. Similarly, temperature and pressure mismeasure-
ments, due to faulty sensors or calibration errors, often resulted in uncon-
trolled reaction rates, posing potential safety risks. These inaccuracies not
only affect product quality but can also lead to inefficient use of resources
and increased production costs [66].

Software and system failures posed significant challenges in maintain-
ing optimal reactor conditions. Sensor failures, particularly those related to
temperature and pressure, can make the control systems lead to an incor-
rect value, resulting in inappropriate reaction environments. Regular system
checks, timely maintenance, and redundancy in critical sensors could be
crucial in mitigating these risks, ensuring both safety and consistency in the
process [66].

Operational challenges in polystyrene reactors impacted the polymer-
ization process. These included human errors due to training gaps, devia-
tions in process control like changing reactant ratios and monitoring, and



Chapter 5. Methodology 50

variability from raw material inconsistencies like choosing the wrong initia-
tor. Equipment maintenance lapses and poor emergency responses led to
material waste and restart complexities. Additionally, non-compliance with
safety regulations and communication breakdowns among teams further ex-
acerbated operational faults [66].

This work aims to identify and analyze faults in chemical processes,
focusing on mechanical failures like heat exchanger issues and operational
challenges from changing reactant ratios.

Was done a series of normal and fault conditions to examine the
dynamics of the polymerization process. The normal n°1 condition serve
as a baseline from the others normal conditions from which we alter only
the initial states: temperature and Qm/Qs ratio. For the fault conditions
the initial condition that was the normal n°1 process. In a Continuous
Stirred-Tank Reactor (CSTR), process variables change initially but stabilize
at a steady state due to the reactor’s continuous mixing and flow. The
fault introduced at t = 17000, after the system’s response these initial
disturbances.

We simulate a range of faults, each designed to test the resilience and
adaptability of PID control and then the model fault classification. These
include step change or slow drift changes in monomer, solvent and initiator
flow rate, reactor’s cooling temperature and kinetic rate constants changing
progressively over time.

Fault n°1 is a step change of increase in the Qm/Qs ratio, removing
all solvent inflow and adding the same flow to the monomer flow, while
fault n°2 involved a step decrease in the in the Qm/Qs ratio from 18.4
to 5.5. Faults n°3 and n°4 were characterized by an step change in the
initiator flow rate (Qi) from 0,00012 L/h to 0,010 L/h and 0,020 L/h,
respectively. Fault n°5 is a step change in the coolant temperature (Tc) to
405k. Fault n°6 increased the impurity concentration by 140.0 % also in a
step change. Faults n°7 and n°8 were distinguished by slow drifts in the
reaction rate constants, with ktm and ktc increasing 0.10% per second for
both. The specifics and implications of these faults, including their impact
on the polymerization process, are further elucidated in Table 5.3, which
provides detailed variations and corresponding data for reference.

The controlled variables Tc0, Qm, Qs, Qi, and Qx where the model
changed the values and applied the fault, obviously, the values changes
but this changes are not recorded so the model do not know that the
fault occurred. The uncontrolled variables (time, x, Mn, Mw, T, Tc, D,
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Table 5.3: Simulation operational conditions

# Qm/Qs ratio T (K) Description Variation type
Normal 1 18.07 402.15 Standard Step
Normal 2 18.07 415.05 Increase of temperature Step
Normal 3 18.07 389.25 Decrease of temperature Step
Normal 4 950.2 415.05 Increase of Qm/Qs ratio Step
Normal 5 0.730 415.05 Decrease of Qm/Qs ratio Step
Fault 1 18.07 402.15 Increase of Qm/Qs ratio Step
Fault 2 18.07 402.15 Decrease of Qm/Qs ratio Step
Fault 3 18.07 402.15 Small increase of Qi rate Step
Fault 4 18.07 402.15 Big increase of Qi rate Step
Fault 5 18.07 402.15 Reactor Cooling Fluid Step
Fault 6 18.07 402.15 Increase of impurity concentration Step
Fault 7 18.07 402.15 Reaction ktm Slow Drift Gradual shift
Fault 8 18.07 402.15 Reaction ktc Slow Drift Gradual shift

eta, pr, M, S, I, X, λ0, λ1, λ2),are sensitive to these changes will show
alterations in response to the faults. The SNN model is designed to detect
these indirect effects in these uncontrolled fault, signaling the occurrence
of a fault through deviations in these uncontrolled variables. This approach
allows us to evaluate the model’s ability to recognize and classify faults,
rather than direct feedback from the controlled variables. The controlled
variables (Tc0, Qm, Qs, Qi, Qx) where the model get the fault, obviosly,
changes values but this changes is not recored so the model dont know that
the fault occured.

5.5
Data preprocessing

The high-dimensional time-series data, which comprises 2500 data
records per second across all variables (faultNumber, simulationRun, sample,
time, x, Mn, Mw, T, Tc, Tc0, D, eta, pr, M, S, I, X, λ0, λ1, λ2, Qm, Qs, Qi,
Qx). To train time series data is necessary to split the data in parts, each
part is referred as window, and then each window is use to train the model.
Windowing is a critical initial step in the data preprocessing for SNNs. In
this project, the selected window size was 10 seconds with 1 second step to
each other.

Twin neural networks (SNNs) need two data inputs from the training
dataset (Figure 5.4). Each pair of data segments with a 10-second window
is fed into the SNN for processing. One epoch is one complete cycle of the
entire training dataset. During an epoch, the network’s weights are updated
to minimize loss by learning to distinguish between similar and dissimilar
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data pairs. To train a computer program to recognize patterns, we feed it
data in batches instead of all at once. This makes the computer’s job easier
and faster, just like doing a big task step by step. This also helps the network
to avoid local minimal and potentially find better generalizing solutions [51].

Figure 5.4: Traning processing.

Each entering is paired with two windows of 10 seconds as aforemen-
tioned. Similar pairs (anomalous-anomalous or normal-normal) were labeled
as 0, or dissimilar pairs (anomalous-normal or normal-anomalous) were la-
beled as 1 as Figure 5.5. In a chemical process context, distinguishing normal
from potentially faulty data is vital. SNNs are adept at this task due to their
differential learning approach. By training SNNs to compare normal opera-
tional data with anomalous data, they learn to detect deviations indicative
of faults. This comparison is essential for early anomaly detection, critical
to ensuring safety and efficiency.

To streamline the training set and enhance the model’s robustness, we
exclude pairs where both series are faulty. Excluding anomalous-anomalous
data pairs from training focuses the model’s learning on identifying devi-
ations from normality. This targeted training approach ensures the SNN
remains sensitive to normal-anomalous faults. In the context of the chemical
industry, it is necessary to compare normal data with potential faulty data.
The aim is that the SNN becomes a precise tool that monitor using the
real-time data and normal data.

The division of the database is the next phase in the preprocessing.
One significant advantage of this project is the ability to create a large-
sized dataset. This enables us to allocate a substantial portion of the total
data for validation and testing. Sixty percent of the data were allocated
for training/validation, and the remaining 40% was reserved for testing.
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Figure 5.5: Data preprocessing.

From the training/validation data, 30 % was saved for validation data and
the remaining 70 % composed the training dataset. This division allows for
a robust training and validation process, which is essential for the ANN
learning process.

Normalization in neural networks is a technique that is used to scale
the inputs. This work used the scaled median absolute deviation (SMAD)
method, which is effective for scale features that may contain outliers or
huge noise, such as a reactor can have. SMAD normalizes the data using the
median and the median absolute deviation, making the normalized data less
sensitive to extreme values. First, it is necessary to determine the median of
the original dataset to normalize. Then, subtract the median from each data
record, centering your data around zero. After that, calculate the median of
these absolute values and multiply the new median by the scale factor, which
is a fixed number that depends on the distribution (approximately 1.4826).
The output represents the SMAD value. Finally, divide each data record by
the SMAD value. The factor 1.4826 is derived from the inverse cumulative
distribution function of a standard normal distribution, representing the
ratio between the standard deviation and the MAD for normally distributed
data.

x′′
i = xi − Med(x)

ϕ × MAD(x) , where MAD(x) = median(|xi − Med(x)|) (5-18)

where x′′
i is the normalized value, Med(x) is the median of the variable,

and MAD(x) is the median absolute deviation. The constant scale factor (ϕ)
is approximately 1.4826.

5.6
Siamese neural network architecture and training

Siamese Neural Network is employed to distinguish between normal
and potentially faulty operational data in chemical processes. This distinc-
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tion is crucial for early detection of anomalies, ensuring both safety and
efficiency. The SNN learns by comparing what’s normal to what’s not. We
train it with normal data and data with faults, smaking it proficient in iden-
tifying deviations that are indicative of faults. To enhance the robustness
and effectiveness of the model, we don’t use pairs of data where both are
faulty. This exclusion focuses the SNN’s learning on recognizing faults from
normal operational patterns. This way, the SNN focuses on learning what’s
normal and what’s not.

To mitigate the risk of overfitting, a dropout layer is strategically
introduced between intermediate dense layers. This addition serves to ran-
domize neuron activation, thereby fostering multiple prediction pathways
and enhancing the model’s generalization capabilities. The model utilizes
contrastive loss as its loss function, which is designed to optimize the fea-
ture space in a manner that ensures that similar instances are brought closer
together, while dissimilar ones are distanced.

Backpropagation in SNN is similar to that in conventional feedforward
from NNs but with a focus on optimizing the specialized loss function. The
Adam optimizer is applied for its ability to adjust learning rates adaptively,
enhancing the efficiency of model optimization. The SNN training aims to
change the weights and biases so that the network effectively learns to
differentiate between similar and dissimilar pairs of inputs. The process
begins with a forward pass, where a pair is passed through the twin networks
of the SNN to obtain the vector. These are then used to calculate the loss
using the contrastive loss.

The network was built using the Keras Python library since, through
this tool, it is possible to create two identical subnetworks that receive
separate inputs. These subnetworks comprise neurons with long short-term
memory (LSTM) units and utilize the ReLU activation function in hidden
layers.

The model was evaluated using accuracy. Different training phases
were performed for each combination of faulty and hyperparameters, as
shown in Table 6.7. Early stopping was utilized as a form of regularization
to select the optimal neural network configuration without overfitting. All
models were tested with different neural network configurations, batch sizes
(10, 50, 200) and learning rates (0.02, 0.01).

In the context of fault detection, the SNN was tasked with classifying
system states as either faulty or non-faulty, represented as binary outputs:
0 for non-faulty and 1 for faulty conditions. This binary classification
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approach simplifies the decision-making process, focusing the network on
distinguishing between two distinct classes of system states. The output
of the SNN, following the calculation of Euclidean distance between feature
vectors of a pair of inputs, is processed through a sigmoid activation function.
This function maps the distance to a probability value between 0 and 1. A
threshold, typically set at 0.5, is employed to categorize the output as either
0 or 1, based on the calculated probability.

This binary classification mechanism in SNNs for fault detection fa-
cilitates a more direct and interpretable decision-making process. It reduces
the output to a simple binary decision, easing the integration into auto-
mated control systems for real-time fault monitoring and diagnosis. Such an
approach, combined with the robustness and efficiency of SNNs, positions
this methodology as an effective tool in the realm of fault detection and
diagnosis, particularly in complex systems where early and accurate fault
detection is imperative.



6
Results and Discussion

This chapter aims to show how the proposed model for the process was
implemented and solved, as well as how the model simulates the operational
conditions of the reactors and the properties of the produced polymer.

6.0.1
Polystyrene Model Simulation

6.0.1.1
Validation

This validation was done through experimental data conducted on a
bench scale, as from Juliana (2012), offering foundation for our simulation
results [67]. Acknowledging that experimental work, especially on a bench
scale, inherently involves the potential for both systematic and random errors
is crucial. These errors can arise from a variety of factors, such as changes
in ambient conditions, inaccuracies in measurement instruments, and the
unpredictable nature of chemical reactions.

Figure 6.3, illustrating the validation of conversion rates under differ-
ent reactor conditions (R1, R2, and R3), the dashed line representing ±3 %
of the model conversion, demonstrates the model’s ability to replicate ex-
perimental trends across all operational scenarios, including those with (R1)
and without the initiator (R2 and R3).
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Figure 6.1: Validation of conversion rates for R1 conditions.

Figure 6.2: Validation of conversion rates for R2 conditions.
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Figure 6.3: Validation of conversion rates for R3 conditions.

Similarly, Figure 6.6 validates Mn and Mw for the same reactor
conditions, with the dashed line representing ±20000 g/mol of the model
conversion. Although the model exhibited a deviation for condition R1
in terms of Mw, the addition of an initiator in conditions R2 and R3
significantly improved accuracy. This deviation is less concerning in the
continuous model, where initiation is a consistent process, underscoring the
model’s adaptability in reflecting experimental realities.

Figure 6.4: Validation of Mn and Mw for R1 conditions.
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Figure 6.5: Validation of Mn and Mw for R2 conditions.

Figure 6.6: Validation of Mn and Mw for R3 conditions.

This alignment is crucial for understanding how changes in reactor
conditions affect conversion rates, offering insights into optimizing the poly-
merization process. The validation of these models against experimental data
confirms their accuracy, paving the way for application in the continuous
stirred tank reactor operation, which differs only by adding the flow rate of
reactants and the cooling jacket for temperature control.
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6.0.1.2
CSTR Simulation

Simulations conducted within the CSTR provided significant insights
into mass and energy balance. The granular-level analysis allowed for the
detailed capture of moment transformations and polymerization kinetics. In
our simulations, for the normal #1 process, at initial time (t = 0 s) the
styrene concentration was set to 7.352 mol/L, the solvent concentration to
0.380 mol/L, the initiator concentration to 0.00087 mol/L and the volume
to 0.480 L. The initial temperature for the reactor and the jacket was 402.15
K. We collect 2500 data records per run that is and each record is equal to
1 second, covering the entire operational cycle. The same interval of time
was used for all simulations. Various normal polymerization scenarios were
simulated by changing these operational conditions and other fault process
were applied as described in the Table 5.3. For each time interval of 1 second,
the species concentrations (M, S, I and X), flows (Qm, Qs, Qi and Qx),
reactor temperature (T), jacket temperature (Tc and Tc0), MoM indicators
(λ0, λ1, λ2) Mn , Mw, faultNumber, simulationRun, sample were recorded
and the resultant dataset was used to train the SNN model.

In each normal condition, the variations are detailed in the table,
only the initial conditions are altered. For all fault simulations, the process
begins as like Normal #1, and at t = 1700 s, the fault is introduced.
In fault #1, there is a step increase in the Qm/Qs ratio, shifting from a
ratio of 20 in relation to a scenario where Qs concentration approaches
zero. In fault #2, the reverse occurs, and the Qm/Qs ratio adjusts to 1.
For fault #3, the initiator flow rate (Qi) increases from 0.000115 L/h to
0.050 L/h, and in fault #4, Qi increase to 0.20 L/h. In fault #5, the reactor
cooling fluid temperature abruptly changes to 405K. In fault #6, an impurity
concentration increases to a constant 0.0001 mol/L in the reactor. Lastly,
faults #7 and #8 involve gradual changes in the kinetic rate constants ktm

and ktc, respectively, which continue until the end of the simulation.
In Figure 6.7, the conversion trajectory exhibits two distinct regimes:

an initial rapid ascent, followed by a stable plateau. This behavior is
consistent with the theoretical expectations for a CSTR, where the rate
of reaction converges towards a steady state after an initial transient phase.
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Figure 6.7: First normal process (blue), first faulty process (red) and start
of the faulty (green).

The PID control algorithm effectively controls the thermal regulation
of the reactor temperature (T) and the outlet temperatures (Tc) and thermal
jacket’s inlet (Tc0), ensuring the temperature remains in a predetermined
operational value. It is important to show that the computational model
employed is an approximation rather than an authentic reactor system. The
simulation predicts the instantaneous introduction of reactants at t = 0,
starting the polymerization. As an exothermic reaction, the polymerization
makes the reactor temperature spike in the initial phase. In the first
moments, the inlet temperature started to drop as the control began to
try to control the reactor temperature. The temperature oscillates until the
normalization.

When a system previously in a steady state experiences a sudden
increase in the flow rate of monomer Qm, the immediate effect is to increase
the total amount of monomer entering the reactor. However, since conversion
is calculated based on the ratio of reacted monomer to the total monomer fed
(or present) at any time, the immediate effect could indeed be a decrease in
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conversion percentage. This decrease occurs because the increase in monomer
feed momentarily surpasses the system’s capacity to convert this additional
monomer at the same rate, thus lowering the conversion percentage. This
situation, however, impacts the conversion rate, which is defined by the ratio
of the reacted monomer to the total monomer input at any given moment.
Consequently, an instantaneous effect might be a reduction in the conversion
percentage. This decline is attributed to the system’s temporary inability to
process the additional monomer influx at the same rate, thereby diminishing
the conversion percentage. If the monomer feed rate adjustment is not
complemented by a corresponding increase in temperature and initiation
concentration, the conversion remains lower at the new steady state. This
lower conversion rate slows the formation of new polymer chains, reducing
Mn and leading to a decrease in the Mw, due to less efficient polymerization
and the formation of fewer long chains.

In the instance of faulty two, as depicted in Figure 6.8, it’s observed
that the ratio of Qm/Qs reduces. This reduction is attributed to the de-
creased monomer entry rate (Qm reduction), which in turn slightly lowers
the temperature due to less exothermic reactions. After an initial fast in-
crease in Mn and Mw, a significant decline in these values is noted. The
decrease in monomer feed rate enhances the conversion rate, which might
lead one to expect an increase in Mn and Mw as the monomer to polymer re-
action progresses more fully. However, at higher conversion rates, the chances
of chain termination reactions, like combination or disproportionation, may
rise due to increased concentrations of polymer radicals. An escalated rate
of termination compared to chain initiation and growth could result in a
predominance of shorter chains, thereby lowering Mn and Mw. Additionally,
the increase in solvent-to-monomer ratio can influence the solubility of both
the monomer and growing polymer chains. This change has the potential
to affect polymerization kinetics and molecular weight distribution, where a
higher solvent ratio might reduce polymer concentration and may promote
termination over propagation.
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Figure 6.8: First normal process (blue), second faulty process (red) and start
of the faulty (green).

Faulty three and four correspond to increase of initiator. Faulty three
as in Figure 6.9 is possible to see the response from a higher conversion
followed by a slightly increase of reactor temperature that lead to decrease for
inlet jacket temperature to control that increase. This accelerates monomer
consumption and increases the termination and chain transfer reactions.
These effects contribute to a higher number of shorter polymer chains being
formed, resulting in decreased average molecular weights.
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Figure 6.9: First normal process (blue), four faulty process (red) and start
of the faulty (green).

As in Figure 6.10 the temperature changes as a step change in the
inlet coolant temperature (Tc0) to 405K the initial result is the consequential
increase of reactor temperature (T) and outlet coolant temperature (T)
followed by higher conversion and Lowe monomer concentration and Mn
and Mw concentration. The impact on the molecular weights of the polymer
(Mn and Mw) is more nuanced. While higher temperatures can facilitate
longer polymer chains by allowing for more extensive propagation, they also
increase the rates of termination and chain transfer reactions. If termination
and chain transfer become significantly more likely than chain growth,
the resulting polymers will be of shorter average length. Thus, despite
higher conversion rates, the average molecular weights (Mn and Mw) may
decrease. This effect is attributed to the higher probability of premature
chain termination or transfer to monomers or solvent molecules, limiting
the extent of chain elongation.
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Figure 6.10: First normal process (blue), five faulty process (red) and start
of the faulty (green).

Faulty six (Figure 6.11) correspond for an increase to unknown
impurity in the system. As its correlated just with chain transfer the main
influence is in the molecular weight and distribution of the polymer. The
result is the termination of the growth of the current chain and the initiation
of a new chain from the point of transfer. This dynamic decreases both Mn
and Mw, as the calculations for these averages are sensitive to the presence
of lower molecular weight species in the mix.
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Figure 6.11: First normal process (blue), six faulty process (red) and start
of the faulty (green).

This effect occurs in the same why with faulty seven (Figure 6.12) with
gradual increase in the ktm. This also leads to a higher frequency of chain
termination and initiation events. This dynamic significantly contributes to
a reduction in both the number average molecular weight and the weight
average molecular weight.
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Figure 6.12: First normal process (blue), seven faulty process (red) and start
of the faulty (green).

Finally, the last faulty is an gradual increase in ktc, as can see
in Figure 6.13. The constant ktc represents the rate of termination by
combination in polymerization reactions, where two active polymeric radicals
combine to form a longer polymer chain. The rate of this termination
mechanism can have significant implications on the polymerization process,
particularly when considering the gel effect, which typically occurs at higher
conversions and significantly impacts the reaction kinetics and polymer
properties.

The gel effect can also lead to a phenomenon known as autoacceler-
ation or the Trommsdorff Effect, where the reaction rate actually increases
at high conversions due to the confinement of radicals within the viscous
medium, leading to increased probability of propagation over termination.
As termination by combination becomes more prevalent, fewer radicals are
available to propagate, which could, in theory, lead to a slowdown in the
rate of conversion increase. However, the overall conversion could still be
high due to the autoacceleration effect, as the reaction nears completion.
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While termination by combination generally leads to the formation
of longer polymer chains, the overall impact of an increased ktc under the
influence of the gel effect. The reduced number of active chains can lower
Mn due to fewer chains growing to significant lengths before termination.
Mw might also decrease if the formation of very long chains by combination
is less than expected due to the reduced mobility and reactivity of chains in
a highly viscous medium.

Figure 6.13: First normal process (blue), eight faulty process (red) and start
of the faulty (green).

A slower overall polymerization rate due to decreased effective ter-
mination by combination at high conversions leads to less monomer being
consumed over time consequently, the reactor temperature drop.

6.1
Siamese Neural Network

In this study, aim to prove the efficiency of SNN for the purpose of
early fault detection in the polymerization process of styrene. The focus on
SNNs arises from their ability to learn from data comparisons, making them
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particularly suited for fault detection tasks where the goal is to differentiate
between normal operation and abnormal conditions. This section details the
results obtained from employing SNNs, using Multilayer Perceptron (MLP)
as a benchmark for comparison and LSTM networks as the primary model
to encapsulate the dynamic behavior of the chemical process under study.

6.1.1
Benchmark

To validate the effectiveness of LSTM-based model in identifying
faults within the chemical polymerization process. The choice of MLP as
a benchmark is strategic, allowing us to assess the LSTM-based SNN’s per-
formance against a simpler, yet analogous neural network architecture. This
comparison is crucial for demonstrating the superior ability of LSTM mod-
els to manage the dynamic and temporal complexities inherent in chemical
processes, which is often challenging for traditional MLP models. The in-
corporation of LSTM is based on its recurrent nature, which is particularly
beneficial for predicting faults in the chemical industry by capturing tempo-
ral dependencies and patterns in process data more effectively than MLP.
Results from MLP will appear in the following sections.

6.1.2
Parameter Setting

The journey to optimal model performance began with a meticulous
grid search for the perfect combination of hyperparameters. This iterative
process was crucial to ensure that the best SNNs models are achived. For
the experimental setup, a series of trials were conducted to find the best
settings for learning rate, batch size, and the number of epochs among other
parameters and results can see in Table 6.1.

Table 6.1: Simulation hyperparams and results.

Schema Settings Options Best Settings Options
learning rate 10-3, 10-2 10-2
loss margin 0.2, 0.5, 1, 2 1
batch size 100, 200, 500 100

patience early stop 2, 5, 10 10
patience learning rate 2, 3 2

window size 2, 5, 10, 20 10
moving average 1, 5, 10 1



Chapter 6. Results and Discussion 70

The net cells architecture was 10 units and accuracy averaged from
the 5-fold stratified cross-validation was used to choose the best parameters.
The computational setup powered by a 1 GHz CPU and equipped with
8GB RAM, for each model was used 3 kfold and the total model of the
grid seach was 3888 total models, culminating in a total training duration
around 1080 minutes. Using all database reached 97.55 % of accuracy and
the configuration that emerged victorious from this grid search as can see in
Table 6.1.

6.1.3
Siamese Neurak Network with LSTM units

The effectiveness of SNNs in fault detection can be significantly
impacted by the quality and nature of the database used for training and
validation. Using a database containing multiple or a single type of faulty
data can lead to good generalization or overfitting. In other words, the SNN
model may become too specialized in identifying specific types of faults or
fail to generalize well to new, unseen faults. That is why in this section of
the results, we will show four types of training data:

– Schema 1: All Normal Databases with All Faulty Databases

– Schema 2: One Normal Database with All Faulty Databases

– Schema 3: All Normal Databases with Each Individual Faulty
Databases

The aim is to understand how the SNNs model behaves with different
types of datasets, for example, if just one normal process is not good in
generalization compared to the ten normal databases, and if doing the same
schema for each faulty, the model will be more accurate in detecting the
faulty. The training on such an unbalanced dataset could potentially result
in a model with a bias toward fault detection, likely leading to a high
false positive rate. However, a more balanced dataset would lead to a more
generalized model.

Scheme 1 was selected as the initial framework for training, validating
and testing the SNNs to determine the most effective model architecture.
The experiment was conducted across various neural network configurations,
as shown in Table 6.7 with the hyperparams as in 6.1.



Chapter 6. Results and Discussion 71

6.2
Schema 1: All Normal Databases with All Faulty Databases

In our study, Scheme 1, which integrated all normal and faulty
databases for training, was identified as the foundational model. This
approach aimed to create a versatile model capable of recognizing multiple
fault types in a unified framework. The extensive training under this scheme
was hypothesized to yield a model with broad detection capabilities, as
evidenced by the results showing high accuracy and MCC values across
various network configurations.

Table 6.2: Simulation average results with all normal process from five cross
validation process.

Net Type SNN Configuration Accuracy F1-Score MCC
LSTM [10] 97.76 % 95.69 % 97.63 %
MLP [10] 95.80 % 91.57 % 95.52 %

LSTM [10, 10] 97.76 % 95.69 % 97.63 %
MLP [10, 10] 97.24 % 94.48 % 97.09 %

LSTM 10, 10, 10] 98.56 % 97.00 % 98.45 %
MLP [10, 10, 10] 97.56 % 95.19 % 97.42 %

LSTM [10, 5, 10] 97.24 % 94.61 % 97.01 %
MLP [10, 5, 10] 97.40 % 94.78 % 97.24 %

LSTM [10, 2, 10] 92.6 % 4 % 85.13 % 91.81 %
MLP [10, 2, 10] 97.52 % 94.89 % 97.33 %

LSTM [10, 10, 10, 10] 98.76 % 97.71 % 98.65 %
MLP [10, 10, 10, 10] 97.76 % 95.87 % 97.66 %

LSTM [10, 5, 2, 5, 10] 98.52 % 97.21 % 98.37 %
MLP [10, 5, 2, 5, 10] 98.64 % 97.10 % 98.59 %

LSTM [10, 8, 5, 8, 10] 93.20 % 86.23 % 92.42 %
MLP [10, 8, 5, 8, 10] 98.52 % 96.80 % 98.49 %

LSTM [10, 10, 10, 10, 10] 73.56 % 49.60 % 68.41 %
MLP [10, 10, 10, 10, 10] 97.76 % 95.36 % 97.65 %

Specifically, the model configuration with four hidden layers of ten
LSTM cells each emerged as the most effective, demonstrating the model’s
capacity to capture complex patterns in the data, resulting in an impressive
training accuracy of 98.76 %, F1-score of 97.7 %, and MCC of 98.65 %.

The benchmark MLP model, characterized by its hidden layer con-
figuration of [10, 5, 2, 5, 10], achieved accuracy of 98.64 %. The benchmark
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model, architecture with the configuration [10, 5, 2, 5, 10], achieves a re-
markable accuracy of 98.64 %. This high level of accuracy underscores the
effectiveness of the chosen network structure in fault detection tasks. This
suggests that the model is capable of distilling essential information from
the input data and then expanding it to make precise predictions.

That achieved a training accuracy of 98.76 %, F1-score 97.7 % and
MCC of 98.65 %. Test accuracy of 97.0 %, F1-score 97.0 %, and loss of
94.13 %, as can be seen in the training. A learning curve indicates if a model
learns effectively from the data. The learning curve encountered the final
value fast near 50 epochs and showed a small gap between training and
validation, indicating that the model did not overfit. The rapid convergence
to the final value suggests that the model’s architecture and the learning
rate are well-suited for the task at hand, allowing it to quickly assimilate
the patterns within the data without the need for extensive epochs that
could potentially lead to overfitting. Moreover, the small gap between the
training and validation performance is a strong indicator of the model’s
generalization ability. Suggests that the model has learned the underlying
patterns of the dataset rather than memorizing it, enhancing its ability to
perform well on both training and test data.

Figure 6.14: Model accuracy process from Schema 1.

What was noteworthy to observe is that the model exhibited higher
error to detect faults in #4, and #5, errors of 10.8 % and 7.5 %, respectively,
resulting high numbers of false negatives. Further investigation into all faults
will be conducted in Schemes 3.
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Class Pair Count Error Rate
(0, 0) 1973 0.5%
(0, 1) 308 3.3%
(0, 2) 286 1.2%
(0, 3) 279 0.6%
(0, 4) 293 10.8%
(0, 5) 290 7.5%
(0, 6) 284 2.8%
(0, 7) 299 4.7%
(0, 8) 279 2.4%

Table 6.3: Class Pair Error Rates

In our model evaluation, we employ a confusion matrix, a tool
that visually outlines the performance of an algorithm by displaying true
positives, true negatives, false positives, and false negatives. The matrix
enables us to measure the accuracy and precision of classifications in a
binary or multi-class problem, providing insights into the model’s predictive
capabilities.

Figure 6.15: Confusion Matrix Schema 1.

The model demonstrates excellent performance with a high degree
of precision and accuracy with LSTM units. However, attention should
be given to the false negatives to investigate why these instances were
missed and to determine if there is a pattern or similarity among them
that could be addressed. The absence of false positives is notable and could
indicate a very stringent model in predicting a case as positive, which, in
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our application, may not be desirable because false negatives can be more
dangerous, causing accidents. The model’s performance indicated that there
is room for improvement in reducing the false negatives.

6.3
Schema 2: One Normal Databases with All Faulty Databases

The examination of different schemas underscored the trade-offs
between specificity and generalization in model training. Scheme 2 focused
on training with one normal database and all faulty databases, aiming
to enhance the model’s sensitivity to deviations from a single normal
operational state.

When using the normal #1 dataset for training in combination with
all the faulty datasets, the expectation is to build a less sensitive model to
variations in normal conditions while achieving higher accuracy. The same
architecture and hyperparameters from Schema 1 were used to compare
properly. It achieved a training accuracy of 98.72 %, F1-score 98.65 % and
MCC of 97.43 % and a test accuracy of 98.4 %, F1-score 98.45 % and MCC
of 96.83 %.

Table 6.4: Average Results with one normal databases with all faulty
databases from five cross validation process.

Net Type SNN Configuration Accuracy F1-Score MCC
LSTM [10, 10, 10, 10] 98.72 % 98.65 % 97.43 %
MLP [10, 10, 10, 10] 98.16 % 98.11 % 96.36 %

The learning curve encountered the final value fast near 50 epochs
and showed a small gap between training and validation, indicating that
the model didn’t overfit, but it is interesting to see that, in the beginning
the validation accuracy diminishes faster than the training. The faster
diminution in validation accuracy compared to training accuracy can be
indicative of beginning of a divergence between the model’s performance on
seen versus unseen data, potentially that in the overfitting may occurred in
the beginning.
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Figure 6.16: Model accuracy process from Schema 1.

When we compare this to Schema 1, it becomes apparent that there
has been a general reduction in the magnitude of errors across most fault
categories, especially for fault number 4. This indicates that while there is an
improvement over the previous schema, there is still potential for refinement.
Detailed information on the occurrence count and specific error rates for
each fault category can be found below. This granular breakdown provides
insight into the model’s performance for each class pair and establishes a for
targeted improvements.

Class Pair Count Error Rate
(0, 0) 1973 0.0%
(0, 1) 308 3.5%
(0, 2) 286 0.0%
(0, 3) 279 0.0%
(0, 4) 293 0.6%
(0, 5) 290 6.9%
(0, 6) 284 2.6%
(0, 7) 299 4.5%
(0, 8) 279 3.2%

Table 6.5: Class Pair Error Rates
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Figure 6.17: Confusion matrix of schema 2.

6.4
Schema 3: All Normal Databases with Each Individual Faulty Databases

The subsequent analysis using Scheme 3, which involved all normal
databases with each individual faulty database, highlighted the model’s pre-
cision in detecting specific faults. The detailed performance metrics for dif-
ferent fault types revealed the model’s strengths and areas for improvement.

During the testing phase, the model demonstrated perfect accuracy
for identifying faults #1, #2, #3, #4, and #5, with a 100 % success rate
in distinguishing these faults from normal operating conditions. However,
the test results revealed error rates of 8.4 %, 13.0 %, and 1.5 % for faults
#6, #7, and #8 respectively, as detailed in Table 6.6. This differentiation
indicates that while the model is highly effective for certain fault types,
its testing performance for others, particularly faults #6 and #7, indicates
areas where further model refinement is needed.
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Table 6.6: Table of percentage of error for each faulty for testing dataset.

Net Type Faulty Accuracy MCC F1-Score
LSTM 1# 97.80 % 95.96% 97.71 %
MLP 1# 98.60 % 97.71 % 98.47 %

LSTM 2# 99.68 % 99.50 % 99.63 %
MLP 2# 99.68 % 99.501% 99.63 %

LSTM 3# 99.24% 98.50 % 99.17 %
MLP 3# 99.28 % 98.60 % 99.21 %

LSTM 4# 98.12 % 96.13% 98.05 %
MLP 4# 98.32 % 96.72 % 98.24 %

LSTM 5# 96.24% 92.86 % 96.03 %
MLP 5# 97.72% 95.73 % 97.55 %

LSTM 6# 99.32 % 98.70 % 99.27 %
MLP 6# 98.60% 97.43 % 98.49 %

LSTM 7# 98.88% 97.92 % 98.82 %
MLP 7# 98.64% 97.33 % 98.55 %

LSTM 8# 99.32 % 98.80 % 99.22%
MLP 8# 99.48 % 99.10 % 99.43 %

The excellent performance of the model across all faulty instances
is evidenced by high accuracy F1-scores and loss, indicating a robust and
reliable model across various scenarios. The range of MCC values, from a
minimal 99.50 % to 92.86 %, underscores the model’s consistent confidence
in its predictions, regardless of the fault type. This consistency indicates a
well-tuned model that has learned to effectively generalize from its training
data.

Despite the overall strong performance, a closer examination reveals
that the model does not perform uniformly across all fault types. There were
minor deviations from perfect accuracy for faulty instances #1, #5, #4 and
#7, manifested as lower accuracy.

The lower accuracy, observed for instance #5, suggesting that the
faulty is more complicated to detect. Such a low error rate may be consid-
ered acceptable in many industrial applications, but it still represents an
opportunity for optimization. To address these errors, it would be prudent
to perform a detailed error analysis to understand the underlying causes.
This could involve reviewing hyperparameters and the SNN configuration
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6.5
Final Results

In Schema 1, the model exhibited a high rate of false negatives,
suggesting that while it may efficiently identify normal conditions, it tends
to miss many system failures. A high rate of false negatives is a critical
concern in industrial settings where failing to detect a fault could lead
to costly downtime or safety hazards. Adjusting the decision threshold for
fault detection, enhancing feature selection, or providing more representative
training data for the types of faults that are being missed could improve the
model’s detection capability.

Schemas 2 offered a more balanced error profile, with false negatives
and false positives better distributed. This balance is essential as it suggests
a model that neither over-predicts nor under-predicts the presence of a
fault condition. A balanced distribution is preferred in many practical
applications, as both types of errors can be costly.

It was particularly noteworthy that Schema 3 performed exceptionally
well across all fault types. It suggested that a training approach that includes
a broader variety of ’normal’ data, alongside data from a single fault type,
can enhance the model’s fault detection capabilities. This could be due to
the model’s ability to understand the baseline of normal behavior better,
making deviations due to faults more pronounced and easier to detect.

Table 6.7: Highest performance from all schemas from the average cross
validation results.

dataset Accuracy F1-Score MCC
Benchmark 98.64 % 97.10 % 98.60 %
Schema #1 98.76 % 97.71 % 98.65 %
Schema #2 98.72 % 98.65 % 97.43 %
Schema #3 99.68 % 99.50 % 99.63 %

In an industrial context, where parameters are continuously moni-
tored, a model with less than 100 % accuracy can still be considered reliable,
provided it maintains high precision and recall for critical faults. The slight
trade-off in accuracy can be acceptable if the model ensures a high detection
rate of actual faults with minimal false alarms depending on the costs of
stopping the process.
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Conclusion

In the modern chemical industry, where operational safety is a critical
concern, the development of effective fault detection mechanisms remains a
significant challenge. Traditional statistical methods, while powerful, have
shown limitations. Our research has addressed this gap by introducing
a novel approach employing SNNs for early fault detection in styrene
polymerization.

We formulated a polystyrene model using the the method of moments
for mass and energy balance in a CSTR reactor, incorporating proportional-
integral-derivative (PID) control to reflect realistic industrial processes. This
comprehensive framework allowed the introduction of 13 distinctive process
faults, feeding the data into the SNNs, 5 normal process and 8 faulty process.
The uniqueness of this methodology lies in the first-time application of SNNs
for fault detection in polymerization, marking a significant innovation in the
field.

Our SNN-LSM and SNN-MPL model demonstrated robustness, effi-
ciency, and versatility. The experimental results, shows an impressive fault
detection rate from 99.7% accuracy and 97.9 % MCC, validate the capacity
of SNNs in handling complex, dynamic, and non-linear processes.

The study compared various schemas, including training a single
model on all available data versus training specific models for each type
of fault. The results unequivocally demonstrate that specialized models to
individual fault types outperform a generalized model trained on all fault
types together.

This finding challenges the conventional approach of seeking a one-
size-fits-all model for fault detection. Instead, it underscores the advantages
of developing multiple, specialized models, each fine-tuned for specific fault
conditions. Such an approach not only enhances the accuracy and efficiency
of fault detection but also reduces the likelihood of false positives and
negatives, crucial factors in maintaining operational integrity and safety in
industrial environments.

Implementing multiple models for fault detection, as recommended by
the study’s findings, may require additional resources in terms of develop-
ment time, computational power, and maintenance. However, the benefits,
including improved accuracy, reduced downtime, and enhanced safety, signif-
icantly outweigh these costs. The adoption of this strategy can lead to more



Chapter 7. Conclusion 80

responsive and adaptable fault detection systems, capable of addressing the
diverse and dynamic challenges encountered in industrial processes.

The SNN-Model’s adaptability for changing conditions in the reactor
and its real-time analysis capabilities make it a valuable asset for modern
chemical engineering. Beyond petrochemicals, the principles of the SNN-
Model can be extended to various manufacturing processes and abnormal
situations, even in other areas.

For future works, build an ensemble approach using multiple SNNs
models, each one trained separately with each fault, utilizing for each a
proper hyperparameters, classification the fault and explore using it in
integration with real data from IoT devices, enhancing its applicability and
effectiveness.
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